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Zusammenfassung

Für Chirurgen ist es schwierig, am schlagenden Herzen zu operieren, weil
sich die Herzoberfläche schnell bewegt. Deshalb werden Herzoperationen
üblicherweise am stillstehenden Herzen durchgeführt, wobei der Patient von
einer Herz-Lungen-Maschine am Leben gehalten wird. Allerdings bringt
das Anhalten des Herzens und der Einsatz der Herz-Lungen-Maschine
zusätzliche medizinische Risiken für den Patienten mit sich. Ein Ansatz,
um diese Probleme zu beheben, ist der Einsatz eines Roboters für die
Chirurgie am schlagenden Herzen. In diesem Fall wird die Herzbewegung
von Sensoren erfasst und ein ferngesteuerter Roboter verwendet, um die
Operation durchzuführen, wobei er die Herzbewegung automatisch aus-
gleicht. Dem Chirurgen, der den Roboter fernsteuert, wird im Gegenzug
eine stabilisierte Ansicht auf das schlagende Herz angezeigt. Auf diese Wei-
se wird die Illusion einer Operation am stillstehenden Herzen geschaffen,
obwohl das Herz in Wirklichkeit die gesamte Zeit über schlägt.

Um dieses Konzept in einer klinischen Umgebung umzusetzen, ist es
erforderlich, eine Reihe von Teilproblemen zu lösen. Dazu gehören unter
anderem Fragestellungen der medizinischen Bildverarbeitung, der Robotik,
der Regelung, der Schätzung, des Tracking und der Signalverarbeitung.
Diese Dissertation konzentriert sich auf drei grundlegende Bausteine eines
Systems für die roboterassistierte Chirurgie am schlagenden Herzen. Der
erste Baustein befasst sich mit der Verwendung von Kreis- und Richtungs-
statistik, einem Teilbereich der Statistik, welcher sich mit periodischen
Phänomenen beschäftigt. Dabei kommen Wahrscheinlichkeitsverteilungen
auf nichtlinearen Mannigfaltigkeiten zum Einsatz, anstatt lineare Appro-
ximationen zu verwenden. Basierend auf diesen statistischen Grundlagen
kann beispielsweise die Phase des Herzschlags geschätzt werden. Phasenin-
formation ist von großem Interesse für die roboterassistierte Chirurgie am
schlagenden Herzen, und Methoden, die auf Richtungsstatistik basieren,
erlauben eine genauere Schätzung als traditionelle lineare Methoden. Der
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zweite Baustein befasst sich mit der Rekonstruktion einer Oberfläche, die
sich bewegt und verformt, wie etwa die Herzoberfläche. Dabei werden
Messungen von Sensoren unterschiedlichen Typs kombiniert. Der dritte
Baustein befasst sich mit der Frage, wie eine stabilisierte Ansicht des
schlagenden Herzens erzeugt werden kann, um sie dann dem Chirurgen
anzuzeigen.

Richtungsstatistik ist ein Teilgebiet der Statistik, welches sich mit
Richtunsgrößen befasst, die auf nichtlinearen Mannigfaltigkeiten definiert
sind. Dazu gehören beispielsweise Winkel, Orientierungen oder Phasenin-
formation. Da diese Größen periodisch sein können, müssen Wahrscheinlich-
keitsverteilungen auf den zugrunde liegenden Mannigfaltigkeiten besonders
sorgsam definiert werden. In dieser Arbeit werden sowohl zirkuläre Größen
als auch Verallgemeinerungen auf höhere Dimensionen wie Größen auf
dem Torus oder der Hyperkugel betrachtet. Dazu werden zunächst die
statistischen Grundlagen eingeführt und anschließend Schätzverfahren
hergeleitet, um bayessche Filterung auf diesen Mannigfaltigkeiten durch-
zuführen. Danach wird die Anwendung der entwickelten Methoden auf das
Problem der Herzphasenschätzung untersucht.

Um roboterassistierte Operationen am schlagenden Herz sicher durch-
führen zu können, sind genaue Informationen über die Herzoberfläche
unerlässlich. Deshalb wird in dieser Arbeit ein Oberflächenrekonstrukti-
onsalgorithmus vorgeschlagen, der dazu entwickelt wurde, eine Oberfläche,
die sich bewegt und deformiert, zu rekonstruieren. Dies geschieht, indem
Position und Form der Oberfläche mit einem rekursiven nichtlinearen
Filter geschätzt werden. Um die Qualität der Schätzung der Oberfläche
zu verbessern, werden Daten von verschiedenen Sensoren wie etwa Stereo-
kamerasystemen oder Tiefensensoren kombiniert. Die Oberfläche selbst
wird als dreidimensionales Spline dargestellt, welches im Gegensatz zu
anderen üblichen Oberflächenmodellen mit wenigen Parametern beschrie-
ben werden kann. Um die Qualität der Oberflächenrekonstruktion weiter
zu erhöhen, wird zudem eine Methode vorgeschlagen, mit der adaptiv
zusätzliche Kontrollpunkte eingefügt werden können.

Schließlich wird das Problem der Bildstabilisierung betrachtet. Um
ein stabilisiertes Bild zu erzeugen, welches dem Chirurgen angezeigt wer-
den kann, werden rein zweidimensionale sowie dreidimensionale Ansätze
unterschieden. Während die zweidimensionalen Algorithmen nur 2D Infor-
mationen nutzen, um ein stabilisiertes zweidimensionales Bild zu erzeugen,

X
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nutzen die dreidimensionalen Algorithmen 3D Informationen, um eine sta-
bilisierte dreidimensionale Oberfläche des schlagenden Herzens zu erzeugen.
Da diese Ansätze auf Interpolationsagorithmen basieren, werden mehrere
Techniken zur Interpolation, die sich in diesem Kontext anwenden lassen,
eingeführt, diskutiert und verglichen. Außerdem wird eine gründliche Eva-
luation durchgeführt, die sowohl ex-vivo als auch in-vivo Daten verwendet.
Anhand dieser werden die Vor- und Nachteile der verschiedenen Methoden
diskutiert.

Obwohl die Forschung an diesen Bausteinen durch roboterassistierte
Chirurgie am schlagenden Herzen motiviert ist, lassen sie sich nicht nur auf
dieses, sondern auch auf viele andere Probleme anwenden. Viele Anwen-
dungen, sowohl medizinische als auch andere, können von den Methoden,
die in dieser Dissertation entwickelt wurden, profitieren.

XI





Abstract

Performing surgery on a beating heart is difficult for the surgeon due to
the rapid movement of the heart surface. Thus, heart surgery is commonly
performed on a stopped heart while the patient is kept alive by a heart-lung
machine. However, stopping the heart and using the heart-lung machine
incurs additional medical risks for the patient. One approach to remedy
these issues is the application of robotic beating heart surgery. In this
case, the heart movement is observed by sensors and a remote-controlled
robot is employed to carry out the operation while automatically canceling
out the heart motion. The surgeon who is remotely controlling the robot
is in turn shown a stabilized view of the beating heart. Thus, the illusion
of operating on a stopped heart is created, although the heart is in fact
beating all the time.

Obviously, implementing this concept in a clinical setting involves the
solution of numerous subproblems including but not limited to medical
image processing, robotics, automatic control, estimation, tracking, and
signal processing. In this thesis, we focus on three fundamental building
blocks of a robotic beating heart surgery system. First, we consider
the use of circular and directional statistics, a subfield of statistics that
deals with periodic phenomena by considering probability distributions on
nonlinear manifolds rather than using linear approximations. Based on
these statistical foundations, we can, for example, estimate the phase of the
heartbeat. Phase information is of significant interest in robotic beating
heart surgery and directional methods provide more accurate estimates
than traditional linear methods. Second, we deal with the problem of
surface reconstruction for a moving and deformable surface, particularly
the heart surface, by combining measurements from different types of
sensors. Third, we address the question of how a stabilized image of
the beating heart can be obtained, which can then be presented to the
surgeon.



Abstract

Directional statistics is a subfield of statistics that deals with direc-
tional quantities, which are defined on nonlinear manifolds, for example
angles, orientations, or phase information. As these quantities may be
subject to periodicities, special care has to be taken when defining proba-
bility distributions on these manifolds. In this work, we consider circular
quantities, but also higher-dimensional generalizations such as toroidal
and hyperspherical problems. After introducing the statistical foundations,
we derive estimation algorithms to perform Bayesian filtering on these
manifolds. Finally, we consider the application of the developed methods
to the problem of estimating the phase of a beating heart.

In order to safely perform robotic surgery on the beating heart, accu-
rate information about the heart surface is essential. For this reason, we
propose a surface reconstruction algorithm that is designed to reconstruct
a moving and deforming surface by tracking its location and shape using
recursive nonlinear filtering techniques. In order to increase the quality
of the surface estimate, we combine data from different types of sensors
such as stereo camera systems and depth sensors. The surface itself is
modeled as a three-dimensional spline, which—unlike other common sur-
face representations—can be represented with a fairly small number of
parameters. A scheme for adaptively introducing additional control points
is proposed in order to increase the quality of the surface reconstruction.

Finally, we investigate the problem of image stabilization. To create
a stabilized image, which can be presented to the surgeon, we consider
purely two-dimensional as well as three-dimensional approaches. Whereas
the two-dimensional algorithms rely exclusively on 2D information to
create a two-dimensional stabilized image, the three-dimensional algorithms
take advantage of 3D information in order to create a stabilized three-
dimensional surface of the beating heart. As these approaches are based
on interpolation algorithms, we introduce, discuss, and compare multiple
interpolation techniques that may be applied in this context. Furthermore,
we perform a thorough evaluation based on ex-vivo as well as in-vivo
data and discuss the advantages and disadvantages of several evaluation
methods.

Even though the research on these building blocks is motivated by
robotic beating heart surgery, their applicability is not limited to this
particular problem, but many further applications, both medical and
non-medical, may benefit from the techniques developed in this thesis.

XIV
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Surgical procedures on the heart are widespread, but performing
surgery on the beating heart, e.g., a coronary artery bypass, is very
challenging even for skilled surgeons. For this reason, it is common to
stop the heart and employ a heart-lung machine during the intervention.
However, this procedure leads to increased risks for the patients. To
combine the ease of performing surgery on the still heart with the medical
benefits of beating heart surgery, we consider a solution to this problem
based on robotic heart surgery. In this case, a robot is remotely controlled
by the surgeon, while automatically compensating for the motion of the
beating heart. In turn, the surgeon is shown a stabilized image of the
beating heart to create the illusion that the heart is standing still.

In order to implement this concept, a number of problems needs to be
solved. These problems include the design of a suitable robot, the choice of
appropriate sensors, the calibration of all sensors and actors, the derivation
of a tracking algorithm for the beating heart, the creation of a control
scheme for the robot, the formulation of an image stabilization algorithm,
a real-time implementation of all involved methods, and many more. A



Chapter 1. Introduction

number of PhD theses has already addressed this application [203], [221],
[280], [215], [18], each of which has considered a different subset of the
aforementioned problems. In order to advance the research in this area,
we focus on several as of yet unsolved problems. By doing so, this thesis
contributes multiple important building blocks for the creation of a robotic
beating heart surgery system. These advances are, however, not limited to
the motivating application of beating heart surgery. On the contrary, they
can be applied to a variety of other medical and non-medical problems
and, thus, contribute greatly to a variety of fields beyond beating heart
surgery as well.

1.1 Considered Problems and Contributions
In the following, we formulate the problems considered in this thesis and
describe our contributions to the solution of these problems.

1.1.1 Heart Phase Estimation Using Directional Statistics
Problem The first problem we focus on in this thesis is heart phase
estimation. Estimating the phase of the heartbeat is of great interest
because information about the phase is a key to tracking and predicting
the heart motion. For this purpose, a variety of different sensors can be
used and a good method for heart phase estimation has to be able to
incorporate new sensors easily. In order to address this problem, it is
convenient to apply directional statistics, a subfield of statistics dealing
with quantities defined on certain nonlinear manifolds, e.g., the circle,
the torus, or the hypersphere. The advantage of employing directional
statistics compared to traditional linear statistical techniques is the fact
that the inherent periodicity of angles, phases, or orientations can be
properly considered.

Contribution Based on directional statistics, we derive several filters
that can deal with different types of system functions and measurement
functions as well as different types of manifolds. Particularly, we consider
circular filters based on the wrapped normal and von Mises distributions.
Whereas filters for identity system and measurement models for the von
Mises distribution have previously been considered by other authors [12],
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we propose a filtering scheme for nonlinear system and measurement
models that can be based on either the von Mises or the wrapped normal
distribution. In higher dimensions, we propose a hyperspherical filter
based on the Bingham distribution that can be applied to antipodally
symmetric circular problems as well as quaternions1. Furthermore, we
introduce a novel probability distribution called the partially wrapped
normal distribution, investigate its properties and show how a special case
of this distribution can be used for toroidal filtering problems. Finally, we
apply the developed methods to the problem of heart phase estimation.
The proposed approach is shown to outperform a standard method in an
experiment with real data obtained from a blood pressure sensor. The
results on directional statistics and directional filtering presented in this
thesis are quite fundamental and applicable to many different areas where
periodicities occur.

1.1.2 Heart Surface Reconstruction
Problem The second problem under consideration is the reconstruction
of a moving and deforming surface, particularly the heart surface. For
this purpose, we seek to combine information from different types of
sensors, e.g., stereo camera systems and depth cameras, in order to obtain
an accurate estimate of the surface shape and position. Because the
measurements of the involved sensors are subject to uncertainties, it is
beneficial to consider an approach that explicitly takes these uncertainties
into account. Furthermore, it is desirable to track the movement of the
surface over time rather than creating a reconstruction based on a single
time step.

Contribution As current surface reconstruction techniques do not ful-
fill all of these criteria, we propose a novel method based on recursive
nonlinear filtering techniques. The proposed algorithm represents the
reconstructed surface as a spline, which is induced by a small number of
control points. To allow fusion of different types of sensors, we consider
two distinct measurement types, position and depth measurements, and

1A more detailed discussion of the Bingham distribution along with an extension to
nonlinear problems [O5], a more detailed discussion of the normalization constant
[O4], and a generalization for estimation on the group of rigid motions in two-
dimensions 𝑆𝐸(2) [O3] can be found in the thesis by Igor Gilitschenski [75].
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derive a separate measurement equation for each type. By reparameteriz-
ing the spline in polar or spherical coordinates (for surfaces in two- and
three-dimensional space, respectively), we can make the otherwise difficult
problem of incorporating depth measurements tractable. Furthermore,
we introduce a method for state augmentation in order to dynamically
increase the number of control points when the accuracy is limited by an
insufficient number of control points. As the proposed method is based on
a stochastic nonlinear filtering algorithm, it is easily possible to consider
the uncertainties associated with measurements stemming from different
sensors.

1.1.3 Image Stabilization

Problem The third problem considered in this thesis is image stabiliza-
tion. More specifically, we consider the question of how to remove the
heart motion from an image sequence while retaining changes to color
and texture. There has already been some work in this area by other
authors [90], [31], [248], [215], but the different approaches are fairly
independent of each other and rarely compared.

Contribution For this reason, we formulate a more general framework
for 2D and 3D image stabilization in this thesis. This framework relies on
an interpolation algorithm that is used as a black box. As a result, the
presented framework can be used in conjunction with different interpolation
techniques. We provide a comparison between several possible methods
and obtain some of the previously proposed algorithms as special cases
of the novel framework. Furthermore, we address the question of how to
evaluate image stabilization algorithms. For this purpose, we compare three
different evaluation methods, image differences, optical flow, and landmark
tracking, and discuss their individual advantages and disadvantages. These
theoretical contributions are corroborated by a thorough evaluation of the
proposed image stabilization techniques on data from ex-vivo as well as
in-vivo experiments.
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1.2 Medical Background
According to the World Health Organization (WHO), ischaemic heart
disease is the leading cause of death in the world2 as of 2012. That year,
more than 7 million people died as a result of ischaemic heart disease.
This disease is mostly caused by coronary heart disease and constitutes
a medical condition where blood flow to the heart muscle (myocardium)
is insufficient due to plaque inside the coronary arteries and, thus, the
myocardium is not properly supplied with oxygen (see Fig. 1.1). As a result,
coronary heart disease is deadlier than lung cancer, deadlier than HIV,
deadlier than chronic obstructive pulmonary disease, and even deadlier
than strokes. A more detailed investigation by Finegold et al. [62] shows
that in Germany approximately 155 800 people, more than the population
of Heidelberg, died as a result of coronary heart disease in 2008.

Figure 1.1.: Narrowing of coronary arteries in coronary artery disease
(illustration from [28]).

There is a variety of treatments available for coronary heart disease,
both pharmacological and surgical. One of the surgical treatments is called
coronary artery bypass graft (CABG). In this procedure, the surgeon
creates a bypass around the narrowed arteries to allow more blood to reach
the myocardium. The most common type of bypass is the so-called LIMA
to LAD graft, where the left internal mammary artery (LIMA) is redirected
to the left anterior descending (LAD) coronary artery. This process is
illustrated in Fig. 1.2(a) and Fig. 1.2(b). If necessary, further bypasses

2http://www.who.int/mediacentre/factsheets/fs310/en/
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can be performed using veins harvested from the patient’s legs. According
to [56], the number of CABG procedures in the US is slowly decreasing,
but there are still several hundred thousand procedures performed each
year.

aorta

LIMA

LAD

(a) Illustration from [28].

LIMALAD

(b) Bypass on a porcine heart.

Figure 1.2.: LIMA to LAD bypass.

To perform a CABG, the standard method consists in stopping the
heart for the duration of the procedure. While the heart is stopped,
a so-called cardiopulmonary bypass (CPB) is used to keep the patient
alive. This involves the use of a heart-lung machine, a device that takes
over the functions of the patient’s heart and lung for a limited amount
of time. However, stopping the patient’s heart causes a certain amount
of heart injury as a result of ischemia and the following reperfusion.
Furthermore, a CPB creates additional risks for the patient, such as a
severe immune reaction, anaemia, and cerebral microembolization caused
by clot formation [74]. For these reasons, it is desirable to perform an
off-pump coronary bypass operation (OPCAB), i.e., to perform surgery
on the beating heart and without the use of a heart-lung machine [137].
Additionally, it has been found that beating heart surgery results in shorter
hospital stays for the patients and, thus, is the less expensive procedure.
However, OPCAB has the drawback that it is much more difficult to
perform for the surgeon because it necessitates performing surgery on a
moving object.

6
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In addition to the distinction between beating heart surgery and still
heart surgery, we also need to differentiate between different degrees of
invasiveness of the surgery. Traditional CABG surgery requires a median
sternotomy, i.e., a large vertical incision along the sternum, whereas more
modern methods attempt to use smaller incisions. This leads to reduced
pain for the patient as well as a shorter hospital stay. Particularly, the
minimally invasive direct coronary artery bypass (MIDCAB) procedure
uses a so-called mini-thoracotomy, which requires a much smaller incision.
The totally endoscopic coronary artery bypass (TECAB) can even be
performed completely endoscopically [69, Sec. 1.5.2]. However, minimally
invasive surgery is much more difficult for the surgeon than open surgery
even without the additional problem of heart motion. The reasons for this
include limited haptic feedback, uncomfortable body posture, a confined
view through the endoscope, a reduced number of degrees of freedom inside
the patient’s body, etc.

One way to address these issues may be found in the field of robotic
surgery. In recent years, robotic surgery has been increasing in importance.
Currently, the only robotic systems in use for surgery on humans are
different versions of the da Vinci Surgical System developed by the U.S.
company Intuitive Surgical (see Fig. 1.3, photo by Intuitive Surgical3), a
system designed for minimally invasive surgery. According to Intuitive
Surgical, the da Vinci robot has been used in more than 1.5 million
surgeries worldwide [1]. It has found widespread adoption particularly in
urology and gynecology. In the United States, 27 percent of hysterectomies
(removal of the uterus) and 83 percent of prostatectomies (removal of the
prostate) were performed using the da Vinci system during the year 2011.
There are other robotic surgical systems, which are currently used for
research purposes only, such as the MiroSurge system developed at the
DLR4 [100].

Robotic surgery has a variety of potential advantages for the surgeon as
well as the patient. For example, tremor filters can be used to automatically
compensate physiological tremor in the surgeon’s hands [263]. Furthermore,
it is possible to scale all motions of the surgeon by a certain factor, which
allows more accurate manipulation of small structures. Because of the
tele-operation through a remote terminal, it is no longer necessary that the

3http://www.intuitivesurgical.com/company/media/images/systems-si/000628_
si_surgeon_sitting_at_console_faced_in_2000x1501.jpg

4Deutsches Zentrum für Luft- und Raumfahrt, German Aerospace Center.
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Figure 1.3.: The da Vinci Si HD Surgical System by Intuitive Surgical.

surgeon and the patient are in the same room. In fact, it may be possible
to have an expert for a particular type of surgery perform the procedure
even though a large distance separates the doctor and the patient. There
have even been successful experiments with transatlantic surgery [178],
notwithstanding, there is a significant latency at this distance. In the
minimally invasive case, robotic surgery also has the advantage that there
are usually more degrees of freedom inside the patient’s body, which makes
certain manipulation tasks significantly easier. Also, the body position of
the surgeon during the procedure is a lot more comfortable, because the
remote console can be designed in a more ergonomic way than traditional
minimally invasive instruments. Despite these advantages, it deserves to
mention that there are a few downsides to robotic surgery, particularly the
high cost, a significant set-up time before the operation can begin, and so
far only fairly limited medical benefits for the patient.

1.3 Related Work

In the following, we give a brief introduction to the related work on the
topic of robotic beating heart surgery. A more thorough discussion of the
related work of directional statistics and filtering, surface reconstruction,
and image stabilization can be found in the individual chapters.
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Figure 1.4.: Concept of robotic beating heart surgery.

In 2001, Nakamura et al. suggested the application of robotic surgery
for beating heart procedures, namely CABG interventions [199]. The basic
idea consists in the use of a tele-operated robot to automatically cancel
the motion of the beating heart. The robot is remotely controlled by a
surgeon, but adds the motion of the heart to the surgeon’s motion in
order to compensate the beating of the heart. On the other hand, the
surgeon is shown a stabilized image of the heart rather than the true image
obtained by a camera. This way, it is possible to create the illusion of
operating on a stopped heart whereas, in fact, the operation is performed
on a beating heart. By doing so, robotic beating heart surgery facilitates
the combination of the advantages of stopped and beating heart surgery,
namely the ease of operating of stopped heart surgery and the reduced
risks for the patient of beating heart surgery. An overview of the concept
proposed by Nakamura is shown in Fig. 1.4.

An overview of the current state of the art of robotic heart surgery is
given in [69, Chapter 8]. When beating heart surgery is performed, usually
a passive mechanical stabilizer is employed that is attached to the heart
using suction and that tries to mechanically hold a small area on the heart
in place [52], [73], [161]. However, there is still significant residual motion
even if such a stabilizer is used. In order to further reduce the movement
of the beating heart, Gagne et al. [68] and Bachta et al. [13] have proposed
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an active stabilizer, which continuously observes the motion of the heart
and tries to counteract it.

There is quite a lot of work on tracking the beating heart by a variety
of different methods. Some methods are purely two-dimensional image-
based [90], whereas others attempt to perform 3D tracking of one or more
individual points [67], or the entire heart surface [217]. Some authors
use artificial landmarks [18], [221], [77] whereas others rely on texture-
based tracking to avoid placing landmarks on the heart surface [226], [202].
Tracking is complicated by the fact that the heart motion is superimposed
with the breathing motion [77] and that arrhythmia can occur [260]. In this
context, a variety of different sensors has been used to gain information
about the movement of the heart. Visual sensors are very wide-spread [199],
[217], [204], [248], [18], [221], but some authors also use electrocardiography
(ECG) [23], [204], pressure sensors [23], [221], [18], force sensors [24],
ultra-sound [280], [141], [279], or inertial sensors [119] [124].

Beyond just tracking the current state of the heart, there are ap-
proaches that use some kind of model to predict the heart movement, an
important feature for reliable control. Ortmaier et al. suggested the use of
Takens’ theorem to predict the motion of the heart based on similar previ-
ous data [204]. Franke et al. have used a vector autoregressive model [67] to
predict the movement of a point of interest on the heart surface. Because
of the approximate periodicity of the heart movement, approaches based on
Fourier series have also been suggested by some authors [215], [217], [280].
Beyond these purely mathematical models, there has also been some re-
search on physics-based models. Approaches based on the finite element
method have been published by Roberts [221], Bader et al. [14], and
Nash [200]. These approaches were further developed by Ballmann [18]
using meshless methods and can be enhanced to perform simultaneous
state and parameter estimation [29]. A significantly more complex and
more accurate physical heart model based on electromechanical properties
of the heart was proposed by Sermesant et al. [230], however the computa-
tional complexity of this model makes real-time implementations difficult
or even impossible.

A number of authors has also considered the problem of deriving
a control algorithm for the robot. Several approaches based on model
predictive control (MPC) have been proposed, for example by Ginhoux et
al. [77], Bebek et al. [23], and Dominici et al. [55], [54]. A method based on
iterative learning control was suggested by Cagneau [40]. There has also
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been some work on shared control between the surgeon and the automatic
motion compensation of the robot [196].

A related topic to OPCAB is mitral valve surgery on the beating
heart [69, Chapter 7]. This surgical procedure is different in that it
performs surgery inside the heart rather than on its surface. However,
similar problems arise because, once again, heart motion is difficult to
handle for the surgeon. Yuen et al. proposed an ultrasound-based tracking
scheme for mitral valve repair [276], [280], [279] and a one-dimensional
motion compensation built into the surgical instrument [277], [141]. Some
of the methods proposed in this thesis may possibly be applied to the
problem of mitral valve surgery as well (e.g., the heart phase estimation
algorithm).

1.4 Outline
This thesis is structured as follows. In Chapter 2, we first motivate and
introduce the fundamentals of directional statistics, both on the circle and
on higher-dimensional manifolds. Then, we derive the necessary operations
that are used as a basis for directional filtering algorithms. Based on these
results, we derive several filtering schemes in Chapter 3. Their respec-
tive performance is thoroughly evaluated in simulations. Furthermore,
an algorithm for heart phase estimation based on directional filtering
is presented. After that, Chapter 4 deals with the problem of surface
reconstruction. Different approaches are compared and a new solution is
proposed that can recursively estimate the shape of a deformable surface,
while fusing data from both position and depth sensors. This method is
also systematically evaluated using multiple simulations. In Chapter 5, we
focus on the problem of image stabilization. Algorithms for 2D and 3D
stabilization are introduced and subsequently evaluated using real data
from both ex-vivo and in-vivo experiments. Finally, we conclude this thesis
in Chapter 6. Some further information on calculation of certain required
mathematical functions is given in Appendix A, and a brief introduction
into Hamiltonian quaternions can be found in Appendix B.
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Directional Statistics is the subdiscipline of statistics that considers
problems on manifolds associated with angles or directions. A good
introduction into this field can, for example, be found in the book by
Mardia and Jupp [174]. The motivation for studying directional statistics
is summarized very well by the quote of Ronald Fisher [66]:

The theory of errors was developed by Gauss primarily in
relation to the needs of astronomers and surveyors, making
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rather accurate angular measurements. Because of this accuracy
it was appropriate to develop the theory in relation to an infinite
linear continuum, or, as multivariate errors came into view, to
a Euclidean space of the required dimensionality. The actual
topological framework of such measurements, the surface of a
sphere, is ignored in the theory as developed, with a certain
gain in simplicity.

It is, therefore, of some little mathematical interest to con-
sider how the theory would have had to be developed if the
observations under discussion had in fact involved errors so
large that the actual topology had had to be taken into account.
The question is not, however, entirely academic, for there are
in nature vectors with such large natural dispersions.

In the following, we distinguish between directional and linear quan-
tities. Directional quantities can be angles, directions, points on hyper-
spheres or hypertori etc. whereas linear quantities are values in the vector
space R𝑛.

Let us begin with a motivational example from descriptive statistics
to illustrate the differences between linear and directional quantities as
well as the associated concept of linear mean and circular mean. The
linear mean of 𝐿 samples 𝑥1, . . . , 𝑥𝐿 is given by

1
𝐿

𝐿∑︁
𝑗=1

𝑥𝑗

whereas the circular mean [127, Sec. 1.3.1] is given by

atan2

⎛⎝ 1
𝐿

𝐿∑︁
𝑗=1

sin(𝑥𝑗) , 1
𝐿

𝐿∑︁
𝑗=1

cos(𝑥𝑗)

⎞⎠ ,

where atan2 is the quadrant-aware version of the inverse tangent (see
Appendix A.3). Geometrically, the circular mean can be seen as the angle
of the mean vector of all vectors [cos(𝑥1), sin(𝑥1)]𝑇 , . . . , [cos(𝑥𝐿), sin(𝑥𝐿)]𝑇 .
Note that the circular mean is undefined if

𝐿∑︁
𝑗=1

sin(𝑥𝑗) =
𝐿∑︁

𝑗=1
cos(𝑥𝑗) = 0 .
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Example 1 (Circular Mean)
1. The circular mean of 20∘ and 340∘ is 0∘, but the linear mean is

20∘+340∘

2 = 180∘ (see Fig. 2.1). The circular result can also be
obtained by shifting the samples 𝑥1, . . . , 𝑥𝐿 by 𝑠 with suitable 𝑠 ac-
cording to ((𝑥+ 𝑠) mod 360∘, then averaging, and then shifting back.
For example, for 𝑠 = 100, we have(︂

(20∘ + 𝑠 mod 360∘) + (340∘ + 𝑠 mod 360∘)
2 − 𝑠

)︂
mod 360∘

=
(︂

120∘ + 80∘

2 − 100
)︂

mod 360∘ = 0∘ ,

which coincides with the circular result.

2. One may wonder if obtaining the correct result by means of shifting
is alway possible. The following example illustrates that this is not
the case. The circular mean of 20∘, 180∘, 340∘ is 0∘, but the linear
mean is 180∘, and shifting leads to 60∘ or 300∘, but never to 0∘ (see
Fig. 2.2). This shows that shifting is not sufficient in general and
demonstrates that methods from linear statistics are inadequate to
deal with circular problems even if tricks such as shifting are used.

20∘

340∘

0∘ circular resultlinear result 180∘

Figure 2.1.: Circular mean of 20∘ and 340∘.

2.1 Applications in Literature
Directional statistics has found its way into a wide range of research areas
and has been used in many different types of applications. In this section,
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20∘

340∘

0∘ circular result

60∘ shifted linear result

180∘ linear result

300∘ shifted linear result

180∘

Figure 2.2.: Circular mean of 20∘, 180∘ and 340∘.

we give an overview of some of the most relevant applications and try
to show what a wide range of problems can be addressed using these
fundamental methods.

The origins of a lot of the research in directional statistics can be
traced back to work in geosciences. Many of the important probability
distributions in this area, for example, the wrapped normal distribution
[227], the von Mises–Fisher distribution [66], the Watson distribution [266],
and the Bingham distribution [26] were first proposed with geoscientific
applications in mind. The reason why geoscientists are interested in
directional distributions is the fact that directional quantities such as the
orientation of layers of rock or magnetic fields (e.g., Earth’s magnetic
field, magnetic fields in rocks or lava, ...) [167] are commonly considered
in their research. An overview of applications of directional statistics in
geosciences was published by Mardia [172]. In this paper, he states

The study of directional data really took off in 1953 with
the help of the new subject of palaeomagnetism, with an article
by Fisher (1953). [...] Since 1953 there has been considerable
interest in directional data analysis both from statisticians and
earth scientists, as the vast number of applications have been
found in the earth sciences.

To this date, geoscientists are relying on directional statistics to deal with
certain problems. For example, Kunze et al. suggested the use of the
Bingham distribution for texture analysis in 2004 [154].

A somewhat related field that heavily relies on directional statistics
is meteorology. It has been known at least since the 1980s that certain
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directional distributions are more suitable for modeling wind direction than
linear distributions [63]. Since then, there has been a variety of research
on the modeling of wind direction [42], [131], and also of joint models that
consider both the wind speed and the wind direction [43], [53], [212].

Furthermore, directional statistics has found its way into biology and
medicine. Some of the biological applications are discussed in the book
“Circular Statistics in Biology” [22] by Batschelet. He states

Directions are observed and statistically analysed in such
biological areas as animal orientation and navigation connected
with migration, homing, escape, or exploratory activity. In this
context wind and water directions may also play an important
role. [...] Circular variables also occur in the area of biological
rhythms. A period of 24 hours corresponds to a full turn of 360
degrees. [...] Similarly, a month, a year or any other period of
a cyclic event may be represented by a rotation of 360 degrees.

More recently, directional statistics has also been used for (protein) bioin-
formatics [176], [173], [101], [232], [33], where the orientation of molecules
plays an important role. Some medical applications such as magnetic
resonance imaging (MRI) [25], radiation therapy [20], and the analysis of
the orientation of cancer cells [170, Sec. 7.1] also benefit from the use of
directional statistics.

During the past years, there has been increasing interest within
the signal processing community to use directional statistics in certain
applications, for example problems involving phase or phase difference
estimation. In conjunction with microphone arrays [185], the application
of directional statistics allows solving problems such as source separa-
tion [254], [256], [259], [265] as well as speaker localization [187] and
speaker tracking [257], [258]. Generally, speech processing can also benefit
from directional statistics [3]. Furthermore, some authors applied similar
methods to electromagnetic rather than acoustic waves, for example GPS
signal processing [243], [149], or more particularly cycle slip detection [246]
and signal tracking [245], [242].

Computer vision and robotics are also fields where algorithms based on
circular statistics have been proposed in the last decade. Many applications
involving robotic perception or pose estimation can benefit from directional
statistics [157], [60], [61], [81], [182]. For example, Glover considered the
problem of tracking the orientation of a ping pong ball [83], [80]. Directional
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statistics is also of interest in bearings-only tracking [186], [183], [184],
as bearing measurements are inherently directional quantities. Some
applications that may not be as obvious include color image segmentation
[223], [224], and hand-writing recognition [15].

The use of directional statistics is, however, not limited to the afore-
mentioned fields, but can be found in various other domains. These include,
but are not limited to, machine learning and clustering [169], [156], [19],
[224], [89], wrapped splines [259], map matching [193], shape analysis [140],
procrustean object alignment [84], astronomy [170, Sec. 7.2], and nuclear
physics [264].

2.2 Circular Statistics
First, we introduce circular statistics [127], [64], [22] the specialization of
directional statistics that considers the circle. Later, we will generalize the
concepts introduced in this section to higher dimensions.

2.2.1 The Group Structure on the Unit Circle
The circle 𝑆1 is commonly defined as {𝑥 ∈ C : |𝑥| = 1}, the subset
of all complex numbers with unit norm. Another equivalent definition
of 𝑆1 is {𝑥 ∈ R2 : |𝑥| = 1}, the subset of all unit vectors in R2. Its
topological structure is given by the subspace topology induced from C or
R2, respectively. In this section, we will focus on the definition as a subset
of C, because there is some additional semantic as a result of the complex
multiplication operator. We consider the mapping 𝜄1 : C→ [0, 2𝜋) with

𝜄1 : 𝑥 ↦→ Arg(𝑥)

where

Arg : C∖0 ↦→ [0, 2𝜋), 𝑥 ↦→ atan2(Im 𝑥,Re𝑥)

is the argument of a complex number (the definition of atan2 is given in
Appendix A.3). The function 𝜄1 has the inverse mapping

𝜄−1
1 : 𝑥 ↦→ cos(𝑥) + 𝑖 sin(𝑥) ,
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which yields a bijection between {𝑥 ∈ C : |𝑥| = 1} and [0, 2𝜋) ⊂ R, so the
circle can be parameterized as the half-open interval1 [0, 2𝜋). In order to
retain the correct topology, we use [0, 2𝜋) with the topology induced by
𝜄1(·) rather than the commonly used subspace topology from R. Using this
topology, 𝜄1(·) is a homeomorphism, i.e., a topology-preserving bijection.

The set [0, 2𝜋) with the aforementioned topology has a group structure
with the addition operator

+ : [0, 2𝜋)× [0, 2𝜋)→ [0, 2𝜋), 𝛼+ 𝛽 ↦→ 𝛼+R 𝛽 mod 2𝜋 ,

where +R is addition on R, and inverse operator

− : [0, 2𝜋)→ [0, 2𝜋), 𝛼 ↦→ −R𝛼 mod 2𝜋 ,

where −R is the negative sign from R, and identity element 0. More
precisely, it constitutes a Lie group [229], i.e., addition and inversion are
continuous functions with respect to the considered topology.

The addition operator is illustrated in Fig. 2.3. It should be noted
that addition on [0, 2𝜋) modulo 2𝜋 is equivalent to multiplication in C,
i.e.,

𝛼+ 𝛽 = 𝜄1
(︀
𝜄−1
1 (𝛼)×C 𝜄

−1
1 (𝛽)

)︀
where ×C is complex multiplication in C. This implies that the group
structure on the unit circle is isomorphic to a subgroup of the multiplicative
group on C∖{0}.

Remark 1 (Relation to Special Orthogonal Group 𝑆𝑂(2))
The Lie group of the unit circle also has a close relation to the special
orthogonal group 𝑆𝑂(2), which is defined as the group of orthogonal 2× 2
matrices

𝑆𝑂(2) = {X ∈ R2×2 : XX′ = I2×2,X′X = I2×2,det(X) = 1} ⊂ R2×2

with determinant 1. It can be shown that the map 𝜄2 : 𝑆𝑂(2) → [0, 2𝜋)
with

𝜄2 : X ↦→ atan2(𝑋2,1, 𝑋1,1)
1Some authors parameterize the circle as the intervals [−𝜋, 𝜋) or (−𝜋, 𝜋] instead. In

fact, it is equivalent to consider any arbitrary half-open interval of length 2𝜋.
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Figure 2.3.: Addition operator on the unit circle.

and inverse mapping

𝜄−1
2 : 𝑥 ↦→

[︂
cos(𝑥) − sin(𝑥)
sin(𝑥) cos(𝑥)

]︂
is a homeomorphism, and addition on [0, 2𝜋) modulo 2𝜋 is equivalent to
multiplication in 𝑆𝑂(2), i.e.,

𝛼+ 𝛽 = 𝜄2
(︀
𝜄−1
2 (𝛼)×R2×2 𝜄−1

2 (𝛽)
)︀
,

where ×R2×2 is matrix multiplication in R2×2. Therefore, 𝜄2(·) is a group
isomorphism as well.

2.2.2 Circular Distance Measures
In order to measure distances on the unit circle, it is desirable to define
a distance measure. There are several possibilities of how this distance
measure can be defined. First of all, there is the geodetic distance [127,
eq. (1.3.6)]

𝑑0(𝛼, 𝛽) = min(|𝛼− 𝛽|, 2𝜋 − |𝛼− 𝛽|) = 𝜋 − |𝜋 − |𝛼− 𝛽||

between 𝛼 ∈ [0, 2𝜋) and 𝛽 ∈ [0, 2𝜋), which is given by the length of
the shortest path on the unit circle connecting 𝛼 and 𝛽. The geodetic
distance takes values in the range [0, 𝜋], is symmetric positive definite, and
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fulfills the triangle inequality, i.e., it satisfies all axioms of a metric. It is
depicted in Fig. 2.4(a). Another common distance function is the cosine
distance [127, eq. (1.3.7)]

𝑑1(𝛼, 𝛽) = 1− cos(𝛼− 𝛽) ,

which takes values in the range [0, 2]. It is symmetric and positive definite,
but does not fulfill the triangle inequality. The counterexample

𝑑1(0, 𝜋/6) + 𝑑1(𝜋/6, 𝜋/3) = (1− cos(𝜋/6)) + (1− cos(𝜋/6))
= 2(1−

√
3/2) = 2−

√
3

< 2−
√

2.89 = 0.3

<
1
2 = 1− cos(𝜋/3) = 𝑑1(0, 𝜋/3)

illustrates this issue, because 𝑑1(0, 𝜋/6) + 𝑑1(𝜋/6, 𝜋/3) � 𝑑1(0, 𝜋/3). For
this reason, the cosine distance is not a metric, but only a semimetric. It
is illustrated in Fig. 2.4(b). Of course, it is also possible to use the metric
of C by restricting to the unit circle. This yields

𝑑2(𝛼, 𝛽) = |𝜄−1
1 (𝛼)− 𝜄−1

1 (𝛽)| = |(cos(𝛼) + 𝑖 sin(𝛼))− (cos(𝛽) + 𝑖 sin(𝛽))|

where | · | is the Euclidean norm in the complex plane. Because the
Euclidean norm is a metric on C and 𝜄1(·) is a homeomorphism, 𝑑2 is a
metric on the unit circle. It is easy to show that all proposed distance
measures are invariant with respect to shifting, i.e., 𝑑(𝛼, 𝛽) = 𝑑𝑗(𝛼 +
𝛾 mod 2𝜋, 𝛽 + 𝛾 mod 2𝜋) for all 𝛼, 𝛽, 𝛾 ∈ [0, 2𝜋) and 𝑗 = 1, 2, 3. For this
reason, the distance measures do not depend on the choice of the interval
of length 2𝜋 that is used to parameterize the unit circle.

2.2.3 Distributions
A variety of distributions on the unit circle have been proposed. There are
three basic concepts to obtain circular distributions from linear distribu-
tions. Circular densities arise by wrapping, restricting or projecting linear
densities to the unit circle. In many—but not all—cases the Gaussian
distribution is used as the linear distribution from which circular distribu-
tions are derived. An overview of the properties of these methods is given
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(a) Geodetic distance. (b) Cosine distance. (c) Complex distance.

Figure 2.4.: Distance functions on the unit circle.

wrapping restricting projecting
addition of random variables yes no no
multiplication of densities no yes no
stochastic sampling yes no yes
normalization constant yes no no

Table 2.1.: Overview of properties that can be easily reduced to the
Gaussian case.

in Table 2.1. Of course, it is also possible to define new distributions on
the circle, which do not originate from any linear distribution.

There are several different ways to plot circular densities. Three
common methods are illustrated in Fig. 2.5. The standard plot (Fig. 2.5(a))
ignores the periodic nature and depicts the pdf just as a function from
[0, 2𝜋) to R+, similar to the way the density of a distribution on R would
be visualized. When looking at this type of plot, one has to be aware that
0 and 2𝜋 actually represent the same point on the circle. An alternative
way to visualize the pdf is a three-dimensional plot (Fig 2.5(b)), where a
circle is drawn in the 𝑥-𝑦-plane and the values of the pdf are shown along
the 𝑧-axis. The third plot (Fig 2.5(c)) depicts the pdf as the distance
from a circle, which is similar to Rose diagrams and related visualization
methods [268].
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Figure 2.5.: Different ways of plotting circular densities.

A The Wrapped Normal Distribution

Let us consider a linear random variable 𝑥 ∼ 𝒩 (𝑥;𝜇, 𝜎), which is dis-
tributed according to a normal distribution. Taking 𝑥 mod 2𝜋 is equivalent
to wrapping the probability density function around the unit circle (see
Fig. 2.6(a)). This leads us to the following definition of the so-called
wrapped normal distribution. This distribution was first proposed by
Schmidt in 1917 for the study of crystalline slate [227].

Definition 1 (Wrapped Normal Distribution)
According to [127, Sec. 2.2.6], the wrapped normal (WN) distribution is
defined by the probability density function

𝒲𝒩 (𝑥;𝜇, 𝜎) =
∞∑︁

𝑘=−∞

𝒩 (𝑥+ 2𝜋𝑘;𝜇, 𝜎) ,

where 𝑥 ∈ [0, 2𝜋), 𝜇 ∈ [0, 2𝜋), and 𝜎 > 0.

By using the theory of Jacobi theta functions, an alternative repre-
sentation [127, eq. (2.2.15)]

𝒲𝒩 (𝑥;𝜇, 𝜎) = 1
2𝜋

(︃
1 +

∞∑︁
𝑘=1

exp
(︂
−𝜎

2

2

)︂𝑘2

cos(𝑘(𝑥− 𝜇))
)︃

of the WN probability density function can be found. These two different
representations can be used to evaluate the WN pdf efficiently for both large
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(a) A wrapped normal distribution is ob-
tained by wrapping a normal distribution
around the unit circle.

(b) A von Mises distribution is obtained
by restricting a normal distribution to the
unit circle.

Figure 2.6.: Relation of circular distributions to the normal distribution.

and small values of 𝜎, by truncating to a very small number of summands.
This process is discussed in further detail in our publication [O13].

B The Wrapped Cauchy Distribution

The linear Cauchy distribution2 [233, p. 156] has the probability density
function

𝒞(𝑥;𝜇, 𝜎) = 1
𝜋
· 𝜎

𝜎2 + (𝑥− 𝜇)2 ,

where 𝑥, 𝜇 ∈ R, and 𝜎 > 0. Just as the normal distribution, we can wrap
its density around the unit circle, yielding the following definition.

Definition 2 (Wrapped Cauchy Distribution)
The wrapped Cauchy (WC) distribution [127, Sec. 2.2.7] has the probability
density function

𝒲𝒞(𝑥;𝜇, 𝜎) =
∞∑︁

𝑘=−∞

1
𝜋
· 𝜎

𝜎2 + (𝑥− 𝜇+ 2𝜋𝑘)2 ,

where 𝑥 ∈ [0, 2𝜋), 𝜇 ∈ [0, 2𝜋), and 𝜎 > 0.
2The parameter 𝜎 in our notations is referred to by another symbol, for example 𝛾,

by some authors. Even though we use 𝜎, this parameter does not represent the
standard deviation.
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It can be shown that the infinite sum can be eliminated (see for
example [127, eq. (2.2.16)]), which yields the pdf

𝒲𝒞(𝑥;𝜇, 𝜎) = 1
2𝜋 ·

1− exp(−2𝜎)
1 + exp(−2𝜎)− 2 exp(−𝜎) cos(𝑥− 𝜇) .

This allows a closed-form evaluation of the WC pdf, which is not possible
for the WN pdf.

C The von Mises Distribution

Unlike the previous definitions, the von Mises distribution does not arise
as a result of wrapping. As we will show in Lemma 1, it arises by
restricting certain Gaussian distributions to the unit circle. It has a fairly
simple probability density function and is given according to the following
definition.

Definition 3 (von Mises Distribution)
The von Mises (VM) distribution [264], [127, Sec. 2.2.4] has the probability
density function

𝒱ℳ(𝑥;𝜇, 𝜅) = 1
2𝜋𝐼0(𝜅) exp(𝜅 cos(𝑥− 𝜇)) ,

where 𝑥 ∈ [0, 2𝜋), 𝜇 ∈ [0, 2𝜋), and 𝜅 ≥ 0 with modified Bessel function 𝐼0
(see Appendix A.1, [2, Sec. 9.6]) of order zero.

In literature, the VM distribution is very widely used [12], [42], [185],
[186], [211], [244], making it one of the most famous and most frequently
applied distribution in circular statistics. Even though the WN distribution
may be a more accurate representation of the true distribution, the von
Mises distribution is commonly considered a very close approximation3

that has a few mathematical advantages (particularly, its unnormalized
pdf can be evaluated in closed-form, it is closed under multiplication (see
Sec. 2.4.2-A), and its parameters can easily be calculated from samples
with maximum–likelihood estimation). Furthermore, it can be shown
that the VM distribution is the maximum entropy distribution for given

3According to Collett et al. [47] and Pewsey et al. [209], several hundred samples are
necessary to discriminate between WN and VM distributions.
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E(cos(𝑥)) and E(sin(𝑥)) [127, Sec. 2.2.4 G], i.e., for a given first circular
moment (see Sec. 2.2.4).

Remark 2 (Circular Normal Distribution)
The von Mises distribution is sometimes referred to as the circular normal
(CN) distribution [127, Sec. 2.2.4]. We do not use this term to avoid
confusion with the wrapped normal distribution.

As we will now show, the VM density is in fact a restriction of a
Gaussian density to the unit circle. This relation is illustrated in Fig. 2.6(b).

