
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2017 Society for Industrial and Applied Mathematics
Vol. 39, No. 4, pp. A1201–A1224

MULTIGRID WAVEFORM RELAXATION FOR THE
TIME-FRACTIONAL HEAT EQUATION∗
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Abstract. In this work, we propose an efficient and robust multigrid method for solving the
time-fractional heat equation. Due to the nonlocal property of fractional differential operators,
numerical methods usually generate systems of equations for which the coefficient matrix is dense.
Therefore, the design of efficient solvers for the numerical simulation of these problems is a difficult
task. We develop a parallel-in-time multigrid algorithm based on the waveform relaxation approach,
whose application to time-fractional problems seems very natural due to the fact that the fractional
derivative at each spatial point depends on the values of the function at this point at all earlier times.
Exploiting the Toeplitz-like structure of the coefficient matrix, the proposed multigrid waveform
relaxation method has a computational cost of O(NM log(M)) operations, where M is the number of
time steps and N is the number of spatial grid points. A semialgebraic mode analysis is also developed
to theoretically confirm the good results obtained. Several numerical experiments, including examples
with nonsmooth solutions and a nonlinear problem with applications in porous media, are presented.

Key words. time-fractional heat equation, multigrid waveform relaxation, semialgebraic mode
analysis
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1. Introduction. Fractional calculus has become increasingly popular in recent
years due to its frequent appearance in various applications in fluid mechanics, signal
processing, viscoelasticity, porous media flow, quantum mechanics, biology, medicine,
physics, and engineering; see [8, 15, 17, 20, 24, 32, 44], for example. In particular it has
attracted much attention within the natural and social sciences, since it can properly
model phenomena dominated by memory effects [29, 47] and problems exhibiting
non-Markovian behavior in time.

A lot of effort has been focused on attempting to find robust and stable nu-
merical and analytical methods for solving ordinary and partial differential equa-
tions of fractional order. The number of numerical analysis papers studying differ-
ential equations with fractional-order derivatives has risen dramatically in the past
decade [6, 20, 21, 24, 26, 35, 46]. Due to the nonlocal property of the fractional differ-
ential operator, numerical methods usually generate systems of equations for which
the coefficient matrix is dense. This is the main reason why most of these problems
have been traditionally solved by Gaussian elimination, which requires a very high
computational cost of O(n3) in addition to a high storage cost of O(n2), where n is the
total number of grid points. Some effort has been made to reduce this computational
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cost by approximating the coefficient matrix by a banded matrix [55], for example,
obtaining a computational complexity of O(n log2(n)). This is quite different from
integer differential operators, which typically yield sparse coefficient matrices that
can be efficiently solved by fast iterative methods with O(n) complexity. Therefore,
the design of efficient solvers that reduce the computational cost is one of the chal-
lenges for the numerical simulation of fractional PDEs. For space-fractional PDEs,
some efficient solvers, such as preconditioned Krylov subspace methods [40, 54] and
multigrid methods [41], have already been proposed. The key is to take advantage of
the Toeplitz-like structure of the coefficient matrix which arises from the discretiza-
tion method proposed by Meerschaert and Tadjeran [31]. In this way, the storage
requirements can be reduced to O(N), and the matrix-vector multiplication can be
done in O(N log(N)) operations by using the fast Fourier transform (FFT). Recently,
a fast solver based on a geometric multigrid method for nonuniform grids was pro-
posed in [58]. The approach is based on the use of H-matrices to approximate the
dense matrices. Regarding time-fractional PDEs, the coefficient matrix usually has
an M ×M block lower triangular Toeplitz structure, with each block of size N ×N ,
where N is the number of spatial grid points and M the number of time levels. A
fast direct method taking advantage of the Toeplitz structure of the coefficient matrix
is proposed in [22] with a complexity of O(NM log2(M)). As an alternative, in [36]
the authors proposed the use of alternating direction implicit (ADI) schemes with
a computational complexity of O(NM2). An approximate inversion method with
O(NM log(M)) was recently proposed in [23]. Their idea is to approximate the coef-
ficient matrix by a block ε-circulant matrix, which can be block diagonalized by FFT.
To solve the resulting complex block system, the authors use a multigrid method. Our
main contribution is to propose an efficient and robust multigrid method based on the
waveform relaxation approach to solve the time-fractional heat equation. Exploiting
the Toeplitz-like structure of the coefficient matrix, the computational complexity of
the proposed method is O(NM log(M)), with a storage requirement of O(NM), being
only O(M) for the storage of the coefficient matrix. Being the opposite of the method
introduced in [23], the algorithm proposed here is directly applied to the original dis-
cretization of the problem, and also is better suited for nonlinear problems. We wish
to emphasize that the proposed method is parallel in time, in contrast to the classical
sequential time-integration methods based on time-stepping.

Waveform relaxation methods consist of continuous-in-time iterative algorithms
for solving large systems of ordinary differential equations (ODEs). Their application
to the solution of parabolic PDEs is based on the numerical method of lines, in which
the spatial derivatives are replaced by discrete analogues obtaining a large system
of ODEs, which is solved by standard iterative methods. The requirement of extra
storage for unknowns represents a classical disadvantage of waveform methods; how-
ever, in our case this is not a drawback anymore since the time-fractional PDEs also
need the solutions in previous time steps to be stored. Since the waveform relaxation
method is based on the numerical method of lines, it is not clear how to combine it
with techniques such as dynamic grid adaptation, although recently some effort has
been carried out to combine parallel-in-time techniques with moving meshes [11, 16].
The convergence of the waveform relaxation methods was studied by Miekkala and
Nevanlinna [33], who showed that the convergence could be too slow for the waveform
relaxation to be competitive with standard time-stepping methods. Recently, some
authors have investigated the convergence of some waveform relaxation methods for
solving fractional differential equations [19]. We wish to point out that for time-
fractional PDEs, the fact that each spatial grid point at a fixed time is connected to
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all the values of the previous time steps makes the application of waveform relaxation
methods to these problems very natural.

Multigrid methods (see [45, 48, 56] for an introduction) are often used for the
convergence acceleration of iterative methods, although they have a wider use and
significance than just being acceleration techniques. These methods are among the
most efficient methods for solving large algebraic systems arising from discretizations
of PDEs, with optimal computational complexity, due to their ability to handle dif-
ferent scales present in the problem. Here, we propose the application of a multigrid
approach based on the waveform relaxation method for solving time-fractional differ-
ential equations. This method combines the very fast multigrid convergence with the
high parallel efficiency of waveform relaxation. Basically, it consists of applying a red-
black zebra-in-time line relaxation together with a coarse-grid correction procedure
based on coarsening only in the spatial dimension. Note that there is no coarsening
in time in such a multigrid method, and the time is kept continuous. In this way,
the coarsest grid is composed of only one spatial grid point and all the corresponding
points in time. The multigrid waveform relaxation was first developed by Lubich and
Ostermann [27], who showed that the basic waveform relaxation process can be accel-
erated by using the multigrid idea. Their work is based on the application of multigrid
(in space) directly to the evolution equation. Since its introduction, this approach has
been successfully applied to a variety of parabolic problems [18, 39, 50, 51, 52, 53],
but never within a fractional context.

