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Abstract 

Using state-of-the-art numerical techniques such as mesh adaptivity, implicit time-stepping and a non-linear 

multi-grid solver the phase-field equations for the non-isothermal solidification of a dilute binary alloy have 

been solved.  Using the quantitative, thin-interface formulation of the problem we have found that at high 

Lewis number a minimum in the dendrite tip radius is predicted with increasing undercooling, as predicted 

by marginal stability theory.  Over the dimensionless undercooling range 0.2 - 0.8 the radius selection 

parameter, σ*, was observed to vary by over a factor of two and in a non-monotonic fashion, despite the 

anisotropy strength being constant.  

 
Introduction 

One of the most fundamental and all pervasive microstructures produced during the solidification of metals 

is the dendrite.  Remnants of these dendritic microstructures often survive subsequent processing operations, 

such as rolling and forging, and the length scales established by the dendrite can influence not only the final 

grain size but also micro- and hence macro-segregation patterns. This can have a wide-ranging influence on 

both the properties of finished metallic products, affecting for instance mechanical properties, corrosion 

resistance and surface finish, and on the formability of metallic feedstock, such as the ability to resist hot 

tearing during rolling.   

Where dendritic growth has been observed directly, in transparent analogue casting systems such as 

succinonitrile[ ]1  and xenon[ ]2 , the evidence is that the morphology of dendrites grown at different 

undercoolings is probably self-similar when scaled against the tip radius, ρ.  Consequently all the more 

obvious length scales of the dendrite are simple multiples of ρ, thus making the ability to predict ρ accurately 

a problem of central importance to the theory of dendritic growth. 
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The problem of predicting ρ first became apparent in 1947 when Ivantsov[ ]3  showed that an isothermal 

paraboloid of revolution, growing at velocity V into an undercooled melt was a shape preserving solution to 

the diffusion equation, thus giving rise to the idea of the parabolic needle dendrite.  The analytical solution 

for such a crystal growing into its undercooled melt is degenerate in that it relates the Peclet number, and not 

the growth velocity, to undercooling, where the Peclet number is defined as 

α
ρ

2
= VPt             (1) 

with α the thermal diffusivity in the melt.  Consequently, at a given undercooling an infinite set of solutions 

are admissable, subject to the condition Vρ = constant.  Such degeneracy is not observed in nature, where a 

well defined growth velocity can always be associated with a given undercooling, thus sparking the search 

for an additional mechanism to set the length scale, ρ, for the dendrite. 

One of the most enduring solutions to this problem is based on a linear stability analysis of a plane 

solidification front against the growth of small perturbations[ ]4 .  This theory postulates that the dendrite 

grows at the largest value of ρ which is stable against the growth small perturbations (as such perturbations 

would cause tip splitting and hence reduce ρ), that is at the limit of marginal stability.  The principal 

prediction of this theory is that capillary forces break the Ivantsov degeneracy via the relationship 
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where do is a capillary length.  σ* is the so-called stability constant, which for a plane interface is given by 

Mullins & Sekerka[ ]4  as σ* = 1/(4π2) ≈ 0.0253. 

This theory, particularly in its more sophisticated forms due to Lipton, Glicksman & Kurz (LGK)[ , ]5 6  

and Lipton, Kurz & Trivedi (LKT)[ ]7 , was reasonably successful in fitting experimentally determined 

velocity-undercooling data[ ]8 .  Moreover, direct simultaneous measurement of V and ρ for succinonitrile[ ]9  

yields an experimental value for σ* in this system of 0.0195, in close agreement with theory.  However, 

despite this the theoretical basis of the marginal stability hypothesis must be considered somewhat ad hoc.  

In particular, boundary integral methods[ , ]10 11  (microscopic solvability theory) have shown that the Ivantsov 

equations have no solution in the absence of crystalline anisotropy, and therefore the apparent agreement 

between marginal stability theory and experiment is fortuitous.  The full analysis reveals that in the limit of 



low Peclet numbers an equation similar to the one arising from marginal stability is encountered but that  σ* 

is the anisotropy-dependant eigenvalue for the problem, which for small Peclet numbers is found to vary as 

σ*(ε) ∝ ε7/4, where ε is a measure of the anisotropy strength.   