Lemma 1 (Relation Between VM Distribution and Gaussian)
The von Mises distribution 𝒱ℳ(𝑥;𝜇, 𝜅) arises as the restriction of a two-
dimensional Gaussian distribution with a mean [cos(𝜇), sin(𝜇)]𝑇 of norm
one and isotropic covariance matrix 1/𝜅 · I2×2 to the unit circle.

Proof This can be shown by

𝒩 ([cos(𝑥), sin(𝑥)]𝑇 ; [cos(𝜇), sin(𝜇)]𝑇 , 1/𝜅 · I2×2)

= 𝑐 · exp
(︁
− 0.5[cos(𝑥)− cos(𝜇), sin(𝑥)− sin(𝜇)](1/𝜅 · I2×2)−1

[cos(𝑥)− cos(𝜇), sin(𝑥)− sin(𝜇)]𝑇
)︁

= 𝑐 · exp(−0.5𝜅((cos(𝑥)− cos(𝜇))2 + (sin(𝑥)− sin(𝜇))2))
= 𝑐 · exp(−0.5𝜅(−2 cos(𝑥) cos(𝜇)− 2 sin(𝑥) sin(𝜇)))
= 𝑐 · exp(𝜅(cos(𝑥) cos(𝜇) + sin(𝑥) sin(𝜇))
= 𝑐 · exp(𝜅 cos(𝑥− 𝜇))
= 𝑐 · 2𝜋𝐼0(𝜅) · 𝒱ℳ(𝑥;𝜇, 𝜅) ,

where 𝑐 is the Gaussian normalization constant. Keep in mind that the
resulting distribution has to be renormalized on the unit circle.

D The Wrapped Dirac Mixture Distribution

Aside from the discussed continous distributions, discrete distributions on
the circle are of interest. In the linear case, the Dirac delta distribution
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(or measure) has the properties∫︁ ∞

−∞
𝛿(𝑥) d𝑥 = 1 , (normalization)

𝑥 ̸= 0⇒ 𝛿(𝑥) = 0 , (finite support)∫︁ ∞

−∞
𝑓(𝑥)𝛿(𝑥− 𝑦) d𝑥 = 𝑓(𝑦) . (sifting property)

As is commonly done in literature, we conveniently write the Dirac delta
distribution as though it were a function4 in the remainder of this thesis.
However, one should keep in mind that there is no function satisfying
these properties and that 𝛿(·) can be rigorously defined as a distribution
or a measure. Based on the Dirac delta distribution, a Dirac mixture
distribution [122, Sec. 5.2.1] is given by

𝒟(𝑥;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿) =
𝐿∑︁

𝑙=1
𝛾𝑙𝛿(𝑥− 𝛽𝑙) ,

where 𝛽1, . . . , 𝛽𝐿 ∈ R, 𝛾1, . . . , 𝛾𝐿 > 0, and
∑︀𝐿

𝑙=1 𝛾𝑙 = 1. Dirac mixture
distributions are discrete distributions on a continous domain, in this case
the real numbers R. They can be interpreted as a set of weighted samples.
Wrapping a Dirac mixture distribution leads to the following definition.

Definition 4 (Wrapped Dirac Mixture Distribution)
The wrapped Dirac (WD) mixture distribution is defined according to

𝒲𝒟(𝑥;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿) =
𝐿∑︁

𝑙=1
𝛾𝑙𝛿(𝑥− 𝛽𝑙) ,

where 𝛽1, . . . , 𝛽𝐿 ∈ [0, 2𝜋), 𝛾1, . . . , 𝛾𝐿 > 0, and
∑︀𝐿

𝑙=1 𝛾𝑙 = 1

The main advantage of this distribution compared to the previously
discussed continous distributions is the fact that it can be propagated
through nonlinear functions very easily.

4Some authors even refer to 𝛿(·) as the Dirac delta function.
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Remark 3
It may not be obvious, why we call the WD mixture distribution a wrapped
distribution even though it does not contain any wrapping terms. However,
if we take a Dirac mixture distribution on R with 𝛽1, . . . , 𝛽𝐿 ∈ R, wrapping
leads to a WD mixture distribution according to

∞∑︁
𝑘=−∞

𝒟(𝑥+ 2𝜋𝑘;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿)

=
∞∑︁

𝑘=−∞

𝐿∑︁
𝑙=1

𝛾𝑙𝛿(𝑥+ 2𝜋𝑘 − 𝛽𝑙)

=
𝐿∑︁

𝑙=1
𝛾𝑙𝛿(𝑥− (𝛽𝑙 mod 2𝜋))

=𝒲𝒟(𝑥;𝛽1 mod 2𝜋, . . . , 𝛽𝐿 mod 2𝜋, 𝛾1, . . . , 𝛾𝐿) ,

where 𝑥 ∈ [0, 2𝜋). For this reason, any results that apply to arbitrary
wrapped distributions can also be applied to the WD mixture distribu-
tion. Still, it should be noted that it is equivalent to define the WD mix-
ture distribution directly on 𝑆1 without explicitly considering a wrapping
procedure.

Exemplary plots of all discussed circular distributions are given in
Fig. 2.7. As can be seen, WN and VM distributions are quite similar,
particularly for very small or very large uncertainties. In comparison, the
WC distribution tends to be more peaked for small uncertainties.

2.2.4 Circular Moments
When dealing with linear quantities, moments are a tremendously useful
tool to quantify certain properties. For example, it is known that a
Gaussian distribution is completely characterized by its first and second
moments. In directional statistics, there is the somewhat related concept of
so-called circular moments (or trigonometric moments). Circular moments
will play an important role in the algorithms proposed later.
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Figure 2.7.: Different types of circular densities. The WN density in each
plot is given by 𝒲𝒩 (𝑥; 2; 𝜎) and the other densities have the same circular
moment.

Definition 5 (Circular Moments)
Consider a random variable 𝑥 on the circle. Then, its 𝑛-th circular moment
(𝑛 ∈ Z) is defined according to

𝑚𝑛 = E(exp(𝑖𝑥)𝑛) = E(exp(𝑖𝑛𝑥))

=
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)𝑓(𝑥) d𝑥 .

Obviously, according to this definition, circular moments are complex
numbers. Moreover, it is worth noting that the 𝑛-th circular moment is
equal to the characteristic function [233, Chapter II, §12] of 𝑥 evaluated
at 𝑛.

Remark 4 (Fourier Series)
Let 𝑓 : R → R be a continous and piecewise continuously differentiable
2𝜋-periodic function. Then, the function 𝑓(·) can be written as a Fourier
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series according to

𝑓(𝑥) =
∞∑︁

𝑘=−∞

𝑐𝑘 exp(𝑖𝑘𝑥) ,

where 𝑐𝑘 = 1
2𝜋

∫︁ 2𝜋

0
𝑓(𝑥) exp(−𝑖𝑘𝑥) d𝑥 .

If 𝑓(·) is a periodically repeated probability density function of a circular
distribution, we have 𝑚𝑘 = 2𝜋 · 𝑐−𝑘, i.e., the Fourier coefficients are
(almost) identical to the circular moments of the density. Note that this
property also implies that any piecewise continuously differentiable circular
probability density is uniquely defined by its circular moments.

For the densities introduced above, it is possible to calculate the
circular moments in closed-form.

Lemma 2 (Circular Moments)
The 𝑛-th circular moment of

(a) 𝒲𝒩 (𝑥;𝜇;𝜎) is given by 𝑚𝑛 = exp(𝑖𝑛𝜇) exp(−𝑛2𝜎2/2) .

(b) 𝒱ℳ(𝑥;𝜇;𝜅) is given by 𝑚𝑛 = exp(𝑖𝑛𝜇) 𝐼|𝑛|(𝜅)
𝐼0(𝜅) .

(c) 𝒲𝒞(𝑥;𝜇;𝜎) is given by 𝑚𝑛 = exp(𝑖𝑛𝜇) exp(−|𝑛|𝜎) .

(d) 𝒲𝒟(𝑥;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿) is given by 𝑚𝑛 =
∑︀𝐿

𝑙=1 𝛾𝑙 exp(𝑖𝑛𝛽𝑙) .

Proof (a) WN: Because of

𝑚𝑛 =
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)𝑓(𝑥) d𝑥

=
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)

∞∑︁
𝑘=−∞

𝒩 (𝑥+ 2𝜋𝑘;𝜇, 𝜎) d𝑥

=
∞∑︁

𝑘=−∞

∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)𝒩 (𝑥+ 2𝜋𝑘;𝜇, 𝜎) d𝑥

=
∫︁ ∞

−∞
exp(𝑖𝑛𝑥)𝒩 (𝑥;𝜇, 𝜎) d𝑥 ,
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the circular moment 𝑚𝑛 is given by the characteristic function of
the normal distribution on R evaluated at 𝑛. This characteristic
function is

𝜙(𝑛) =
∫︁ ∞

−∞
exp(𝑖𝑛𝑥)𝒩 (𝑥;𝜇, 𝜎) d𝑥 = exp(𝑖𝑛𝜇) exp(−𝑛2𝜎2/2)

according to [233, p. 277].

(b) VM: We obtain

𝑚𝑛 =
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)𝑓(𝑥) d𝑥

=
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥) 1

2𝜋𝐼0(𝜅) exp(𝜅 cos(𝑥− 𝜇)) d𝑥

= 1
2𝜋𝐼0(𝜅)

∫︁ 2𝜋

0
exp(𝑖𝑛(𝑥+ 𝜇)) exp(𝜅 cos(𝑥)) d𝑥

= 1
2𝜋𝐼0(𝜅) exp(𝑖𝑛𝜇)

∫︁ 2𝜋

0
exp(𝑖𝑛𝑥) exp(𝜅 cos(𝑥)) d𝑥

= 1
2𝜋𝐼0(𝜅) exp(𝑖𝑛𝜇)

(︂∫︁ 2𝜋

0
cos(𝑛𝑥) exp(𝜅 cos(𝑥)) d𝑥

+𝑖
∫︁ 2𝜋

0
sin(𝑛𝑥) exp(𝜅 cos(𝑥)) d𝑥

)︂
= 1

2𝜋𝐼0(𝜅) exp(𝑖𝑛𝜇)
(︂

2
∫︁ 𝜋

0
cos(𝑛𝑥) exp(𝜅 cos(𝑥)) d𝑥+ 0

)︂
,

and using [2, eq. (9.6.19)] and [2, eq. (9.6.6)]

= 1
2𝜋𝐼0(𝜅) exp(𝑖𝑛𝜇)2𝜋𝐼|𝑛|(𝜅)

=
𝐼|𝑛|(𝜅)
𝐼0(𝜅) exp(𝑖𝑛𝜇) .

(c) WC: Analogous to the proof for the WN distribution, the circular
moment 𝑚𝑛 can be obtained from the characteristic function of the
Cauchy distribution, which is given by

𝜙(𝑛) =
∫︁ ∞

−∞
exp(𝑖𝑛𝑥)𝒞(𝑥;𝜇, 𝜎) d𝑥 = exp(𝑖𝑛𝜇) exp(−|𝑛|𝜎)
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according to [174, p. 51].

(d) WD: We obtain

𝑚𝑛 =
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)𝑓(𝑥) d𝑥 =

∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)

𝐿∑︁
𝑙=1

𝛾𝑙𝛿(𝑥− 𝛽𝑙) d𝑥

=
𝐿∑︁

𝑙=1
𝛾𝑙

∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)𝛿(𝑥− 𝛽𝑙) d𝑥 =

𝐿∑︁
𝑙=1

𝛾𝑙 exp(𝑖𝑛𝛽𝑙)

using the sifting property of the Dirac delta function.

Remark 5 (Characterization by the First Circular Moment.)
It is easy to see that for WN, VM, and WC distributions, the first circular
moment is sufficient to completely characterize the distribution. For the
WN distribution, we have

𝑚𝑛 = exp(𝑖𝑛𝜇) exp(−𝑛2𝜎2/2)

= exp(𝑖𝑛𝜇) exp(−𝜎2/2)𝑛2

= exp(𝑖𝑛𝜇)(exp(−𝑖𝜇)𝑚1)𝑛2

= exp(𝑖𝑛Arg(𝑚1))(exp(−𝑖Arg(𝑚1))𝑚1)𝑛2
.

i.e., all higher moments can be written as a function of the first circular
moment. Similarly, for the WC distribution, we have

𝑚𝑛 = exp(𝑖𝑛Arg(𝑚1))(exp(−𝑖Arg(𝑚1))𝑚1)|𝑛| .

For 𝐴𝑛(𝜅) = 𝐼|𝑛|(𝜅)
𝐼0(𝜅) (see Appendix A.1), we find the relation

𝑚𝑛 = exp(𝑖𝑛Arg(𝑚1))𝐴𝑛

(︁
𝐴−1

1
(︀

exp(−𝑖Arg(𝑚1))𝑚1
)︀)︁

for the von Mises distribution.

In Fig. 2.8, we plot the first and the second circular moment of WN,
VM, and WC distributions. As can be seen, densities of different types
with same first circular moment can differ significantly in their second
circular moment.
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Figure 2.8.: The first and the second circular moment of WN, VM, and
WC distributions.

Lemma 3 (Parameter Estimation Using Moment Matching)
For a given first circular moment 𝑚1, we obtain the parameters

(a) 𝒲𝒩 (𝑥;𝜇, 𝜎) with 𝜇 = Arg(𝑚1) and 𝜎 =
√︀
−2 log(|𝑚1|).

(b) 𝒱ℳ(𝑥;𝜇, 𝜅) with 𝜇 = Arg(𝑚1) and 𝜅 = 𝐴−1
1 (|𝑚1|).

(c) 𝒲𝒞(𝑥;𝜇, 𝜎) with 𝜇 = Arg(𝑚1) and 𝜎 = − log(|𝑚1|).

Proof These results can easily be obtained by solving the formulas given
in Lemma 2 for the parameters of the respective distributions.

The equations in Lemma 3 also allow a direct moment matching
between WN and VM distributions. The distribution 𝒲𝒩 (𝑥;𝜇, 𝜎) can
be approximated by 𝒱ℳ

(︀
𝑥;𝜇,𝐴−1

1 (exp(−𝜎2/2))
)︀
. Conversely, the distri-

bution 𝒱ℳ(𝑥;𝜇, 𝜅) can be approximated by 𝒲𝒩
(︁
𝑥;𝜇,

√︀
−2 log(𝐴1(𝜅))

)︁
.

To avoid the computation of 𝐴1(𝜅) or 𝐴−1
1 (𝜅), sometimes the approxima-

tion 𝜅 ≈ 1/𝜎2 is used [127, 2.2.6], which is fairly accurate for large 𝜅, and
small 𝜎, respectively.
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manifold abbreviation definition
real vector space R𝑛 (−∞,∞)𝑛

circle 𝑆1 {𝑥 ∈ R2 : ||𝑥|| = 1}
cylinder – 𝑆1 × R
hypersphere 𝑆𝑛 {𝑥 ∈ R𝑛+1 : ||𝑥|| = 1}
hypertorus 𝑇𝑛 (𝑆1)𝑛

rotations in 2D 𝑆𝑂(2) 𝑆1

rotations in 3D 𝑆𝑂(3) 𝑆3/{±1}
rigid motions in 2D 𝑆𝐸(2) R2 × 𝑆𝑂(2)
rigid motions in 3D 𝑆𝐸(3) R3 × 𝑆𝑂(3)

Table 2.2.: The considered manifolds.

2.3 Higher Dimensions
In the previous sections, we have considered probability distributions on
the circle. Although circular statistics yields some surprising results and
can already be quite challenging, there is a wide area of applications
that require the consideration of higher-dimensional manifolds. Typical
examples include the description of several correlated angles, orientations
in three-dimensional space, or dependencies between circular and linear
quantities.

2.3.1 Topology
Before we introduce any probability distributions for higher-dimensional
manifolds, we need to take a closer look at the manifolds under considera-
tion (see also Table 2.2).

A Generalizations of the Circle

Let us first consider different ways the circle can be generalized. There
are two different types of generalizations with unique probabilities, the
(hyper-)sphere and the (hyper-)torus. If we consider the circle 𝑆1 as the
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2.3. Higher Dimensions

(a) Torus. (b) Sphere. (c) Cylinder.

Figure 2.9.: Illustration of the topology of different manifolds. Edges of
the same color are glued together in the direction indicated by the arrows.

set {𝑥 ∈ R2 : ||𝑥|| = 1} (see Sec. 2.2.1), it is natural to generalize it to the
hypersphere 𝑆𝑛 according to

𝑆𝑛 = {𝑥 ∈ R𝑛+1 : ||𝑥|| = 1} ,

which is the set of unit vectors in R𝑛+1. On the other hand, it is possible
to consider the torus as the Cartesian product of circles, i.e., 𝑆1 × 𝑆1 =
{[𝑥, 𝑦]𝑇 : 𝑥, 𝑦 ∈ 𝑆1}. This can be generalized to the 𝑛-torus as the 𝑛-fold
Cartesian product

𝑇𝑛 = (𝑆1)𝑛 = 𝑆1 × · · · × 𝑆1⏟  ⏞  
𝑛 times

.

Obviously, the circle arises as a special case of both 𝑆𝑛 and 𝑇𝑛 for 𝑛 = 1.
Although somewhat similar, the torus and the sphere have a very

different topological structure. This is illustrated by the fundamental
polygon (sometimes called gluing diagram) in Fig. 2.9(a) and Fig. 2.9(b),
where we depict how a torus and a sphere can be obtained by folding
a rectangle and gluing together the edges as marked. The difference in
topology also becomes apparent, when we consider how to parameterize
𝑆𝑛 and 𝑇𝑛, which is illustrated in the following example.

Example 2 (Differences Between 𝑆2 and 𝑇 2)
For simplicity, let us consider the case 𝑛 = 2. The sphere 𝑆2 can be
parameterized using spherical coordinates by [0, 2𝜋) × [−𝜋/2, 𝜋/2] (see
also Sec. 4.3.2). This parameterization introduces singularities at the
two poles, i.e., [𝛼, 𝜋/2]𝑇 yields the same point on the sphere regardless
of the value of 𝛼, and the same is true for [𝛼,−𝜋/2]𝑇 . As a result,
the parameterization is not uniquely invertible. The torus 𝑇 2 can be
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Chapter 2. Directional Statistics

parameterized by [0, 2𝜋)× [0, 2𝜋) without any singularities. In this case,
both parameters are in the same interval of [0, 2𝜋) and there is no special
role for one of the parameters.

It has been shown that the only non-trivial hyperspheres admitting a
topological group structure are 𝑆1 and 𝑆3 [190]. We have already discussed
the group structure on 𝑆1 in Sec. 2.2.1. The group structure on 𝑆3 is
given by the multiplication of Hamiltonian quaternions [113], [112], which
are discussed in detail in Appendix B.

In addition to the sphere 𝑆𝑛, it is also interesting to consider the
hemisphere in order to model axial data, i.e., data where a rotation by
180∘ cannot be distinguished. To model these cases, we consider the set of
equivalence classes 𝑆𝑛/{±1} = {[𝑥] : 𝑥 ∈ 𝑆𝑛} where an equivalence class
is given by [𝑥] = {𝑥,−𝑥}, i.e., two points on the sphere are considered
equivalent if they only differ in sign. The resulting manifold is also known
as the real projective space [9], [114].

Example 3 (Spherical and Axial Data)
There is a variety of applications where spherical or axial data occurs.

1. Spherical Data: For example, one may use an omnidirectional camera
to track moving objects [184]. If we assume that the distance to the
object is unknown, only the direction in which the object can be
seen is to be estimated, i.e., a point on the unit sphere. Another
example is the 3D orientation of objects with rotational symmetry.
For example, the orientation of an ordinary (i.e., right circular) cone
can only be known up to rotational symmetry, i.e., its orientation can
be uniquely determined by a point on the unit sphere (the direction
its tip is facing).

2. Axial Data: Geology sometimes has to deal with axial data, for
example the direction of grains in sedimentary rocks such as limestone
[26, Sec. 30]. The orientation of a grain can only be determined up to
antipodal symmetry because, i.e., it constitutes axial data. A further
example is the 3D orientation of objects with both rotational and
antipodal symmetry. Consider, say, an ordinary (i.e., right circular)
geometric cylinder. Its orientation is determined by the way its axis
is oriented as it is impossible to determine its rotation around the
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2.3. Higher Dimensions

axis of rotational symmetry and it is also impossible to distinguish
rotations by 180∘.

Unlike the sphere, the 𝑛-torus admits a topological group structure
for any 𝑛 ≥ 1. It can be defined very similarly to the group structure on
the circle according to

+ : [0, 2𝜋)𝑛 × [0, 2𝜋)𝑛 → [0, 2𝜋)𝑛, 𝛼+ 𝛽 ↦→ 𝛼+R𝑛 𝛽 mod 2𝜋 ,

where +R𝑛 is addition on R𝑛, and with the inverse operator

− : [0, 2𝜋)𝑛 → [0, 2𝜋)𝑛, 𝛼 ↦→ −R𝑛𝛼 mod 2𝜋 ,

where −R𝑛 is the negative sign from R𝑛, and identity element 0. Once
again, this constitutes a Lie group [229] as addition and inversion are
continuous functions with respect to the considered topology.

B Rotation Groups

For applications involving orientations, rotation groups are of interest. For
example, it is a common problem to estimate the orientation of an object
in two or three dimensions. The rotation group in 𝑛 dimensions is given
by

𝑆𝑂(𝑛) = {X ∈ R𝑛×𝑛 : XX′ = I𝑛×𝑛,X′X = I𝑛×𝑛,det(X) = 1} , (2.1)

i.e., it is the multiplicative group of all rotation matrices (orthogonal
matrices with determinant one) and, thus, a subgroup of the multiplicative
matrix group of invertible matrices 𝐺𝐿(𝑛) ⊂ R𝑛×𝑛. Even though the
rotation group can be defined for an arbitrary number of dimensions, only
the cases 𝑛 = 2 or 𝑛 = 3 are of interest for most practical applications.

We have already considered 𝑆𝑂(2) in Remark 1 and shown that it
is, in fact, equivalent to the group structure on the unit circle 𝑆1. For
this reason, all the presented results on the unit circle are immediately
applicable to 𝑆𝑂(2).

The group of rotations in tree dimensions 𝑆𝑂(3) is more intricate,
because there is a variety of different parameterizations [234]. Sometimes,
rotation matrices as defined in (2.1) are used directly, but they suffer
from a significant disadvantage. As orientations in three dimensions have
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only three degrees of freedom, parameterization with a 3× 3 matrix, i.e.,
nine parameters, is highly redundant. In spite of this issue, some authors
have attempted to use this representation for attitude estimation [51].
An alternative parameterization is given by the set of unit quaternions
(see Appendix B). Because the quaternions 𝑞 and −𝑞 describe the same
rotation, the manifold 𝑆3/{±1} can be used to uniquely parameterize
rotations using quaternions. Other common rotation parameterizations
are Euler angles, which suffer from singularities, particularly the gimbal
lock phenomenon, as well as the Rodrigues vector, which is closely related
to quaternions but lacks uniqueness.

C Circular-Linear Spaces

We can further extend the manifolds under consideration to combinations
of directional and linear manifolds. These types of manifolds can be
obtained as Cartesian products of 𝑆𝑛, 𝑇𝑛, and R𝑛. The most basic
example is probably the cylinder [224], [169], which is given by 𝑆1 × R1.
The cylinder is a two-dimensional manifold and consists of a circular and
a linear dimension5 (see Fig. 2.9(c)).

Example 4 (Cylindrical Data)
Cylindrical data arises, for example, in meteorological applications. In
[175], an example is given where wind direction and temperature are
observed. Wind direction is a circular quantity, whereas temperature is
a linear quantity, so together, they can be represented as a cylindrical
quantity. Of course, these two components are not necessarily independent
and, using the proper stochastic models, there is indeed a circular-linear
correlation (see Sec. 2.3.3-B) between the two in this example.

The concept of circular-linear spaces can, of course, be generalized
to higher-dimensional manifolds with multiple directional and linear di-
mensions. However, two cases are of particular interest in practical appli-
cations, the groups 𝑆𝐸(2) and 𝑆𝐸(3) of rigid body motions in two and
three dimensions. These groups play an important role in many areas
such as robotics [229], [60], [85], object tracking [261], [58], and sensor
calibration [120], [59], [205].

5Be aware that, unlike a cylinder in geometry, we consider a cylinder of infinite length.
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2.3.2 Hyperspherical Distributions
Now, we will consider a number of probability distributions defined on the
hypersphere and discuss the relations between them.

A The von Mises–Fisher Distribution

First of all, there is an 𝑛-dimensional generalization of the von Mises
distribution, which is called von Mises–Fisher distribution. It is sometimes
also referred to as the Langevin distribution [267].

Definition 6 (von Mises–Fisher Distribution)
The 𝑛-dimensional von Mises–Fisher (VMF) [66], [238], [228] distribution
is given by the pdf

𝒱ℳℱ(𝑥;𝜇;𝜅) = 𝑐𝑛(𝜅) · exp(𝜅 · 𝜇𝑇𝑥) ,

where 𝑥 ∈ 𝑆𝑛−1, 𝜇 ∈ 𝑆𝑛−1, and 𝜅 ≥ 0. The normalization constant is
given by

𝑐𝑛(𝜅) = 𝜅𝑛/2−1

(2𝜋)𝑛/2𝐼𝑛/2−1(𝜅) .

Using a similar argument as in Lemma 1, it can be shown that the VMF
distribution is a conditioning of an 𝑛-dimensional isotropic zero-mean
Gaussian distribution to the unit hypersphere 𝑆𝑛−1. Furthermore, the
VM distribution arises as a special case for 𝑛 = 2. It is also interesting
to note that for 𝑛 = 3, the normalization constant simplifies to 𝑐3(𝜅) =
𝜅/(4𝜋 sinh(𝜅)) according to [182, eq. (2.15)], i.e., the use of a Bessel
function is not necessary in this case.

A few examples of the VMF distribution are depicted in Fig. 2.10. As
can be seen, the distribution is unimodal with mode at 𝜇. Additionally, it
is rotationally symmetric with respect to 𝜇 as the rotation axis, i.e., the
value of the pdf at 𝑥 only depends on the angle between 𝜇 and 𝑥. For this
reason, the VMF distribution is limited to modeling isotropic noise. The
von Mises–Fisher distribution has previously been used for hyperspherical
filtering by Chiuso [44] and later by Markovic [184], [183], [182].
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(a) 𝜅 = 1. (b) 𝜅 = 5. (c) 𝜅 = 50.

Figure 2.10.: Plots of von Mises–Fisher distributions with 𝜇 = [0, 0, 1]𝑇
and different values of 𝜅.

B The Watson Distribution

The Watson distribution arises by a small modification of the pdf of a
VMF distribution, which consists in the fact that 𝜇𝑇𝑥 is squared. This
yields the following definition.

Definition 7 (Watson Distribution)
The 𝑛-dimensional Watson distribution [266] is given by

𝒲(𝑥;𝜇, 𝜅) = 𝑐𝑛(𝜅) · exp(𝜅(𝜇𝑇𝑥)2) ,

where 𝑥 ∈ 𝑆𝑛−1, location 𝜇 ∈ 𝑆𝑛−1, and concentration6 𝜅 ≥ 0. The
normalization constant is given by

𝑐𝑛(𝜅) = Γ(𝑛/2)
2 · 𝜋𝑛/21𝐹1( 1

2 ,
𝑛
2 , 𝜅)

,

where 𝐹 is the confluent hypergeometric function of scalar argument (see
Appendix A.2).

Some examples of this distribution are shown in Fig. 2.11. Compared
to the VMF distribution, we can see that the introduction of the square
in the exponent manifests itself as an additional mode at the opposite
side of the sphere. Consequently, the Watson distribution is antipodally
symmetric, i.e., 𝒲(𝑥;𝜇, 𝜅) =𝒲(−𝑥;𝜇, 𝜅). Although antipodal symmetry
may seem undesirable at first glance, it is actually very useful in modeling
certain scenarios that involve estimation on 𝑆𝑛/{±1}.

6Some authors consider 𝜅 ∈ R [239].
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(a) 𝜅 = 1. (b) 𝜅 = 5. (c) 𝜅 = 50.

Figure 2.11.: Plots of Watson distributions with 𝜇 = [0, 0, 1]𝑇 and different
values of 𝜅.

Furthermore, the Watson distribution retains the rotational symme-
try of the VMF distribution around the 𝜇-axis and is, thus, limited to
modeling isotropic noise. There is an interesting relation between the two
distributions [O17, Lemma 3].

Lemma 4 (Relation Between VMF and Watson Distribution)
The Watson distribution is a rescaled VMF distribution with an additional
correction term.

Proof We denote the angle between the vectors 𝜇 and 𝑥 by ∠(𝜇, 𝑥).
Then, it holds

𝒲(𝑥;𝜇;𝜅) = 𝑐𝑛(𝜅) · exp(𝜅(𝜇𝑇𝑥)2)
= 𝑐𝑛(𝜅) · exp(𝜅 cos2(∠(𝜇, 𝑥)))

= 𝑐𝑛(𝜅) · exp
(︂
𝜅

1 + cos(2∠(𝜇, 𝑥))
2

)︂
= 𝑐𝑛(𝜅) · exp(𝜅/2) · exp

(︀
𝜅 cos(2∠(𝜇, 𝑥))/2

)︀
,

where we apply the trigonometric identity cos2(𝑥) = (1 + cos(2𝑥))/2. We
substitute with spherical coordinates and obtain the pdf 𝑓𝑊 : [0, 𝜋

2 ]→ R+

with

𝑓𝑊 (𝜃;𝜅𝑊 ) = 𝑐𝑛(𝜅𝑊 ) exp(𝜅𝑊 /2) · exp
(︀
𝜅𝑊 cos(2𝜃)/2

)︀
sin𝑛−1(𝜃) ,

where sin𝑛−1(𝜃) is a volume correction term introduced by the substitution.
Analogously, reformulating the VMF density in spherical coordinates
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results in

𝑓𝑉 𝑀𝐹 (𝜑;𝜅𝑉 𝑀𝐹 ) = 𝑐𝑛(𝜅𝑉 𝑀𝐹 exp(𝜅𝑉 𝑀𝐹 cos(𝜑)) sin𝑛−1(𝜑) .

If we set 𝜑 = 2𝜃 and 𝜅𝑉 𝑀𝐹 = 𝜅𝑊 /2, we obtain

𝑓𝑉 𝑀𝐹 (𝜑;𝜅𝑉 𝑀𝐹 ) = 𝑐𝑛(𝜅𝑊 /2) exp(𝜅𝑊 /2 cos(2𝜃)) sin𝑛−1(2𝜃)
∝ exp(𝜅𝑊 /2 cos(2𝜃)) sin𝑛−1(2𝜃)

∝ 𝑓𝑊 (𝜃;𝜅𝑊 ) · sin𝑛−1(2𝜃)
sin𝑛−1(𝜃)

= 𝑓𝑊 (𝜃;𝜅𝑊 ) · (2 cos(𝜃))𝑛−1 .

In the circular case (𝑛 = 2), the volume correction term is 1, i.e., the
Watson distribution is actually equal to the rescaled VMF distribution
(which reduces to a VM distribution in this case).

(a) Z = diag(−1, −1, 0). (b) Z = diag(−5, −1, 0). (c) Z = diag(−50, −1, 0).

Figure 2.12.: Plots of Bingham distributions with M = I3×3 for different
values of Z.

C The Bingham Distribution

The Bingham distribution can be used in order to remove the limitation
of the Watson distribution that only isotropic densities can be considered.
It arises as the restriction of Gaussian distribution on R𝑛 with 𝜇 = 0 to
the unit sphere 𝑆𝑛−1. This is illustrated for 𝑛 = 2 in Fig. 2.13.
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Figure 2.13.: A Bingham distribution is obtained by restricting a normal
distribution to the unit circle.

Definition 8 (Bingham Distribution)
The 𝑛-dimensional Bingham distribution on the hypersphere 𝑆𝑛−1 is given
by the pdf [26], [27]

ℬ(𝑥; M,Z) = 1
𝐹
· exp(�̂�𝑇 MZM𝑇𝑥) , (2.2)

where 𝑥 ∈ R𝑛 is a unit vector, M ∈ R𝑛×𝑛 is an orthogonal matrix,
Z ∈ R𝑛×𝑛 is a diagonal matrix with increasing entries 𝑧1 ≤ · · · ≤ 𝑧𝑛 and
last entry 𝑧𝑛 = 0. Moreover, 𝐹 is a normalization constant.

The probability density function of the Bingham distribution on the sphere
𝑆2 is illustrated in Fig. 2.12. It can be seen that the Bingham distribution
is not limited to modeling isotropic noise. The noise in the different
directions is determined by the diagonal entries of the Z-matrix. The
last column of the M-matrix controls the location of the modes7 of the
distribution, whereas the other columns determine the principal directions
of the noise.

Calculation of the normalization constant of the Bingham distribution
can be quite involved and has probably been one of the major reasons why

7The modes of a distribution are the points where its probability density function has
its maximal values.
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this distribution has not been applied more widely. It is given by a confluent
hypergeometric function of matrix argument [118], [145] according to

𝐹 = |𝑆𝑛−1| · 1𝐹1

(︂
1
2 ,
𝑛

2 ,Z
)︂
,

where |𝑆𝑛−1| = 2·𝜋𝑛/2

Γ(𝑛/2) is the surface of a unit sphere in 𝑛 dimensions.
We discuss the calculation of the hypergeometric function in more detail
in Appendix A.2, where we show how the difficulty of evaluating the
normalization constant can be overcome.

Remark 6 (Parameterization of the Bingham Distribution)
In Def. 8, we give a very specific restriction of the type of matrices allowed
as Z. Some authors consider arbitrary diagonal matrices here. This
approach yields the same densities, but lacks uniqueness. First of all,
it is possible to swap two diagonal entries of Z and to obtain the same
distribution as before by swapping the corresponding columns of M. For
this reason, we can w.l.o.g. assume 𝑧1 ≤ · · · ≤ 𝑧𝑛. Furthermore, we have

ℬ(𝑥; M,Z + 𝑐 · I𝑛×𝑛) = 𝐹 · exp(�̂�𝑇 M(Z + 𝑐 · I𝑛×𝑛)M𝑇𝑥)
= 𝐹 · exp(�̂�𝑇 MZM𝑇𝑥) · exp(𝑐)
= ℬ(𝑥; M,Z)

for arbitrary 𝑐 ∈ R. For this reason, we can always enforce 𝑧𝑛 = 0, which
has the advantage that the last column of M always represents one of the
modes.

Example 5 (Complete Uncertainty Over an Angle)
Furthermore, the Bingham distribution makes it possible to model complete
uncertainty over an angle by setting the respective entry of Z to zero. This
allows, for example, the fusion of sensor data that does not include all
degrees of freedom. An example to illustrate this is given in Fig 2.14. The
fusion result is obtained by the Bingham multiplication formula, which we
will introduce in Lemma 13 in Sec. 2.4.2-B. This example illustrates one
of the most significant advantages of the Bingham distribution compared
to traditional approaches that locally approximate the true density with
a Gaussian, which typically precludes the modeling of uniformity in one
angle.
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(a) M =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦. (b) M =

⎡⎣0 1 0
1 0 0
0 0 1

⎤⎦. (c) Fusion result.

Figure 2.14.: Fusion of Bingham distributions with Z = diag(−5, 0, 0),
i.e., the angle in the second dimension is completely unknown.

For a Bingham-distributed random vector 𝑥 ∼ ℬ(𝑥; M,Z), we have
E(𝑥) = 0 as a consequence of the antipodal symmetry. Hence, the co-
variance matrix Cov(𝑥) is given by E(𝑥 · 𝑥𝑇 ). Based on [27, Lemma 2.2,
eq. (2.9)], it can be calculated according to

E(𝑥 · 𝑥𝑇 ) = M · diag
(︂

1
𝐹

𝜕𝐹

𝜕𝑧1
, . . . ,

1
𝐹

𝜕𝐹

𝜕𝑧𝑛

)︂
·M𝑇 . (2.3)

The covariance matrix of a Bingham distribution uniquely determines its
probability density function, similar to the first and the second moment
for a Gaussian distribution, or the first circular moment for a WN, a WC,
or a VM distribution. It is possible to estimate a Bingham distribution’s
parameters from its second moment by solving (2.3) for M and Z. This
calculation has to be carried out numerically and is discussed in further
detail in [O4] and [O17]. In [27, Sec. 6], Bingham introduces a maximum–
likelihood estimator for M and Z based on a set of samples, which turns out
to be identical to an estimator based on moment matching, i.e., matching
the second moment of the sample set and the Bingham distribution.

There is an interesting relation between the Bingham and the Wat-
son distribution, which can be exploited to simplify calculation of the
normalization constant and parameter estimation in certain cases.

Lemma 5 (Relation of Bingham and Watson Distribution)
The Bingham distribution is equivalent to a Watson distribution if it is
isotropic, i.e., 𝑧1 = · · · = 𝑧𝑛−1.
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Proof

ℬ(𝑥; M,Z)
∝ exp(𝑥𝑇 M diag(𝑧1, . . . , 𝑧1, 0)M𝑇𝑥)
= exp(𝑥𝑇 M diag(0, . . . , 0,−𝑧1)M𝑇𝑥+ 𝑥𝑇 M diag(𝑧1, . . . , 𝑧1)M𝑇𝑥)
= exp(𝑥𝑇 M diag(0, . . . , 0,−𝑧1)M𝑇𝑥) exp(𝑧1𝑥

𝑇𝑥)
∝ exp(𝑥𝑇 M diag(0, . . . , 0,−𝑧1)M𝑇𝑥)
= exp(−𝑧1 · 𝑥𝑇 M1:𝑛,𝑛M𝑇

1:𝑛,𝑛𝑥)
= exp(𝜅 · (𝑥𝑇𝜇)(𝜇𝑇𝑥))
= exp(𝜅 · (𝜇𝑇𝑥)2)
∝ 𝒲(𝑥;𝜇;𝜅) ,

where 𝜇 = M1:𝑛,𝑛, the 𝑛-th column of M, and 𝜅 = −𝑧1.

Obviously, a Bingham distribution on 𝑆1, i.e., 𝑛 = 2, is always isotropic
and, thus, equivalent to a Watson distribution. Consequently, according
to Lemma 4, it is even equal to a rescaled VM distribution.

There have been several applications of the Bingham distribution to
stochastic filtering. A method for axial estimation in two-dimensions was
proposed in [O18], [O17]. Furthermore, Glover published an algorithm for
quaternion-based orientation estimation [81], [82], [83]. A similar method
called the unscented Bingham filter for nonlinear problems was proposed
in [O5].

D Further Generalizations

There are some further generalizations of the discussed hyperspherical
densities.

Definition 9 (Kent Distribution)
The Kent distribution, sometimes also called Fisher–Bingham distribution
[139], is given by the pdf

𝒦(𝑥;𝜇, 𝜅, 𝛽2, . . . , 𝛽𝑛, 𝛾2, . . . 𝛾𝑛
) ∝ exp

⎛⎝𝜅 · 𝜇𝑇𝑥+
𝑑∑︁

𝑗=2
𝛽𝑗(𝛾𝑇

𝑗
𝑥)2

⎞⎠ ,
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where 𝑥 ∈ 𝑆𝑛−1, 𝜇 ∈ 𝑆𝑛−1, 𝜅 ≥ 0, 𝛾2, . . . , 𝛾𝑛
∈ 𝑆𝑛−1 orthogonal, 𝛽2 ≥

· · · ≥ 𝛽𝑛 ∈ R.

Note that 𝛽1 and 𝛾1 are omitted because 𝛽1 = 0 can always be enforced,
similar to 𝑧𝑛 = 0 in the case of the Bingham distribution. As suggested
by the name Fisher–Bingham, this distribution is a generalization of both
the von Mises–Fisher and the Bingham distribution. On the one hand, if
we set 𝜅 = 0, we obtain

𝒦(𝑥;𝜇, 0, 𝛽2, . . . , 𝛽𝑛, 𝛾2, . . . , 𝛾𝑛
) ∝ exp

⎛⎝ 𝑑∑︁
𝑗=2

𝛽𝑗(𝛾𝑇
𝑗
𝑥)2

⎞⎠ ,

which is a Bingham distribution, where 𝛾2, . . . , 𝛾𝑛
correspond to the

columns of the orthogonal matrix M (the missing column is uniquely
defined up to sign by the property of orthogonality), and 𝛽2, . . . , 𝛽𝑛 corre-
spond to the diagonal entries in the Z matrix. On the other hand, if we
set 𝛽2 = · · · = 𝛽𝑛 = 0, we obtain

𝒦(𝑥;𝜇, 𝜅, 0, . . . , 0, 𝛾2, . . . , 𝛾𝑛
) ∝ exp

(︀
𝜅 · 𝜇𝑇𝑥

)︀
,

which is a VMF distribution. Even though we do not directly use the
Kent distribution in the remainder of this thesis, it is of interest because
there is a variety of results for this distribution (such as those published
in [271], [152], and [147]), which obviously apply to the considered special
cases as well.

There are some further generalizations to distributions of matrix
argument [134], [142], [272], which we will not consider here. It may be
interesting to investigate these distributions in future work and determine
whether the presented methods can be generalized to the case of matrix
distributions. It is also worth mentioning that some authors consider
complex versions (i.e., defined on the complex unit sphere in C𝑛) of
hyperspherical distributions [140], [153]. The Bingham distribution has
also been generalized to be applicable to 𝑆𝐸(2) [O3] using a subset of the
dual quaternions and to 𝑆𝐸(3) [151] using rotation matrices.
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2.3.3 Toroidal and Circular-Linear Distributions
In this section, we consider probability distributions on the hypertorus and
certain circular-linear spaces, i.e., manifolds that consist of both directional
and linear components.

A The Partially Wrapped Normal Distribution

In [O15], we proposed the partially wrapped normal distribution, as a gen-
eralization of the WN distribution to higher dimensions, while considering
both circular and linear dimensions8. It can be motivated by considering a
random vector 𝑥 ∼ 𝒩 (𝑥;𝜇,C) of dimension 𝑛. Wrapping the first 𝑚 ≤ 𝑛
dimensions, i.e., 𝑦 = (𝑥1 mod 2𝜋, . . . , 𝑥𝑚 mod 2𝜋, 𝑥𝑚+1, . . . , 𝑥𝑛)𝑇 , yields
a random variable as given in the following definition.

Definition 10 (Partially Wrapped Normal Distribution)
The partially wrapped normal (PWN) distribution of dimension 𝑛 with 𝑚
wrapped dimensions (0 ≤ 𝑚 ≤ 𝑛) is defined by the pdf

𝒫𝒲𝒩 (𝑥;𝜇,C,𝑚) =
∞∑︁

𝑘1=−∞

· · ·
∞∑︁

𝑘𝑚=−∞

𝒩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
𝑥+ 2𝜋

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑘1
...
𝑘𝑚

0
...
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
;𝜇,C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where 𝑥, 𝜇 ∈ [0, 2𝜋)𝑚 × R𝑛−𝑚, and C ∈ R𝑛×𝑛 is symmetric positive
definite.

Although C is the covariance matrix of a Gaussian distribution before it
is (partially) wrapped, this matrix is not the covariance of the wrapped
distribution and should just be seen as a parameter matrix influencing
certain properties of the distribution.

8Other authors such as Johnson and Wehrly [128] or Roy et al. [224], have considered
certain special cases of this distribution. The term used by Roy et al. for this
concept is semi-wrapped Gaussian. Lo and Willsky also mention a similar concept
in [165, Sec. VI].
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manifold periodic distribution n m references
R𝑛 no Gauss 𝑛 0 [136]
circle 𝑆1 yes WN 1 1 [O11]
torus 𝑇 2 yes bivariate WN 2 2 [O10]
𝑛-torus 𝑇𝑛 yes multivariate WN n n [O10]
cylinder 𝑆1 × R partial PWN 2 1 [129], [224]
𝑆𝐸(2), 𝑆1 × R2 partial PWN 3 1 [O15], [224]

Table 2.3.: Interesting special cases of the PWN distribution.

The PWN distribution is a very general distribution and encompasses
a variety of other distributions as special cases, for example the Gaussian
and the WN distribution. An overview of the most interesting special
cases9 is given in Table 2.3. An example of the PWN distribution with
density

𝒫𝒲𝒩
(︂
𝑥;
[︂
0.5
0.5

]︂
,

[︂
1 0.7

0.7 2

]︂
,𝑚

)︂

is depicted in Fig. 2.15 for different values of 𝑚. By choosing an appropriate
value for 𝑚, we can obtain a distribution in the plane R2, on the cylinder
𝑆1 × R, and on the torus 𝑇 2.

Lemma 6 (Marginal Distributions of the PWN Distribution)
Marginalizing a circular dimension 𝑗 ≤ 𝑚 of 𝒫𝒲𝒩 (𝑥;𝜇,C,𝑚) yields

∫︁ 2𝜋

0
𝒫𝒲𝒩 (𝑥;𝜇,C,𝑚) d𝑥𝑗

= 𝒫𝒲𝒩
(︃[︂

𝑥1:𝑗−1
𝑥𝑗+1:𝑛

]︂
;
[︃
𝜇1:𝑗−1
𝜇

𝑗+1:𝑛

]︃
,

[︂
C1:𝑗−1,1:𝑗−1 C1:𝑗−1,𝑗+1:𝑛
C𝑗+1:𝑛,1:𝑗−1 C𝑗+1:𝑛,𝑗+1:𝑛

]︂
,𝑚− 1

)︃
.

9Be aware that 𝑆𝐸(3) is not among the manifolds under consideration.

49



Chapter 2. Directional Statistics

(a) 𝑚 = 0. (b) 𝑚 = 1. (c) 𝑚 = 2.

Figure 2.15.: Density of PWN distribution for different numbers of
wrapped dimensions 𝑚. On the left, the PWN distribution is a regu-
lar Gaussian, in the middle, the 𝑥1-axis is wrapped (cylindrical case), and
on the right both axes are wrapped (toroidal case).

Marginalizing a linear dimension 𝑗 > 𝑚 yields∫︁ ∞

−∞
𝒫𝒲𝒩 (𝑥;𝜇,C,𝑚) d𝑥𝑗

= 𝒫𝒲𝒩
(︃[︂

𝑥1:𝑗−1
𝑥𝑗+1:𝑛

]︂
;
[︃
𝜇1:𝑗−1
𝜇

𝑗+1:𝑛

]︃
,

[︂
C1:𝑗−1,1:𝑗−1 C1:𝑗−1,𝑗+1:𝑛
C𝑗+1:𝑛,1:𝑗−1 C𝑗+1:𝑛,𝑗+1:𝑛

]︂
,𝑚

)︃
.

Proof Straightforward generalization of the proofs of [O15, Lemma 1]
and [O15, Lemma 2].

B Moments and Correlation

The concept of linear moments of random variables is widespread in
statistics and probability theory [233]. In Sec. 2.2.4, we introduced the
related concept of circular moments for random variables on the circle.
It is possible to generalize these concepts to deal with partially wrapped
random variables. The basic idea behind this generalization is to replace
each circular dimension with one dimension representing the sine and one
dimension representing the cosine of the respective entry of the random
vector.
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Definition 11 (Hybrid Moments)
For a random vector 𝑥 ∈ [0, 2𝜋)𝑚 × R𝑛−𝑚, the first hybrid moment is
given by the first linear moment

�̃� = E(�̃�)

of the random vector

�̃� = [cos(𝑥1), sin(𝑥1), . . . , cos(𝑥𝑚), sin(𝑥𝑚), 𝑥𝑚+1, . . . , 𝑥𝑛]𝑇 ∈ R𝑛+𝑚 .

The second (central) hybrid moment10 is given by the second central moment

C̃ = E((�̃�− E(�̃�))(�̃�− E(�̃�))𝑇 )

of the random vector �̃�.

This definition is a generalization of the definition of hybrid moments for
the PWN distribution on 𝑆𝐸(2) as given in [O15, Def. 6].