Local Fourier analysis (LFA), or local mode analysis [3, 5, 48, 56, 57], has become
a very useful predictive tool for the analysis of the convergence of multigrid methods.
The idea of this analysis is to focus on the local character of the operators involved in
the multigrid algorithm, and to analyze their behavior on a basis of complex exponen-
tial functions. However, the failure of this analysis for the prediction of the multigrid
convergence for convection-dominated or parabolic problems has been observed by
different authors [4, 12, 38]. To overcome this difficulty, a semialgebraic mode analy-
sis (SAMA) was proposed in [12]. This analysis, which is essentially a generalization
of the classical local mode analysis, combines standard LFA with algebraic compu-
tation that accounts for the nonlocal character of the operators. It is clear that this
is the approach that we should consider for the analysis of the multigrid waveform
relaxation method for the time-fractional diffusion problem dealt with in this work.
Notice the nonlocal character of this differential operator in time. Finally, we wish
to emphasize that the proposed multigrid waveform relaxation method, as well as the
SAMA for the study of its convergence, give rise to an efficient solution strategy for
the time-fractional heat equation, which seems a very natural way to deal with this
problem.

The remainder of this paper is organized as follows. Section 2 is devoted to intro-
ducing the considered one-dimensional model problem and its discretization. The pro-
posed multigrid waveform relaxation method for its solution is described in section 3.
Next, the SAMA used for studying the convergence of this algorithm is explained in
section 4, together with some analysis results showing its suitability for the prediction
of the behavior of the multigrid method. In section 5 the computational complexity
of the proposed algorithm is discussed. After that, section 6 focuses on the general-
ization of the proposed methodology for a two-dimensional model problem. Finally,
in section 7, we illustrate the good behavior of the multigrid waveform relaxation
method for solving the time-fractional diffusion problems considered in this work, by
means of three different test problems, which include a nonlinear model problem with
applications in porous media. Conclusions are drawn in section 8.
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2. Model problem and discretization. We consider the time-fractional heat
equation, arising by replacing the first-order time derivative with the Caputo de-
rivative of order δ, where 0 < δ < 1. In this section, we restrict ourselves to the
one-dimensional case for simplicity in the presentation. Therefore, we can formulate
our model problem as the following initial-boundary value problem:

Dδ
tu− ∂2u

∂x2
= f(x, t), 0 < x < L, t > 0,(1)

u(0, t) = 0, u(L, t) = 0, t > 0,(2)

u(x, 0) = g(x), 0 ≤ x ≤ L.(3)

As mentioned above, Dδ
t denotes the Caputo fractional derivative, defined as fol-

lows [10, 46]:

(4) Dδ
tu(x, t) :=

[
J1−δ

(
∂u

∂t

)]
(x, t), 0 ≤ x ≤ L, t > 0,

where J1−δ represents the Riemann–Liouville fractional integral operator of order
1− δ, given by

(5)
(
J1−δu

)
(x, t) :=

[
1

Γ(1− δ)

∫ t

0

(t− s)−δu(x, s)ds

]
, 0 ≤ x ≤ L, t > 0,

where Γ is the Gamma function [9].
Model problem (1)–(3) is discretized on a uniform rectangular mesh Gh,τ = Gh×

Gτ , with

Gh = {xn = nh, n = 0, 1, . . . , N + 1} ,(6)

Gτ = {tm = mτ, m = 0, 1, . . . ,M} ,(7)

where h = L
N+1 , τ = T

M with T the final time, and N + 1 and M are positive
integers representing the number of subdivisions in the spatial and temporal intervals,
respectively. We denote by un,m the nodal approximation to the solution at each grid
point (xn, tm).

In the nodal points, the Caputo fractional derivative Dδ
tu can be written as

(8) Dδ
t u(xn, tm) =

1

Γ(1− δ)

m−1∑
k=0

∫ tk+1

tk

(tm − s)−δ ∂u(xn, s)

∂t
ds,

and it is approximated by using the well-known L1 scheme [37], which uses ∂u(xn,s)
∂t ≈

un,k+1−un,k

τ , tk ≤ s ≤ tk+1, to obtain

Dδ
Mun,m :=

1

Γ(1 − δ)

m−1∑
k=0

un,k+1 − un,k

τ

∫ tk+1

tk

(tm − s)−δds(9)

=
τ−δ

Γ(2 − δ)

[
d1un,m − dmun,0 +

m−1∑
k=1

(dk+1 − dk)un,m−k

]
,(10)

by defining dk = k1−δ − (k − 1)1−δ, k ≥ 1.
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Regarding the diffusive term, we use standard central finite differences to ap-
proximate the spatial derivatives. Summarizing, we deal with the following discrete
problem:

Dδ
Mun,m − un+1,m − 2un,m + un−1,m

h2
= f(xn, tm), 1 ≤ n ≤ N, 1 ≤ m ≤ M,(11)

u0,m = 0, uN+1,m = 0, 0 < m ≤ M,(12)

un,0 = g(xn), 0 ≤ n ≤ N + 1.(13)

3. Multigrid waveform relaxation in one dimension. For solving time-
dependent PDEs, the multigrid waveform relaxation method uses the numerical
method of lines, replacing any spatial derivative by discrete formulas (obtained by
the finite element, finite difference, or finite volume methods) in the discrete spatial
domain. Thus, the PDE is transformed into a large set of ODEs. In our case, that is,
considering time-fractional derivatives of order δ, we have

(14) Dδ
tuh(t) +Ahuh(t) = fh(t), uh(0) = gh, t > 0,

where uh and fh are functions of time t defined on a discrete spatial mesh, and Ah is
the discrete approximation in space of the continuous operator defining the considered
PDE. Since discrete operators are usually represented by matrices and grid functions
by vectors, in the following we will use either the terminology of discrete differential
operators and grid functions or that of matrices and vectors. The next step is the
solution of the large system of ODEs by an iterative algorithm. For instance, if we
consider a splitting of the spatial discrete operator Ah = Mh − Nh, one step of the
iterative scheme for (14) can be written as

(15) Dδ
tu

k
h(t) +Mhu

k
h(t) = Nhu

k−1
h (t) + fh(t), u

k
h(0) = gh for k ≥ 1,

where uk
h(t) denotes the approximation obtained at iteration k. The initial iterate

u0
h(t) is defined along the whole time interval, it being natural to choose a constant

initial approximation equal to the initial condition in (14), that is, u0
h(t) = gh, t > 0.

In this work, for the one-dimensional problem, we will consider a red-black Gauss–
Seidel iteration which consists of a two-stage procedure, given by

Dδ
tu

k
n(t) +

2

h2
uk
n(t) =

1

h2

(
uk−1
n−1(t) + uk−1

n+1(t)
)
+ fn(t) if n is even,(16)

Dδ
tu

k
n(t)−

1

h2

(
uk
n−1(t)− 2uk

n(t) + uk
n+1(t)

)
= fn(t) if n is odd,(17)

that is, first the even points in space are visited, and after that we solve the unknowns
in the grid points with odd numbering.

To accelerate the convergence of the red-black Gauss–Seidel waveform relaxation,
a coarse-grid correction process based on a coarsening procedure only in the spatial
dimension is performed, resulting in the so-called linear multigrid waveform relaxation
algorithm [49]. This method consists essentially of the standard multigrid algorithm
but applied to systems of ODEs, such as the one in (14). Considering the standard
full-weighting restriction and the linear interpolation as transfer-grid operators, the
algorithm of the multigrid waveform relaxation (WRMG) is given in Algorithm 1.

After discretizing in time, that is, replacing the differential operator Dδ
t by Dδ

M ,
the previous algorithm can be interpreted as a space-time multigrid method with
coarsening only in space. Thus, the red-black Gauss–Seidel waveform relaxation can
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Algorithm 1. Multigrid waveform relaxation: uk
h(t) → uk+1

h (t).

if we are on the coarsest grid level (with spatial grid size given by h0) then

Dδ
tu

k+1
h0

(t) +Ah0u
k+1
h0

(t) = fh0(t) Solve with a direct or fast solver.

else

uk
h(t) = Sν1

h (uk
h(t)) (Presmoothing)

ν1 steps of the red-black waveform relaxation.

rkh(t) = fh(t)− (Dδ
t +Ah)u

k
h(t) Compute the defect.

rk2h(t) = I2hh rkh(t) Restrict the defect.

