57 research outputs found

    Neutrosophic SuperHyperAlgebra and New Types of Topologies

    Get PDF
    In general, a system S (that may be a company, association, institution, society, country, etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the organization of people, beings, objects etc. in our real world. The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any field of knowledge, one in fact encounters SuperHyperStructures. Also, six new types of topologies have been introduced in the last years (2019-2022), such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology

    Interval-valued fuzzy decision trees with optimal neighbourhood perimeter

    Get PDF
    This research proposes a new model for constructing decision trees using interval-valued fuzzy membership values. Most existing fuzzy decision trees do not consider the uncertainty associated with their membership values, however, precise values of fuzzy membership values are not always possible. In this paper, we represent fuzzy membership values as intervals to model uncertainty and employ the look-ahead based fuzzy decision tree induction method to construct decision trees. We also investigate the significance of different neighbourhood values and define a new parameter insensitive to specific data sets using fuzzy sets. Some examples are provided to demonstrate the effectiveness of the approach

    Cauchyness and convergence in fuzzy metric spaces

    Full text link
    [EN] In this paper we survey some concepts of convergence and Cauchyness appeared separately in the context of fuzzy metric spaces in the sense of George and Veeramani. For each convergence (Cauchyness) concept we find a compatible Cauchyness (convergence) concept. We also study the relationship among them and the relationship with compactness and completeness (defined in a natural sense for each one of the Cauchy concepts). In particular, we prove that compactness implies p-completeness.Almanzor Sapena acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant TEC2013-45492-R. ValentĂ­n Gregori acknowledges the support of Ministry of Economy and Competitiveness of Spain under grant MTM 2012-37894-C02-01.Gregori Gregori, V.; Miñana, J.; Morillas, S.; Sapena Piera, A. (2017). Cauchyness and convergence in fuzzy metric spaces. Revista de la Real Academia de Ciencias Exactas FĂ­sicas y Naturales Serie A MatemĂĄticas. 111(1):25-37. https://doi.org/10.1007/s13398-015-0272-0S25371111Alaca, C., Turkoglu, D., Yildiz, C.: Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals 29, 1073–1078 (2006)Edalat, A., Heckmann, R.: A computational model for metric spaces. Theor. Comput. Sci. 193, 53–73 (1998)Engelking, R.: General topology. PWN-Polish Sci. Publ, Warsawa (1977)Fang, J.X.: On fixed point theorems in fuzzy metric spaces. Fuzzy Sets Syst. 46(1), 107–113 (1992)George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Syst. 64, 395–399 (1994)George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3, 933–940 (1995)George, A., Veeramani, P.: On some results of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 90, 365–368 (1997)Grabiec, M.: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385–389 (1989)Gregori, V., Romaguera, S.: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485–489 (2000)Gregori, V., Romaguera, S.: On completion of fuzzy metric spaces. Fuzzy Sets Syst. 130, 399–404 (2002)Gregori, V., Romaguera, S.: Characterizing completable fuzzy metric spaces. Fuzzy Sets Syst. 144, 411–420 (2004)Gregori, V., LĂłpez-CrevillĂ©n, A., Morillas, S., Sapena, A.: On convergence in fuzzy metric spaces. Topol. Appl. 156, 3002–3006 (2009)Gregori, V., Miñana, J.J.: Some concepts realted to continuity in fuzzy metric spaces. In: Proceedings of the conference in applied topology WiAT’13, pp. 85–91 (2013)Gregori, V., Miñana, J.-J., Sapena, A.: On Banach contraction principles in fuzzy metric spaces (2015, submitted)Gregori, V., Miñana, J.-J.: std-Convergence in fuzzy metric spaces. Fuzzy Sets Syst. 267, 140–143 (2015)Gregori, V., Miñana, J.-J.: Strong convergence in fuzzy metric spaces Filomat (2015, accepted)Gregori, V., Miñana, J.-J., Morillas, S.: Some questions in fuzzy metric spaces. Fuzzy Sets Syst. 204, 71–85 (2012)Gregori, V., Miñana, J.-J., Morillas, S.: A note on convergence in fuzzy metric spaces. Iran. J. Fuzzy Syst. 11(4), 75–85 (2014)Gregori, V., Morillas, S., Sapena, A.: On a class of completable fuzzy metric spaces. Fuzzy Sets Syst. 161, 2193–2205 (2010)Gregori, V., Morillas, S., Sapena, A.: Examples of fuzzy metric spaces and applications. Fuzzy Sets Syst. 170, 95–111 (2011)Kramosil, I., Michalek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11, 326–334 (1975)Mihet, D.: On fuzzy contractive mappings in fuzzy metric spaces. Fuzzy Sets Syst. 158, 915–921 (2007)Mihet, D.: Fuzzy φ\varphi φ -contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets Syst. 159, 739–744 (2008)Mihet, D.: A Banach contraction theorem in fuzzy metric spaces. Fuzzy Sets Syst. 144, 431–439 (2004)Mishra, S.N., Sharma, N., Singh, S.L.: Common fixed points of maps on fuzzy metric spaces Internat. J. Math. Math. Sci. 17(2), 253–258 (1994)Morillas, S., Sapena, A.: On Cauchy sequences in fuzzy metric spaces. In: Proceedings of the conference in applied topology (WiAT’13), pp. 101–108 (2013)Ricarte, L.A., Romaguera, S.: A domain-theoretic approach to fuzzy metric spaces. Topol. Appl. 163, 149–159 (2014)Sherwood, H.: On the completion of probabilistic metric spaces. Z.Wahrschein-lichkeitstheorie verw. Geb. 6, 62–64 (1966)Sherwood, H.: Complete Probabilistic Metric Spaces. Z. Wahrschein-lichkeitstheorie verw. Geb. 20, 117–128 (1971)Tirado, P.: On compactness and G-completeness in fuzzy metric spaces. Iran. J. Fuzzy Syst. 9(4), 151–158 (2012)Tirado, P.: Contraction mappings in fuzzy quasi-metric spaces and [0,1]-fuzzy posets. Fixed Point Theory 13(1), 273–283 (2012)Vasuki, R., Veeramani, P.: Fixed point theorems and Cauchy sequences in fuzzy metric spaces. Fuzzy Sets Syst. 135(3), 415–417 (2003)Veeramani, P.: Best approximation in fuzzy metric spaces. J. Fuzzy Math. 9, 75–80 (2001