Remark 7 (Componentwise Representation)
For given 𝑛 and 𝑚, we can rewrite the first hybrid moment as

�̃� = (�̃�1, . . . , �̃�2𝑚⏟  ⏞  
periodic part

, �̃�2𝑚+1, . . . , �̃�𝑚+𝑛⏟  ⏞  
linear part

)𝑇

with

�̃�1+2(𝑗−1) = E(cos(𝑥𝑗)), 𝑗 = 1, . . . ,𝑚
�̃�2+2(𝑗−1) = E(sin(𝑥𝑗)), 𝑗 = 1, . . . ,𝑚

�̃�2𝑚+𝑗 = E(𝑥𝑚+𝑗), 𝑗 = 1, . . . , 𝑛−𝑚 .

10We omit the term central from now on as we never consider the second noncentral
hybrid moment.
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We can write the second hybrid moment as C̃ = (𝑐)1:𝑛+𝑚,1:𝑛+𝑚 with

𝑐1+2(𝑗−1),1+2(𝑘−1) = Cov(cos(𝑥𝑗), cos(𝑥𝑘)), 𝑗, 𝑘=1, . . . ,𝑚
𝑐1+2(𝑗−1),2+2(𝑘−1) = Cov(cos(𝑥𝑗), sin(𝑥𝑘)), 𝑗, 𝑘=1, . . . ,𝑚
𝑐2+2(𝑗−1),1+2(𝑘−1) = Cov(sin(𝑥𝑗), cos(𝑥𝑘)), 𝑗, 𝑘=1, . . . ,𝑚
𝑐2+2(𝑗−1),2+2(𝑘−1) = Cov(sin(𝑥𝑗), sin(𝑥𝑘)), 𝑗, 𝑘=1, . . . ,𝑚

𝑐1+2(𝑗−1),2𝑚+𝑘 = Cov(cos(𝑥𝑗), 𝑥𝑚+𝑘), 𝑗=1, . . . ,𝑚, 𝑘=1, . . . , 𝑛−𝑚
𝑐2+2(𝑗−1),2𝑚+𝑘 = Cov(sin(𝑥𝑗), 𝑥𝑚+𝑘), 𝑗=1, . . . ,𝑚, 𝑘=1, . . . , 𝑛−𝑚
𝑐2𝑚+𝑗,1+2(𝑘−1) = Cov(𝑥𝑚+𝑗 , cos(𝑥𝑘)), 𝑗=1, . . . , 𝑛−𝑚, 𝑘=1, . . . ,𝑚
𝑐2𝑚+𝑗,2+2(𝑘−1) = Cov(𝑥𝑚+𝑗 , sin(𝑥𝑘)), 𝑗=1, . . . , 𝑛−𝑚, 𝑘=1, . . . ,𝑚

𝑐2𝑚+𝑗,2𝑚+𝑘 = Cov(𝑥𝑗 , 𝑥𝑘), 𝑗, 𝑘 = 1, . . . , 𝑛−𝑚 ,

where Cov(𝑥, 𝑦) = E((𝑥− E(𝑥)) · (𝑦 − E(𝑦)).

Several familiar concepts arise as special cases of hybrid moments.
When 𝑚 = 0, i.e., the purely linear case, the first and the second hybrid
moments coincide with the mean and the covariance. Furthermore, for
𝑚 = 𝑛 = 1, i.e., on the circle, the first hybrid moment coincides with
the first circular moment (when written as a vector [Re(𝑚1), Im(𝑚1)]𝑇 ).
For 𝑚 = 𝑛 = 2, the first hybrid moment coincides with the first toroidal
moment (written as vector) as defined in [O10].

Example 6
In order to illustrate the concept of hybrid moments, we consider an
example with 𝑛 = 4 dimensions, 𝑚 = 2 of which are wrapped. In this case,
the first hybrid moment is given by

�̃� = [E(cos(𝑥1)),E(sin(𝑥1)),E(cos(𝑥2)),E(sin(𝑥2)),E(𝑥3),E(𝑥4)]𝑇 .

The second hybrid moment is given by the 6× 6 matrix⎡⎢⎢⎢⎣
c(𝑥1), c(𝑥1) c(𝑥1), s(𝑥1) c(𝑥1), c(𝑥2) c(𝑥1), s(𝑥2) c(𝑥1), 𝑥3 c(𝑥1), 𝑥4
s(𝑥1), c(𝑥1) s(𝑥1), s(𝑥1) s(𝑥1), c(𝑥2) s(𝑥1), s(𝑥2) s(𝑥1), 𝑥3 s(𝑥1), 𝑥4
c(𝑥2), c(𝑥1) c(𝑥2), s(𝑥1) c(𝑥2), c(𝑥2) c(𝑥2), s(𝑥2) c(𝑥2), 𝑥3 c(𝑥2), 𝑥4
s(𝑥2), c(𝑥1) s(𝑥2), s(𝑥1) s(𝑥2), c(𝑥2) s(𝑥2), s(𝑥2) s(𝑥2), 𝑥3 s(𝑥2), 𝑥4

𝑥3, c(𝑥1) 𝑥3, s(𝑥1) 𝑥3, c(𝑥2) 𝑥3, s(𝑥2) 𝑥3, 𝑥3 𝑥3, 𝑥4
𝑥4, c(𝑥1) 𝑥4, s(𝑥1) 𝑥4, c(𝑥2) 𝑥4, s(𝑥2) 𝑥4, 𝑥3 𝑥4, 𝑥4

⎤⎥⎥⎥⎦ ,

where an entry 𝑥, 𝑦 is used as an abbreviation for Cov(𝑥, 𝑦), and cos
and sin are abbreviated as c and s, respectively. The entries indicating
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the dependency between two different circular dimensions are marked in
blue, the entries indicating the dependency between a circular and a linear
dimension are marked in orange, and the entries indicating the dependency
between two different linear dimensions are marked in red.

Theorem 1 (Hybrid Moments of the PWN Distribtuion)
For a PWN distribution 𝒫𝒲𝒩 (𝑥;𝜇,C,𝑚) of dimension 𝑛, the first hybrid
moment is given by

E(cos(𝑥𝑗)) = cos(𝜇𝑗) exp(−𝑐𝑗,𝑗/2) , 𝑗 = 1, . . . ,𝑚
E(sin(𝑥𝑗)) = sin(𝜇𝑗) exp(−𝑐𝑗,𝑗/2) , 𝑗 = 1, . . . ,𝑚
E(𝑥𝑚+𝑗) = 𝜇𝑚+𝑗 , 𝑗 = 1, . . . , 𝑛−𝑚 .

The second hybrid moment is given by the following expressions.

For 𝑗 = 1, . . . ,𝑚

Cov(cos(𝑥𝑗), cos(𝑥𝑗)) = 1
2(1− exp(−𝑐𝑗,𝑗))(1− exp(−𝑐𝑗,𝑗) cos(2𝜇𝑗)) ,

Cov(cos(𝑥𝑗), sin(𝑥𝑗)) = −1
2(1− exp(−𝑐𝑗,𝑗)) exp(−𝑐𝑗,𝑗) sin(2𝜇𝑗) ,

Cov(sin(𝑥𝑗), cos(𝑥𝑗)) = −1
2(1− exp(−𝑐𝑗,𝑗)) exp(−𝑐𝑗,𝑗) sin(2𝜇𝑗) ,

Cov(sin(𝑥𝑗), sin(𝑥𝑗)) = 1
2(1− exp(−𝑐𝑗,𝑗))(1 + exp(−𝑐𝑗,𝑗) cos(2𝜇𝑗)) .

For 𝑗 = 1, . . . ,𝑚, 𝑘 = 1, . . . ,𝑚, 𝑗 ̸= 𝑘

Cov(cos(𝑥𝑗), cos(𝑥𝑘)) = 1
2 exp(−𝑐𝑗,𝑗/2− 𝑐𝑘,𝑘/2)(exp(−𝑐𝑗,𝑘) cos(𝜇𝑗 + 𝜇𝑘)

+ exp(𝑐𝑗,𝑘) cos(𝜇𝑗 − 𝜇𝑘)− 2 cos(𝜇𝑗) cos(𝜇𝑘)) ,

Cov(cos(𝑥𝑗), sin(𝑥𝑘)) = 1
2 exp(−𝑐𝑗,𝑗/2− 𝑐𝑘,𝑘/2)(exp(−𝑐𝑗,𝑘) sin(𝜇𝑗 + 𝜇𝑘)

− exp(𝑐𝑗,𝑘) sin(𝜇𝑗 − 𝜇𝑘)− 2 cos(𝜇𝑗) sin(𝜇𝑘)) ,

Cov(sin(𝑥𝑗), cos(𝑥𝑘)) = 1
2 exp(−𝑐𝑗,𝑗/2− 𝑐𝑘,𝑘/2)(exp(−𝑐𝑗,𝑘) sin(𝜇𝑗 + 𝜇𝑘)

+ exp(𝑐𝑗,𝑘) sin(𝜇𝑗 − 𝜇𝑘)− 2 sin(𝜇𝑗) cos(𝜇𝑘)) ,

Cov(sin(𝑥𝑗), sin(𝑥𝑘)) =−1
2 exp(−𝑐𝑗,𝑗/2−𝑐𝑘,𝑘/2)(exp(−𝑐𝑗,𝑘) cos(𝜇𝑗 + 𝜇𝑘)
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− exp(𝑐𝑗,𝑘) cos(𝜇𝑗 − 𝜇𝑘) + 2 sin(𝜇𝑗) sin(𝜇𝑘)) .

For 𝑗 = 1, . . . ,𝑚, 𝑘 = 𝑚+ 1, . . . , 𝑛

Cov(cos(𝑥𝑗), 𝑥𝑘) = − exp(−𝑐𝑗,𝑗/2)𝑐𝑗,𝑘 sin(𝜇𝑗) ,
Cov(sin(𝑥𝑗), 𝑥𝑘) = exp(−𝑐𝑗,𝑗/2)𝑐𝑗,𝑘 cos(𝜇𝑗) ,
Cov(𝑥𝑘, cos(𝑥𝑗)) = Cov(cos(𝑥𝑗), 𝑥𝑘) ,
Cov(𝑥𝑘, sin(𝑥𝑗)) = Cov(sin(𝑥𝑗), 𝑥𝑘) .

For 𝑗 = 1, . . . , 𝑛− 1, 𝑘 = 1, . . . , 𝑛− 1

Cov(𝑥𝑗+1, 𝑥𝑘+1) = 𝑐𝑗+1,𝑘+1 .

Proof This proof is a generalization of [O15, Lemma 5], [O15, Lemma 6],
which are in turn generalizations of [128]. In order to compute the entries
of the covariance matrix corresponding to dimensions 𝑗 and 𝑘, we first
marginalize all other dimensions using Lemma 6. This results in a two-
dimensional PWN distribution

𝒫𝒲𝒩
(︂[︂
𝑥1
𝑥2

]︂
;
[︂
𝜇1
𝜇2

]︂
,

[︂
𝑐1,1 𝑐1,2
𝑐1,2 𝑐2,2

]︂
,𝑚

)︂
We need to consider three different cases, no dimensions are wrapped
(𝑚 = 0), both dimensions are wrapped (𝑚 = 2), and one dimension is
wrapped and the other is not (𝑚 = 1).

In the case of 𝑚 = 0, the PWN distribution reduces to a normal
distribution, so we have

E(𝑥1) = 𝜇1,

E(𝑥2) = 𝜇2,

Cov(𝑥1, 𝑥1) = 𝑐1,1

Cov(𝑥1, 𝑥2) = Cov(𝑥2, 𝑥1) = 𝑐1,2

Cov(𝑥2, 𝑥2) = 𝑐2,2 .

To derive the case 𝑚 = 2, we consider the characteristic function of a
two-dimensional Gaussian 𝒩 (𝑥;𝜇,C), which is given by

𝜙(𝑝, 𝑡) = exp
(︂
𝑖(𝑝𝜇1 + 𝑡𝜇2)− 1

2
(︀
𝑝2𝑐1,1 + 2𝑝𝑡𝑐1,2 + 𝑡2𝑐2,2

)︀)︂
.
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According to the definition of the characteristic function, we have

𝜙(𝑝, 𝑡) = E(exp(𝑖[𝑝, 𝑡][𝑥1, 𝑥2]𝑇 )) = E(exp(𝑖(𝑝𝑥1 + 𝑡𝑥2)))
= E(cos(𝑝𝑥1 + 𝑡𝑥2)) + 𝑖E(sin(𝑝𝑥1 + 𝑡𝑥2))
= E(cos(𝑝𝑥1) cos(𝑡𝑥2))− E(sin(𝑝𝑥1) sin(𝑡𝑥2))

+ 𝑖 (E(sin(𝑝𝑥1) cos(𝑡𝑥2)) + E(cos(𝑝𝑥1) sin(𝑡𝑥2))) .

By choosing suitable values for 𝑝 and 𝑡, we obtain the first hybrid moment

E(cos(𝑥1)) = Re𝜙(1, 0) = exp(−𝑐1,1/2) cos(𝜇1)
E(cos(𝑥2)) = Re𝜙(0, 1) = exp(−𝑐2,2/2) cos(𝜇2)
E(sin(𝑥1)) = Im𝜙(1, 0) = exp(−𝑐1,1/2) sin(𝜇1)
E(sin(𝑥2)) = Im𝜙(0, 1) = exp(−𝑐2,2/2) sin(𝜇2)

and some expectation values related to the second circular moment

E(cos(2𝑥1)) = Re𝜙(2, 0) = exp(−2𝑐1,1) cos(2𝜇1)
E(cos(2𝑥2)) = Re𝜙(0, 2) = exp(−2𝑐2,2) cos(2𝜇2)
E(sin(2𝑥1)) = Im𝜙(2, 0) = exp(−2𝑐1,1) sin(2𝜇1)
E(sin(2𝑥2)) = Im𝜙(0, 2) = exp(−2𝑐2,2) sin(2𝜇2) ,

which are required later. Furthermore, we can consider sums and differences
of the characteristic function with different parameters to calculate

E(cos(𝑥1) cos(𝑥2)) = 1
2 Re(𝜙(1, 1) + 𝜙(−1, 1))

= 1
2 exp(−𝑐1,1/2− 𝑐2,2/2)

· (exp(−𝑐1,2) cos(𝜇1 + 𝜇2) + exp(𝑐1,2) cos(𝜇1 − 𝜇2))

E(sin(𝑥1) sin(𝑥2)) = −1
2 Re(𝜙(1, 1)− 𝜙(−1, 1))

= −1
2 exp(−𝑐1,1/2− 𝑐2,2/2)

· (exp(−𝑐1,2) cos(𝜇1 + 𝜇2)− exp(𝑐1,2) cos(𝜇1 − 𝜇2))

E(cos(𝑥1) sin(𝑥2)) = 1
2 Im(𝜙(1, 1) + 𝜙(−1, 1))

= 1
2 exp(−𝑐1,1/2− 𝑐2,2/2)
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· (exp(−𝑐1,2) sin(𝜇1 + 𝜇2)− exp(𝑐1,2) sin(𝜇1 − 𝜇2))

E(sin(𝑥1) cos(𝑥2)) = 1
2 Im(𝜙(1, 1)− 𝜙(−1, 1))

= 1
2 exp(−𝑐1,1/2− 𝑐2,2/2)

· (exp(−𝑐1,2) sin(𝜇1 + 𝜇2) + exp(𝑐1,2) sin(𝜇1 − 𝜇2)) .

Based on these expectation values, we calculate the entries of the covariance
matrix related to 𝑥1

Cov(cos(𝑥1), cos(𝑥1))) = E(cos(𝑥1)2)− E(cos(𝑥1))2

= 1
2 + 1

2E(cos(2𝑥1))− E(cos(𝑥1))2

= 1
2 + 1

2 exp(−2𝑐1,1) cos(2𝜇1)−exp(−𝑐1,1) cos(𝜇1)2

Cov(sin(𝑥1), sin(𝑥1))) = E(sin(𝑥1)2)− E(sin(𝑥1))2

= 1
2 −

1
2E(cos(2𝑥1))− E(sin(𝑥1))2

= 1
2 −

1
2 exp(−2𝑐1,1) cos(2𝜇1)−exp(−𝑐1,1) sin(𝜇1)2

Cov(cos(𝑥1), sin(𝑥1))) = E(cos(𝑥1) sin(𝑥1))− E(cos(𝑥1))E(sin(𝑥1))

= 1
2E(sin(2𝑥1))− E(cos(𝑥1))E(sin(𝑥1))

= 1
2 sin(2𝜇1)(exp(−2𝑐1,1)− exp(−𝑐1,1)) .

The entries for 𝑥2 are obtained analogously. The entries encoding the
correlation between 𝑥1 and 𝑥2 are given by

Cov( cos(𝑥1), cos(𝑥2))) = E(cos(𝑥1) cos(𝑥2))− E(cos(𝑥1))E(cos(𝑥2))

= 1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 cos(𝜇1 + 𝜇2) + 𝑒𝑐1,2 cos(𝜇1 − 𝜇2))

− 𝑒−𝑐1,1/2−𝑐2,2/2 cos(𝜇1) cos(𝜇2)

= 1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 cos(𝜇1 + 𝜇2) + 𝑒𝑐1,2 cos(𝜇1 − 𝜇2)

− 2 cos(𝜇1) cos(𝜇2)) ,
Cov( cos(𝑥1), sin(𝑥2))) = E(cos(𝑥1) sin(𝑥2))− E(cos(𝑥1))E(sin(𝑥2))
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= 1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 sin(𝜇1 + 𝜇2)− 𝑒𝑐1,2 sin(𝜇1 − 𝜇2))

− 𝑒−𝑐1,1/2−𝑐2,2/2 cos(𝜇1) sin(𝜇2)

= 1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 sin(𝜇1 + 𝜇2)− 𝑒𝑐1,2 sin(𝜇1 − 𝜇2)

− 2 cos(𝜇1) sin(𝜇2)) ,
Cov( sin(𝑥1), cos(𝑥2))) = E(sin(𝑥1) cos(𝑥2))− E(sin(𝑥1))E(cos(𝑥2))

= 1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 sin(𝜇1 + 𝜇2) + 𝑒𝑐1,2 sin(𝜇1 − 𝜇2))

− 𝑒−𝑐1,1/2−𝑐2,2/2 sin(𝜇1) cos(𝜇2)

= 1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 sin(𝜇1 + 𝜇2) + 𝑒𝑐1,2 sin(𝜇1 − 𝜇2)

− 2 sin(𝜇1) cos(𝜇2)) ,
Cov( sin(𝑥1), sin(𝑥2))) = E(sin(𝑥1) sin(𝑥2))− E(sin(𝑥1))E(sin(𝑥2))

= −1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 cos(𝜇1 + 𝜇2)− 𝑒𝑐1,2 cos(𝜇1 − 𝜇2))

− 𝑒−𝑐1,1/2−𝑐2,2/2 sin(𝜇1) sin(𝜇2)

= −1
2𝑒

−𝑐1,1/2−𝑐2,2/2(𝑒−𝑐1,2 cos(𝜇1 + 𝜇2)− 𝑒𝑐1,2 cos(𝜇1 − 𝜇2)

+ 2 sin(𝜇1) sin(𝜇2)) .

For the case of 𝑚 = 1, we apply the technique previously used by
Johnson [128, Sec. 3] to derive the required expectation values. Based on
the derivative of the characteristic function with respect to 𝑡

𝜙𝑡(𝑝, 𝑡) := 𝜕𝜙

𝜕𝑡
= 𝜕

𝜕𝑡
(E(cos(𝑝𝑥1 + 𝑡𝑥2))) + 𝑖

(︂
𝜕

𝜕𝑡
E(sin(𝑝𝑥1 + 𝑡𝑥2))

)︂
= −E(𝑥2 sin(𝑝𝑥1 + 𝑡𝑥2)) + 𝑖E(𝑥2 cos(𝑝𝑥1 + 𝑡𝑥2)) ,

we obtain the expectation values

E(𝑥2 sin(𝑥1)) = −Re𝜙𝑡(1, 0) = exp(−𝑐1,1/2)(𝑐1,2 cos(𝜇1) + 𝜇2 sin(𝜇1)) ,
E(𝑥2 cos(𝑥1)) = Im𝜙𝑡(1, 0) = exp(−𝑐1,1/2)(𝜇2 cos(𝜇1)− 𝑐1,2 sin(𝜇1)) ,

and the entries in the covariance matrix

Cov(cos(𝑥1), 𝑥2) = E(cos(𝑥1)𝑥2))− E(cos(𝑥1))E(𝑥2)
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= 𝑒−𝑐1,1/2(𝜇2 cos(𝜇1)− 𝑐1,2 sin(𝜇1))− 𝑒−𝑐1,1/2 cos(𝜇1)𝜇2

= −𝑒−𝑐1,1/2𝑐1,2 sin(𝜇1) ,
Cov(sin(𝑥1), 𝑥2) = E(sin(𝑥1)𝑥2))− E(sin(𝑥1))E(𝑥2)

= 𝑒−𝑐1,1/2(𝑐1,2 cos(𝜇1) + 𝜇2 sin(𝜇1))− 𝑒−𝑐1,1/2 sin(𝜇1)𝜇2

= 𝑒−𝑐1,1/2𝑐1,2 cos(𝜇1) .

The special case of 𝜇 = 0 allows some interesting simplifications. This
is of particular interest, because any PWN distribution can be shifted to a
zero-mean PWN distribution.

Corollary 1 (Hybrid Moments of the Zero-mean PWN Distr.)
For a PWN distribution 𝒫𝒲𝒩 (𝑥; 0,C,𝑚) of dimension 𝑛, the first hybrid
moment is given by

E(cos(𝑥𝑗)) = exp(−𝑐𝑗,𝑗/2) 𝑗 = 1, . . . ,𝑚
E(sin(𝑥𝑗)) = 0 , 𝑗 = 1, . . . ,𝑚
E(𝑥𝑚+𝑗) = 𝜇𝑚+𝑗 , 𝑗 = 1, . . . , 𝑛−𝑚 .

The second hybrid moment is given by the following expressions.

For 𝑗 = 1, . . . ,𝑚

Cov(cos(𝑥𝑗), cos(𝑥𝑗)) = 1
2(1− exp(−𝑐𝑗,𝑗))2 ,

Cov(cos(𝑥𝑗), sin(𝑥𝑗)) = 0 ,
Cov(sin(𝑥𝑗), cos(𝑥𝑗)) = 0 ,

Cov(sin(𝑥𝑗), sin(𝑥𝑗)) = 1
2(1− exp(−2𝑐𝑗,𝑗)) .

For 𝑗 = 1, . . . ,𝑚, 𝑘 = 1, . . . ,𝑚, 𝑘 ̸= 𝑗

Cov(cos(𝑥𝑗), cos(𝑥𝑘)) = 1
2 exp(−𝑐𝑗,𝑗/2−𝑐𝑘,𝑘/2)(exp(−𝑐𝑗,𝑘)+exp(𝑐𝑗,𝑘)−2)

= exp(−𝑐𝑗,𝑗/2− 𝑐𝑘,𝑘/2)(cosh(𝑐𝑗,𝑘)− 1) ,
Cov(cos(𝑥𝑗), sin(𝑥𝑘)) = 0 ,
Cov(sin(𝑥𝑗), cos(𝑥𝑘)) = 0 ,
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Cov(sin(𝑥𝑗), sin(𝑥𝑘)) = −1
2 exp(−𝑐𝑗,𝑗/2− 𝑐𝑘,𝑘/2)(exp(−𝑐𝑗,𝑘)− exp(𝑐𝑗,𝑘))

= exp(−𝑐𝑗,𝑗/2− 𝑐𝑘,𝑘/2) sinh(𝑐𝑗,𝑘) .

For 𝑗 = 1, . . . ,𝑚, 𝑘 = 𝑚, . . . , 𝑛− 1

Cov(cos(𝑥𝑗), 𝑥𝑘+1) = 0
Cov(sin(𝑥𝑗), 𝑥𝑘+1) = exp(−𝑐𝑗,𝑗/2)𝑐𝑗,𝑘+1 ,

Cov(𝑥𝑘+1, cos(𝑥𝑗)) = 0 ,
Cov(𝑥𝑘+1, sin(𝑥𝑗)) = Cov(sin(𝑥𝑗), 𝑥𝑘+1) .

For 𝑗 = 1, . . . , 𝑛− 1, 𝑘 = 1, . . . , 𝑛− 1

Cov(𝑥𝑗+1, 𝑥𝑘+1) = 𝑐𝑗+1,𝑘+1 .

There has been a variety of research on the topic of correlation of
random variables in periodic spaces [135], [138], [251]. In the following,
we distinguish three cases, the case that both random variables are linear,
the case that both are periodic, and the case that one random variable is
linear whereas the other is periodic.

The linear-linear correlation coefficient is commonly used for calculat-
ing the correlation of two linear random variables [233, p. 41], [191, p. 129].
It is also known as Pearson’s correlation coefficient11.

Definition 12 (Linear-Linear Correlation Coefficient)
For two linear random variables 𝑥 and 𝑦 with means 𝜇 = E(𝑥) and
𝜈 = E(𝑦), respectively, the linear-linear correlation coefficient is given by

𝜌𝑙𝑙(𝑥, 𝑦) = E((𝑥− 𝜇) · (𝑦 − 𝜈))√︀
E((𝑥− 𝜇)2) · E((𝑦 − 𝜈)2)

∈ [−1, 1] .

The properties of the linear-linear correlation coefficient are well known.
For example, the value 𝜌𝑙𝑙(𝑥, 𝑦) ≈ 1 indicates a strong positive correlation,
and 𝜌𝑙𝑙(𝑥, 𝑦) ≈ −1 a strong negative correlation. For independent random
variables 𝑥 and 𝑦, it holds that 𝜌𝑙𝑙(𝑥, 𝑦) = 0, but the converse is not
necessarily true.
11It should be noted that there are other ways beyond Pearson’s correlation coefficient

to quantify dependencies between linear variables, such as rank correlation.
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In order to quantify the dependency between two circular random
variables, the Pearson’s correlation coefficient is unsuitable because it
is limited to linear dependencies. For this reason, a number of circular-
circular correlation coefficients have been proposed [65], [128], [220], [251].
We use the correlation coefficient suggested by Jammalamadaka and
Sarma [126], [127], because it has a variety of nice properties, e.g., a
distinction between positive and negative correlation. We have previously
applied this correlation coefficient to toroidal filtering [O10]. It has also
been used by Jones et al. [131] in a meteorological context.

Definition 13 (Circular-Circular Correlation Coefficient)
For two circular random variables 𝛼 and 𝛽 with circular means 𝜇 and 𝜈,
the circular-circular correlation coefficient [126] is given by

𝜌𝑐𝑐(𝛼, 𝛽) = E(sin(𝛼− 𝜇) sin(𝛽 − 𝜈))√︀
E(sin2(𝛼− 𝜇))E(sin2(𝛽 − 𝜈))

∈ [−1, 1] .

As can be seen from this definition, the circular-circular correlation coef-
ficient 𝜌𝑐𝑐 is closely related to the linear-linear correlation coefficient 𝜌𝑙𝑙.
For this reason, it shares some of its properties. For example similar to
the Person correlation coefficient, independent circular random variables
always have 𝜌𝑐𝑐 = 0, but the converse need not be true. A more detailed
discussion of the properties of 𝜌𝑐𝑐 can be found in [126, Theorem 2.1].

Lemma 7
The circular-circular correlation coefficient between 𝑥𝑗 and 𝑥𝑘 for 𝑥 ∼
𝒫𝒲𝒩 (𝑥;𝜇,C,𝑚) with 𝜇 = 0 and 1 ≤ 𝑗 < 𝑘 ≤ 𝑚 is given by

𝜌𝑐𝑐 = sinh(𝑐𝑗,𝑘)√︀
sinh(𝑐𝑗,𝑗) sinh(𝑐𝑘,𝑘)

.

Proof This is a generalization of [126, Sec. 3.1]. First, we marginalize
all dimensions except 𝑗 and 𝑘 according to Lemma 6 and then apply the
technique for calculating the circular-circular correlation coefficient in the
case 𝑛 = 𝑚 = 2.

The dependency between circular and linear random variables can
be quantified by a circular-linear correlation coefficient. The coefficient
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proposed by Mardia [171] is widely used in literature, e.g., [22, Sec. 9.4.1,
eq. (9.4.5)], [175, eq. (2.8)], [174, eq. (11.2.1)].

Definition 14 (Circular-Linear Correlation Coefficient)
For a circular random variable 𝛼 and a linear random variable 𝑥, the
square of the circular-linear correlation coefficient [171] is given by

𝜌2
𝑐𝑙 = 𝑟2

𝑥𝑐 + 𝑟2
𝑥𝑠 − 2𝑟𝑥𝑐𝑟𝑥𝑠𝑟𝑐𝑠

1− 𝑟2
𝑐𝑠

∈ [0, 1] ,

where

𝑟𝑥𝑐 = 𝜌𝑙𝑙(𝑥, cos(𝛼)) ,
𝑟𝑥𝑠 = 𝜌𝑙𝑙(𝑥, sin(𝛼)) ,
𝑟𝑐𝑠 = 𝜌𝑙𝑙(cos(𝛼), sin(𝛼)) .

By nature of its definition, the sign of the circular-linear correlation
coefficient is undefined and, as a result, it is not possible to distinguish
between positive and negative correlation. There is an interesting relation
to certain entries of the second hybrid moment of a zero-mean PWN
distribution (see also [O15, Lemma 7]).

Lemma 8
Consider a zero-mean PWN distribution 𝒫𝒲𝒩 (𝑥; 0,C,𝑚), where the
number of wrapped dimensions is 1 ≤ 𝑚 < 𝑛. Then, for 1 ≤ 𝑗 ≤ 𝑚 and
𝑚 < 𝑘 ≤ 𝑛, the circular-linear correlation coefficient between dimensions
𝑗 and 𝑘 is given by

𝜌2
𝑐𝑙 =

(︃
𝑐𝑚+𝑘,2+2(𝑗−1)√︀

𝑐𝑚+𝑘,𝑚+𝑘 · 𝑐2+2(𝑗−1),2+2(𝑗−1)

)︃2

.

Proof We use Corollary 1 to obtain

𝑟𝑥𝑐 = 𝜌𝑙𝑙(𝑥𝑘, cos(𝑥𝑗)) ∝ Cov(𝑥𝑘, cos(𝑥𝑗)) = 0
𝑟𝑐𝑠 = 𝜌𝑙𝑙(cos(𝑥𝑗), sin(𝑥𝑗) ∝ Cov(cos(𝑥𝑗), sin(𝑥𝑗)) = 0 .
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Thus, we have

𝜌2
𝑐𝑙 = 𝑟2

𝑥𝑠 = (𝜌𝑙𝑙(𝑥𝑘, sin(𝑥𝑗)))2

=
(︃

Cov(𝑥𝑘, sin(𝑥𝑗))√︀
Cov(𝑥𝑘, 𝑥𝑘) · Cov(sin(𝑥𝑗), sin(𝑥𝑗))

)︃2

=
(︃

𝑐𝑚+𝑘,2+2(𝑗−1)√︀
𝑐𝑚+𝑘,𝑚+𝑘 · 𝑐2+2(𝑗−1),2+2(𝑗−1)

)︃2

.

As a matter of fact, it is possible to use a signed version of the circular-
linear correlation coefficient in this case. This is achieved by removing the
square on both sides and defining the sign of the circular-linear correlation
coefficient as the sign of the numerator 𝑐𝑚+𝑘,2+2(𝑗−1).

C Parameter Estimation

One of the most important problems regarding any new probability dis-
tribution is the question of how to estimate its parameters if a set of
(weighted) samples is given. Hence, we deal with parameter estimation
for the PWN distribution in this section. One common approach is the
application of Maximum Likelihood Estimation (MLE), i.e., choosing the
parameters of the distribution in such a way that the likelihood of drawing
these samples is maximized. Because of the involved infinite sums, this
approach is difficult to perform analytically [255]. For this reason, we
consider moment matching as an alternative solution, i.e., we try to obtain
the parameters by matching the moments of the PWN distribution to
the moments that can be calculated from the weighted samples. For this
purpose, we use the hybrid moments introduced in the previous section.

Torus For the PWN distribution on the torus, i.e., 𝑛 = 𝑚 = 2, we
propose a parameter estimation technique based on matching the first
hybrid moment as well as the circular-circular correlation coefficient
(see [O10, Lemma 3]). For given first hybrid moment �̃� and circular-
circular correlation coefficient 𝜌𝑐𝑐, the parameters of the PWN distribution

62



2.3. Higher Dimensions

𝒫𝒲𝒩 (𝑥;𝜇,C, 2) can be obtained according to

𝜇 =
[︂
atan2(�̃�2, �̃�1)
atan2(�̃�4, �̃�3)

]︂
, C =

[︂
𝑐1,1 𝑐1,2
𝑐1,2 𝑐2,2

]︂
,

where

𝑐1,1 = − log
(︀
�̃�2

1 + �̃�2
2
)︀
,

𝑐2,2 = − log
(︀
�̃�2

3 + �̃�2
4
)︀
,

𝑐1,2 = sinh−1
(︂√︁

sinh(𝑐1,1) sinh(𝑐2,2) · 𝜌𝑐𝑐

)︂
.

In order to evaluate the inverse hyperbolic sine, the identity sinh−1(𝑥) =
log(𝑥 +

√
1 + 𝑥2) can be applied. This approach has the disadvantage

that the resulting covariance matrix is not always guaranteed to be posi-
tive definite. This problem occurs for strong circular-circular correlations
|𝜌𝑐𝑐| ≈ 1. However, this parameter estimation technique performs well
for most practically relevant cases. An alternative technique based on
matching E(exp(𝑖(𝑥1−𝜇1)) ·exp(𝑖(𝑥2−𝜇2))) rather than 𝜌𝑐𝑐 was proposed
by Jammalamadaka et al. [126], but this method does not work in all cases
either and even seems to fail more often in practically relevant scenarios.
A more thorough comparison of the method proposed in this thesis and
Jammalamadaka’s method as well as the derivation of a parameter esti-
mation scheme that works under all circumstances could be considered in
future work.

Cylinder Parameter estimation for a PWN distribution on the cylinder,
i.e., with parameters 𝑛 = 2 and 𝑚 = 1 can be performed by matching the
first hybrid moment �̃� and certain entries of the second hybrid moment C̃.
Only certain entries of the second hybrid moment are maintained because
a cylindrical PWN distribution has fewer degrees of freedom than the first
two hybrid moments. We first proposed this method for the 𝑆𝐸(2) case
in [O15, Sec. III-D].

Specifically, we match Cov(𝑥2, 𝑥2) and we ignore Cov(cos(𝑥1), cos(𝑥2)),
Cov(cos(𝑥1), sin(𝑥1)), Cov(sin(𝑥1), cos(𝑥1), and Cov(sin(𝑥1), sin(𝑥1)) as
there is an immediate functional dependence on the first hybrid mo-
ment in the case of a PWN distribution. Furthermore, we approximate
Cov(cos(𝑥1), 𝑥2) and Cov(sin(𝑥1), 𝑥2) as the both only depend on the first
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hybrid moment and the value of 𝑐1,2, i.e., it is in general impossible to ex-
actly match both terms at the same time. To perform this approximation,
we consider the equations

𝑐1,3 = − exp(−𝑐11/2)𝑐1,2 sin(𝜇1) ,
𝑐2,3 = exp(−𝑐11/2)𝑐1,2 cos(𝜇1) ,

and try to find the 𝑐1,2 that minimizes the sum of the squared errors

𝐸(𝑐1,2) =
(︁
𝑐1,3 + 𝑒−𝑐11/2𝑐1,2 sin(𝜇1)

)︁2
+
(︁
𝑐2,3 − 𝑒−𝑐11/2𝑐1,2 cos(𝜇1)

)︁2
.

In order to find the minimum, we derive and set the derivative to zero
𝜕

𝜕𝑐1,2
𝐸(𝑐1,2) = 2

(︁
𝑐1,3 + 𝑒−𝑐11/2𝑐1,2 sin(𝜇1)

)︁
𝑒−𝑐11/2 sin(𝜇1)

− 2
(︁
𝑐2,3 − 𝑒−𝑐11/2𝑐1,2 cos(𝜇1)

)︁
𝑒−𝑐11/2 cos(𝜇1) != 0 ,

which leads to

𝑐2,3 cos(𝜇1)− 𝑒−𝑐11/2𝑐1,2 cos2(𝜇1) = sin(𝜇1)𝑐1,3 + 𝑒−𝑐11/2𝑐1,2 sin2(𝜇1)
⇒ 𝑒−𝑐11/2(𝑐2,3 cos(𝜇1)− sin(𝜇1)𝑐1,3) = 𝑐1,2 .

Furthermore, the second derivative is larger than zero, because

𝜕2

(𝜕𝑐1,2)2𝐸(𝑐1,2) = 2 exp(−𝑐11) sin2(𝜇1) + 2 exp(−𝑐11) cos2(𝜇1)

= 2 exp(−𝑐11) > 0 ,

i.e., this solution is indeed a minimum of 𝐸(𝑐1,2). The resulting parameters
for given hybrid moments �̃� and C̃ are

𝜇 =

⎡⎣atan2(�̃�2, �̃�1)
�̃�3
�̃�4

⎤⎦ , C =
[︂
𝑐1,1 𝑐1,2
𝑐1,2 𝑐2,2

]︂
,

where

𝑐1,1 = − log(�̃�2
1 + �̃�2

2) ,
𝑐1,2 = exp(𝑐1,1/2)(−𝑐1,3 sin(𝜇1) + 𝑐2,3 cos(𝜇1)) ,
𝑐2,2 = 𝑐3,3 .
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Remark 8 (Multivariate von Mises Distribution)
An alternative to the PWN distribution on the hypertorus (i.e., 𝑛 = 𝑚)
sometimes found in literature is the multivariate von Mises distribution
[173]. In the bivariate case, its pdf is given by

ℬ𝒱ℳ([𝑥1, 𝑥2]𝑇 ; [𝜇1, 𝜇2]𝑇 , 𝜅1, 𝜅2,A)
= 𝑐 · exp(𝜅1 cos(𝑥1 − 𝜇1) + 𝜅2 cos(𝑥2 − 𝜇2)

+ [cos(𝑥1 − 𝜇1) sin(𝑥1 − 𝜇1)]A[cos(𝑥2 − 𝜇2) sin(𝑥2 − 𝜇2)]𝑇 ) ,

where 𝑐 is the normalization constant, 𝜅1, 𝜅2 ≥ 0 are concentration param-
eters, 𝜇1, 𝜇2 ∈ 𝑆1 are location parameters and A ∈ R2×2 is a matrix that
encodes the correlation (see [176, eq. (1)]). Even though there is a total
of eight parameters, there are intuitively fewer degrees of freedom. For
comparison, the bivariate PWN has just five degrees of freedom. For this
reason, some authors only consider the case where

A =
[︂
𝛼 0
0 𝛽

]︂
(cosine/sine model [220]) ,

or A =
[︂
𝛼 0
0 0

]︂
(cosine model [176]) ,

or A =
[︂
0 0
0 𝛽

]︂
(sine model [235]) .

The sine model has been further investigated by Singh et al. in [235] and
some of its properties (such as marginal and conditional distributions)
have been derived. In this case, the pdf simplifies to

𝑐 · exp(𝜅1 cos(𝑥1 − 𝜇1) + 𝜅2 cos(𝑥2 − 𝜇2) + 𝛽 sin(𝑥1 − 𝜇1) sin(𝑥2 − 𝜇2)) ,

where the normalization constant is given by the infinite series of Bessel
functions

𝑐−1 = 4𝜋2
∞∑︁

𝑗=0

[︂
2𝑗
𝑗

]︂(︃(︂
𝛽2

4𝜅1𝜅2

)︂𝑗

𝐼𝑗(𝜅1)𝐼𝑗(𝜅2)
)︃

.

Obviously, the normalization constant is quite complicated, which poses a
significant disadvantage compared to the PWN distribution. A comparison
between the sine and cosine model has been performed by Mardia et al.
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in [176]. As both models have advantages and disadvantages, it is not
immediately obvious which model to use. Another issue associated with the
multivariate von Mises distributions is the fact that it is not unimodal for
all values of A. Even in the case of the simplified sine and cosine models,
bimodality can occur for certain values of 𝛼 and 𝛽, respectively. Because
of these issues, we restrict our considerations on the PWN distribution for
the remainder of this thesis. However, it might be interesting to take a
closer look at the bivariate von Mises distribution in future work.

2.4 Mathematical Operations on Directional
Densities

In order to derive filtering algorithms, certain operations have to be
performed on directional densities. Particularly, we propose algorithms for
the addition of random variables and the multiplication of densities.

2.4.1 Addition of Random Variables
Here, we consider the addition of independent random variables, which is
required to perform a prediction step in the presence of additive noise. In
linear domains, the addition of independent random variables coincides
with the convolution of the probability density functions.

A Circle

In the circular case, the convolution operation is defined as follows.

Definition 15 (Convolution on the Circle)
For probability densities 𝑓1(·), 𝑓2(·) on the circle, we define the convolution

(𝑓1 * 𝑓2)(𝑥) =
∫︁ 2𝜋

0
𝑓2(𝑥− 𝑡 mod 2𝜋) · 𝑓1(𝑡) d𝑡 .

This corresponds to addition of independent random variables on the circle.
It is easy to show that WN densities are closed under convolution, i.e., the
convolution of two WN densities is again a WN density.
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Lemma 9 (Convolution of WN Densities)
For two independent WN densities 𝒲𝒩 (𝑥;𝜇1, 𝜎1) and 𝒲𝒩 (𝑥;𝜇2, 𝜎2), the
convolved density 𝒲𝒩 (𝑥;𝜇1, 𝜎1) *𝒲𝒩 (𝑥;𝜇2, 𝜎2) is given by 𝒲𝒩 (𝑥, 𝜇, 𝜎)
where 𝜇 = 𝜇1 + 𝜇2, 𝜎 =

√︀
𝜎2

1 + 𝜎2
2.

Proof We obtain

𝒲𝒩 (𝑥;𝜇1, 𝜎1) *𝒲𝒩 (𝑥;𝜇2, 𝜎2)

=
∫︁ 2𝜋

0
𝒲𝒩 (𝑥− 𝑡;𝜇1, 𝜎1) · 𝒲𝒩 (𝑡;𝜇2, 𝜎2) d𝑡

=
∫︁ 2𝜋

0

∞∑︁
𝑘1=−∞

𝒩 (𝑥+ 2𝜋𝑘1 − 𝑡;𝜇1, 𝜎1) ·
∞∑︁

𝑘2=−∞

𝒩 (𝑡+ 2𝜋𝑘2;𝜇2, 𝜎2) d𝑡

=
∞∑︁

𝑘1=−∞

∞∑︁
𝑘2=−∞

∫︁ 2𝜋

0
𝒩 (𝑥+ 2𝜋𝑘1 − 𝑡;𝜇1, 𝜎1) · 𝒩 (𝑡+ 2𝜋𝑘2;𝜇2, 𝜎2) d𝑡

=
∞∑︁

𝑘1=−∞

∫︁ ∞

−∞
𝒩 ((𝑥+ 2𝜋𝑘1)− 𝑡;𝜇1, 𝜎1) · 𝒩 (𝑡;𝜇2, 𝜎2) d𝑡

=
∞∑︁

𝑘1=−∞

𝒩
(︂
𝑥+ 2𝜋𝑘1;𝜇1 + 𝜇2,

√︁
𝜎2

1 + 𝜎2
2

)︂
=𝒲𝒩

(︂
𝑥;𝜇1 + 𝜇2,

√︁
𝜎2

1 + 𝜎2
2

)︂
,

where we use the dominated convergence theorem to interchange sum-
mation and integration, concatenation of integrals inside the sum [O10,
Appendix], and the formula for Gaussian convolution [208, eq. (355)].

This proof can easily be generalized to any wrapped distribution
stemming from a linear distribution that is closed under convolution in
the linear sense. While the above result is well-known in literature [127,
Sec. 2.2.6], we can show a more general result for the moments of the
convolution of arbitrary circular densities.
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Lemma 10 (Moments of Sum of Circular Random Variables)
For independent random variables 𝑥1 ∼ 𝑓1(·), 𝑥2 ∼ 𝑓2(·) on the circle, the
moments of the sum 𝑥 = 𝑥1 + 𝑥2 are given by

E(exp(𝑖𝑛𝑥)) = E(exp(𝑖𝑛𝑥1)) · E(exp(𝑖𝑛𝑥2)) .

Proof A direct calculation shows

𝑚𝑛 = E(exp(𝑖𝑛𝑥)) =
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)(𝑓1 * 𝑓2)(𝑥) d𝑥

=
∫︁ 2𝜋

0

∫︁ 2𝜋

0
exp(𝑖𝑛𝑥)𝑓2(𝑥− 𝑡 mod 2𝜋) · 𝑓1(𝑡) d𝑡 d𝑥

=
∫︁ 2𝜋

0

∫︁ 2𝜋

0
exp(𝑖𝑛(𝑥1 + 𝑥2))𝑓1(𝑥1)𝑓2(𝑥2) d𝑥1 d𝑥2

=
∫︁ 2𝜋

0
exp(𝑖𝑛𝑥1)𝑓1(𝑥1) d𝑥1 ·

∫︁ 2𝜋

0
exp(𝑖𝑛𝑥2)𝑓2(𝑥2) d𝑥2

= E(exp(𝑖𝑛𝑥1)) · E(exp(𝑖𝑛𝑥2)) .

It can be shown that unlike WN distributions, VM distributions are not
closed under convolution, i.e., the convolution of two VM densities does not
yield a VM density. Consequently, it is common to use the approximation
given in [174, eq. (3.5.44)]. This approximation is, for instance, used in
the filter by Azmani et al. [12]. For two VM densities 𝒱ℳ(𝑥;𝜇1, 𝜅1) and
𝒱ℳ(𝑥;𝜇2, 𝜅2), the convolved density 𝒱ℳ(𝑥;𝜇1, 𝜅1) * 𝒱ℳ(𝑥;𝜇2, 𝜅2) is
approximated by 𝒱ℳ(𝑥;𝜇, 𝜅), where

𝜇 = 𝜇1 + 𝜇2, 𝜅 = 𝐴−1
1 (𝐴1(𝜅1) ·𝐴1(𝜅2)) .

This approximation is motivated by performing circular moment matching
to two WN densities, calculating their convolution, and once again perform-
ing circular moment matching to convert the resulting WN distribution
back to a VM distribution.

Remark 9 (Optimality of the Approximation)
Beyond the original motivation of the approximation with intermediate
WN distributions, Lemma 10 gives another justification to this method. It
is easy to see that calculating the true first circular moment of the convolved
density using Lemma 10 and then approximating the true density with
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a VM density based on the first moment yields the same result as given
in [174, eq. (3.5.44)]. For this reason, the resulting VM approximation
is the best approximation in terms of matching the moments of the true
density, i.e., the intermediate WN approximation does not introduce any
additional error.

B Hypersphere

As mentioned before, the only non-trivial hyperspheres admitting a topo-
logical group structure are 𝑆1 and 𝑆3 (see [190]). We define a group
operation ⊕ : 𝑆𝑛−1 × 𝑆𝑛−1 → 𝑆𝑛−1 for 𝑛 = 2 and 𝑛 = 4. For 𝑛 = 2, the
group operation is given by complex multiplication, i.e.,[︂

𝑥1
𝑥2

]︂
⊕
[︂
𝑦1
𝑦2

]︂
=
[︂
𝑥1𝑦1 − 𝑥2𝑦2
𝑥1𝑦2 + 𝑥2𝑦1

]︂
,

which constitutes the equivalent to addition of angles modulo 2𝜋 (see
Sec. 2.2.1). In the case of 𝑛 = 4, the group operation is given by quaternion
multiplication, i.e.,⎡⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4

⎤⎥⎥⎦⊕
⎡⎢⎢⎣
𝑦1
𝑦2
𝑦3
𝑦4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
𝑥1𝑦1 − 𝑥2𝑦2 − 𝑥3𝑦3 − 𝑥4𝑦4
𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥3𝑦4 − 𝑥4𝑦3
𝑥1𝑦3 − 𝑥2𝑦4 + 𝑥3𝑦1 + 𝑥4𝑦2
𝑥1𝑦4 + 𝑥2𝑦3 − 𝑥3𝑦2 + 𝑥4𝑦1

⎤⎥⎥⎦ ,

which is discussed in more detail in Appendix B. This operation can be
interpreted as the composition of rotations.

