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Grouping straight line segments in real images* 

Hervd Poilvd 
Computer and Information Science 

University of Pennsylvania 

Abstract  

In this paper, we discuss straight line extraction as a part of the image 
interpretation process. Favoring the use of line drawings as intermediate 
data for the extraction, we survey the current methods, which all achieve a 
polygonal approximation of lines, and show that they are not appropriate 
for the identification of straight elements in a scene. We propose a new 
approach which uses a scale invariant criterion and is based on the char- 
acterization of prime segments in a line, and develop an original method 
for obtaining these prime segments. Results show that we significantly 
improve the performance of straight line extraction. The methodology we 
have used here is applicable to a large class of segmentation problems. 

1 Introduction 

Extracting straight lines has become a classic processing step in an image un- 
derstanding system, and the reasons for that are quite obvious. First, straight 
lines are mostly related to  the human-made environment. When extracting 
straight lines, we directly select image elements that are likely to  be the most 
useful for an immediate image interpretation : roads, buildings, etc. Consider- 
ing how arduous the further steps of the image understanding problem are, this 
is somewhat remarkable. 

A second reason is that straight lines are the simplest model of geometric 
structure. The extraction cost of straight lines is moderate and, from these 
lines, the  restoration of complex structures is manageable. Rectilinear struc- 
tures are recovered by grouping straight segments that  show simple geometric 
relationships; rectilinear structures form direct candidates for a class of usual 
scene elements. More generally, the recovery of closed straight contours defines 
polygonal elements that  serve as an  intermediate level for the interpretation 
process. Further tools are available that propose a classification of junctions 

'This work is partially supported by DARPA/ONR research contract No. N00014-85-K- 
0807. 



and which produce hypotheses for a three dimensional arrangement of these 
elements. Let us also mention the perspectivity analysis, that recovers partial 
organization of the scene from the finding of vanishing points; these points iden- 
tify the directions of the most noticeable parallel structures. Indeed, powerful 
techniques for image interpretation may be derived from a straight line model. 

Still, the present implementations of these techniques in image understand- 
ing systems are somewhat disappointing. They give very partial results: only 
a small fraction of the structures we know to  be described by a straight line 
model in the image are effectively recovered. 

An immediate explanation is the inherent imperfection of the straight line 
extraction process which produces broken lines and rarely restores any complete 
polygonal figure. So to improve the detection performance, recent work has 
promoted the direct extraction of straight edges in the original image. But we 
somewhat question the relevance of this work to  the present issue and we argue 
that we are facing more of a rnodelang problem than a detection problem. Scene 
objects are rarely simple polyhedral objects. Their description is so complex 
that we would like to handle only the main frame of the objects in the first 
steps of the interpretation process. For the considered objects we suppose that 
this main frame is a straight one. The search for rectilinear structures is indeed 
the search for these main frames. But there are many details of these objects, 
such as rounded corners, substructures, and additional parts, that pertain to 
successive levels of complexity of the description. So, the main frame cannot 
a t  once be recovered in full simply because there is no way that a straight line 
approximation "absorbs" these details. 

Until now there has been no study of a systematic reconstruction of the suc- 
cessive description levels.' Many authors have tried to  use geometric evidence 
as a way to recover linear constructions from fragmented data. Reynolds and 
Beveridge [7] proposed, for the identification of rectilinear structures, to  test 
geometric properties such as spatially proximate collinearity, parallelism and 
orthogonality. Mohan and Nevatia [4] proposed the finding of intermediate U 
structures, restoring three sides of rectangles. Herman and Kanade [2] chose 
to  extend the "legs" of the junctions so as to  meet related junctions. These 
attempts have been only partially successful because these strategies produce 
numerous ambiguous line relationships that we are unable to resolve. We make 
the following preliminary observations: 

1. It appears that the geometric clues alone are not selective enough. Using 
as soon as possible a composite description, i.e. a description that is not 
only founded on contour geometry, is likely to greatly improve the pruning 
of multiple hypotheses. 