(Dδ
t +A2h)ê

k
2h(t) = r̄k2h(t), ê

k
2h(0) = 0 Solve the defect equation

on G2h by performing γ ≥ 1 cycles of WRMG.

êkh(t) = Ih2h ê
k
2h(t) Interpolate the correction.

uk+1
h (t) = uk

h(t) + êkh(t) Compute a new approximation.

uk+1
h (t) = Sν2

h (uk+1
h (t)) (Postsmoothing)
ν2 steps of the red-black waveform relaxation.

end if

be seen as a zebra-in-time line relaxation, and standard full-weighting restriction and
linear interpolation in space are considered for the data transfer between the levels
in the multigrid hierarchy. Thus, the whole multigrid waveform relaxation combines
a zebra-in-time line relaxation with a standard semicoarsening strategy only in the
spatial dimension.

4. Semialgebraic mode analysis in one dimension. The analysis that we
perform here is based on an exponential Fourier mode analysis or local Fourier analysis
(LFA) technique only in space and an exact analytical approach in time. This kind of
semialgebraic mode analysis (SAMA) was introduced for the first time in [12], where
the authors mainly study the convergence of multigrid methods on space-time grids
for parabolic problems. Furthermore, they extend the application of this analysis to
nonparabolic problems like elliptic diffusion in layered media and convection diffusion.
The main idea of this analysis is to study the evolution of the spatial Fourier modes
over time. This semialgebraic analysis provides very accurate predictions of the per-
formance of multigrid methods, and indeed it can be made rigorous if appropriate
boundary conditions are considered. Next, we describe the basics of this analysis.
Although in [12] the authors give a detailed explanation, here we present a slightly
different description of this analysis.

4.1. Basics of the analysis. It is well known that LFA assumes the formal
extension to all multigrid components to an infinite grid, neglecting the boundary
conditions, and considers discrete linear operators with constant coefficients. There-
fore, we define the following infinite grid:

(18) Gh = {xn = nh, n ∈ Z} ,
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where h is the spatial discretization step. For a fixed t, any discrete grid function
uh(·, t) defined on Gh can be written as a formal linear combination of the so-called
Fourier modes given by ϕh(θ, x) = eıθx, where θ ∈ Θh = (−π/h, π/h], that is,

(19) uh(x, t) =
∑
θ∈Θh

cθ(t)ϕh(θ, x), x ∈ Gh.

Notice that coefficients cθ(t) depend on the time variable. The Fourier modes, which
generate the so-called Fourier space F(Gh) = {ϕh(θ, ·), θ ∈ Θh}, become eigenfunc-
tions of any discrete operator with constant coefficients defined formally on Gh. For
instance, for the discrete operator Ah = 1

h2 [−1 2 − 1], considered in the discrete
model problem (11), it is fulfilled that

Ahϕh(θ, ·) = Âh(θ)ϕh(θ, ·),

where

Âh(θ) =
4

h2
sin

(
θh

2

)
is the Fourier representation of operator Ah, which is also called the Fourier symbol
of Ah.

The aim of the local Fourier analysis is to analyze how the operators involved in
the multigrid algorithm act on such Fourier modes. We can study how efficiently the
relaxation process eliminates the high-frequency components of the error through a
smoothing analysis, or how the two-grid operator acts on the Fourier space through
a two-grid analysis.

First, we proceed to explain the smoothing analysis for a standard relaxation
procedure. After that, we describe the analysis for the coarse-grid correction operator,
and finally we combine both analyses in order to perform a complete study of the
two-grid cycle. For this purpose, we need to distinguish between high- and low-
frequency components. This classification is done with respect to the coarsening
strategy, which is chosen as standard coarsening, that is, the step size is double on
the coarse grid, which is denoted by G2h. Recall that in a typical multigrid waveform
relaxation procedure the coarsening applies only in the spatial domain. The space of
low frequencies is defined as Θ2h = (−π/2h, π/2h], and the high frequencies are given
by Θh\Θ2h.

Smoothing analysis. We describe the semialgebraic smoothing analysis for a
standard relaxation procedure based on a decomposition of the spatial discrete oper-
ator Ah as Ah = Mh−Nh. Denoting by ekh(·, t) and ek−1

h (·, t) the error grid functions
at the k and k−1 iterations of this procedure, an iteration of this waveform relaxation
method is given by

(20) Dδ
t e

k
h(x, t) +Mhe

k
h(x, t) = Nhe

k−1
h (x, t) for k ≥ 1, and x ∈ Gh, t > 0,

with initial condition ekh(x, 0) = 0, x ∈ Gh.

From (19), we can write the error at the j iteration, ejh(x, t), in the following way,

(21) ejh(x, t) =
∑
θ∈Θh

cjθ(t)ϕh(θ, x), x ∈ Gh, t > 0,

and then by using that ϕh(θ, x) are eigenfunctions of operators Mh and Nh (that

is, Mhϕh(θ, x) = M̂h(θ)ϕh(θ, x), for example, where M̂h(θ) is the symbol of Mh), it
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follows for each frequency θ ∈ Θh that

(22) Dδ
t c

k
θ(t) + M̂h(θ)c

k
θ (t) = N̂h(θ)c

k−1
θ (t) for k ≥ 1, t > 0.

Considering the discretization of Dδ
t on the uniform grid Gτ , D

δ
M , defined in (10),

and denoting by
(
ck,1θ , . . . , ck,Mθ

)
the approximation of ckθ(t) on grid Gτ , we obtain the

relation

(23)

⎛⎜⎜⎜⎝
ck,1θ

ck,2θ
...

ck,Mθ

⎞⎟⎟⎟⎠ = M̃−1
h,τ (θ)Ñh,τ (θ)

⎛⎜⎜⎜⎝
ck−1,1
θ

ck−1,2
θ
...

ck−1,M
θ

⎞⎟⎟⎟⎠ ,

where Ñh,τ (θ) = diag(N̂h(θ)), and

M̃h,τ (θ) =

⎛⎜⎜⎜⎜⎝
r1 + M̂h(θ) 0 · · · 0

r2 r1 + M̂h(θ) · · · 0
...

. . .
. . .

...

rM · · · r2 r1 + M̂h(θ)

⎞⎟⎟⎟⎟⎠ ,

with ri =
τ−δ

Γ(2−δ) (di − di−1), i = 1, . . . ,M , assuming d0 = 0.

Denoting S̃h,τ (θ) = M̃−1
h,τ (θ)Ñh,τ (θ), we can define the smoothing factor of the

relaxation procedure as follows:

(24) μ = sup
Θh\Θ2h

(
ρ
(
S̃h,τ (θ)

))
.

Coarse-grid correction analysis. We now proceed to explain the analysis of
the coarse-grid correction method. An error ekh is transformed by this method as
ek+1
h = C2h

h ekh, where C2h
h = Ih − Ih2h(D

δ
t + A2h)

−1I2hh (Dδ
t + Ah) is the coarse-grid

correction operator. Here Ih is the identity operator, Dδ
t +Ah and Dδ

t +A2h are the
fine- and coarse-grid operators, respectively, and Ih2h and I2hh are transfer operators
from coarse to fine grids, and vice versa.