We consider the Bingham distribution in this section, which will later
allow us to derive a Bingham-based filtering algorithm. The Bingham
distribution is not closed under addition of random variables (using the
operator ⊕ as defined above), which has been shown for both 𝑛 = 2 and
𝑛 = 4 [O17, Lemma 6]. For this reason, we derive an approximation based
on matching covariance matrices.

Theorem 2 (Addition of Bingham Random Variables)
Let 𝑥 ∼ ℬ(𝑥; M𝑥,Z𝑥) and 𝑦 ∼ ℬ(𝑦; M𝑦,Z𝑦) be independent Bingham-
distributed random vectors on 𝑆𝑛−1 for 𝑛 = 2 or 𝑛 = 4 with covariance
matrices C𝑥 = Cov(𝑥) and C𝑦 = Cov(𝑦). Then, the covariance of 𝑥⊕ 𝑦
is given by

C𝑥⊕𝑦 = (𝑐𝑗,𝑘)
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with 𝑐𝑗,𝑘 = E((𝑥 ⊕ 𝑦)𝑗 · (𝑥 ⊕ 𝑦)𝑘) for 𝑗, 𝑘 = 1, . . . , 𝑛, which only depends
on entries of C𝑥 and C𝑦.

Proof For 𝑛 = 2, this is shown in [O17, Lemma 2]. The case of 𝑛 = 4 is
shown in [O17, Lemma 4]. For 𝑛 = 4, the resulting formula is quite long
and is given in [82, Sec. A.9.2]

The matrices C𝑥 and C𝑦 can be obtained as shown in (2.3). Using
Theorem 2, we can then compute the covariance C𝑥⊕𝑦 of 𝑥 ⊕ 𝑦. From
this covariance, we can finally estimate the parameters of a Bingham
distribution by matching the covariance C𝑥⊕𝑦. This last step constitutes
an approximation, because the true distribution of 𝑥⊕ 𝑦 is not Bingham
(see [O17, Lemma 3]). This parameter estimation process has to be carried
out numerically and is discussed in more detail in [O17] and [O4].

C Partially Wrapped Spaces

The convolution operation defined on the circle 𝑆1 as given in Def. 15 can
be generalized to the partially wrapped space (𝑆1)𝑚 × R𝑛−𝑚 as follows.
Let Φ : R𝑛 → (𝑆1)𝑚 × R𝑛−𝑚 with

[𝑥1, . . . , 𝑥𝑛]𝑇 ↦→ [𝑥1 mod 2𝜋, . . . , 𝑥𝑚 mod 2𝜋, 𝑥𝑚+1, . . . , 𝑥𝑛]𝑇

be the wrapping operation.

Definition 16 (Convolution on (𝑆1)𝑚 × R𝑛−𝑚)
For probability densities 𝑓1, 𝑓2 on (𝑆1)𝑚×R𝑛−𝑚, we define the convolution

(𝑓1 * 𝑓2)(𝑥)

=
∫︁ 2𝜋

0
. . .

∫︁ 2𝜋

0

∫︁ ∞

−∞
. . .

∫︁ ∞

−∞
𝑓2 (Φ(𝑥− 𝑡)) · 𝑓1(𝑡) d𝑡1 . . . d𝑡𝑛 .

Once again, this corresponds to the addition of independent random
variables on (𝑆1)𝑚 ×R𝑛−𝑚, where the addition of the first 𝑚 components
is performed modulo 2𝜋.
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Lemma 11 (Convolution of PWN Densities)
For two PWN densities 𝒫𝒲𝒩 (𝑥;𝜇1,C1,𝑚) and 𝒫𝒲𝒩 (𝑥;𝜇2,C2,𝑚) on
(𝑆1)𝑚 × R𝑛−𝑚, the convolved density

𝒫𝒲𝒩 (𝑥;𝜇1,C1,𝑚) * 𝒫𝒲𝒩 (𝑥;𝜇2,C2,𝑚)

is given by 𝒫𝒲𝒩 (𝑥;𝜇,C,𝑚) where 𝜇 = 𝜇1 + 𝜇2,C = C1 + C2.

Proof Because (𝑎 + 𝑏) mod 2𝜋 = ((𝑎 mod 2𝜋) + (𝑏 mod 2𝜋)) mod 2𝜋,
it holds that Φ(Φ(𝑥1) + Φ(𝑥2)) = Φ(𝑥1 + 𝑥2). We consider independent
Gaussian random variables 𝑥1 ∼ 𝒩 (𝑥;𝜇1,C1) and 𝑥2 ∼ 𝒩 (𝑥;𝜇2,C2),
which are partially wrapped according to

Φ(𝑥1) ∼ 𝒫𝒲𝒩 (𝑥;𝜇1,C1) ,
Φ(𝑥2) ∼ 𝒫𝒲𝒩 (𝑥;𝜇2,C2) .

Then

Φ(Φ(𝑥1) + Φ(𝑥2)) = Φ(𝑥1 + 𝑥2) ∼ 𝒫𝒲𝒩 (𝑥;𝜇1 + 𝜇2,C1 + C2)

because

𝑥1 + 𝑥2 ∼ 𝒩 (𝑥;𝜇1 + 𝜇2,C1 + C2)

according to the convolution formula for Gaussians.

Remark 10 (Addition Operator)
The addition operator used above can be interpreted as componentwise
addition, where addition is performed modulo 2𝜋 in the periodic dimensions.
This operation is useful in many cases, but certain applications, e.g.,
estimation of rigid motions in 𝑆𝐸(2), may require a different operator,
such as the composition of rigid motions.

2.4.2 Multiplication of Densities
For random variables 𝑥 and 𝑦, the well-known Bayes’ theorem states that

𝑓(𝑥|𝑦) = 𝑓(𝑦|𝑥)𝑓(𝑥)
𝑓(𝑦) = 𝑓(𝑦|𝑥)𝑓(𝑥)∫︀

𝑓(𝑦|𝑥)𝑓(𝑥) d𝑥 ∝ 𝑓(𝑦|𝑥)𝑓(𝑥) .
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This formula involves the multiplication of the densities 𝑓(𝑦|𝑥) and 𝑓(𝑥)
with subsequent renormalization. As we seek to derive Bayesian filtering
algorithms, we consider the multiplication of certain probability density
functions in this section. The results presented here allow us to compute
Bayesian update steps for the considered densities.

A Multiplication of VM Densities

VM densities are closed under multiplication, i.e., the product of two VM
densities is an (unnormalized) VM density. This property has, for example,
been used in the VM filter proposed by Azmani [12].

Lemma 12 (Multiplication of VM Densities)
For two VM densities 𝒱ℳ(𝑥;𝜇1, 𝜅1) and 𝒱ℳ(𝑥;𝜇2, 𝜅2), their renormal-
ized product is given by

𝒱ℳ(𝑥;𝜇1, 𝜅1) · 𝒱ℳ(𝑥;𝜇2, 𝜅2) ∝ 𝒱ℳ(𝑥;𝜇, 𝜅) , (2.4)

where 𝜇 = Arg(𝑚1) and 𝜅 = |𝑚1| with 𝑚1 = 𝜅1 exp(𝑖𝜇1) + 𝜅2 exp(𝑖𝜇2).

Proof We have

𝒱ℳ(𝑥;𝜇1, 𝜅1) · 𝒱ℳ(𝑥;𝜇2, 𝜅2)
∝ exp(𝜅1 cos(𝑥− 𝜇1)) · exp(𝜅2 cos(𝑥− 𝜇2))
= exp(𝜅1 cos(𝑥− 𝜇1) + 𝜅2 cos(𝑥− 𝜇2))
= exp(𝜅1(cos(𝑥) cos(𝜇1) + sin(𝑥) sin(𝜇1))

+ 𝜅2(cos(𝑥) cos(𝜇2) + sin(𝑥) sin(𝜇2)))
= exp(cos(𝑥)(𝜅1 cos(𝜇1) + 𝜅2 cos(𝜇2)) + sin(𝑥)(𝜅1 sin(𝜇1) + 𝜅2 sin(𝜇2)))
= exp(𝜅(cos(𝑥) cos(𝜇)− sin(𝑥) sin(𝜇)))
= exp(𝜅 cos(𝑥− 𝜇)) ,

where 𝜇 = Arg(𝑚1) and 𝜅 = |𝑚1| with 𝑚1 = 𝜅1 exp(𝑖𝜇1) + 𝜅2 exp(𝑖𝜇2).

B Multiplication of Bingham Densities

It is easy to see that Bingham densities are closed under multiplication,
because Gaussian densities with zero mean are closed under multiplication,
i.e., the product of two Gaussian densities with zero mean is once again a
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Gaussian density, and it has mean zero once again. As stated before, a
Gaussian with zero mean is equivalent to a Bingham distribution if it is
restricted to the unit circle.

Lemma 13 (Multiplication Bingham Densities)
For two Bingham densities ℬ(𝑥; M1,Z1) and ℬ(𝑥; M2,Z2), the renor-
malized product is given by ℬ(𝑥; M1,Z1) · ℬ(𝑥; M2,Z2) ∝ ℬ(𝑥; M,Z),
where MZ̃M𝑇 is the eigendecomposition of M1Z1M𝑇

1 + M2Z2M𝑇
2 , Z =

Z̃− Z̃𝑛,𝑛I𝑛×𝑛, and Z̃𝑛,𝑛 refers to the bottom right entry of Z̃.

Proof It holds
ℬ(𝑥; M1,Z1) · ℬ(𝑥; M2,Z2)
∝ exp

(︀
𝑥𝑇 M1Z1M𝑇

1 𝑥
)︀
· exp

(︀
𝑥𝑇 M2Z2M𝑇

2 𝑥
)︀

= exp
(︀
𝑥𝑇
(︀
M1Z1M𝑇

1 + M2Z2M𝑇
2
)︀
𝑥
)︀

= exp
(︀
𝑥𝑇 MZ̃M𝑇𝑥

)︀
∝ exp

(︀
𝑥𝑇 M(Z̃− Z̃𝑛,𝑛I𝑛×𝑛)M𝑇𝑥

)︀
= exp

(︀
𝑥𝑇 MZM𝑇𝑥

)︀
∝ ℬ(𝑥; M,Z)

with M, Z, and Z̃ as given above.

It deserves mentioning that the eigendecomposition is not unique, but all
possible decompositions yield the same Bingham distribution.

C Multiplication of WN Densities

WN densities are not closed under multiplication, i.e., the product of two
WN densities is, in general, not an unnormalized WN density. The following
example illustrates that the resulting density is not even guaranteed to be
unimodal.

Example 7 (Products of WN Densities May Not Be Unimodal)
Consider 𝒲𝒩 (𝑥; 0, 𝜎) · 𝒲𝒩 (𝑥;𝜋, 𝜎). This density is bimodal, because

𝒲𝒩 (𝑥; 0, 𝜎) · 𝒲𝒩 (𝑥;𝜋, 𝜎)

=
(︃ ∞∑︁

𝑘1=−∞

𝒩 (𝑥; 0 + 2𝜋𝑘1, 𝜎)
)︃
·
(︃ ∞∑︁

𝑘2=−∞

𝒩 (𝑥;𝜋 + 2𝜋𝑘2, 𝜎)
)︃
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(b) First circular moment 𝑚1 and result-
ing 𝜎 after multiplication 𝑐 · 𝒲𝒩 (𝑥; 0, 1) ·
𝒲𝒩 (𝑥; 𝜇, 1) for different values of 𝜇.

Figure 2.16.: The product of two wrapped normal densities can, in gen-
eral, be multimodal. Additionally, the uncertainty after multiplication
depends not only on the uncertainty but also on the locations of the prior
distributions.

=
∞∑︁

𝑘1=−∞

∞∑︁
𝑘2=−∞

𝒩
(︂
𝑥;𝜋

(︂
𝑘1 + 1

2 + 𝑘2

)︂
,
𝜎√
2

)︂

is 𝜋-periodic rather than 2𝜋-periodic. This issue is depicted in Fig. 2.16(a)
for 𝜎 = 1.

Because an exact solution is impossible, we consider several ways to
approximate the true product with a WN density.

VM Approximation In [O11], we proposed an approximation for the
multiplication of two WN densities based on the multiplication of the
von Mises distribution. It is reminiscent of the approximation of the
convolution of von Mises distributions through the use of an intermediate
wrapped normal representation discussed in Sec. 2.4.1. The idea is to
convert to the original WN densities to VM densities by moment matching
(Lemma 3), multiply the VM densities (Lemma 12), and finally convert
the resulting VM density back to a WN density by moment matching
(Lemma 3).
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We can simplify these successive steps into a fairly simple formula
as follows. For two WN densities 𝒲𝒩 (𝑥;𝜇1, 𝜎1) and 𝒲𝒩 (𝑥;𝜇2, 𝜎2),
this procedure yields 𝒲𝒩 (𝑥;𝜇, 𝜎) with parameters 𝜇 = Arg(𝑚1) and
𝜎 =

√︀
−2 log(𝐴1(|𝑚1|)), where

𝑚1 = 𝐴−1
1 (exp(−𝜎2

1/2)) exp(𝑖𝜇1) +𝐴−1
1 (exp(−𝜎2

2/2)) exp(𝑖𝜇2) .

Details on calculating 𝐴1 and 𝐴−1
1 can be found in Appendix A.1. It

should be noted that unlike the approximation for the convolution of VM
distributions (see Remark 9), this approximation method is not optimal in
a moment-sense, i.e., the intermediate representation by a VM distribution
does indeed introduce an additional error.

Truncated Series approximation Recently, Traa proposed an approxi-
mation based on truncating the infinite series in the wrapped normal pdf
as part of a filtering scheme in [257] and [254, Chapter 4]. The basic
idea is to truncate one of the infinite series to a single summand and the
other series to 2𝑛+ 1 summands ranging from −𝑛 to 𝑛 for a predefined
value of 𝑛. It should be noted that, as a consequence, this method is not
commutative. The truncated series are multiplied and approximated by a
Gaussian, which is then wrapped to the circle. In [257], it is suggested that
𝑛 = 1 is sufficient for practical applications. Pseudocode of this scheme is
given in Algorithm 1, which has been adapted from [254, Algorithm 9].

Algorithm 1: WN multiplication using truncated series approximation.
Input: 𝒲𝒩 (𝑥;𝜇1, 𝜎1),𝒲𝒩 (𝑥;𝜇2, 𝜎2), range 𝑛 ≥ 0, default 𝑛 = 1
Output: 𝒲𝒩 (𝜇, 𝜎)
𝐾 ← 𝜎2

1/(𝜎2
1 + 𝜎2

2);
for 𝑙← −𝑛 to 𝑛 do

𝜂(𝑙)← 𝒩 (𝜇2 + 2𝑙𝜋;𝜇1, 𝜎2)/𝒲𝒩 (𝜇2 + 2𝑙𝜋;𝜇1, 𝜎2) ;
end
𝑔 ←∑︀𝑛

𝑙=−𝑛(𝜇2 + 2𝜋𝑙 − 𝜇1) · 𝜂(𝑙) ;
𝜇← (𝜇1 +𝐾𝑔) mod 2𝜋 ;
𝜎 ←

√︀
(1−𝐾)𝜎2

1 ;
return 𝒲𝒩 (𝜇, 𝜎);
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The calculations in the algorithm can be simplified as

𝜇 =
(︃
𝜇1 + 𝜎2

1
𝜎2

1 + 𝜎2
2

𝑛∑︁
𝑙=−𝑛

(𝜇2+2𝑙𝜋−𝜇1) · 𝒩 (𝜇2+2𝑙𝜋;𝜇1, 𝜎2)
𝒲𝒩 (𝜇2+2𝑙𝜋;𝜇1, 𝜎2)

)︃
mod 2𝜋 ,

𝜎 = 𝜎1𝜎2√︀
𝜎2

1 + 𝜎2
2
.

As is obvious from these equations, 𝜎 does not involve any wrapping terms
and does not depend on 𝑛 or 𝜇1 and 𝜇2. In fact, the formula for 𝜎 is
identical to the formula for multiplication of 𝒩 (𝑥;𝜇1, 𝜎1) and 𝒩 (𝑥;𝜇2, 𝜎2).
However, as we have illustrated in Fig. 2.16(b), the uncertainty of the
product of two WN distributions does in fact depend on their relative
position and, unlike in the linear case, uncertainty may get larger, when
two WN densities are fused. For this reason, the approximation proposed
by Traa only works well if 𝜇1 and 𝜇2 are fairly close.

True Moments of Product In [O16], we published a solution that is based
on calculating the true first moment of the product and then obtaining a
WN distribution based on moment matching. We give a formula for the
true moment in the following theorem and subsequently show how the
involved integral can be evaluated in practice.

Theorem 3 (First Moment of True Product of WN densities)
For two WN densities𝒲𝒩 (𝑥;𝜇1, 𝜎1) and𝒲𝒩 (𝑥;𝜇2, 𝜎2), the first moment
of the renormalized true product 𝑐 ·𝒲𝒩 (𝑥;𝜇1, 𝜎1) ·𝒲𝒩 (𝑥;𝜇2, 𝜎2) is given
by

𝑚1 =
∑︀∞

𝑗,𝑘=−∞ 𝑤(𝑗, 𝑘)
∫︀ 2𝜋

0 exp(𝑖𝑥)𝒩 (𝑥;𝜇(𝑗, 𝑘), 𝜎) d𝑥∑︀∞
𝑗,𝑘=−∞ 𝑤(𝑗, 𝑘)

∫︀ 2𝜋

0 𝒩 (𝑥;𝜇(𝑗, 𝑘), 𝜎) d𝑥
,

where

𝜇(𝑗, 𝑘) = (𝜇1 + 2𝜋𝑗)𝜎2
2 + (𝜇2 + 2𝜋𝑘)𝜎2

1
𝜎2

1 + 𝜎2
2

,

𝜎 = 𝜎1𝜎2√︀
𝜎2

1 + 𝜎2
2
,

𝑤(𝑗, 𝑘) =
exp

(︁
− 1

2
((𝜇1+2𝜋𝑗)−(𝜇2+2𝜋𝑘))2

𝜎2
1+𝜎2

2

)︁
√︀

2𝜋(𝜎2
1 + 𝜎2

2)
.
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Proof Because a probability density has to integrate to one, the normal-
ization constant 𝑐 is given by

𝑐 =
(︂∫︁ 2𝜋

0
𝒲𝒩 (𝑥;𝜇1, 𝜎1) · 𝒲𝒩 (𝑥;𝜇2, 𝜎2) d𝑥

)︂−1

.

We obtain

𝑚1 =𝑐 ·
∫︁ 2𝜋

0
exp(𝑖𝑥) · 𝑓(𝑥;𝜇1, 𝜎1) · 𝑓(𝑥;𝜇2, 𝜎2) d𝑥

=𝑐 ·
∫︁ 2𝜋

0
exp(𝑖𝑥) ·

∞∑︁
𝑗=−∞

𝒩 (𝑥;𝜇1 + 2𝜋𝑗, 𝜎1)

·
∞∑︁

𝑘=−∞

𝒩 (𝑥;𝜇2 + 2𝜋𝑘, 𝜎2) d𝑥

=𝑐 ·
∞∑︁

𝑗=−∞

∞∑︁
𝑘=−∞

∫︁ 2𝜋

0
exp(𝑖𝑥) · 𝒩 (𝑥;𝜇1 + 2𝜋𝑗, 𝜎1)

· 𝒩 (𝑥;𝜇2 + 2𝜋𝑘, 𝜎2) d𝑥

=𝑐 ·
∞∑︁

𝑗=−∞

∞∑︁
𝑘=−∞

∫︁ 2𝜋

0
exp(𝑖𝑥) · 𝑤(𝑗, 𝑘) · 𝒩 (𝑥;𝜇(𝑗, 𝑘), 𝜎) d𝑥

=𝑐 ·
∞∑︁

𝑗=−∞

∞∑︁
𝑘=−∞

𝑤(𝑗, 𝑘) ·
∫︁ 2𝜋

0
exp(𝑖𝑥) · 𝒩 (𝑥;𝜇(𝑗, 𝑘), 𝜎) d𝑥 ,

where we use the dominated convergence theorem in order to interchange
summation and integration. We use the abbreviations for 𝜇(𝑗, 𝑘), 𝜎, and
𝑤(𝑗, 𝑘) given above, which can be obtained with the multiplication formula
for Gaussian densities (see [208, 8.1.8]).

Similarly, we calculate the normalization factor 𝑐−1 according to

𝑐−1 =
∫︁ 2𝜋

0
𝑓(𝑥;𝜇1, 𝜎1) · 𝑓(𝑥;𝜇2, 𝜎2) d𝑥

=
∫︁ 2𝜋

0

∞∑︁
𝑗=−∞

𝒩 (𝑥;𝜇1 + 2𝜋𝑗, 𝜎1) ·
∞∑︁

𝑘=−∞

𝒩 (𝑥;𝜇2 + 2𝜋𝑘, 𝜎2) d𝑥

=
∞∑︁

𝑗=−∞

∞∑︁
𝑘=−∞

∫︁ 2𝜋

0
𝒩 (𝑥;𝜇1 + 2𝜋𝑗, 𝜎1) · 𝒩 (𝑥;𝜇2 + 2𝜋𝑘, 𝜎2) d𝑥
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=
∞∑︁

𝑗=−∞

∞∑︁
𝑘=−∞

𝑤(𝑗, 𝑘) ·
∫︁ 2𝜋

0
𝒩 (𝑥;𝜇(𝑗, 𝑘), 𝜎) d𝑥 .

The integrals in Theorem 3 can be reduced to the complex error
function erf [2, Sec. 7.1], which yields∫︁ 2𝜋

0
exp(𝑖𝑥) · 𝒩 (𝑥;𝜇(𝑗, 𝑘), 𝜎) d𝑥 (2.5)

=1
2 exp

(︂
𝑖𝜇(𝑗, 𝑘)− 𝜎2

2

)︂
·
(︂

erf
(︂
𝜇(𝑗, 𝑘) + 𝑖𝜎2
√

2𝜎

)︂
(2.6)

− erf
(︂
𝜇(𝑗, 𝑘)− 2𝜋 + 𝑖𝜎2

√
2𝜎

)︂)︂
(2.7)

and∫︁ 2𝜋

0
𝒩 (𝑥;𝜇(𝑗, 𝑘), 𝜎) d𝑥 = 1

2

(︂
erf
(︂
𝜇(𝑗, 𝑘)
𝜎
√

2

)︂
− erf

(︂
𝜇(𝑗, 𝑘)− 2𝜋

𝜎
√

2

)︂)︂
.

(2.8)
Even though the complex error function cannot be evaluated in closed-
form, there are efficient implementations that allow fast and accurate
calculation of this function. For example, the Faddeeva package [130]
contains a fast C++ implementation of an algorithm based on the so-
called Faddeeva function. This package also provides bindings for a variety
of other languages, such as MATLAB and Python.

For this reason, the result from Theorem 3 together with (2.7) and (2.8)
allows us to calculate the first circular moment of the true product without
requiring numerical integration. The infinite series can be truncated to
a small number of summands because the magnitude of the summands
converges to zero very quickly.

Evaluation In order to evaluate the proposed approaches we performed
a comparison of the true product density and the approximation similar
to the evaluation in [O16]. For this purpose we consider two similarity
measures between probability density functions 𝑓(·) and 𝑔(·), the Kullback–
Leibler divergence given by

𝐷𝐾𝐿(𝑓 ||𝑔) =
∫︁ 2𝜋

0
𝑓(𝑥) log

(︂
𝑓(𝑥)
𝑔(𝑥)

)︂
d𝑥 (2.9)
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and the squared integral distance defined according to

𝐷𝑆(𝑓 ||𝑔) =
∫︁ 2𝜋

0
(𝑓(𝑥)− 𝑔(𝑥))2 d𝑥 .

We consider the product 𝒲𝒩 (𝑥; 0;𝜎1) · 𝒲𝒩 (𝑥;𝜇;𝜎2) for different
values of 𝜇, 𝜎1, and 𝜎2. W.l.o.g. we set the location parameter of the
first WN distribution to zero, because the outcome does not depend on
the absolute location but only on the relative distance between the two
peaks.

The results according to both distance measures are given in Fig. 2.17
and Fig. 2.18, respectively. As can be seen, the novel method based on
calculating the true moments of the product performs very well in all cases.
The truncated series approximation performs fairly well as long as the
modes of the distributions are close together, but provides extremely poor
results if 𝜇 ≈ 𝜋. The VM approximation shows quite poor results for small
uncertainties, but performs fairly well for large uncertainties.

D Multiplication of PWN Densities

As not even WN densities are closed under multiplication, this is obviously
not the case for PWN densities with 𝑚 ≥ 1 wrapped dimensions, either.
Therefore, it is necessary to approximate the true product of two PWN
densities with a PWN density that is, according to some measure, similar
to the true product. One possible way is a moment-based solution that
tries to match hybrid moments and/or linear-linear, circular-linear, and
circular-circular correlation coefficients. Shape-based solutions might also
be feasible, but we have not investigated these methods so far because it
seems that high computational effort is required.

In [O10, Sec. III-B], we have presented a moment-based solution
for the toroidal case, i.e., 𝑛 = 𝑚 = 2. We consider two PWN densi-
ties 𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) and 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2). Their true renormalized
product is given by

𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2)∫︀ 2𝜋

0
∫︀ 2𝜋

0 𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2
.

Now, we obtain the parameters 𝜇 and C of a PWN density 𝒫𝒲𝒩 (𝜇,C, 2)
by matching the first hybrid moment as well as the circular-circular
correlation coefficient as given in Def. 13.
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Figure 2.17.: Kullback–Leibler divergence between the true product of
WN densities and the proposed approximations.

Lemma 14 (First Hybrid Moment of Product)
The first hybrid moment of the true renormalized product of the densities
𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) and 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) is given by

�̃� = 1
𝑐

⎡⎢⎢⎢⎣
∫︀ 2𝜋

0
∫︀ 2𝜋

0 cos(𝑥1)𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2∫︀ 2𝜋

0
∫︀ 2𝜋

0 sin(𝑥1)𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2∫︀ 2𝜋

0
∫︀ 2𝜋

0 cos(𝑥2)𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2∫︀ 2𝜋

0
∫︀ 2𝜋

0 sin(𝑥2)𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2

⎤⎥⎥⎥⎦ ,

where

𝑐 =
∫︁ 2𝜋

0

∫︁ 2𝜋

0
𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2 .

Proof The proof follows immediately from the definition of the first
hybrid moment.
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Figure 2.18.: Squared integral distance between the true product of WN
densities and the proposed approximations.

These integrals are difficult to evaluate analytically as even integration of
a two-dimensional Gaussian distribution is only possible numerically in
general [72]. For this reason, we use the numerical integration procedure
presented in [231] to compute these integrals. Similarly, we can obtain the
circular-circular correlation coefficient.

Lemma 15 (Circular-circular Correlation of the Product)
The circular-circular correlation coefficient of the renormalized product of
𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) and 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) is given by

𝜌𝑐𝑐 = E(sin(𝑥1 − 𝜇1) sin(𝑥2 − 𝜇2))√︀
E(sin2(𝑥1 − 𝜇1)) · E(sin2(𝑥2 − 𝜇2))

,

81



Chapter 2. Directional Statistics

where

E(sin(𝑥1 − 𝜇1) sin(𝑥2 − 𝜇2)) =
∫︁ 2𝜋

0

∫︁ 2𝜋

0
sin(𝑥1 − 𝜇1) sin(𝑥2 − 𝜇2)

· 𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2 ,

E(sin2(𝑥1 − 𝜇1)) =
∫︁ 2𝜋

0

∫︁ 2𝜋

0
sin2(𝑥1 − 𝜇1)

· 𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2 ,

E(sin2(𝑥2 − 𝜇2)) =
∫︁ 2𝜋

0

∫︁ 2𝜋

0
sin2(𝑥2 − 𝜇2)

· 𝒫𝒲𝒩 (𝑥;𝜇𝑎,C𝑎, 2) · 𝒫𝒲𝒩 (𝑥;𝜇𝑏,C𝑏, 2) d𝑥1 d𝑥2 .

Proof The proof follows immediately from the definition of the circular-
circular correlation coefficient.

Once again, we evaluate the involved integrals numerically using [231]. Af-
ter calculating the first hybrid moment and the circular-circular correlation
coefficient, we obtain the parameters of the resulting PWN distribution
by applying the parameter estimation scheme presented in Sec. 2.3.3.

2.5 Deterministic Sampling
In this section, we discuss sampling schemes that can be used to obtain
a number of samples from a probability density. Samples can be seen
as a discrete approximation of a continuous probability density. The
advantage of considering samples is that discrete samples can easily be
propagated through nonlinear system or measurement functions, whereas
propagating continuous probability density functions is usually intractable.
We distinguish between two types of sampling schemes, nondeterministic
and deterministic sampling.

Methods based on nondeterministic sampling randomly draw samples
from a distribution with probability proportional to its probability density
function. Sampling schemes for a variety of commonly used distributions
are found in [219]. Some circular densities can be sampled by simple
generalizations of these methods, e.g., the WN distribution can be sam-
pled by sampling from a normal distribution and wrapping the resulting
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samples onto the unit circle. Other circular densities can be sampled
by applying the Metropolis-Hastings algorithm [115] or with sampling
schemes specifically tailored for the particular distribution, e.g., the von
Mises–Fisher distribution [273]. Nondeterministic sampling is used, for
example, in the particle filter [10] and the Gaussian particle filter [146].

Methods based on deterministic sampling, on the other hand, try to
optimally approximate a probability distribution by placing the samples at
carefully chosen positions such that specific criteria are satisfied. There has
been a lot of work on deterministically sampling the Gaussian distribution.
For example, the unscented Kalman filter (UKF [133]) relies on a sampler
that places 2𝑛+ 1 samples for a Gaussian of dimension 𝑛, which are placed
so that the mean and the covariance (i.e., the first two linear moments)
of the initial density are retained. A similar sampler can be derived
from cubature integration rules and is used by the cubature Kalman
filter [8]. Unlike moment-based approaches, there are also shape-based
methods that optimally approximate the shape of the continous probability
density function according to a similarity measure such as the modified
Cramér–von Mises distance [109, Sec. III] between localized cumulative
distribution functions [109, Sec. II], [108]. This approach has been used
in the smart sampling Kalman filter (S2KF, [240]) and in an algorithm
for state estimation for stochastic hybrid systems [O1]. Moments can also
be considered in shape-based methods by introducing constraints [105].
Although Gaussians have been the focus of many methods for deterministic
sampling, there are also methods for other distributions, such as Gaussian
mixtures [76] or more or less arbitrary densities [104].

It should be noted that applying deterministic sampling schemes for
linear spaces (such as the samplers used by the UKF and the S2KF) and
subsequently wrapping the samples onto the unit circle (or the hypertorus)
does not provide satisfactory results, even though the same procedure is
valid for random samples. The reason for this effect is the fact that wrap-
ping deterministic samples can cause different samples to wrap to the same
location, producing very poor approximations in certain circumstances.
This issue is more thoroughly discussed in [O16].

2.5.1 Sampling Algorithms
We only consider deterministic sampling algorithms for symmetric densities
on the circle in this thesis. A sampling scheme for the Bingham distribution,
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which can be generalized to an arbitrary number of dimensions, is proposed
in [O5].

In the following, we present several deterministic sampling schemes
based on circular moment matching, a technique reminiscent of linear
moment-matching, such as is performed by the UKF. The proposed meth-
ods use a small, fixed number of WD components and can be calculated
very efficiently, because closed-form solutions are available. The problem
under consideration can be seen as a special case of the moment problem
discussed by Byrnes and Lindquist [39]. There are alternative approaches
such as [110], which perform a shape-based approximation by optimizing
the parameters of the WD mixture based on a suitable similarity measure.
Circular moments can be retained by introducing constraints into the
optimization problem if desired. We will not consider approaches of this
type in the following.

We only consider circular distributions with circular mean 𝜇 = 0 in
the following derivations, because deterministic samples for distributions
with 𝜇 ̸= 0 can be easily obtained by subsequent shifting of the samples
by 𝜇. This assumption allows us to consider only real-valued circular
moments, as we show in the following Lemma.

Lemma 16 (Real-valued Circular Moments)
For any circular density 𝑓 symmetric around its circular mean 𝜇 = 0, all
circular moments are real-valued.

Proof It holds

Im𝑚𝑛 =
∫︁ 2𝜋

0
sin(𝑛𝑥)𝑓(𝑥) d𝑥

=
∫︁ 𝜋

0
sin(𝑛𝑥)𝑓(𝑥) d𝑥+

∫︁ 2𝜋

𝜋

sin(𝑛𝑥)𝑓(𝑥) d𝑥

=
∫︁ 𝜋

0
sin(𝑛𝑥)𝑓(𝑥) d𝑥+

∫︁ 𝜋

0
sin(−𝑛𝑥)𝑓(−𝑥) d𝑥

=
∫︁ 𝜋

0
sin(𝑛𝑥)𝑓(𝑥) d𝑥−

∫︁ 𝜋

0
sin(𝑛𝑥)𝑓(𝑥) d𝑥 = 0 .

Consequently, we have 𝑚𝑛 ∈ [−1, 1]. Because 𝜇 = 0, we have 𝑚1 ≥ 0,
as 𝑚1 < 0 would implicate 𝜇 = 𝜋. Because we only consider symmetric
distributions, we also require our approximations to be symmetric. This is
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similar to the symmetric approximations used by the unscented Kalman
filter [133], the cubature Kalman filter [8], and the Gaussian Filter [123].

A Matching of the First Circular Moment

First, we consider solutions based on matching the first circular moment.
As the first circular moment contains information about location as well
as uncertainty of the distribution, this can be seen as a circular equivalent
to moment-based approximations that match mean and covariance, such
as the sampler used by the unscented Kalman filter [133].

Two WD Mixture Components An approximation with a single WD
mixture component would always have |𝑚1| = 1, i.e., no uncertainty at all,
and is therefore not able not match an arbitrary first circular moment. As
a result, a minimum number of two WD mixture components is required
to match the first circular moment12. We have proposed a closed-form
solution with 𝐿 = 2 WD mixture components in [O21]. For reasons of
symmetry, we consider a WD mixture density with, 𝛽1 = −𝜑, 𝛽2 = 𝜑 and
equal weights 𝛾1 = 𝛾2 = 1

2 . According to Lemma 2, it has the first circular
moment

𝑚1 =
𝐿∑︁

𝑙=1
𝛾𝑗 exp(𝑖𝛽𝑗) = cos(𝜑) .

For a given first moment, we can obtain 𝜑 according to 𝜑 = arccos(𝑚1).

Three WD Mixture Components Although the approximation with two
components always preserves the first circular moment and is minimal
regarding the numbers of required components, it does not perform very
well in practice. Particularly for propagation through strongly nonlinear
functions, it is desirable to have a component that is placed directly at
the circular mean.

Consequently, we extend the previous solution with an additional
sample at the circular mean to 𝐿 = 3 components13, i.e., our sample
12This is similar to the sampler of the cubature Kalman filter [8], which also uses two

samples in the scalar-valued case.
13This is comparable to the sampler used by the unscented Kalman filter [133], where

three samples are used in the scalar-valued case as well.
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positions are now 𝛽1 = −𝜑, 𝛽2 = 𝜑, 𝛽3 = 0 and our sample weights are
𝛾1 = 𝛾2, 𝛾3 = 1− 2𝛾1. With Lemma 2, we find the first circular moment

𝑚1 =
𝐿∑︁

𝑙=1
𝛾𝑗 exp(𝑖𝛽𝑗) = 2𝛾1 cos(𝜑) + 1− 2𝛾1 ,

where 𝜑 = arccos
(︁

𝑚1−1+2𝛾1
2𝛾1

)︁
. As arccos(·) is only defined on [−1, 1], we

have to ensure that the argument is always in this range. With 𝑚1 ∈ [0, 1],
this leads to

𝑚1 − 1 + 2𝛾1
2𝛾1

≤ 1− 1 + 2𝛾1
2𝛾1

= 1 ,

which is always fulfilled, and

𝑚1 − 1 + 2𝛾1
2𝛾1

≥ 0− 1 + 2𝛾1
2𝛾1

= − 1
2𝛾1

+ 1 ,

which leads to the condition for 𝛾1

− 1
2𝛾1

+ 1 ≥ −1 ⇔ 1
4 ≤ 𝛾1 .

If we require 𝛾3 > 0, this leads to the valid range of 𝛾1 given by 1
4 ≤ 𝛾1 <

1
2 .

We first proposed this sampling scheme in [O11], where we only considered
equal weights 𝛾1 = 𝛾2 = 𝛾3 = 1

3 . Equal weights are included in the valid
range for 𝛾1 and are, thus, a possible special case of this derivation. In
practice, equal weights have certain advantages, for example, particle
degeneration does not occur as quickly when reweighting is performed.
Choosing the weight of the central component is similar to choosing the
scaling parameter in the UKF [249]. Pseudocode of the approximation
scheme is given in Algorithm 2.

B Matching of the First Two Circular Moments

The previous approach can be generalized to a larger number of WD
mixture components as follows. The larger number of degrees of freedom
allows us to capture higher circular moments similar to [110]. Higher
moments have also been considered in sample-based approximations of
linear distributions, such as the Gaussian distribution [123], [105].
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Algorithm 2: Deterministic approximation with 𝐿 = 3 components.
Input: first circular moment 𝑚1, weight 1

4 ≤ 𝛾1 <
1
2 with default 𝛾1 = 1

3
Output: 𝒲𝒟(𝑥; 𝛾1, . . . , 𝛾3, 𝛽1, . . . , 𝛽3)
/* extract 𝜇 */
𝜇← atan2(Im𝑚1,Re𝑚1);
/* obtain weights */
𝛾2 ← 1− 2𝛾1;
𝛾3 ← 1− 2𝛾1;
/* obtain Dirac positions */

𝜑← arccos
(︁

|𝑚1|−1+2𝛾1
2𝛾1

)︁
;

(𝛽1, 𝛽2, 𝛽3)← 𝜇+ (0,−𝜑, 𝜑) mod 2𝜋;
return 𝒲𝒟(𝑥; 𝛾1, . . . , 𝛾3, 𝛽1, . . . , 𝛽3);

Here, we propose a solution based on two circular moments, which we
have first published in [O12]. It should be noted that the first two circular
moments have four degrees of freedom and are, thus, comparable to the
first four linear moments of a linear distribution on a scalar domain. For
this purpose, we consider 𝐿 = 5 samples with positions and weights

𝛽1 = −𝜑1, 𝛽2 = +𝜑1, 𝛽3 = −𝜑2, 𝛽4 = +𝜑2, 𝛽5 = 0,

𝛾1 = 1− 𝛾5
4 , 𝛾2 = 1− 𝛾5

4 , 𝛾3 = 1− 𝛾5
4 , 𝛾4 = 1− 𝛾5

4 , 𝛾5 ∈ (0, 1) ,

i.e., we consider equal weights for four of the samples but allow the sample
in the center to have a different weight. The first and the second sample
are symmetric to each other, as well as the third and the fourth. For the
first circular moment, we get

𝑚1 =
𝐿∑︁

𝑙=1
𝛾𝑗 exp(𝑖𝛽𝑗)

= 2 · 1− 𝛾5
4 cos(𝜑1) + 2 · 1− 𝛾5

4 cos(𝜑2) + 𝛾5 ,
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which can be reformulated as

2
1− 𝛾5

(𝑚1 − 𝛾5)⏟  ⏞  
=:𝑐1

= cos(𝜑1) + cos(𝜑2) , (2.10)

where we abbreviate the left hand side of the result as 𝑐1. The second
circular moment can be calculated according to

𝑚2 =
𝐿∑︁

𝑙=1
𝛾𝑗 exp(2𝑖𝛽𝑗)

= 2 · 1− 𝛾5
4 cos(2 · 𝜑1) + 2 · 1− 𝛾5

4 cos(2 · 𝜑2) + 𝛾5

= 1− 𝛾5
2 · cos(2 · 𝜑1) + 1− 𝛾5

2 · cos(2 · 𝜑2) + 𝛾5

= (1− 𝛾5)(cos2(𝜑1)− 1/2) + (1− 𝛾5)(cos2(𝜑2)− 1/2) + 𝛾5

= (1− 𝛾5) cos2(𝜑1) + (1− 𝛾5)(cos2(𝜑2) + 2𝛾5 − 1 ,

where we use the trigonometric identity cos(2 ·𝑥) = 2 · cos2(𝑥)− 1. Similar
to (2.10), we obtain

𝑚2 + 1− 2𝛾5
1− 𝛾5⏟  ⏞  

=:𝑐2

= cos2(𝜑1) + cos2(𝜑2) , (2.11)

where 𝑐2 is used as an abbreviation of the left hand side. From (2.10) and
(2.11), we obtain a system of two equations

𝑐1 = 𝑥1 + 𝑥2 ,

𝑐2 = 𝑥2
1 + 𝑥2

2 ,

where we substitute 𝑥1 = cos(𝜑1) and 𝑥2 = cos(𝜑2). Solving for 𝑥1 and 𝑥2
yields the result

𝑥1 = 𝑐1 − 𝑥2 ,

𝑥2 = 2𝑐1 ±
√︀

4𝑐2
1 − 8(𝑐2

1 − 𝑐2)
4 .
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It can be seen that there exist two solutions to this system of equations.
This is due to the fact that swapping 𝑥1 and 𝑥2 gives an equivalent solution
that results in the same WD mixture. For this reason, we only consider
the solution

𝑥1 = 𝑐1 − 𝑥2 , (2.12)

𝑥2 = 2𝑐1 +
√︀

4𝑐2
1 − 8(𝑐2

1 − 𝑐2)
4 . (2.13)

Now, we can calculate 𝜑1 = arccos(𝑥1) and 𝜑2 = arccos(𝑥2). However,
several conditions need to be satisfied to evaluate these equations. Similar
to the approximation with three WD mixture components discussed above,
we need to ensure that the arguments of the arccos(·)-function are in the
range [−1, 1]. Furthermore, the argument of the square root in (2.13) has
to be nonnegative to obtain a real-valued result. Consequently, we have
the conditions

−1 ≤ 𝑥1 ≤ 1 ,
−1 ≤ 𝑥2 ≤ 1 ,

0 ≤ 4𝑐2
1 − 8(𝑐2

1 − 𝑐2) .

From these conditions, we obtain lower and upper bounds for the
weight of the WD mixture component located at the circular mean, i.e.,
𝛾min

5 ≤ 𝛾5 ≤ 𝛾max
5 , where

𝛾min
5 = 4𝑚2

1 − 4𝑚1 −𝑚2 + 1
4𝑚1 −𝑚2 − 3

and

𝛾max
5 = 2𝑚2

1 −𝑚2 − 1
4𝑚1 −𝑚2 − 3 .

For WN, WC, and VM distributions, these bounds are depicted in Fig. 2.19.
It is easy to show that in all relevant cases, there exists a solution for 𝛾5
that is in the range of these bounds.

Lemma 17 (Existence of a Solution for 𝛾5)
If 𝑚2 > −3 + 4𝑚1, then there exists a valid weight 𝛾5, i.e., 𝛾min

5 ≤ 𝛾max
5 .
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Figure 2.19.: Bounds for 𝛾5 for WN, WC, and VM distributions of different
concentration.

Proof The precondition yields 4𝑚1 −𝑚2 − 3 < 0, which allows us to
obtain

𝛾min
5 ≤ 𝛾max

5

⇔ 4𝑚2
1 − 4𝑚1 −𝑚2 + 1 ≥ 2𝑚2

1 −𝑚2 − 1
⇔ 2𝑚2

1 − 4𝑚1 + 2 ≥ 0
⇔ (𝑚1 − 1)2 ≥ 0 .

Even though the precondition 𝑚2 > −3 + 4𝑚1 does not hold for arbitrary
symmetric circular distributions, it can be shown that it is always fulfilled
for WN, WC, and VM distributions. Hence, there always exists a solution
and the proposed method is always applicable. Because the proof for
the VM distribution is somewhat tedious due to the occurrence of Bessel
functions, we only show this property for the WN and WC distributions.

Lemma 18
For the circular moments of WN and WC distributions, the inequality
𝑚2 > −3 + 4𝑚1 always holds.

Proof We have

𝑚2 > −3 + 4𝑚1 ⇔ 𝑚2 − 4𝑚1 + 3⏟  ⏞  
=:𝑓

> 0 .

1. WN: With 𝑚2 = 𝑚4
1, it holds for 𝑚1 ∈ (−1, 1)

𝑓(−1) = 8, 𝑓(1) = 0, 𝑓 ′(𝑚1) = 4𝑚3
1 − 4 < 0 .
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Thus, 𝑓 is strictly decreasing and consequently 𝑓(𝑚1) > 0 for all
𝑚1 ∈ (−1, 1).

2. WC: Using 𝑚2 = 𝑚2
1, we have for 𝑚1 ∈ (−1, 1)

𝑓(−1) = 6, 𝑓(1) = 0, 𝑓 ′(𝑚1) = 2𝑚1 − 4 < 0 .

Thus, 𝑓 is strictly decreasing and consequently 𝑓(𝑚1) > 0 for all
𝑚1 ∈ (−1, 1).

Now that the existence of a solution is guaranteed, we define

𝛾5(𝜆) := 𝛾min
5 + 𝜆(𝛾max

5 − 𝛾min
5 )

for 𝜆 ∈ [0, 1]. The parameter 𝜆 is similar to scaling parameter in the
UKF [133], which has been more thoroughly investigated in [249]. Although
some authors allow the use of negative weights [133, Sec. III-A], we require
𝛾5(𝜆) ≥ 0 in order to fulfill Kolmogorov’s first axiom, which states that the
probability of any event has to be nonnegative. This is necessary to allow a
probabilistic interpretation of the resulting WD mixture distribution. The
following theorem allows us to determine a value of 𝜆, which guarantees
the nonnegativity of 𝛾5 (see also [O21, Lemma 2 ]).

Theorem 4 (Condition for Positive Weights)
In the case of WN or WC distributions, 𝛾5(𝜆) ≥ 0 holds for all concentra-
tions if and only if 𝜆 ≥ 0.5.

Proof First, we obtain

𝛾5(𝜆) =𝛾min
5 + 𝜆(𝛾max

5 − 𝛾min
5 )

=4𝑚2
1 − 4𝑚1 −𝑚2 + 1
4𝑚1 −𝑚2 − 3

+ 𝜆

(︂
2𝑚2

1 −𝑚2 − 1
4𝑚1 −𝑚2 − 3 −

4𝑚2
1 − 4𝑚1 −𝑚2 + 1
4𝑚1 −𝑚2 − 3

)︂
=4𝑚2

1 − 4𝑚1 −𝑚2 + 1
4𝑚1 −𝑚2 − 3 + 𝜆

(︂−2𝑚2
1 + 4𝑚1 − 2

4𝑚1 −𝑚2 − 3

)︂
=4𝑚2

1 − 4𝑚1 −𝑚2 + 1 + 𝜆(−2𝑚2
1 + 4𝑚1 − 2)

4𝑚1 −𝑚2 − 3
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=(4− 2𝜆)𝑚2
1 + (−4 + 4𝜆)𝑚1 −𝑚2 + 1− 2𝜆

4𝑚1 −𝑚2 − 3 .

Now, we distinguish between the different distributions.

1. WN distribution: From Lemma 2, we obtain the relation 𝑚2 = 𝑚4
1

and substitute accordingly.

𝛾5(𝜆) =(4− 2𝜆)𝑚2
1 + (−4 + 4𝜆)𝑚1 −𝑚4

1 + 1− 2𝜆
4𝑚1 −𝑚4

1 − 3

=𝑚2
1 + 2𝜆+ 2𝑚1 − 1
𝑚2

1 + 2𝑚1 + 3 .