In recent years further progress has been made towards understanding solidification phenomena[ ]12  by 

the advent of by phase-field modelling[ , , , , ]13 14 15 16 17 . The basis of the phase-field technique is the definition 

of a phase variable, φ(x,t), which is continuous over the whole domain Ω occupied by the system, x being the 

spatial co-ordinates within Ω and t being time.  The value of φ indicates whether the material is solid or 

liquid.  The continuity of φ over Ω implies that the interface between the solid and liquid regions is diffuse, 

which is one of the central differences between the phase-field formulation of the dendrite growth problem 

and microscopic solvability. Like solvability theory, phase-field techniques predict that dendrites will only 

be formed in the presence of a non-zero crystalline anisotropy[ ]17 , and that where dendrites are formed the tip 

radius, ρ, is determined by the strength of the anisotropy, ε.  The application of phase-field modelling has 

largely been restricted to two limiting cases; namely the thermally controlled growth of pure substances and 

the solidification of relatively concentrated alloys where the solidification is sufficiently slow that the 

problem may be considered isothermal.  This omits two important classes of alloy solidification problems 

where the isothermal approximation is not valid; the solidification of very dilute alloys and rapid 

solidification, where high undercoolings or large thermal gradients drive the solidification at a sufficient rate 

that the isothermal approximation breaks down.   

To date relatively few attempts have been made to use phase-field techniques to simulate coupled 

thermo-solutal solidification.  The nature of the phase-field model leads to coupled systems of highly non-

linear and unsteady partial differential equations which consist of a non-linear phase equation to simulate the 

microstructure and two diffusion equations to describe the temperature and concentration fields in the model.  

Moreover, if realistic materials properties are adopted the ratio of the thermal diffusivity to the solute 

diffusivity (the Lewis number, Le = α/D) is typically 103 – 104, leading to severe multi-scale problems.   

Two basic formulations of the coupled phase-field problem have been reported to date.  The first, which 

has been reported by Loginova et al.[ ]18 , follows on from the derivation of the solutal model of Warren & 

Boettinger[ ]19
.  However, there are doubts about the quantitative validity of this model[ ]20  as the numerical 

results appear to have an unresolved interface width dependence.  Moreover, the solute trapping effect 



reported in this model appears anomalously high.  The numerical techniques used to solve this model have 

subsequently been improved by Lan et al.[ ]21 , who have introduced an adaptive finite volume solver, which 

allowed them to introduce realistic values of Le without the domain boundary effects which had been 

encountered in [18].  However, this did not overcome the either the excess solute trapping or the 

interface-width dependence of the solution.  The alternative formulation of the coupled phase-field problem 

has been presented by Ramirez & Beckermann[ , ]20 22 , based on the thin interface model developed by Alain 

Karma[ ]23 , although computational limitations meant that this work studied only a restricted set of Lewis 

numbers, Le ≤ 200. However, as the thin interface model has been shown to be independent of the length 

scale chosen for the mesoscopic diffuse interface width it is capable of giving quantitatively correct 

predictions for dendritic growth and consequently this is the model adopted here.    

The objective of this work is to apply phase-field modelling to moderately undercooled melts where the 

dendritic growth is under coupled thermo-solutal control.  To date this has largely only been studied via 

analytical models such as LGK/LKT, although the omission of crystalline anisotropy means that these 

models cannot give quantitative predictions for ρ without σ* being fixed externally.  One of the major 

predictions of the LGK/LKT theory in the deeply undercooled regime is that as the dendritic growth passes 

from being predominantly solute controlled at high solute Peclet number to being thermally controlled at low 

thermal Peclet number the dendrite tip radius passes through a local minimum.  At yet higher undercooling 

the dendrite tip radius should pass through a local maximum, whereafter it will decrease smoothly in the 

regime characterised by high thermal Peclet number.  The effect of undercooling on dendrite tip radius has 

been investigated by [20], although they did not find a minimum in ρ, possibly because of the relatively low 

Lewis number of 40 used in their simulations.  They did however find that despite σ* tending to 

approximately the same limiting value for both pure thermal and pure solutal growth, significant variations 

in σ* were observed in the coupled thermo-solutal regime.  

In this paper we use a coupled thermo-solutal phase-field model of the type presented in [22] to study 

the behaviour of V, ρ and σ* for a dendrite growing in a dilute binary alloy as the undercooling is increased.  

These will be compared with the predictions of the LGK/LKT theories for a dendrite growing at constant σ*, 

and a brief resume of the LGK/LKT theory is therefore presented next. 