As we have chosen standard coarsening, the fine-grid Fourier mode ϕh(θ, x) when
injected into the coarse grid aliases with the coarse-grid Fourier mode ϕ2h(2θ, x).
Thus, for any low frequency θ0 ∈ Θ2h we define the high frequency θ1 = θ0 −
sign(θ0)π/h. Taking this into account, the Fourier space is decomposed into two-
dimensional subspaces, known as 2h-harmonics (see [48, 57] for more details):

F2(θ) = span{ϕh(θ
0, ·), ϕh(θ

1, ·)}, θ = θ0 ∈ Θ2h.

The coarse-grid correction operator C2h
h leaves the two-dimensional subspace of har-

monics F2(θ0) invariant for an arbitrary Fourier frequency θ0 ∈ Θ2h. Let us define for
any θ0 ∈ Θ2h the vector ϕh(θ

0, ·) = (ϕh(θ
0, ·), ϕh(θ

1, ·)). As the error at the iteration
k can be written as ekh(x, t) =

∑
θ∈Θ2h

ckθ(t)ϕh(θ, x)
T , with ckθ(t) = (ckθ0(t), ckθ1(t)),

the error at the iteration k + 1 after application of the coarse-grid correction method
is given by

∑
θ∈Θ2h

Ĉ2h
h (θ)ckθ (t)ϕh(θ, ·)T , where Ĉ2h

h (θ) is a 2× 2 matrix given by the
expression

Ĉ2h
h (θ) = I2 − Îh2h(θ)(D

δ
t + Â2h(θ))

−1Î2hh (θ)(Dδ
t + Âh(θ)),
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WRMG FOR THE TIME-FRACTIONAL HEAT EQUATION A1209

where I2 is the 2 × 2 identity matrix, and Âh(θ), Â2h(θ), Î
h
2h(θ), Î

2h
h (θ) denote the

symbols of the fine- and coarse-grid spatial operators, the prolongation operator, and
the restriction operator, respectively. The Fourier symbol of the fine-grid operator is
given by Âh(θ) = diag(Âh(θ

0), Âh(θ
1)), and the symbol of the coarse-grid operator

by Â2h(θ). The Fourier symbols of the prolongation and restriction operators for
θ = θ0 ∈ Θ2h are given by

Îh2h(θ) =

(
Îh2h(θ

0)

Îh2h(θ
1)

)
, Î2hh (θ) = (Î2hh (θ0), Î2hh (θ1)).

Let us suppose that the error at the iteration k is given by

ckθ(t)ϕh(θ, ·)T = ckθ0(t)ϕh(θ
0, ·) + ckθ1(t)ϕh(θ

1, ·).

By considering the discretization of Dδ
t on the uniform grid Gτ , D

δ
M , defined in (10),

we obtain that the error after application of the coarse-grid correction is given by
C̃2h
h,τ (θ)c

k
θ (t)ϕh(θ, ·)T , with C̃2h

h,τ (θ) a 2M × 2M matrix, given by

C̃2h
h,τ(θ) = I2M − Ĩh

2h(θ)(Ã2h,τ (θ))
−1Ĩ2h

h (θ)Ãh,τ (θ).

Here, I2M is the identity matrix of order 2M , Ãh,τ (θ) is the 2M × 2M matrix

Ãh,τ (θ) =

(
Ãh,τ (θ

0) 0

0 Ãh,τ (θ
1)

)
, θ = θ0 ∈ Θ2h,

where for α = 0, 1,

(25) Ãh,τ (θ
α) =

⎛⎜⎜⎜⎝
r1 + Âh(θ

α) 0 · · · 0

r2 r1 + Âh(θ
α) · · · 0

...
. . .

. . .
...

rM · · · r2 r1 + Âh(θ
α)

⎞⎟⎟⎟⎠ ,

with Âh(θ
α) the symbol of the fine-grid spatial operator, and ri =

τ−δ

Γ(2−δ) (di − di−1)

for i = 1, . . . ,M , assuming d0 = 0.
About the restriction and interpolation, Ĩ2h

h (θ) is the M × 2M matrix

Ĩ2h
h (θ) =

[
Î2hh (θ0)IM , Î2hh (θ1)IM

]
,

and Ĩh
2h(θ) is the 2M ×M matrix

Ĩh
2h(θ) =

[
Îh2h(θ

0)IM , Îh2h(θ
1)IM

]T
.

Two-grid analysis. Combining the Fourier smoothing analysis and the Fourier
coarse-grid correction analysis previously introduced, we perform the semialgebraic
two-grid analysis. The two-grid operator T 2h

h,τ is defined as T 2h
h,τ = Sν2

h,τC2h
h,τS

ν1
h,τ , where

C2h
h,τ is the coarse-grid operator, Sh,τ is a smoothing operator, and ν1, ν2 indicate the

number of pre- and postsmoothing steps, respectively.
We recall that the coarse-grid correction operator C2h

h,τ leaves the two-dimensional

subspaces of harmonics F2(θ) invariant for an arbitrary Fourier frequency θ = θ0 ∈
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A1210 FRANCISCO J. GASPAR AND CARMEN RODRIGO

Θ2h. This same invariance property is true for the smoothers Sh,τ considered in this
work. Therefore, the two-grid operator T 2h

h,τ also leaves the 2h-harmonic subspaces
invariant.

Let us suppose that the error at iteration k is given by ckθ(t)ϕh(θ, ·)T =
ckθ0(t)ϕh(θ

0, ·) + ckθ1(t)ϕh(θ
1, ·). By considering the discretization of Dδ

t on the uni-
form grid Gτ , D

δ
M , defined in (10), we obtain that the error after application of the

two-grid method is given by T̃ 2h
h,τ (θ)c

k
θ (t)ϕh(θ, ·)T , with T̃ 2h

h,τ (θ) a 2M × 2M matrix,
given by

T̃ 2h
h,τ (θ) = S̃ν2

h,τ (θ)(I2M − Ĩh
2h(θ)(Ã2h,τ (θ))

−1Ĩ2h
h (θ)Ãh,τ (θ))S̃ν1

h,τ (θ).

If the chosen smoother is an iterative method which does not couple frequencies, then
S̃h,τ (θ) is the 2M × 2M matrix

S̃h,τ (θ) =

(
S̃h,τ (θ

0) 0

0 S̃h,τ (θ
1)

)
,

where, for α = 0, 1, S̃h,τ (θ
α) is given as previously.

In the case of a pattern waveform relaxation method, such as the red-black
waveform relaxation, it is well known that the smoother couples frequencies but
leaves invariant the two-dimensional subspaces F2(θ). In particular, for the red-

black waveform relaxation considered in this work, the symbol is given by S̃h,τ (θ) =

S̃black
h,τ (θ)S̃red

h,τ (θ), where S̃black
h,τ (θ) and S̃red

h,τ (θ) are 2M × 2M matrices coupling fre-

quencies θ0 and θ1. More concretely,

S̃red
h,τ (θ) =

1

2

(
M̃−1

h,τ (θ
0)Ñh,τ (θ

0) + IM M̃−1
h,τ (θ

1)Ñh,τ (θ
1)− IM

M̃−1
h,τ (θ

0)Ñh,τ (θ
0)− IM M̃−1

h,τ (θ
1)Ñh,τ (θ

1) + IM

)
,

S̃black
h,τ (θ) =

1

2

(
M̃−1

h,τ (θ
0)Ñh,τ (θ

0) + IM −M̃−1
h,τ (θ

1)Ñh,τ (θ
1) + IM

−M̃−1
h,τ(θ

0)Ñh,τ (θ
0) + IM M̃−1

h,τ(θ
1)Ñh,τ (θ

1) + IM

)
,

where IM is the identity matrix of size M ×M , and M̃h,τ (θ) and Ñh,τ (θ) are given
as explained in the smoothing analysis section, using that Mh is the diagonal part of
matrix Ah, typical for a Jacobi-type relaxation. For a more detailed explanation of
the SAMA for this smoother, we refer the reader to [12].