Because 𝑚2
1 + 2𝑚1 + 3 > 0 holds, we have

𝛾5(𝜆) ≥ 0
⇔ 𝑚2

1 + 2𝜆+ 2𝑚1 − 1 ≥ 0

⇔ 𝜆 ≥ 1
2 − 2𝑚1 −𝑚2

1
𝑚1→0−→ 1

2 ,

and 𝑚1 ∈ (0, 1) shows the claim.

2. WC distribution: From Lemma 2, we obtain the relation 𝑚2 = 𝑚2
1

𝛾5(𝜆) =(3− 2𝜆)𝑚2
1 + (−4 + 4𝜆)𝑚1 + 1− 2𝜆
4𝑚1 −𝑚2

1 − 3

=2𝜆𝑚1 − 2𝜆− 3𝑚1 + 1
𝑚1 − 3 .

Because 𝑚1 − 3 < 0 holds, we have

𝛾5(𝜆) ≥ 0
⇔ 2𝜆𝑚1 − 2𝜆− 3𝑚1 + 1 ≤ 0
⇔ 𝜆(2𝑚1 − 2) ≤ −1 + 3𝑚1

⇔ 𝜆 ≥ 1
2 ·

1− 3𝑚1
1−𝑚1

𝑚1→0−→ 1
2 ,

and 𝑚1 ∈ (0, 1) shows the claim.
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For the VM distribution, an analogous result can be shown, but the proof
is more intricate because of the Bessel functions involved in the moments
of the VM distribution. The fact that the WD mixture degenerates to
a smaller number of components when 𝜆 → 0 or 𝜆 → 1, together with
Theorem 4, motivates the use of 𝜆 = 0.5.

Algorithm 3: Deterministic approximation with 𝐿 = 5 components.
Input: first circular moment 𝑚1, second circular moment 𝑚2,
parameter 𝜆 ∈ [0, 1] with default 𝜆 = 0.5
Output: 𝒲𝒟(𝑥; 𝛾1, . . . , 𝛾5, 𝛽1, . . . , 𝛽5)
/* extract 𝜇 */
𝜇← atan2(Im𝑚1,Re𝑚1);
𝑚1 ← |𝑚1|;
𝑚2 ← |𝑚2|;
/* obtain weights */
𝛾min

5 ← (4𝑚2
1 − 4𝑚1 −𝑚2 + 1)/(4𝑚1 −𝑚2 − 3);

𝛾max
5 ← (2𝑚2

1 −𝑚2 − 1)/(4𝑚1 −𝑚2 − 3);
𝛾5 ← 𝛾min

5 + 𝜆(𝛾max
5 − 𝛾min

5 );
𝛾1, 𝛾2, 𝛾3, 𝛾4 ← (1− 𝛾5)/4;
/* obtain Dirac positions */
𝑐1 ← 2

1−𝛾5
(𝑚1 − 𝛾5);

𝑐2 ← 1
1−𝛾5

(𝑚2 − 𝛾5) + 1;
𝑥2 ← (2𝑐1 +

√︀
4𝑐2

1 − 8(𝑐2
1 − 𝑐2))/4;

𝑥1 ← 𝑐1 − 𝑥2;
𝜑1 ← arccos(𝑥1);
𝜑2 ← arccos(𝑥2);
(𝛽1, . . . , 𝛽5)← 𝜇+ (−𝜑1,+𝜑1,−𝜑2,+𝜑2, 0) mod 2𝜋;
return 𝒲𝒟(𝑥; 𝛾1, . . . , 𝛾5, 𝛽1, . . . , 𝛽5);

The resulting algorithm does not contain any numerical methods and
can be easily implemented even in an embedded system with very limited
computational power. It was previously published in [O21] and [O16], and
is given in Algorithm 3.

In Fig. 2.20 we show examples of all three proposed approximation
techniques to the WN, VM, and WC distributions with the same first
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Figure 2.20.: Examples of the proposed deterministic approximations for
wrapped normal, von Mises, and wrapped Cauchy distributions with identi-
cal first circular moment. Note that only the five-component approximation
differs between the distributions as the other approximations only consider
the first circular moment.
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Figure 2.21.: Approximations of 𝒲𝒩 (𝑥; 𝜋, 𝜎) for different values of 𝜎
with two, three, and five components.

circular moment. Because the approximations with two and three compo-
nents exclusively rely on the first circular moment, they are identical for
all three distributions. The approximation with five components, however,
differs significantly because it also takes the second moment into account.
This difference is particularly visible when looking at the weight of the
sample at the circular mean of the distribution. In order to illustrate how
the proposed approximations behave for different uncertainties, we show
WN distributions with varying uncertainty parameter 𝜎 together with the
corresponding discrete approximation in Fig. 2.21.
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Figure 2.22.: The function 𝑔(·) for different values of 𝑐.

Example 8 (Bearings-only Sensor Scheduling)
We will later show how these deterministic sampling schemes can be used
to derive a nonlinear circular filtering algorithm. However, the use of the
discussed schemes is not limited to circular filtering. In [O2], we showed
how to apply these sampling schemes to the problem of sensor scheduling
for bearings-only sensors. In this case, we try to estimate the Carte-
sian coordinates of a target that is observed by multiple sensors providing
bearings-only measurements. For the purpose of sensor scheduling, it is
assumed that exactly two sensors are active at each time step. By approx-
imating the measurement noise of each sensor with one of the proposed
WD mixture distributions and considering their Cartesian product, it is
possible to obtain samples of the position of the tracked object. These
samples are then approximated with a Gaussian distribution, which can be
used to perform a measurement update in a regular Kalman filter.

2.5.2 Evaluation
In order to evaluate the proposed deterministic sampling approaches, we
compare the error when the approximations are used to propagate a WN
density through a nonlinear function. For this purpose, we consider the
nonlinear function 𝑔 : [0, 2𝜋)→ [0, 2𝜋) defined by

𝑔(𝑥) = 𝑥+ 𝑐 · sin(𝑥) ,

where 𝑐 ∈ (0, 1) is a parameter controlling the strength of the nonlinearity.
It is easily shown that 𝑔 is continuous and continuously differentiable for
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all 𝑐. The derivative is given by

𝑔′(𝑥) = 1 + 𝑐 · cos(𝑥) ,

which is positive for all 𝑐 ∈ (0, 1). Consequently, 𝑔 is strictly increasing
and, thus, bijective14. Let us consider a WN distributed random variable
𝑥1 ∼ 𝒲𝒩 (𝑥;𝜇1, 𝜎1), and propagate it according to 𝑥2 = 𝑔(𝑥1). The true
posterior is given by

𝑥2 ∼
𝒲𝒩 (𝑔−1(𝑥);𝜇2, 𝜎2)

𝑔′(𝑥)

according to the substitution rule for probability densities [233, p. 211,
Problem 15]. This density cannot be written in closed-form, as the inverse
of 𝑔(·) cannot be calculated analytically. For the purpose of evaluation,
we numerically invert 𝑔(·), which yields accurate results, but is too time
consuming to be used in real-time applications.

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

c

K
L
D

 t
o
 t
ru

e
 d

e
n
s
it
y

 

 

L=2

L=3

L=5

(a) Comparison to true posterior.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

x 10
−3

c

K
L
D

 t
o
 b

e
s
t 
W

N
 a

p
p

ro
x
im

a
ti
o
n

 

 

L=2

L=3

L=5

(b) Comparison to best WN approxima-
tion.

Figure 2.23.: Evaluation results for 𝐿 = 2, 𝐿 = 3, and 𝐿 = 5 WD mixture
components according to Kullback–Leibler divergence.

14The proposed methods are not limited to bijective functions, but we consider a
bijective function here, because the calculation of the true propagated density is
less difficult. The same holds for continuity and differentiability of the considered
function.

96



2.5. Deterministic Sampling

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7
x 10

−3

c

fi
rs

t 
c
ir
c
u
la

r 
m

o
m

e
n
t 
e
rr

o
r

 

 

L=2

L=3

L=5

(a) First circular moment.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

c

s
e
c
o
n
d
 c

ir
c
u
la

r 
m

o
m

e
n
t 
e
rr

o
r

 

 

L=2

L=3

L=5

(b) Second circular moment.

Figure 2.24.: Evaluation results for 𝐿 = 2, 𝐿 = 3, and 𝐿 = 5 WD mixture
components according to circular moments.

The best WN approximation

𝒲𝒩 (𝑥;𝜇2, 𝜎2) ≈ 𝒲𝒩 (𝑔−1(𝑥);𝜇, 𝜎)
𝑔′(𝑥)

is determined by moment matching, where the moments of the true
posterior are obtained by numerical integration.

The WN approximation using deterministic sampling is obtained as
follows. First, the prior density𝒲𝒩 (𝑥;𝜇1, 𝜎1) is deterministically sampled,
which yields a WD mixture distribution 𝒲𝒟(𝑥;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿).
The WD mixture components are then propagated through 𝑔(·), which
results in 𝒲𝒟(𝑥; 𝑔(𝛽1), . . . , 𝑔(𝛽𝐿), 𝛾1, . . . , 𝛾𝐿). Finally, the parameters
𝜇2 and 𝜎2 of the approximate posterior 𝒲𝒩 (𝑥;𝜇2, 𝜎2) are obtained by
moment matching according to Lemma 2 and Lemma 3.

As a distance measure, we consider the KLD given in (2.9) between
the solution based on deterministic sampling and the true posterior density,
or the best WN approximation, respectively (see Fig. 2.23). Furthermore,
we consider the error in the first and the second circular moment (see
Fig. 2.24), which we obtain by calculating the Euclidean distance in the
complex plane between the circular moment of the true posterior density
and the circular moment of the solution based on deterministic sampling.
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In this chapter, we introduce directional filtering algorithms based on
the probability densities presented in the previous chapter. We consider
discrete-time systems and denote the time index by 𝑘. All proposed
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filtering algorithms are recursive estimation schemes that consist of two
steps, prediction (also known as time update) and measurement update
(also known as correction).

3.1 Approaches Without Directional
Statistics

Estimation problems involving directional quantities have been of interest
for a long time, for example in aerospace applications in the 1960s [236].
Most of the approaches proposed over the past decades are not based
on directional statistics and instead rely on modified versions of filters
originally intended for linear estimation problems.

The application that has probably gained the most attention is attitude
estimation. Surveys of many of these methods have been performed by
Markley et al. [181] and Crassidis et al. [49]. As far as stochastic approaches
are concerned, modified versions of the EKF and the UKF seem to be
very popular. This type of method has, for example, been applied to
IMU-Camera calibration [192], [205], visual tracking of three-dimensional
objects [71], [57], and airplane orientation estimation [36].

Of course, these techniques depend strongly on the underlying rota-
tion representation. Common representations include Euler angles, the
Rodrigues vector, and quaternions (see also Sec. 2.3.1-B). The use of
different representations in Kalman filter-based approaches has been dis-
cussed by Markley [180], Kleinert [144], and Faion [59, Sec. III-B]. As
the different rotation representations have advantages and disadvantages,
there does not seem to be universal agreement which representation is
to be preferred. Some authors also consider estimation of rigid motions
𝑆𝐸(3), i.e., a combination of orientation and position, by applying similar
techniques [97], [85].

Strictly speaking, one has to distinguish three cases of which part of
the estimation problem is periodic. Either state or measurement or both
can be subject to periodicities. For the sake of simplicity, we assume that
both the state and the measurements are periodic in this section. The
discussed methods can also be generalized to cases where only one of them
is periodic.
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In the following, we consider three different approaches in more detail.
First, we look at unconstrained approaches based on the Kalman filter and
nonlinear versions thereof. Second, we consider constrained approaches
based on these filters. Third, we consider approaches based on particle
filtering.

3.1.1 Approaches Based on the Kalman Filter
Some approaches try to adapt the Kalman filter and related methods
to the directional case. Because these methods are designed for the
linear case, their application to directional problems always constitutes an
approximation. Typically, the approximation error is larger, the higher
the occurring uncertainties are.

A KF, UKF, EKF on a Chart of the Manifold

The first method we look at is a Kalman filter or one of its nonlinear
versions on a chart (i.e., a local coordinate system) [195, p. 12] of the
manifold. The idea is that the manifold locally behaves like R𝑛, so the
standard filters can be applied to a local chart of the manifold. This
approach is reasonable as long as uncertainties are small and everything
(state, measurement, and all sigma points in case of the UKF) can be
represented within the same chart, i.e., no periodic boundaries are crossed.
For example, in the case of the circle 𝑆1, we could use charts that map
the circle to the interval (0, 2𝜋) ⊂ R, i.e., all points on the circle but one
can be mapped at the same time.

In the case of orientation estimation, similar approaches can be used
because the manifold 𝑆𝑂(3) locally behaves like R3. Possible charts can
be found by applying the parameterization using Euler Angles or the
Rodrigues vector [48]. Once again, these parameterizations only work
locally. For this reason, it is necessary to change the parameterization
depending on the location of the estimate and/or measurement.

It should also be noted that the charts are, in general, nonlinear
mappings, i.e., a Gaussian distribution within the chart does not correspond
to a Gaussian distribution on the manifold. For this reason, the Kalman
filter loses its optimality and the EKF and the UKF suffer from decreased
performance, even if all calculations take place locally and can be performed
within the same chart.
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B KF, UKF, EKF on the Space Containing the Manifold

The second method is also based on the Kalman filter or its nonlinear
versions. However, we apply the filter to the space, in which the manifold is
embedded rather than a chart of the manifold. In order to guarantee that
the state always resides on the manifold, we introduce nonlinear constraints
into the filter. For example, we apply the filter to R2 and introduce the
constraint ||𝑥𝑘|| = 1 in order to perform estimation on the circle [132].
By doing so, there are no singularities and the same parameterization
can be used globally. However, as the uncertainties are now given in
the space containing the manifold, it is more difficult to find an intuitive
interpretation. Also, introducing nonlinear constraints obviously leads to
suboptimality in the case of the Kalman filter and reduced performance in
the case of the EKF and the UKF.

For problems involving directional estimation, this approach can be
applied when using quaternions or rotation matrices as the parameteri-
zation of the orientation. In the case of quaternions, the space R4 with
the constraint ||𝑥𝑘|| = 1 is considered as only unit quaternions represent
orientations. Furthermore, only one of the two equivalent quaternions 𝑞
and −𝑞 can be considered, which may require mirroring the quaternion
if needed. For rotation matrices, the space R9 needs to be used with the
constraints⎡⎣𝑥1 𝑥2 𝑥3

𝑥4 𝑥5 𝑥6
𝑥7 𝑥8 𝑥9

⎤⎦ ·
⎡⎣𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6
𝑥7 𝑥8 𝑥9

⎤⎦𝑇

= I3×3 , det

⎡⎣𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6
𝑥7 𝑥8 𝑥9

⎤⎦ = 1 .

Due to the more complicated constraints and the high dimension of the
containing space, rotation matrices are only used by fairly few authors
[34], [51], whereas quaternions are a highly popular parameterization of
orientations [262], [148], [159], [179], [45], [132], [46].

There are different techniques for enforcing these constraints. A
popular method consists in projecting the state on the closest valid state
after each prediction step and/or measurement update step [132]. In this
case, it may be necessary to inflate the covariance in order to account for
the additional error introduced by projecting the state.
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3.1.2 Particle Filter

Another type of filter commonly found in literature is the particle filter [10].
The basic idea consists in approximating the continuous probability density
that describes the current estimate with a sufficient number of (weighted)
samples. An advantage of particle filters is the fact that they can be
applied to directional estimation problems fairly easily. There is a large
variety of slightly different particle filtering methods, so we focus on the
commonly used approach with sequential importance resampling (SIR) in
the measurement update step.

The prediction step in a particle filter is usually carried out by ran-
domly sampling a noise value for each particle and applying the system
function to each particle together with its noise value independently. We
assume that all particles are initially located on the manifold under con-
sideration, and the system function is properly defined to map from the
considered manifold and the noise space to the considered manifold. Hence,
the predicted particles will still be located on the manifold, and there is
no need to explicitly consider any constraints or to switch between charts.
Also, this is independent of the underlying parameterization as long as the
system function is properly defined for all points on the manifold.

In order to perform the measurement update, particle filters usually
multiply the weight of each sample with the likelihood function at that
point. Because this may lead to particles with very small weights, SIR is
commonly used, i.e., new particles are sampled from the current particles
according to their weights. Because this process does not create any new
particles at different locations, all resampled particles still conveniently
lie on the manifold. Therefore, it is sufficient if the likelihood function
properly considers periodicity.

It should also be noted that particle filters can nicely be combined with
directional statistics by using directional probability distributions as the
noise distributions for both system and measurement noise. For example,
Stienne et al. have applied particle filters in a circular setting [243].

However, particle filters suffer from certain problems in general and
these problems also affect their use in directional applications. One of
the main issues is the fact that particle filters are subject to the curse
of dimensionality, i.e., the number of particles necessary for a reasonably
good approximation of the true density grows exponentially in the state
dimension. This fact precludes the use of particles in high-dimensional
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problems. Even in few dimensions, the required number of particles is
significantly larger than for the deterministic methods proposed in this
thesis. Another problem of particle filters is called particle degeneration,
i.e., the issue that the weight of some (or all) particles becomes negligibly
small. SIR reduces this effect to a degree, but cannot resolve this issue,
if degeneration occurs within a single time step. This is particularly
problematic if there are few particles or if the likelihood is very narrow,
e.g., in the case of a measurement with very low uncertainty. Furthermore,
a particle filter is usually itself a randomized algorithm (i.e., a Monte Carlo
method) and its results are, as a consequence, not reproducible if true
random numbers are used.

3.2 Circular Filtering Algorithms
In this section, we introduce circular filtering algorithms for a number
of different scenarios. The filter for nonlinear prediction was originally
published in [O11], and later extended by a nonlinear measurement update
[O14]. The assumption of additive noise was removed in [O16].

3.2.1 Nonlinear Prediction
Here, we present our algorithms for nonlinear prediction. We start with a
solution to a very general scenario and consider interesting special cases,
which allow certain simplifications later. A graphical representation of the
general scenario is given in Fig. 3.1.

A General System Model

We first consider a general system model of a system with a circular state,
which is given by

𝑥𝑘+1 = 𝑎𝑘(𝑥𝑘, 𝑤𝑘) (3.1)

with state 𝑥𝑘 ∈ [0, 2𝜋), noise 𝑤𝑘 ∈𝑊 , and system function 𝑎𝑘 : [0, 2𝜋)×
𝑊 → [0, 2𝜋). The set 𝑊 contains all possible noise values. We do not
make any assumptions about 𝑊 , except that a deterministic sampler
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Figure 3.1.: System and estimator structure of a WN assumed filter, that
is, all densities are assumed to be WN distributed. The proposed methods
can also be used for a VM assumed filter, i.e., all densities are replaced
with VM densities.

for 𝑤𝑘 is known1. For example, 𝑊 may be a real vector space R𝑛, the
circle 𝑆1, any of the manifolds discussed in Sec. 2.3.1, or even a discrete
(finite or infinite) set of possible values. This allows modeling of arbitrary,
non-additive noise.

According to the Chapman–Kolmogorov equation, the predicted
density 𝑓𝑝(𝑥𝑘+1) is given by

𝑓𝑝(𝑥𝑘+1) =
∫︁ 2𝜋

0
𝑓(𝑥𝑘+1|𝑥𝑘)𝑓𝑒(𝑥𝑘) d𝑥𝑘 (3.2)

=
∫︁ 2𝜋

0

∫︁
𝑊

𝑓(𝑥𝑘+1|𝑥𝑘, 𝑤𝑘)𝑓𝑒(𝑥𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘 d𝑥𝑘

=
∫︁ 2𝜋

0

∫︁
𝑊

𝛿(𝑥𝑘+1 − 𝑎𝑘(𝑥𝑘, 𝑤𝑘))𝑓𝑒(𝑥𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘 d𝑥𝑘 .

1The proposed method is also applicable if only a stochastic sampler for 𝑤𝑘 is known,
but in this case, the filtering algorithm obviously becomes nondeterministic.
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In order to evaluate these integrals, we approximate both the state estimate
𝑓𝑒(𝑥𝑘) and the noise density 𝑓𝑤(𝑤𝑘) with samples according to one of
the deterministic sampling algorithms discussed in Sec. 2.5. By using the
approximations

𝑓𝑒(𝑥𝑘) ≈
𝐿∑︁

𝑗=1
𝛾𝑗𝛿(𝑥𝑘 − 𝛽𝑗) ,

𝑓𝑤(𝑤𝑘) ≈
𝐿𝑤∑︁
𝑙=1

𝛾𝑤
𝑙 𝛿(𝑤𝑘 − 𝛽𝑤

𝑙 ) ,

we obtain

𝑓𝑝(𝑥𝑘+1)

=
∫︁ 2𝜋

0

∫︁
𝑊

𝛿(𝑥𝑘+1−𝑎𝑘(𝑥𝑘, 𝑤𝑘))𝑓𝑒(𝑥𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘 d𝑥𝑘

≈
∫︁ 2𝜋

0

∫︁
𝑊

𝛿(𝑥𝑘+1−𝑎𝑘(𝑥𝑘, 𝑤𝑘))
𝐿∑︁

𝑗=1
𝛾𝑗𝛿(𝑥𝑘−𝛽𝑗)

𝐿𝑤∑︁
𝑙=1

𝛾𝑤
𝑙 𝛿(𝑤𝑘−𝛽𝑤

𝑙 ) d𝑤𝑘 d𝑥𝑘

=
𝐿∑︁

𝑗=1

𝐿𝑤∑︁
𝑙=1

𝛾𝑗𝛾
𝑤
𝑙

∫︁ 2𝜋

0

∫︁
𝑊

𝛿(𝑥𝑘+1−𝑎𝑘(𝑥𝑘, 𝑤𝑘))𝛿(𝑥𝑘−𝛽𝑗)𝛿(𝑤𝑘−𝛽𝑤
𝑙 ) d𝑤𝑘 d𝑥𝑘

=
𝐿∑︁

𝑗=1

𝐿𝑤∑︁
𝑙=1

𝛾𝑗𝛾
𝑤
𝑙 𝛿(𝑥𝑘+1−𝑎𝑘(𝛽𝑗 , 𝛽

𝑤
𝑙 ))

using the sifting property of the Dirac delta distribution. The resulting
discrete density on a continous domain can then be approximated with a
continuous density based on moment matching, for example a wrapped
normal or a von Mises density (see Lemma 3). This process is given in
Algorithm 4. We first presented this algorithm in [O16].

B Additive Noise System Model

In many practical applications, noise is additive, i.e., the system equation
(3.1) simplifies to

𝑥𝑘+1 = 𝑎𝑘(𝑥𝑘) + 𝑤𝑘 mod 2𝜋 (3.3)
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Algorithm 4: Prediction with arbitrary noise.
Input: prior density 𝑓𝑒(𝑥𝑘), system noise density 𝑓𝑤(𝑤𝑘), system

function 𝑎𝑘(·, ·)
Output: predicted density 𝑓𝑝(𝑥𝑘+1)
/* sample prior density and noise density */
𝒲𝒟(𝑥𝑘; 𝛾1, . . . , 𝛾𝐿, 𝛽1, . . . , 𝛽𝐿)← sampleDeterm(𝑓𝑒(𝑥𝑘));
𝒲𝒟(𝑤𝑘; 𝛾𝑤

1 , . . . , 𝛾
𝑤
𝐿𝑤 , 𝛽𝑤

1 , . . . , 𝛽
𝑤
𝐿𝑤 )← sampleDeterm(𝑓𝑤(𝑤𝑘));

/* obtain Cartesian product and propagate */
for 𝑗 ← 1 to 𝐿 do

for 𝑙← 1 to 𝐿𝑤 do
𝛾𝑝

𝑗+𝐿(𝑙−1) ← 𝛾𝑗 · 𝛾𝑤
𝑙 ;

𝛽𝑝
𝑗+𝐿(𝑙−1) ← 𝑎𝑘(𝛽𝑗 , 𝛽

𝑤
𝑙 );

end
end
/* obtain posterior density */
𝑓𝑝(𝑥𝑘+1)← momentMatching(𝒲𝒟(𝑥𝑘+1, 𝛾

𝑝
1 , . . . , 𝛾

𝑝
𝐿·𝐿𝑤 , 𝛽

𝑝
1 , . . . , 𝛽

𝑝
𝐿·𝐿𝑤 ));

return 𝑓𝑝(𝑥𝑘+1);

with system state 𝑥𝑘 ∈ [0, 2𝜋), noise 𝑤𝑘 ∈ [0, 2𝜋), and system function
𝑎𝑘 : [0, 2𝜋) → [0, 2𝜋). Furthermore, we assume that system state and
system noise are either both modeled as WN densities or both modeled as
VM densities. In this case, the prediction algorithm can be simplified by
avoiding the approximation of the noise density and using the convolution
formulas discussed in Sec. 2.4.1. We approximate the estimated density
𝑓𝑒(𝑥𝑘) with a deterministic sampling algorithm

𝑓𝑒(𝑥𝑘) ≈
𝐿∑︁

𝑙=1
𝛾𝑙𝛿(𝑥𝑘 − 𝛽𝑙)

and use the Chapman–Kolmogorov equation (3.2) to obtain

𝑓𝑝(𝑥𝑘+1)

=
∫︁ 2𝜋

0

∫︁ 2𝜋

0
𝛿(𝑥𝑘+1 − 𝑎𝑘(𝑥𝑘)− 𝑤𝑘))𝑓𝑒(𝑥𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘 d𝑥𝑘
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≈
∫︁ 2𝜋

0

∫︁ 2𝜋

0
𝛿(𝑥𝑘+1 − 𝑎𝑘(𝑥𝑘)− 𝑤𝑘))

𝐿∑︁
𝑙=1

𝛾𝑙𝛿(𝑥𝑘 − 𝛽𝑙)𝑓𝑤(𝑤𝑘) d𝑤𝑘 d𝑥𝑘

=
∫︁ 2𝜋

0

(︃
𝐿∑︁

𝑙=1
𝛾𝑙𝛿(𝑥𝑘+1 − 𝑎𝑘(𝛽𝑙)− 𝑤𝑘))

)︃
𝑓𝑤(𝑤𝑘) d𝑤𝑘 ,

where we once again use the sifting property of the Dirac delta function.
Now, we approximate the density

𝐿∑︁
𝑙=1

𝛾𝑙𝛿(𝑥𝑘+1 − 𝑎𝑘(𝛽𝑙)− 𝑤𝑘)) ≈ 𝑓 𝑐(𝑥𝑘+1 − 𝑤𝑘)

with a continuous density 𝑓 𝑐, where 𝑓 𝑐 is the WN or VM density obtained
by moment matching. Thus, we have

𝑓𝑝(𝑥𝑘+1) ≈
∫︁ 2𝜋

0
𝑓 𝑐(𝑥𝑘+1 − 𝑤𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘

= (𝑓 𝑐 * 𝑓𝑤)(𝑥𝑘+1) ,
where * denotes convolution as defined in Sec. 2.4.1. The algorithm to
perform these operations is given in Algorithm 5. We originally proposed
this method in [O11].

C Identity System Model

In certain applications, the system can be further simplified and formulated
as an identity system model with additive noise, i.e.,

𝑥𝑘+1 = 𝑥𝑘 + 𝑤𝑘 mod 2𝜋 (3.4)
with system state 𝑥𝑘 ∈ [0, 2𝜋) and additive noise 𝑤𝑘 ∈ [0, 2𝜋). Because of
its simplicity and its practical relevance, many authors [254, eq. (5)], [12,
eq. (13)], [244, eq. (40)] consider this case. Be aware that 𝑤𝑘 does not
necessarily have circular mean zero, i.e., a known velocity can be modeled
as the circular mean of the system noise 𝑤𝑘.

In the case of an identity system model with additive noise, the
Chapman–Kolmogorov equation (3.2) yields

𝑓𝑝(𝑥𝑘+1)

=
∫︁ 2𝜋

0

∫︁ 2𝜋

0
𝛿(𝑥𝑘+1 − 𝑥𝑘 − 𝑤𝑘)𝑓𝑒(𝑥𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘 d𝑥𝑘
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Algorithm 5: Prediction with additive noise.
Input: prior density 𝑓𝑒(𝑥𝑘), system noise density 𝑓𝑤(𝑤𝑘), system

function 𝑎𝑘(·)
Output: predicted density 𝑓𝑝(𝑥𝑘+1)
/* sample prior density */
𝒲𝒟(𝑥𝑘; 𝛾1, . . . , 𝛾𝐿, 𝛽1, . . . , 𝛽𝐿)← sampleDeterm(𝑓𝑒(𝑥𝑘));
/* propagate samples */
for 𝑙← 1 to 𝐿 do

𝛽𝑙 ← 𝑎𝑘(𝛽𝑙);
end
/* fit continuous density */
𝑓 𝑐(𝑥𝑘+1 − 𝑤𝑘)←momentMatching(𝒲𝒟(𝑥𝑘+1; 𝛾1, . . . , 𝛾𝐿, 𝛽1, . . . , 𝛽𝐿));
/* perform convolution */
𝑓𝑝(𝑥𝑘+1)← (𝑓 𝑐 * 𝑓𝑤)(𝑥𝑘+1) ;
return 𝑓𝑝(𝑥𝑘+1);

=
∫︁ 2𝜋

0
𝑓𝑒(𝑥𝑘+1 − 𝑤𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘

= (𝑓𝑒 * 𝑓𝑤)(𝑥𝑘+1)

using the sifting property of the Dirac delta function. This is a special
case of the method we published in [O11].

3.2.2 Nonlinear Measurement Update
Just as above, we first consider a very general measurement model. Then,
we take a look at interesting special cases, where certain simplifications
are possible.

A General Measurement Model

A general measurement model is given by

𝑧𝑘 = ℎ𝑘(𝑥𝑘, 𝑣𝑘) ,

where 𝑧𝑘 ∈ 𝑍 is the measurement in some measurement space 𝑍, 𝑣𝑘 ∈ 𝑉
is the measurement noise in some noise space 𝑉 , and ℎ𝑘 : [0, 2𝜋)× 𝑉 → 𝑍
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is a known function. In order to perform the measurement update, we use
the Bayes’ theorem, which is given by

𝑓𝑒(𝑥𝑘|𝑧𝑘) = 𝑓(𝑧𝑘|𝑥𝑘)𝑓𝑝(𝑥𝑘)
𝑓(𝑧𝑘) ∝ 𝑓(𝑧𝑘|𝑥𝑘)𝑓𝑝(𝑥𝑘) ,

where 𝑓(𝑧𝑘|𝑥𝑘) is the likelihood and 𝑓𝑝(𝑥𝑘) is the predicted density. The
likelihood can be calculated according to

𝑓(𝑧𝑘|𝑥𝑘) =
∫︁

𝑍

𝑓(𝑧𝑘, 𝑣𝑘|𝑥𝑘) d𝑣𝑘

=
∫︁

𝑍

𝑓(𝑧𝑘, |𝑣𝑘, 𝑥𝑘)𝑓𝑣(𝑣𝑘) d𝑣𝑘

=
∫︁

𝑍

𝛿(𝑧𝑘 − ℎ(𝑥𝑘, 𝑣𝑘))𝑓𝑣(𝑣𝑘) d𝑣𝑘 .

In general, there is no analytical solution for this integral and numerical
integration has to be used to evaluate the likelihood function. Certain
cases allow an analytical solution, such as the case of additive measurement
noise discussed below. In the following, we will assume that the likelihood
function can be evaluated, either by numerical integration or by other
means.

We propose a method to perform the measurement update based on a
deterministic WD mixture approximation of the prior density. The Bayes’
theorem yields

𝑓𝑒(𝑥𝑘|𝑧𝑘) ∝ 𝑓(𝑧𝑘|𝑥𝑘) · 𝑓𝑝(𝑥𝑘)
≈ 𝑓(𝑧𝑘|𝑥𝑘) · 𝒲𝒟(𝑥𝑘;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿)

=
𝐿∑︁

𝑙=1
(𝑓(𝑧𝑘|𝛽𝑙) · 𝛾𝑙) · 𝛿(𝛽𝑙 − 𝑥𝑘) ,

i.e., an approximation of the posterior density can be obtained by multi-
plying the weight 𝛾𝑙 of each WD mixture component with the likelihood
𝑓(𝑧𝑘|𝛽𝑙). This is very similar to the reweighting approach used in particle
filters [10] or related methods such as the Gaussian particle filter [146].
However, this method suffers from a problem commonly referred to as par-
ticle degeneration, i.e., the new weight of some WD mixture components
is equal (or very close) to zero, reducing the effective sample size. In the
worst case, all samples have weight zero after reweighting.
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3.2. Circular Filtering Algorithms

One approach to solve this problem are so-called progressive methods.
In these approaches, the likelihood is not included at once, but only
gradually. A homotopy continuation approach is used to track the posterior
distribution while more and more of the likelihood is included. The idea of
this approach is the use of a simple (uniform) likelihood, which gradually
and continuously changes towards the true likelihood as a parameter, say
𝜆, increases. Early applications of the method to Bayesian filtering can be
found in [107], [102], [106]. Later, this type of approach has been applied
to Dirac mixtures [225] and Gaussian distributions [111], [103], [241].

The so-called progressive Gaussian filtering algorithm [103], [241] can
be adapted to the circular case as follows. We decompose the likelihood
into a product of 𝐷 factors according to

𝑓(𝑧𝑘|𝑥𝑘) = 𝑓(𝑧𝑘|𝑥𝑘)𝜆1 · . . . · 𝑓(𝑧𝑘|𝑥𝑘)𝜆𝐷 ,

where 𝜆1, . . . , 𝜆𝐷 > 0 and
∑︀𝐷

𝑗=1 𝜆𝑗 = 1. Based on this decomposition,
we perform 𝐷 partial update steps. Each partial update step is followed
by a reapproximation with a continuous distribution and a subsequent
reapproximation with a WD mixture. This process reduces the difference
between large and small weights.

To determine the step size 𝜆𝑗 of each step and the total number of
steps, we consider the largest and smallest weights in a certain step, which
is given by

𝛾min = min
𝑙=1,...,𝐿

(𝛾𝑙 · 𝑓(𝑧𝑘|𝛽𝑙)𝜆𝑗 ) ,

𝛾max = max
𝑙=1,...,𝐿

(𝛾𝑙 · 𝑓(𝑧𝑘|𝛽𝑙)𝜆𝑗 ) .

Now, we desire that the quotient 𝛾min
𝛾max

does not fall below a predefined
threshold 𝑅 ∈ (0, 1), i.e.,

𝛾min
𝛾max

=
min

𝑙=1,...,𝐿
(𝛾𝑙 · 𝑓(𝑧𝑘|𝛽𝑙)𝜆𝑗 )

max
𝑙=1,...,𝐿

(𝛾𝑙 · 𝑓(𝑧𝑘|𝛽𝑙)𝜆𝑗 ) ≥ 𝑅 .

We use the (conservative) bounds

𝛾min ≥ min
𝑙=1,...,𝐿

(𝛾𝑙) · min
𝑙=1,...,𝐿

(𝑓(𝑧𝑘|𝛽𝑙)𝜆𝑗 ) ,

𝛾max ≤ max
𝑙=1,...,𝐿

(𝛾𝑙) · max
𝑙=1,...,𝐿

(𝑓(𝑧𝑘|𝛽𝑙)𝜆𝑗 ) ,
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and it follows that

𝜆𝑗 ≤
log
(︂
𝑅 ·

max
𝑙=1,...,𝐿

(𝛾𝑙)

min
𝑙=1,...,𝐿

(𝛾𝑙)

)︂
log
(︂ min

𝑙=1,...,𝐿
𝑓(𝑧𝑘|𝛽𝑙)

max
𝑙=1,...,𝐿

𝑓(𝑧𝑘|𝛽𝑙)

)︂
is an upper bound for the value of 𝜆𝑗 . We always use the largest admissible
value of 𝜆𝑗 , which is given by the minimum of this upper bound and the
largest value that ensures

∑︀𝐷
𝑗=1 𝜆𝑗 ≤ 1. Pseudocode of this procedure is

given in Algorithm 6 (see [O16]).

Algorithm 6: Progressive measurement update.
Input: measurement 𝑧𝑘, likelihood function 𝑓(𝑧𝑘|𝑥𝑘), predicted density

𝑓𝑝(𝑥𝑘), threshold 𝑅
Output: estimated density 𝑓𝑝(𝑥𝑘

𝐷 ← 0 ;
𝑓0 ← 𝑓𝑝(𝑥𝑘);
while

∑︀𝐷
𝑗=1 𝜆𝑗 < 1 do

𝐷 ← 𝐷 + 1;
/* perform deterministic sampling (see Sec. 2.5) */
𝒲𝒟(𝑥;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿)←sampleDeterm(𝑓𝐷−1);
/* calculate step size 𝜆𝐷 */

𝜆𝐷 ← min

⎛⎜⎝1−∑︀𝐷−1
𝑗=1 𝜆𝑗 ,

log
(︃

𝑅·
max

𝑙=1,...,𝐿
(𝛾𝑙)

min
𝑙=1,...,𝐿

(𝛾𝑙)

)︃

log
(︃ min

𝑙=1,...,𝐿
(𝑓(𝑧𝑘|𝛽𝑙)

max
𝑙=1,...,𝐿

(𝑓(𝑧𝑘|𝛽𝑙)

)︃
⎞⎟⎠;

/* reweighting */
for 𝑙← 1 to 𝐿 do

𝛾𝑙 ← 𝛾𝑙 · 𝑓(𝑧𝑘|𝛽𝑙)𝜆𝐷 ;
end
/* obtain a continuous density (Lemma 3). */
𝑓𝐷 ←momentMatching(𝒲𝒟(𝑥;𝛽1, . . . , 𝛽𝐿, 𝛾1, . . . , 𝛾𝐿));

end
return 𝑓𝐷 ;
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B Additive Noise Measurement Model

Many interesting problems involve additive measurement noise. In this
case, the measurement equation is given by

𝑧𝑘 = ℎ𝑘(𝑥𝑘) + 𝑣𝑘 ,

where 𝑧𝑘 ∈ 𝑍 is the measurement in some measurement space, 𝑣𝑘 ∈ 𝑍
is the additive noise, and ℎ𝑘 : [0, 2𝜋) → 𝑍 is a known function. The
measurement space is only required to have an additive group structure
and can be linear or periodic.2 We have first considered this case in [O14].
In the case of additive noise, the likelihood can be obtained according to
the equation

𝑓(𝑧𝑘|𝑥𝑘) =
∫︁

𝑍

𝑓(𝑧𝑘, |𝑣𝑘, 𝑥𝑘)𝑓𝑣(𝑣𝑘) d𝑣𝑘

=
∫︁

𝑍

𝛿(𝑧𝑘 − ℎ(𝑥𝑘)− 𝑣𝑘)𝑓𝑣(𝑣𝑘) d𝑣𝑘

= 𝑓𝑣(𝑧𝑘 − ℎ(𝑥𝑘)) ,

i.e., it is sufficient to evaluate the noise density at the correct location.
Once the likelihood is known, the measurement update is performed in
the same way as above in the case of arbitrary noise.

C Identity Measurement Model

Sometimes the measurement equation is even simpler. The state is directly
observed, but disturbed by additive noise. In this case, the measurement
model is given by

𝑧𝑘 = 𝑥𝑘 + 𝑣𝑘 mod 2𝜋 ,

where 𝑧𝑘 ∈ [0, 2𝜋) and 𝑣𝑘 ∈ [0, 2𝜋). Thus, the likelihood simplifies to

𝑓(𝑧𝑘|𝑥𝑘) = 𝑓𝑣(𝑧𝑘 − 𝑥𝑘) .

For this reason, we can obtain the density of the estimate 𝑓𝑒(𝑥𝑘) according
to the Bayes’ theorem

𝑓𝑒(𝑥𝑘) ∝ 𝑓𝑣(𝑧𝑘 − 𝑥𝑘)𝑓𝑝(𝑥𝑘) .
2If the measurement space is periodic, the proper addition operator has to be used,

e.g., addition modulo 2𝜋.
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If both the prior estimate and the noise are assumed to be VM densities,
or if they are both assumed to be WN densities, we can obtain the density
of the product according to the multiplication formulas given in Sec. 2.4.2.
The update step for VM densities was previously published by Azmani [12].
Later we proposed the first solution for the WN case in [O11]. Now, we
consider two examples where the proposed filters can be applied.

Example 9 (Constrained Object Tracking)
Of course, the filtering algorithms derived above can be applied to estimation
of angles, phase, or other periodic quantities. A very interesting—but
possibly less obvious—use is the application for constrained object tracking
[O8]. Consider an object whose movement is constrained to a compact
one-dimensional manifold, for example a train moving along the rails of
a closed track without any railway switches. Because this manifold is
homeomorphic to the circle, we can apply the proposed filter to track the
object’s movement by transforming the circular probability densities to
the manifold under consideration. This concept has been experimentally
evaluated with a toy train [O8] and the circular filtering scheme was shown
to outperform standard methods for constrained object tracking based on
the Kalman filter.

Example 10 (Model Predictive Control on the Circle)
Besides the application of the proposed filtering algorithms in the area
of estimation, it is also possible to use them in the context of stochastic
model predictive control (SMPC). If a circular state is to be controlled to
follow a predefined trajectory, considering uncertainties based on circular
distributions is advantageous. For this purpose, a cost function based on
the circular distance function 𝑑1(·, ·) (see Sec. 2.2.2) is defined and all
occurring densities are assumed to be wrapped normal. We have shown
that the expected costs can be calculated in closed-form [O7]. The control
algorithm based on circular densities is shown to outperform a UKF-based
SMPC scheme.

3.2.3 Evaluation

In order to evaluate the proposed approaches, we perform an evaluation
similar to that published in [O16]. For this purpose, we consider two
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different systems. The first system has additive noise and is given by the
system equation

𝑥𝑘+1 = 𝑥𝑘 + 𝑐1 ×R sin(𝑥𝑘) + 𝑐2 + 𝑤𝑘 mod 2𝜋

with parameters 𝑐1 = 0.1, 𝑐2 = 0.15, and system noise 𝑤𝑘 ∼ 𝒲𝒩 (𝑥; 0, 0.2).
The operator ×R refers to the multiplication operator of the field of real
numbers R. The second system is affected by arbitrary (non-additive)
noise and is given by the system equation

𝑥𝑘+1 = 𝑥𝑘 + 𝑐1 ×R sin(𝑥𝑘 + 𝑤𝑘) + 𝑐2 mod 2𝜋

with 𝑐1, 𝑐2, 𝑤𝑘 as above. For both systems, the measurement equation is
nonlinear and given according to

𝑧𝑘 =
[︂
cos(𝑥𝑘)
sin(𝑥𝑘)

]︂
+ 𝑣𝑘 ∈ R2

with measurement noise 𝑣𝑘. We consider three different scenarios, where
the measurement noise is 𝑣𝑘 ∼ 𝒩 (0, 3 · I2×2), 𝑣𝑘 ∼ 𝒩 (0, 0.2 · I2×2), and
𝑣𝑘 ∼ 𝒩 (0, 0.01 · I2×2), respectively. Note that even though the state
𝑥𝑘 ∈ 𝑆1 is a periodic quantity, the measurement 𝑧𝑘 is a two-dimensional
real vector in R2, which is affected by additive Gaussian noise.

We use 𝑥0 ∼ 𝒲𝒩 (𝑥; 0, 1) as the initial estimate of the filter. The true
initial state is given by 𝑥true

0 = 𝜋, i.e., the initial estimate is very poor3.
We simulate the system for 𝑘max = 100 time steps and use the angular
RMSE as the error measure. The angular RMSE is defined as√︂

1
𝑘max

∑︁𝑘max

𝑘=1
𝑑0(𝑥𝑘, 𝑥true

𝑘 )2 , (3.5)

where 𝑑0 is the geodetic distance measure defined in Sec. 2.2.2. For
deterministic sampling, the approach with five components as given in
Algorithm 3 was used, and the weighting parameter was chosen as 𝜆 = 0.5.
Furthermore, the progressive measurement update was carried out using
the progression threshold 𝑅 = 0.2.

3Choosing a poor initial estimate makes the estimation problem much harder for filters
that use local linearization methods, as local linearization usually assumes that the
estimate is very close to the true state.
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In order to assess the performance of the proposed approach, we
compare it to several alternative algorithms. First of all, we compare it
to a modified version of a UKF with one-dimensional state vector (see
Sec. 3.1.1-A), which tries to avoid issues around the periodic boundary by
repositioning state and/or measurement accordingly. Second, we consider
a UKF with two-dimensional state vector, where an additional nonlin-
ear constraint enforces ||𝑥𝑘|| = 1 after each measurement update (see
Sec 3.1.1-B). Finally, we also employ two particle filters, one with 10 and
one with 100 particles (see Sec. 3.1.2).

The results for a total of 100 runs are given in Fig. 3.2 for the first
system, and Fig. 3.3 for the second system, respectively. In the case of the
second system, we did not compare the proposed approach to the UKF
because the measurement update of the UKF requires a measurement
function whereas the other methods require a likelihood.

When looking at these results, several observations can be made. First
of all, performance is worse for larger noise as is to be expected in general.
Furthermore, it can be seen that the particle filter with 10 particles is
unable to handle the small noise scenario of the first system. This is due to
the problem that particle degeneration occurs, which causes the filter to fail
completely. Furthermore, it can be seen that the proposed filter performs
very well in all cases even though it only uses the very small number
of five particles. The particle filter with 100 particles performs pretty
well, but cannot quite match the performance of the proposed approach,
particularly for the second system, even though it uses twenty times as
many particles. Both UKF-based methods perform poorly compared to
the proposed approaches, which is especially apparent due to the poor
initial estimate.

3.3 Toroidal Filtering

In this section, we generalize the circular filter discussed above to the torus
𝑇 2, i.e., we consider two angles and their circular-circular correlation. This
filter was first proposed in [O10], and is based on the PWN distribution
on the torus (i.e., 𝑛 = 𝑚 = 2).
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Figure 3.2.: Evaluation results for the first system (additive system noise).
Be aware that the particle filter with 10 particles fails in the small noise
scenario because of particle degeneration.
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Figure 3.3.: Evaluation results for the second system (non-additive system
noise).

3.3.1 Prediction
We consider an identity system model, which is given by

𝑥𝑘+1 = 𝑥𝑘 + 𝑤𝑘 mod 2𝜋 ,

with 𝑥𝑘 ∈ [0, 2𝜋)2, and additive noise 𝑤𝑘 ∈ [0, 2𝜋)2. The modulo-operation
is carried out componentwise. Based on the Chapman–Kolmogorov equa-
tion (3.2), we obtain

𝑓(𝑥𝑘+1) =
∫︁

𝑇 2

∫︁
𝑇 2
𝛿(𝑥𝑘+1 − 𝑥𝑘 − 𝑤𝑘)𝑓𝑒(𝑥𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘 d𝑥𝑘

=
∫︁

𝑇 2
𝑓𝑒(𝑥𝑘+1 − 𝑤𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘

= (𝑓𝑒 * 𝑓𝑤)(𝑥𝑘+1) .
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If both the prior estimate 𝑓𝑒 and the noise 𝑓𝑤 are assumed to be PWN
distributions with 𝑚 = 2 wrapped dimensions, the resulting PWN dis-
tribution can be calculated according to Lemma 11. This leads to the
procedure given in Algorithm 7.

Algorithm 7: Prediction on the torus.
Input: estimate 𝒫𝒲𝒩 (𝑥;𝜇𝑒

𝑘
,C𝑒

𝑘, 2), system noise 𝒫𝒲𝒩 (𝑥;𝜇𝑤
𝑘
,C𝑤

𝑘 , 2)
Output: prediction 𝒫𝒲𝒩 (𝑥;𝜇𝑝

𝑘+1,C
𝑝
𝑘+1, 2)

𝜇𝑝
𝑘+1 ← 𝜇𝑒

𝑘
+ 𝜇𝑤

𝑘
mod 2𝜋 ;

C𝑝
𝑘+1 ← C𝑒

𝑘 + C𝑤
𝑘 ;

return 𝒫𝒲𝒩 (𝑥;𝜇𝑒
𝑘+1,C

𝑒
𝑘+1, 2) ;

3.3.2 Measurement Update
For the measurement update, an identity measurement model is assumed
according to

𝑧𝑘 = 𝑥𝑘 + 𝑣𝑘 mod 2𝜋

with 𝑥𝑘 ∈ [0, 2𝜋)2, additive noise 𝑣𝑘 ∈ [0, 2𝜋)2, and toroidal measure-
ment 𝑧𝑘 ∈ [0, 2𝜋)2. The modulo-operation is once again carried out
componentwise.