 



Analytical Dendrite Growth Theories 

The interfacial undercooling of a parabolic dendritic plate growing into its parent melt undercooled ΔT 

below its equilibrium liquidus can be written  

rt TTTT Δ+Δ+ΔΔ c=            (3) 

where ΔTt, ΔTc & ΔTr are the thermal, constitutional and curvature contributions to the undercooling 

respectively. ΔTt is given in 2-dimensions by[ ] 24

)(=)erfc( )exp( PtIvTPtPtPtTT hyphypt ΔΔ−=Δ π        (4) 

where ΔThyp = L/cp is the hypercooling limit, L is the latent heat on fusion, cp is the heat capacity at constant 

pressure, erfc is the complimentary error function and Iv(Pt) is the 2-D Ivantsov function. 

In a manner analogous to the solution for thermal transport during directional solidification, the solution 

for solute diffusion leads to isoconcentrate lines which are paraboli of revolution concentric with the freezing 

front. This leads to an expression for ΔTc of 
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where |m| is the slope of the liquidus, k the partition coefficient, defined such that m(1-k) < 0, c∞ the 

concentration of the alloy in the far field, Δc = Iv(Pc), Pc is the solutal Peclet number 

PtLe
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D is the diffusion coefficient for the solute species in the liquid and Le = α/D is the Lewis number. At very 

low growth velocity k may be associated with kE, the equilibrium partition coefficient. However, as the 

growth velocity increases we need to take account of solute trapping by writing a velocity dependant 

partition coefficient[ ]25
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ΔTr is a manifestation of the Gibbs-Thomson effect, whereby the melting point of a substance on a curved 

interface is depressed relative to its value on a flat interface by an amount 
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K is the surface curvature and Γ the Gibbs-Thomson parameter, given by  

L
Tlγ=Γ             (9) 

Tl is the equilibrium liquidus temperature and γ the interfacial energy between the solid and liquid phases. 

As described above it is assumed that ρ is selected on the basis of a marginal stability criterion, that is 

the dendrite tip grows at the smallest radius which is stable against the growth of small perturbations.  The 

wavelength of these perturbations, and hence the radius of the tip, is given by LGK/LKT, for growth at 

arbitrary Peclet number, as 
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where in the LGK[ , ]5 6  theory ξT and ξc are simply 1 while in the LKT[ ]7  theory these are given by 
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Phase-Field Model 

The phase-field model adopted here is based upon the coupled thermo-solutal model for the simulation of 

solidification in dilute binary alloys developed in [22].  Within this model the phase of the material is 

represented by the phase variable, φ, where the solid and liquid phases correspond to φ = 1 and φ = -1 

respectively and in the interface region φ varies smoothly between the bulk values.  In the limit of vanishing 

kinetics the dimensionless governing equations, when expanded[ ]26  into the form used in the numerical 

implementation presented below, are given by  



[ ]

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂′

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂′

∂
∂

−+−−−+

∇+⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+
∂
∂

∂
∂′=

∂
∂

⎥⎦
⎤

⎢⎣
⎡ −++

∞

∞

x
AA

yy
AA

x
UMc

A
yyxx

AA
t

UkMc
Le

A E

φψψφψψθφλφφ

φψφψφψψψφψ

)()()()()()1()1(

)()()(2)1(11)(

222

222

                                (13) 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−+

+

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇∂
∂

∂
∂

−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇∂
∂

∂
∂

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∇∂
∂

∂
∂

−+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇

−
+⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

∂
∂

+
∂
∂

∂
∂

−=
∂

∂
⎟
⎠
⎞

⎜
⎝
⎛ −

−
+

t
Uk

ty
U

tx
Uk

tytx
Uk

U
y
U

yx
U

x
D

t
Ukk

E

yx
E

yx
E

EE

φ

φ
φφ

φ
φφ

φ
φφ

φ
φφ

φφφφ

)1(1
2
1

)1(

)1(1

22
1

2
1

2
1

2
1

2
1 2

                                    (14) 

tt ∂
∂

+∇=
∂
∂ φθαθ

2
12                                  (15) 

where ψ = arctan(φx/φy) is the angle between the normal to the interface and the x-axis, A(ψ) = 1 + ε.cos(ηψ) 

is an anisotropy function with strength ε and mode number η.  The dimensionless coupling parameter, λ, is 

given by [23] as  
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where d0 is the chemical capillary length and in order to simulate kinetic free growth it is shown in [23] that 

a1 and a2 take the values 5√2/8 and 0.6267 respectively.  Here the solutal and thermal diffusivities have now 

both been non-dimensionalised by multiplying by τ0/W0
2, where τ0 is a characteristic relaxation time given by  
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W0 = d0λ/a1 is a measure of the width of the diffuse interface. 

