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Neutrosophic SuperHyperAlgebra 
And New Types of Topologies 



Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın 

FORWARD 

In general, a system S (that may be a company, association, institution, society, country, 
etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is formed 
by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet of a Set S  

{ defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better describes the 
organization of people, beings, objects etc. in our real world. 

The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, 
and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom in 
order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in any 
field of knowledge, one in fact encounters SuperHyperStructures, 
https://fs.unm.edu/SuperHyperAlgebra.pdf. 

Also, six new types of topologies have been introduced in the last years (2019-2022), such 
as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, NeutroTopology, 
AntiTopology, SuperHyperTopology, and Neutrosophic SuperHyperTopology, 
http://fs.unm.edu/TT/. 

Neutrosophic SuperHyperAlgebra And New Types of Topologies 
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Preface 

Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. 
Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent 
information. Neutrosophic set approaches are suitable to modeling problems with 
uncertainty, indeterminacy and inconsistent information in which human knowledge is 
necessary, and human evaluation is needed.  

Neutrosophic set theory firstly proposed in 1998 by Florentin Smarandache, who also 
developed the concept of single valued neutrosophic set, oriented towards real world 
scientific and engineering applications. Since then, the single valued neutrosophic set theory 
has been extensively studied in books and monographs introducing neutrosophic sets and its 
applications, by many authors around the world. Also, an international journal - 
Neutrosophic Sets and Systems started its journey in 2013.  

http://fs.unm.edu/neutrosophy.htm. 

This first volume collects original research and applications from different perspectives 
covering different areas of neutrosophic studies, such as decision-making, neutroalgebra, 
neutro metric, and some theoretical papers.  

. 

http://fs.unm.edu/neutrosophy.htm
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Chapter One 

New Type Hyper Groups, New Type SuperHyper 
Groups and Neutro-New Type SuperHyper Groups 

Abdullah Kargın1, Florentin Smarndache2 and Memet Şahin3 
1, 3Department of Mathematics, Gaziantep University, Gaziantep27310-Turkey 

2The University of New Mexico, Mathematics, Physics, and Natural Science Division, 
705 Gurley Ave., Gallup, NM 87301, USA 

E-mail: abdullahkargin27@gmail.com, mesahin@gantep.edu.tr, smarand@unm.edu

ABSTRACT 
In this chapter, a new type Hyper groups are defined, corresponding basic properties and 

examples for new type Hyper groups are given and proved. Moreover, new type Hyper 

groups groups and are compared to hyper groups and groups. New type Hyper groups are 

shown to have a more general structure according to Hyper groups and groups. Also, new 

type SuperHyper groups are defined, corresponding basic properties and examples for new 

type SuperHyper are given and proved.  Furthermore, we defined neutro-new type 

SuperHyper groups. 

Keywords: SuperHyper Structure, New type Hyper groups, New type SuperHyper groups, 
Neutro-new type SuperHyper groups

INTRODUCTION 

Hyperstructures [1] are defined by Marty in 1934. Hyperstructures are a extended 

and a new form of classical structures. Corsini obtained hypergroups [2] in 1993. So, many 

researchers have made studies on this subject [3-7]. Recently, Hashemi studied Hyper JK-

algebras [8]; Muhiuddin et al. obtained Hyperstructure Theory Applied to BF-Algebras [9]. 
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Neutrosophic theory, consisting of neutrosophic logic and neutrosophic sets, was 

defined by Florentin Smarandache in 1998. In neutrosophic set theory, there are T, I and F 

graphs (membership function, performance function and membership function, respectively) 

for each element. These functions can be set independently. For this reason, neutrosophic 

logic and neutrosophic sets are used in decision-making problems in almost all branches of 

science. So, many researchers have made studies on this subject [11 -20, 38-45].  

Florentin Smarandache introduced new research areas in neutrosophy, which he 

called neutro-structures and anti-structures, respectively, in 2019 [21, 22]. When evaluating 

<A> as an element (concept, attribute, idea, proposition, theory, etc.), during the 

neutrosification process, he worked on three regions; two opposites corresponding to <A> 

and <antiA> and also a neutral (indeterminate) <neutA> (also called <neutralA>).            A 

neutro-algebra consists of at least one neutro-operation (indeterminate for other items and 

false for other items) or it is an algebra well-defined for some items (also called internally 

defined), indeterminate for others, and externally defined for others. Therefore, the subject 

attracted the attention of many researchers [23–32]. Recently, Al-Tahan et al. studied some 

neutroHyperstructures [33]; Ibrahim and Agboola obtained NeutroHyperGroups [34]. 

Florentin Smarandache introduced new research areas, which he called 

SuperHyperstructures [35] in 2022. Recently, Hamidi studied Superhyper BCK-Algebras 

[36]; Jahanpanah and Daneshpayeh obtained Superhyper BE-Algebras [37]. 

In the second section, basic definitions on Hypergrup [2], SuperHyperoperation [35] are 

given. In the third chapter, new type Hyper groups are defined, corresponding basic 

properties and examples for new type Hyper groups are given and proved. Moreover, new 

type Hyper groups are compared to hyper group and group. New type Hyper groups are 

shown to have a more general structure according to Hyper groups and group. In the fourth 

section, new type SuperHyper groups are defined, corresponding basic properties and 

examples for new type SuperHyper groups are given and proved. In the fifth section, we 

defined neutro-new type SuperHyper groups.  In the last section, results and suggestions are 

given. 
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BACKGROUND 
Definition 1. [21] 

i) [Law of neutro-well defined] 

There exists a double (b, n) ∈ (G, G) such that b # n ∈ G [degree of truth T] and there exist 

a double (u, v) ∈ (G, G) such that u # v = indeterminate [degree of indeterminacy I], or there 

exist  a double (p, q) ∈ (G, G) such that p # q ∉ G [degree of outer-defined F], where (T, I, 

F) is different from (1,0,0) and (0,0,1). Because (1,0,0) represents the classical well-defined 

law (100% well-defined law; T =1, I = 0, F = 0), while (0,0,1) represents the outer-defined 

law (i.e. 100% outer-defined law, or T=0, I=0, F =1). 

ii) [Axiom of neutro-associativity]  

There exists a triplet (b, n, m) ∈ (G, G, G) such that b # (n # m) = (b # n) # m [degree of truth 

T], and there exist two triplets (p, q, r) ∈ (G, G, G) such that p # (q # r) or (p # q) # r = 

indeterminate [degree of indeterminacy I], or there exist (u, v, w) ∈ (G, G, G)  or u # (v # w) 

 ( u # v) # w  [degree of falsehood F], where (T, I, F) is different from (1,0,0) and (0,0,1). 

Because (1,0,0) represents the classical law (100% true law; T =1, I = 0,            F = 0), while 

(0,0,1) represents the anti- law (i.e. 100% false law, or T=0, I=0, F =1). 

iii) [Axiom of existence of the neutro-identity element] 

For an element a ∈ G, there exists e ∈ G such that a # e = e # a = a [degree of truth T], and 

for two elements            b, c ∈ G, there exists an e ∈ G such that [b # e or e # b = indeterminate 

( degree of indeterminacy I) or c # e   c  e # c (degree of falsehood F)], where (T, I, F) is 

different from (1,0,0) and (0,0,1). 

iv) [Axiom of existence of the neutro-inverse element] 

For an element a ∈ G, there exists u ∈ G such that a # u = u # a = a (degree of truth T), and 

for two elements         b, c ∈ G, there exists u ∈ G such that [b # u or u # b = indeterminate 
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(degree of indeterminacy I) or c # u   c  u # c (degree of falsehood F)], where (T, I, F) is 

different from (1,0,0) and (0,0,1). 

v) [Axiom of neutro-commutativity] 

There exists a double (b, n) ∈ (G, G) such that b # n = n # b (degree of truth T) and there 

exist two doubles        (u, v), (p, q) ∈ (G, G) such that [u # v or v # u = indeterminate (degree 

of indeterminacy I) or p # q  q # p (degree of falsehood F)], where (T, I, F) is different from 

(1,0,0) and (0,0,1). 

Definition 2. [21] A neutro-group is a neutro-algebraic structure which possesses at least 

one of the axioms       {i – iv} of Definition 1 and it is an alternative to classical group. 

Definition 3. [21] A neutro-commutative group is a neutro – algebraic structure which 

possesses at least one of the axioms {i – v} of Definition 1 and it is an alternative to classical 

commutative group. 

Definition 4. [21] Let H be a non-empty set and ◦: H ×H → (H) be a hyperoperation. The 

couple (H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of H and x 

∈ H, we define  

A ◦ B = , A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B. 

Where, (H) is power set of H and ∅ (H). 

Definition 5. [2] A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c ∈ H, 

(a ◦ b) ◦ c = a ◦ (b ◦ c) 

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a ∈  H,  

a ◦ H = H ◦ a = H. 

This condition is also called the reproduction axiom. 
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 Definition 6. [2]  A hypergroupoid (H, ◦) which is both a semihypergroup and a quasi- 

hypergroup is called a hypergroup. 

Definition 7. [35] Let X be a nonempty set. Then (X, ) is called an (m, n)-super 

hyperalgebra, where      

                                                                     :  → (X)                                                         

is called an (m, n)-super hyperoperation, (X) is the -powerset of the set X, ∅  (X), 

for any subset A of (X), we identify {A} with A, m, n ≥ 1 and 

 = X × X × . . . × X (m times), 

(X) = P(P(…P(X)). 

Let :  → (X) is an (m, n)-super hyperoperation on X and , . . . ,  subsets of 

X. We define ( , . . . , ) = . 

If ∅  (X), :  → (X) is called a neutrosophic (m, n)-super hyperoperation. 

Also, it is shown that :  → (X) 

Definition 8. [35] Let :  → (H) be an (m, n)-super hyperalgebra. Strong 

SuperHyperAssociativity, for all , ∈ H, 

( ( , ) = ( ( , )   

                                                                = ( ( , ) 

                                                                = ( ( , ) 
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NEW TYPE HYPER GROUPS 

Definition 9. Let H be a non-empty set and #: H×H → (H) be a hyperoperation. If the 

following conditions are satisfied, then (H, #) is called a new type hyper group. 

i) For all h, k  H, h#k (H). 

ii) For all h, k, m  H, h #(k#m) = (h#k)#m 

iii) For all h  H, there is an e element such that  

h#e = e#h = h 

iv) For all h  H, there is an  element such that  

h#  = #h = e   

Corollary 10. In Definition 9, we take H instead of (H), then (H, #) is a group.  

Corallary 11. It is clear that H (H). Thus, every groups are a new type hyper group. But, 

the opposite is not always true. 

Corollary 12. Let (H, #) be a new type hyper group. If (H, #) satisfies the condition 

i) For all h  H, h#H = H#h = H 

then, (H, #) is a hyper group. 

Example 13. Let H = {a, b, c, {a, b, c}} be a set. 

 

 

 

 

# a b c {a, b, c} 

a {a, b, c} 
 

    c      a 

b 
 

{a, b, c} c 
 

c 
 

b {a, b, c} c 

{a, b, c} a b c {a, b, c} 
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i) It is clear that for all h, k  H, h#k (H). 

ii) It is clear that for all h, k, m  H, h #(k#m) = (h#k)#m 

iii) For all h  H, there is an e = {a, b, c} element such that  

h#e = e#h = h 

iv) For all h  H, there is an  = h element such that  

h#  = #h = e   

Thus, (H, #) is a new type hyper group. 

NEW TYPE SUPERHYPER GROUPS 

Definition 14. Let H be a non-empty set and :  → (H)  be a superhyperoperation. 

(H, ) is called a new type superhyper group if the following conditions are satisfied.  

i) For all ∈ H   (H)    

ii) Strong SuperHyperAssociativity, for all , ∈ H, 

( ( , ) = ( ( , )   

                                                                = ( ( , ) 

                                                                = ( ( , ) 

iii) For all x ∈ H, there is an e element of H such that 

 (  = (  = …. = (  = (  = x 

iv) For all x ∈ H, there is a  element of H such that 
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(  = (   

                                                = …. = (   

                                                = (  = e 

Corollary 15. In Definition 14, we take m = 2, n = 1, then (H, ) is a new type hyper 

group.  

Corallary 16. Let (H, ) be a new type superhyper group. If the following condition is 

satisfied, then                  (H, ) is a superhyper group. 

i) For all a ∈ H  

H = (a, H, H, …, H) = (H, a, H, H, …, H)  

                                          = … = (H, H, …, H, a, H) 

                                        = (H, H, H, …, H, a) 

NEUTRO-NEW TYPE SUPERHYPER GROUPS 

In this section, the symbol “=NC”  will be used for situations where equality is uncertain. 

For example, if it is not certain whether “a” and “b” are equal, then it is denoted by a = NC 

b. 

Definition 17. Let H be a non-empty set and :  → (H)  be a neutro-function. If at 

least one of the following {i, ii, iii} conditions is satisfied, then (H, ) is called a neutro-

new type superhyper group. 

i) For some ,  

( , . . . , ) =  ∅ ∈ (H)  (degree of truth T) 
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and For some , ,  

( ( , . . . , ) =  ∅  (H)  (degree of falsity F) 

 or 

( , . . . , ) =  = NC ∅  (H)  (degree of indeterminacy I)). 

Where (T, I, F) is different from (1,0,0) and (0,0,1).   

ii) For some , ∈ H, 

( ( , ) = ( ( , )   

                                                                = ( ( , ) 

                                                                = ( ( , ) 

(degree of truth T) 

and for some , ∈ H, , ∈ H, 

( ( ( , )  ( ( , )   

                                                                 ( ( , ) 

                                                                 ( ( , ) 

(degree of falsity F)  

or 

( ( ( , ) =NC ( ( , )   

                                                                 =NC ( ( , ) 
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                                                                =NC ( ( , ) 

(degree of Indeterminacy F)). 

Where (T, I, F) is different from (1,0,0) and (0,0,1). 

iii) For some x ∈ H, there is an e element of H such that 

 (  = (  = …. = (  = (  = x 

 (degree of truth T) 

and for some y ∈ H, z ∈ H, 

( (   (   ….  (   (   y 

 (degree of falsity F)  

or  

( (  =NC (  =NC …. =NC  (  =NC  (

 =NC  z 

 (degree of indeterminacy F)). 

Where (T, I, F) is different from (1,0,0) and (0,0,1). 

iv) For some x ∈ H, there is a  element of H such that 

(  = (   

                                                = …. = (   

                                                = (  = e 

(degree of truth T) 
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and for some y ∈ H, z ∈ H, 

( (   (   

                                                 ….  (   

                                                 (   e 

or 

( (  =NC  (   

                                                =NC  …. =NC  (   

                                                =NC  (  =NC  e 

(degree of indeterminacy F)). 

Note 18. From Definition 17, the neutro-new type superhypergroup differrent from the new 

type superhypergroup. Neutro-new type superhypergroup are given as an alternative to new 

type superhypergroup. But, for a neutro-new type superhypergroup, instead of the ones that 

are not met in Definition 17, new type superhypergroup conditions are valid. 

Example 19. Let H ={h, k}be a set. :  → (H) is a superhyperoperation such that 

 ( , ) =    

Where,  is satisfied the condition i in Definition 17. Because, if   =  and   = 

H, then  

( , ) =  ( , ). 

Thus, ( , ) is a neutro-new type superhypergroup. But, ( , ) is not a new type 

superhypergroup. 
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Example 20. Let H ={h, k}be a set. :  → (H) is a superhyperoperation such that 

 ( , ) =    

Where,  is satisfied the condition i in Definition 17. Because, if   = , then  

( , ) =  ( , ). 

 Thus, ( , ) is a neutro-new type superhypergroup. But, ( , ) is not a new type 

superhypergroup. 

Theorem 21. Neutro-new type superhyper groups can be obtained from every new type 

superhyper group. 

Proof. Let (H, ) be a new type superhyper group such that    

  :  → (H),    

It is clear that ∅ (H). We assume that for any h H such that 

 h  ∅ and  = ∅ (H).  

Thus, (H {h}, ) satisfies condition i from Definition 17. Thus, (H {h}, ) is a 

neutro-new type superhyper group. 

 

CONCLUSIONS 

In this chapter, the new type superhyper group is defined and relevant basic 

properties are given. Similarities and differences between the hyper group and superhyper 

group are discussed. Also, the neutro-new type superhyper group is defined and relevant 

basic properties are given. Similarities and differences between the neutro-new type 

superhyper group and new type superhyper group are discussed. Researchers can make use 

of this chapter to define  new type superhyper ring, new type superhyper field, new type 
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superhyper modules, neutro- new type superhyper ring, neutro- new type superhyper field, 

neutro- new type superhyper modules.  
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ABSTRACT 
In this chapter, SuperHyper groups are defined, corresponding basic properties and examples 

for SuperHyper are given and proved. Moreover, SuperHyper groups and are compared to 

each other. SuperHyper groups are shown to have a more general structure according to 

Hyper groups. In addition, it is shown that a Hyper group can be obtained from every 

SuperHyper groups Also, Neutro-SuperHyper groups are defined, corresponding basic 

properties and examples for Neutro-SuperHyper groups are given and proved. Neutro-

SuperHyper groups are shown to have a more general structure according to SuperHyper 

groups. Thus, (T, I, F) components which constitute the neutrosophic theory are added to 

SuperHyper groups and a new structure is obtained.  

Keywords: SuperHyper Structure, Hyper groups, SuperHyper groups, Neutro- SuperHyper groups 

INTRODUCTION 

Marty defined hyperstructures [1] in 1934. Hyperstructures are an extended and a 

new form of classical structures. Corsini obtained hypergroups [2] in 1993. So, many 

researchers have made studies on this subject     [3-7]. Recently, Kanwal et al. studied On 

Cyclic LA-Hypergroups [8]; Fasino and Freni introduced Hypergroup Theory and 

Algebrization of Incidence Structures [9]; 
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Smarandache defined neutrosophic logic and the concept of neutrosophic set in 1998 

[10]. In the concept of neutrosophic logic and neutrosophic sets, there is a degree of 

membership T, a degree of uncertainty I and a degree of falsity F. These degrees are defined 

independently from each other. A neutrosophic value has the form (T, I, F). In other words, 

in neutrosophy, a situation is handled according to its accuracy, its falsehood, and its 

uncertainty. Therefore, neutrosophic logic and neutrosophic clusters help us explain many 

uncertainties in our lives. So, many researchers have made studies on this subject [11-20, 

38-65].  