Similar to the prediction, we assume that the predicted density 𝑓𝑝

and the measurement noise density 𝑓𝑣 are PWN distributed with 𝑚 = 2
wrapped dimensions. In order to derive the posterior density of the
estimate, we use the same technique as for the identity case on the circle
(see Sec. 3.2.2-C). Once again, the Bayes’ theorem yields

𝑓𝑒
𝑘 ∝ 𝑓(𝑧𝑘|𝑥𝑘)𝑓𝑝

𝑘 (𝑥𝑘) ,

where the likelihood 𝑓(𝑧𝑘|𝑥𝑘) can be obtained according to

𝑓(𝑧𝑘|𝑥𝑘) = 𝑓𝑣
𝑘 (𝑧𝑘 − 𝑥𝑘) .

Consequently, we can obtain the posterior density 𝑓𝑒
𝑘 using the multi-

plication formulas given in Sec. 2.4.2-D. Pseudocode for the resulting
measurement update is given in Algorithm 8.
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Algorithm 8: Measurement update on the torus.
Input: prediction 𝒫𝒲𝒩 (𝑥;𝜇𝑝

𝑘
,C𝑝

𝑘, 2), measurement noise
𝒫𝒲𝒩 (𝑥;𝜇𝑣

𝑘
,C𝑣

𝑘, 2), measurement 𝑧𝑘

Output: estimate 𝒫𝒲𝒩 (𝑥;𝜇𝑒
𝑘
,C𝑒

𝑘, 2)
/* multiply 𝒫𝒲𝒩 (𝑥, 𝑧𝑘 − 𝜇𝑣

𝑘
,C𝑣

𝑘, 2) and 𝒫𝒲𝒩 (𝑥;𝜇𝑝
𝑘
,C𝑝

𝑘, 2) */
get �̃� according to Lemma 14;
get 𝜌𝑐𝑐 according to Lemma 15;
/* perform parameter estimation */
𝑐1,1 ← − log(�̃�2

1 + �̃�2
2) ;

𝑐2,2 ← − log(�̃�2
3 + �̃�2

4) ;
𝑐1,2 ← sinh−1

(︁√︀
sinh(𝑐1,1) sinh(𝑐2,2) · 𝜌𝑐𝑐

)︁
;

/* check for positive definiteness */
if 𝑐1,1 · 𝑐2,2 − 𝑐2

1,2 > 0 then
𝜇𝑒

𝑘
← [atan2(�̃�2, �̃�1), atan2(�̃�4, �̃�3)]𝑇 ;

C𝑒
𝑘 ←

[︂
𝑐1,1 𝑐1,2
𝑐1,2 𝑐2,2

]︂
;

else
𝜇𝑒

𝑘
← 𝜇𝑝

𝑘
;

C𝑒
𝑘 ← C𝑝

𝑘;
end
return 𝒫𝒲𝒩 (𝑥;𝜇𝑒

𝑘
,C𝑒

𝑘, 2) ;

3.3.3 Evaluation

The proposed toroidal filtering scheme is evaluated in multiple simulations
(similar to [O10]). For this purpose, we consider four different scenarios,
which we designate as 1n, 1c, 2n, and 2c. These scenarios only differ
in the parameters of the PWN distribution for the system noise, which
are given in Table 3.1. In all cases, we have 𝜇𝑤

𝑘
= 0. We consider large

system noise in both dimensions (1n, 1c) and system noise that is large in
one dimension and small in the other (2n, 2c). Furthermore, we consider
uncorrelated system noise (1n, 2n) and correlated system noise (1c, 2c).
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The measurement noise is given by 𝒫𝒲𝒩 (𝑣𝑘;𝜇𝑣
𝑘
,C𝑣

𝑘, 2) with 𝜇𝑣
𝑘

= 0 and

C𝑣
𝑘 =

[︂
1 0.5

0.5 1

]︂
.

Scenario System Noise Explanation

1n C𝑤
𝑘 =

[︂
1 0
0 1

]︂
large noise, uncorrelated

1c C𝑤
𝑘 =

[︂
1 0.9

0.9 1

]︂
large noise, correlated

2n C𝑤
𝑘 =

[︂
1 0
0 0.01

]︂
small noise in 𝑥2, uncorrelated

2c C𝑤
𝑘 =

[︂
1 0.09

0.09 0.01

]︂
small noise in 𝑥2, correlated

Table 3.1.: System noise parameters for the different scenarios.

As an initial estimate, we use 𝒫𝒲𝒩 (𝑥0;𝜇𝑒
0,C

𝑒
0, 2) with 𝜇𝑒

0 = [1, 1]𝑇
and C𝑒

0 = 10 · I2×2. The true initial state was chosen randomly on the
torus 𝑇 2 according to a uniform distribution. The error measure in the
toroidal setting was calculated separately for each dimension. We once
again consider the angular RMSE (3.5), the same measure used for the
evaluation of circular filters. It should be noted that in this setting, other
error measures such as the geodetic distance on the torus might also make
sense.

For comparison, we implemented a modified version of the Kalman
filter that operates on a chart of 𝑇 2 (see Sec. 3.1.1-A). In practice, this is
achieved by repositioning the measurement modulo 2𝜋 before the measure-
ment step, such that it deviates less than 𝜋 from the mean of the predicted
density in each dimension, and taking the mean after the measurement
update modulo 2𝜋 as well (see [O10, Algorithm 3]).

For each scenario, we performed 100 Monte Carlo runs with 50 time
steps each. The results are depicted in Fig. 3.4. It can be seen that the
proposed filter outperforms the Kalman filter in the dimensions with large
noise and performs similarly in the case of small noise. The advantage of
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3.4. Hyperspherical Filtering

the proposed approach in comparison to the Kalman filter is particularly
obvious in cases where correlated system noise is considered. This can be
explained by the fact that the Kalman filter does not properly consider
circular-circular correlation and uses an approximation with linear-linear
correlation instead.
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Figure 3.4.: Evaluation results. The horizontal axis shows the error for
the Kalman filter (kf) and the vertical axis shows the error for the proposed
approach (twn). Each point represents one run and points above the
diagonal indicate that the Kalman filter performed better whereas points
below the diagonal indicate that the proposed approach performed better.

3.4 Hyperspherical Filtering
In this section, we propose a hyperspherical filter based on the Bingham
distribution, which can be applied to problems with 𝑛 = 2 or 𝑛 = 4
dimensions. We first presented the two-dimensional filter in [O18]. The
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Chapter 3. Directional Filtering

four-dimensional filter was first proposed by Glover [82]. A complete
treatment of both cases was first published in [O17].

We only consider the case of an identity system and measurement
function in this thesis. An extension of this approach that allows nonlinear
prediction can be found in [O5], where the Unscented Bingham Filter is
presented.

3.4.1 Prediction
We assume an identity system model given by

𝑥𝑘+1 = 𝑥𝑘 ⊕ 𝑤𝑘 ,

where 𝑥𝑘 ∈ 𝑆𝑛−1 is the state at time step 𝑘, ⊕ is the group operation,
and 𝑤𝑘 ∈ 𝑆𝑛−1 is Bingham-distributed noise. Similar to the circular and
toroidal cases, we apply the Chapman–Kolmogorov equation and obtain

𝑓𝑝(𝑥𝑘+1) =
∫︁

𝑆𝑛−1
𝑓(𝑥𝑘+1|𝑥𝑘)𝑓𝑒(𝑥𝑘) d𝑥𝑘

=
∫︁

𝑆𝑛−1

∫︁
𝑆𝑛−1

𝑓(𝑥𝑘+1|𝑤𝑘, 𝑥𝑘)𝑓𝑤(𝑤𝑘) d𝑤𝑘𝑓
𝑒(𝑥𝑘) d𝑥𝑘

=
∫︁

𝑆𝑛−1

∫︁
𝑆𝑛−1

𝛿(𝑤𝑘 − (𝑥−1
𝑘 ⊕ 𝑥𝑘+1))𝑓𝑤(𝑤𝑘) d𝑤𝑘𝑓

𝑒(𝑥𝑘) d𝑥𝑘

=
∫︁

𝑆𝑛−1
𝑓𝑤(𝑥−1

𝑘 ⊕ 𝑥𝑘+1)𝑓𝑒(𝑥𝑘) d𝑥𝑘 ,

where 𝑥−1
𝑘 refers to the inverse of the group operation ⊕. Hence, the

prediction is given by the convolution on the hypersphere according to the
respective group, or in other words, the addition of random variables using
⊕ [O17, Sec. 6.1]. Thus, we can apply the previously introduced addition of
Bingham variables (see Sec. 2.4.1). Pseudocode for the resulting prediction
scheme is given in Algorithm 9.

3.4.2 Measurement Update
The measurement model is also given by the identity according to

𝑧𝑘 = 𝑥𝑘 ⊕ 𝑣𝑘 ,
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3.4. Hyperspherical Filtering

Algorithm 9: Prediction on the hypersphere.
Input: estimate ℬ(𝑥𝑘; M𝑒

𝑘,Z𝑒
𝑘), system noise ℬ(𝑤𝑘; M𝑤

𝑘 ,Z𝑤
𝑘 )

Output: prediction ℬ(𝑥𝑘+1; M𝑝
𝑘+1,Z

𝑝
𝑘+1)

/* calculate covariance matrices */

C𝑥 ←M𝑒
𝑘 · diag

(︁
1

𝐹 (Z𝑒
𝑘)

𝜕𝐹 (Z𝑒
𝑘)

𝜕𝑧1
, . . . , 1

𝐹 (Z𝑒
𝑘)

𝜕𝐹 (Z𝑒
𝑘)

𝜕𝑧𝑛

)︁
(M𝑒

𝑘)𝑇 ;

C𝑤 ←M𝑤
𝑘 · diag

(︁
1

𝐹 (Z𝑤
𝑘 )

𝜕𝐹 (Z𝑤
𝑘 )

𝜕𝑧1
, . . . , 1

𝐹 (Z𝑤
𝑘 )

𝜕𝐹 (Z𝑤
𝑘 )

𝜕𝑧𝑛

)︁
(M𝑤

𝑘 )𝑇 ;
/* calculate covariance after addition of random variables

(Theorem 2) */
for 𝑗, 𝑙← 1 to 𝑛 do

C𝑗𝑙 ← E((𝑥⊕ 𝑤)𝑗 · (𝑥⊕ 𝑤)𝑙);
end
/* perform parameter estimation using MLE or moment matching

*/
M𝑝

𝑘+1,Z
𝑝
𝑘+1 ←parameterEstimation(C);

return ℬ(𝑥𝑘+1; M𝑝
𝑘+1,Z

𝑝
𝑘+1) ;

where 𝑧𝑘 ∈ 𝑆𝑛−1 is the measurement at time step 𝑘, and 𝑣𝑘 ∈ 𝑆𝑛−1 is
Bingham-distributed noise. The measurement update can be derived from
the Bayes formula similar to the circular case. This yields

𝑓𝑒(𝑥𝑘) ∝ 𝑓𝑣(𝑥−1
𝑘 ⊕ 𝑧𝑘) · 𝑓𝑣(𝑣𝑘) ,

where 𝑥−1
𝑘 once again denotes the inverse of the group operator ⊕. A more

detailed derivation is given in [O17, Sec. 6.2]. As a result, the measurement
update can be performed by applying the formula for the multiplication
of Bingham densities from Lemma 13. The resulting update procedure is
given in Algorithm 10.

3.4.3 Evaluation
In order to ascertain the performance of the proposed filter, we performed
a simulative evaluation in 𝑛 = 2 as well as 𝑛 = 4 dimensions. In this
evaluation, we compared the proposed approach to a specially customized
Kalman filter (see Sec. 3.1.1-B). As a regular Kalman filter is not con-
strained to the hypersphere and does not handle antipodal symmetry
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Chapter 3. Directional Filtering

Algorithm 10: Measurement update on the hypersphere.
Input: prediction ℬ(𝑥𝑘; M𝑝

𝑘,Z
𝑝
𝑘), measurement noise ℬ(𝑤𝑘; M𝑣

𝑘,Z𝑣
𝑘),

measurement 𝑧𝑘

Output: estimate ℬ(𝑥𝑘; M𝑒
𝑘,Z𝑒

𝑘)
/* rotate noise by columnwise application of 𝑧𝑘 */
M← 𝑧𝑘 ⊕ (diag(1,−1, . . . ,−1) ·M𝑣

𝑘);
/* multiply with prior */
M𝑒

𝑘Z̃(M𝑒
𝑘)𝑇 ←eigendecomposition(MZ𝑣

𝑘M𝑇 + M𝑝
𝑘Z𝑝

𝑘(M𝑝
𝑘)𝑇 );

Z𝑒
𝑘 ← Z̃− Z̃𝑛,𝑛I𝑛×𝑛;

return ℬ(𝑥𝑘; M𝑒
𝑘,Z𝑒

𝑘);

correctly, we introduced two modifications. First, we mirror the estimate
to the equivalent antipodally symmetric point if the angle between pre-
diction and measurement exceeds 𝜋/2. Second, we enforce the unit norm
constraint, by normalizing the mean vector of the estimate after each
update step (see also [O17]). A Kalman filter on a chart of the manifold
(see Sec. 3.1.1-A) has previously been considered and shown to be inferior
to the proposed approach [O18].

In the two-dimensional scenario, we consider a very poor initial
estimate

M𝑒
0 =

[︂
1 0
0 1

]︂
, Z𝑒

0 =
[︂
−1 0
0 0

]︂
with mode [0, 1]𝑇 . The true initial state is given by [1, 0]𝑇 . Furthermore,
we use the system noise parameters

M𝑤
0 =

[︂
0 1
1 0

]︂
, Z𝑤

0 =
[︂
−200 0

0 0

]︂
,

and the measurement noise parameters

M𝑤
0 =

[︂
0 1
1 0

]︂
, Z𝑤

0 =
[︂
−2 0
0 0

]︂
,

i.e., both the system and the measurement have mode [1, 0]𝑇 , which is
the neutral element of the considered group structure on 𝑆1. In order to
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3.4. Hyperspherical Filtering

Figure 3.5.: Conversion of Bingham-distributed noise (on the circle 𝑆1)
to Gaussian noise (in the plane R2). Because of antipodal symmetry, only
one of the two modes is considered.

apply the Kalman filter to this problem, the noise terms are converted
to covariance matrices by fitting a Gaussian distribution to one of the
Bingham modes. The covariance can be obtained according to

C =
∫︁ 𝛼𝑚+𝜋/2

𝛼𝑚−𝜋/2
ℬ([cos(𝜑), sin(𝜑)]𝑇 ; M,Z)

·
[︂
cos(𝜑)− cos(𝛼𝑚)
sin(𝜑)− sin(𝛼𝑚)

]︂
· [cos(𝜑)− cos(𝛼𝑚), sin(𝜑)− sin(𝛼𝑚)] d𝜑 ,

where 𝛼𝑚 = atan2(M2,2,M1,2) corresponds to one of the modes of the
Bingham distribution. This process is illustrated in Fig. 3.5.

For the four-dimensional scenario, we define the initial estimate as

M𝑒
0 = I4×4, Z𝑒

0 = diag(−1,−1,−1, 0) ,

where the mode is [1, 0, 0, 0]𝑇 . The true initial state is given by [0, 1, 0, 0]𝑇 ,
i.e., the initial estimate is once again very poor. The system and the
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Figure 3.6.: Evaluation results for the Bingham filter.

measurement noise are given by the parameters

M𝑤
𝑘 = M𝑣

𝑘 =

⎡⎢⎢⎣
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤⎥⎥⎦ ,
Z𝑤

𝑘 = diag(−200,−200,−2, 0) ,
Z𝑣

𝑘 = diag(−500,−500,−500, 0) ,

i.e., the mode of the noise distributions is given by [1, 0, 0, 0]𝑇 , which is
the neutral element of group of quaternions. Note that the system noise is
non-isotropic in this simulation, i.e., the uncertainty is significantly higher
in one dimension than in the others. To be able to apply the Kalman filter,
all noise distributions were once again converted to Gaussians.
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(c) 4D, Bingham noise.
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(d) 4D, Gaussian noise.

Figure 3.7.: Mean error of all runs over time.

In order to quantify the error of the different approaches, we consider a
hyperspherical generalization of the angular RMSE (3.5) that also accounts
for antipodal symmetry⎯⎸⎸⎷ 1

𝑘max

𝑘max∑︁
𝑘=1

(︁
min

(︀
](𝑥true

𝑘 , (M𝑒
𝑘)1:𝑛,𝑛), 𝜋 − ](𝑥true

𝑘 , (M𝑒
𝑘)1:𝑛,𝑛)

)︀)︁2
.

In this error measure, the term ](𝑥true
𝑘 , (M𝑒

𝑘)1:𝑛,𝑛) represents the angle
between the true state vector and one of the modes of the Bingham dis-
tribution, whereas the term 𝜋 − ](𝑥true

𝑘 , (M𝑒
𝑘)1:𝑛,𝑛) represents the angle

between the true state vector and the other mode of the Bingham distri-
bution, i.e., we always consider the angle between the true estimate and
the closer of the two modes.
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Chapter 3. Directional Filtering

When performing simulations with Bingham distributed noise, the
Bingham filter has a certain advantage compared to the Kalman filter
because it assumes the correct noise density, whereas the Kalman filter
assumes a Gaussian approximation. To avoid an unfair advantage, we also
performed simulations with Gaussian noise, where the Bingham filter uses
a Bingham approximation of the Gaussian noise densities.

In total, we performed 100 runs with 𝑘max = 200 time steps each.
The angular RMSE over all runs is given in Fig. 3.6 and the average error
over time is given in Fig. 3.7. These results show that the Bingham filter
also outperforms the Kalman filter in the case of Gaussian noise. Note
that the Kalman filter is not optimal even in the scenarios with Gaus-
sian noise because the underlying manifold is nonlinear. The superiority
of the Bingham filter is particularly significant in the four-dimensional
scenarios.

The proposed Bingham filter was also applied to a real-world ex-
periment as part of a student lab project [S1]. In this experiment, the
inertial measurement unit (IMU) of a tablet (Asus Eee Pad Transformer
Prime (TF201)4) was used to estimate the tablet’s orientation. The results
of these experiments suggest that the Bingham filter provides a good
estimation performance and is suitable for use in real-time applications
if implemented efficiently (see also [O4]). Further experiments based on
real-world data have been performed by Glover et al., showing similar
results [83].

3.5 Heart Phase Estimation

For the application of robotic beating heart surgery, information about
the current phase of the heart is of high relevance. Knowledge about
the current phase can, for example, be used to predict when the next
contraction of one of the heart chambers will occur.

4http://www.asus.com/Tablets/Eee_Pad_Transformer_Prime_TF201/
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3.5. Heart Phase Estimation

3.5.1 Periodicity and Phase

Before we present a novel phase estimation algorithm, we take a closer
look at the concept of phase in phenomena that are periodic or close to
periodic, but not exactly periodic.5

A function 𝑓 : R → R is called periodic with period Δ𝑡 > 0 if and
only if 𝑓(𝑡) = 𝑓(𝑡 + Δ𝑡) and all 𝑡 ∈ R. This is illustrated in Fig. 3.8(a).
Typical examples would be 𝑓(𝑡) = sin(𝑡) with Δ𝑡 = 2𝜋 or 𝑓(𝑡) = 𝑡 mod 1
with Δ𝑡 = 1.

We can relax this definition by considering functions that are approx-
imately periodic in terms of value, i.e., 𝑓(𝑡) ≈ 𝑓(𝑡+ Δ𝑡) for fixed Δ𝑡 > 0
and all 𝑡 ∈ R. Functions of this type arise, for example, if a periodic
function is superimposed with zero-mean white noise. An illustration is
given in Fig. 3.8(b). A typical example might be 𝑓(𝑡) = sin(𝑡) + 𝑣𝑡 where
𝑣𝑡 ∼ 𝒩 (𝑣𝑡;𝜇𝑣

𝑡 , 𝜎
𝑣
𝑡 ) is white Gaussian noise.

Another way to relax the definition of a periodic function is to consider
functions that are approximately periodic in terms of time, i.e., 𝑓(𝑡) =
𝑓(𝑔(𝑡+ Δ𝑡)) where 𝑔 : R→ R is a continous strictly increasing function.
Functions of this type occur when a process repeats itself exactly, but the
time it takes for each period varies. An alternative way to imagine this
class of functions is to assume that a periodic process evolves at a certain
speed, but time itself does not pass uniformly and may slow down or speed
up. An illustration of a function of this type is depicted in Fig. 3.8(c).

For the purpose of heart phase estimation, we consider functions
that are approximate in terms of both value and time. Measurements
of the heart movement, for example from pressure sensors, ECG, land-
mark tracking, etc. are expected to be functions of this type, since they
are superimposed by noise and affected by changes in the speed of the
heartbeat.

Based on these definitions of periodicity, we consider the phase of a
function 𝑓(·) at time 𝑡 as the proportion of the current period that has
already passed, where a full period is normalized to 2𝜋. For a function

5In literature, there are the mathematical concepts of almost periodic functions and
quasiperiodic functions. However, we introduce our own nomenclature, as there are
several different definitions and they do not reflect exactly the type of functions
required in this context.
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Figure 3.8.: Periodic functions and approximately periodic functions.

that is exactly periodic with respect to time, this yields the formula

2𝜋
Δ𝑡 · (𝑡 mod Δ𝑡) ∈ [0, 2𝜋)

for the phase at time 𝑡. In the case of a function that is only approximately
periodic with respect to time, the phase is given by

2𝜋
Δ𝑡 · (𝑔

−1(𝑡) mod Δ𝑡) ∈ [0, 2𝜋) .

3.5.2 Phase Estimation
Based on these definitions of the concepts of (approximately) periodic
functions and phase, we now focus on the problem of phase estimation.
For this purpose, we consider a discrete-time system, whose state 𝑥𝑘 at
time step 𝑘 is the phase at this particular point in time. We now seek
to estimate the phase at time step 𝑘 based on measurements that only
depend on the phase of the system. This problem is not to be confused with
seemingly similar problems of estimating some linear quantity occurring
in a time-periodic system. In contrast, the quantity we try to estimate
here, namely the phase, is defined on a periodic manifold, and changes
over time, but is not exactly periodic with respect to time. Before we deal
with the problem of heart phase estimation, we give some other examples
to illustrate the use of phase estimation.
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3.5. Heart Phase Estimation

Example 11 (Applications of Phase Estimation)
1. Imagine a driver who is driving on a circular track in a vehicle.

The vehicle’s position along the track is mapped to [0, 2𝜋), where 0
corresponds to the beginning of the track, 𝜋 corresponds to half the
track, and 2𝜋 corresponds to the end of the track, which, of course,
coincides with the beginning of the track (this is a similar scenario
as the train scenario discussed in [O8]). Thus, the position along the
track can be identified with the phase of the system, and estimating
the phase is equivalent to estimating the position along the track. If
the driver moves along the track at a constant speed, the vehicle’s
position is a periodic quantity. If the driver, however, drives slightly
faster or slower in a certain lap, the system is not exactly periodic
anymore, but only approximately periodic with respect to time. It
should be noted that the proposed methods are not restricted to a speed
that is constant within a lap, but it is possible to change the speed
during the course of a lap as well. If the driver’s position is to be
estimated based on noisy measurements, the measurement functions
are, as a result, also only approximately periodic with regard to value.

2. Other problems where phase (difference) estimation is of interest are
applications involving range sensors that emit an acoustic [257] or
electromagnetic wave and try to estimate the distance to an object
based on the phase of the returning signal. For example, certain
TOF cameras are based on this measurement principle [86]. In this
case, the emitted and received signals can be assumed to be exactly
periodic with respect to time (if we neglect issues such as imperfect
signal generations or the Doppler effect in case of a moving object).
However, the received signals are subject to noise and, thus, not
exactly periodic with respect to value. By estimating the phase, it is
possible to calculate the distance between the sensor and the observed
object.

A somewhat related problem to phase estimation is the problem of
frequency estimation. This corresponds to estimating 1/Δ𝑇 , the inverse
of the period of a periodic signal. One practical example for frequency
estimation is estimating the heart rate based on, say, photoplethysmogram
(PPG) sensors [283]. This issue was considered as part of a student lab
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project [S4]. Note that we do not seek to estimate the spectral composition
of a signal in this case, but just the fundamental frequency.

3.5.3 Application of Phase Estimation to the Beating Heart
In order to apply circular filters to phase estimation of the beating heart,
we need to derive a suitable system and measurement model. Some
preliminary work on this issue has been done in the context of a student
lab project [S3]. In the following, we assume that the measurements
are obtained at a constant known sampling frequency 𝜉𝑠, which also
corresponds to the inverse of the duration of one time step. Because we
want to focus on phase rather than frequency estimation for now, we assume
that the heart rate 𝜉ℎ is known, at least approximately. The approximate
heart rate can be determined by performing a short-time Fourier transform
(STFT) and taking the frequency with the largest magnitude.

Based on these assumptions, we define the system model as

𝑥𝑘+1 = 𝑥𝑘 + 2𝜋 · 𝜉
ℎ

𝜉𝑠
+ 𝑤𝑘 mod 2𝜋 ,

where 𝑥𝑘 represents the phase at time step 𝑘, and 𝑤𝑘 is WN distributed
system noise that models inaccuracies in the approximation of the heart
frequency 𝜉ℎ and the approximate periodicity with respect to time of the
system.

The measurement model obviously depends on the particular sensor
that is used. Obtaining a functional dependency between the current phase
of the heartbeat and a, say, blood pressure or ECG sensor is not a trivial
task. For this reason we consider a measurement model that is given by a
likelihood function 𝑓(𝑧𝑘|𝑥𝑘), which describes the likelihood of obtaining
the measurement 𝑧𝑘 given the current phase 𝑥𝑘. Usually, the likelihood
is viewed as a function of 𝑥𝑘 for a certain fixed 𝑧𝑘, but we consider it
as a function of two arguments for now, 𝑧𝑘 and 𝑥𝑘. The likelihood as a
function of 𝑥𝑘 is then obtained by choosing a fixed 𝑧𝑘 and considering
the corresponding slice of the two-dimensional function. If we assume
that the sensor measurement (e.g., blood pressure, ECG signal, . . . ) is a
linear quantity, this function is partially wrapped because 𝑥𝑘 is a periodic
quantity whereas 𝑧𝑘 is not. Hence, the domain of the function is defined
on the cylinder (see Sec. 2.3.1). In simple cases, it may be possible to
model this two-dimensional function as a PWN distribution with 𝑛 = 2
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dimensions, of which 𝑚 = 1 is wrapped. More generally, we can consider
a mixture of several PWN distributions of this type. A PWN mixture

𝐿∑︁
𝑙=1

𝜔𝑙 · 𝒫𝒲𝒩 (𝑥;𝜇
𝑙
,C𝑙, 1)

with 𝜔1, . . . , 𝜔𝐿 > 0 and
∑︀𝐿

𝑙=1 𝜔𝑙 = 1 can be seen as a partially wrapped
generalization of a Gaussian mixture.

In order to identify the measurement model, we assume that a certain
amount of labeled data is given, i.e., a set of measurements from a sensor
together with the corresponding phase. Obtaining this data is not that
difficult, because the true phase for a certain time step is much more easy
to obtain retroactively, i.e., based on the information of how the signal
continues at later time steps. Also, it can sometimes be possible to obtain
the phase based on another sensor, which is only available during model
identification (e.g., a ECG sensor is available for obtaining labeled data,
but only a pressure sensor is available at run time).

Based on the labeled data, we can obtain the parameters of a PWN
mixture using, for example, an expectation maximization (EM) algorithm
for circular-linear data. In recent years, EM algorithms on manifolds
have been considered by a variety of authors, for example for von Mises–
Fisher distributions [19], [89], [253] and the Watson distribution [265]. The
(partially) wrapped normal case has also been considered [255], [3], [224],
but existing algorithms suffer from the disadvantage that they require the
evaluation of infinite sums to maximize the likelihood. For this reason, we
propose an alternative solution that relies on hybrid moment matching
instead. The advantage of hybrid moment matching is the fact that each
step of the EM algorithm can be calculated in closed-form. The pseudocode
for this method is given in Algorithm 11 and Algorithm 12.

3.5.4 Experiments
Before the EM algorithm can be applied, a preprocessing of the raw signal
may be necessary. In the following, we will use the blood pressure signal
as an example. The data was obtained during an experiment on a porcine
heart, which is discussed in more detail in Sec. 5.5.3. We recorded the
blood pressure at a frequency of 1000 Hz. The signal we consider (from
experiment 70) is depicted in Fig. 3.9. In this example, it can be observed
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Algorithm 11: EM-Step for PWN with 𝑚 = 1, 𝑛 = 2.
Input: samples 𝑥1, . . . , 𝑥𝑁 ∈ 𝑆1 × R, PWN mixture parameters

(𝜇1, . . . , 𝜇𝐿
,C1, . . . ,C𝐿, 𝜔1, . . . , 𝜔𝐿)

Output: new PWN mixture parameters
(𝜇1, . . . , 𝜇𝐿

,C1, . . . ,C𝐿, 𝜔1, . . . , 𝜔𝐿)
/* E-Step */
for 𝑛← 1 to 𝑁 do

/* assign sample 𝑛 to component 𝑙 with weight 𝛾𝑛,𝑙 */
for 𝑙← 1 to 𝐿 do

𝛾𝑛,𝑙 ← 𝜔𝑙 · 𝒫𝒲𝒩
(︁
𝑥𝑛;𝜇

𝑙
,C𝑙, 1

)︁
;

end
/* normalize weights for sample 𝑛 */
Γ𝑛 ←

∑︀𝐿
𝑙=1 𝛾𝑛,𝑙;

for 𝑙← 1 to 𝐿 do
𝛾𝑛,𝑙 ← 𝛾𝑛,𝑙/Γ𝑛;

end
end
/* M-Step */
for 𝑙← 1 to 𝐿 do

/* estimate parameters of component 𝑙 from samples
𝑥1, . . . 𝑥𝑁 with weights 𝛾1,𝑙, . . . 𝛾𝑁,𝑙 */

Γ𝑙 =
∑︀𝑁

𝑛=1 𝛾𝑛,𝑙 ;
(𝜇

𝑙
,C𝑙)←parameterEstimation(𝑥1, . . . 𝑥𝑁 , 𝛾1,𝑙/Γ𝑙, . . . , 𝛾𝑁,𝑙/Γ𝑙);

end
for 𝑙← 1 to 𝐿 do

𝜔𝑙 ← Γ𝑙∑︀𝐿
𝑙=1 Γ𝑙

;
end
return (𝜇1, . . . , 𝜇𝐿

,C1, . . . ,C𝐿, 𝜔1, . . . , 𝜔𝐿);
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Algorithm 12: Parameter estimation for PWN with 𝑚 = 1, 𝑛 = 2.
Input: samples 𝑥1, . . . 𝑥𝑁 ∈ 𝑆1 × R, normalized weights 𝛾1, . . . , 𝛾𝑁 > 0
Output: PWN parameters 𝜇, C
/* augment angular dimension */
for 𝑛← 1 to 𝑁 do

�̃�𝑛 ← [cos(𝑥𝑛,1), sin(𝑥𝑛,1), 𝑥𝑛,2]𝑇 ;
end
/* calculate hyrid moments */
�̃� =

∑︀𝑁
𝑛=1 𝛾𝑛�̃�𝑛;

C̃ =
∑︀𝑁

𝑛=1 𝛾𝑛(�̃�𝑛 − �̃�)(�̃�𝑛 − �̃�)𝑇 ;
/* obtain PWN parameters */
𝜇← [atan2(�̃�2, �̃�1), �̃�3]𝑇 ;
𝑐11 ← −2 log(

√︀
�̃�2

1 + �̃�2
2) ;

𝑐12 ← exp(𝑐11/2)(−𝑐13 sin(𝜇1) + 𝑐23 cos(𝜇1)) ;
𝑐22 ← 𝑐33;

C←
[︂
𝑐11 𝑐12
𝑐12 𝑐22

]︂
;

return 𝜇,C;

that both blood pressure and heart rate decrease over time, which makes
the phase estimation problem more difficult.

Because of the physiological properties of the heart, the blood pressure
signal varies not only in frequency, but also in mean value as well as
amplitude, i.e., the difference between the maximum and the minimum
value of a heartbeat. To remove these changes in mean value and amplitude,
we consider windows of a certain length (in our case, 2000 time steps,
which corresponds to two seconds) and calculate the 10 percent quantile
𝑄0.1

𝑘 and the 90 percent quantile 𝑄0.9
𝑘 . Then, the current preprocessed

value of the signal is obtained as

𝑧preprocessed
𝑘 = 𝑧𝑘 −𝑄0.1

𝑘

𝑄0.9
𝑘 −𝑄0.1

𝑘

.

The preprocessing procedure is performed before using the EM algorithm
and also before applying the recursive filter. An example of the effect that
this preprocessing procedure has can be seen in Fig. 3.10.
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Figure 3.9.: The raw pressure signal (from experiment 70) and the heart
rate obtained using a STFT.

(a) Raw data. (b) Preprocessed data.

Figure 3.10.: Raw data and preprocessed data from four experiments.
Different colors represent different data sets (70,77,78,79).

The three data sets 77,78, and 79 (see Fig. 3.10), i.e., not including
the data set 70 (depicted in Fig. 3.9), were chosen and the EM algorithm
was run to obtain a PWN mixture with 25 components. The resulting
likelihood function is depicted in Fig. 3.11. To further improve performance,
a combination of a larger number of data sets may be used to obtain a
more accurate model.

Based on this likelihood function, we applied a WN-assumed filter
with a nonlinear progressive measurement update (see Sec. 3.2.2-A). The
system noise was chosen to be𝒲𝒩 (𝑥; 0, 0.001). A measurement noise does
not need to be chosen as it is modeled as part of the likelihood function. A
measurement update was performed every 10 time steps, i.e., at a 100 ms

136



3.5. Heart Phase Estimation

(a) 2D plot. (b) 3D plot.

Figure 3.11.: Likelihood function obtained by the EM algorithm.

interval. The window size for the STFT was set to 4096 ms and a new
FFT was performed every 256 ms.
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(b) Error.

Figure 3.12.: Results for a small time window.

For comparison, we implemented a state-of-the-art phase estimation
approach, which is based on calculating the circular cross-correlation
between the true signal and the reference signal (a sine wave with the
current heart rate as its frequency) within a window of approximately
one heartbeat. The maximum of the circular cross-correlation is used
to obtain the current phase. The results over a small time period are
shown in Fig. 3.12 and the results over the entire signal are depicted in
Fig. 3.13. It can be seen that the simple method suffers from decreased
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accuracy as the signal slowly changes over time, whereas the proposed
method provides better and more consistent results. The total angular
RMSE of the proposed method is 0.1521 radians, whereas the total angular
RMSE of the simple method is 0.3019, i.e., the proposed method performs
significantly better.
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Figure 3.13.: Error of the proposed method and an alternative simple
method for the entire signal. The largest possible error is 𝜋.

There is a number of possible extensions of the proposed methods.
First of all, it is possible to combine data from multiple signals, for ex-
ample the electrocardiogram (ECG) [204], the ventricular pressure [18],
photoplethysmogram (PPG) sensors [S4], or inertial measurements from
the heart surface [O23]. This combination can be achieved by performing
multiple measurement updates if the sensors can be assumed to be inde-
pendent, or by using a higher-dimensional likelihood function. For each
individual sensor, an appropriate preprocessing step might be necessary.

Second, it would be interesting to extend the state space to a cylindri-
cal manifold, which could allow estimation of frequency (a linear quantity)
and phase (a periodic quantity) at the same time, while properly consider-
ing uncertainties of each individual quantity as well as their dependency
in terms of a circular-linear correlation.

Third, the results of the phase estimation can be used for robotic
beating heart surgery. For example, it may be possible to (approximately)
describe the heart surface at time 𝑘 as a function of the phase at this time.
This information could be combined with the surface reconstruction and
image stabilization approaches discussed in the following chapters.
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This chapter deals with the problem of reconstructing the three-
dimensional surface of a moving and deforming object based on different
types of measurements. In particular, we are interested in intraoperatively
reconstructing the heart surface in order to use the information about the
heart surface for automatic control of the surgical robot. The reconstructed
surface can also be used as part of the three-dimensional image stabilization
algorithm in Sec. 5.3. Thus, the surface reconstruction algorithm can also
contribute to improving the image stabilization. Because of the stochastic
formulation used in this chapter, it may furthermore be possible to combine
surface reconstruction and heart phase estimation (Sec. 3.5), which could
yield an improvement of both estimates.



Chapter 4. Surface Reconstruction

However, the problem of surface reconstruction is not limited to the
beating heart and not even to medical applications. Deformable surfaces
are also of interest in computer vision, robotics, and certain industrial
applications.

4.1 Key Idea

The key idea of the proposed algorithm is to consider two different types
of measurements, position measurements and depth measurements. These
different types of measurements can be obtained by different types of
sensors and have some fundamentally different properties. An illustration
of the considered scenario is shown in Fig 4.1 (see [O22, Fig. 1]). The
algorithm proposed in this chapter was initially published in [O20] and
[O22].

depth camera
surface

landmarks

depth measurement

Figure 4.1.: A deformable surface (light green) is observed by a depth
camera, which takes a depth measurement (red circle) along line emanating
from the camera (red line). A separate tracking system, e.g., a stereo camera,
is able to detect the 3D positions of landmarks (dark green) attached to
the surface.
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surface

landmark
depth measurement

(a) Beginning.

surface

landmark
depth measurement

(b) Middle.

surface

landmark
depth measurement

(c) End.

Figure 4.2.: A moving and deforming surface with position measurements
(dark green) and depth measurements (red circles). Note that the depth
measurement does not always originate from the same point on the surface.

Position Measurements A measurement that originates from a certain
fixed point on the surface is called position measurement. Even if the
surface moves or deforms, we still measure the position of the same point
on the surface, which we call a landmark.

Position measurements can be obtained, for example, by stereo cam-
era systems that track landmarks (e.g., based on their texture) and use
triangulation to obtain a 3D position [114]. Although stereo camera sys-
tems (such as the Polaris1 system and the Vicon2 system, which are both
based on infrared markers) are probably the most wide-spread type of
sensor for obtaining position measurements, other types of sensors could
be used as well. For example, electromagnetic tracking systems such as the
Aurora sensor3 would also provide position measurements. If we consider
a problem of a much larger scale, GPS sensors attached to the landmarks
might be used to obtain position measurements.

Depth Measurements In contrast, depth measurements are obtained by
measuring the distance between the sensor and the surface along a line
emanating from the sensor. As the surface moves and/or deforms, this
line intersects the surface at different points, i.e., the measurement is not
always obtained from the same point on the surface. This property makes
depth measurements fundamentally different from position measurements
and necessitates a distinct treatment of this type of measurement.

1http://www.ndigital.com/medical/products/polaris-family/
2http://www.vicon.com/
3http://www.ndigital.com/medical/products/aurora/
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In order to obtain depth measurements, structured light sensors are
frequently used. These sensors project some kind of pattern onto the
surface and determine the depth based on the deformation seen in the
pattern. Examples are the first Microsoft Kinect [143], laser scanners [116],
and color-based approaches [213]. Besides structured light, time-of-flight
(TOF) cameras such as the SwissRanger 40004 or the Kinect 2.05, can be
employed.

The different types of measurements are illustrated in Fig. 4.2 (see
[O22, Fig. 2]). It can be seen that the depth measurement originates
from different locations on the surface as it changes shape and position
over time. The goal of the proposed algorithm consists in the fusion of
both types of measurements under the consideration of their respective
uncertainties.

4.2 Approaches in Literature
In this section, we discuss the previous work found in literature on surface
reconstruction. First, suitable sensors for this purpose are discussed.
Second, we take a look at different fusion algorithms and finally, we classify
surface reconstruction algorithms according to their properties.

4.2.1 Sensors
In a surgical context, a variety of sensors providing position and depth
measurements are available or currently in development. An overview of
3D reconstruction methods can be found in [168].

To obtain position measurements, a standard multi-camera system
[114] can be used. In the case of minimally invasive operations, it can be
replaced by a stereo endoscope [158], [247], [218]. Stereo endoscopes have
been available for more than a decade and are used in clinical routine,
for example as part of the da Vinci system [1]. Stereo camera systems
or endoscopes usually provide very accurate results in highly structured
areas, but perform poorly in non-structured areas, which motivates the
use of depth sensors in order to compensate this deficiency.

4http://www.mesa-imaging.ch/products/sr4000/
5http://www.microsoft.com/en-us/kinectforwindows/purchase/
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In the case of open operations, depth measurements can be obtained
with standard depth cameras. For example, a Microsoft Kinect was
evaluated for beating heart surgery in [O23] and was shown to have a
sufficient accuracy to reliably detect the heartbeat. Due to quantization
steps of 1 mm, it is not yet sufficient for use as the sole sensor in robotic
beating heart surgery6. Reliable depth sensors for minimally invasive
operations are still an active field of research. There has been some work
on TOF endoscopy [207], [95], [93], which has made a lot of progress over
the past couple of years. Sensors based on the structured light measurement
principle are also under development, e.g., a laser endoscope [116] and a
method based on endoscopically projecting a color pattern [213].

4.2.2 Fusion Algorithms
Surface reconstruction has been considered for many years, but early
approaches typically did not consider fusion of data from multiple sensors.
For example, Lorensen et al. presented the well-known marching cubes
algorithm [166] in 1987, and Hoppe et al. proposed an algorithm to
reconstruct a surface from unorganized points [121] in 1992.

More recently, there has been some work on surfaces reconstruction
based on fusion of multiple depth images. Particularly the Kinect Fusion
algorithm [125], [201] published in 2011 has received widespread recognition.
It is a voxel-based method that combines multiple depth images, which
are acquired by a Microsoft Kinect moving around an object of interest.
However, it is mostly suitable for static scenes, it does not consider any
uncertainties, and—in spite of its name—it relies exclusively on fusion of
data from depth sensors rather than combining data from different types
of sensors.

In recent years, a number of algorithms for surface reconstruction
based on fusion of different types of sensors has also been proposed. Lindner
et al. suggested to use a TOF camera in conjunction with a binocular
camera system in order to obtain a high-resolution point cloud, where every
point has an associated color information [162]. The color information,
however, is only used to determine the color of each point and does not
contribute to a more accurate 3D reconstruction.

6According to literature, the required accuracy is on the order of 0.2 mm, depending
on the size of the blood vessel [217].
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An approach for obtaining high quality disparity maps was presented
by Gudmundsson et al. [99]. In this work, a stereo camera system and a
TOF camera are employed. A disparity map is calculated from the images
recorded by the stereo camera system and the distance measurements
obtained by the TOF camera are converted into disparities in order to
allow fusion of both measurement types. A somewhat similar approach has
later been proposed by Zhu et al [284]. Through the use of Markov Random
Fields, a probabilistic formulation of the fusion problem is achieved, which
allows the consideration of the individual measurement uncertainties of the
different sensor types. Zhang et al. [281] also published a closely related
method, which considers a different cost function than Gudmundsson et
al. in order to better preserve discontinuities.

Other approaches combine TOF and conventional cameras by rep-
resenting the object using a probabilistic space occupancy grid, i.e., a
voxel-like representation. The surface can then be obtained from the proba-
bilistic space occupancy grid with the help of a graph-cut algorithm. Guan
et al. [98] proposed this method in order to combine silhouette information
obtained from conventional cameras with depth information from a TOF
camera. Whereas silhouette information can only be used to determine
the visual hull (i.e., a polyhedron surrounding the object), the depth
information makes the reconstruction of certain concave areas possible. A
similar approach was used by Groch et al. [94] to combine data from a
stereo endoscope and a TOF endoscope. However, in Groch’s work, stereo
disparities were used as a feature rather than silhouette information.

4.2.3 Classification of Surface Reconstruction Methods
There are several criteria by which surface reconstruction methods can be
classified. First of all, there are several different surface representations.
The raw data obtained from depth sensors is usually a point cloud, i.e.,
an unstructured set of 3D points. Stereo cameras typically obtain a
disparity map [114], which enables easy calculation of the depth of each
pixel, i.e., it can also be converted into a point cloud. The raw point
cloud does not really specify the location of the surface because it is
ambiguous how the individual points are connected. A common solution to
better represent the surface is a triangular mesh [188]. It consists of a large
number of triangles, which can be used to approximate surfaces of arbitrary
shape. An alternative way to represent surfaces are voxels [125], i.e., a
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3D generalization of the 2D concept of pixels. Every voxel is a volume
element in space, usually a cube, which can be either occupied by the
object or empty. All of these representations are commonly used, but they
suffer from the problem that they require a lot of memory and have a large
number of degrees of freedom. Obviously, the amount of data required
to represent a surface is quite significant as there may be thousands or
even millions of points in a point cloud, and just as many triangles in a
triangular mesh7. For voxels, the spatial resolution determines the amount
of memory that is necessary, i.e., for a good spacial resolution, typically
millions of voxels (or more) are necessary. Because of these problems, we
choose to represent the surface as a spline in this work. Splines only need
a fairly small number of parameters in the form of some control points.
Thus, there is only a limited number of degrees of freedom and the surface
can be represented very efficiently. Because splines perform a smooth
approximation, this representation is very suitable for smooth surfaces
(such as the heart surface), but has difficulties with sharp edges. An
illustration of the different surface representations is given in Fig. 4.3.

Another aspect by which the reconstruction algorithms differ is the
consideration of a temporal component. Some algorithms only use informa-
tion from one moment in time and, thus, are limited to reconstructing the
surface at this very time step. Other algorithms such as Kinect Fusion [125]
combine information from multiple time steps, but assume a more or less
static scene, i.e., the surface is assumed to be static and measurements
over time are merely used to obtain a more accurate estimate, not to
track the deformation of the surface. In contrast, the approach we propose
in this chapter explicitly considers a moving and deforming surface and
attempts to estimate both its current shape and its current position, while
still combining information from multiple time steps.

Moreover, one can distinguish between stochastic and non-stochastic
approaches. In contrast to non-stochastic methods (such as [162], [99]),
stochastic approaches (such as [284], [98], [94]) consider the uncertain-
ties of the involved sensors. By weighting the influence of information
according to the corresponding uncertainty, a better reconstruction result
can be achieved. In addition, the resulting surface also has an associated
uncertainty, which allows considering this uncertainty in decisions based

7While there is some research on reducing the number of points in a point cloud or
the number of triangles in a mesh, these approaches can significantly reduce the
quality of the surface representation.
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point cloud triangular mesh

voxel spline

Figure 4.3.: Different surface representations.

on this reconstruction. For example, a control algorithm for a surgical
robot could move to a safe distance if the uncertainty is too high.

For this reason, we also consider a stochastic approach. Stochastic
splines have previously been considered for the purpose of machine tool
calibration by Brunn et al. [35]. In the remainder of this chapter, we
assume that an interpolation algorithm is given, because the proposed
method does not depend on the details of the interpolation. An overview
of different suitable algorithms can be found Sec. 5.4. In our evaluation, we
use the method based on thin-plate splines. An example of interpolation
as well as approximation using this type of spline is given in Fig. 4.4.

Gaussian processes (see [210]) are also a stochastic method that can
be used for surface reconstruction [269]. However, they are typically only
able to consider uncertainty in the image of the function describing the
surface, not in its domain. Furthermore, the function describing the surface
typically depends on all measurement recorded up to the current time
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Figure 4.4.: Example of interpolation and approximation using thin-plate
splines.

step, i.e., an approach like this would become more and more expensive as
time evolves8.