 

The dimensionless concentration and temperature fields U and θ are related to their physical counterparts c 

and T via the relations   
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Finally, the dimensionless gradient of the liquidus line, M, is given by  
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Numerical Methods 

The nature of the phase-field method, where rapid changes in the phase variable, φ, are restricted to a narrow 

interface region, lends itself naturally to adaptive mesh refinement.  Here we discretize the governing 

equations using a finite difference approximation based upon a quadrilateral, non-uniform, refined mesh with 

equal grid spacing in both directions at each level of refinement, which allows the application of standard 

finite difference stencils.   

The mesh structure adopted is non-conforming, in the sense that we allow hanging nodes[ ]27 .  We 

distinguish between four different node types; internal nodes, boundary nodes, hanging nodes and interface 

nodes.  In the case of a uniformly refined mesh all nodes are either internal nodes or boundary nodes.  In the 

case of non-uniformly refined meshes the nodes that lie at the interface of two levels of refinement are 

termed as either interface nodes or hanging nodes.  Hanging nodes are nodes that exist only on the finer 

grids, while interface nodes exist on both the finer and next coarser grid (see Fig. 1).  Standard second-order 

central difference schemes are used to approximate the first and second differentials of φ, U and θ, while a 

compact 9-point scheme has been used for the Laplacian terms in the phase equation as this has been shown 

to reduce mesh induced anisotropy effects[ , ]28 29 .  The mesh data is stored in a quadtree data structure as in 

[30]. 

In order to ensure that sufficient levels of refinement occur around the interface region and that the 

extreme multi-scale nature of the thermal and solutal diffusion fields at high Lewis numbers are handled 

appropriately, adaptive refinement is based upon an elementwise gradient criterion given by 
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where h|ν | is the element size on the finest level of refinement and EC and ET are user-defined constants 

which control the respective effect of the concentration and thermal fields relative to the phase-field.  These 

are compared to two tolerances,  and .  If, at any location within the domain  the mesh is 

refined at that location while conversely if  the mesh is permitted to coarsen at that location.  

Refinement and coarsening proceeds via a two step process.  On the first sweep through the mesh the 

elements targeted for refinement (coarsening) based upon the gradient criterion are marked, and on the 

second sweep the marked elements are refined/coarsened.  In order to guarantee that the solution is 

sufficiently resolved, a number, N

+
TolE −

TolE +≥ TolEE   

−≤ TolEE   

s, of extra (safety) layers of elements may be added to those marked by the 

gradient criterion at each level. This helps to ensure that the interface region does not move out of the most 

refined area of the mesh during a given time-step.  In addition we apply two further refinement rules;  

● Two neighbouring elements should differ by at most one level of refinement. 

● An element cannot be further refined once it has reached a user-defined maximum   level of 

refinement. 

The most commonly employed temporal discretization scheme utilised in phase-field modelling are explicit 

methods such as the Forward Euler scheme.  Rewriting Equations (13)-(15) in operator form  
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the forward Euler scheme can be written as  
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The implementation of explicit methods is straight forward, but they suffer from a time-step restriction in 

order to ensure the stability of the discretization scheme, which is of the form  

2.hCt ≤Δ                       (24) 



where h is the minimum element size and for some non-linear PDE’s the value of C can be very small, 

leading to excessively small time steps on heavily refined grids.  Moreover, we have shown elsewhere[ ]26  that 

for the complex equations considered here C = C(λ, Le, Δ) , with C varying from ≈ 0.3 at Le = 1 to C ≤ 0.001 

at Le = 500 at which point the tests to evaluate to C were terminated due to the extremely long computational 

time required to evaluate the explicit Euler method, despite Le = 500 still being significantly short of values 

typical of liquid metals.   

In order to overcome these restrictions, implicit time stepping methods have been utilised here as these 

may be designed to be unconditionally stable.  In particular, we have used the second order Backward 

Difference Formula (BDF2), which is an implicit linear 2-step method which, with a constant time step, Δt, 

takes the following form  
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The method leads to second order convergence in both time and space.  It can be shown that the BDF2 

method is A-stable[ ]31 , and is therefore used for stiff systems of differential equations.  The advantage over 

one-step second order methods such as Crank-Nicholson, is that only one non-linear solve is required at each 

time-step.  The (small) price that has to be paid for this computational efficiency is that the solutions from 

the previous two time-steps must be saved.  Although highly dependant upon the problem, particularly the 

value of Le, convergence studies[ ]26  have shown that the BDF2 method permits time steps between 80 and 

several hundred times that allowed by the explicit forward Euler method. 