Florentin Smarandache introduced new research areas in neutrosophy, which he 

called neutro-structures and anti-structures, respectively, in 2019 [21, 22]. When evaluating 

<A> as an element (concept, attribute, idea, proposition, theory, etc.), during the 

neutrosification process, he worked on three regions; two opposites corresponding to <A> 

and <antiA> and also a neutral (indeterminate) <neutA> (also called <neutralA>).            A 

neutro-algebra consists of at least one neutro-operation (indeterminate for other items and 

false for other items) or it is an algebra well-defined for some items (also called internally 

defined), indeterminate for others, and externally defined for others. Therefore, the subject 

attracted the attention of many researchers [23–32]. Recently, Al-Tahan et al. studied some 

neutroHyperstructures [33]; Ibrahim and Agboola obtained NeutroHyperGroups [34]. 

 

Florentin Smarandache introduced new research areas, which he called 

SuperHyperstructures [35] in 2022. Recently, Hamidi studied Superhyper BCK-Algebras 

[36]; Jahanpanah and Daneshpayeh obtained Superhyper BE-Algebras [37]. 

In the second section, basic definitions on Hypergrup [2], SuperHyperoperation [35], 

definitions of neutro-group is given [29]. In the third chapter, SuperHyper groups are 

defined, corresponding basic properties and examples for SuperHyper are given and proved. 

Moreover, SuperHyper groups and are compared to each other. SuperHyper groups are 

shown to have a more general structure according to Hyper groups. In the fourth section, 

Neutro-SuperHyper groups are defined, corresponding basic properties and examples for 

Neutro-SuperHyper groups are given and proved. Neutro-SuperHyper groups are shown to 



                                                   
Neutrosophic SuperHyperAlgebra And New Types of Topologies 

27 
 

have a more general structure according to SuperHyper groups. In the last section, results 

and suggestions are given. 

 

BACKGROUND 
Definition 1. [21] 

i) [Law of neutro-well defined] 

There exists a double (b, n) ∈ (G, G) such that b # n ∈ G [degree of truth T] and there exist 

a double (u, v) ∈ (G, G) such that u # v = indeterminate [degree of indeterminacy I], or there 

exist  a double (p, q) ∈ (G, G) such that p # q ∉ G [degree of outer-defined F], where (T, I, 

F) is different from (1,0,0) and (0,0,1). Because (1,0,0) represents the classical well-defined 

law (100% well-defined law; T =1, I = 0, F = 0), while (0,0,1) represents the outer-defined 

law (i.e. 100% outer-defined law, or T=0, I=0, F =1). 

ii) [Axiom of neutro-associativity]  

There exists a triplet (b, n, m) ∈ (G, G, G) such that b # (n # m) = (b # n) # m [degree of truth 

T], and there exist two triplets (p, q, r) ∈ (G, G, G) such that p # (q # r) or (p # q) # r = 

indeterminate [degree of indeterminacy I], or there exist (u, v, w) ∈ (G, G, G)  or u # (v # w) 

≠ ( u # v) # w  [degree of falsehood F], where (T, I, F) is different from (1,0,0) and (0,0,1). 

Because (1,0,0) represents the classical law (100% true law; T =1, I = 0,            F = 0), while 

(0,0,1) represents the anti- law (i.e. 100% false law, or T=0, I=0, F =1). 

iii) [Axiom of existence of the neutro-identity element] 

For an element a ∈ G, there exists e ∈ G such that a # e = e # a = a [degree of truth T], and 

for two elements            b, c ∈ G, there exists an e ∈ G such that [b # e or e # b = indeterminate 

( degree of indeterminacy I) or c # e ≠  c ≠ e # c (degree of falsehood F)], where (T, I, F) is 

different from (1,0,0) and (0,0,1). 

iv) [Axiom of existence of the neutro-inverse element] 
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For an element a ∈ G, there exists u ∈ G such that a # u = u # a = a (degree of truth T), and 

for two elements         b, c ∈ G, there exists u ∈ G such that [b # u or u # b = indeterminate 

(degree of indeterminacy I) or c # u ≠  c ≠ u # c (degree of falsehood F)], where (T, I, F) is 

different from (1,0,0) and (0,0,1). 

v) [Axiom of neutro-commutativity] 

There exists a double (b, n) ∈ (G, G) such that b # n = n # b (degree of truth T) and there 

exist two doubles        (u, v), (p, q) ∈ (G, G) such that [u # v or v # u = indeterminate (degree 

of indeterminacy I) or p # q ≠ q # p (degree of falsehood F)], where (T, I, F) is different 

from (1,0,0) and (0,0,1). 

Definition 2. [21] A neutro-group is a neutro-algebraic structure which possesses at least 

one of the axioms       {i – iv} of Definition 1 and it is an alternative to classical group. 

Definition 3. [21] A neutro-commutative group is a neutro – algebraic structure which 

possesses at least one of the axioms {i – v} of Definition 1 and it is an alternative to classical 

commutative group. 

Definition 4. [21] Let H be a non-empty set and ◦: H ×H → 𝑃𝑃∗(H) be a hyperoperation. The 

couple (H, ◦) is called a hypergroupoid. For any two non-empty subsets A and B of H and x 

∈ H, we define  

A ◦ B = ⋃ a ◦  b𝑎𝑎∈𝐴𝐴,𝑏𝑏∈𝐵𝐵 , A ◦ x = A ◦ {x} and x ◦ B = {x} ◦ B. 

Where, ∅ ∉ 𝑃𝑃∗(H). 

Definition 5. [2] A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c ∈ H, 

(a ◦ b) ◦ c = a ◦ (b ◦ c) 

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a ∈  H,  

a ◦ H = H ◦ a = H. 
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This condition is also called the reproduction axiom. 

 Definition 6. [2]  A hypergroupoid (H, ◦) which is both a semihypergroup and a quasi- 

hypergroup is called a hypergroup. 

Definition 7. [35] Let X be a nonempty set. Then (X, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called an (m, n)-

superhyperalgebra, where      

                                                                     𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ : Xm → 𝑃𝑃∗

𝑛𝑛(X)                                                         

is called an (m, n)-superhyperoperation, 𝑃𝑃∗
𝑛𝑛(X) is the 𝑛𝑛𝑡𝑡ℎ-powerset of the set X, ∅ ∉ 𝑃𝑃∗

𝑛𝑛(X), 

for any subset A of 𝑃𝑃∗
𝑛𝑛(X), we identify {A} with A, m, n ≥ 1 and 

𝑋𝑋𝑚𝑚 = X × X × . . . × X (m times), 

𝑃𝑃∗
𝑛𝑛(X) = P(P(…P(X)). 

Let 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ : Xm → 𝑃𝑃∗

𝑛𝑛(X) is an (m, n)-super hyperoperation on X and 𝐴𝐴1, . . . , 𝐴𝐴𝑚𝑚 subsets 

of X. We define 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝐴𝐴1, . . . , 𝐴𝐴𝑚𝑚) = ⋃ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗
𝑥𝑥𝑖𝑖∈𝐴𝐴𝑖𝑖 (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚). 

If ∅ ∈ 𝑃𝑃∗
𝑛𝑛(X), 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ : Xm → 𝑃𝑃∗
𝑛𝑛(X) is called a neutrosophic (m, n)-superhyperoperation. 

Also, it is shown that 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ : Xm → 𝑃𝑃𝑛𝑛(X) 

Definition 8. [35] Let 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ : Hm  → 𝑃𝑃∗

𝑛𝑛 (H) be an (m, n)-superhyperalgebra. Strong 

SuperHyperAssociativity, for all 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚, 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1∈ H, 

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑥𝑥1, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1)   

                                                                = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑥𝑥1, 𝑥𝑥2 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥3, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) 

                                                                = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚−1 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥𝑚𝑚, 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) 
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SUPERHYPER GROUPS 

Definition 9. Let H be a non-empty set and 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ : Hm → 𝑃𝑃∗

𝑛𝑛(H)  be a superhyperoperation. 

The couple           (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a superhyper groupoid. For any two non-empty subsets 

A and B of H and x ∈ H, we define 

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝐴𝐴1, . . . , 𝐴𝐴𝑚𝑚) = ⋃ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗
𝑥𝑥𝑖𝑖∈𝐴𝐴𝑖𝑖 (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚). 

Where, ∅ ∉ 𝑃𝑃∗(H). 

If ∅ ∈ 𝑃𝑃∗(H), then (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a neutrosophic superhyper groupoid. 

Note 10. From Definition 4 and Definition 7, we obtain defininiton of superhyper 

groupoid. 

Example 11. Let H ={a, b}be a set. 𝑜𝑜(3,2)
∪ : H3 → 𝑃𝑃∪

2(H)  is a superhyperoperation such that 

 𝑜𝑜(3,2)
∪ (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = ⋃ {𝑥𝑥𝑖𝑖}3

𝑖𝑖=1 . 

For example, 𝑜𝑜(3,2)
∪ (a, a, b) = {a}∪{a}∪{b} = {a, b} 

Where,  𝑃𝑃∪
2(H) = P(P(H))  

P(H) = {a, b, {a, b}} 

P(P(H)) = {a, b, {a, b}, {a, {a, b}}, {b, {a, b}}, {a, b, {a, b}}}. 

Thus,  𝑜𝑜(3,2)
∪ (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) ∈ 𝑃𝑃∪

2(H)   

Hence, (H, 𝑜𝑜(3,2)
∪ ) is a superhyper groupoid. 

Theorem 12. Let H be a non-empty finity set, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ : Hm → 𝑃𝑃∪

𝑛𝑛(H)  be a 

superhyperoperation such that 

 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) = ⋃ {𝑥𝑥𝑖𝑖}𝑚𝑚

𝑖𝑖=1 . 
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Then, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ ) is a superhyper groupoid. 

Proof: It is clear that for all 𝑥𝑥𝑖𝑖∈𝑃𝑃∪
𝑛𝑛(H), 

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) = ⋃ {𝑥𝑥𝑖𝑖}𝑚𝑚

𝑖𝑖=1 ∈𝑃𝑃∪
𝑛𝑛(H). 

Thus, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ ) is a superhyper groupoid. 

Theorem 13. Let H be a non-empty finity set, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ : Hm → 𝑃𝑃∩

𝑛𝑛(H)  be a 

superhyperoperation such that 

 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) = ⋂ {𝑥𝑥𝑖𝑖}𝑚𝑚

𝑖𝑖=1  

Then, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ ) is not a superhyper groupoid. But, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∩ ) is a neutrosophic superhyper 

groupoid. Where, s(H)>1. (s(H) is element number of H) 

Proof:We assume that {𝑥𝑥1}, {𝑥𝑥2}, … , {𝑥𝑥𝑚𝑚} sets are discrete. Thus,  

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) = ⋂ {𝑥𝑥𝑖𝑖}𝑚𝑚

𝑖𝑖=1  = ∅ ∉ 𝑃𝑃∩
𝑛𝑛(H). 

Hence, Then, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ ) is not a superhyper groupoid and (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∩ ) is a neutrosophic 

superhyper groupoid. 

Definition 14. Let (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a superhypergroupoid. If (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ ) is satisfied the 

strong SuperHyperAssociativity, then (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a supersemihyper group. 

If ∅ ∈ 𝑃𝑃∗(H), then (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a neutrosophic supersemihyper group. 

Note 15. From Definition 5 and Definition 8, we obtain defininiton of 

superhypersemihyper group. 

Example 16. From Example 11,  (H, 𝑜𝑜(3,2)
∪ ) is a superhypergroupoid. Also, it is clear that 

(H, 𝑜𝑜(3,2)
∪ ) is satisfies the strong superHyperAssociativity such that  for all 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚 , 

𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1∈ H, 
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𝑜𝑜(3,2)
∪ (𝑜𝑜(3,2)

∪ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) = 𝑜𝑜(3,2)
∪ (𝑜𝑜(3,2)

∪ (𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1)   

                                                                = 𝑜𝑜(3,2)
∪ (𝑥𝑥1, 𝑥𝑥2 𝑜𝑜(3,2)

∪ (𝑥𝑥3, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) 

                                                                = 𝑜𝑜(3,2)
∪ (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚−1 𝑜𝑜(3,2)

∪ (𝑥𝑥𝑚𝑚, 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1). 

Hence, (H, 𝑜𝑜(3,2)
∪ ) is a supersemihyper group. 

Definition 17. Let (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) be a superhyper groupoid. For all a ∈ H, If  

H = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (a, H, H, …, H) = 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (H, a, H, H, …, H)  

                                      = … = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, …, H, a, H) 

                                     = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, H, …, H, a) 

then, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a superquasihyper group. 

If ∅ ∈ 𝑃𝑃∗(H), then (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a neutrosophic superquasihyper group. 

Where, from Defininiton 7, for all a, 𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚 a ∈ H, 

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (a, H, H, …, H)  = ⋃ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗
𝑥𝑥𝑖𝑖∈𝐴𝐴𝑖𝑖 (a, 𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚). 

Note 18. From Definition 5, we obtain defininiton of superhypersemihypergroup. 

Example 19. From Example 14,  (H, 𝑜𝑜(3,2)
∪ ) is a superhypergroupoid. Also, it is clear that 

for a∈ H, (H, 𝑜𝑜(3,2)
∪ ) is satisfies the  

H = 𝑜𝑜(3,2)
∪ (a, H, H, …, H) = 𝑜𝑜(3,2)

∪ (H, a, H, H, …, H)  

                                          = … = 𝑜𝑜(3,2)
∪ (H, H, …, H, a, H) 

                                         = 𝑜𝑜(3,2)
∪ (H, H, H, …, H, a) 



                                                   
Neutrosophic SuperHyperAlgebra And New Types of Topologies 

33 
 

Hence, (H, 𝑜𝑜(3,2)
∪ ) is a superquasihyper group. 

Definition 20.  A hypergroupoid (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) which is both a supersemihypergroup and a 

superquasihypergroup is called a superhypergroup. 

If ∅ ∈ 𝑃𝑃∗(H), then (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a neutrosophic superhyper group. 

Note 21. From Definition 6, we obtain defininiton of superhypersemihypergroup. 

Example 22. From Example 19, Example 16, and Example 11; (H, 𝑜𝑜(3,2)
∪ ) is a 

superhypergroup. 

Theorem 23. Let H be a non-empty finity set, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ : Hm → 𝑃𝑃∪

𝑛𝑛(H)  be a 

superhyperoperation such that 

 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) = ⋃ {𝑥𝑥𝑖𝑖}𝑚𝑚

𝑖𝑖=1 . 

Then, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ ) is a superhypergroup. 

Proof: From Theorem 13, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ ) is a superhyper groupoid. Also, for all 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚 , 

𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1∈ H, 

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (𝑜𝑜(𝑚𝑚,𝑛𝑛)

∪ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (𝑥𝑥1, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∪ (𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1)   

                                                                = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (𝑥𝑥1, 𝑥𝑥2 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∪ (𝑥𝑥3, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) 

                                                                = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚−1 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∪ (𝑥𝑥𝑚𝑚, 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1). 

Thus, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ ) is a supersemihyper groupoid. Furthermore,  for all a ∈ H,  

H = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (a, H, H, …, H) = 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∪ (H, a, H, H, …, H)  

                                          = … = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (H, H, …, H, a, H) 

                                          = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ (H, H, H, …, H, a). 
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Thus, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ ) is a superquasihyper groupoid. 

Hence, from Definition 20, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∪ ) is a superhyper group. 

Corollary 24. Let H be a non-empty finity set, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ : Hm → 𝑃𝑃∩

𝑛𝑛(H)  be a 

superhyperoperation such that 

 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) = ⋂ {𝑥𝑥𝑖𝑖}𝑚𝑚

𝑖𝑖=1  

Then, From Theorem 13, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∩ ) is not a superhypergroup.  Where, s(H)>1. (s(H) is 

element number of H) 

NEUTRO-SUPERHYPER GROUPS 

In this section, the symbol “=NC”  will be used for situations where equality is uncertain. 

For example, if it is not certain whether “a” and “b” are equal, then it is denoted by a = NC 

b. 

Definition 25. Let H be a non-empty set and 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ : Hm → 𝑃𝑃∗

𝑛𝑛(H)  be a neutro-function. If 

at least one of the following {i, ii, iii} conditions is satisfied, then (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) is called a 

neutro-superhypergroup. 

i) For some 𝑥𝑥𝑖𝑖 ∈ 𝐴𝐴𝑖𝑖,  

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝐴𝐴1, . . . , 𝐴𝐴𝑚𝑚) = ⋃ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗
𝑥𝑥𝑖𝑖∈𝐴𝐴𝑖𝑖 (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) ≠ ∅ ∈ 𝑃𝑃∗

𝑛𝑛(H)  (degree of truth T) 

and For some 𝑧𝑧𝑖𝑖 ∈ 𝐴𝐴𝑖𝑖, 𝑦𝑦𝑖𝑖 ∈ 𝐴𝐴𝑖𝑖,  

(𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝐴𝐴1, . . . , 𝐴𝐴𝑚𝑚) = ⋃ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗
𝑥𝑥𝑖𝑖∈𝐴𝐴𝑖𝑖

(𝑧𝑧1, . . . , 𝑧𝑧𝑚𝑚) = ∅ ∉ 𝑃𝑃∗
𝑛𝑛(H)  (degree of falsity F) 

 or 

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝐴𝐴1, . . . , 𝐴𝐴𝑚𝑚) = ⋃ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗
𝑦𝑦𝑖𝑖∈𝐴𝐴𝑖𝑖

(𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚) = NC ∅ ∉ 𝑃𝑃∗
𝑛𝑛(H)  (degree of indeterminacy 

I)). 
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Where (T, I, F) is different from (1,0,0) and (0,0,1).   

ii) For some 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚, 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1∈ H, 

𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑥𝑥1, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥2, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1)   

                                                                = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑥𝑥1, 𝑥𝑥2 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥3, . . . , 𝑥𝑥𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) 

                                                                = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑥𝑥1, … , 𝑥𝑥𝑚𝑚−1 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑥𝑥𝑚𝑚, 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) 

(degree of truth T) 

and for some 𝑘𝑘1, . . . , 𝑘𝑘𝑚𝑚, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1∈ H, 𝑧𝑧1, . . . , 𝑧𝑧𝑚𝑚, 𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚−1∈ H, 

(𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑘𝑘1, . . . , 𝑘𝑘𝑚𝑚), 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1) ≠ 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑘𝑘1, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑘𝑘2, . . . , 𝑘𝑘𝑚𝑚), 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1)   

                                                                 ≠ 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑘𝑘1, 𝑘𝑘2 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑘𝑘3, . . . , 𝑘𝑘𝑚𝑚), 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1) 

                                                                ≠ 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑘𝑘1, … , 𝑘𝑘𝑚𝑚−1 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑘𝑘𝑚𝑚, 𝑙𝑙1, . . . , 𝑙𝑙𝑚𝑚−1) 

(degree of falsity F)  

or 

(𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑧𝑧1, . . . , 𝑧𝑧𝑚𝑚), 𝑦𝑦1, . . . , 𝑦𝑦𝑚𝑚−1) =NC 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑧𝑧1, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑧𝑧2, . . . , 𝑧𝑧𝑚𝑚), 𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚−1)   

                                                                 =NC𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑧𝑧1, 𝑧𝑧2 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑧𝑧3, . . . , 𝑧𝑧𝑚𝑚), 𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚−1) 

                                                                =NC 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑧𝑧1, … , 𝑧𝑧𝑚𝑚−1 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (𝑧𝑧𝑚𝑚, 𝑡𝑡1, . . . , 𝑡𝑡𝑚𝑚−1) 

(degree of Indeterminacy F)). 