4.3 Surface Reconstruction Algorithm
For the purpose of the surface reconstruction algorithm, we parameterize
the system by a state vector 𝑥𝑘 with time index 𝑘. From this state vector,
the shape of the surface can be obtained by using a spline interpolation
scheme. The system model evolves through time according to the system
equation

𝑥𝑝
𝑘+1 = 𝑎𝑘(𝑥𝑒

𝑘) + 𝑤𝑘 ,

where 𝑎𝑘 is the system function and 𝑤𝑘 ∼ 𝒩 (𝑥; 0,C𝑤
𝑘 ) is additive zero-

mean white Gaussian noise. The details of this system model are not
considered in this thesis. There is some discussion of a system model
based on linear regression in [O6]. More sophisticated models are discussed
in the relevant literature, for example vector autoregressive models [67],
Fourier series models [216], [215], [278], and physical models based on the
finite-element method [14], [221] or meshless methods [32], [18].

8It should be noted that Gaussian processes could still be used as a drop-in replacement
for the spline interpolation in the proposed approach. However, this would not yield
significant benefits compared to other spline interpolation methods.
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4.3.1 Two-dimensional Case
Before we consider the three-dimensional case, we introduce the two-
dimensional version of the algorithm, which is somewhat easier to under-
stand. In the two-dimensional case, we consider a one-dimensional surface
(i.e., a line) embedded in a two-dimensional space. The two-dimensional
case does, not only serve didactic purposes, however, but can actually
be used in certain scenarios. For example, mobile robots are commonly
equipped with LIDAR (light detection and ranging) sensors in order to
avoid obstacles, and these obstacles can be reconstructed as surfaces in
two-dimensions [274].

A Position and Depth Measurements

For the purpose of position measurements, we assume that 𝑁 ∈ N land-
marks are located on the surface. In the two-dimensional setting, we
consider the state vector

𝑥𝑘 =
[︁
𝑥1,1

𝑘 , 𝑥1,2
𝑘 , . . . , 𝑥𝑁,1

𝑘 , 𝑥𝑁,2
𝑘

]︁𝑇

∈ R2𝑁

consisting of landmark coordinates, where 𝑘 is the time step, the first upper
index of 𝑥𝑘 is the id of the landmark and the second is the dimension, e.g.,
[𝑥1,1

𝑘 , 𝑥1,2
𝑘 ]𝑇 is the 2D position of the first landmark. In order to obtain the

surface from the state vector, an interpolation scheme is employed, where
the coordinates of all landmarks are used as key points. Hence, the state
vector induces a continous surface represented by a spline (see Fig. 4.4).

Because we assume that the positions of the landmarks can be directly
measured using the position sensor, the measurement equation for position
measurements is given by

𝑧pos
𝑘 = I2𝑁×2𝑁 · 𝑥𝑘 + 𝑣pos

𝑘 (4.1)

with additive Gaussian noise 𝑣pos
𝑘 ∼ 𝒩 (𝑥; 0,Cpos

𝑘 ).
In order to derive the measurement equation for depth measurements,

we consider a depth camera facing towards the surface. For each pixel
of the depth camera, we seek to derive the depth measured at this pixel,
i.e., the distance between the depth camera and the point where the
surface intersects with a straight line emanating from the depth camera
at a certain angle. In a typical setup using Cartesian coordinates, this
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depth camera

𝑥

𝑦
=
𝑓

(𝑥
)

(a) Cartesian coordinates.

depth camera

𝑥

𝑦

𝛼

𝑓(𝛼)

(b) Polar coordinates.

Figure 4.5.: A depth camera is observing a surface (green curve) param-
eterized in either Cartesian or polar coordinates. It is much harder to
determine the intersection (red circle) of the surface with the line along
which the measurement is obtained (red line) if Cartesian coordinates are
used.

distance is difficult to calculate as there is, in general, no easy way to find
the intersection between a straight line and the spline representing the
surface. For this reason, we parameterize the surface in polar coordinates
rather than Cartesian coordinates, where the origin is located in the depth
camera, i.e., the surface function maps angles to distances. In this case, the
aforementioned distance can trivially be calculated by evaluating the spline
at the angle of the measurement. This idea is illustrated in Fig. 4.5.

The transformation of polar coordinates [𝑟, 𝜑]𝑇 ∈ R>0 × [0, 2𝜋) to
Cartesian coordinates [𝑥1, 𝑥2]𝑇 ∈ R2 is given by

𝑥1 = 𝑟 cos(𝜑) , 𝑥2 = 𝑟 sin(𝜑) ,

and the inverse transformation is defined as

𝑟 =
√︁
𝑥2

1 + 𝑥2
2 , 𝜑 = atan2(𝑥2, 𝑥1) ,

where atan2(·) is the quadrant-specific inverse tangent as defined in Ap-
pendix A.3. The depth camera is assumed to have 𝐵 pixels, which produce

149



Chapter 4. Surface Reconstruction

measurements at angles 𝛼1, . . . , 𝛼𝐵. Then, the measurement equation is
given by

𝑧depth
𝑘 =

⎡⎢⎣𝑠𝑘(𝛼1)
...

𝑠𝑘(𝛼𝐵)

⎤⎥⎦+ 𝑣depth
𝑘 , (4.2)

where 𝑣depth
𝑘 ∼ 𝒩 (𝑥; 0,Cdepth

𝑘 ) is additive Gaussian noise. The function
𝑠𝑘(𝛼) : R → R describing the surface is obtained by interpolating the
points

atan2
(︁
𝑥1,2

𝑘 , 𝑥1,1
𝑘

)︁
, . . . , atan2

(︁
𝑥𝑁,2

𝑘 , 𝑥𝑁,1
𝑘

)︁
with values√︂(︁

𝑥1,1
𝑘

)︁2
+
(︁
𝑥1,2

𝑘

)︁2
, . . . ,

√︂(︁
𝑥𝑁,1

𝑘

)︁2
+
(︁
𝑥𝑁,2

𝑘

)︁2
.

These formulas result from the conversion of the Cartesian coordinates of
the landmarks into polar coordinates. Note that 𝑠𝑘(·) implicitly depends
on 𝑥𝑘. Because noise is assumed to be additive with regard to the depth
measurement, this formulation does not allow any uncertainties regarding
the direction from which the measurement is obtained. We will later
discuss how to lift this restriction in Sec. 4.4.2.

Remark 11 (Combination with Directional Statistics)
The parameterization in polar coordinates might suggest that directional
statistics (see Sec. 2) should be applied to this problem. However, it should
be noted that neither the state vector nor the measurement vector contains
any angular or directional quantities. All angular quantities are assumed
to be known precisely, i.e., uncertainties occur only in linear quantities.
We will discuss uncertain measurement angles in Sec. 4.4.2, but it is
reasonable to assume that the uncertainty of the measurement angles is
very small, which makes the Gaussian approximation fairly accurate. Thus,
the application of directional statistics—although possible—is not really
necessary.

B State Augmentation with Additional Control Points

Even though fusion of the depth measurements may allow more accurate
estimation of the positions of the landmarks and, thus, more accurate
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estimation of the surface, this method does not fully take advantage of the
depth measurements yet. The reason for this is that the number of degrees
of freedom of the reconstructed surface directly depends on the number of
landmarks 𝑁 . If there are few landmarks, even a large number of highly
accurate depth measurements cannot significantly improve the surface
estimate because the reconstructed surface has an insufficient number of
degrees of freedom to closely approximate the true surface. For this reason,
we propose to augment the state with additional control points in order to
increase the number of degrees of freedom. The situation before and after
adding control points is depicted in Fig. 4.6. As can be seen, the error in
the surface reconstruction is reduced significantly as new control points
are introduced.

Additional control points could be added as points in Cartesian coor-
dinates with two degrees of freedom. However, as they do not correspond
to landmarks, they cannot be detected by the position sensor and their
position is not observable from the depth measurements. The reason for
this is that any point yielding the same surface function after interpolation
is just as reasonable as an estimate as any other, because the measurement
equation only depends on the surface function. For this reason, we do
not use points in Cartesian coordinates, but rather points in polar coordi-
nates at fixed angles, which only have one degree of freedom, namely the
depth. For a total of 𝑈 additional control points, we choose fixed angles
𝜈1, . . . , 𝜈𝑈 . Their distances 𝑥1,*

𝑘 , . . . , 𝑥𝑈,*
𝑘 are to be estimated and, thus,

used to augment the state vector, which yields

𝑥𝑘 =

⎡⎢⎣𝑥1,1
𝑘 , 𝑥1,2

𝑘 , . . . , 𝑥𝑁,1
𝑘 , 𝑥𝑁,2

𝑘⏟  ⏞  
landmarks

, 𝑥1,*
𝑘 , . . . , 𝑥𝑈,*

𝑘⏟  ⏞  
additional control points

⎤⎥⎦
𝑇

∈ R2𝑁+𝑈 .

The question of when to introduce additional control points, how many
control points to add, and which angles 𝜈1, . . . , 𝜈𝑈 to choose, will be
addressed in Sec. 4.4. When the state is augmented, the covariance
matrix is also augmented with some predefined uncertainty for the new
control points. Furthermore, the change in the state dimension entails the
augmentation of the system model. As the augmentation of the system
model depends on the particular application, it is out of scope of this
thesis.
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For the augmented state vector, we adjust the measurement equation
for position measurements (4.1) according to

𝑧pos
𝑘 = [I2𝑁×2𝑁 02𝑁×𝑈 ] · 𝑥𝑘 + 𝑣pos

𝑘 ,

where 02𝑁×𝑈 is a zero matrix of appropriate size. This equation basically
just ignores the additional control points as they cannot be observed by
the position sensor. Furthermore, we modify the measurement equation
for depth measurements, by including the additional control points in the
surface interpolation. Formally, this means that (4.2) stays the same, but
we now obtain the function 𝑠𝑘(𝛼) by interpolating the points

atan2
(︁
𝑥1,2

𝑘 , 𝑥1,1
𝑘

)︁
, . . . , atan2

(︁
𝑥𝑁,2

𝑘 , 𝑥𝑁,1
𝑘

)︁
, 𝜈1, . . . , 𝜈𝑈

with values√︂(︁
𝑥1,1

𝑘

)︁2
+
(︁
𝑥1,2

𝑘

)︁2
, . . . ,

√︂(︁
𝑥𝑁,1

𝑘

)︁2
+
(︁
𝑥𝑁,2

𝑘

)︁2
, 𝑥1,*

𝑘 , . . . , 𝑥𝑈,*
𝑘 .

4.3.2 Three-dimensional Case
For many practical applications, such as the problem of heart surface
estimation in the context of beating heart surgery, a generalization to
three dimensions (i.e., a two-dimensional surface embedded in a three-
dimensional space) is required. Even though the formulas are somewhat
more complicated in the three-dimensional case, the generalization is
fairly straightforward and mostly relies on replacing polar with spherical
coordinates.9

A Position and Depth Measurements

Once again, we consider 𝑁 ∈ N landmarks and define the state vector

𝑥𝑘 =
[︁
𝑥1,1

𝑘 , 𝑥1,2
𝑘 , 𝑥1,3

𝑘 , . . . , 𝑥𝑁,1
𝑘 , 𝑥𝑁,2

𝑘 , 𝑥𝑁,3
𝑘

]︁𝑇

∈ R3𝑁

9In principle, a generalization to even higher dimensions is possible through the
use of hyperspherical coordinates, but most practical applications do not require
reconstructions of hypersurfaces in more than three dimensions.
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Figure 4.6.: Surface reconstruction in 2D. Additional control points are
added at time steps 𝑘 = 10, 𝑘 = 20, and 𝑘 = 30. This figure shows the
scenario in Cartesian (left) and polar (middle) coordinates as well as the
error between the true and the reconstructed surface (right) at time steps
𝑘 = 9 (top), 𝑘 = 10 (middle), and 𝑘 = 33 (bottom).

as the vector obtained by stacking the three-dimensional Cartesian co-
ordinates of all landmarks. Furthermore, the measurement equation for
position measurements (4.1) changes only slightly to accommodate the
three-dimensional coordinates, which yields

𝑧pos
𝑘 = I3𝑁×3𝑁 · 𝑥𝑘 + 𝑣pos

𝑘 (4.3)

with additive Gaussian noise 𝑣pos
𝑘 ∼ 𝒩 (𝑥; 0,Cpos

𝑘 ).
In the three-dimensional case, we need spherical coordinates in order to

formulate the measurement equation for depth measurements. In literature,
there are different conventions for spherical coordinates, and we choose to
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𝑥1
𝑥2

𝑥3

[𝑥1, 𝑥2, 𝑥3]𝑇

𝑟

𝜑

𝜃

Figure 4.7.: Spherical coordinates as used in this chapter.

use the following parameterization in this chapter. The transformation of
spherical coordinates [𝑟, 𝜑, 𝜃]𝑇 ∈ R>0 × [0, 2𝜋)× (−𝜋/2, 𝜋/2) to Cartesian
coordinates [𝑥1, 𝑥2, 𝑥3]𝑇 ∈ R3∖{0} is given by

𝑥1 = 𝑟 cos(𝜃) cos(𝜑) ,
𝑥2 = 𝑟 cos(𝜃) sin(𝜑) ,
𝑥3 = 𝑟 sin(𝜃) ,

and the inverse transformation can be obtained as

𝑟 =
√︀

(𝑥1)2 + (𝑥2)2 + (𝑥3)2 ,

𝜑 = atan2(𝑥2, 𝑥1) ,
𝜃 = arcsin(𝑥3/𝑟) .

The meaning of 𝑟, 𝜑, and 𝜃 according to this definition of spherical
coordinates is illustrated in Fig. 4.7. In the three-dimensional case, the
camera obtains 𝐵 measurements at angles [𝛼1

1, 𝛼
2
1]𝑇 , . . . , [𝛼1

𝐵 , 𝛼
2
𝐵]𝑇 , and

the surface function 𝑠𝑘 : R2 → R now maps pairs of angles to distances.
By replacing polar coordinates with spherical coordinates, we obtain the

154



4.3. Surface Reconstruction Algorithm

measurement equation

𝑧depth
𝑘 =

⎡⎢⎣ 𝑠𝑘(𝛼1
1, 𝛼

2
1)

...
𝑠𝑘(𝛼1

𝐵 , 𝛼
2
𝐵)

⎤⎥⎦+ 𝑣depth
𝑘 , (4.4)

where 𝑣depth
𝑘 ∼ 𝒩 (𝑥; 0,Cdepth

𝑘 ) is once again additive Gaussian noise and
the function 𝑠𝑘(𝛼) is obtained by interpolating the points⎡⎢⎢⎣

atan2
(︁
𝑥𝑗,2

𝑘 , 𝑥𝑗,1
𝑘

)︁
arcsin

(︃
𝑥𝑗,3

𝑘√︁
(𝑥𝑗,1

𝑘 )2+(𝑥𝑗,2
𝑘 )2+(𝑥𝑗,3

𝑘 )2

)︃⎤⎥⎥⎦ , 𝑗 = 1, . . . , 𝑁

with values √︂(︁
𝑥𝑗,1

𝑘

)︁2
+
(︁
𝑥𝑗,2

𝑘

)︁2
+
(︁
𝑥𝑗,3

𝑘

)︁2
, 𝑗 = 1, . . . , 𝑁 .

Similar to the two-dimensional case, these terms immediately follow from
the transformation of the Cartesian coordinates of the landmarks into
spherical coordinates.

B State Augmentation with Additional Control Points

For the same reasons as discussed in the two-dimensional case, it is neces-
sary to augment the state vector with additional control points in order
to increase the number of degrees of freedom. Once again, introducing
points in Cartesian coordinates introduces the problem that the state is
no longer observable, so we consider additional control points in spherical
coordinates. These additional control points are located at fixed angles
[𝜈1

1 , 𝜈
2
1 ]𝑇 , . . . , [𝜈1

𝑈 , 𝜈
2
𝑈 ]𝑇 and their depths 𝑥1,*

𝑘 , . . . , 𝑥𝑈,*
𝑘 are to be estimated

and, thus, introduced into the state vector. This yields the augmented
state vector

𝑥𝑘 =

⎡⎢⎣𝑥1,1
𝑘 , 𝑥1,2

𝑘 , 𝑥1,3
𝑘 , . . . , 𝑥𝑁,1

𝑘 , 𝑥𝑁,2
𝑘 , 𝑥𝑁,3

𝑘⏟  ⏞  
landmarks

, 𝑥1,*
𝑘 , . . . , 𝑥𝑈,*

𝑘⏟  ⏞  
add. control points

⎤⎥⎦
𝑇

∈ R3𝑁+𝑈 .
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Figure 4.8.: Surface reconstruction in 3D. Additional control points are
added at time steps 𝑘 = 10, 𝑘 = 20, and 𝑘 = 30. This figure shows the
scenario in Cartesian (left) and polar (middle) coordinates as well as the
error between the true and the reconstructed surface (right) at time steps
𝑘 = 9 (top), 𝑘 = 10 (middle), and 𝑘 = 33 (bottom).

Similar to before, we also augment the system equation and the system
noise parameters. The measurement equation for position measurements
can be obtained by extending (4.3) according to

𝑧pos
𝑘 = [I3𝑁×3𝑁 03𝑁×𝑈 ] · 𝑥𝑘 + 𝑣pos

𝑘 .

For depth measurements, the measurement equation is extended by retain-
ing (4.4), but using not only the landmarks, but also the additional control
points in the interpolation process to determine the surface function 𝑠𝑘(·, ·).
Results from an example run are depicted in Fig. 4.8.
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4.4 Enhancements
In the previous sections, we have introduced the basic concepts of the
proposed method for surface reconstruction. When implementing this
method, certain enhancements may be used to improve its performance
and adapt it to more complex scenarios.

4.4.1 Adaptive Addition of Control Points
As was previously explained, it is essential to introduce additional control
points into the state vector in order to fully take advantage of the depth
measurements. This poses the question of when and where to insert these
points. A simple method might be to uniformly spread the additional
control points across the field of view of the depth camera. The number
of additional control points and the time of the state augmentation may
then be manually chosen depending on the application. However, it would
be preferable to automate this process.

For this purpose, we propose the following method for the two-
dimensional case. Let us consider the root mean squared deviation between
the measurement and the estimate

𝐸𝜏
𝑘 (𝛼𝑙) =

⎯⎸⎸⎷1
𝜏

𝜏−1∑︁
𝑗=0

(︁
𝑠𝑘−𝑗(𝛼𝑙)− 𝑧𝑙

𝑘−𝑗

)︁2

at time step 𝑘 and angle 𝛼𝑙 for 𝑙 = 1, . . . , 𝐵 across a sliding window of
length 𝜏 . A large error has the intuitive meaning that measurements
deviate strongly from the estimate and an additional control point located
at 𝛼𝑙 might help to remove the systematic error10. The choice of whether
or not to insert a new control point can now be made by considering

max
𝑙=1,...,𝐵

𝐸𝜏
𝑘 (𝛼𝑙)

and only inserting a new control point if this value exceeds a predefined
threshold. This threshold should be chosen depending on the noise level of
the depth camera. Also, a maximum number of additional control points
10If the noise of the depth camera is not i.i.d. for all pixels, the error should be weighted

with the noise covariance matrix in order to calculate the Mahalanobis distance.
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could be chosen to limit the computational complexity. The location where
to insert the new control point is then chosen as

arg max
𝑙=1,...,𝐵 ,

𝛼𝑙 /∈{𝜈1,...,𝜈𝑈 }

𝐸𝜏
𝑘 (𝛼𝑙) ,

i.e., the location with the largest error that does not have an additional
control point so far. Even though we only introduce this method for the
two-dimensional case, it can easily be applied in three dimensions as well
by using pairs of angles rather than a single angle (see [O22, Sec. 6.1]).

Our experiments suggested that inserting too many additional control
points too quickly can cause problems because their initial uncertainty
is quite high and the nonlinearity of the problem increases as a result.
Stronger nonlinearities, in turn, are more difficult to handle for filters
based on explicit or implicit linearization. For this reason, we propose to
only insert one new control point at a time and waiting a few time steps
before inserting the next control point. The simulations we performed
indicate that a delay of 10 time steps produces good results.

4.4.2 Angular Uncertainty
One of the limitations of the approach proposed above is that the depth
measurements are limited to additive noise, i.e., there is uncertainty in
the measured depth but not in the angle at which the measurement was
obtained. This might be a reasonable assumption for certain depth sensors
(such as TOF cameras), but can be invalid for structured light approaches
such as the Kinect as changes in depth and changes in angle both cause
the projected pattern to shift.

It is, however, not difficult to lift this restriction by slightly modifying
the measurement equation. In the two-dimensional case, this yields

𝑧𝑘 =

⎡⎢⎣ 𝑠𝑘(𝛼1 + 𝜒1)
...

𝑠𝑘(𝛼𝐵 + 𝜒𝐵)

⎤⎥⎦
with zero-mean Gaussian noise [𝜒1, . . . , 𝜒𝐵]𝑇 ∼ 𝒩 (𝑥; 0,C𝜒

𝑘 ). In order to
perform estimation in the presence of non-additive noise, nonlinear filters
such as the UKF or S2KF make use of state augmentation by considering
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a stacked state consisting of the original state and the non-additive noise.
For this reason, implementation of this extension is not significantly more
difficult than the version limited to additive noise. Of course, this method
can once again be generalized to the three-dimensional case by using
pairs of angles [O22, Sec. 6.3]. The fact that angular uncertainty can be
introduced with little effort is one of the main advantages of the proposed
method compared to methods based on Gaussian processes [269].

4.4.3 Multiple Depth Cameras
So far, we only considered the case of a single depth camera. As we require
the coordinate system to be centered around the depth camera, it is not
straightforward to add more depth cameras. There is, however, a trick
that can be used to resolve this problem and facilitate the use of multiple
depth cameras. This trick consists in selecting one of the depth cameras as
the reference camera and choosing the coordinate system according to this
camera, i.e., the reference camera is at the origin of the coordinate system.
Now, we obtain the relative position and orientation of the other cameras
with respect to the reference camera by a camera calibration algorithm
such as [114], [282], [70], [117]. This relation allows us to transform the
depth measurements of the other cameras into the coordinate system of
the reference camera. This transformation might introduce non-additive
noise (even if the noise for every single camera is additive), which can be
dealt with by the methods introduced in the preceding section.

4.5 Evaluation

The proposed surface reconstruction approach was evaluated in multiple
simulations. All simulations used the S2KF [240] as the nonlinear filter,
where the number of samples was chosen to be ten times the state dimension.
As was shown in [O22, Sec. 7], the proposed method also works with a
regular UKF, even though results seem to be slightly worse because the
UKF uses a smaller number of samples than the S2KF.

In order to quantify the error of the surface reconstruction algorithm,
we consider the RMSE of the difference between the true surface and the
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(b) Dynamic case.

Figure 4.9.: Evaluation in two dimensions. Additional nodes are inserted
at time steps 𝑘 = 10, 𝑘 = 20, and 𝑘 = 30.

reconstructed surface at 𝑄 predefined evaluation angles 𝜂1, . . . , 𝜂𝑄. For
the two-dimensional case, the error at time step 𝑘 is given by

𝐸𝑘 =

⎯⎸⎸⎷ 1
𝑄

𝑄∑︁
𝑗=1

(𝑠𝑘(𝜂𝑗)− 𝑠true
𝑘 (𝜂𝑗))2

.

Here, 𝑠true
𝑘 (·) is a function representing the true surface, which is to be

reconstructed. In three dimensions, this error measure can be generalized
according to

𝐸𝑘 =

⎯⎸⎸⎷ 1
𝑄

𝑄∑︁
𝑗=1

(︀
𝑠𝑘(𝜂1

𝑗 , 𝜂
2
𝑗 )− 𝑠true

𝑘 (𝜂1
𝑗 , 𝜂

2
𝑗 )
)︀2
,

where (𝜂1
1 , 𝜂

2
1), . . . , (𝜂1

𝑄, 𝜂
2
𝑄) are 𝑄 pairs of evaluation angles. Intuitively,

these error measures quantify the error between the true and the recon-
structed surface in depth along lines emanating from the depth camera.
For the two-dimensional case, we choose 𝑄 = 26 evaluation angles, which
are equidistantly spaced over 72∘. In three dimensions, a grid with 26× 26
equidistant evaluation angles over 72∘×72∘ is used, i.e., a total of 𝑄 = 676
pairs of angles.
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(b) Dynamic case.

Figure 4.10.: Evaluation in three dimensions. Additional nodes are
inserted at time steps 𝑘 = 10, 𝑘 = 20, and 𝑘 = 30.

In the following, we consider four different scenarios with four different
surfaces. The surfaces are given by the equations

𝑠true
𝑘 (𝜂) = 11 + 2 · cos(9 · 𝜂) , (4.5)
𝑠true

𝑘 (𝜂) = 11 + 2 · cos(9 · 𝜂) + sin(0.1 · 𝑘) , (4.6)
𝑠true

𝑘 (𝜂1, 𝜂2) = 12 + sin(7 · 𝜂1) + sin(7 · 𝜂2) , (4.7)
𝑠true

𝑘 (𝜂1, 𝜂2) = 12 + sin(7 · 𝜂1) + sin(7 · 𝜂2) + sin(0.1 · 𝑘) . (4.8)

The surfaces (4.5) and (4.6) are used to evaluate the two-dimensional
case, whereas the surfaces (4.7) and (4.8) are used to evaluate the three-
dimensional case. In both cases, we consider static, i.e., time-invariant,
surfaces ((4.5) and (4.7)) as well as dynamic, i.e., time-variant, surfaces
((4.6) and (4.8)). These surfaces are depicted in Fig 4.6 and Fig. 4.8. The
number of landmarks is 𝑁 = 4 in the two-dimensional scenarios and 𝑁 = 8
in the three-dimensional scenarios. In the dynamic scenarios, a random
walk system model with system noise C𝑤

𝑘 = 0.1 · I2𝑁+𝑈 is employed.
For all considered scenarios, we choose the initial estimate 𝑥𝑒

0 uni-
formly random between 0 and 1. Furthermore, we set the initial covariance
as C𝑒

0 = 10 · I2𝑁×2𝑁 in the two-dimensional case, and C𝑒
0 = 10 · I3𝑁×3𝑁

in the three-dimensional case. The initial variance for additional control
points is 10. The noise covariance for position measurements is given by
Cpos

𝑘 = 0.01 · I2𝑁×2𝑁 , and Cpos
𝑘 = 0.01 · I3𝑁×3𝑁 , respectively. Moreover,

the noise covariance for depth measurements is given by Cdepth
𝑘 = I𝐵×𝐵.
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Chapter 4. Surface Reconstruction

The viewing angle of the depth camera is 60∘ and its resolution is 𝐵 = 25
for the two-dimensional case and 𝐵 = 252 = 625 for the three-dimensional
case11. The measurement angles are located on an equidistant grid. Addi-
tional control points are added automatically12 according to the method
introduced in Sec. 4.4.1 at the predefined time steps 𝑘 = 10, 𝑘 = 20, and
𝑘 = 30. The size of the sliding window is set to 𝜏 = 9. We use thin-plate
splines with a scaling factor of 1/1000 as the interpolation method (see
Sec. 5.4), i.e., the basis function is given by

𝜓(𝑟) =
{︃

(𝑟/1000)2 · log(𝑟/1000) , 𝑟 > 0
0 , 𝑟 = 0

.

We simulated a total of 100 Monte Carlo runs with 50 time steps
each. The results for the two-dimensional scenarios are shown in Fig. 4.9.
As can be seen, the error significantly decreases each time a new control
point is inserted in both the static and the dynamic scenarios. The
three-dimensional experiments yield very similar results (see Fig. 4.10).

All the experiments discussed above were carried out in simulations
based on synthetic data. In the future, an application to real data is
planned. Even though the proposed method is not that difficult to im-
plement, a lot of prerequisites are necessary. Before the algorithm can be
applied, we presuppose a hardware setup able to synchronously capture
position and depth measurements, an accurate calibration between all
involved sensors (stereo cameras, the depth camera, etc.), and a robust
algorithm for detecting and tracking landmarks. First steps in this di-
rection have already been undertaken in the context of a student lab
project [S6].

11The viewing angle of the depth camera is slightly smaller than the largest evaluation
angles, i.e., we evaluate the extrapolation ability of the proposed method as well.

12An evaluation of the algorithm where additional nodes are placed on a grid can be
found in [O22].
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This chapter covers the problem of image stabilization. The term
image stabilization has been used in several contexts and can refer to
various related, but different problems. A lot of literature focuses on
the problem of stabilizing shaky video sequences obtained by hand held
cameras [155]. In this case, the (global) movement of the camera is to
be smoothed or canceled, but the (local) movement of objects within the
scene is to be retained. In contrast, we focus on the image stabilization
that is necessary in robotic beating heart surgery. For this purpose, we
have one or more static cameras, i.e., there is no global movement. In this
case, the motions we want to remove are local deformations of the beating
heart. More specifically, we want to remove the movement of the heart,
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but maintain changes to its color, its texture, etc. A more general case of
selectively de-animating videos was considered by Bai et al. [16], where
certain types of motion are removed whereas others are maintained.

5.1 Problem Formulation
The idea of using image stabilization in the context of beating heart
surgery was already proposed by Nakamura et al. in 2001. They denoted
this process as visual synchronization and described the procedure as
follows [199, Sec. 3].

Visual synchronization implies to provide surgeons with
the stationary image of the moving point of reference on the
beating heart. The image processing system tracks the point of
reference and continuously obtains its position on the image.
The image is cut out from the image memory and relocated so
that the point of reference always remains in the same position
on the monitor screen. The similar function was used in the
camcorder to reduce image disturbances due to hand vibration
using gyro sensors or by simple digital image processing.

In the following, we do not want to limit ourselves to tracking a single
point of reference and relocating the image to keep this point stationary.
Instead, we consider the more general problem of calculating a nonlinear
transformation of the image in order to remove deformations rather than
just compensating for the translatory motion of a point of reference on
the heart surface. For this reason, the estimation of the movement and
deformation of the surface discussed in Chapter 4 is closely related to the
problem of image stabilization.

Motivated by the goal of presenting a stabilized image to the surgeon
during robotic beating heart surgery, we are considering the problem
illustrated in Fig. 5.1. At some time step in the past, we choose a reference
image. Now, at the current time step, the current image is obtained from
the camera. The goal of our algorithm consists in creating a stabilized
image, which uses color and texture information from the current image,
but shape information from the reference image1. In other words, the

1For this purpose, it is assumed that changes to the shape of the heart exclusively result
from the beating motion and that the surgery itself does not cause any significant
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reference
image

current
image

time

shape color,
texture

stabilized
image

Figure 5.1.: Illustration of the considered problem.

heart should appear as having the shape it had when the reference image
was recorded, but the current color and texture should be shown. This is
achieved by transforming the current color and texture from the current
shape of the heart to the shape from the reference image2.

Remark 12 (Application to Other Modalities)
In this thesis, we only consider the application of image stabilization to
color images obtained by cameras from visible light. However, it is equally
possible to apply the same techniques to other medical imaging modalities,
such as X-ray or ultrasound and other radiological methods. In other
applications, the proposed algorithms could also be used with near-infrared
images, thermal images, or even images obtained from electron microscopes.

A number of methods for image stabilization in a beating heart surgery
scenario have been proposed in literature. An early attempt by Gilhuly
was based on using a strobe light that is synchronized with the heartbeat
rather than relying on digital image processing techniques [74]. However,
experimental evaluation showed that this method does not work well in
practice and seems to be detrimental rather than helpful. Later, Gröger

changes to the shape of the heart. This assumption is justified in the case of CABG,
because this procedure does not involve deep cuts into the heart surface.

2In this thesis, we assume that motion blur is negligible. If motion blur cannot be
avoided by using a shorter exposure time, deconvolution approaches might be able
to digitally remove motion blur from the image [275].
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et al. proposed a 2D image stabilization technique based on locally linear
interpolation using a Delaunay triangulation [90]. A 3D method that tries
to globally stabilize the image by moving a virtual camera was presented
by Stoyanov et al. [248]. Some further research on 2D and 3D algorithms
based on thin-plate splines was performed by Richa [215]. Some results
on physics-based solutions in conjunction with B-Splines were published
by Ballmann [18]. In the following, we introduce a general 2D and 3D
approach that subsumes some of these methods, and evaluate the different
algorithms in multiple settings.

5.2 2D Stabilization Algorithm
In this section, we discuss a two-dimensional image stabilization algorithm.
Earlier versions of this algorithm were previously presented in [O19] and
[O21]. For the purpose of the proposed stabilization algorithm, we assume
that a two-dimensional image 𝑃𝑐 recorded at the current time-step is
given. Furthermore, we assume that there are 𝑁 landmarks on the heart
surface, which can be detected and tracked in the reference image as well
as the current image, and that the positions and correspondences of those
landmarks are given as

(𝑥1
1, 𝑥

2
1, �̄�

1
1, �̄�

2
1), . . . , (𝑥1

𝑁 , 𝑥
2
𝑁 , �̄�

1
𝑁 , �̄�

2
𝑁 ) ,

where [𝑥1
𝑗 , 𝑥

2
𝑗 ]𝑇 is the location of the 𝑗-th landmark (for 1 ≤ 𝑗 ≤ 𝑁) in the

current image and [�̄�1
𝑗 , �̄�

2
𝑗 ]𝑇 is the location of the same landmark in the

reference image.

Remark 13 (Landmarks)
In this chapter, we do not make any particular assumptions about the
nature of the landmarks. Some authors rely on natural landmarks, e.g.,
textured areas of the heart surface [204], [90], [202]. As tracking of natural
landmarks is not a trivial problem due to issues such as specular reflections,
blood, and smoke3, and textureless areas, some authors rely on artificial
landmarks instead [77], [226, Sec. 2], [221], [18]. Even though we only
consider artificial landmarks in the evaluation section of this chapter, all
the proposed methods could be applied to natural landmarks as well if a

3Smoke can, for example, be caused by electrocautery.
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reliable tracking algorithm for natural landmarks is assumed to be given. As
artificial landmarks introduce a number of complications into the surgery
(e.g., set-up time, issues of sterilization, possible occlusion of important
structures on the heart surface), an approach based on natural landmarks
might be preferable in the long run.

It should also be emphasized that tracking of the artificial landmarks
is not the focus of this chapter. Aside from the segmentation and detection
of landmarks, this also includes a multi-target tracking problem with the
resulting data association problem. We discuss this problem and a possible
solution based on the Kernel-SME method in detail in [O6]. Algorithms for
tracking natural landmarks can, for example, be found in [204], [90], [215].

Furthermore, we do not make any specific assumptions regarding
the locations of the landmarks. In order to achieve good performance, a
sufficient number (around 15-25 in the considered scenario) landmarks
is required, which should be reasonably evenly spread around the area of
interest. However, the landmarks are not required to be placed at specially
chosen positions or follow a particular pattern, such as a grid.

Based on these point correspondences, we seek to determine a function
Ψ : R2 → R2 that maps points in the reference image to points in the
current image 𝑃𝑐, i.e., the function Ψ(·) describes how each point has moved
compared to the reference image. Because we assume that the movement
of the landmarks is known, we require Ψ(·) to fulfill the interpolation
property

[𝑥1
𝑗 , 𝑥

2
𝑗 ]𝑇 = Ψ(�̄�1

𝑗 , �̄�
2
𝑗 ), 1 ≤ 𝑗 ≤ 𝑁 ,

i.e., all landmarks in the reference image are exactly mapped to their
counterparts in the current image. While there is, in general, an infi-
nite number of functions fulfilling this property, we want to determine
a function that is, in some sense, smooth and that performs a realistic
generalization of the movement of the landmarks to the movement of
points in between. Alternatively, it is possible to consider approximation
rather than interpolation, i.e., the equation

[𝑥1
𝑗 , 𝑥

2
𝑗 ]𝑇 ≈ Ψ(�̄�1

𝑗 , �̄�
2
𝑗 ), 1 ≤ 𝑗 ≤ 𝑁

only requires an approximate mapping of the landmarks in the reference
image to their counterparts in the current image. This way, Ψ(·) can
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become a smoother or less complicated function in exchange for a reduced
accuracy in terms of mapping the landmarks. An overview of several
interpolation techniques and approximation techniques is given in Sec. 5.4.
Once the function Ψ(·) has been obtained by one of the methods described
in Sec. 5.4, it is straightforward to map the pixel colors from the current
image 𝑃𝑐 to the stabilized image 𝑃𝑠. As Ψ(·) does not necessarily yield
integer coordinates, we use bilinear interpolation [88, Sec. 2.4.4] between the
four adjacent pixel values to determine the color of the pixel in the stabilized
image. The use of more sophisticated but also more computationally
demanding methods such as bicubic interpolation would also be possible.
Pseudocode for the proposed method is given in Algorithm 13. In this
algorithm, we only perform stabilization within the convex hull of all
considered points, because extrapolation outside the convex hull can
produce very unnatural warps of the regions around the edges.

Algorithm 13: Stabilization algorithm in two dimensions.
Input: current image 𝑃𝑐,
point correspondences {(𝑥1

𝑗 , 𝑥
2
𝑗 , �̄�

1
𝑗 , �̄�

2
𝑗 ) : 1 ≤ 𝑗 ≤ 𝑁}

Output: stabilized image 𝑃𝑠

obtain Ψ(·);
for [�̄�1, �̄�2]𝑇 ∈ 𝑃𝑠 do

[𝑥1, 𝑥2]𝑇 ← Ψ(�̄�1, �̄�2);
if [𝑥1, 𝑥2]𝑇 inside 𝑃𝑐∩convexHull([�̄�1

1, �̄�
2
1]𝑇 , . . . , [�̄�1

𝑁 , �̄�
2
𝑁 ]𝑇 ) then

𝑃𝑠(�̄�1, �̄�2)←bilinearInterpolation(𝑃𝑐, 𝑥
1, 𝑥2) ;

else
𝑃𝑠(�̄�1, �̄�2)← black ;

end
end
return 𝑃𝑠 ;

5.3 3D Stabilization Algorithm
As opposed to the two-dimensional approach above, we now consider a
three-dimensional solution. The algorithm discussed in this section was
first published in [O21]. There are several advantages of considering the
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stabilization problem in three dimensions. First, the heart is a three-
dimensional object and its deformation occurs in three dimensions. This
cannot adequately be modeled by a purely two-dimensional approach,
so a three-dimensional method might yield higher accuracy, at least in
certain cases. Second, the heart tracking has to be performed in three
dimensions anyway in order to control the movement of the robot, so
it may seem contrived to go back to two dimensions for the purpose
of image stabilization. Third, and most importantly, three-dimensional
stabilization yields a stabilized three-dimensional surface rather than a
two-dimensional image. This surface can then be shown to the surgeon
from different perspectives, e.g., to create a three-dimensional impression
of the intervention area by employing a stereo vision system such as the
one used in the da Vinci robot system [1].

In the three-dimensional case, we assume that a two-dimensional
image is given. Furthermore, we assume that three-dimensional point
correspondences

(𝑋1
1 , 𝑋

2
1 , 𝑋

3
1 , �̄�

1
1 , �̄�

2
1 , �̄�

3
1 ), . . . , (𝑋1

𝑁 , 𝑋
2
𝑁 , 𝑋

3
𝑁 , �̄�

1
𝑁 , �̄�

2
𝑁 , �̄�

3
𝑁 )

between the landmarks [𝑋1
𝑗 , 𝑋

2
𝑗 , 𝑋

3
𝑗 ]𝑇 , 1 ≤ 𝑗 ≤ 𝑁 on the heart surface

in the current frame and landmarks [�̄�1
𝑗 , �̄�

2
𝑗 , �̄�

3
𝑗 ]𝑇 , 1 ≤ 𝑗 ≤ 𝑁 on the

heart surface in the reference frame are given. We do not make any
assumptions regarding the methods used to obtain this image and the
three-dimensional point correspondences. For example, they could be
obtained with a stereo camera system, with a depth sensor (e.g., a TOF
camera) and a separate image sensor, or with a combined depth and
color camera such as the Microsoft Kinect. Consequently, the proposed
approach does not necessarily require multiple color images or a dense 3D
reconstruction.

Now, we seek to obtain a function Ψ(·) that maps points on the refer-
ence surface [�̄�1, �̄�2, �̄�3]𝑇 to points on the current surface [𝑋1, 𝑋2, 𝑋3]𝑇 ,
i.e.,

Ψ : R3 → R3, [𝑋1, 𝑋2, 𝑋3]𝑇 = Ψ(�̄�1, �̄�2, �̄�3) .

Similar to the two-dimensional case, we assume that the function Ψ(·)
fulfills the interpolation property

[𝑋1
𝑗 , 𝑋

2
𝑗 , 𝑋

3
𝑗 ]𝑇 = Ψ(�̄�1

𝑗 , �̄�
2
𝑗 , �̄�

3
𝑗 ), 1 ≤ 𝑗 ≤ 𝑁 ,
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i.e., landmarks on the surface in the reference frame are exactly mapped to
the corresponding landmarks in the current frame. Once again, it is also
possible to relax this condition and to consider approximation instead.

Furthermore, we assume that the projection function 𝑝(·) for the color
camera is known. This function is a mapping from three-dimensional points
[𝑋1, 𝑋2, 𝑋3]𝑇 in world coordinates to two-dimensional points [𝑥1, 𝑥2]𝑇 in
image coordinates according to

𝑝 : R3 → R2, [𝑥1, 𝑥2]𝑇 = 𝑝(𝑋1, 𝑋2, 𝑋3) .

This function can be obtained using standard camera calibration techniques
[114], [282]. Depending on the type of camera, 𝑝(·) may be a simple
projective mapping or a more complicated nonlinear function, which
considers effects such as lens distortion4.

Based on the functions Ψ(·) and 𝑝(·), we can summarize the stabiliza-
tion process in the three equations

[𝑥1, 𝑥2]𝑇 = 𝑝(𝑋1, 𝑋2, 𝑋3) ,
[𝑋1, 𝑋2, 𝑋3]𝑇 = Ψ(�̄�1, �̄�2, �̄�3) ,

[�̄�1, �̄�2]𝑇 = 𝑝(�̄�1, �̄�2, �̄�3) .

The first and the third equations describe the projections from points
on the current and the reference surface to the current and the reference
image, respectively. The second equation defines the mapping Ψ(·) from
the reference surface to the current surface. This function can be obtained
using interpolation as described above or taken from a physical model as
described in [31].

In principle, one could now choose a point [�̄�1, �̄�2]𝑇 in the stabilized
image, determine the point on the surface [�̄�1, �̄�2, �̄�3]𝑇 that would be
projected to this point in the stabilized image, propagate [�̄�1, �̄�2, �̄�3]𝑇
through the function Ψ(·) to obtain a point [𝑋1, 𝑋2, 𝑋3]𝑇 on the current
surface, and project this point on the current image to get [𝑥1, 𝑥2]𝑇 and
obtain the color for [�̄�1, �̄�2]𝑇 based on the color at the point [𝑥1, 𝑥2]𝑇 .
However, it is quite difficult to invert the projection function. For this
reason, we choose a point [�̄�1, �̄�2, �̄�3]𝑇 on the surface instead and project
it to [�̄�1, �̄�2]𝑇 . The other steps remain the same.

4Significant lens distortion is typically present in cameras with wide-angle lenses, such
as the cameras found in endoscopes.
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For this purpose, we need to generate a point cloud representing the
surface. As we do not know the entire surface but just a few landmarks,
an interpolation algorithm can be employed to interpolate the known
landmarks to obtain a continous surface. If the surface reconstruction
algorithm proposed in Chapter 4 is used, it is obviously also possible to
combine it with the image stabilization scheme and to use the estimated
surface instead.

The pseudocode for this procedure is given in Algorithm 14. Once
again, bilinear interpolation is used to calculate the color of pixels with
non-integer coordinates.

Algorithm 14: Stabilization algorithm in three dimensions.
Input: current image 𝑃𝑐,
point correspondences {(𝑋1

𝑗 , 𝑋
2
𝑗 , 𝑋

3
𝑗 , �̄�

1
𝑗 , �̄�

2
𝑗 , �̄�

3
𝑗 ) : 1 ≤ 𝑗 ≤ 𝑁},

points [�̄�1, �̄�2, �̄�3]𝑇 on the reference surface
Output: stabilized image 𝑃𝑠

obtain Ψ(·);
𝑃𝑠 ← black image;
for points [�̄�1, �̄�2, �̄�3]𝑇 on the reference surface do

[𝑋1, 𝑋2, 𝑋3]𝑇 ← Ψ(�̄�1, �̄�2, �̄�3) ;
[𝑥1, 𝑥2]𝑇 ← 𝑝(𝑋1, 𝑋2, 𝑋3);
[�̄�1, �̄�2]𝑇 ← 𝑝(�̄�1, �̄�2, �̄�3);
if [𝑥1, 𝑥2]𝑇 inside 𝑃𝑐 then

𝑃𝑠(�̄�1, �̄�2)←bilinearInterpolation(𝑃𝑐, 𝑥
1, 𝑥2);

end
end
return 𝑃𝑠 ;

5.4 Interpolation and Approximation
Methods

A variety of interpolation and approximation methods has been used for
the purpose of image warping, morphing, and registration. More detailed
discussions of these methods can be found in a number of surveys, such
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as the papers by Glasbey and Mardia [78], Wolberg [270], Amidror [5],
Zitova and Flusser [285], as well as Liu and Ribeiro [164]. In the following,
we introduce several methods that are commonly used in literature and
that can be applied to the problem under consideration. Because we do
not assume the landmarks to lie on a grid, we only consider methods that
can handle scattered data.

5.4.1 Affine Approximation
A fairly simple yet popular technique is the affine approximation. In this
case, the transformation of a vector �̄� ∈ R𝑛 to a vector 𝑥 ∈ R𝑛 is given by
the affine mapping

𝑥 = A�̄�+ 𝑏

where A ∈ 𝐺𝐿(𝑛) = {M ∈ R𝑛×𝑛 : det M ̸= 0} is an invertible matrix and
𝑏 ∈ R𝑛 is an arbitrary vector (see also [114, 2.4.3]). For 𝑁 given point
correspondences, the parameters A and 𝑏 can be obtained in closed form
as a solution to the linear least squares problem5

arg min
A,𝑏

⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
⎡⎢⎣ A�̄�1 + 𝑏− 𝑥1

...
A�̄�𝑁 + 𝑏− 𝑥𝑁

⎤⎥⎦
⃒⃒⃒⃒
⃒⃒⃒
⃒⃒⃒⃒
⃒⃒⃒
2

.

As can be seen, the affine approximation can easily be applied to problems
with an arbitrary number of dimensions. Once the parameters A and 𝑏
have been obtained, it is very fast to apply the transformation to many
points, because only a matrix multiplication and an addition is necessary.

Affine approximations subsume several interesting special cases. For
A = I𝑛×𝑛, the affine approximation describes a pure translatory transfor-
mation by the translation vector 𝑏. If A ∈ 𝑆𝑂(𝑛) and 𝑏 = 0, the transfor-
mation is a pure rotation by A. For A ∈ 𝑆𝑂(𝑛) and arbitrary 𝑏, affine
transformations are equivalent to rigid body motions, i.e., 𝑆𝐸(𝑛). Scaling
and shearing transformations can also be represented with appropriate
parameters A and 𝑏.

5Be aware that we are solving for the entries of A and 𝑏 whereas �̄�1, . . . �̄�𝑁 and
𝑥1, . . . , 𝑥𝑁 are known. It is easy to see that the problem is linear in all entries of A
and 𝑏, so it can be solved using the common technique based on the pseudo inverse.

172



5.4. Interpolation and Approximation Methods

By nature of their definition, affine approximations have a fixed
number of degrees of freedom, which is given by 𝑛 · (𝑛+ 1) for dimension
𝑛. In two dimensions, this corresponds to a total of only six degrees of
freedom. This number is inherently insufficient to parameterize more
complex functions, even if lots of landmarks are available. For this reason,
affine approximations are not really suitable for nonrigid scenarios, where
complicated deformations can occur.

5.4.2 Delaunay-based Locally Linear Interpolation
Another common technique is the locally linear interpolation based on
the Delaunay triangulation, which has been in use for decades, e.g., in
cartography [189]. This method has previously been applied to the problem
of image stabilization for beating heart surgery by Gröger et al. [90].