Utilising an implicit time discretization scheme the appropriate selection of Δt shifts from being a 

question of numerical stability to one of accuracy.  For typical phase-field simulations growth starts from a 

small nucleus.  The initial growth of the nucleus will typically be very rapid, although the inherent instability 

of the interface will lead to the formation of dendritic arms that will ultimately grow with a steady-state 

velocity.  Consequently, an adaption of the time step in the BDF2 method is likely to efficient and leads to an 

adaptive time and space discretisation method.  It can be shown that in order to ensure second order 

convergence with a variable time step of ratio, r = Δtk/Δtk-1, Equation (25) becomes, 
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The choice of appropriate time steps is based upon a set of local error estimators 
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Each of the error estimators is compared against a corresponding tolerance ( , , ) and if at any 

time-step the local temporal error = min( , , ) ≤  the time step is accepted and the next 

time-step is increased whereas if  the step is rejected and retaken with a smaller time-step.  The 

rate at which the time-step should grow can be estimated from  
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where p is the order of the scheme, which is 2 for the BDF2 method. 

When using implicit time discretisation methods it is necessary to solve a system on non-linear 

algebraic equations at each time-step.  Multigrid methods are among the fastest available solvers for large 

sparse systems of linear equations and we in this work apply the non-linear generalization known as FAS 

directly to the algebraic system that arises at each time step.  This is the key ingredient that allows the 

practical implementation of implicit time stepping and is based upon two principles: the coarse grid principle 

and the smoothing principle.  For the coarse grid correction one has to define grid transfer operators to 

transfer the solution and the residual from the fine grid to the coarse grid and the solution from the coarse to 

the fine grid.  Here, bilinear interpolation is used for the coarse to fine grid transfer and injection is used for 

the fine to coarse transfer.  For smoothing the error we use a basic pointwise nonlinear weighted Gauss-

Seidel method, with  
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with 
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where the evaluation of the derivatives of the descritisation operators with respect to the system variable is 

discussed in [26].   

On the basis of the described smoothing and transfer operators a multigrid solver for adaptively refined 

meshes has been developed based on the Full Approximation Scheme[ ]27  (FAS) for resolving the non-

linearity.  The number of pre- and post-smoothing operations required for optimal convergence has been 

investigated within the context of phase-field simulation in [26, 32].  Based on that work we have used V-

cycle iteration with 2 pre- and 2 post- smoothing operations.   

A major property of the multigrid method is h-independent convergence, which means that the 

convergence rate does not depend on the element size.  This behaviour is vital in respect of being able to 

solve the extreme multi-scale problem arising from coupled thermo-solutal phase-field simulations at high 

Lewis number. 

 



Calculation of the Dendrite Tip Velocity and Radius of Curvature 

The two most important parameters to come out of quantitative phase-field simulations are the curvature and 

velocity of the dendrite tip, which therefore need to be calculated with a high degree of accuracy.  The 

calculation of both these quantities requires accurate estimation of the tip position, for which we use a high 

order inverse interpolation scheme.   

For a dendrite arm growing along the x–axis, which consists of the discrete points xj, for j = 1,N, we are 

seeking the value x* on the x-axis, for which φ(x*) = 0. The method adopted here is based on Newton 

forward differences, wherein 
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where i is the order of the interpolation and  
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where φ(x*) = 0 in this case and  
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With a relatively exact calculation of the position of the interface we can now compute the curvature of the 

tip 
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and hence the actual radius of curvature at the tip 

Ka
1

=ρ                       (47) 

However, the actual tip radius is often not suitable for comparison with theoretical results[ , , ]20 28 33 , as most 

dendrite growth theories assume a parabolic tip shape.  Therefore, the procedure from [20] is adopted for 

calculating the parabolic tip radius.  We introduce a local Cartesian co-ordinate system (x, y), situated at the 

actual tip position where x is pointing along the growth direction.  The form of the parabola is then described 

by  

)(2 0
2 xxy −−= ρ                      (48) 

where ρ is the parabolic tip radius and x0 is the effective tip location.  A simple least-squares fit to the φ = 0 

isoline is used to determine the optimum values for ρ and x0, which is applied over a fitting range  

rightleft ,~ xxx =                       (49) 

Results 

The phase-field model used here is formally identical to that derived in [22], where the ability of the model 

to yield quantitative predictions is extensively validated.  For this reason we do not repeat the validation of 

the model derivation.  We give below the results of some comparative simulations which were also run by 

[20, 22] which we use to confirm that the numerical implementation of the model described above performs 

as expected.  Far more extensive validation of our numerical techniques are presented in [26].  Having 

established the validity of the numerical scheme employed we then move on to present the results of a set of 

simulations designed to investigate the selection of the dendrite tip radius and growth velocity as the 

undercooling is increased.  In particular, we examine the regime where the dendrite passes from being 

predominantly solutaly, to thermally, controlled at sufficiently high Lewis number that in so doing a radius 

minimum is encountered.   