Where (T, I, F) is different from (1,0,0) and (0,0,1). 

iii) For some a ∈ H  

H = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (a, H, H, …, H) = 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (H, a, H, H, …, H)  
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                                      = … = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, …, H, a, H) 

                                     = 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, H, …, H, a) 

(degree of truth T) 

and for some b ∈ H, c ∈ H, 

(H ≠ 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (b, H, H, …, H) ≠ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (H, b, H, H, …, H)  

                                      ≠ … ≠ 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, …, H, b, H) 

                                     ≠ 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, H, …, H, b) 

(degree of falsity F)  

or  

(H=NC 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (c, H, H, …, H) =NC 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ (H, c, H, H, …, H)  

                                              =NC … =NC  𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, …, H, c, H) 

                                             =NC  𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (H, H, H, …, H, c) 

(degree of falsity F)). 

Where (T, I, F) is different from (1,0,0) and (0,0,1). 

Note 26. From Definition 24, the neutro-superhypergroup differrent from the 

superhypergroup. neutro-superhypergroup are given as an alternative to superhypergroup. 

But, for a neutro-superhypergroup, instead of the ones that are not met in Definition 24, 

classical superhypergroup conditions are valid. 

Example 27. Let H ={a, b}be a set. 𝑜𝑜(3,2)
∩ : H3 → 𝑃𝑃∩

2(H) is a neutron-function such that 
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 𝑜𝑜(3,2)
∩ (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) = ⋂ {𝑥𝑥𝑖𝑖}3

𝑖𝑖=1 . 

Where,  𝑃𝑃∪
2(H) = P(P(H))  

P(H) = {a, b, {a, b}} 

P(P(H)) = {a, b, {a, b}, {a, {a, b}}, {b, {a, b}}, {a, b, {a, b}}}. 

Also,  

𝑜𝑜(3,2)
∩ (a, a, a) = {a}∩{a}∩{a} = {a}∈ 𝑃𝑃∩

2(H) . 

𝑜𝑜(3,2)
∩ (a, a, b) = {a}∩{a}∩{b} =∅ ∉ 𝑃𝑃∩

2(H). 

Thus, (H, 𝑜𝑜(3,2)
∩ ) satisfies condition i from Definition 24. Hence, (H, 𝑜𝑜(3,2)

∩ ) is a neutro-

superhypergroup. 

Corollary 28. From Theorem 16, H, 𝑜𝑜(3,2)
∩ ) is  not a neutro-superhypergroup. But, from 

Example 26,  (H, 𝑜𝑜(3,2)
∩ ) is a neutro-superhypergroup. 

Theorem 29. Neutro-superhyper groups can be obtained from every superhyper group. 

Proof. Let (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) be a superhyper group such  that    

  𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ : Hm → 𝑃𝑃∗

𝑛𝑛(H),   𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝐴𝐴1, . . . , 𝐴𝐴𝑚𝑚) = ⋃ 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗
𝑥𝑥𝑖𝑖∈𝐴𝐴𝑖𝑖 (𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚) 

It is clear that ∅ ∉ 𝑃𝑃∗(H). We assume that for any a≠ ∅ element 

 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ (𝑎𝑎, . . . , 𝑥𝑥𝑚𝑚) = ∅ ∉ 𝑃𝑃∗(H).  

Thus, (H∪{a}, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) satisfies condition i from Definition 24. Thus, (H∪{a}, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ ) is a 

neutro-superhyper group. 

Corollary 30. Let (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)
∗ ) be a neutrosophic superhyper group. Then, (H, 𝑜𝑜(𝑚𝑚,𝑛𝑛)

∗ ) is a 

neutro-superhyper group. 
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CONCLUSIONS 

In this chapter, the superhyper group is defined and relevant basic properties are 

given. Similarities and differences between the hyper group and superhyper group are 

discussed. Also, the neutro-superhyper group is defined and relevant basic properties are 

given. Similarities and differences between the neutro-superhyper group and superhyper 

group are discussed. Researchers can make use of this chapter to define                             

superhyper ring, superhyper field, superhyper modules, neutro-superhyper ring, neutro-

superhyper field, neutro-superhyper modules.  
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ABSTRACT 
In this manuscript, we take the concept of compatible mappings in neutrosophic metric 
spaces. We define the relation between two pair of mappings which are Compatible of type 
(II) if and only if pair of mappings are Compatible of type (I) and also prove that for four 
mappings common fixed point theorem under the compatible mappings condition of type (I) 
and (II) in the complete neutrosophic metric spaces. We also prove some non-trivial 
examples which support our result. In an application we use our established result to find the 
unique solution to an integral equation in dynamic market equilibrium economics. 

Keywords: neutrosophic metric spaces, compatible mappings of types ( 𝛼𝛼 ) and ( 𝛽𝛽 ), 
compatible mappings of type (I) and (II). 

MSC: 54H25, 47H10. 

1. Introduction 
The concept of quantum particle physics and fuzzy topology may have 
important applications, given by Elnaschie [1, 2]. Zadeh [3] introduced the notion of fuzzy 
sets (FS). Kramosil and Michalek [4] used the notion of FS and defined the notion of fuzzy 
metric spaces (FMSs).  
Kaleva and Seikkala [5] introduced the concept of FMS and proved the distance between 
two points in a FMS is a non-negative, upper semi continuous, normal and convex fuzzy 
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number. Deng [6] established the fuzzy pseudo-metric spaces, between two fuzzy points 
defined the metric. Erceg [7] describes a uniformity for a metric space on a FS, used the 
definition of uniformity given by Hutton and defined the Conjugate pseudo-metrics. Lowen 
[8] presented a class of mathematical functions that can be used to calculate the distance 
between FS and explained the relation to the ordinary pseudo metrics Fang [9] gave some 
new fixed point (FP) theorems for contractive type mappings in FMS. George and veeramani 
[10] defined a Hausdorff topology and some known results of metric spaces including Baire's 
theorem on FMS. Grabiec [11] expand the well-known Banach FP theorems and Edelstein 
to FMS. Mihet [12] extended results on fuzzy contractive mappings to Edelstein fuzzy 
contractive mappings. Many research treating imprecision and uncertainty have been 
developed and studied [41-59]. 
 
Alaca [13] used the idea of intuitionistic fuzzy sets (IFs), and defined the notion of 
intuitionistic fuzzy metric space (IFMS). Turkoglu et.al [14] defined R-weakly commuting 
mappings in IFMSs and proved the intuitionistic fuzzy version of Pants theorem. Abbas and 
Jungck [15] established the existence of coincidence points and common FPs for mappings 
satisfying certain contractive conditions, without appealing to continuity, in a cone metric 
space. Park [16, 17] defined the notion of IFMS as a natural generalization of fuzzy metric 
spaces and proved some  results of metric spaces including the Uniform limit theorem for 
IFMSs  and Baire's theorem. Saleem [18] introduced the notion of intuitionistic extended 
fuzzy b-metric-like spaces, established some FP theorems. 
Farheen et al. [19] introduced the concept of intuitionistic fuzzy double controlled metric 
spaces that generalized the concept of intuitionistic fuzzy b-metric spaces. Alaca et al [20] 
gave some new definitions of compatible mapping in IFMSs. Saadati and Park [21] defined 
precompact set in IFMSs and proved that any subset of an IFMS is compact if and only if it 
is complete and precompact. Also defined intuitionistic fuzzy metrizable spaces 
topologically complete and defined intuitionistic fuzzy normed spaces and fuzzy 
boundedness for linear operators and proved that every finite dimensional intuitionistic fuzzy 
normed space is complete. Pant [22] introduced the notion of R-weak commutativity of 
mappings and proved two common FP theorems for pair of mappings.  
Turkoglu et al.  [23] formulated  the  definition  of  compatible  maps  and  compatible  maps  
of types  (𝛼𝛼) and  (𝛽𝛽)  in  IFMSs  and  give  some  relations  between  the    concepts  of  
compatible  maps  and  compatible  maps  of  types (α) and  (β). Turkoglu  et.al [24]  proved 
a common FP theorem for compatible maps of type (α) on FMS. Simsek and Kirisci [25] 
used the notion of neutrosophic metric space (NMS) and proved various FP theorems. Ishtiaq 
[26] introduced the concept of an orthogonal NMS. Uddin [27] derived the concept of 
controlled neutrosophic metric-like spaces as a generalization of neutrosophic metric spaces. 
Ahin et al. [30, 31] provided certain transformations based on centroid points between single 
valued neutrosophic numbers as well as according to the truth, indeterminacy, and falsity 
values of single valued neutrosophic numbers. By expanding the idea of Q-neutrosophic soft 
expert sets and defining the related ideas and fundamental operations of complement, subset, 
union, intersection, AND, and OR, Hassan et al. [32, 40] made it possible to convert soft 
expert sets from being one dimensional to being two dimensional. Ulucay et al. [33] 
introduced the term "time-neutrosophic soft expert set" and described its fundamental 
operations, including complement, union, intersection, AND, and OR, as well as looked into 
some of its characteristics. Ulucay et al. [34] created a ranking technique based on the 
outranking relations of bipolar neutrosophic numbers and provided a new outranking 
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methodology for multi-attribute decision-making issues in the bipolar neutrosophic 
environment. 
For improved neutrosophic sets, Ulucay et al. [35] presented a new distance-based similarity 
measure. According to Broumi et al. [36], the features of complex neutrosophic sets were 
employed to measure the fluctuation and uncertainty of neutrosophic sets. In order to create 
an algorithm for a neutrosophic soft expert multisets (NSEM) decision-making approach that 
enables for a more effective decision-making process, Bakbak et al. [37] designed a NSEMs 
aggregation operator. In addition to examining the desirable aspects of the outranking 
relations and developing a ranking approach for multi-criteria decision-making situations, 
Ulucay et al. [38, 39] introduced the notion of the neutrosophic soft expert graph. In recent 
years, the academic community has witnessed growing research interests in uncertainty set 
theory [60-79]. 
The basic aim of this article, 

i) We generalize the results of (Alaca et al [20]) in the content of NMS  
ii) we obtain the concepts of B-compatible and A-compatible and some examples for 

different compatible mappings in NMS. 
iii) We established the concept of compatible mappings of type (I), (II) in NMS. 
iv) We also give an application that supports our main result. 

 
2. Preliminaries 

In this section, we discuss some basic definitions which are help to understand our main 

result. 

Definition 2.1: [28] A binary operation  ∗∶ [0,1] × [0,1] → [0,1] is continuous t-norm if ∗ 

is satisfying the following conditions: 

a) ∗ is continuous; 
b) 𝓃𝓃 ∗ 1 = 𝓃𝓃 for all 𝓃𝓃 ∈ [0,1];  
c) ∗ is commutative associative; 
d) 𝓃𝓃 ∗ ℊ ≤ 𝑐𝑐 ∗ 𝑑𝑑 whenever 𝓃𝓃 ≤ 𝑐𝑐, ℊ ≤ 𝑑𝑑  for all 𝓃𝓃, ℊ, 𝑐𝑐, 𝑑𝑑 ∈ [0,1]. 

Definition 2.2: [28] A binary operation  ◊∶ [0,1] × [0,1] → [0,1] is a continuous t-conorm 
if  ⋄ is satisfying the following conditions: 

1) ◊ is continuous; 
2) 𝓃𝓃 ◊ 0 = 0 ◊ 𝓃𝓃 = 𝓃𝓃 for all 𝓃𝓃 ∈ [0,1].  
3) 𝓃𝓃 ◊ ℊ ≤ 𝑐𝑐 ◊ 𝑑𝑑 whenever 𝓃𝓃 ≤ 𝑐𝑐, ℊ ≤ 𝑑𝑑  and 𝓃𝓃, ℊ, 𝑐𝑐, 𝑑𝑑 ∈ [0,1],  
4)  ◊ is commutative associative; 

The following definition was introduced by Alaca et al. [1]. 

Definition 2.3: [17] A 5-tuple (ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊) is called IFMS if ℒ is an arbitrary nonempty 
set, ∗   is a CTN  ◊ is a CTCN and 𝛽𝛽, 𝜌𝜌  are fs on  ℒ2  × (0, ∞) satisfying the following 
conditions:  

IFM1) 𝛽𝛽𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) + 𝜌𝜌𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) ≤ 1 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 
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IFM2) 𝛽𝛽𝑖𝑖(ℓ, 𝜛𝜛, 0) = 0 for all ℓ, 𝜛𝜛 ∈ ℒ; 
IFM3) 𝛽𝛽𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) = 1 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0 if and only if ℓ = 𝜛𝜛; 
IFM4) 𝛽𝛽𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) =  𝛽𝛽𝑖𝑖(𝜛𝜛, ℓ, 𝜏𝜏) for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 
IFM5) 𝛽𝛽𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) ∗ 𝛽𝛽𝑖𝑖(𝜛𝜛, 𝓏𝓏, 𝑠𝑠) ≤ 𝛽𝛽𝑖𝑖(ℓ, 𝓏𝓏, 𝜏𝜏 + 𝑠𝑠) for all ℓ, 𝜛𝜛, 𝓏𝓏 ∈ ℒ and s, 𝜏𝜏 > 0; 
IFM6) for all ℓ, 𝜛𝜛 ∈ ℒ, 𝛽𝛽𝑖𝑖(ℓ, 𝜛𝜛, . ): [0, ∞) → [0,1]is left continuous; 
IFM7) lim

𝜏𝜏→∞
𝛽𝛽𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) = 1 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 

IFM8) 𝜌𝜌𝑖𝑖(ℓ, 𝜛𝜛, 0) = 1 for all ℓ, 𝜛𝜛 ∈ ℒ; 
IFM9) 𝜌𝜌𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) = 0 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0 if and only if ℓ = 𝜛𝜛; 
IFM10) 𝜌𝜌𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) = 𝜌𝜌𝑖𝑖(𝜛𝜛, ℓ, 𝜏𝜏) for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 
IFM11) 𝜌𝜌𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) ◊  𝜌𝜌𝑖𝑖(𝜛𝜛, 𝓏𝓏, 𝑠𝑠) ≥ 𝜌𝜌𝑖𝑖(ℓ, 𝓏𝓏, 𝜏𝜏 + 𝑠𝑠) for all ℓ, 𝜛𝜛, 𝓏𝓏 ∈ ℒ and 𝑠𝑠, 𝜏𝜏 > 0 ; 
IFM12) for all ℓ, 𝜛𝜛 ∈ ℒ, 𝜌𝜌𝑖𝑖(ℓ, 𝜛𝜛, . ): [0, ∞) → [0,1]is right continuous; 
IFM13) lim

𝜏𝜏→∞
𝜌𝜌𝑖𝑖(ℓ, 𝜛𝜛, 𝜏𝜏) = 0for all ℓ, 𝜛𝜛 in ℒ;  

Then the pair (𝛽𝛽𝑖𝑖, 𝜌𝜌𝑖𝑖) is said to be  intuitionistic fuzzy metric on ℒ.  

Definition 2.4: [29] A 6-tuple (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) is said to be a NMS if ℒ is an arbitrary 
nonempty set, ∗  is a CTN  ◊ is a CTCN and 𝛽𝛽, 𝜌𝜌 and 𝜔𝜔 are fuzzy sets on  ℒ2  × (0, ∞) 
satisfying the following conditions:  

NMS1) 𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) + 𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) + 𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) ≤ 3 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 
NMS2)  𝛽𝛽(ℓ, 𝜛𝜛, 0) = 0 for all ℓ, 𝜛𝜛 ∈ ℒ; 
NMS3)  𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) = 1 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0 if and only if ℓ = 𝜛𝜛; 
NMS4)  𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) =  𝛽𝛽(𝜛𝜛, ℓ, 𝜏𝜏) for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 
NMS5) 𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛, 𝓏𝓏, 𝑠𝑠) ≤ 𝛽𝛽(ℓ, 𝓏𝓏, 𝜏𝜏 + 𝑠𝑠) for all ℓ, 𝜛𝜛, 𝓏𝓏 ∈ ℒ and s, 𝜏𝜏 > 0; 
NMS6) for all ℓ, 𝜛𝜛 ∈ ℒ, 𝛽𝛽(ℓ, 𝜛𝜛, . ): [0, ∞) → [0,1]is left continuous; 
NMS7) lim

𝜏𝜏→∞
𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) = 1 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 

NMS8) 𝜌𝜌(ℓ, 𝜛𝜛, 0) = 1 for all ℓ, 𝜛𝜛 ∈ ℒ; 
NMS9) 𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) = 0 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0 if and only if ℓ = 𝜛𝜛; 
NMS10) 𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) = 𝜌𝜌(𝜛𝜛, ℓ, 𝜏𝜏) for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 
NMS11) 𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) ◊  𝜌𝜌(𝜛𝜛, 𝓏𝓏, 𝑠𝑠) ≥ 𝜌𝜌(ℓ, 𝓏𝓏, 𝜏𝜏 + 𝑠𝑠) for all ℓ, 𝜛𝜛, 𝓏𝓏 ∈ ℒ and 𝑠𝑠, 𝜏𝜏 > 0 ; 
NMS12) for all ℓ, 𝜛𝜛 ∈ ℒ, 𝜌𝜌(ℓ, 𝜛𝜛, . ): [0, ∞) → [0,1]is right continuous; 
NMS13) lim

𝜏𝜏→∞
𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) = 0for all ℓ, 𝜛𝜛 in ℒ;  

NMS14) 𝜔𝜔(ℓ, 𝜛𝜛, 0) = 1 for all ℓ, 𝜛𝜛 ∈ ℒ; 
NMS15) 𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) = 0 for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0 if and only if ℓ = 𝜛𝜛; 
NMS16) 𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) = 𝜔𝜔(𝜛𝜛, ℓ, 𝜏𝜏) for all ℓ, 𝜛𝜛 ∈ ℒ and 𝜏𝜏 > 0; 
NMS17) 𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) ◊  𝜔𝜔(𝜛𝜛, 𝓏𝓏, 𝑠𝑠) ≥ 𝜔𝜔(ℓ, 𝓏𝓏, 𝜏𝜏 + 𝑠𝑠) for all ℓ, 𝜛𝜛, 𝓏𝓏 ∈ ℒ and 𝑠𝑠, 𝜏𝜏 > 0;  
NMS18) for all ℓ, 𝜛𝜛 ∈ ℒ, 𝜔𝜔(ℓ, 𝜛𝜛, . ): [0, ∞) → [0,1]is right continuous; 
NMS19) lim

𝜏𝜏→∞
𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) = 0for all ℓ, 𝜛𝜛 in ℒ.  

