4,577 research outputs found

    Preconditioned fully implicit PDE solvers for monument conservation

    Get PDF
    Mathematical models for the description, in a quantitative way, of the damages induced on the monuments by the action of specific pollutants are often systems of nonlinear, possibly degenerate, parabolic equations. Although some the asymptotic properties of the solutions are known, for a short window of time, one needs a numerical approximation scheme in order to have a quantitative forecast at any time of interest. In this paper a fully implicit numerical method is proposed, analyzed and numerically tested for parabolic equations of porous media type and on a systems of two PDEs that models the sulfation of marble in monuments. Due to the nonlinear nature of the underlying mathematical model, the use of a fixed point scheme is required and every step implies the solution of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of the relevant matrices and to the design of appropriate iterative or multi-iterative solvers, with special attention to preconditioned Krylov methods and to multigrid procedures. Numerical experiments for the validation of the analysis complement this contribution.Comment: 26 pages, 13 figure

    On the validity of the local Fourier analysis

    Full text link
    Local Fourier analysis (LFA) is a useful tool in predicting the convergence factors of geometric multigrid methods (GMG). As is well known, on rectangular domains with periodic boundary conditions this analysis gives the exact convergence factors of such methods. In this work, using the Fourier method, we extend these results by proving that such analysis yields the exact convergence factors for a wider class of problems

    An adaptive, fully implicit multigrid phase-field model for the quantitative simulation of non-isothermal binary alloy solidification

    Get PDF
    Using state-of-the-art numerical techniques, such as mesh adaptivity, implicit time-stepping and a non-linear multi-grid solver, the phase-field equations for the non-isothermal solidification of a dilute binary alloy have been solved. Using the quantitative, thin-interface formulation of the problem we have found that at high Lewis number a minimum in the dendrite tip radius is predicted with increasing undercooling, as predicted by marginal stability theory. Over the dimensionless undercooling range 0.2–0.8 the radius selection parameter, σ*, was observed to vary by over a factor of 2 and in a non-monotonic fashion, despite the anisotropy strength being constant

    A New Implementation of the Magnetohydrodynamics-Relaxation Method for Nonlinear Force-Free Field Extrapolation in the Solar Corona

    Full text link
    Magnetic field in the solar corona is usually extrapolated from photospheric vector magnetogram using a nonlinear force-free field (NLFFF) model. NLFFF extrapolation needs a considerable effort to be devoted for its numerical realization. In this paper we present a new implementation of the magnetohydrodynamics (MHD)-relaxation method for NLFFF extrapolation. The magneto-frictional approach which is introduced for speeding the relaxation of the MHD system is novelly realized by the spacetime conservation-element and solution-element (CESE) scheme. A magnetic field splitting method is used to further improve the computational accuracy. The bottom boundary condition is prescribed by changing the transverse field incrementally to match the magnetogram, and all other artificial boundaries of the computational box are simply fixed. We examine the code by two types of NLFFF benchmark tests, the Low & Lou (1990) semi-analytic force-free solutions and a more realistic solar-like case constructed by van Ballegooijen et al. (2007). The results show that our implementation are successful and versatile for extrapolations of either the relatively simple cases or the rather complex cases which need significant rebuilding of the magnetic topology, e.g., a flux rope. We also compute a suite of metrics to quantitatively analyze the results and demonstrate that the performance of our code in extrapolation accuracy basically reaches the same level of the present best-performing code, e.g., that developed by Wiegelmann (2004).Comment: Accept by ApJ, 45 pages, 13 figure

    Multigrid waveform relaxation for the time-fractional heat equation

    Get PDF
    In this work, we propose an efficient and robust multigrid method for solving the time-fractional heat equation. Due to the nonlocal property of fractional differential operators, numerical methods usually generate systems of equations for which the coefficient matrix is dense. Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach, whose application to time-fractional problems seems very natural due to the fact that the fractional derivative at each spatial point depends on the values of the function at this point at all earlier times. Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform relaxation method has a computational cost of O(NMlog(M))O(N M \log(M)) operations, where MM is the number of time steps and NN is the number of spatial grid points. A semi-algebraic mode analysis is also developed to theoretically confirm the good results obtained. Several numerical experiments, including examples with non-smooth solutions and a nonlinear problem with applications in porous media, are presented
    corecore