2. Most of the attempts for recovering linear structures work on a set of iso- 

'The proposed hierarchical description shouldn't be confused with another classic decorn- 
position: volumes, plane surfaces, segments, vertices, etc. 



lated straight segments, and perform the search for geometric relationship 
in an exhaustive way. This is inefficient. We need an adjacency graph on 
the straight segments map, and also need to develop heuristic searches on 
this graph. 

3. A large amount of segments are processed in parallel while we look for a 
few meaningful structures. We need an evaluation of the meaningfulness 
of the straight line segments, so that we can focus the search around the 
major straight ones. 

Considering observations (1) and (2), we concluded that it is profitable t o  
perform the straight line extraction in two steps: first, apply a classic processing 
that produces a line drawing, then extract straight segments from this line 
drawing. The underlying line drawing provides a natural adjacency graph for 
the extracted segments. The line drawing structure describes some perceptual 
organization in the image. The following analysis of this image organization may 
be performed in parallel with the search for rectilinear elements because they 
share the same support. We thus take advantage of a composite description. 

We have reviewed the methods that are currently used for extracting straight 
lines from line drawings. These methods were designed for producing a piece- 
wise linear approximation of lines. But, we found that they don't provide a 
relevant analysis of the straight lines' meaningfulness and as a result they are 
not appropriate to the present problem. The objective of this paper is t o  de- 
velop this point - to show that we address here a specific problem that we call 
straight line identification - and to propose a complete new method that is 
based on a proper evaluation of the straight segments. 

We begin by briefly describing the piecewise linear approximation problem 
and the related algorithms that were proposed by Ramer [6] and Pavlidis [5] 
(section 2). Then we will present the purposes of straight line identification 
and show how they differ from the previous ones (section 3). This analysis will 
lead us to define a new criterion for evaluating the straightness of the candidate 
segments (section 4). In the next section we develop a method in which we fit 
maximum straight segments on a line, and the resulting construction will be 
called a tessellation (section 5). We further describe an efficient algorithm for 
the implementation of the proposed method (section 6). Finally we present the 
results and discussion (section 7). 

2 Piecewise linear approximation methods 

Early work in picture processing brought up the question of having an effi- 
cient line drawing representation which compacts data and provides a handy 
description. With various formulations to minimize the number of vertices or 
the approximation error along the line, they approximated a line contour by a 



polygon. In fact, suboptimal methods that led to reasonable computations were 
preferred. 

For evaluating the fit between a line segment and its straight line approxima- 
tion various error norms were tested. We will detail some of them and introduce 
the following notation: 

Let L = {g}ojilN be a line of connected points. Sab = { ~ } a s ; l b  is a 
segment of the line, and 7 = {Sab)o<a<a<N - - is the set of all segments of the 
line. 

Ramer proposed a simple and efficient algorithm that achieves a recursive 
splitting of the line, for a given bound A. of the approximation error. It 
uses a maximum error norm: 

ab - max II($-fia)AGabll with Gab = Fb - F a  

em(S ) - asisb IIFb - Fall 
is the unit vector of the straight line defined by the endpoints of the 

segment. 

If the approximation error is higher that the bound A,, then the segment is 
split a t  the point of maximum deviation, and the same test is performed on 
the resulting subsegments. The positioning of the partition points proves 
to be satisfactory. 

Pavlidis proposed a split-and-merge algorithm that makes use of an initial 
partition of the line, inserts other breakpoints, then processes the merges 
as long as they satisfy the fit condition Ao. Eventually, it may adjust 
some breakpoints. It applies a mean square error norm: 

where is the center of gravity of the line: 

The choice of this error norm offers two a d v a n t a ~ s .  First, it considers the 
finding of an optimal straight line, defined by (&b, q b ) ,  and gives explicit 
formulae for computing this line. Second, these formulae are expressed in 
terms of the first moment and the moment of inertia; thus the merging 
of line segments calculation is efficient because the moments are additive 
data. 