The initial numerical validation has been undertaken at a modest Lewis number of 40, for which results 

have been published in [20] with which ours may be directly compared.   The coupled model described by 



Equations (13)-(15) has been solved on the domain Ω = [-800, 800]2, with simulation parameters Δ = 0.55, 

Mc∞ = 0.07, Le = 40, ε = 0.02, kE = 0.15.  In order to simulate kinetic free growth Equ. (16) is used with 

λ = 2, which leads to D = 1.253328.  Since the Lewis number is set to 40 it follows that the thermal 

diffusivity is α = 50.13311.  The mesh refinement parameters have been set as EC = 0.75 and ET = 1.0.  The 

problem is solved using a maximum of 11 levels of refinement, giving a minimum h of 0.78.  This is 

equivalent, were a uniform mesh to have been used, of a mesh size which is 211 × 211.  The multigrid solver is 

iterated until an absolute residual of 10-5 is reached and the tolerance on the adaptive time-stepping routine, 

DTol,  is set to 7.5 × 10-3.  A typical mesh structure is shown in Fig. 2, while characteristic results for the 

thermal (θ) and solutal fields (c/c∞) towards the end of the simulation are shown in Fig. 3, where boundary 

effects are already beginning to effect the simulation results.  Even at this rather modest Lewis number it is 

clearly evident that the thermal field extends much more widely than the solute field.  For this simulation the 

steady-state values of the growth velocity and dendrite tip radius are ρa/d0 = 16.34 and Vd0/α = 0.0040.  

Fitting of a parabolic profile to the φ = 0 isoline, as described by Equ. (48) above, results in a parabolic 

radius of curvature ρ/d0 = 27.38 which also gives Vρ/2α = 0.0546.  The fitting interval here is 

10- ,100~ −=x , although keeping the fitting range constant and moving the fitting interval a further 40 

units to the right changes ρ by no more than 1.5%.   

We believe that all of these results compare favourably with the results presented by Ramirez & 

Beckerman [Ref. 20, Figures 3-4].  Moreover, when the phase equation was solved directly in [20], using an 

explicit finite difference scheme, a severe grid dependence was found.   This meant that small values of h 

(typically h ≈ 0.3) had to be used to get accurate solutions, with no converged solution at all being found for 

h > 1.  The problem was overcome by using a preconditioning technique, in which the phase equation was 

written in terms of a new variable ψ = tanh(φ/√2).  In contrast, using an implicit multigrid solver no such h 

dependence has been encountered.  In numerical tests presented in [26] the variation in tip velocity was 

found to vary by no more than 5% as h was reduced from 0.78 to 0.097.   

In [20] another issue of potential concern to the authors was a significant variation between simulations 

as the coupling parameter, λ, was varied over the range 1-8.  The variation in the upper part of this range is 

probably not a major issue.  Equation (16) gives the length scale W0 corresponding to λ = 4 as 4.53d0, while 



for λ = 8 this is W0 = 9.05d0, that is 28%-55% of ρa.  Given that W0 is a measure of the width of the diffuse 

interface it would not be surprising if the quality of the solution were to degrade as the width of the diffuse 

interface approached the actual radius of curvature of the dendrite tip.  However, of more concern is the 

variation observed in the solution as λ is varied in the range 1-4, most notably a ≈40% decrease in the tip 

velocity as λ is decreased.  As one of the fundamental properties of the thin-interface model is that the 

solutions should be independent of the mesoscopic interface width, this an effect that we have chosen to 

investigate further with the multigrid method reported here.  Fig 4 shows the variation of the scaled velocity 

Vd0/α as a function of λ and should be directly comparable to the solid line in [20, Fig. 5].  Unlike [20] who 

observe a variation in Vd0/α of up to 25% between λ = 1 and  λ = 4 we observe a much smaller variation of 

no more than 10% over the same interval.  However, the most notable effect is the sharp increase in Vd0/α 

for λ < 1, which corresponds to the width of the diffuse interface being less than the capillary length.  Fig. 5, 

which shows the Peclet number as a function of λ, would tend to confirm that this is a real effect. For 

λ > 1.5, Pt is remarkably constant, with a mean value of 0.0563 ± 0.0005, but again for small values of λ a 

strong systematic increase is observed.  However, as yet the exact origins for this variation are unknown. 