Finally, the convergence factor of the two-grid method can be estimated as

(26) ρ = sup
Θ2h

(
ρ
(
T̃ 2h
h,τ (θ)

))
,

4.2. Analysis results. This section is focused on the analysis of the robustness
of the proposed multigrid waveform relaxation method for the considered problem.
When studying the multigrid convergence for the standard heat equation, it is well
known that parameter τ/h2 describes the anisotropy in the operator, resulting in the
relevant parameter for its analysis; see, e.g., [13]. However, as it can be observed in
Figure 1, this parameter is not the important one for the time-fractional heat equation.
In Figure 1, we depict the two-grid convergence factors provided by the SAMA for
a range of values of parameter τ/h2 from 2−12 to 212, for different fractional orders
δ. Only one smoothing step is considered, and the zebra-in-time smoother is used
as previously described. It is clearly seen that, although the convergence rates are
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−12 −8 −4 0 4 8 12
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log
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δ = 0.1
δ = 0.4
δ = 0.7
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Fig. 1. Two-grid convergence factors predicted by the analysis for different values of parameter
λ = τ/h2 from 2−12 to 212 and different fractional orders δ.

−12 −8 −4 0 4 8 12

0

0.2

0.4

0.6

0.8

1

log
2

λ

ρ

δ = 0.1
δ = 0.4
δ = 0.7
δ = 1.0

Fig. 2. Two-grid convergence factors predicted by the analysis for different values of parameter
λ = τδΓ(2 − δ)/h2 and various fractional orders δ.

bounded by 0.2 for all cases, we do not obtain a δ-independent convergence for a fixed
value of τ/h2. In this case, the relevant parameter is λ = τδΓ(2 − δ)/h2, as shown
in Figure 2, where it is observed that the obtained multigrid convergence becomes
robust for any value of δ with respect to parameter λ. In this figure, the number of
time steps is chosen as M = 32. Notice that, for any fixed value of δ, the multigrid
convergence is satisfactory for any value of parameter λ, which is very important for
the global behavior of the method since this parameter will vary from grid level to grid
level within the multigrid algorithm. The corresponding MATLAB function used to
carry out the SAMA results in this figure is available in the supplementary material.

The results obtained by the SAMA match very accurately the real asymptotic
convergence factors experimentally computed. This can be seen in Figure 3, where the
two-grid convergence factors predicted by the analysis (denoted as ρ and displayed as
a solid line) are compared with those asymptotic convergence factors experimentally
computed (represented by ρh and depicted by circles). To compute the latter, we
consider a grid of size 256× 32, and we use a W -cycle, a random initial guess, and a
zero right-hand side in order to avoid round-off errors. We can see in the picture a
very accurate prediction of the SAMA, making it very useful for the analysis of the
proposed WRMG method.

Finally, we would like to show that the behavior of the proposed multigrid wave-
form relaxation is very satisfactory with respect to the number of time levels consid-
ered. Since it is usually sufficient to analyze the behavior of the two-grid method to
estimate the convergence of the multigrid method (see [48]), in Table 1 we show the
two-grid convergence factors provided by the analysis by considering a wide range of
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−12 −8 −4 0 4 8 12
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0.8
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log
2
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ρ

h

Fig. 3. Comparison between the two-grid convergence factors predicted by the analysis (ρ) and
the asymptotic convergence factor of a W -cycle experimentally computed (ρh) for different values
of parameter λ = τδΓ(2 − δ)/h2 and fractional order δ = 0.4.

Table 1

Two-grid convergence factors predicted by the analysis together with the corresponding experi-
mentally computed multilevel asymptotic convergence factors (between brackets) for different values
of parameter λ and for increasing number of time steps, M , considering a fractional order δ = 0.4.

log2 λ M = 32 M = 64 M = 128 M = 256 M = 512 M = 1024
−8 0.004 0.005 0.006 0.008 0.010 0.013

(0.004) (0.005) (0.006) (0.009) (0.012) (0.014)
−6 0.016 0.018 0.023 0.028 0.036 0.045

(0.017) (0.018) (0.027) (0.033) (0.041) (0.051)
−4 0.054 0.061 0.072 0.085 0.098 0.110

(0.055) (0.065) (0.079) (0.088) (0.091) (0.112)
−2 0.116 0.120 0.125 0.128 0.132 0.134

(0.122) (0.125) (0.135) (0.137) (0.137) (0.137)
0 0.114 0.117 0.119 0.120 0.121 0.121

(0.120) (0.120) (0.120) (0.121) (0.122) (0.122)
2 0.054 0.058 0.060 0.062 0.062 0.063

(0.057) (0.063) (0.063) (0.063) (0.063) (0.063)
4 0.016 0.017 0.019 0.019 0.019 0.020

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)
6 0.004 0.004 0.005 0.005 0.005 0.005

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
8 0.001 0.001 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

values of M = 2k, k = 5, . . . , 10, together with the experimentally computed asymp-
totic convergence factors obtained by using the multilevelW -cycle with one smoothing
step. As expected, the predicted two-grid convergence factors provide a very accurate
estimation of the real asymptotic convergence of the method. These results are shown
for different values of parameter λ and a fixed value of the fractional order δ = 0.4.

5. Fast implementation and computational cost. In Algorithm 1, we ob-
serve that the most time-consuming part of the WRMG method is the calculation of
the defect and the smoothing step. The remaining components of the algorithm can be
performed with a computational cost proportional to the number of unknowns. In the
calculation of the residual, for each spatial grid point a matrix-vector multiplication
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TMx is required for some vector x, where TM is the low-triangular matrix

(27) TM =

⎛⎜⎜⎜⎝
r1 0 · · · 0
r2 r1 · · · 0
...

. . .
. . .

...
rM · · · r2 r1

⎞⎟⎟⎟⎠ ,

with ri =
τ−δ

Γ(2−δ) (di − di−1), i = 1, . . . ,M , assuming d0 = 0.

Moreover, the smoothing part involves the solution of triangular linear systems.
The matrix Ah,τ of the discrete system to be solved can be written as Ah,τ = TM ⊗
IN + Ah, where IN denotes the identity matrix of order N , Ah corresponds to the
spatial discretization, ⊗ denotes the Kronecker product, and TM is the low-triangular
matrix given in (27).

In a standard implementation, the method would have a computational cost of
at least O(NM2) operations due to the matrix-vector multiplication TMx and the
solution of the triangular systems in the smoothing part of the algorithm. However,
due to the special structure of matrix TM , the proposed multigrid waveform relaxation
method can be implemented with a computational cost of O(NM log(M)) operations,
with a storage cost for the systemmatrix ofO(M). To see this, we discuss the following
issues in the next subsections: a fast matrix-vector multiplication, a fast solution of
the low-triangular systems, an efficient storage of matrix Ah,τ , and an estimation of
the computational cost of the complete multigrid waveform relaxation method.

5.1. An O(NM log(M)) calculation of the defect. To compute the residual
in the WRMG method, a matrix-vector multiplication Ah,τu is required. The matrix-
vector multiplication corresponding to the spatial discretization can be calculated with
a computational cost of O(NM). Apart from this, for each spatial grid point we have
to perform a matrix-vector multiplication TMx for some vector x. Notice that matrix
TM is an M ×M Toeplitz matrix, and therefore it can be embedded into a 2M × 2M
circulant matrix C2M in the following way:

C2M =

(
TM RM

RM TM

)
,

where

RM =

⎛⎜⎜⎜⎜⎜⎝
0 rM rM−1 · · · r2
0 0 rM · · · r3
...