3 The straight line identification problem 

3.1 Description 

A straight line world is a convenient abstraction; numerous geometric tools 
for image interpretation have been developed for it. We would like to know 
which parts of the line drawing may be identafied as straight lines, and thus 
may benefit from these tools. In this problem of straight line identification, 
we want to recover effective straight features of the scene, so that we can then 
apply object reasonning such as the finding of vertices, junctions, plane surfaces, 
volumes, etc. 

Let's point out the difference between the straight line identification prob- 
lem and a piecewise linear approximation. We don't expect the full line to be 
partitioned into straight line segments, and there is no point in having a global 
optimization over the line. On the other hand, the identified straight segments 
carry more semantic information. As an example, if we found two straight 
segments that adjoin but are not congruent, they identify a corner in the scene. 

There is much uncertainty in the decison of marking off a part of the line 
as being related to the presence of a straight element in the scene. Our only 
evidence is the geometry of the line drawing. Actually, even originally perfect 
straight lines have to be somewhat recovered because the intrusion of noise 
throughout the successive processings of the picture deteriorated these lines. 
The proposed approach to this problem is to merely state that the straighter 
the segments in the line drawing, the more likely they stand for straight elements 
in the scene. This is the minimal assumption in the absence of any information. 

Thus, we need to define a criterion for evaluating the straightness of a seg- 
ment, and will show now a distinctive property of this criterion. 

3.2 A property of scale invariance 

Up to now, we have refered to straightness as a somewhat intuitive notion. 
The intuition suggests that we consider the relative proportions of the line, i.e. 
the straightness evaluation is scale invariant. This is supported by a strong 
argument that if we want straightness to provide a relevant characterization 
and we want to use it as a clue for extracting some feature elements in the 
scene, then the same element should be given as much as possible the same 
straightness value whatever the scene viewpoint. The scale invariance ensures 
some viewpoint independence because the straightness value will not vary with 
the distance. But this still remains an approximation, for there is no way 
to retrieve the effects of foreshortening: foreshortening in the segment's main 
direction will decrease the apparent straightness whereas foreshortening in its 
normal plane will increase it. Anyway, we are forced to seek a criterion that is 
scale invariant and to  reject the fit criteria that were defined for the piecewise 
linear approximation problem. This definitely shows that we here address a 



distinct problem. 
The scale invariance is likely to increase the difficulty of the search for 

straight segments since we may find segments that qualify for straightness at any 
scale. Weiss and Boldt [8], in a quite related problem, invoked the same scale 
invariance constraint and proposed a method that discretizes the scale range in 
a hierarchy of scale levels as a way to perform the search. We will present here 
a method that makes it possible to avoid such a discretization. 

Obviously, the ability to recover straight segments at various scales is some- 
what bounded by the effects of the pixel quantization. We will study further 
these limits. 

4 Definition of a straightness criterion 

4.1 Description of the criterion 

We chose to define our criterion as the ratio of two homothetic functions of the 
segment geometry, thus respecting the constraint of scale invariance. These two 
functions roughly describe the approximation error and the elongation of the 
segment line. 

The error is computed according to a least square error calculus. As de- 
scribed in section 2, this calculation is set up as a minimization problem that 
silmutaneously gives the mean error and the infinite straight line on which to 
locate the identified straight segment. For bounding this segment, we chose to 
project onto this line the end points of the original segment and compute the 
elongation as the distance between these projected points. 

The definition of the criterion is quite natural, and it has proved to behave 
well. We will now present two important points that slightly modify the criterion 
formulation. 