Then (𝛽𝛽, 𝜌𝜌, 𝜔𝜔) is said to be neutrosophic metric on ℒ.  

Definition 2.5: [29] Let (ℒ , 𝛽𝛽 , 𝜌𝜌 , 𝜔𝜔,∗ ,◊) be a NMS. Then, 

i) a sequence {ℓ𝜅𝜅} in ℒ is said to be Cauchy sequence if, for all 𝜏𝜏 > 0 and 𝒽𝒽 > 0 
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lim
𝜅𝜅⟶∞

𝛽𝛽(ℓ𝜅𝜅+𝒽𝒽, ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(ℓ𝜅𝜅+𝒽𝒽, ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(ℓ𝜅𝜅+𝒽𝒽, ℓ𝜅𝜅 , 𝜏𝜏) = 0. 

ii) a sequence {ℓ𝜅𝜅} in ℒ is called convergent to a point ℓ ∈ ℒ if, for all 𝜏𝜏 > 0, 
 lim
𝜅𝜅⟶∞

𝛽𝛽(ℓ𝜅𝜅 , ℓ, 𝜏𝜏) = 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(ℓ𝜅𝜅 , ℓ, 𝜏𝜏) = 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(ℓ𝜅𝜅, ℓ, 𝜏𝜏) = 0. 

iii) is a complete if and only if every Cauchy sequence in ℒ is convergent. 
Definition 2.6: [23] The maps 𝒜𝒜 and ℰ are called compatible, if 𝒜𝒜 and ℰare self-mappings 

in IFMS (ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊) for all 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅→∞

𝜌𝜌𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

so that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 ∈ ℒ, wherever {ℓ𝜅𝜅} is a sequence in ℒ. 

Definition 2.7: [23] Suppose that 𝒜𝒜  and ℰ  are maps from an IFMS (ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊) into 

itself. for all 𝜏𝜏 > 0, the maps 𝒜𝒜 and ℰ are said to be compatible of type (𝛼𝛼). 

lim
𝜅𝜅⟶∞

𝛽𝛽𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1 and lim
𝜅𝜅→∞

𝜌𝜌𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽𝑖𝑖(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1 and lim
𝜅𝜅→∞

𝜌𝜌𝑖𝑖(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0 

Wherever {ℓ𝜅𝜅} is a sequence in ℒ such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 ∈ ℒ. 

Definition 2.8: [23] Suppose that 𝒜𝒜 and  ℰ  be maps from an IFMS (ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊) into 
itself, for all 𝜏𝜏 > 0 and the maps 𝒜𝒜 and ℰ are called compatible type (𝛽𝛽) if,  

lim
𝜅𝜅⟶∞

𝛽𝛽𝑖𝑖(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1 and lim
𝜅𝜅→∞

𝜌𝜌𝑖𝑖(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0 

Wherever {ℓ𝜅𝜅} is a sequence in ℒ such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 ∈ ℒ. 
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Definition 2.9: [20] Suppose that 𝒜𝒜 and ℰ be mappings from an IFMS (ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊) into 

itself. The pair (𝒜𝒜, ℰ) is called  𝒜𝒜-Compatible if, for all 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1 and lim
𝜅𝜅→∞

𝜌𝜌𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0. 

Wherever {ℓ𝜅𝜅} is a sequence in ℒ such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 ∈ ℒ. 

Definition 2.10: [20] Suppose that 𝒜𝒜 and ℰ be mappings from an IFMS (ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊)into 

itself. Then the pair (𝒜𝒜, ℰ) is called ℰ-Compatible if and only if (ℰ, 𝒜𝒜) is ℰ-compatible. 

Definition 2.11: [20] Assume that 𝒜𝒜 and ℰ be mappings from an IFMS (ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊)into 

itself. for all 𝜏𝜏 > 0 and the pair (𝒜𝒜, ℰ) is called Compatible of type (I). 

lim
𝜅𝜅⟶∞

𝛽𝛽𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏) ≤ 𝛽𝛽𝑖𝑖(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏)and lim
𝜅𝜅→∞

𝜌𝜌𝑖𝑖(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏) ≥ 𝜌𝜌𝑖𝑖(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) 

such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏  for some 𝓏𝓏 ∈ ℒ  wherever 𝜆𝜆 𝜖𝜖 (0,1] and {ℓ𝜅𝜅}  is a 
sequence in ℒ.  

Definition 2.12: [20] The pair (𝒜𝒜, ℰ)  is called Compatible of type (II) iff (ℰ, 𝒜𝒜)  is 
compatible of type (I) and we suppose that 𝒜𝒜 and  ℰ  be mappings from an IFMS 
(ℒ , 𝛽𝛽𝑖𝑖 , 𝜌𝜌𝑖𝑖 ,∗ ,◊) into itself.  

3. Main Result 
In our main section, we discuss some definition and important results in NMS and also 
discuss some non trivial examples which are satisfying our results. 

Lemma 3.1: Let (ℒ , 𝛽𝛽 , 𝜌𝜌 , 𝜔𝜔,∗ ,◊) be a NMS and {𝜛𝜛𝜅𝜅} be a sequence in ℒ. If there exists a 
number 𝑘𝑘 ∈ (0,1) such that 

𝛽𝛽(𝜛𝜛𝜅𝜅+2, 𝜛𝜛𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝜛𝜛𝜅𝜅+1, 𝜛𝜛𝜅𝜅 , 𝜏𝜏),
𝜌𝜌(𝜛𝜛𝜅𝜅+2, 𝜛𝜛𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝜛𝜛𝜅𝜅+1, 𝜛𝜛𝜅𝜅 , 𝜏𝜏),
𝜔𝜔(𝜛𝜛𝜅𝜅+2, 𝜛𝜛𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝜛𝜛𝜅𝜅+1, 𝜛𝜛𝜅𝜅 , 𝜏𝜏),

�    (1)   

for all 𝜏𝜏 > 0 and 𝜅𝜅 = 1,2,3, …, then {𝜛𝜛𝜅𝜅} is a Cauchy sequence in ℒ. 

Proof:  we use induction and inquelity (1) with the help of Alaca et al. [1], we have, for all 
𝜏𝜏 > 0 and 𝜅𝜅 = 1,2, …,  

𝛽𝛽(𝜛𝜛𝜅𝜅+1, 𝜛𝜛𝜅𝜅+2, 𝜏𝜏) ≥ 𝛽𝛽 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝑘𝑘𝜅𝜅 
� ,   (2) 

 𝜌𝜌(𝜛𝜛𝜅𝜅+1, 𝜛𝜛𝜅𝜅+2, 𝜏𝜏) ≤ 𝜌𝜌 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝑘𝑘𝜅𝜅� ,    (3) 
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𝜔𝜔(𝜛𝜛𝜅𝜅+1, 𝜛𝜛𝜅𝜅+2, 𝜏𝜏) ≤ 𝜔𝜔 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝑘𝑘𝜅𝜅� .    (4) 

By using the above inequalities and Definition 2.4 for any positive integer 𝒽𝒽 and real number 
𝜏𝜏 > 0, we have 

𝛽𝛽(𝜛𝜛𝜅𝜅, 𝜛𝜛𝜅𝜅+𝒽𝒽, 𝜏𝜏) ≥  𝛽𝛽 �𝜛𝜛𝜅𝜅 , 𝜛𝜛𝜅𝜅+1,
𝜏𝜏

𝒽𝒽 
�

𝒽𝒽−times
∗ … ∗ 𝛽𝛽 �𝜛𝜛𝜅𝜅+𝒽𝒽−1, 𝜛𝜛𝜅𝜅+𝒽𝒽,

𝜏𝜏
𝒽𝒽 

�   

≥ 𝛽𝛽 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝒽𝒽𝑘𝑘𝜅𝜅−1�
𝒽𝒽−times

∗ … ∗ 𝛽𝛽 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝒽𝒽𝑘𝑘𝜅𝜅+𝒽𝒽−2�, 

𝜌𝜌(𝜛𝜛𝜅𝜅 , 𝜛𝜛𝜅𝜅+𝒽𝒽, 𝜏𝜏) ≤ 𝜌𝜌 �𝜛𝜛𝜅𝜅 , 𝜛𝜛𝜅𝜅+1,
𝜏𝜏

𝒽𝒽 
�

𝒽𝒽−times
◊ … ◊ 𝜌𝜌 �𝜛𝜛𝜅𝜅+𝒽𝒽−1, 𝜛𝜛𝜅𝜅+𝒽𝒽,

𝜏𝜏
𝒽𝒽 

�   

≤ 𝜌𝜌 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝒽𝒽𝑘𝑘𝜅𝜅−1�
𝒽𝒽−times

◊ … ◊ 𝜌𝜌 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝒽𝒽𝑘𝑘𝜅𝜅+𝒽𝒽−2�, 

and  

𝜔𝜔(𝜛𝜛𝜅𝜅, 𝜛𝜛𝜅𝜅+𝒽𝒽, 𝜏𝜏) ≤  𝜔𝜔 �𝜛𝜛𝜅𝜅 , 𝜛𝜛𝜅𝜅+1,
𝜏𝜏

𝒽𝒽 
�

𝒽𝒽−times
◊ … ◊ 𝜔𝜔 �𝜛𝜛𝜅𝜅+𝒽𝒽−1, 𝜛𝜛𝜅𝜅+𝒽𝒽,

𝜏𝜏
𝒽𝒽 

�   

≤ 𝜔𝜔 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝒽𝒽𝑘𝑘𝜅𝜅−1�
𝒽𝒽−times

◊ … ◊ 𝜔𝜔 �𝜛𝜛1, 𝜛𝜛2,
𝜏𝜏

𝒽𝒽𝑘𝑘𝜅𝜅+𝒽𝒽−2�. 

Therefore, by Definition 2.4 we obtain 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝜛𝜛𝜅𝜅 , 𝜛𝜛𝜅𝜅+𝒽𝒽, 𝜏𝜏) ≥ 1𝒽𝒽−times  ∗ …  ∗ 1 ≥ 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝜛𝜛𝜅𝜅, 𝜛𝜛𝜅𝜅+𝒽𝒽, 𝜏𝜏) ≤ 0𝒽𝒽−times  ◊ …  ◊ 0 ≤ 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝜛𝜛𝜅𝜅 , 𝜛𝜛𝜅𝜅+𝒽𝒽, 𝜏𝜏) ≤ 0𝒽𝒽−times  ◊ …  ◊ 0 ≤ 0. 

Which implies that {𝜛𝜛𝜅𝜅} is a Cauchy sequence in ℒ. This complete the proof. 

Lemma 3.2: Suppose that (ℒ , 𝛽𝛽 , 𝜌𝜌 , 𝜔𝜔,∗ ,◊) be a NMS and for all ℓ, 𝜛𝜛 ∈ ℒ, 𝜏𝜏 > 0 and if 
for a number 𝑘𝑘 ∈ (0,1), 

𝛽𝛽(ℓ, 𝜛𝜛, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏), 
 𝜌𝜌(ℓ, 𝜛𝜛, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏), 
𝜔𝜔(ℓ, 𝜛𝜛, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏), 

Then ℓ = 𝜛𝜛. 
Proof: Same as [31] 
Definition 3.1: Let 𝒜𝒜 and ℰ be maps from a NMS (ℒ , 𝛽𝛽 , 𝜌𝜌 , 𝜔𝜔,∗ ,◊) into itself. The maps 

𝒜𝒜 and ℰ are said to be compatible if, for all 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 
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lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0. 

such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 ∈ ℒ wherever {ℓ𝜅𝜅} is a sequence in ℒ . 

Definition 3.2: The maps 𝒜𝒜 and ℰ are called compatible of type (𝛼𝛼) if we assume that 𝒜𝒜 

and ℰ be maps from a NMS (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) into itself, for all 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1 , 

lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0 , 

lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 

and 

lim
𝜅𝜅⟶∞

𝛽𝛽(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅→∞

𝜌𝜌(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0 , 

lim
𝜅𝜅→∞

𝜔𝜔(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0. 

such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 ∈ ℒ  wherever {ℓ𝜅𝜅} is a sequence in ℒ. 

Definition 3.3: Suppose that 𝒜𝒜 and ℰ be maps from a NMS (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) into itself. 
The maps 𝒜𝒜 and ℰ are called to be compatible type (𝛽𝛽) if, for all 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1, 
lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0 , 
lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0. 

for some 𝓏𝓏 ∈ ℒ ,wherever {ℓ𝜅𝜅} is a sequence in ℒ and lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏. 
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Proposition 3.1: Suppose that (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) be a NMS with 𝜏𝜏 ∗ 𝜏𝜏 ≥ 𝜏𝜏 and (1 − 𝜏𝜏) ◊

(1 − 𝜏𝜏)  for all 𝜏𝜏 ∈ [0,1], Then 𝒜𝒜 and ℰ are compatible iff they are compatible mappings of 

type (𝛼𝛼) and 𝒜𝒜 and ℰ be continuous mappings from ℒ into itself. 

Proof: Let 𝒜𝒜 and ℰ are compatible and suppose that {ℓ𝜅𝜅} is a sequence in ℒ such that 

lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 

for some 𝓏𝓏 ∈ ℒ.  Since 𝒜𝒜 and ℰ be continuous. We get 
lim

𝜅𝜅⟶∞
𝒜𝒜𝒜𝒜ℓ𝜅𝜅  =  lim

𝜅𝜅→∞
𝒜𝒜ℰℓ𝜅𝜅 = 𝒜𝒜𝓏𝓏, 

lim
𝜅𝜅⟶∞

ℰ𝒜𝒜ℓ𝜅𝜅  =  lim
𝜅𝜅→∞

ℰℰℓ𝜅𝜅 = ℰ𝓏𝓏. 

since 𝒜𝒜 and ℰ are compatible, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 
lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0 , 
lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

for all 𝜏𝜏 > 0. we get 

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≥  𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 ,
𝜏𝜏
2

�  ∗ 𝛽𝛽 �ℰ𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 ,
𝜏𝜏
2

�, 

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤  𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 ,
𝜏𝜏
2

� ◊ 𝜌𝜌 �ℰ𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 ,
𝜏𝜏
2

�, 

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤  𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 ,
𝜏𝜏
2

� ◊ 𝜔𝜔 �ℰ𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 ,
𝜏𝜏
2

�, 

for all 𝜏𝜏 > 0. This implies that 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≥ 1 ∗ 1 ≥ 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤ 0 ◊ 0 ≤ 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤ 0 ◊ 0 ≤ 0. 

It fellows that 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1, 
lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0 , 
lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0. 



Editors: Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın 
              
 

52 
 

for all 𝜏𝜏 > 0,  

lim
𝜅𝜅⟶∞

𝛽𝛽(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅→∞

𝜌𝜌(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅→∞

𝜔𝜔(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0. 

where 𝒜𝒜  and ℰ  are compatible of type (𝛼𝛼).  Conversely, we consider 𝒜𝒜  and ℰ  are 
compatible of type (𝛼𝛼) and let {ℓ𝜅𝜅} be a sequence in ℒ and lim

𝜅𝜅⟶∞
𝒜𝒜ℓ𝜅𝜅 = lim

𝜅𝜅→∞
ℰℓ𝜅𝜅 = 𝓏𝓏 for 

some 𝓏𝓏 𝜖𝜖 ℒ and 𝒜𝒜 and ℰ are continuous. 

 we get, 

lim
𝜅𝜅⟶∞

𝒜𝒜𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅→∞

𝒜𝒜ℰℓ𝜅𝜅 = 𝒜𝒜𝓏𝓏, 

lim
𝜅𝜅⟶∞

ℰ𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅→∞

ℰℰℓ𝜅𝜅 = ℰ𝓏𝓏. 

 Where  𝒜𝒜 and ℰ are compatible of type (𝛼𝛼), for all 𝜏𝜏 > 0, we obtain,  

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 

and 

lim
𝜅𝜅⟶∞

𝛽𝛽(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅→∞

𝜌𝜌(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅→∞

𝜔𝜔(ℰ𝒜𝒜ℓ𝜅𝜅 , 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

Thus, from the inequality  

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) ≥  𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 ,
𝜏𝜏
2

�  ∗ 𝛽𝛽 �ℰℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 ,
𝜏𝜏
2

�, 

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) ≤  𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 ,
𝜏𝜏
2

� ◊ 𝜌𝜌 �ℰℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 ,
𝜏𝜏
2

�, 

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) ≤  𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 ,
𝜏𝜏
2

� ◊ 𝜔𝜔 �ℰℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 ,
𝜏𝜏
2

�, 

for all 𝜏𝜏 > 0, it follow that 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) ≥ 1 ∗ 1 ≥ 1, 
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lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) ≤ 0 ◊ 0 ≤ 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) ≤ 0 ◊ 0 ≤ 0, 

for all 𝜏𝜏 > 0, which implies that 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0. 

so, A and B are compatible and hence proved. 

Proposition 3.2: Suppose that (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) be a NMS with 𝜏𝜏 ∗ 𝜏𝜏 ≥ 𝜏𝜏 and  (1 − 𝜏𝜏) ◊

(1 − t)  ≤ (1 − t) for all 𝜏𝜏 ∈ [0,1] then 𝒜𝒜 , ℰ  are compatible maps type (𝛽𝛽) and assume 

that 𝒜𝒜 and ℰ be maps of continuous from ℒ into itself.  

Proof: Same as [31]. 