. . .
. . .

. . .
...

0 · · · 0 . . . rM
0 0 0 . . . 0

⎞⎟⎟⎟⎟⎟⎠ .

Taking into account that(
TM RM

RM TM

)(
x
0

)
=

(
TMx
∗

)
,

the matrix-vector multiplication is reduced to a circulant matrix-vector multiplica-
tion. It is known that a circulant matrix can be diagonalized by the Fourier matrix
F2M as C2M = F ∗

2MD2MF2M , where D2M is a diagonal matrix whose diagonal ele-
ments are the eigenvalues of C2M . By taking the FFT of the first column of C2M , we
can determine D2M in O(M log(M)) operations. Once D2M is obtained, the multi-
plication C2Mv for some vector v can be calculated by using a couple of FFTs with
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O(M log(M)) complexity. As this is the computational cost for each spatial grid
point, the product Ah,τu can be performed in O(NM log(M)) operations.

5.2. An O(NM log(M)) implementation of the smoothing procedure.
Another one of the most consuming components of the WRMG method for solving
the time-fractional diffusion equation is the relaxation step, since dense low-triangular
systems must be solved. In the particular case of discrete problem (11), for each spatial
grid point we need to solve a system of M equations of the type (TM +2/h2IM )x = b
for some known vector b. Due to the Toeplitz structure of the matrix, the solution
of the system can be obtained in O(M log(M)) operations by using well-developed
algorithms for the inversion of triangular Toeplitz matrices. With the inverse matrix
obtained, which is again a Toeplitz matrix, the solution of the system is obtained
by a matrix-vector multiplication with complexity of O(M log(M)) operations by
using the algorithm described in the previous subsection. Classical algorithms for
the inversion of triangular Toeplitz matrices with complexity O(M log(M)) include
the Bini’s algorithm [2], its revised version [25], and the divide and conquer method
[7, 34]. In our implementation, we have chosen the latter, which is briefly described
to make this work more self-contained. A low-triangular Toeplitz matrix TM , with
M = 2p, p > 1, can be partitioned as follows:

TM =

(
TM/2

PM/2 TM/2

)
,

where TM/2 and PM/2 are Toeplitz matrices of order 2p−1. Based on this partition,
it is easy to see that the inverse of matrix TM can be written as

T−1
M =

(
T−1
M/2

−T−1
M/2PM/2T

−1
M/2 T−1

M/2

)
.

This expression gives us a recurrent method to calculate the inverse of matrix TM .
Since the inverse of this matrix is Toeplitz, it is enough to calculate its first column.
Given a small number p0, we compute the inverse of the submatrix T2p0 by the forward
substitution method, for instance. Then we subsequently apply the recurrent formula
to compute the inverse of TM in p − p0 steps. On each step the first column of the
Toeplitz matrix −T−1

M/2PM/2T
−1
M/2 is required, which can be calculated by FFTs. The

total computational cost of the smoothing algorithm is therefore only O(NM log(M))
at each iteration step. Moreover, since we need to solve several triangular systems
with the same matrix but different right-hand sides, the first column of the inverse
matrix can be computed a priori.

5.3. Storage cost and computational complexity of the multigrid wave-
form relaxation method. The nonlocal nature of the fractional derivatives results
in a dense coefficient matrix yielding a bottleneck for the traditional numerical meth-
ods for fractional diffusion problems which require O(M2) units of storage. Due to
the Toeplitz structure of matrix TM the memory requirement for the storage of the
coefficient matrix can be significantly reduced to O(M), since to perform all the cal-
culations in our algorithm we only need to store its first column.

We consider a grid hierarchy G0, G1, . . . , Gl, where Gk := Ghk,τ and h0 > h1 >
· · · > hl. It is well known that the computational work Wl per V -cycle on a grid Gl

is given by [45]

Wl =

l∑
k=1

Wk−1
k +W0,
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where Wk−1
k is the computational work of a two-grid cycle excluding the work needed

to solve the defect equation on Gk, and W0 is the work needed to compute the exact
solution on the coarsest grid G0. In the computational work Wk−1

k , included are
the cost of a smoothing iteration, the calculation of the defect and its transfer to
Gk−1, and the interpolation of the correction to Gk and its addition to the previous
approximation. From the previous subsections, we can estimate that the computa-
tional cost of a two-grid cycle is Wk−1

k = O(NkM log(M)) and on the coarsest grid
W0 = O(M log(M)), where Nk is the number of spatial grid points on the grid Gk

and M is the number of time steps. Therefore, we can say that the computational
cost of a V -cycle on level l is roughly

Wl =

(
1 +

1

2
+

1

22
+ · · ·+ 1

2l

)
O(NlM log(M)) = O(NlM log(M)).

Thus, since the V -cycle converges in a small number of iterations independent of
the number of unknowns, the total computational cost for solving the time-fractional
problem by the WRMG method is roughly O(NlM log(M)).

6. Extension to two dimensions. This section is devoted to the extension of
the presented methodology to problems with two spatial dimensions.

Model problem and discretization. We consider the two-dimensional time-
fractional diffusion equation as our model problem, that is,

Dδ
tu−Δu = f(x, y, t), (x, y) ∈ Ω ⊂ R

2, t > 0,(28)

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t > 0,(29)

u(x, y, 0) = g(x, y), (x, y) ∈ Ω,(30)

where Δ denotes the two-dimensional Laplace operator, Ω is a square domain of length
L, ∂Ω is its boundary, and Ω = Ω ∪ ∂Ω. Dδ

t denotes again the Caputo fractional
derivative,

(31) Dδ
tu(x, y, t) :=

[
1

Γ(1− δ)

∫ t

0

(t− s)−δ ∂u(x, y, s)

∂s
ds

]
, (x, y) ∈ Ω, t ≥ 0.

Let us consider a uniform grid Gh,τ = Gh ×Gτ , with

(32) Gh = {(xn, yl) |xn = nh, yl = lh, n, l = 0, 1, . . . , N + 1} ,
where h = L

N+1 , and with Gτ given as in (7). The nodal approximation to the solution
at each grid point (xn, yl, tm) ∈ Gh,τ is denoted by un,l,m.

Standard central finite differences are used again to approximate the spatial
derivatives, whereas the Caputo fractional derivative is discretized as

(33) Dδ
Mun,l,m :=

τ−δ

Γ(2− δ)

[
d1un,l,m − dmun,l,0 +

m−1∑
k=1

(dk+1 − dk)un,l,m−k

]
,

where coefficients dk are identically defined as in section 2.
This results in the following discrete problem:

Dδ
Mun,l,m −Δhun,l,m = f(xn, yl, tm), 1 ≤ n, l ≤ N, 1 ≤ m ≤ M,(34)

un,l,m = 0, (xn, yl) ∈ ∂Ω ∩Gh,τ , 0 < m ≤ M,(35)

un,l,0 = g(xn, yl), 0 ≤ n, l ≤ N + 1,(36)

where

Δhun,l,m =
un+1,l,m + un,l+1,m − 4un,l,m + un−1,l,m + un,l−1,m

h2
.