4.2 The effects of pixel quantization 

I t  appears that if we apply our criterion to the smallest of all segments - those 
defined between two connected pixels - they are found to be perfectly straight. 
This is obviously an artefact of the pixel quantization. The quantization sup- 
presses the subpixel agitation of the line while it introduces some location error 
for the points sampled along the line. It is most difficult indeed to propose a 
model of the quantization process, which is the transformation of virtual contin- 
uous lines in pixels, as a unique model for the various algorithms that produce 
line drawings. As a general rule, we are not able to retrieve the quantization 



effects that are highly discontinuous and anisotropic. A simple and quite ef- 
fective solution is to  assign a minimal "thickness" to any line. For example, in 
a 4-connected representation, the horizontal and vertical lines are not favored 
against diagonal lines that have a staircase profile. That is: 

Considering the worst case, we chose E O  = 0.5. 
If now we test, using the criterion, the ability to  detect the same straight 

feature a t  various scales, we can verify the limits imposed by the pixel quanti- 
zation. For example, suppose we are looking for segments that attain a 0.025 
straightness ratio; these segments should be a t  least 20. long. No smaller seg- 
ment can be recognized as significantly straight. Yet that allows for quite a 
large range of elongation (> 30) in a 512 by 512 image. 

4.3 Taking into account the imprecision of line drawings 

Actually, there are other artefacts that may affect the straightness evaluation. 
The various algorithms that produce line drawings show very different behavior: 
while a Canny edge detector will render noisy weak edges by giving wandering 
or disrupted lines, a region growing process may draw perfect straight lines 
while bounding poorly discernible regions. We still haven't looked at how the 
performance of the line drawing process affects the validity of the results of the 
straightness calculation, but we obviously first rely oil this process for giving 
meaningful lines (i.e. lines that may be supported by some physical interpreta- 
tion). Next, we must consider that the positioning of these lines is not perfect. 

We propose t o  estimate the location uncertainty of the lines while producing 
the line drawing and keeping track of this information. One difficulty is that in 
the algorithms that are currently used, the location uncertainty is not appar- 
ent and is not easily derived2, and bounding the positioning error may not be 
appropriate as this error is likely to vary a great deal along the lines. 

Having an estimation of the location uncertainty, we then consider that this 
uncertainty decreases the ability to  recover straight segments in the image. We 
will integrate this information in the straightness calculation by expressing some 
local thickness of the line. Let 3; be the variance estimation along the local 
normal to the line we suppose we have identified, we define then the following 
error: 

ez(Saa) = % c!=, - Z) A 41' + c!=, A CI2 
( b  - a + 1) 

2There is some relation with the local significance or strength of the line, that is a quite 
simple amplitude measure (gradient magnitude, etc.), but not any strict dependency. 



5 Building a straight segments tessellation 
We are now given the following problem. We have defined a criterion for evalu- 
ating the straightness of a segment and have assumed some monotonic relation 
with a likelihood function. We want to extract segments that have a good 
chance to reveal straight features in the scene. So, we choose to apply a confi- 
dence threshold on straightness values for our segment selection; the choice of 
the threshold is the result of a tradeoff between straight features of the scene 
to  be missed and wrong segments to be selected. The issue then is to produce 
a partial description of the line built on segments that qualify for straightness. 

The first experience is that wherever we find any valid straight segment, we 
are likely to find numerous other valid ones that all intersect with it. We must 
use some principle of exclusion. We propose the following definition: S is a 
prime segment if 

VS' E T ,  s n s l  # 0 6 c,(S1) > c,(S) 

These segments achieve some local maxinium of straightness. But some of 
them may be not significantly straight. Also, notice that this definition doesn't 
ensure that the line is fully covered by the set of prime segments3, but that 
won't affect our approach. 

First, we propose to extract the prime segments of a line, producing what 
we call a tessellation by analogy with the 2D process of interlaying little squares 
like a mosaic work; then to retain only the segments that satisfy the threshold 
condition. We thus, in some way, achieve a partition where parts are either 
straight segments or are recognized not to be described by a straight line model. 
The parts not described by the straight line model are left aside. 