    Contraction mappings in fuzzy quasi-metric spaces and [0,1]-fuzzy posets

    Full text link
    [EN] It is well known that each bounded ultraquasi-metric on a set induces, in a natural way, an [0,1]-fuzzy poset. On the other hand, each [0,1]-fuzzy poset can be seen as a stationary fuzzy ultraquasi-metric space for the continuous t-norm Min. By extending this construction to any continuous t-norm, a stationary fuzzy quasi-metric space is obtained. Motivated by these facts, we present several contraction principles on fuzzy quasi-metric spaces that are applied to the class of spaces described above. Some illustrative examples are also given. Finally, we use our approach to deduce in an easy fashion the existence and uniqueness of solution for the recurrence equations typically associated to the analysis of Probabilistic Divide and Conquer Algorithms.The author thanks the support of the Spanish Ministry of Science and Innovation, grand MTM2009-12872-C02-01. The author also thanks the referees because their suggestions and remarks have allowed to improve the first version of this paper.Tirado PelĂĄez, P. (2012). Contraction mappings in fuzzy quasi-metric spaces and [0,1]-fuzzy posets. Fixed Point Theory. 13(1):273-283. http://hdl.handle.net/10251/56871S27328313

    Fuzzy Techniques for Decision Making 2018

    Get PDF
    Zadeh's fuzzy set theory incorporates the impreciseness of data and evaluations, by imputting the degrees by which each object belongs to a set. Its success fostered theories that codify the subjectivity, uncertainty, imprecision, or roughness of the evaluations. Their rationale is to produce new flexible methodologies in order to model a variety of concrete decision problems more realistically. This Special Issue garners contributions addressing novel tools, techniques and methodologies for decision making (inclusive of both individual and group, single- or multi-criteria decision making) in the context of these theories. It contains 38 research articles that contribute to a variety of setups that combine fuzziness, hesitancy, roughness, covering sets, and linguistic approaches. Their ranges vary from fundamental or technical to applied approaches

    Neutrosophic Crisp Set Theory

    Get PDF
    Since the world is full of indeterminacy, the Neutrosophics found their place into contemporary research. We now introduce for the first time the notions of Neutrosophic Crisp Sets and Neutrosophic Topology on Crisp Sets. We develop the 2012 notion of Neutrosophic Topological Spaces and give many practical examples. Neutrosophic Science means development and applications of Neutrosophic Logic, Set, Measure, Integral, Probability etc., and their applications in any field. It is possible to define the neutrosophic measure and consequently the neutrosophic integral and neutrosophic probability in many ways, because there are various types of indeterminacies, depending on the problem we need to solve. Indeterminacy is different from randomness. Indeterminacy can be caused by physical space, materials and type of construction, by items involved in the space, or by other factors. In 1965 [51], Zadeh generalized the concept of crisp set by introducing the concept of fuzzy set, corresponding to the situation in which there is no precisely defined set;there are increasing applications in various fields, including probability, artificial intelligence, control systems, biology and economics. Thus, developments in abstract mathematics using the idea of fuzzy sets possess sound footing. In accordance, fuzzy topological spaces were introduced by Chang [12] and Lowen [33]. After the development of fuzzy sets, much attention has been paid to the generalization of basic concepts of classical topology to fuzzy sets and accordingly developing a theory of fuzzy topology [1-58]. In 1983, the intuitionistic fuzzy set was introduced by K. Atanassov [55, 56, 57] as a generalization of the fuzzy set, beyond the degree of membership and the degree of non-membership of each element. In 1999 and 2002, Smarandache [71, 72, 73, 74] defined the notion of Neutrosophic Sets, which is a generalization of Zadeh’s fuzzy set and Atanassov\u27s intuitionistic fuzzy set
    • 

    corecore