We now move on to consider the variation of ρ as Δ is increased.  Fig. 6 shows a family of plots of ρ 

against Δ calculated using the LKT[ ]7  model.  The parameters used here are Mc∞ = 0.05, kE = 0.30 and 

σ* = 0.05. The curves clearly show that the depth of the predicted minimum is a strong function of Le, while 

both the predicted minimum and maximum occur at lower values of Δ as Le is increased.  It is apparent from 

Fig. 6 that the minimum value of Le at which we might reasonably expect to be able to observe a minimum 

in ρ is Le = 200, which accordingly is the value adopted in the phase-field simulations. The simulations are 

run on a domain of size Ω = [-1600, 1600]2, which is larger than the previous set of simulations as the higher 

Lewis gives rise to a more extensive thermal boundary layer.  A maximum of 12 levels of refinement are 

used, which as before gives a minimum h of 0.78, equivalent, were a uniform mesh to have been used, of a 

mesh size which is 212 × 212.  The other parameters used in the simulation are ε = 0.02 and λ = 1.  This final 

parameter has been chosen as a compromise between the anomalous behaviour observed in Fig. 4 and the 

need to keep the ratio of the interface width to the solute boundary layer width (W0V/D) less than or of order 

unity [20], as this quantity increases rapidly with the high growth velocities encountered at elevated 

undercoolings. Values for the tip velocity, V, and tip radius, ρ, for a family of simulations run at different 



values of Δ between 0.1 and 0.8 are shown in Figures 7 & 8 respectively.  The velocity shows a simple 

power law dependence on Δ of the form V ∝ Δβ, which has been widely reported as being the case in 

experimental velocity-undercooling studies [see e.g. 34, 35], where β is a material dependant constant which 

is typically in the range 2.0-3.5.  The least-squares value of β found for the simulations reported here is 2.39.  

As is apparent from Fig. 8 a clear radius minimum is observed in the data, albeit at a rather higher value of Δ 

than would have been expected from the LKT theory.  There is however, no evidence of a velocity 

maximum, despite the fact that from the LKT prediction this should occur well below the maximum Δ 

studied here of 0.8.  Yet higher values of Δ have not been studied as the value of W0V/D for Δ = 0.8 is 1.6, 

and although this is probably still acceptable[ ]20 , significantly higher values may lead to computational 

artefacts in the solution.   

In order to better understand the observed results we have calculated σ* as a function of Δ, using both 

the LGK and LKT definitions.  In both models this would be expected to be a material-dependant constant, 

although for both pure thermal and pure solutal growth in 2-dimensions[ ]20  and pure thermal growth in 3-

dimensions[ ]28  σ* appears to decrease approximately linearly with increasing Peclet number, with the 

coupled thermo-solutal model of [20] showing a rather steeper decrease in σ*.  In order to calculate σ* in 

such a way that it is independent of the Ivantsov solution when Δc is evaluated the following procedure has 

been adopted from [20].  Δc can be written as  
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where Ui is the value of U ‘frozen in’ at the interface (NB there is an error in [20] which meant that Equ. (50) 

appeared as Ui[1+(1-kE)Ui]).  The correct form is as shown above, although there is no evidence this is 

anything other than a typesetting error in [20], the results presented being consistent with the correct form of 

the equation being used).  Ui may either be read directly from the simulations or evaluated from  
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where θi is the value of θ at the interface.  The latter of the two methods has been used here, with θi being 

evaluated at φ = 0.9, although as the solid is essentially isothermal the value obtained does depend critically 

upon the value of φ selected.  