In an overview of the line partitioning problem, Fischler and Bolles [I] pro- 
posed the two principles of stability, and complete, concise and complexity- 
limited explanation as the foundation of any competent method. Regarding 
these principles we argue that: 

The produced partition is stable while tuning the confidence threshold. 
This results in the deletion of some straight segments or the creation of 
new ones. This partition is also stable under small perturbations of the 
line that produce continous moving of the segments.* 

For the explanation of the line, we don't intend to give a complete expla- 
nation with this partition, since it uses the sole straight line model. But 
it defines which parts of the line are related to this model and which are 
not. 

3Actually, such cases occur very rarely. Points that do not pertain to prime segments 
are those such that vs E T / p ' k  E s, 3s' E T / ( p ' k  $?sf, S nS' # 0, and c s ( S 1 )  < c s ( S ) )  . 

'In some cases, when there are two resolution levels that have quite similar straightness 
significance, our tessellation, as it inclines towards the best straightness value, may switch to 
the other level. 



We explored other choices for building a tessellation for a straight segments 
description and found that a main alternative is to choose the longest segments 
that qualify for a given straightness Co, that is to define a prime segment S : 

c,(S) < Co and VS' E 7, (81-1s' # 0 ~ n d  c,(S1) < Co) =+ l (S1) < l (S )  

and build the resulting tessellation. Still, whereas the previous tessellation 
depended only on the geometry of the line, this one is dependent on the confi- 
dence threshold (for the setting of which we have few clues for now) and acts 
as a reduction of the straight line description complexity. For this reason, we 
think the first proposed tessellation to be a more intrinsic description and more 
appropriate for the task of identifying straight line features. 

6 Algorithm description 
After having exposed the formal construction of the tessellation, we present an 
algorithm for its implementation. 

6.1 The algorithm frame 

We use the following strategy : we start with an initial partition and then build 
a pyramidal structure made of successive merges. We will soon show that the 
choice of the initial partition and the choice of the criterion for ordering the 
merges are such that the subset of segments formed is likely to  contain the 
prime segments we are looking for. The pyramid built is an unbalanced binary 
tree. While merging, we compute the straightness value of each new segment, 
and keep record of the best straightness value that has been found amid all 
the underlying segments. Having pursued the merging process till it gives a 
unique segment for the whole line, we are finally able to produce the suggested 
tessellation in a single pass implementing a depth-first search in the tree down 
to  the point where there is no included segment of better straightness. 

6.2 A principle of local evidence 

Let us now first explain the criterion defined for ordering the merges. Suppose 
that we are in the current state of the merging process and we consider the 
decision of merging a segment with either of its adjacent neighbours. What 
is the risk? If this segment is to be a prime segment (in the tessellation we 
suppose we know from elsewhere) or if the three segments pertain to the same 
prime segment, there is no risk and the merges may be carried out in any order. 
But if this segment and its left neighbour are parts of the same prime segment 
while its right neighbour belongs to another prime segment, then the risk is 
that if we merge it f i rst  with its right neighbour we won't be able to recover the 
proper tessellation. 



Figure 1: Case contradicting the principle of local evidence 
In this case successive noise discontinuities divide the line in three parts. (a). 
When increasing the allowable error for merging, parts 2 and 3 are merged first 
( c ) .  As a result the final tessellation distinguish three segments (d), whereas 
for the optimal partition parts 1 and 2 should be merged (e) .  

We need something for guiding our decision and at this point we must in- 
voke some principle of local evidence. We propose the following: assume that 
at  various resolutions, defined as successive levels of approximation error, the 
"fracture" between two prime segments provides sufficient evidence for keeping 
them distinct in the merging process. Cases that contradict this assumption 
are cases where we locally find two peaks of straightness significance at differ- 
ent resolutions that result in two overlapping partitions; we have built such a 
counter example (fig. I) ,  but this is somewhat artificial. So, we choose to rely 
on this assumption, and we process the merges by continuously increasing the 
allowable error along the line. The prime segments appear then disappear when 
included in longer segments. They will be recovered by the depth-first search 
stage. 

Interestingly, the principle of local evidence was also proposed by Lowe [3] for 
detecting meaningful1 groupings in a random field of points as a way to reduce 
the computationnal complexity, and the authors argued that human vision in 
similar conditions, makes use of the same principle. 