D
ow

nl
oa

de
d 

09
/1

8/
17

 to
 1

92
.1

6.
19

1.
14

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1216 FRANCISCO J. GASPAR AND CARMEN RODRIGO

Multigrid waveform relaxation in two dimensions. Regarding the solver
for the considered two-dimensional time-fractional model problem (28)–(30), a red-
black Gauss–Seidel waveform relaxation can be defined, after discretizing in space, as
follows:

Dδ
tu

k
n,l(t) +

4

h2
uk
n,l(t) =

1

h2

(
uk−1
n−1,l(t) + uk−1

n,l−1(t) + uk−1
n+1,l(t) + uk−1

n,l+1(t)
)

+fn,l(t) if n+ l is even,(37)

Dδ
tu

k
n,l(t)−

1

h2

(
uk
n−1,l(t) + uk

n,l−1(t)− 4uk
n,l(t) + uk

n+1,l(t) + uk
n,l+1(t)

)
= fn,l(t) if n+ l is odd.(38)

Thus, the fully discrete problem given in (34)–(36) can be solved by using an extension
of the WRMG algorithm proposed in section 3. In this case, the method combines
a two-dimensional coarsening strategy in the space variables and again a line-in-
time smoother based on the red-black Gauss–Seidel waveform relaxation; that is, the
lines in time are visited following a red-black or chessboard manner. Regarding the
intergrid transfer operators, the standard two-dimensional full-weighting restriction
and bilinear interpolation are considered.

Semialgebraic mode analysis in two dimensions. The SAMA presented in
section 4 can also be extended to study the convergence of the proposed multigrid
waveform relaxation method. For this analysis, very little has to be changed from
the theory developed in section 4. The infinite grid Gh is defined as the extension
of the spatial mesh given in (32), and then the grid functions defined on such a
grid can again be expressed as formal linear combinations of the Fourier components,
which in this case are given by the product of two complex exponential functions, i.e.,
ϕh(θ,x) = eıθ·x = eıθx xeıθy y, where θ = (θx, θy) ∈ Θh = (−π/h, π/h]× (−π/h, π/h],
and which form the new Fourier space. In the two-dimensional spatial case, it is well
known that the Fourier space is decomposed in four-dimensional subspaces,

F4(θ) = span
{
ϕh(θ

00, ·), ϕh(θ
11, ·), ϕh(θ

10, ·), ϕh(θ
01, ·)

}
,

generated by four Fourier modes associated with one low frequency, θ = θ00 ∈ Θ2h =
[−π/2h, π/2h)2, and three high frequencies, θ11, θ10, and θ01, such that

θα1,α2 = θ00 − (α1 sign(θ
00
1 )π, α2 sign(θ

00
2 )π), α1, α2 ∈ {0, 1},

which are coupled on the coarse grid by the aliasing effect.
Similarly as in the one-dimensional case, SAMA in two dimensions is based on

a two-dimensional spatial LFA combined with an exact analysis in time. In this
way, the resulting Fourier representations of the smoothing, coarse-grid, and two-grid
operators are 4M × 4M matrices.

Analysis results. Next, we present some results obtained by using the semi-
algebraic analysis. Similarly as we saw for the one-dimensional model problem, if we
analyze the convergence of the method depending on parameter τ/h2, although the
convergence rates are bounded by 0.25 for all cases, we do not obtain a δ-independent
convergence for a fixed value of τ/h2. This can be seen in Figure 4. However, we can
show that the obtained multigrid convergence becomes robust for any value of δ with
respect to parameter λ = τδΓ(2 − δ)/h2. This is shown in Figure 5, where M = 32
time levels have been considered, and the two-grid convergence factors predicted by
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Fig. 4. Two-grid convergence factors predicted by the analysis for different values of parameter
λ = τ/h2 and various fractional orders δ.
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Fig. 5. Two-grid convergence factors predicted by the analysis for different values of parameter
λ = τδΓ(2 − δ)/h2 and various fractional orders δ.

the analysis for one smoothing step are shown for different values of parameter λ and
for different fractional orders δ. Notice that the graphs corresponding to the different
values of δ are almost indistinguishable, and for any value of λ the multigrid conver-
gence results are very satisfactory. These results can be confirmed with the asymptotic
convergence factors experimentally computed. In particular, for δ = 0.4, we show this
comparative in Figure 6, where the two-grid convergence factors predicted by SAMA
are displayed together with the asymptotic convergence rates computed by using a
W (1, 0)-multigrid waveform relaxation algorithm on a fine grid of size 256× 256× 32.
Again, a random initial guess and a zero right-hand side are used to perform these
calculations. Similar pictures can be obtained for other fractional orders δ. We can
observe a very accurate match between the analysis results and the rates experimen-
tally obtained.

Remark. In Figures 3 (one-dimensional case) and 6 (two-dimensional case), a
different behavior of the multigrid method is observed when λ becomes big enough,
that is, in the limit case of the steady problem. In that case, it is well known that
the multigrid method based on a red-black smoother is an exact solver in the one-
dimensional case, whereas for a two-dimensional diffusion problem the convergence
rate is about 0.25 for a W -cycle with one smoothing step (see [48]).

7. Numerical results. In this section, we consider three different numerical
experiments to illustrate the efficiency of the proposed multigrid waveform relaxation
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Fig. 6. Comparison between the two-grid convergence factors predicted by the analysis (ρ) and
the asymptotic convergence factor of a W -cycle experimentally computed (ρh) for different values
of parameter λ = τδΓ(2 − δ)/h2 and fractional order δ = 0.4.

method for solving the time-fractional heat equation. For all cases we perform V -
cycles since they provide convergence rates similar to W -cycles, and therefore a more
efficient multigrid method is obtained. We will start solving both one- and two-
dimensional linear problems, and finally we will solve a nonlinear one-dimensional
problem. All numerical computations were carried out using MATLAB.

One-dimensional linear time-fractional heat equation. We show the effi-
cient performance of the proposed multigrid waveform relaxation for a problem which
considers reasonably general and realistic hypotheses on the behavior of the solution
near the initial time. In particular, we consider a problem whose solution is smooth
away from the initial time (t = 0), but it has a certain singular behavior at t = 0
presenting a boundary layer. The theoretical convergence analysis of the considered
finite difference discretization has been deeply studied in [46]. Here, we will show that
the convergence of the WRMG is satisfactory for this representative model problem.

We consider problem (1)–(3) defined on a domain [0, π]× [0, 1], with a zero right-
hand side (f(x, t) = 0) and an initial condition g(x) = sin x. Then function u(x, t) =
Eδ(−tδ) sin x, where Eδ : R → R is given by

Eδ(z) :=
∞∑
k=0

zk

Γ(δ k + 1)
,

satisfies our initial-boundary value problem [28, 46]. In Figure 7, we can observe
the sharpness of the analytical solution near the initial time, where a boundary layer
appears. In [46], it is proved rigorously that for “typical” solutions of (1)–(3) (no
excessive smooth solutions) a rate of convergence of O(h2 + τδ) is obtained. This is
shown in Figure 8 for four different values of δ, where the maximum errors between
the analytical and the numerical solutions are displayed for various numbers of time
steps M and assuming a sufficiently fine spatial grid. It can be seen that the slopes
of the obtained graphs match with the expected convergence rates. For small values
of δ, a very fine temporal mesh would be required to attain the asymptotic rate of
convergence, and this is the case of δ = 0.1 in the picture where a slow convergence
of the rates to the expected asymptotic rate of 0.1 is observed.

Next, we show the independence of the convergence of the proposed WRMG
method with respect to the discretization parameters. For this purpose, we consider
different values of the fractional order δ and different grid sizes varying from 128×128
to 2048× 2048, doubling the mesh size in both spatial and temporal dimensions. In
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Fig. 7. Analytical solution u(x, t) of the first test problem for fractional order δ = 0.1.
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Fig. 8. Reduction of the maximum errors obtained for four different values of δ for the first
test problem.