In the following, we consider two-dimensional points [�̄�1
𝑗 , �̄�

2
𝑗 ]𝑇 , which

are mapped to values 𝑥𝑗 (1 ≤ 𝑗 ≤ 𝑁), i.e., we obtain an interpolation
function Ψ : R2 → R. If an interpolation function Ψ : R2 → R𝑛 for 𝑛 > 1 is
desired, we can find an interpolation function for each dimension separately
and consider the stacked vector of interpolation functions. However, the
domain of Ψ(·) is always assumed to be two-dimensional in this thesis, as
generalizing the Delaunay triangulation to higher dimensions is not trivial
(but possible).

The idea of this interpolation method consists in calculating a De-
launay triangulation of the points and then using linear interpolation
within each triangle. A Delaunay triangulation is defined as follows [50,
Theorem 9.7].

Definition 17 (Delaunay Triangulation)
A triangulation of a set of points in the plane is called a Delaunay tri-
angulation if and only if the circumscribed circle of any triangle does not
contain any points in its interior.

The Delaunay triangulation is the dual graph of a Voronoi diagram.
There is a variety of efficient algorithms for calculation of the Delaunay
triangulation. An overview of multiple approaches and a comparison of
their computational requirements can be found in a paper by Su and
Drysdale [250]. Efficient algorithms allow a solution with complexity
𝒪(𝑁 log(𝑁)). Once the Delaunay triangulation is been carried out, a
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(a) Interpolation using the Delaunay tri-
angulation.

(b) Interpolation using RBFs (thin plate
splines).

Figure 5.2.: Examples of interpolation algorithms for R2 → R problems.

linear approximation can be performed within each triangle. If the points
with indices 𝑗1, 𝑗2, and 𝑗3 form a triangle, this is achieved by fitting a plane
through the points [�̄�1

𝑗1
, �̄�2

𝑗1
, 𝑥𝑗1 ]𝑇 , [�̄�1

𝑗2
, �̄�2

𝑗2
, 𝑥𝑗2 ]𝑇 , and [�̄�1

𝑗3
, �̄�2

𝑗3
, 𝑥𝑗3 ]𝑇 . An

example of such an interpolation is given in Fig. 5.2(a).
As is obvious, the resulting interpolation function is, in general,

continuous but not differentiable. This is a disadvantage compared to other
interpolation methods, which produce differentiable functions, sometimes
𝐶1 or 𝐶2, sometimes even 𝐶∞. However, the Delaunay triangulation
can be calculated very efficiently and the evaluation of the interpolation
function is in 𝒪(1), if we assume that it is known in which triangle the
argument is located6.

5.4.3 B-Splines
B-Splines are widely used in computer graphics, most commonly in the
form of NURBS (non-uniform rational B-Spline) [222]. When B-Splines are
applied to higher dimensions, tensor product B-Splines can be employed
to combine several one-dimensional B-Splines to a higher dimension, for
example for surface representation. However, these techniques are usually

6In our application, this information can easily be precalculated for all pixels in the
image.
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5.4. Interpolation and Approximation Methods

limited to data where all control points are on a grid. In order to apply B-
Splines for scattered data, we use a technique based on so-called Multilevel
B-Splines developed by Lee et al. [160].

The basic idea of this approach can be summarized as follows. As
interpolation of gridded data is easy, a regular grid is constructed based
on the scattered data. Obviously, the chosen grid size has a large influence
on the values on the grid and, as a consequence, on the resulting inter-
polation. If the grid size is small, this method results in a very accurate
approximation (or even interpolation), but the area of influence of the data
is very small and the resulting function is not very smooth. A large grid
size, in contrast, yields a very smooth function but this function might
only roughly approximate the data points.

In order to obtain a function that achieves both high accuracy and a
smooth function, a multi-layer grid is used. More specifically, a large grid
size is used to perform an approximation, and then ever smaller grid sizes
are used to approximate the remaining approximation error. This way,
even interpolation can be guaranteed if a sufficient number of layers is used.
In order to avoid the computational overhead of using several layers, Lee
et al. also propose efficient implementation techniques. Implementations
of this method are available in the SINTEF Multilevel B-spline Library7

and as part of a terrain rendering project8.

5.4.4 Radial Basis Functions

Radial Basis Functions (RBFs) are a very versatile interpolation technique.
A thorough discussion of the theory and applications of radial basis func-
tions can be found in the book by Buhmann [37]. The use of radial basis
functions for image warping has been discussed, for example, by Arad and
Reisfeld [7], and Bartoli et al. [21]. They have also been applied to surface
reconstruction in medical imaging [41]. Richa et al. have even used this
technique in the context of beating heart surgery [218]. An example of an
interpolation using RBFs is depicted in Fig. 5.2(b).

7http://www.sintef.no/upload/IKT/9011/geometri/MBA/mba_doc/
8http://codes-sources.commentcamarche.net/source/30292-affichage-d-un-

terrain-avec-un-clipmap-de-vertex-opengl-windows-vc-6
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Figure 5.3.: Basis functions to be used in RBF interpolation.

The idea of this interpolation method is to consider the function

𝑥 =
𝑁∑︁

𝑗=1
𝑐𝑗 · 𝜓(||�̄�− �̄�𝑗 ||) (5.1)

of �̄� ∈ R𝑛 to 𝑥 ∈ R, where �̄�1, . . . , �̄�𝑁 ∈ 𝑅𝑛 are key points, 𝑐1, . . . , 𝑐𝑁

are weights and 𝜓(·) : R≥0 → R is a basis function. The term radial
basis function stems from the fact that 𝜓(||�̄�− 𝑥𝑗 ||) only depends on the
distance between �̄� and 𝑥𝑗 . If a transformation to R𝑛 is desired, the
interpolation can, once again, be performed separately in each dimension.
As can be seen, the domain of the interpolation function can be of arbitrary
dimension.

For 𝑁 known pairs of key points and values (�̄�1, 𝑥1), . . . , (�̄�𝑁 , 𝑥𝑁 ),
the weights 𝑐1, . . . 𝑐𝑁 can be calculated by solving the linear system of
equations⎡⎢⎣𝑥1

...
𝑥𝑁

⎤⎥⎦ =

⎡⎢⎣𝜓(||�̄�1 − �̄�1||) . . . 𝜓(||�̄�1 − �̄�𝑁 ||)
... . . . ...

𝜓(||�̄�𝑁 − �̄�1||) . . . 𝜓(||�̄�𝑁 − �̄�𝑁 ||)

⎤⎥⎦ ·
⎡⎢⎣ 𝑐1

...
𝑐𝑁

⎤⎥⎦ .

Once the weights are known, the interpolation function (5.1) can be evalu-
ated for arbitrary points. One of the downsides of the RBF interpolation
method is that each evaluation of the interpolation function requires 𝑁
computations of 𝜓(·), which can be somewhat inefficient for a large number
of landmarks.
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5.4. Interpolation and Approximation Methods

A number of different functions can be used as the basis function
𝜓(·). A very popular choice are the so-called thin plate splines (TPS, see
Fig. 5.3(a)), which are given by the basis function

𝜓(𝑟) =
{︃
𝑟2 log(𝑟) , 𝑟 > 0
0 , 𝑟 = 0

.

Note that many authors omit the special case of 𝑟 = 0, even though
log(0) is undefined. For this reason, we define 𝜓(0) = lim𝑟→0+ 𝜓(𝑟) = 0.
One of the motivations for thin plate splines is the fact that the energy
functional∫︁ ∞

−∞

∫︁ ∞

−∞

(︃(︂
𝜕2Ψ
𝜕𝑥2

1

)︂2

+ 2
(︂

𝜕2Ψ
𝜕𝑥1𝜕𝑥2

)︂2

+
(︂
𝜕2Ψ
𝜕𝑥2

2

)︂2)︃
d𝑥1 d𝑥2

is minimized by the resulting interpolated function. This energy functional
describes the bending energy of a thin metal plate. For this reason, thin
plate splines are frequently chosen as the basis function, e.g., by [237],
[218], [21].

Another common choice is to use an unnormalized Gaussian [37, p. 4]
as the basis function (see Fig. 5.3(b)). In this case, we have

𝜓(𝑟) = exp
(︂
− 𝑟

2

𝜎2

)︂
,

where 𝜎 > 0 is a parameter determining the effective range of influence of
the basis function.

The thin plate splines as well as the Gaussian approach have infinite
support, i.e., every key point affects the value of the interpolation function
at every point in space. Sometimes, it is desirable to constrain the influence
of key points to a certain local area surrounding them. For this purpose, we
consider a locally supported basis function [7, Sec. 2.3] (see Fig. 5.3(c))

𝜓(𝑟) =
{︃

1−
(︀

𝑟
𝜎

)︀2 ·
(︀
3− 2 𝑟

𝜎

)︀
, 𝑟 < 𝜎

0 , 𝑟 ≥ 𝜎
,

where the parameter 𝜎 > 0 controls the range. Obviously, the support of
this function is a bounded set.
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Algorithm 15: RBF interpolation.
Input: radial basis function 𝜓 : R≥0 → R, key points �̄�1, . . . , �̄�𝑁 , values

𝑥1, . . . , 𝑥𝑁

Output: interpolation function Ψ
A← (𝑁 ×𝑁 matrix );
for 𝑗 ← 1 to 𝑁 do

for 𝑙← 𝑗 to 𝑁 do
A𝑗,𝑙 ← 𝜓(||�̄�𝑗 − �̄�𝑙||) ;
A𝑙,𝑗 ← A𝑗,𝑙;

end
end
[𝑐1, . . . , 𝑐𝑁 ]𝑇 ← A−1 · [𝑥1, . . . , 𝑥𝑁 ]𝑇 ;
Ψ←

(︁
�̄� ↦→∑︀𝑁

𝑗=1 𝑐𝑗 · 𝜓(||�̄�− �̄�𝑗 ||)
)︁

;
return Ψ;

Pseudocode for performing interpolation using radial basis functions
is given in Algorithm 15 (based on [O22, Algorithm 1]). It should be
noted that RBFs can also be used to perform approximation rather than
interpolation. This is achieved by setting the diagonal entries of A to
A(𝑗, 𝑗) = 𝜓(0) + 𝑜 for 𝑗 = 1, . . . , 𝑁 in Algorithm 15, where 𝑜 ≥ 0 is a
relaxation constant that affects how much the problem is relaxed [237]. Be-
cause RBFs cannot exactly represent affine transformations, some authors
also combine both approaches [7].

5.5 Evaluation
The proposed algorithms were evaluated in multiple settings. First, we
considered an ex-vivo setting with an artificial heart. Then, we applied the
algorithm to data from in-vivo experiments both with and without the use
of a mechanical stabilizer. Because tracking natural landmarks is out of
scope in this thesis, we use artificial landmarks in all experiments by placing
suitable markers on the heart surface. Furthermore, we perform these
experiments in an open surgery setting to avoid the additional practical
complications of a minimally invasive setup. However, we do not make any
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particular assumptions that would not hold in a minimally invasive setting
as well, so the evaluation results should translate very well to minimally
invasive surgery.

5.5.1 Evaluation Methods
There are several evaluation methods that can be used to quantify the
quality of an image stabilization algorithm [194]. In the following, we
consider three different methods, image differences, optical flow, and
landmark tracking. These methods were previously investigated in a
RISE9 internship project [S2] and the results were published in [O9].

A Image Differences

The idea of the image differences approach is to consider the difference
image between the current and the reference image. In order to evaluate
the quality of a sequence of images, we consider the average over all images
and all pixels. For color images, we also average over the red, green, and
blue color channels (see [O21, Sec. V]). This method has previously been
used by other authors, for example by Ballmann [18, Fig. 7.10], [30].

The main advantages of this method are that it is easy to implement
and can be calculated very quickly, so even an online evaluation is possible.
The resulting images are fairly easy to interpret and, as the image difference
is in no way related to the tracking and stabilization algorithms, the method
is quite fair and unbiased.

However, this method is very sensitive to specular reflections and
global changes in lighting. Furthermore, it does not work well in areas
of the image with (almost) uniform color because changes in position
are not reflected by changes in color. Another disadvantage is that the
result does not correspond to any intuitive real-world quantity, i.e., it is
possible to compare the stabilization quality of different algorithms, but it
is hard to determine if the resulting quality is good enough for a certain
application.

9Research Internships in Science and Engineering, https://ssl.daad.de/rise/en/
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B Optical Flow

When calculating the optical flow between two images, each pixel is assigned
a vector that describes its movement from the first towards the second
image, leading to a dense vector field. In order to use this technique as
an evaluation method for image stabilization, we calculate the optical
flow between the current and the reference image and only consider the
magnitude (but not the direction) of each vector. When considering a
sequence, we once again calculate the mean of the magnitude over all
images and pixels. This method has previously been used by Gröger [90].

Over the years, many algorithms for calculating the optical flow field
have been proposed (see, for example, the survey by Baker [17]). As optical
flow is not unique, different algorithms yield different results, making this
evaluation method somewhat arbitrary as it is subject to the choice of
algorithm. Furthermore, many of these algorithms are computationally
expensive10. In this thesis, we use the algorithm by Liu [163], which
has achieved some popularity because of its simplicity and because an
implementation is freely available11.

When using optical flow as the evaluation method, one has to be very
careful to avoid introducing a bias into the evaluation scheme. The reason
for this is that the optical flow algorithm and the tracking algorithm may
rely on similar (or even the same) features of the image to determine the
movement between the current and the reference image. Hence, the optical
flow evaluation might underestimate the residual motion in the image.
This is particularly a problem when natural landmarks are used, because
both algorithms may use the same texture features.

Despite these problems, optical flow has several significant advantages.
It is much more robust than image difference in cases where specular
reflections or changes in lighting occur. Furthermore, it performs much
better in areas with roughly uniform color as long as they are not completely
textureless. Another advantage is that the magnitude of the optical flow
field can be obtained in pixels, which can then be converted to a real-world
distance, i.e., the residual movement in mm.

10This is not really a problem if evaluation is performed offline.
11http://people.csail.mit.edu/celiu/OpticalFlow/
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C Landmark Tracking

The third evaluation approach considered in this thesis is based on tracking
a landmark in the stabilized image sequence. By analyzing the residual
motion of a landmark, the quality of the stabilization can be assessed.
This method was previously used by Ballmann [18, Chapter 7], [31].

For this type of evaluation, an accurate tracking algorithm is required.
As a result, this evaluation method is difficult to apply in conjunction with
natural landmarks that are difficult to track reliably. One important thing
to consider is the fact that this method induces a significant bias if the
same point that is used for evaluation was also used in the stabilization
algorithm. This problem can easily be solved by using a separate point
for evaluation and omitting this landmark in the stabilization algorithm.
A disadvantage of this method is that the stabilization is only evaluated
at one specific point (or a small number of points) rather than the whole
image. Thus, it may not really correspond well to the perceived effect of
the stabilization.

An advantage of this approach is that it is very insensitive to specular
reflections and lighting changes as long as tracking the marker remains
possible. Furthermore, the result can easily be converted into the real-world
movement in mm.

5.5.2 Ex-vivo
For the ex-vivo experiments, we used a heart phantom (see Fig. 5.4(a)).
This setup was originally created by Roberts [221] and later enhanced by
Ballmann [18]. It is based on a modified version of a phantom intended for
training purposes [214]. The heart phantom is made out of polyurethane
and is operated by air pressure, which can be controlled from a computer.
The current pressure within the heart is observed by a pressure sensor,
which can then be used in tracking algorithms. We have previously
used this phantom in [O19] and [O21]. In order to facilitate tracking of
landmarks, 16 artificial landmarks were created by gluing small green
paper circles on top of the heart surface.

Three Pike F-210 cameras [4] with full HD resolution, i.e., 1920×1080
pixels, and an IEEE 1394 connection were mounted approximately 50 cm
above the heart surface. The heart surface, as seen by one of the cameras,
is depicted in Fig. 5.5. The camera system was calibrated using the method
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(a) Ex-vivo. (b) In-vivo.

Figure 5.4.: Experimental setup.

suggested by Svoboda et al. [252]. We recorded a sequence of 400 images
at a frame rate of 23 fps. The pressure signal was set to 0.7 Hz at an
amplitude of 100 hPa.

For evaluation, we compare eight different stabilization methods. First,
we consider 2D stabilization with different interpolation functions, namely
affine approximation, B-Spline, piecewise linear, and locally supported
RBFs (with 𝜎 = 95), thin plate splines, and Gaussian RBFs (with 𝜎 = 100).
As a control, we also consider the unstabilized image, i.e., the unmodified
original as obtained from the camera. The results of this experiment for
the image differences evaluation metric are depicted in Fig. 5.6. The results
for all evaluation methods are given in Table 5.1.

All evaluation methods show a clear reduction in residual motion of the
affine stabilization compared to the unstabilized image and a large further
improvement by using one of the interpolation techniques. The differences
among the various interpolation techniques are fairly small. Additionally,
it can be seen that all evaluation methods provide a similar ability to
distinguish the quality between interpolation and approximation methods.
In this experiment, we also perform 3D stabilization in conjunction with
B-Spline interpolation, which performs slightly worse than 2D approaches.
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Figure 5.5.: The heart phantom as seen by one of the cameras. Note that
only the 16 large markers were used in the stabilization.

This result can be explained by additional errors incurred by imperfect
camera calibration and 3D reconstruction.

method image optical marker
difference flow tracking

unstabilized 0.186 0.612 2.26
2D affine 0.054 0.317 0.31
2D B-Spline 0.037 0.136 0.16
2D piecewise linear 0.039 0.191 0.15
2D RBF (locally supp.) 0.040 0.146 0.17
2D RBF (TPS) 0.038 0.184 0.17
2D RBF (Gaussian) 0.037 0.161 0.17
3D B-Spline 0.042 - -

Table 5.1.: Ex-vivo evaluation results.

5.5.3 In-vivo
A number of in-vivo experiments were performed on porcine hearts at
UniversitätsKlinikum Heidelberg12 (Heidelberg University Hospital13).
The setup is almost identical to the ex-vivo experiments (see Fig. 5.4(b)).
A median thoracotomy was performed to gain access to the porcine heart.
12https://www.klinikum.uni-heidelberg.de/
13http://www.heidelberg-university-hospital.com/

183

https://www.klinikum.uni-heidelberg.de/
http://www.heidelberg-university-hospital.com/


Chapter 5. Image Stabilization

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

unstabilized affine

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

B-Spline piecewise linear

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RBF (locally supported) RBF (TPS)

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

a
v
e

ra
g

e
 d

if
fe

re
n

c
e

 f
ro

m
 r

e
fe

re
n

c
e

 i
m

a
g

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

RBF (Gaussian) B-Spline (3D)

Figure 5.6.: Average difference between the reference image and the
stabilized image for the ex-vivo experiments.
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(a) Octopus stabilizer. (b) Stabilizer applied to a porcine heart.

Figure 5.7.: The mechanical stabilizer used in beating heart surgery.

Once again, three Pike F-210 cameras were mounted above the beating
heart in order to obtain visual information14. Similar to the ex-vivo ex-
periments, small green circular markers made out of paper were attached
to the surface. As the heart surface is quite wet, it was not necessary
to use glue on the real heart. The wet surface also causes a number of
specular reflections [92], [91], [11], which makes the in-vivo scenario more
challenging.

For the in-vivo experiments, we consider two cases. First, we use the
commercially available Octopus stabilizer [52] in order to mechanically
stabilize the heart (see Fig. 5.7). This way, the motion of the heart is
significantly reduced within the area of interest, and the image stabilization
algorithm only has to deal with a fairly small amount of residual motion.
Second, we drop the mechanical stabilizer and consider a heart that is
beating freely. In this case, the residual motion is significant.

A Heart With Mechanical Stabilizer

The in-vivo experiments using the Octopus stabilizer were conducted by
placing 14 artificial landmarks within the mechanically stabilized area15.
14There is a fourth camera in the center and a Kinect depth camera on the side. Neither

of these was used in the experiments discussed in this chapter. Results based on
the Kinect sensor were published in [O23].

15This experimental data was recorded by Evgeniya Ballmann, Andreas Hofmann,
Szabolcs Páli, and Gábor Szabó. Thanks go out to them for providing this data set.
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The heart as seen by the cameras is depicted in Fig. 5.8(a). Once again,
the camera calibration method by Svoboda et al. was used [252]. Then,
the same image stabilization algorithms as in the ex-vivo experiment were
applied. In previous work, we have conducted similar experiments on the
same data set [O19], [O21].

The results were evaluated using the image difference evaluation
method only. The resulting average difference images are depicted in
Fig. 5.9. Furthermore, we give the numerical results in Table 5.2. Similar
to the results for the phantom, the affine approximation reduces the residual
motion quite a lot, and the use of an interpolation function yields an even
better stabilization. The differences between the different interpolation
methods is small, and the 3D stabilization based on B-Splines provides
comparable stabilization to the 2D algorithms.

method image difference
unstabilized 0.133

2D affine 0.088
2D B-Spline 0.076
2D piecewise linear 0.076
2D RBF (locally supp.) 0.083
2D RBF (TPS) 0.077
2D RBF (Gaussian) 0.079
3D B-Spline 0.078

Table 5.2.: In-vivo evaluation results with stabilizer.

B Heart Without Mechanical Stabilizer

For the experiments without the mechanical stabilizer, 25 artificial markers
were spread across a larger area.16 The heart without the mechanical
stabilizer as seen by one of the cameras is depicted in Fig. 5.8(b). Because
there is no stabilizer, there is a lot of motion in the unstabilized images.
Once again, we applied all three proposed evaluation methods to assess the
performance of the stabilization algorithms. This data set was previously

16Thanks to Péter Hegedüs and Gábor Szabó for making this experiment possible.
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(a) The heart with a mechanical stabilizer
as seen by one of the cameras.

(b) The heart without the mechanical
stabilizer as seen by one of the cameras.

Figure 5.8.: Images of the heart obtained by one of the cameras of the
trinocular camera system.

analyzed as part of an internship project [S2], and some results were
published in [O9]

method image optical marker
difference flow tracking

unstabilized 0.336 0.302 12.71
2D affine 0.256 0.114 2.11
2D B-Spline 0.240 0.086 0.70
2D piecewise linear 0.240 0.084 0.73
2D RBF (locally supp.) 0.246 0.093 0.76
2D RBF (TPS) 0.240 0.086 0.71
2D RBF (Gaussian) 0.240 0.084 0.66

Table 5.3.: In-vivo evaluation results without stabilizer.

The results of the image difference method are shown in Fig. 5.10, the
results of the optical flow method are given in Fig. 5.11, and the results
of the stabilized marker tracking are depicted in Fig. 5.12. Numerical
results are listed in Table 5.3. Similar to the two previous experiments,
all evaluation methods suggest that the affine approximation yields a
significant reduction in residual motion compared to the unstabilized
image and that the interpolation methods further improve upon the result
of the algorithm based on affine approximation. However, the image
difference method seems to have some difficulties with this data set as
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Figure 5.9.: Average difference between the reference image and the
stabilized image for in-vivo experiments with mechanical stabilizer.
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a result of specular reflections, and only shows fairly small differences
between all considered methods, even though both the optical flow and
the stabilized marker tracking illustrate that the differences are actually
quite large.
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Figure 5.10.: Average difference between the reference image and the
stabilized image for the in-vivo experiment without mechanical stabilizer.
Note the errors in areas with specular reflections.
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Figure 5.11.: Optical flow magnitude of stabilized footage of the in-vivo
experiments without mechanical stabilizer. Note the errors in areas with
specular reflections.
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Figure 5.12.: Marker tracks after stabilization of the in-vivo experiments
without mechanical stabilizer. Because of incorrect associations in the
tracking algorithm, there are a few outliers.
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In this thesis, we have addressed several problems that arise as part
of the long-term goal of implementing robotic beating heart surgery with
automatic motion compensation. Even though there are still many unsolved
problems in this area, the contributions of this thesis constitute a significant
step towards this long-term goal.

In addition to the motivating application of robotic beating heart
surgery, many other applications can benefit from the techniques devel-
oped in this thesis. These applications include, but are not limited to
computer-aided medicine, robotics, autonomous vehicles, and augmented
or virtual reality. Particularly the work on directional statistics and filter-
ing is of a quite fundamental nature and is of interest in a wide range of
applications.



Chapter 6. Conclusions

6.1 Contributions
There are several significant contributions contained in this thesis. These
contributions stem from four different categories, directional statistics,
directional filtering, surface reconstruction, and image stabilization.

6.1.1 Directional Statistics
This thesis contains some fairly basic and fundamental contributions to the
field of directional statistics. First of all, we introduce a new method for
approximating the product of two wrapped normal densities with another
densities, thus allowing the use of wrapped normal densities in Bayesian
filters. The new approximation can be calculated with fairly low effort and
is shown to be superior to previous approximations. Second, we propose
several deterministic sampling schemes on the circle. This way, a circular
density can be approximated with samples, which allows easy propagation
through nonlinear functions. These sampling schemes are based on circular
moment matching and are applicable to a variety of circular densities.
Furthermore, they can be calculated in closed-form without any need for
numerical optimization, which makes their calculation very fast. Third,
we propose a novel probably distribution for partially periodic spaces, the
partially wrapped normal (PWN) distribution, which arises when some
dimensions of a multivariate Gaussian distribution are wrapped whereas
others are not. We derive some of the relevant properties (e.g., marginals)
of the new distribution and propose a new type of moment, which we call
a hybrid moment, to properly represent both the linear and the directional
parts of the distribution.

6.1.2 Directional Filtering
In this work, we also introduce new filters based on directional statistics for
different manifolds. First, we introduce novel circular filters, particularly
the first recursive filter based on the wrapped normal distribution as well
as the circular filters with nonlinear system model and with nonlinear
measurement model. In order to deal with nonlinear functions, we employ
the deterministic sampling techniques that we developed before. Second,
we propose a filter based on the Bingham distribution, which can be
applied to the two- and four-dimensional case. The two-dimensional case
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is of interest for circular problems with antipodal symmetry, whereas the
four-dimensional case can be applied to orientation estimation based on
quaternions. Third, we propose a filter for the torus, i.e., a two-dimensional
space where both dimensions are wrapped. Unlike state-of-the-art methods,
the proposed filter is able to properly take the circular-circular correlation
of the underlying problem into account. All of the proposed filters were
thoroughly evaluated and shown to outperform standard approaches. To
facilitate easy implementation, we give pseudocode for all the discussed
filters.

Finally, we considered the application of a circular filter to the problem
of heart phase estimation. For this purpose, we applied the proposed
methods to a real-world blood pressure data set and showed that the
approach based on directional statistics outperforms a simple standard
approach.

6.1.3 Surface Reconstruction
We contribute a novel algorithm for surface reconstruction. Unlike most
state-of-the-art methods, the proposed algorithm is based on a recursive
nonlinear filter and, hence, allows recursive tracking of the movement
and deformation of the surface. In addition, this approach allows the
explicit consideration and modeling of the uncertainties of all involved
sensors as well as the uncertainty of the resulting estimate. Particularly in
applications such as robotic surgery where reliability is of high importance,
information about the uncertainty of the estimate is crucial to guarantee
the safety of the patient. Whereas many methods found in literature
just rely on a single type of sensor, the proposed method is able to
combine measurements from different types of sensors. For this purpose, we
distinguish between two types of measurements, position measurements and
depth measurements. Because of their innate difference, they are treated
in separate measurement updates suited to their individual characteristics.
The proposed approach is applicable to both two-dimensional and three-
dimensional problems. It has been evaluated by means of simulations,
which show its performance in multiple scenarios. Additionally, first steps
towards an experiment based on real data have been taken.
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6.1.4 Image Stabilization
Finally, we have introduced several contributions to the problem of image
stabilization of beating heart surgery footage. A number of different
approaches have been proposed in literature, but we derive a more general
framework for 2D and 3D stabilization algorithms. Some of the previously
published approaches arise as special cases of this more general approach
to image stabilization. This allows us to consider stabilization separately
from tacking and to abstract from the underlying interpolation methods.
For this reason, we provide a comparison of some of the interpolation
methods that might be suitable for image stabilization. Moreover, we
consider several different evaluation methods as systematic evaluation of
image stabilization is somewhat neglected in a lot of research. Furthermore,
we analyze data from three experiments, an ex-vivo experiment using a
heart phantom, an in-vivo experiment with a mechanical stabilizer, and
an in-vivo experiment without a mechanical stabilizer.

6.2 Future Work
Recursive filtering based on directional distributions is a young field of
research and there are still many open questions. Filtering on the circle
was limited to unimodal circular probability distributions in this thesis.
While this is sufficient for many applications, in certain areas an extension
to multimodal circular filtering algorithms, e.g., based on mixtures of
circular densities might be important. The toroidal filter proposed in
this thesis is so far limited to the torus 𝑇 2 with two-dimensional surface
and to identity system and measurement functions. A generalization to
higher dimensions and to nonlinear system and measurement functions
constitutes an important open problem. Even more general, a filter based
on the newly proposed PWN distribution of arbitrary dimension could
widen the applicability of the proposed methods significantly. While the
PWN distribution is able to cover most manifolds of practical interest, the
group of rigid motions 𝑆𝐸(3) requires separate treatment. Therefore, the
development of filters for rigid motions is still an important open problem
that might be considered in future work.

The surface reconstruction algorithm proposed in this thesis has shown
good performance in simulations, but a practical evaluation based on real
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experiments has not been completed so far. Some implementation issues
related to real-world applications might also need to be resolved, e.g., how
to achieve real-time performance in a high-dimensional state estimation
problem. In order to improve the computational efficiency of the algorithm,
some further enhancements may be possible. Furthermore, the effect of
state augmentation as a result of introducing additional control points on
a nontrivial system model may still require more research.

Image stabilization in this thesis has so far only been performed
using artificial landmarks. As the discussed algorithms are not limited
to artificial landmarks, a generalization to natural landmarks is easy if
a robust algorithm for tracking these landmarks is available. Although
some work on algorithms of this type can be found in literature, it is
still difficult to achieve the accuracy necessary for robotic beating heart
surgery, particular in the presence of strong specular reflections due to the
wet heart surface. Therefore, further research on this problem may be of
interest.

In the long run, there is still a lot of work to be done to make
progress towards the application of robotic beating heart surgery. Either
an existing robot (such as the da Vinci [1]) has to be adapted to this
particular scenario, or a new robot suitable for robotic beating heart
surgery has to be developed. Beyond estimation of the heart’s movement,
a control algorithm needs to be developed in order to control the motion of
the robot. If the system is to be practically useful, very high standards of
safety are required to prevent accidental injury of the patient. Among other
things, this necessitates hard real-time implementations of all involved
algorithms. Furthermore, ease of use and a high robustness to changes
(such as the individual differences between patients) are essential.

When these issues are solved, a clinical evaluation has to be performed
to assess the effectiveness of the developed system. In this evaluation,
possible medical benefits to the patient as well as possible advantages
for the surgeon have to be examined. Furthermore, the cost involved
in performing the novel procedure has to be compared to the cost of
alternative methods. If the new method proves to be superior to current
techniques, it can be adopted into the clinical practice.
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APPENDIX
A

Evaluation of Special Function

A.1 Bessel Functions
For 𝑣 ∈ N0, the modified Bessel function of the first kind and of order 𝑣 is
defined as

𝐼𝑣(𝜅) = 1
𝜋

∫︁ 𝜋

0
exp(𝜅 cos(𝜃)) cos(𝑣𝜃) d𝜃

according to [2, eq. (9.6.19)]. There is also a series representation [2,
eq. (9.6.10)], which is given by

𝐼𝑣(𝜅) =
(︁𝜅

2

)︁𝑣 ∞∑︁
𝑘=0

(︀ 1
4𝜅

2)︀𝑘

𝑘! · Γ(𝑣 + 𝑘 + 1) .

Although it is not possible to evaluate this function in closed form,
numerical algorithms are available in most common programming lan-
guages [238].

A.1.1 Quotients of Bessel Functions
Sometimes, it is necessary to calculate quotients [64, eq. (3.36)]

𝐴𝑣(𝜅) = 𝐼𝑣(𝜅)
𝐼0(𝜅)
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Figure A.1.: Bessel functions and their ratio.

of Bessel functions1. Particularly the quotient 𝐴1(𝜅) = 𝐼1(𝜅)/𝐼0(𝜅) is
of interest as it appears in the formulas for first circular moment of the
von Mises distribution. Although this quotient only takes values in the
interval [0, 1] for all 𝜅 ≥ 0, direct calculation can become difficult for large
values of 𝜅 because both 𝐼1(𝜅) and 𝐼0(𝜅) can take very large values2. For
this reason, we recommend the use of an algorithm first proposed by [6].
In [O11], we have reformulated this algorithm in pseudocode to facilitate
an easy implementation (see Algorithm 16).

A.1.2 Inverse of Quotient of Bessel Functions
However, some of the proposed methods do not only necessitate the
calculation of 𝐴1(·), but also its inverse 𝐴−1

1 (·). In [O11], we proposed to
use Amos’ method (see Algorithm 16) in conjunction with the numerical
solver implemented in the MATLAB fsolve-function3, which is based on
the trust-region-dogleg algorithm. This method is very accurate, but not
particularly fast.

1Some authors such as Sra [238, Sec. 3] and Mardia [174, Appendix 1, eq. (A.11)] use
an alternative definition, where 𝐴𝑣(𝜅) = 𝐼𝑣/2(𝜅)

𝐼𝑣/2−1(𝜅) , which is useful for dealing with
von Mises–Fisher distributions of higher dimensions.

2With 64 bit double floating point numbers according to IEEE 754 [87], 𝜅 ≈ 700 is
the largest value of 𝜅 for which direct calculation is possible.

3http://www.mathworks.de/de/help/optim/ug/fsolve.html
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Algorithm 16: Algorithm for calculating the ratio of Bessel functions.
Input: 𝑣, 𝜅, number of iterations 𝑁 , 10 by default

Output: 𝐼𝑣+1(𝜅)
𝐼𝑣(𝜅)

𝑜← min(𝑣, 10);
for 𝑗 ← 0 to 𝑁 do

𝑟(𝑗 + 1)← 𝜅

𝑜+𝑗+0.5+
√

(𝑜+𝑗+1.5)2+𝜅2
;

end
for 𝑗 ← 1 to 𝑁 do

for 𝑘 ← 0 to 𝑁 − 𝑗 do
𝑟(𝑘 + 1)← 𝜅

𝑜+𝑘+1+
√︁

(𝑜+𝑘+1)2+𝜅2 𝑟(𝑘+2)
𝑟(𝑘+1)

;

end
end
𝑦 ← 𝑟(1);
𝑗 ← 𝑜;
while 𝑗 > 𝑣 do

𝑦 ← 1
(2𝑗/𝜅+𝑦) ;

𝑗 ← 𝑗 − 1;
end
return y;

In [64, eq. (3.47)], Fisher gives an approximation of 𝐴−1
1 (·) by a

piecewise rational function

𝐴−1
1 (𝑥) =

⎧⎪⎨⎪⎩
2𝑥+ 𝑥3 + 5𝑥5/6 , 𝑥 < 0.53
−0.4 + 1.39𝑥+ 0.43/(1− 𝑥) , 0.53 ≤ 𝑥 < 0.85
1/(𝑥3 − 4𝑥2 + 3𝑥) , 𝑥 ≥ 0.85

which is very fast to evaluate, but somewhat inaccurate.
Stienne proposed two approximations, the first one in [245]. For

𝜅 ≥ 0.6, 𝐴1(𝜅) is approximated according to

𝑥 = 𝐴1(𝜅) ≈ 1− 3
8𝜅 − 15

128𝜅2

1 + 1
8𝜅 + 9

128𝜅2

,
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Figure A.2.: Absolute error of different approximations for 𝐴−1
1 (·).

which stems from the asymptotic expansion in [127, p. 288]. It can also
be found in [174, p. 349, eq. (A.4)] and [2, eq. (9.7.1)]. For 𝜅 < 0.6, the
approximation is given by

𝑥 = 𝐴1(𝜅) ≈ 𝜅

2 ,

which can be found in [127, p. 290] and [174, p. 350, eq. (A.12)]. Solving
these two equations for 𝜅 yields

𝜅 ≈ −(9𝑥+ 15)

8𝑥− 64
√︁
− 17𝑥2

64 − 3𝑥
32 + 39

64 + 24

and

𝜅 ≈ 2𝑥 .

The other approximation by Stienne is given in [244]. It is also a
piecewise function, but it does not use the same approximations. For
𝜅 ≥ 0.6, the approximation

𝑥 = 𝐴1(𝜅) ≈ 1− 1
2𝜅
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is used, which can be found in [127, p. 290] and in [174, p. 350, eq. (A.13)].
For 𝜅 < 0.6, the approximation

𝑥 = 𝐴1(𝜅) ≈ exp
(︂
− 1

2𝜅

)︂
is used, which coincides with the 𝜅 ≈ 1/𝜎2 equation sometimes used for
approximately matching VM and WN distributions [127, Sec. 2.2.6]. Once
again, we can solve these two equations for 𝜅, and get

𝜅 ≈ 1
2(1− 𝑥)

as well as

𝜅 = − 1
2 log(𝑥) .

Unfortunately, both approaches by Stienne are very inaccurate according
to our experiments (see Fig. A.1(b) and Fig. A.2). As the approximation
by Fisher is much more accurate at a similar computational complexity, it
is to be preferred in cases where speed is more important than accuracy.

In [238], Sra proposed the use of a Newton algorithms to calculate
𝐴−1

𝑣 as part of a maximum–likelihood estimator for the von Mises–Fisher
distribution. This algorithm does not offer a closed-form solution, but
convergence is very fast. Sra suggests that two Newton iterations are
sufficient in many cases. Depending on the desired accuracy, a larger
number of iterations can be used. We give pseudocode in Algorithm 17.
If numerical stability for large values of 𝜅 is required, the ratio of Bessel
functions 𝐴1(𝜅) can be calculated using Algorithm 16.

There is some further discussion about calculation of Bessel functions,
their ratios and the inverse of their ratios in [64, pp. 50–52], [127, Appendix
A], [174, Appendix 1]. In [242, 2.3], Stienne also compared several methods,
the Newton method, Fisher’s method, and a Runge-Kutta approximation.
His results showed that the Newton approximation is the most accurate but
also the slowest, whereas Fisher’s method is the fastest but least accurate.
The Runge-Kutta approximation constitutes a compromise between speed
and accuracy.
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Algorithm 17: Newton algorithm for calculation of 𝐴−1
1 .

Input: 𝑥
Output: 𝜅 = 𝐴−1

1 (𝑥)
𝜅← 𝑥 · 2−𝑥2

1−𝑥2 ;
while not converged do

𝜅← 𝜅− 𝐴1(𝜅)−𝑥
1−𝐴1(𝜅)2−𝐴1(𝜅)/𝜅 ;

end

A.2 Hypergeometric Functions
Hypergeometric functions of matrix argument [118], [96] are of interest
because they appear as the normalization constants of the Bingham dis-
tribution and the Watson distribution. The relevant special case of the
hypergeometric function of matrix argument is given by

1𝐹1

(︂
1
2 ,
𝑛

2 ,Z
)︂

= 1
|𝑆𝑛−1|

∫︁
𝑆𝑛−1

exp(𝑥𝑇 Z𝑥) d𝑥 ,

where Z ∈ R𝑛×𝑛 is symmetric and |𝑆𝑛−1| = 2·𝜋𝑛/2

Γ(𝑛/2) is the surface area of
the hypersphere 𝑆𝑛−1. In [82, eq. (8)] together with the errata4, Glover
gives a formula based on multiple infinite series, which can be simplified
to (see also [O17])

𝐹 = |𝑆𝑛−1| · 1𝐹1

(︂
1
2 ,
𝑛

2 ,Z
)︂

= 2
√
𝜋

∞∑︁
𝛼1=0

· · ·
∞∑︁

𝛼𝑛−1=0

∏︀𝑛−1
𝑖=1 Γ

(︀
𝛼𝑖 + 1

2
)︀ 𝑧

𝛼𝑖
𝑖

𝛼𝑖!

Γ
(︁

𝑛
2 +

∑︀𝑛−1
𝑖=1 𝛼𝑖

)︁ ,

where 𝑧1, . . . , 𝑧𝑛−1 ≥ 0. This condition can easily be fulfilled by adding a
suitable diagonal matrix to Z. An implementation of a truncated version
of this formula can be found in libBingham [79]. Because evaluation of
this series is very costly for highly concentrated Bingham distributions,
Glover suggests the use of precomputed tables [82], similar to the tables

4http://www.mit.edu/~jglov/publications.html
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published by Mardia for the Bingham MLE problem [177]. It should be
noted that the Bingham normalization constant (as well as its derivatives)
reduces to a Bessel function for 𝑛 = 2, which can be used to simplify the
calculations in the two-dimensional case [O17].

Various other approximations for the hypergeometric function of
matrix argument have been proposed, for example saddlepoint approxima-
tions [152], [151], an approach based on a series of Jack functions [145], and
a holonomic gradient descent method [147]. There are also Laplace approx-
imations [38], a solution that reduces the calculation to a one-dimensional
integral [271], [272], and various other approaches [197], [198], [206].

There is a good overview of some of these approaches in [O4]. That
paper also proposes an implementation based on the saddlepoint approxi-
mations by Kume [152], [151], which is able to calculate the normalization
constant and the MLE sufficiently fast for many real-time applications.
Furthermore, the derivatives of the normalization constant can also be
calculated using a special case of a relation between the derivatives and a
hypergeometric function of higher dimension. This relation was originally
published by Kume in [153].

A.3 Quadrant-specific Inverse Tangent

Figure A.3.: The atan2(·, ·) function.

The quadrant-specific inverse tangent is motivated by the following
problem. For given 𝑥 = 𝑟 cos(𝜑), 𝑦 = 𝑟 sin(𝜑) where 𝑟 > 0, 𝜑 ∈ [0, 2𝜋), we
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want to calculate 𝜑. The common approach consists in considering the
quotient

𝑦

𝑥
= 𝑟 cos(𝜑)
𝑟 sin(𝜑) = tan(𝜑)

and then calculating 𝜑 = arctan(𝑦/𝑥) using the inverse tangent. However,
the function arctan : R → (−𝜋/2, 𝜋/2) does not return values on an
interval with length 2𝜋, but only 𝜋. Furthermore, the quotient 𝑦/𝑥 is not
defined for 𝑥 = 0. Therefore, this approach does not work in general.

For this reason, we define the function atan2 : R2 → [0, 2𝜋) according
to

atan2(𝑦, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan(𝑦/𝑥) , 𝑥 > 0, 𝑦 ≥ 0
arctan(𝑦/𝑥) + 2𝜋 , 𝑥 ≥ 0, 𝑦 < 0
𝜋/2 , 𝑥 = 0, 𝑦 > 0
3𝜋/2 , 𝑥 = 0, 𝑦 < 0
undefined , 𝑥 = 0, 𝑦 = 0
arctan(𝑦/𝑥) + 𝜋 , 𝑥 < 0

,

which gives correct results for all possible values of 𝜑. The function is
illustrated in Fig. A.3.

Other authors sometimes define atan2 as a function R2 → [−𝜋, 𝜋).
Furthermore, some authors such as [127, eq. (1.3.5)] use the notation
arctan*(𝑦/𝑥) instead of atan2(𝑦, 𝑥), which is somewhat misleading as 𝑥
may be zero and the quotient may be undefined. An implementation of
the atan2-function is part of the standard library of most programming
languages such as C, C++, MATLAB, Java, Python, etc.
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B

Quaternions

Quaternions are a generalization of complex numbers originating from
William Rowan Hamilton, which are commonly applied to modeling rota-
tions [113], [112], [150]. The set of quaternions is defined [112, Chapter 4]
as

H = {𝑎1 + 𝑎2𝑖+ 𝑎3𝑗 + 𝑎4𝑘 : 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ R}

with basis elements 𝑖, 𝑗, and 𝑘, which fulfill 𝑖2 = 𝑗2 = 𝑘2 = 𝑖𝑗𝑘 = −1. With
the mapping 𝑎1 + 𝑎2𝑖+ 𝑎3𝑗 + 𝑎4𝑘 ↦→ [𝑎1, 𝑎2, 𝑎3, 𝑎4]𝑇 , H is homeomorphic
to R4. Addition of quaternions is performed componentwise, i.e.,

(𝑎1 + 𝑎2𝑖+ 𝑎3𝑗 + 𝑎4𝑘) + (𝑏1 + 𝑏2𝑖+ 𝑏3𝑗 + 𝑏4𝑘)
=(𝑎1 + 𝑏1) + (𝑎2 + 𝑏2)𝑖+ (𝑎3 + 𝑏3)𝑗 + (𝑎4 + 𝑏4)𝑘

and the additive inverse of 𝑎1 +𝑎2𝑖+𝑎3𝑗+𝑎4𝑘 is given by (−𝑎1)+(−𝑎2)𝑖+
(−𝑎3)𝑗+(−𝑎4)𝑘. Hence, with the zero element 0+0𝑖+0𝑗+0𝑘, H together
with the addition operator is an Abelian group.

Similar to conjugation of complex numbers, the conjugate of a quater-
nion 𝑎 = 𝑎1 + 𝑎2𝑖+ 𝑎3𝑗 + 𝑎4𝑘 is given by 𝑎 = 𝑎1 − 𝑎2𝑖− 𝑎3𝑗 − 𝑎4𝑘. This
allows us to define the norm of a quaternion, which is given by

||𝑎|| =
√
𝑎𝑎 =

√︁
𝑎2

1 + 𝑎2
2 + 𝑎2

3 + 𝑎2
4 .

Multiplication of quaternions is given by the Hamilton product [112,
eq. (4.1)], which can be derived based on the axioms for 𝑖,𝑗, and 𝑘. It is



Chapter B. Quaternions

given by

(𝑎1 + 𝑎2𝑖+ 𝑎3𝑗 + 𝑎4𝑘) · (𝑏1 + 𝑏2𝑖+ 𝑏3𝑗 + 𝑏4𝑘)
= 𝑎1𝑏1 − 𝑎2𝑏2 − 𝑎3𝑏4 − 𝑎4𝑏4

+ 𝑖(𝑎2𝑏1 + 𝑎1𝑏2 + 𝑎3𝑏4 − 𝑎4𝑏3)
+ 𝑗(𝑎3𝑏1 + 𝑎1𝑏3 + 𝑎4𝑏2 − 𝑎2𝑏4)
+ 𝑘(𝑎4𝑏1 + 𝑎1𝑏4 + 𝑎2𝑏3 − 𝑎3𝑏2) .

It can be seen that 1 + 0𝑖+ 0𝑗 + 0𝑘 is the multiplicative identity element
and that the multiplicative inverse of 𝑎 is given by 𝑎−1 = 𝑎

||𝑎||2 . However,
as multiplication of quaternions is not commutative, we do not obtain a
field but a skew field as a result.

Unit quaternions are quaternions with unit norm, i.e., ||𝑎|| = 1. They
are of particular interest as they can be used to model arbitrary rotations in
R3. To rotate a vector [𝑣1, 𝑣2, 𝑣3]𝑇 ∈ R3 around the axis [𝑟1, 𝑟2, 𝑟3]𝑇 ∈ R3

(with 𝑟2
1 + 𝑟2

2 + 𝑟2
3 = 1) by angle 𝛼, we calculate

𝑎 · (0 + 𝑣1𝑖+ 𝑣2𝑗 + 𝑣3𝑘) · 𝑎 = 0 + 𝑣′
1𝑖+ 𝑣′

2𝑗 + 𝑣′
3𝑘

for the unit quaternion 𝑎 = cos(𝛼/2) + sin(𝛼/2)(𝑟1𝑖+ 𝑟2𝑗 + 𝑟3𝑘) to obtain
the rotated vector [𝑣′

1, 𝑣
′
2, 𝑣

′
3]𝑇 ∈ R3.

Thus, every unit quaternion represents a rotation in R3 and every
rotation in R3 can be expressed as a unit quaternion. It can be seen that
𝑞 and −𝑞 represent the same rotation. For this reason, the set of unit
quaternions is a double cover of 𝑆𝑂(3), the group of rotations in R3.
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