Regarding the choice of the initial partition, the intent is to do a little bit 
better than merely starting with the elementary partition made of unit segments 
between connected pixels. For that, we build a partition in which we limit the 
maximum error norm of the linear approximation to the error level which we 
know results from pixel quantization. In that way the produced set of straight 



segments is indeed a valid hypothesis of the line (i.e. it is rendered by the 
present line in a pixel representation). 

6.3 Complexity analysis 

Let N be the total number of pixels of the line. The setting of the initial partition 
gives a number of segments N' = rrN (typically, rr = 0.1). The algorithm then 
proceeds in successive merge operations. The number of these merges is in the 
worst case - N' (when the resulting tree is fully unbalanced). At each merge 
step, we have to select the merge with the lower error value and update the the 
set of remaining merges for the next step. We propose so to sort the candidate 
merges in a height balanced binary tree, in wich the insertion or the deletion 
of a merge will cost O(1og n), where n is the number of nodes in the tree. In 
our case, 0 5 n 5 N'. As a conclusion, the complete cost of the algorithm is 
O(n1ogn). 

7 Results and discussion 
This algorithm has been implemented and tested on various images. We present 
here a comprehensive analysis of the results obtained from one of these images: 
an aerial view of the campus (fig. 2). 

The segmentation is produced by a region growing algorithm. The region 
boundaries define a lattice structure, and we apply our algorithm to  the lattice 
branches. For successive values of the straightness threshold, we display the 
selected segments. Parts of the main frames appear first; indeed, we could 
expect that the main frames provide the most significant straight segments. 
Then appear other segments that complete these frames or introduce new levels 
of complexity of the description. And, the lower the straightness value, the 
more we find segments that are falsely identified as far as we can tell from the 
original. (fig. 3). 

We then compare these results with those given by applying the Ramer 
algorithm. In order to make things as equal as possible for the comparison, 
but according to our standards, we have reevaluated the segments of the Ramer 
partition with our criterion and displayed the segments that statisfy the same 
straightness condition (fig. 4 and fig. 5). A detailed inspection of these results 
shows that our method ensures a better positioning and identifies segments that 
are approximately recovered when applying the Ramer algorithm, but not for a 
common value of the error bound choice. 

We would like to have some quantitative measure of the performance of our 
method, relative to the previous ones. We could count the number of extracted 
segments as a function of the straightness threshold ct 



and we display such a graph for the set of prime segments {Sp i }  we have ex- 
tracted (fig. 6); but this doesn't provide an effective evaluation of the other 
methods: whereas the principle of exclusion we have used ensures that the prime 
segments identify distinct straight parts of the line, other methods may produce 
some segments that pertain to the same straight part (i.e. the resulting merge 
of these segments has a better criterion value than any of its subsegments). This 
is obviously a faulty partition, as it has broken a straight entity and thus will 
mislead the interpretation of the line, but there is no "natural" way of penalizing 
such errors. 

We propose to assign a unit weight to the distinct straight parts found from 
the extracted segments, and a weight xi to a segment Si as the fraction value 
of the straight part it belongs to. We then express: 

the correctness of the partition a s  the ratio 

function of the straightness threshold ct (by construction, the prime seg- 
ments set is fully correct). 

the compared performance with the prime segments set as the ratio 

function of the straightness threshold ct. 

We applied these two measures for a comparative evaluation of the Ramer 
method, using successive bounds of the approximation error (fig. 7). Whereas 
a too large error bound gives poor performance results, the correctness of the 
partition decreases rapidly when choosing a too small error bound. The best 
partition that we can obtain with the Ramer method achieves some trade-off 
between correctness and performance. Evaluating the same way the Pavlidis 
method, we found very similar results (fig. 8). In both cases, the method we 
propose significantly increases the extraction performance. 