Table 2 we display the number of WRMG iterations necessary to reduce the initial
residual by a factor of 10−10, together with the mean convergence factors and the
corresponding CPU time, when considering a V (0, 1)-cycle. We can observe that the
performance of the V -cycle is also satisfactory for any value of δ and for increasing
mesh sizes, as it was already seen for theW -cycle in the analysis results section. More-
over, we choose only one postsmoothing step since this approach provides much better
convergence factors than a V (1, 0)-cycle. Taking into account these considerations,
we observe from Table 2 a robust convergence of the considered WRMG.

Two-dimensional linear time-fractional heat equation. The second nu-
merical experiment deals with the solution of a two-dimensional linear time-fractional
diffusion problem. We consider the following model problem defined on the spatial
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Table 2

Number of V (0, 1)-WRMG iterations necessary to reduce the initial residual by a factor of 10−10

for different fractional orders δ and for different grid sizes. The corresponding average convergence
factors (in parentheses) and the CPU times in seconds are also included.

δ 128× 128 256× 256 512 × 512 1024 × 1024 2048 × 2048

0.1 8 (0.03) 0.54s 8 (0.03) 1s 8 (0.03) 2.96s 8 (0.03) 10.54s 7 (0.03) 36.16s

0.4 7 (0.03) 0.49s 7 (0.03) 0.91s 7 (0.03) 2.60s 7 (0.03) 9.31s 7 (0.03) 36.34s

0.7 7 (0.04) 0.47s 7 (0.04) 0.90s 7 (0.04) 2.54s 7 (0.04) 9.15s 7 (0.04) 36.10s

1.0 7 (0.05) 0.46s 7 (0.05) 0.88s 7 (0.05) 2.54s 6 (0.05) 7.96s 6 (0.05) 30.69s

domain Ω = (0, 2)× (0, 2):

Dδ
tu−Δu = f(x, y, t), (x, y) ∈ Ω, t > 0,(39)

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t > 0,(40)

u(x, y, 0) = 0, (x, y) ∈ Ω,(41)

where

f(x, y, t) =

(
2t2−δ

Γ(3− δ)
+

(
1 +

π2

2

)
t2
)
sin

π x

2
sin

π y

2
,

in such a way that the analytic solution of the problem is

u(x, y, t) = t2 sin
π x

2
sin

π y

2
.

We consider the WRMG method described in section 6 by using a V (1, 1)-cycle. This
choice is based on the SAMA results presented in section 6. Due to the difference of
the behavior of the method between the one- and two-dimensional problems, we have
chosen two-smoothing steps to perform the calculations in this test case.

In Table 3 we display the number of WRMG iterations necessary to reduce the
initial residual by a factor of 10−10 for different grid sizes varying from 32 × 32 ×
32 to 256 × 256 × 256 and for different values of the fractional order δ. We can
observe that the convergence of the proposed multigrid waveform relaxation is very
robust with respect to the considered parameters. In the table, we also show the
mean convergence factors and the corresponding CPU times. We can observe a very
satisfactory convergence in all cases, making the WRMG method a good choice for
an efficient solution of the time-fractional two-dimensional heat equation.

Table 3

Number of V (1, 1)-WRMG iterations necessary to reduce the initial residual by a factor of
10−10, together with the corresponding average convergence factors (in parentheses) and the CPU
times in seconds, for different fractional orders δ and for different grid sizes.

δ 32× 32 × 32 64× 64× 64 128 × 128 × 128 256× 256× 256

0.1 12 (0.10) 2.46s 12 (0.10) 10.31s 12 (0.11) 55.52s 12 (0.11) 349.98s

0.4 12 (0.09) 2.51s 12 (0.10) 10.45s 12 (0.11) 55.86s 12 (0.11) 348.29s

0.7 11 (0.09) 2.27s 12 (0.10) 10.31s 12 (0.11) 55.63s 12 (0.11) 344.57s

1.0 11 (0.09) 2.29s 11 (0.10) 9.68s 12 (0.11) 55.73s 12 (0.11) 346.44s

One-dimensional nonlinear problem. The last numerical experiment is de-
voted to dealing with a nonlinear problem which appears in the modeling of anomalous
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diffusion in porous media [14, 42]. We consider the following time-fractional PDE:

(42) Dδ
tu =

∂

∂x

(
D(u)

∂u

∂x

)
+ c

∂u

∂x
+ f(x, t),

where Dδ
t denotes again the Caputo fractional derivative operator with 0 < δ < 1,

and f(x, t) represents a source term. In this test problem we assume homogeneous
Dirichlet boundary conditions and a zero initial condition.

Choosing c = 0, model problem (42) has been used to describe the moisture
distribution in construction materials [43], for example, whereas if the convective term
is included, it is used to describe transport models for single-phase gas through tight
rocks [30] or in groundwater hydrology [1]. For the discretization of problem (42), we
consider again a uniform grid in space and time with step sizes h and τ , respectively.
The fractional temporal derivative is discretized as previously by using the L1 scheme
(see (10)). Regarding the spatial discretization, in an interior point (xn, tm) the
diffusion term is approximated by

(43)
1

h

[
an+1/2,m

un+1,m − un,m

h
− an−1/2,m

un,m − un−1,m

h

]
,

where an±1/2,m = 1
2 [D(un±1,m) +D(un,m)], and for the convective term a standard

upwind scheme is considered.
For the solution of the resulting discrete problem, we propose a nonlinear multi-

grid waveform relaxation method, derived from the well-known multigrid full-approxi-
mation scheme (FAS). This is the so-called waveform relaxation FAS method. This
algorithm is easily derived from the standard FAS method [48] for solving elliptic equa-
tions. For a detailed description of the proposed algorithm we refer the reader to the
book [49]. A nonlinear Gauss–Seidel waveform relaxation with a red-black ordering
is considered, together with standard transfer-grid operators. Again, a V (0, 1)-cycle
is chosen to perform the calculations.

In Table 4, we show the convergence of the proposed algorithm for the case of
D(u) = 1 + u2, c = 1, and f(x, t) = 1 and for different values of the fractional order
δ. In particular, we display the number of iterations required to reduce the maximum
initial residual by a factor of 10−10 for different grid sizes and the corresponding mean
convergence factors (in parentheses). From the results in Table 4, we can conclude
that the waveform relaxation FAS method shows behavior similar to that of the linear
WRMG method for time-fractional diffusion problems.

Table 4

Number of V (0, 1)-iterations of the waveform relaxation FAS method required to reduce the
initial residual by a factor of 10−10 for different fractional orders δ and for different grid sizes,
together with the corresponding mean convergence factors (in parentheses).

δ 32× 32 64× 64 128× 128 256 × 256

0.1 11 (0.09) 11 (0.10) 11 (0.10) 12 (0.10)

0.4 11 (0.09) 11 (0.10) 12 (0.10) 12 (0.10)

0.7 11 (0.09) 11 (0.10) 12 (0.10) 12 (0.10)

1.0 11 (0.10) 12 (0.10) 12 (0.10) 12 (0.10)

8. Conclusions. A multigrid waveform relaxation method has been proposed
for solving the time-fractional heat equation. The convergence of this method has
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been studied by a suitable semialgebraic mode analysis, which combines a classical
exponential Fourier analysis in space with an algebraic computation in time. The
results of this analysis show the efficiency and robustness of the proposed algorithm
for the solution of the considered problem for different fractional orders. The pro-
posed method has a computational cost of O(NM log(M)) operations, where M is
the number of time steps and N is the number of spatial grid points. Moreover, three
numerical experiments confirm the good behavior of the WRMG method. In partic-
ular a linear one-dimensional representative problem, a linear two-dimensional model
problem, and a nonlinear one-dimensional problem with applications in porous media
are efficiently solved in this work.
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and suggestions, which helped to improve the paper.
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