Proposition 3.3: Suppose (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊)  be a NMS with 𝜏𝜏 ∗ 𝜏𝜏 ≥ 𝜏𝜏 and (1 − 𝜏𝜏) ◊
(1 − 𝜏𝜏)  ≤ (1 − 𝜏𝜏) for all 𝜏𝜏 ∈ [0,1] and Then 𝒜𝒜 and ℰ are compatible maps type (𝛽𝛽) of iff 
they are compatible map of type (𝛼𝛼) and let 𝒜𝒜 and ℰ be continuous maps from ℒ into itself. 
Proof: Same lines as [31]. 

Definition 3.4:   Suppose that 𝒜𝒜 and ℰ be mappings from a NMS (ℒ , 𝛽𝛽 , 𝜌𝜌 , 𝜔𝜔,∗ ,◊) into 

itself.  The pair (𝒜𝒜, ℰ) is called 𝒜𝒜-Compatible if, for all 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0. 

Wherever {ℓ𝜅𝜅} is a sequence in ℒ such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 ∈ ℒ. 

Definition 3.5: Suppose that 𝒜𝒜  and ℰ  be mappings from a NMS (ℒ , 𝛽𝛽 , 𝜌𝜌 , 𝜔𝜔,∗ ,◊) into 

itself. Then the pair (𝒜𝒜, ℰ) is said to ℰ-Compatible iff  (ℰ, 𝒜𝒜) is ℰ-compatible. 
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Definition 3.6: Suppose that 𝒜𝒜  and ℰ  be mappings from a NMS  (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) into 

itself. We use the pair (𝒜𝒜, ℰ) is called Compatible of type (I) if, for all 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏) ≤ 𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏), 

lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏) ≥ 𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏), 

lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏) ≥ 𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏). 

Wherever 𝜆𝜆 𝜖𝜖 (0,1] and {ℓ𝜅𝜅}  is a sequence in  ℒ  and lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏  for some 
𝓏𝓏 ∈ ℒ. 

Definition 3.7: The pair (𝒜𝒜, ℰ) is called Compatible of type (II) iff (ℰ, 𝒜𝒜) is compatible of 
type (I). If 𝒜𝒜 and ℰ be mappings from a NMS (ℒ , 𝛽𝛽 , 𝜌𝜌 ,∗ ,◊) into itself.  
Proposition 3.4: The pair (𝒜𝒜, ℰ)  is 𝒜𝒜  Compatible (resp., ℰ -compatible), they are 
compatible of type (I) (resp., of type (II)). Suppose that (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) be a NMS and 
𝒜𝒜, ℰ be mappings from ℒ to itself and ℰ (resp,. 𝒜𝒜) is continuous.  

Proof: Let the pair (𝒜𝒜, ℰ) is 𝒜𝒜-compatible and let {ℓ𝜅𝜅} be a sequence in ℒ and lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 =
lim

𝜅𝜅⟶∞
ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 𝜖𝜖 ℒ. Since ℰ is continous, we get 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1 = lim
𝜅𝜅→∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏, 𝜏𝜏), 
lim

𝜅𝜅⟶∞
𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0 = lim

𝜅𝜅→∞
𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏, 𝜏𝜏), 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0 = lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏, 𝜏𝜏) . 
Further, 

𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≥ 𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ∗ 𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�, 

𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ 𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�, 

𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ 𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�. 
Then, we get 

𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≥ lim
𝜅𝜅→∞

�𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ∗ 𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�� 

= lim
𝜅𝜅→∞

𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�, 

𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

�𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�� 

= lim
𝜅𝜅→∞

𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�, 

𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

�𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�� 

= lim
𝜅𝜅→∞

𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜏𝜏
2
�. 

We get, 
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lim
𝜅𝜅→∞

𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ≤ 𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏), 

lim
𝜅𝜅→∞

𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ≥ 𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏), 

lim
𝜅𝜅→∞

𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ≥ 𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏). 
The sequence {ℓ𝜅𝜅} in ℒ holds for every choice inequality with the corresponding 𝓏𝓏 𝜖𝜖 ℒ The 
pair (𝒜𝒜, ℰ) is compatible of type (I) hence proved. 
Proposition 3.5: Suppose that (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) be a NMS and 𝒜𝒜, ℰ be mappings from ℒ 
into itself with ℰ (resp,. 𝒜𝒜) is countinous. If the pair (𝒜𝒜, ℰ) is Compatible of type (I) and 
type (II) and lim

𝜅𝜅→∞
𝒜𝒜ℰℓ𝜅𝜅 = 𝓏𝓏 (𝑟𝑟𝑟𝑟𝑠𝑠. , lim

𝜅𝜅→∞
ℰ𝒜𝒜ℓ𝜅𝜅 = 𝓏𝓏), then it is 𝒜𝒜-compatible (resp., ℰ-

compatible) for every sequence {ℓ𝜅𝜅} in ℒ and lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 𝜖𝜖 ℒ. 
Proof: Let the pair (𝒜𝒜, ℰ) is compatible of type (I) and let {ℓ𝜅𝜅} be a sequence in ℒ and 
lim

𝜅𝜅⟶∞
𝒜𝒜ℓ𝜅𝜅 = lim

𝜅𝜅⟶∞
ℰℓ𝜅𝜅 = 𝓏𝓏 for some 𝓏𝓏 𝜖𝜖 ℒ and ℰ is continous, we obtain,  

𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≥ lim
𝜅𝜅→∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏),   
𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim

𝜅𝜅→∞
𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏), 

𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏, 𝜆𝜆𝜏𝜏). 
then 

lim
𝜅𝜅→∞

𝛽𝛽(ℰℰℓ𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ≥ lim
𝜅𝜅→∞

�𝛽𝛽 �ℰ𝓏𝓏, 𝓏𝓏,
𝜏𝜏
2

� ∗ 𝛽𝛽 �ℰℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�� 

= 𝛽𝛽 �ℰ𝓏𝓏, 𝓏𝓏,
𝜏𝜏
2

�, 

lim
𝜅𝜅→∞

𝜌𝜌(ℰℰℓ𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

�𝜌𝜌 �ℰ𝓏𝓏, 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜌𝜌 �ℰℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�� 

= 𝜌𝜌 �ℰ𝓏𝓏, 𝓏𝓏,
𝜏𝜏
2

�, 

lim
𝜅𝜅→∞

𝜔𝜔(ℰℰℓ𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

�𝜔𝜔 �ℰ𝓏𝓏, 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜔𝜔 �ℰℰℓ𝜅𝜅 , ℰ𝓏𝓏,
𝜏𝜏
2

�� 

= 𝜔𝜔 �ℰ𝓏𝓏, 𝓏𝓏,
𝜏𝜏
2

�. 
Furthermore,  

lim
𝜅𝜅→∞

𝛽𝛽(ℰℰℓ𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ≥ lim
𝜅𝜅→∞

𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜆𝜆𝜏𝜏
2

�, 

lim
𝜅𝜅→∞

𝜌𝜌(ℰℰℓ𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜆𝜆𝜏𝜏
2

�, 

lim
𝜅𝜅→∞

𝜔𝜔(ℰℰℓ𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜆𝜆𝜏𝜏
2

�, 
Then, we get 

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≥ 𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ∗ 𝛽𝛽 �ℰℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�, 

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤ 𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜌𝜌 �ℰℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�, 

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤ 𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜔𝜔 �ℰℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�. 
Thus, as 𝜅𝜅 → ∞, 
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lim
𝜅𝜅→∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≥ lim
𝜅𝜅→∞

�𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ∗ 𝛽𝛽 �ℰℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�� 

≤ lim
𝜅𝜅→∞

�𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ∗ 𝛽𝛽 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜆𝜆𝜏𝜏
4

�� 

= 1, 

lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤ lim
𝜅𝜅→∞

�𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜌𝜌 �ℰℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�� 

≤ lim
𝜅𝜅→∞

�𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜌𝜌 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜆𝜆𝜏𝜏
4

�� 

= 0. 

lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) ≤ lim
𝜅𝜅→∞

�𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜔𝜔 �ℰℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

�� 

≤ lim
𝜅𝜅→∞

�𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜏𝜏
2

� ◊ 𝜔𝜔 �𝒜𝒜ℰℓ𝜅𝜅 , 𝓏𝓏,
𝜆𝜆𝜏𝜏
4

�� 

= 0. 
Therefore, 

lim
𝜅𝜅→∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1, 
lim
𝜅𝜅→∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 
lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0. 
these are 0 and 1  for any sequence ℓ𝜅𝜅 in ℒ that is 𝓏𝓏 𝜖𝜖 ℒ and this limit always exists. Hence 
the pair (𝒜𝒜, ℰ) is 𝒜𝒜- Compatible. Proved. 

Example 3.1: Suppose that ℒ = [0,1] and ∗ be the CTN and ◊ be the CTCN describe  by 
𝓃𝓃 ∗ ℊ = min {𝓃𝓃, ℊ} and 𝓃𝓃 ◊ ℊ = max {𝓃𝓃, ℊ} respectively for all 𝓃𝓃, ℊ 𝜖𝜖 [0,1]. For each 
𝜏𝜏 𝜖𝜖 (0, ∞) and ℓ, 𝜛𝜛 𝜖𝜖 ℒ, define (𝛽𝛽, 𝜌𝜌) by 

𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
𝜏𝜏

𝜏𝜏 + |ℓ − 𝜛𝜛| , 𝜏𝜏 > 0

0,   𝜏𝜏 = 0
, 

𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
|ℓ − 𝜛𝜛|

𝜏𝜏 + |ℓ − 𝜛𝜛| , 𝜏𝜏 > 0

1,   𝜏𝜏 = 0
, 

𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
|ℓ − 𝜛𝜛|

𝜏𝜏
, 𝜏𝜏 > 0

1,   𝜏𝜏 = 0
, 

so, (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) is a NMS, where ◊ and ∗ are define by and 𝓃𝓃 ◊ ℊ = max {𝓃𝓃, ℊ} and 
𝓃𝓃 ∗ ℊ = min {𝓃𝓃, ℊ} respectively. Suppose that 𝒜𝒜 and ℰ be describe the  𝒜𝒜ℓ = 0 for 1

3
<

ℓ < 1
2

 , 𝒜𝒜ℓ = 1 for 0 ≤ ℓ ≤ 1
3
   and 1

2
  ≤ ℓ ≤ 1 and ℰℓ = ℓ for all ℓ 𝜖𝜖 ℒ Suppose that {ℓ𝜅𝜅} 

be a sequence in ℒ and lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏. 
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 and  𝓏𝓏 𝜖𝜖 {1} and lim
𝜅𝜅⟶∞

ℓ𝜅𝜅 = 1, we obtain 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

and  

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) = 0, 

and also we have 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0. 

Similarly 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) = 0. 

Compatible of type (𝛼𝛼), compatible type (𝛽𝛽) thus (𝒜𝒜, ℰ) is compatible, 𝒜𝒜-compatible, ℰ-
compatible. Moreover, 𝓏𝓏 = 0 is a FP of 𝒜𝒜. Finally the pair (𝒜𝒜, ℰ) is compatible of type 
(II) and type (I).   

The result of Proposition 3.4 need not to be true ℰ is not continuous this statement shows 
the example that given below. 

Example 3.2: Suppose that ℒ = [0,2] with the usual metric. For each 𝜏𝜏 > 0 and ℓ, 𝜛𝜛 𝜖𝜖 ℒ, 
describe  (𝛽𝛽, 𝜌𝜌, 𝜔𝜔) by 

𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
𝜏𝜏

𝜏𝜏 + |ℓ − 𝜛𝜛| , 𝜏𝜏 > 0

0,   𝜏𝜏 = 0
, 
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𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
|ℓ − 𝜛𝜛|

𝜏𝜏 + |ℓ − 𝜛𝜛| , 𝜏𝜏 > 0

1,   𝜏𝜏 = 0
, 

𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
|ℓ − 𝜛𝜛|

𝜏𝜏
, 𝜏𝜏 > 0

1,   𝜏𝜏 = 0
. 

Clearly, (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) is a NMS, where ∗ and ◊are define by 𝓃𝓃 ∗ ℊ ={𝓃𝓃, ℊ} and 𝓃𝓃 ◊
ℊ = min{1, 𝓃𝓃 + ℊ}  respectively. Suppose that 𝒜𝒜  and ℰ  be defined as  ℰℓ = 1 for ℓ ≠
1, ℰℓ = 2 for ℓ = 1 , 𝒜𝒜ℓ = 1 for all ℓ 𝜖𝜖 ℒ  and Then ℰ is not continuous at 𝓏𝓏 = 1. We take 
that the pair (𝒜𝒜, ℰ) is compatible of type (II), but not of type (I), of type (𝛼𝛼), ℰ-compatible, 
𝒜𝒜-compatible or compatible. 

To see this, we suppose that {ℓ𝜅𝜅} is a sequence in ℒ such that lim
𝜅𝜅⟶∞

𝒜𝒜ℓ𝜅𝜅 = lim
𝜅𝜅⟶∞

ℰℓ𝜅𝜅 = 𝓏𝓏. 
We defining of 𝒜𝒜 and  ℰ, 𝓏𝓏 𝜖𝜖 {1}. Where 𝒜𝒜 and ℰ agree on ℒ {1}⁄ , we use  ℓ𝜅𝜅 → 1. Now, 
𝒜𝒜ℰℓ𝜅𝜅 = 1, ℰ𝒜𝒜ℓ𝜅𝜅 = 2, 𝒜𝒜𝒜𝒜ℓ𝜅𝜅 = 1, ℰℰℓ𝜅𝜅 = 2,  ℰ1 = 2 and 𝒜𝒜1 = 1  Thus, for 𝜏𝜏 > 0, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) =
𝜏𝜏

𝜏𝜏 + 1
< 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) =
1

𝜏𝜏 + 1
> 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) =
1
𝜏𝜏

> 0. 

and 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) =
𝜏𝜏

𝜏𝜏 + 1
< 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) =
1

𝜏𝜏 + 1
> 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰ𝒜𝒜ℓ𝜅𝜅 , 𝜏𝜏) =
1
𝜏𝜏

> 0. 

Similarly, 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) =
𝜏𝜏

𝜏𝜏 + 1
< 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) =
1

𝜏𝜏 + 1
> 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) =
1
𝜏𝜏

> 0. 
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and 

lim
𝜅𝜅⟶∞

𝛽𝛽(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) =
𝜏𝜏

𝜏𝜏 + 1
< 1, 

lim
𝜅𝜅⟶∞

𝜌𝜌(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) =
1

𝜏𝜏 + 1
> 0, 

lim
𝜅𝜅⟶∞

𝜔𝜔(𝒜𝒜𝒜𝒜ℓ𝜅𝜅 , ℰℰℓ𝜅𝜅 , 𝜏𝜏) =
1
𝜏𝜏

> 0. 

 Type (𝛽𝛽) 𝒜𝒜-compatible, ℰ-compatible or compatible. so the pair (𝒜𝒜, ℰ) is none of 
compatible of type (𝛼𝛼),  also for 𝜏𝜏 > 0, 

𝛽𝛽(ℰ1,1, 𝜏𝜏) =
𝜏𝜏

𝜏𝜏 + 1
< 1 = lim

𝜅𝜅→∞
𝛽𝛽(𝒜𝒜ℰℓ𝜅𝜅 , 1, 𝜏𝜏), 

𝜌𝜌(ℰ1,1, 𝜏𝜏) =
1

𝜏𝜏 + 1
> 0 = lim

𝜅𝜅→∞
𝜌𝜌(𝒜𝒜ℰℓ𝜅𝜅 , 1, 𝜏𝜏), 

𝜔𝜔(ℰ1,1, 𝜏𝜏) =
1
𝜏𝜏

> 0 = lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜ℰℓ𝜅𝜅 , 1, 𝜏𝜏). 

and 

𝛽𝛽(𝒜𝒜1,1, 𝜏𝜏) = 1 >
𝜏𝜏

𝜏𝜏 + 1
= lim

𝜅𝜅→∞
𝛽𝛽(ℰ𝒜𝒜ℓ𝜅𝜅 , 1, 𝜏𝜏), 

𝜌𝜌(𝒜𝒜1,1, 𝜏𝜏) = 0 <
1

𝜏𝜏 + 1
= lim

𝜅𝜅→∞
𝜌𝜌(ℰ𝒜𝒜ℓ𝜅𝜅 , 1, 𝜏𝜏), 

𝜔𝜔(𝒜𝒜1,1, 𝜏𝜏) = 0 <
1
𝜏𝜏

= lim
𝜅𝜅→∞

𝜔𝜔(ℰ𝒜𝒜ℓ𝜅𝜅 , 1, 𝜏𝜏). 

Thus, pair of mappings (𝒜𝒜, ℰ) is compatible of not type (I), but are type (I). 
Proposition 3.6: Suppose that (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) be a NMS and 𝒜𝒜, ℰ be self-mappings on ℒ. 
Let the pair (𝒜𝒜, ℰ) is compatible of type (II) and type (I) and 𝒜𝒜𝓏𝓏 = ℰ𝓏𝓏  for some 𝓏𝓏 𝜖𝜖 ℒ and 
for 𝜏𝜏 > 0 and 𝜆𝜆 𝜖𝜖 (0,1], 

 𝛽𝛽(𝒜𝒜𝓏𝓏, ℰℰ𝓏𝓏, 𝜏𝜏) ≥ 𝛽𝛽(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰ𝓏𝓏, 𝜆𝜆𝜏𝜏), 
𝜌𝜌(𝒜𝒜𝓏𝓏, ℰℰ𝓏𝓏, 𝜏𝜏) ≤ 𝜌𝜌(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰ𝓏𝓏, 𝜆𝜆𝜏𝜏), 
𝜔𝜔(𝒜𝒜𝓏𝓏, ℰℰ𝓏𝓏, 𝜏𝜏) ≤ 𝜔𝜔(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰ𝓏𝓏, 𝜆𝜆𝜏𝜏). 

 (resp.,  
𝛽𝛽(ℰ𝓏𝓏, 𝒜𝒜𝒜𝒜𝓏𝓏, 𝜏𝜏) ≥ 𝛽𝛽(ℰ𝓏𝓏, ℰ𝒜𝒜𝓏𝓏, 𝜆𝜆𝜏𝜏), 
𝜌𝜌(ℰ𝓏𝓏, 𝒜𝒜𝒜𝒜𝓏𝓏, 𝜏𝜏) ≤ 𝜌𝜌(ℰ𝓏𝓏, ℰ𝒜𝒜𝓏𝓏, 𝜆𝜆𝜏𝜏), 
𝜔𝜔(ℰ𝓏𝓏, 𝒜𝒜𝒜𝒜𝓏𝓏, 𝜏𝜏) ≤ 𝜔𝜔(ℰ𝓏𝓏, ℰ𝒜𝒜𝓏𝓏, 𝜆𝜆𝜏𝜏). 