The results of calculating the selection parameter, σ*, are shown in Fig. 9, for both the LGK and LKT 

basis.  As in [20]  we find that as Pt → 0, σ* approaches a value of approximately 0.07, which is consistent 

with it being independent of the alloy concentration in the low undercooling limit (note that although we 

have used different material parameters this should not matter as in the limit Pt → 0, σ* should depend only 

upon ε, which is the same as in [20]).  However, unlike [20] we find at higher Lewis number very significant 

difference in behaviour between the LGK and LKT definitions of σ*.  On the LGK definition σ* drops 

monotonically, reaching at the highest Peclet numbers studied a very low value, around 0.0006.  In fact, 

above Pt = 0.15, σ* on the LGK definition is very close to varying in direct proportion to 1/Pt.  In contrast, 

on the LKT definition, σ* varies non-monotonically, showing a minimum at Pt = 0.0325 (Δ = 0.4), co-

incident with the minimum in ρ, while the maximum in σ* occurs at Δ = 0.65 (Pt = 0.14), an undercooling 

which does not correspond to any obvious feature in the plot of ρ against Δ. 

However, the physical significance of these results is far from clear.  One would have expected a priori 

the LKT definition of σ* to be superior due to the high undercooling corrections effected by the inclusion of 

the terms ξT and ξc.   Indeed, the inclusion of the ξ parameters keeps σ* (on the LKT definition) constant to 

within a factor of ≈ 2, while on the LGK definition σ* varies by over two orders of magnitude.  The variation 

of the ξ parameters with Pt is shown in Fig. 10, showing in particular that across the range of undercoolings 

studied here ξc varies from close to 1 (solute dominated growth) to essentially zero (no solute effects).  

However, from a quantitative point of view a variation of a factor of two is still significant, particularly when 

it is borne in mind that in the most widely used method for estimating the characteristic microstructural 

length scale for rapid solidification processes is still the use of the LKT model with a constant σ* estimated 

from the anisotropy in the zero Peclet number limit.   

 

Summary & Discussion 

A model has been presented which allows the efficient numerical solution of the non-isothermal phase-field 

equations for alloy solidification using advanced numerical techniques such as mesh adaptivity, implicit 



time-stepping and multigrid methods.  Moreover, by using a formulation of the non-isothermal problem 

based on the thin-interface model these results should be independent of the width assumed for the diffuse 

interface, giving them a quantitative validity which cannot be claimed by other formulations of the non-

isothermal problem.  We have used this model to investigate the behaviour of the dendrite tip radius and 

growth velocity as a function of undercooling for a dilute alloy at a Lewis number of 200, confirming 

theoretically for the first time that the dendrite tip radius does indeed pass through a minimum with 

increasing undercooling.   However, up to the highest undercooling studied (Δ = 0.8) no evidence of a radius 

maximum has been observed. The radius selection parameter, σ*, has been calculated as a function of 

undercooling and this is shown to be far from being constant, with approximately a factor of two variation 

observed (LKT definition of  σ*) over the range of undercoolings studied.  This highlights the potential 

limitations of assuming constant σ* in simple analytical models of solidification to predict dendrite length 

scales. 
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Fig. 1. Schematic illustration of the different node types occurring in an adaptively refined mesh.  ƒ interior 

nodes, Υ boundary nodes, % hanging nodes and o interface nodes.  



 

 

 

Fig. 2. Typical mesh structure for a dendrite growing on a mesh with a maximum of 11 levels of refinement.  



 

 

 

Fig. 3. Thermal and solutal fields around a dendrite growing with a Lewis number of 40 (the solid-liquid 

interface has been outlined on the thermal map for clarity).  Note, even at this modest Lewis number the 

multi-scale nature of the problem.  



 

 

 

Fig. 4. Variation of the dimensionless dendrite growth velocity as a function of the coupling parameter, λ.  

Note large variation for λ < 1.  



 

 

 

Fig. 5. Variation of the Peclet number as a function of the coupling parameter, λ.  Note large variation for 

λ < 1.  



 

 

 

Fig. 6. Dendrite tip radius as a function of undercooling for Lewis numbers in the range 50-1000 as 

calculated using the LKT model for alloy solidification.   

 



 

 

 

Fig. 7. Dimensionless dendrite growth velocity as a function of undercooling, showing very close agreement 

to a simple power law dependence.   

 



 

 

 

Fig. 8. Dimensionless dendrite tip radius as a function of undercooling, showing a clear minimum at a 

dimensionless undercooling of 0.4. 

 



 

 

 

Fig. 9. Radius Selection parameter calculated on (a) the LGK (no high undercooling corrections) and (b) the 

LKT (corrected for high undercooling) basis.  In both cases the value in the limit Pt → 0 tends to 0.07, which 

is consistent with analytical solutions for an anisotropy strength of 0.02. 



 

 

 

Fig. 10. Values of the thermal and solutal correction parameters (ξt and ξc) used in the LKT calculation of 

the radius selection parameters, σ*.  
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