Experiments show that the performance gain varies from one image to an- 
other. We explain these variations in the following way. The piecewise linear 
methods produce a partition of a line for a given error bound of the linear ap- 
proximation. When we apply these methods for recovering straight elements 
in the image, we somewhat assume that a constant level of "noise" has been 
added to  perfectly straight lines. For images that are homogeneous, i.e. that 
effectively show such a constant level of noise, these methods may give good 
results, provided that we have well estimated the noise level for the setting of 
the error bound parameter. As soon as we deviate from this case, performances 
of the piecewise linear methods deteriorate. 



In our method, we propose to fit on a line the main significant straight seg- 
ments, according to the scale invariant criterion, and this makes the extraction 
fairly insensitive to the noise level, as long as these main elements remain per- 
ceptible. Then, using the estimation of the segments straightness, we can first 
initiate the interpretation on the most reliable ones. And the principle of con- 
struction of the partition ensures that it doesn't produce multiple segments for 
a common straight part. So the principle of construction gives a correct basis 
for the search for rectilinear structures. 

We have also implemented an extension of our algorithm so as to extract 
not only straight segments that lay on a single branch but also those which 
spread throughout the nodes of the lattice. In a second pass, starting from the 
partitions produced on the separate branches, we perform a similar merging 
process over the whole lattice. We use the same principle of local evidence 
for selecting the best candidate among the possible merges between adjoining 
segments at  each node of the lattice. We show here some first results of this 
extension (fig. 9). Though in some cases the local evidence may be misleading, 
the algorithm extension is fairly efficient and recovers most of the meaningful 
straight segments that bound multiple regions. This provides new information 
regarding the structure of the segmented image. 

We think the methodology we have developped here for the identification 
of straight line segments has a wider range of applications and may be used 
successfully for other problems of one dimensional segmentation that meet the 
following conditions: 

a We are interested in fitting on the line the best segments according to a 
certain criterion. 

a This criterion behaves such that a priori we have to search among segments 
of all sizes. Typically, the criterion is scale invariant. 

a We can assert some principle of local evidence for guiding the process of 
successive merging. 

We are currently exploring this methodology for segmenting a line in second 
order curves, and also its two dimensional extension for problems of region 
segmentation. 
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Figure 2: Aerial Photo 
University of Pennsylvania campus original 



Figure 3: Segmentation and straight lines extraction 
The segmentation (a) is produced by a region growing algorithm. The proposed 
straight line extraction algorithm is then applied to  the region boundaries. b, c 
and d show the sets of straight segments that are selected for three successive 
values of the straightness threshold: 0.02, 0.04 and 0.08. Bold lines enhance the 
main straight ones. 16 



Figure 4: Comparative results 
The results of the present method (a) are compared with those of the Ramer 
algorithm (b, c and d) for three successive values of the error bound (3., 6., 9.). 
Segments produced by the Ramer algorithm are reevaluated with the proposed 
criterion, they are displayed the same way (optimal least square positioning) 
and selected with the same straightnewthreshold of 0.07. 



Figure 5: Comparative results (detail) 
Enlarged view of a building in the original picture (a), of the region segmenta- 
tion (b), of the straight segments extracted by our algorithm ( c )  and of those 
extracted by the Ramer algorithm, for three successive values of the error bound: 
3., 6., 9. (dl e and f). The straightness threshold was set to 0.07. 



Figure 6: Counting prime segments 
Number of prime segments as a function of the straightness threshold in loga- 
rithmic scales. 

Figure 7: Comparative evaluation of the Ramer method 
Results for three successive values of the error bound : 3.. 6. and 9.. 

Figure 8: Comparative evaluation of the Pavlidis method 
Results for three successive values of the error bound : I., 2. and 3.. 



Figure 9: Algorithm extension 
Roads in the desert (a) and the associated region segmentation (b). Due to 
poor contrast of the roads, a lower segmentation of the picture would result in 
undesirable merges. Straight line segments extraction (c ) .  A second pass of 
search in the lattice finds immediate extensions of the straight line segments 
and almost achieves a complete recovem of the roads contours (d). 
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