Proof: Suppose that {ℓ𝜅𝜅} be a sequence in ℒ describe the sequence ℓ𝜅𝜅 = 𝓏𝓏 for 𝜅𝜅 = 1,2, … 
and 𝒜𝒜𝓏𝓏 = ℰ𝓏𝓏 for some 𝓏𝓏 𝜖𝜖 ℒ.Then we take lim

𝜅𝜅⟶∞
𝒜𝒜ℓ𝜅𝜅 = lim

𝜅𝜅⟶∞
ℰℓ𝜅𝜅 = 𝓏𝓏. Assume that the pair 

(𝒜𝒜, ℰ) is type (I) compatible, for 𝜏𝜏 > 0, 𝜆𝜆 𝜖𝜖 (0,1], 
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𝛽𝛽(𝒜𝒜𝓏𝓏, ℰℰ𝓏𝓏, 𝜏𝜏) ≥ lim
𝜅𝜅→∞

𝛽𝛽(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰℓ𝜅𝜅 , 𝜆𝜆𝜏𝜏) = 𝛽𝛽(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰ𝓏𝓏, 𝜆𝜆𝜏𝜏), 
𝜌𝜌(𝒜𝒜𝓏𝓏, ℰℰ𝓏𝓏, 𝜏𝜏) ≤ lim

𝜅𝜅→∞
𝜌𝜌(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰℓ𝜅𝜅 , 𝜆𝜆𝜏𝜏) = 𝜌𝜌(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰ𝓏𝓏, 𝜆𝜆𝜏𝜏), 

𝜔𝜔(𝒜𝒜𝓏𝓏, ℰℰ𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜔𝜔(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰℓ𝜅𝜅 , 𝜆𝜆𝜏𝜏) = 𝜔𝜔(𝒜𝒜𝓏𝓏, 𝒜𝒜ℰ𝓏𝓏, 𝜆𝜆𝜏𝜏) 
4. Fixed point theorem 

In this part, we use the condition of compatible mapping of type (I) and (II) for satisfy a FP 
theorem for four mappings in a NMS. 

Theorem 4.1: Suppose that (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) be a complete NMS with 𝜏𝜏 ∗ 𝜏𝜏 ≥ 𝜏𝜏 and (1 −
𝜏𝜏) ◊ (1 − 𝜏𝜏) ≤ (1 − 𝜏𝜏) for all 𝜏𝜏 𝜖𝜖 [0,1]. Let 𝒜𝒜, ℰ, ∁ and 𝑇𝑇 are self-mappings on ℒ, so that  

𝒜𝒜(ℒ) ⊆ ∁(ℒ)and ℰ(ℒ) ⊆ 𝑇𝑇(ℒ), (5) 
There exists a constant 𝑘𝑘 𝜖𝜖 (0,1) such that 

𝛽𝛽(𝒜𝒜ℓ, ℰ𝜛𝜛, 𝑘𝑘𝜏𝜏) ≥ �𝛽𝛽(∁ℓ, 𝑇𝑇𝜛𝜛, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜ℓ, ∁ℓ, 𝜏𝜏) ∗ 𝛽𝛽(ℰ𝜛𝜛, 𝑇𝑇𝜛𝜛, 𝜏𝜏)
∗ 𝛽𝛽(𝒜𝒜ℓ, 𝑇𝑇𝜛𝜛, 𝛼𝛼𝜏𝜏) ∗ 𝛽𝛽(ℰ𝜛𝜛, ∁ℓ, (2 − 𝛼𝛼)𝜏𝜏) � , (6) 

𝜌𝜌(𝒜𝒜ℓ, ℰ𝜛𝜛, 𝑘𝑘𝜏𝜏) ≤ �𝜌𝜌(∁ℓ, 𝑇𝑇𝜛𝜛, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜ℓ, ∁ℓ, 𝜏𝜏) ◊ 𝜌𝜌(ℰ𝜛𝜛, 𝑇𝑇𝜛𝜛, 𝜏𝜏)
◊ 𝜌𝜌(𝒜𝒜ℓ, 𝑇𝑇𝜛𝜛, 𝛼𝛼𝜏𝜏) ◊ 𝜌𝜌(ℰ𝜛𝜛, ∁ℓ, (2 − 𝛼𝛼)𝜏𝜏) � , (7) 

𝜔𝜔(𝒜𝒜ℓ, ℰ𝜛𝜛, 𝑘𝑘𝜏𝜏) ≤ �𝜔𝜔(∁ℓ, 𝑇𝑇𝜛𝜛, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜ℓ, ∁ℓ, 𝜏𝜏) ◊ 𝜔𝜔(ℰ𝜛𝜛, 𝑇𝑇𝜛𝜛, 𝜏𝜏)
◊ 𝜔𝜔(𝒜𝒜ℓ, 𝑇𝑇𝜛𝜛, 𝛼𝛼𝜏𝜏) ◊ 𝜔𝜔(ℰ𝜛𝜛, ∁ℓ, (2 − 𝛼𝛼)𝜏𝜏) � .         (8) 

For all ℓ, 𝜛𝜛 𝜖𝜖 ℒ, 𝛼𝛼 𝜖𝜖 (0,2) and 𝜏𝜏 > 0. Assume that 𝒜𝒜, ℰ, ∁ and 𝑇𝑇 are fulfilling the equations 
given below: 
 

C1) ℰ is continuous and the pairs (ℰ, 𝑇𝑇) and  (𝒜𝒜, ∁) are compatible of type (II) 
C2)  The pairs (𝒜𝒜, ∁) and (ℰ, 𝑇𝑇) are compatible of type (I) and 𝑇𝑇 is continuous 
C3) 𝒜𝒜 is continuous and the pairs (𝒜𝒜, ∁) and (ℰ, 𝑇𝑇) are compatible of type (II). 
C4)  The pairs (𝒜𝒜, ∁) and (ℰ, 𝑇𝑇) are compatible of type (I) and ∁ is continuous 

 
Then 𝒜𝒜, ℰ, ∁ and 𝑇𝑇 have a unique common FP in ℒ. 

Proof: Suppose that ℓ0 be an arbitrary point of ℒ by (5), we take a sequence {𝜛𝜛𝜅𝜅} in ℒ and  

𝜛𝜛2𝜅𝜅 = 𝑇𝑇ℓ2𝜅𝜅+1 = 𝒜𝒜ℓ2𝜅𝜅 ,   𝜛𝜛2𝜅𝜅+1 = ∁ℓ2𝜅𝜅+2 = ℰℓ2𝜅𝜅+1, 

for 𝜅𝜅 = 0,1,2, …. Then, by (6), (7) and (8) for 𝛼𝛼 = 1 − 𝛿𝛿, 𝛿𝛿 𝜖𝜖 (0, 1), we have  

𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , ℰℓ2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≥

⎝

⎛

𝛽𝛽(∁ℓ2𝜅𝜅 , 𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)
∗ 𝛽𝛽(ℰℓ2𝜅𝜅+1, 𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)

∗ 𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , 𝑇𝑇ℓ2𝜅𝜅+1, (1 − 𝛿𝛿)𝜏𝜏)
∗ 𝛽𝛽(ℰℓ2𝜅𝜅+1, ∁ℓ2𝜅𝜅 , (1 + 𝛿𝛿)𝜏𝜏) ⎠

⎞, 

𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , ℰℓ2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤

⎝

⎛

𝜌𝜌(∁ℓ2𝜅𝜅, 𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)
∗ 𝜌𝜌(ℰℓ2𝜅𝜅+1, 𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)

◊ 𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , 𝑇𝑇ℓ2𝜅𝜅+1, (1 − 𝛿𝛿)𝜏𝜏)
◊ 𝜌𝜌(ℰℓ2𝜅𝜅+1, ∁ℓ2𝜅𝜅 , (1 + 𝛿𝛿)𝜏𝜏) ⎠

⎞, 
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𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , ℰℓ2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤

⎝

⎛

𝜔𝜔(∁ℓ2𝜅𝜅 , 𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)
∗ 𝜔𝜔(ℰℓ2𝜅𝜅+1, 𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)

◊ 𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , 𝑇𝑇ℓ2𝜅𝜅+1, (1 − 𝛿𝛿)𝜏𝜏)
◊ 𝜔𝜔(ℰℓ2𝜅𝜅+1, ∁ℓ2𝜅𝜅 , (1 + 𝛿𝛿)𝜏𝜏) ⎠

⎞. 

We get, 

 

𝛽𝛽(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≥ �
𝛽𝛽(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅−1, 𝜏𝜏)

∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅 , (1 − 𝛿𝛿)𝜏𝜏)
∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅−1, (1 + 𝛿𝛿)𝜏𝜏)

� 

≥ �𝛽𝛽(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏)
∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝛿𝛿𝜏𝜏) �, 

𝜌𝜌(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ �
𝜌𝜌(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅−1, 𝜏𝜏)

◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅 , (1 − 𝛿𝛿)𝜏𝜏)
◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅−1, (1 + 𝛿𝛿)𝜏𝜏)

� 

≤ �𝜌𝜌(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏)
◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝛿𝛿𝜏𝜏) �, 

𝜔𝜔(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ �
𝜔𝜔(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅−1, 𝜏𝜏)

◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅 , (1 − 𝛿𝛿)𝜏𝜏)
◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅−1, (1 + 𝛿𝛿)𝜏𝜏)

� 

≤ �𝜔𝜔(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏)
◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝛿𝛿𝜏𝜏) �. 

Furthermore, we get 

𝛽𝛽(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝛿𝛿𝜏𝜏), 

𝜌𝜌(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝛿𝛿𝜏𝜏), 

𝜔𝜔(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝛿𝛿𝜏𝜏). 

Since CTN  ∗ and CTCN ◊ are continuous 𝛽𝛽(ℓ, 𝜛𝜛, . ), 𝜌𝜌(ℓ, 𝜛𝜛, . ) and 𝜔𝜔(ℓ, 𝜛𝜛, . ) are 
continuous, suppose 𝛿𝛿 → 1, we get  

𝛽𝛽(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏), 

𝜌𝜌(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏), 

𝜔𝜔(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝜛𝜛2𝜅𝜅−1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅 , 𝜏𝜏). 
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Then, we get 

𝛽𝛽(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅+2, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛2𝜅𝜅+2, 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏), 

𝜌𝜌(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅+2, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝜛𝜛2𝜅𝜅 , 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛2𝜅𝜅+2, 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏), 

𝜔𝜔(𝜛𝜛2𝜅𝜅+1, 𝜛𝜛2𝜅𝜅+2, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝜛𝜛2𝜅𝜅, 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛2𝜅𝜅+2, 𝜛𝜛2𝜅𝜅+1, 𝜏𝜏). 

 we get, for 𝜀𝜀 = 1,2, …, 

𝛽𝛽(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝜛𝜛𝜀𝜀 , 𝜛𝜛𝜀𝜀+1, 𝜏𝜏) ∗ 𝛽𝛽(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝜏𝜏), 

𝜌𝜌(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝜛𝜛𝜀𝜀, 𝜛𝜛𝜀𝜀+1, 𝜏𝜏) ◊ 𝜌𝜌(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝜏𝜏), 

𝜔𝜔(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝜛𝜛𝜀𝜀 , 𝜛𝜛𝜀𝜀+1, 𝜏𝜏) ◊ 𝜔𝜔(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝜏𝜏). 

Therefore, for 𝜀𝜀, 𝒽𝒽 = 1,2, . . .,  

𝛽𝛽(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝜛𝜛𝜀𝜀 , 𝜛𝜛𝜀𝜀+1, 𝜏𝜏) ∗ 𝛽𝛽 �𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2,
𝜏𝜏

𝑘𝑘𝒽𝒽�, 

𝜌𝜌(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝜛𝜛𝜀𝜀 , 𝜛𝜛𝜀𝜀+1, 𝜏𝜏) ◊ 𝜌𝜌 �𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2,
𝜏𝜏

𝑘𝑘𝒽𝒽�, 

𝜔𝜔(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝜛𝜛𝜀𝜀 , 𝜛𝜛𝜀𝜀+1, 𝜏𝜏) ◊ 𝜔𝜔 �𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2,
𝜏𝜏

𝑘𝑘𝒽𝒽�. 

as 𝒽𝒽 → ∞,  

𝛽𝛽 �𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2,
𝜏𝜏

𝑘𝑘𝒽𝒽� → 1, 

𝜌𝜌 �𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2,
𝜏𝜏

𝑘𝑘𝒽𝒽� → 0, 

𝜔𝜔 �𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2,
𝜏𝜏

𝑘𝑘𝒽𝒽� → 0. 

Then, we get, for 𝜀𝜀 = 1,2, ⋯,   

𝛽𝛽(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝜛𝜛𝜀𝜀, 𝜛𝜛𝜀𝜀+1, 𝜏𝜏), 

𝜌𝜌(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝜛𝜛𝜀𝜀, 𝜛𝜛𝜀𝜀+1, 𝜏𝜏), 

𝜔𝜔(𝜛𝜛𝜀𝜀+1, 𝜛𝜛𝜀𝜀+2, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝜛𝜛𝜀𝜀 , 𝜛𝜛𝜀𝜀+1, 𝜏𝜏). 

Hence by Lemma 3.1, {𝜛𝜛𝜅𝜅} is a Cauchy sequence in ℒ. Since (ℒ , 𝛽𝛽 , 𝜌𝜌 , 𝜔𝜔,∗ ,◊) is 
complete, it converges to a point 𝓏𝓏 in ℒ. Since {𝒜𝒜ℓ2𝜅𝜅}, {ℰℓ2𝜅𝜅+1}, {∁ℓ2𝜅𝜅+2} and {𝑇𝑇ℓ2𝜅𝜅+1} 
are sub sequence of {𝜛𝜛𝜅𝜅}. Thus, 𝒜𝒜ℓ2𝜅𝜅 , ℰℓ2𝜅𝜅+1 , ∁ℓ2𝜅𝜅+2 , 𝑇𝑇ℓ2𝜅𝜅+1 → 𝓏𝓏 as 𝜅𝜅 → ∞. 
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so, we take the equation (C4) that holds. The pair (ℰ, 𝑇𝑇) is compatible of Type (I) and 𝑇𝑇 is 
continuous, we get 

𝛽𝛽(𝑇𝑇𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≥ lim
𝜅𝜅→∞

𝛽𝛽(ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝓏𝓏, 𝜆𝜆𝜏𝜏), 

𝜌𝜌(𝑇𝑇𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜌𝜌(ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝓏𝓏, 𝜆𝜆𝜏𝜏), 

𝜔𝜔(𝑇𝑇𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜔𝜔(ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝓏𝓏, 𝜆𝜆𝜏𝜏). 
𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1 → 𝑇𝑇𝓏𝓏. 

Now, for 𝛼𝛼 = 1, setting ℓ = ℓ2𝜅𝜅 and 𝜛𝜛 = 𝑇𝑇ℓ2𝜅𝜅+1 in (6), (7) and (8) we obtain  

𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≥

⎝

⎛

𝛽𝛽(∁ℓ2𝜅𝜅 , 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)
∗ 𝛽𝛽(ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)

∗ 𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)
∗ 𝛽𝛽(ℰ𝑇𝑇ℓ2𝜅𝜅+1, ∁ℓ2𝜅𝜅 , 𝜏𝜏) ⎠

⎞ , (9) 

𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤

⎝

⎛

𝜌𝜌(∁ℓ2𝜅𝜅, 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)
◊ 𝜌𝜌(ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)

◊ 𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)
◊ 𝜌𝜌(ℰ𝑇𝑇ℓ2𝜅𝜅+1, ∁ℓ2𝜅𝜅 , 𝜏𝜏) ⎠

⎞ , (10) 

𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝑘𝑘𝜏𝜏) ≤

⎝

⎛

𝜔𝜔(∁ℓ2𝜅𝜅 , 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)
◊ 𝜔𝜔(ℰ𝑇𝑇ℓ2𝜅𝜅+1, 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)

◊ 𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , 𝑇𝑇𝑇𝑇ℓ2𝜅𝜅+1, 𝜏𝜏)
◊ 𝜔𝜔(ℰ𝑇𝑇ℓ2𝜅𝜅+1, ∁ℓ2𝜅𝜅 , 𝜏𝜏) ⎠

⎞ , (11) 

Thus, we have to take limit as 𝜅𝜅 → ∞ in above inequality, we get 

lim
𝜅𝜅→∞

𝛽𝛽�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏�  ≥ �
𝛽𝛽(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ∗ lim

𝜅𝜅→∞
𝛽𝛽�𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�

∗ 𝛽𝛽(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝑇𝑇) ∗ lim
𝜅𝜅→∞

𝛽𝛽�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
�, 

lim
𝜅𝜅→∞

𝜌𝜌�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≤ �
𝜌𝜌(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ lim

𝜅𝜅→∞
𝜌𝜌�𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�

◊ 𝜌𝜌(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝑇𝑇) ◊ lim
𝜅𝜅→∞

𝜌𝜌�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
�, 

lim
𝜅𝜅→∞

𝜔𝜔�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≤ �
𝜔𝜔(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ lim

𝜅𝜅→∞
𝜔𝜔�𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�

◊ 𝜔𝜔(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝑇𝑇) ◊ lim
𝜅𝜅→∞

𝜔𝜔�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
�, 

Thus, we get  

lim
𝜅𝜅→∞

𝛽𝛽�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≥ �
𝛽𝛽(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ∗ lim

𝜅𝜅→∞
𝛽𝛽�𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�

∗ lim
𝜅𝜅→∞

𝛽𝛽�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
� 
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≥ �
𝛽𝛽(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽 �𝓏𝓏, 𝑇𝑇𝓏𝓏,

𝜏𝜏
2

� ∗ lim
𝜅𝜅→∞

𝛽𝛽 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

�

∗ lim
𝜅𝜅→∞

𝛽𝛽�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
� 

≥ �
lim
𝜅𝜅→∞

𝛽𝛽(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 , 𝜆𝜆𝜏𝜏) ∗ lim
𝜅𝜅→∞

𝛽𝛽 �𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 ,
𝜆𝜆𝜏𝜏
2

�

∗ lim
𝜅𝜅→∞

𝛽𝛽 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

� ∗ lim
𝜅𝜅→∞

𝛽𝛽�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
�, 

 

lim
𝜅𝜅→∞

𝜌𝜌�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≤ �
𝜌𝜌(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ◊ lim

𝜅𝜅→∞
𝜌𝜌�𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�

◊ lim
𝜅𝜅→∞

𝜌𝜌(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏)
� 

≤ �
𝜌𝜌(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌 �𝓏𝓏, 𝑇𝑇𝓏𝓏,

𝜏𝜏
2

� ◊ lim
𝜅𝜅→∞

𝜌𝜌 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

�

◊ lim
𝜅𝜅→∞

𝜌𝜌(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏)
� 

≤ �
lim
𝜅𝜅→∞

𝜌𝜌(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 , 𝜆𝜆𝜏𝜏) ◊ lim
𝜅𝜅→∞

𝜌𝜌 �𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 ,
𝜆𝜆𝜏𝜏
2

�

◊ lim
𝜅𝜅→∞

𝜌𝜌 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

� ◊ lim
𝜅𝜅→∞

𝜌𝜌�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
�, 

Similarly,  

lim
𝜅𝜅→∞

𝜔𝜔�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≤ �
𝜔𝜔(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ◊ lim

𝜅𝜅→∞
𝜔𝜔�𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�

◊ lim
𝜅𝜅→∞

𝜔𝜔(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏)
� 

≤ �
𝜔𝜔(𝓏𝓏, 𝑇𝑇𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔 �𝓏𝓏, 𝑇𝑇𝓏𝓏,

𝜏𝜏
2

� ◊ lim
𝜅𝜅→∞

𝜔𝜔 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

�

◊ lim
𝜅𝜅→∞

𝜔𝜔(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏)
� 

≤ �
lim
𝜅𝜅→∞

𝜔𝜔(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 , 𝜆𝜆𝜏𝜏) ◊ lim
𝜅𝜅→∞

𝜔𝜔 �𝑇𝑇𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 ,
𝜆𝜆𝜏𝜏
2

�

◊ lim
𝜅𝜅→∞

𝜔𝜔 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

� ◊ lim
𝜅𝜅→∞

𝜔𝜔�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝜏𝜏�
�. 

As for 𝜆𝜆 = 1, in above inequality, then we get 

lim
𝜅𝜅→∞

𝛽𝛽�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≥ lim
𝜅𝜅→∞

𝛽𝛽 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

�, 

lim
𝜅𝜅→∞

𝜌𝜌�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≤ lim
𝜅𝜅→∞

𝜌𝜌 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

�, 
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lim
𝜅𝜅→∞

𝜔𝜔�𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,𝑘𝑘𝜏𝜏� ≤ lim
𝜅𝜅→∞

𝜔𝜔 �𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1,
𝜏𝜏
2

�. 

Therefore, lim
𝜅𝜅→∞

ℰ𝑇𝑇ℓ2𝜅𝜅+1 = 𝓏𝓏. Now using the compatibility of type (I), we have 

𝛽𝛽(𝑇𝑇𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≥ lim
𝜅𝜅→∞

𝛽𝛽(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 , 𝜆𝜆𝜏𝜏) = 1, 

𝜌𝜌(𝑇𝑇𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜌𝜌(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 , 𝜆𝜆𝜏𝜏) = 0, 

𝜔𝜔(𝑇𝑇𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ≤ lim
𝜅𝜅→∞

𝜔𝜔(𝓏𝓏, ℰ𝑇𝑇ℓ2𝜅𝜅+1 , 𝜆𝜆𝜏𝜏) = 0, 

and so 𝑇𝑇𝓏𝓏 = 𝓏𝓏. Again we replacing ℓ by ℓ2𝜅𝜅 and 𝜛𝜛 by 𝓏𝓏 in (6), (7) and (8) for 𝛼𝛼 = 1, we 
have  

𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , ℰ𝓏𝓏, 𝑘𝑘𝜏𝜏) ≥ �
𝛽𝛽(∁ℓ2𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)

∗ 𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜ℓ2𝜅𝜅 , 𝓏𝓏, 𝜏𝜏)
∗ 𝛽𝛽(ℰ𝓏𝓏, ∁ℓ2𝜅𝜅 , 𝜏𝜏)

�, 

𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , ℰ𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �
𝜌𝜌(∁ℓ2𝜅𝜅, 𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)

◊ 𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜ℓ2𝜅𝜅 , 𝓏𝓏, 𝜏𝜏)
◊ 𝜌𝜌(ℰ𝓏𝓏, ∁ℓ2𝜅𝜅 , 𝜏𝜏)

�, 

𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , ℰ𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �
𝜔𝜔(∁ℓ2𝜅𝜅 , 𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , ∁ℓ2𝜅𝜅 , 𝜏𝜏)

◊ 𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜ℓ2𝜅𝜅 , 𝓏𝓏, 𝜏𝜏)
◊ 𝜔𝜔(ℰ𝓏𝓏, ∁ℓ2𝜅𝜅 , 𝜏𝜏)

�. 

 

as 𝜅𝜅 → ∞, we acquire 

𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏), 

𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏), 

𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(ℰ𝓏𝓏, 𝓏𝓏, 𝜏𝜏). 

 by Lemma 3.2, ℰ𝓏𝓏 = 𝓏𝓏. since ℰ(ℒ) ⊆ ∁(ℒ), there exists a point 𝑢𝑢 𝜖𝜖 ℒ and ℰ𝓏𝓏 = ∁𝑢𝑢 = 𝓏𝓏. 
by (6), (7) and (8) for 𝛼𝛼 = 1, then 

𝛽𝛽(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≥ �
𝛽𝛽(∁𝑢𝑢, 𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜𝑢𝑢, ∁𝑢𝑢, 𝜏𝜏)
∗ 𝛽𝛽(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝜏𝜏)

∗ 𝛽𝛽(𝓏𝓏, ∁𝑢𝑢, 𝜏𝜏)
�, 

𝜌𝜌(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �
𝜌𝜌(∁𝑢𝑢, 𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜𝑢𝑢, ∁𝑢𝑢, 𝜏𝜏)
◊ 𝜌𝜌(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝜏𝜏)

◊ 𝜌𝜌(𝓏𝓏, ∁𝑢𝑢, 𝜏𝜏)
�, 
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𝜔𝜔(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �
𝜔𝜔(∁𝑢𝑢, 𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜𝑢𝑢, ∁𝑢𝑢, 𝜏𝜏)
◊ 𝜔𝜔(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝜏𝜏)

◊ 𝜔𝜔(𝓏𝓏, ∁𝑢𝑢, 𝜏𝜏)
�. 

and 

 𝛽𝛽(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝜏𝜏), 

𝜌𝜌(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝜏𝜏), 

𝜔𝜔(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝒜𝒜𝑢𝑢, 𝓏𝓏, 𝜏𝜏). 

and by Lemma 3.2, 𝑢𝑢 = 𝓏𝓏 ,𝒜𝒜𝑢𝑢 = ∁𝑢𝑢 = 𝓏𝓏, by Proposition 3.6since the pair (𝒜𝒜, ∁) is 
compatible of type (I) Therefore, 

𝛽𝛽(𝒜𝒜𝑢𝑢, ∁∁𝓏𝓏, 𝜏𝜏) ≥ 𝛽𝛽(𝒜𝒜𝑢𝑢, 𝒜𝒜∁𝓏𝓏, 𝜏𝜏), 

𝜌𝜌(𝒜𝒜𝑢𝑢, ∁∁𝓏𝓏, 𝜏𝜏) ≤ 𝜌𝜌(𝒜𝒜𝑢𝑢, 𝒜𝒜∁𝓏𝓏, 𝜏𝜏), 

𝜔𝜔(𝒜𝒜𝑢𝑢, ∁∁𝓏𝓏, 𝜏𝜏) ≤ 𝜔𝜔(𝒜𝒜𝑢𝑢, 𝒜𝒜∁𝓏𝓏, 𝜏𝜏). 

and 

𝛽𝛽(𝓏𝓏, ∁𝓏𝓏, 𝑘𝑘𝜏𝜏) ≥ 𝛽𝛽(𝓏𝓏, 𝒜𝒜𝓏𝓏, 𝜏𝜏), 

𝜌𝜌(𝓏𝓏, ∁𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ 𝜌𝜌(𝓏𝓏, 𝒜𝒜𝓏𝓏, 𝜏𝜏), 

𝜔𝜔(𝓏𝓏, ∁𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ 𝜔𝜔(𝓏𝓏, 𝒜𝒜𝓏𝓏, 𝜏𝜏). 

Taking 𝛼𝛼 = 1, in inequality (6), (7) and (8) we have 

𝛽𝛽(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≥ �
𝛽𝛽(∁𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
∗ 𝛽𝛽(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝜏𝜏)

∗ 𝛽𝛽(𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
�, 

𝜌𝜌(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �
𝜌𝜌(∁𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
◊ 𝜌𝜌(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝜏𝜏)

◊ 𝜌𝜌(𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
�, 

𝜔𝜔(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �
𝜔𝜔(∁𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
◊ 𝜔𝜔(𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝜏𝜏)

◊ 𝜔𝜔(𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
�. 

Therefore,  

𝛽𝛽(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≥ �𝛽𝛽(∁𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
∗ 𝛽𝛽(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝜏𝜏) � ≥ 𝛽𝛽 �𝒜𝒜𝓏𝓏, 𝓏𝓏,

𝜏𝜏
2

�, 
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𝜌𝜌(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �𝜌𝜌(∁𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
◊ 𝜌𝜌(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝜏𝜏) � ≤ 𝜌𝜌 �𝒜𝒜𝓏𝓏, 𝓏𝓏,

𝜏𝜏
2

�, 

𝜔𝜔(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝑘𝑘𝜏𝜏) ≤ �𝜔𝜔(∁𝓏𝓏, 𝓏𝓏, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜𝓏𝓏, ∁𝓏𝓏, 𝜏𝜏)
◊ 𝜔𝜔(𝒜𝒜𝓏𝓏, 𝓏𝓏, 𝜏𝜏) � ≤ 𝜔𝜔 �𝒜𝒜𝓏𝓏, 𝓏𝓏,

𝜏𝜏
2

�. 

and by Lemma 3.2, 𝒜𝒜𝓏𝓏 = 𝓏𝓏. So , 𝒜𝒜𝓏𝓏 = ℰ𝓏𝓏 = ∁𝓏𝓏 = 𝑇𝑇𝓏𝓏 = 𝓏𝓏 and 𝓏𝓏 is a common FP of 
𝒜𝒜, ℰ, ∁ and 𝑇𝑇. Easily verified by using the inequalities of (6), (7) and (8) for uniqueness of 
a common FP. 

Example 4.1: Suppose that ℒ = �1
𝜅𝜅

∶ 𝜅𝜅 = 1,2, … � ⋃{0} with the usual metric and 
define (𝛽𝛽, 𝜌𝜌, 𝜔𝜔) , for all 𝜏𝜏 > 0 and ℓ, 𝜛𝜛 𝜖𝜖 ℒ,  

𝛽𝛽(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
𝜏𝜏

𝜏𝜏 + |ℓ − 𝜛𝜛| ,      𝜏𝜏 > 0

0,                       𝜏𝜏 = 0
, 

𝜌𝜌(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
|ℓ − 𝜛𝜛|

𝜏𝜏 + |ℓ − 𝜛𝜛| , 𝜏𝜏 > 0

1,                           𝜏𝜏 = 0
, 

𝜔𝜔(ℓ, 𝜛𝜛, 𝜏𝜏) =  �
|ℓ − 𝜛𝜛|

𝜏𝜏
,              𝜏𝜏 > 0

1,                           𝜏𝜏 = 0
 

since, (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) is a complete NMS,  𝓃𝓃 ◊ ℊ = max{𝓃𝓃, ℊ} and 𝓃𝓃 ∗ ℊ = min{𝓃𝓃, ℊ} . 
Let𝒜𝒜, ℰ, ∁ and 𝑇𝑇 be described as 𝒜𝒜ℓ = ℓ

4
, ∁ℓ = ℓ

3
, ℰℓ = ℓ

6
, 𝑇𝑇ℓ = ℓ

3
 for all ℓ 𝜖𝜖 ℒ. Then we 

have 

𝒜𝒜(ℒ) = �
1

4𝜅𝜅
: 𝜅𝜅 = 1,2, … � ∪ {0} ⊆ �

1
2𝜅𝜅

: 𝜅𝜅 = 1,2, … � ∪ {0} = ∁(ℒ), 

ℰ(ℒ) = �
1

6𝜅𝜅
: 𝜅𝜅 = 1,2, … � ∪ {0} ⊆ �

1
3𝜅𝜅

: 𝜅𝜅 = 1,2, … � ∪ {0} = 𝑇𝑇(ℒ), 

Also, the condition (6), (7) and (8) of Theorem 4.1 is fulfilled and 𝒜𝒜, ℰ, ∁  and 𝑇𝑇  are 
continuous. The pairs (ℰ, 𝑇𝑇)and(𝒜𝒜, ∁) are compatible of type (I) and of type (II) such that 
lim
𝜅𝜅→∞

𝒜𝒜 ℓ𝜅𝜅 = lim
𝜅𝜅→∞

∁ℓ𝜅𝜅 = lim
𝜅𝜅→∞

ℰℓ𝜅𝜅 = lim
𝜅𝜅→∞

𝑇𝑇ℓ𝜅𝜅 = 0  for some 0 𝜖𝜖 ℒ  If lim
𝜅𝜅→∞

ℓ𝜅𝜅 = 0,  where 
{ℓ𝜅𝜅} is a sequence in ℒ. Thus all the conditions of Theorem 4.1 are satisfied and also 0 is the 
unique common FP of 𝒜𝒜, ℰ, ∁ and 𝑇𝑇. 

 
5. Application 

Now we show how our established result can be used to find the unique solution to an 
integral equation in dynamic market equilibrium economics. Supply 𝑄𝑄𝛽𝛽 and demand 𝑄𝑄𝑑𝑑, in 
many markets, current prices and pricing trends (whether prices are rising or dropping and 
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whether they are rising or falling at an increasing or decreasing rate) have an impact. The 
economist, therefore, wants to know what the current price is 𝑃𝑃(𝓋𝓋), the first derivative 𝑑𝑑𝑑𝑑(𝓋𝓋)

𝑑𝑑𝓋𝓋 
, 

and the second derivative 𝑑𝑑
2𝑑𝑑(𝓋𝓋)
𝑑𝑑𝓋𝓋2 . Assume 

𝑄𝑄𝛽𝛽 =  𝘨𝘨1 +  𝛾𝛾1𝑃𝑃(𝓋𝓋) + 𝑟𝑟1
𝑑𝑑𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋
+  𝑧𝑧1

𝑑𝑑2𝑃𝑃(𝓋𝓋)
𝑑𝑑𝓋𝓋2 , 

𝑄𝑄𝑑𝑑 =  𝘨𝘨2 +  𝛾𝛾2𝑃𝑃(𝓋𝓋) + 𝑟𝑟2
𝑑𝑑𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋
+  𝑧𝑧2

𝑑𝑑2𝑃𝑃(𝓋𝓋)
𝑑𝑑𝓋𝓋2 . 

𝘨𝘨1, 𝘨𝘨2, 𝛾𝛾1,𝛾𝛾2, 𝑟𝑟1 and 𝑟𝑟2 are constants. If pricing clears the market at each point in time, 
comment on the dynamic stability of the market. In equilibrium, 𝑄𝑄𝛽𝛽 =  𝑄𝑄𝑑𝑑 . So, 

 𝘨𝘨1 +  𝛾𝛾1𝑃𝑃(𝓋𝓋) + 𝑟𝑟1
𝑑𝑑𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋
+  𝑧𝑧1

𝑑𝑑2𝑃𝑃(𝓋𝓋)
𝑑𝑑𝓋𝓋2 =  𝘨𝘨2 +  𝛾𝛾2𝑃𝑃(𝓋𝓋) + 𝑟𝑟2

𝑑𝑑𝑃𝑃(𝓋𝓋)
𝑑𝑑𝓋𝓋

+  𝑧𝑧2
𝑑𝑑2𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋2 . 

since  

(𝑧𝑧1 −  𝑧𝑧2 )
𝑑𝑑2𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋2 + (𝑟𝑟1 −  𝑟𝑟2)𝑑𝑑
𝑑𝑑𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋
+ (𝛾𝛾1 −  𝛾𝛾2)𝑃𝑃(𝓋𝓋) = −(𝘨𝘨1 −  𝘨𝘨2 

Letting 𝑧𝑧 =  𝑧𝑧1 −  𝑧𝑧2 , 𝑟𝑟 =  𝑟𝑟1 −  𝑟𝑟2 , 𝛾𝛾 =  𝛾𝛾1 −  𝛾𝛾2 and 𝘨𝘨 =  𝘨𝘨1 −  𝘨𝘨2 in above, we have 

𝑧𝑧
𝑑𝑑2𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋2 + 𝑟𝑟
𝑑𝑑𝑃𝑃(𝓋𝓋)

𝑑𝑑𝓋𝓋
+ 𝛾𝛾𝑃𝑃(𝓋𝓋) =  −𝘨𝘨, 

Dividing through by 𝑧𝑧, 𝑃𝑃 (𝓋𝓋) is governed by the following initial value problem 

�
𝑃𝑃′′ + 𝑒𝑒

𝑧𝑧𝑃𝑃′′ +  𝛾𝛾
𝑧𝑧𝑃𝑃(𝓋𝓋) = −𝘨𝘨

𝑧𝑧
𝑃𝑃(0) = 0                              
𝑃𝑃′(0) = 0,                            

       (12) 

Where  𝑒𝑒2

𝑧𝑧 = 4𝛾𝛾 
𝑧𝑧   and  𝛾𝛾

𝑒𝑒 =𝜇𝜇  is a continuous function. It is easy to show that the problem (12) is 
equivalent to the integral equation: 

𝑃𝑃(𝓋𝓋) =  � 𝜉𝜉(𝓋𝓋, 𝑟𝑟)𝐹𝐹(𝓋𝓋, 𝑟𝑟, 𝑃𝑃(𝑟𝑟)
𝑇𝑇

0

) 𝑑𝑑𝑟𝑟. 

Where 𝜉𝜉(𝓋𝓋, 𝑟𝑟) is Green‘s function given by  

𝜉𝜉(𝓋𝓋, 𝑟𝑟) = � 𝑟𝑟𝑟𝑟
𝜇𝜇
2(𝓋𝓋−𝑟𝑟)               if 0 ≤ 𝑟𝑟 ≤ 𝓋𝓋 ≤ 𝑇𝑇

𝓋𝓋𝑟𝑟
𝜇𝜇
2(𝑟𝑟−𝓋𝓋)        if 0 ≤ 𝓋𝓋 ≤ 𝑟𝑟 ≤ 𝓋𝓋 ≤ 𝑇𝑇.

 



                                                   
Neutrosophic SuperHyperAlgebra And New Types of Topologies 

69 
 

We will show the existence of a solution to the integral equation: 

𝑃𝑃(𝓋𝓋) =  � 𝐺𝐺(𝓋𝓋, 𝑟𝑟, 𝑃𝑃(𝑟𝑟)
𝑇𝑇

0

)𝑑𝑑𝑟𝑟.          (13) 

Let 𝑋𝑋 = 𝐶𝐶 ([0, 𝑇𝑇]) set of real continuous functions defined on [0, 𝑇𝑇] for 𝓋𝓋 > 0 , we define 

𝛽𝛽(ℓ, 𝜛𝜛, 𝓋𝓋) =  �
𝓋𝓋

𝓋𝓋 + |ℓ − 𝜛𝜛| ,      𝜏𝜏 > 0

0,                       𝜏𝜏 = 0
, 

𝜌𝜌(ℓ, 𝜛𝜛, 𝓋𝓋) =  �
|ℓ − 𝜛𝜛|

𝓋𝓋 + |ℓ − 𝜛𝜛| , 𝜏𝜏 > 0

1,                           𝜏𝜏 = 0
, 

𝜔𝜔(ℓ, 𝜛𝜛, 𝓋𝓋) =  �
|ℓ − 𝜛𝜛|

𝓋𝓋
,              𝜏𝜏 > 0

1,                           𝜏𝜏 = 0
 

For all ℓ, 𝜛𝜛 𝜖𝜖 ℒ  with the CTN ′ ∗ ′ 𝓃𝓃 ∗ ℊ = min{𝓃𝓃, ℊ} and CTCN ′ ◊ ′ 𝓃𝓃 ◊ ℊ = max{𝓃𝓃, ℊ} 
and. It is easy to prove that (ℒ , 𝛽𝛽 , 𝜌𝜌, 𝜔𝜔 ,∗ ,◊) is complete NMS and so that 𝐹𝐹 ∶ ℒ → ℒ 
defined by  

𝐹𝐹𝑃𝑃(𝓋𝓋) =  � 𝐺𝐺 (𝓋𝓋, 𝑟𝑟, 𝑃𝑃(𝑟𝑟)𝑑𝑑𝑟𝑟.
𝑇𝑇

0
 

Theorem 5.1 Consider equation (13) and suppose that  

(i) 𝐺𝐺, 𝐻𝐻: [0, 𝑇𝑇] × [0, 𝑇𝑇] → ℝ+ are continuous functions, 
(ii) There exist a continuous function 𝜉𝜉: [0, 𝑇𝑇] × [0, 𝑇𝑇] → ℝ+ such that 

sup𝓋𝓋∈[0,𝑇𝑇] ∫ 𝜉𝜉(𝓋𝓋, 𝑟𝑟)𝑑𝑑𝑟𝑟 ≥ 1;𝑇𝑇
0  

(iii) �𝐺𝐺�𝓋𝓋, 𝑟𝑟, ℓ(𝑟𝑟)� − 𝐻𝐻�𝓋𝓋, 𝑟𝑟, 𝜛𝜛(𝑟𝑟)�� ≤ 𝑘𝑘𝜉𝜉(𝓋𝓋, 𝑟𝑟)|ℓ(𝑟𝑟) − 𝜛𝜛(𝑟𝑟)|, for all 𝑘𝑘 ∈ (0,1)    
Then, the integral equation (13) has a unique solution. Where 

𝐷𝐷(ℓ, 𝜛𝜛) = �𝛽𝛽(∁ℓ, 𝑇𝑇𝜛𝜛, 𝜏𝜏) ∗ 𝛽𝛽(𝒜𝒜ℓ, ∁ℓ, 𝜏𝜏) ∗ 𝛽𝛽(ℰ𝜛𝜛, 𝑇𝑇𝜛𝜛, 𝜏𝜏)
∗ 𝛽𝛽(𝒜𝒜ℓ, 𝑇𝑇𝜛𝜛, 𝛼𝛼𝜏𝜏) ∗ 𝛽𝛽(ℰ𝜛𝜛, ∁ℓ, (2 − 𝛼𝛼)𝜏𝜏) �, 

𝐸𝐸(ℓ, 𝜛𝜛) = �𝜌𝜌(∁ℓ, 𝑇𝑇𝜛𝜛, 𝜏𝜏) ◊ 𝜌𝜌(𝒜𝒜ℓ, ∁ℓ, 𝜏𝜏) ◊ 𝜌𝜌(ℰ𝜛𝜛, 𝑇𝑇𝜛𝜛, 𝜏𝜏)
◊ 𝜌𝜌(𝒜𝒜ℓ, 𝑇𝑇𝜛𝜛, 𝛼𝛼𝜏𝜏) ◊ 𝜌𝜌(ℰ𝜛𝜛, ∁ℓ, (2 − 𝛼𝛼)𝜏𝜏) �, 

and 

𝐵𝐵(ℓ, 𝜛𝜛) = �𝜔𝜔(∁ℓ, 𝑇𝑇𝜛𝜛, 𝜏𝜏) ◊ 𝜔𝜔(𝒜𝒜ℓ, ∁ℓ, 𝜏𝜏) ◊ 𝜔𝜔(ℰ𝜛𝜛, 𝑇𝑇𝜛𝜛, 𝜏𝜏)
◊ 𝜔𝜔(𝒜𝒜ℓ, 𝑇𝑇𝜛𝜛, 𝛼𝛼𝜏𝜏) ◊ 𝜔𝜔(ℰ𝜛𝜛, ∁ℓ, (2 − 𝛼𝛼)𝜏𝜏) �.  

The pairs (ℰ, 𝑇𝑇)and(𝒜𝒜, ∁) are compatible of type (I) and of type (II). 

Proof: for ℓ, 𝜛𝜛 ∈  ℒ, by using of assumptions, we have  
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𝛽𝛽(𝒜𝒜ℓ, ℰ𝜛𝜛, 𝑘𝑘𝓋𝓋) =
𝑘𝑘𝓋𝓋

𝑘𝑘𝓋𝓋 + �∫ 𝐺𝐺 (𝓋𝓋, 𝑟𝑟, ℓ(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇
0 − ∫ 𝐻𝐻 (𝓋𝓋, 𝑟𝑟, 𝜛𝜛(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇

0 �
 

≥
𝓋𝓋

𝓋𝓋 + |ℓ(𝑟𝑟) − 𝜛𝜛(𝑟𝑟)| = 𝐷𝐷(ℓ, 𝜛𝜛). 

𝜌𝜌(𝒜𝒜ℓ, ℰ𝜛𝜛, 𝑘𝑘𝓋𝓋) =
�∫ 𝐺𝐺 (𝓋𝓋, 𝑟𝑟, ℓ(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇

0 − ∫ 𝐻𝐻 (𝓋𝓋, 𝑟𝑟, 𝜛𝜛(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇
0 �

𝑘𝑘𝓋𝓋 + �∫ 𝐺𝐺 (𝓋𝓋, 𝑟𝑟, ℓ(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇
0 − ∫ 𝐻𝐻 (𝓋𝓋, 𝑟𝑟, 𝜛𝜛(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇

0 �
 

≤
|ℓ(𝑟𝑟) − 𝜛𝜛(𝑟𝑟)|

𝓋𝓋 + |ℓ(𝑟𝑟) − 𝜛𝜛(𝑟𝑟)| = 𝐸𝐸(ℓ, 𝜛𝜛). 

𝜔𝜔(𝒜𝒜ℓ, ℰ𝜛𝜛, 𝑘𝑘𝓋𝓋) =
�∫ 𝐺𝐺 (𝓋𝓋, 𝑟𝑟, ℓ(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇

0 − ∫ 𝐻𝐻 (𝓋𝓋, 𝑟𝑟, 𝜛𝜛(𝑟𝑟)𝑑𝑑𝑟𝑟𝑇𝑇
0 �

𝑘𝑘𝓋𝓋
 

≤
|ℓ(𝑟𝑟) − 𝜛𝜛(𝑟𝑟)|

𝓋𝓋
= 𝐵𝐵(ℓ, 𝜛𝜛). 

all conditions of Theorem 4.1 are satisfied. Therefore, equation (13) has a unique fixed 
point. 

6. Conclusion 

we take the concept of compatible mappings in NMS and define the relation between two 
pair of mappings which are Compatible of type (II) if and only if pair of mappings are 
Compatible of type (I) and also prove that for four mappings common fixed point theorem 
under the compatible mappings condition of type (I) and (II) in the complete neutrosophic 
metric spaces also we give an application which are support our main result. In the future, 
we wish to use the control function and generalize these results in neutrosophic controlled 
metric spaces and neutrosophic double controlled metric spaces and trying to find the unique 
solution of different integral equations and differential equations.   
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ABSTRACT 

In this paper, we introduce the concept of anti-topological neighbourhood and Anti-
Topological-Base. Some examples of Anti-Neighbourhood and Anti-Base are given and 
we compare the theorems of the classical topological neighbourhood and Neutro-
Topological-Neighbourhood with respect to Anti-Topological-Neighbourhood as well as 
classical topological base and Neutro-Topological-Neighbourhood with respect to Anti-
Topological-Base. 
 

KEYWORDS:  Neutro-Topology, Neutro-Topological Neighbourhood, Neutro-Topological 
Base, Neutro-Topological sub-base, Anti-Topology, Anti-Topological Neighbourhood, 
Anti-Topological Base, Anti-Topological sub-Base. 
 

INTRODUCTION 
Topology is a significant subject of mathematics, hence it is surprising that topology's 
appreciation was delayed in the history of mathematics. Topology is the study of space 
characteristics that are unaffected by continuous deformation. 
A key idea in mathematics, set theory, dates back to the work of Russian mathematician 

George Cantor (1877). We were able to investigate a variety of mathematical ideas thanks 
to set theory. However, there are a lot of unknowns in our life. The traditional logic of 
mathematics is frequently insufficient to resolve these difficulties. Then the idea of fuzzy 
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sets was introduced by Zadeh (1965). It is a development of the traditional idea of a set. In 
his paper, he presented a hypothesis according to which fuzzy sets are sets with imprecise 
boundaries. In both directions, gradual changes from membership to nonmembership can 
be expressed using fuzzy sets. It offers meaningful representations of vague notions in 
everyday language in addition to a powerful and meaningful way to quantify uncertainties. 
a value in the discourse universe that indicates the fuzzy set's degree of membership. Real 
values in the closed range of 0 to 1 are used to represent these membership classifications. 
Chang (1968) discovered and popularised the theory of fuzzy topological spaces. The 
concepts for creating fuzzy topological spaces were provided by Lowen (1981). He 
provided the idea of fuzzy compression and two new functions, which allowed for the 
evident observation of further relationships between fuzzy topological spaces and 
topological spaces. A unique fuzzy topological space called the product spaces was 
discussed by Cheng-Ming (1985). He established a type of fuzzy points neighbourhood 
formation, such as the Q-neighbourhood, which is a crucial idea in fuzzy topological 
spaces. He also demonstrated how each fuzzy topological space is isomorphic topologically 
by a specific space of topology. 
Atanassov (1996) introduced the concept of intuitionistic fuzzy sets as an extension of sets 
with better applicability. Coker (1997) developed the idea of intuitionistic smooth fuzzy 
topological spaces using the concept of intuitionistic fuzzy sets. The definitions of the 
intuitionistic smooth fuzzy topological spaces were first presented by Samanta and Mondal 
(1997). 
Smarandache (1998) introduced the concept of a neutrosophic set for the first time. These 
concepts have three different degrees: T for membership, I for uncertainty, and F for non-
membership. In other words, a situation is treated in neutrosophy in accordance with its 
trueness, falsity, and uncertainty. As a result, neutrosophic sets and logic enable us to make 
sense of a variety of uncertainties in our daily lives. On this topic, numerous studies have 
been conducted. Sahin et al. recently discovered some operations for neutrosophic sets with 
interval values; Neutrosophic multigroups and applications were researched by Ulucay et 
al (2019a); Q-neutrosophic soft expert set and its application were introduced by Hassan et 
al (2018). The acquisition of neutrosophic soft expert sets was introduced by Sahin et al 
(2015); Interval-valued refined neutrosophic sets and their applications were researched by 
Ulucay et al (2020b). Neutosophic set importance on deep transfer learning techniques was 
obtained by Khalifa et al. (2021); Generalised Hamming similarity measure based on 
neutrosophic quadraple numbers and its applications were researched by Kargin et al. 
(2021); In order to assess the quality of online education, Sahin et al. (2021a) obtain 
Hausdorff Measures on generalised set valued neutrosophic quadraple numbers and 
decision-making applications. The foundation for a wide family of novel mathematical 
ideas, including both their crisp and fuzzy counterparts, was laid by neutrosophy. Many 
research treating imprecision and uncertainty have been developed and studied[55-79]. The 
concepts of neutrosophic crisp set and neutrosophic crisp topological space were first 
developed by Salama et al. and Alblowi (2014). Neutron structures and antistructures are 
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defined by Smarandache (2019). An algebraic structure can be divided into three regions, 
similar to neutrosophic logic: A, the set of elements that satisfy the conditions of the 
algebraic structure, the truth region; Neutro A, the set of elements that do not meet the 
conditions of the algebraic structure, the uncertainty region; and anti-A, the set of elements 
that do not satisfy the conditions of the algebraic structure, the inaccuracy region. By 
eliminating neutrosophic sets and neutrosophic numbers, the structure of neutrosophic logic 
has been translated to the structure of classical algebras. The academic world has seen a 
rise in interest in neutrosophic set theory research in recent years. As a result, it is possible 
to generate neutro-algebraic structures, which are more broadly structured than classical 
algebras. Additionally, the region of elements that do not conform to any of the classical 
algebras is also considered to have anti-algebraic structures.  Recent research includes 
studies on neutro-algebra by Smarandache et al. (2020a), the neutrosophic triplet of BI-
algebras by Razaei et al. (2020b), neutro-bck-algebra by Smarandache et al.  (2020d), and 
neutro-hypergroups by Ibrahim et al. (2020b). In recent years, the academic community has 
witnessed growing research interests in uncertainty set theory [80-106]. 
 
 
In this chapter, Anti-Topology, neighbourhood and base are studied. The definition of Anti-
Neighbourhood and comparison table of neighbourhood, Neutro-Neighbourhood and Anti-
Neighbourhood with respect to the result of the classical topological neighbourhood is 
studied. Also, the definition of Anti-Base, Anti-sub-Base and the comparison table of base, 
Neutro-Base and Anti-Base as well as sub-base, Neutro-sub-Base, and Anti-sub-Base are 
given.  

 

2.  PRELIMINARIES 
Definition 2.1. (Smarandache, 2020c) The NeutroSophication of the Law  

1. Let 𝑋𝑋 be a non-empty set and ∗ be a binary operation. For some elements (𝑎𝑎, 𝑏𝑏) ∈
(𝑋𝑋, 𝑋𝑋) , (𝑎𝑎 ∗ 𝑏𝑏) ∈ 𝑋𝑋  (degree of well defined (𝑇𝑇) ) and for other elements 
(𝑥𝑥, 𝑦𝑦), (𝑝𝑝, 𝑞𝑞) ∈ (𝑋𝑋, 𝑋𝑋); [𝑥𝑥 ∗ 𝑦𝑦 is indeterminate (degree of indeterminacy (𝐼𝐼)), or 𝑝𝑝 ∗
𝑞𝑞 ∉ 𝑋𝑋 (degree of outer-defined (𝐹𝐹)], where (T, I, F) is different from (1,0,0) that 
represents the Classical Law, and from (0,0,1) that represents the Anti Law. 

2. In Neutro Algebra, the classical well-defined for binary operation ∗ is divided 
into three regions: degree of well-defined (𝑇𝑇), degree of indeterminacy (𝐼𝐼) and 
degree of outer-defined (𝐹𝐹) similar to neutrosophic set and neutrosophic logic. 

Definition 2.2. (Şahin et al., 2021b) Let 𝑋𝑋 be the non-empty set and 𝜏𝜏 be a collection of 
subsets of 𝑋𝑋. Then 𝜏𝜏 is said to be a Neutro Topology on 𝑋𝑋 and the pair (𝑋𝑋, 𝜏𝜏) is said to be 
a Neutro Topological space, if at least one of the following conditions hold good: 

1. [(∅𝑁𝑁 ∈ 𝜏𝜏, 𝑋𝑋𝑁𝑁 ∉ 𝜏𝜏) or (𝑋𝑋𝑁𝑁 ∈ 𝜏𝜏, ∅𝑁𝑁 ∉ 𝜏𝜏) ] or [∅𝑁𝑁, 𝑋𝑋𝑁𝑁 ∈∼ 𝜏𝜏]. 
2. For some 𝑛𝑛 elements 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛 ∈ 𝜏𝜏, ⋂ 𝑎𝑎𝑖𝑖

𝑛𝑛
𝑖𝑖=1 ∈ 𝜏𝜏  [degree of truth T] and for 

other 𝑛𝑛  elements 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛 ∈ 𝜏𝜏, 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛 ∈ 𝜏𝜏; [(⋂ 𝑏𝑏𝑖𝑖
𝑛𝑛
𝑖𝑖=1 ∉  𝜏𝜏) [degree of 
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falsehood F] or (⋂ 𝑝𝑝𝑖𝑖
𝑛𝑛
𝑖𝑖=1  is indeterminate (degree of indeterminacy I)], where 𝑛𝑛 

is finite; [where (T, I, F) is different from (1,0,0) that represents the Classical 
Axiom, and from (0,0,1) that represents the Anti Axiom]. 

3. For some 𝑛𝑛 elements 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛 ∈ 𝜏𝜏, ⋃ 𝑎𝑎𝑖𝑖𝑖𝑖=1 ∈ 𝜏𝜏  [degree of truth T] and for 
other 𝑛𝑛  elements 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛 ∈ 𝜏𝜏, 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝑛𝑛 ∈ 𝜏𝜏; [(⋃ 𝑏𝑏𝑖𝑖𝑖𝑖=𝐼𝐼 ∉ 𝜏𝜏)  [degree of 
falsehood F] or (⋃ 𝑝𝑝𝑖𝑖𝑖𝑖=𝐼𝐼  is indeterminate (degree of indeterminacy I)], where 𝑛𝑛 
is finite; [where (T, I, F) is different from (1,0,0) that represents the Classical 
Axiom, and from (0,0,1) that represents the Anti Axiom]. 

Definition 2.3. (Şahin et al., 2021b) Let 𝑋𝑋 be the non-empty set and 𝜏𝜏 be a collection of 
subsets of  𝑋𝑋. Then 𝜏𝜏 is said to be an Anti Topology on 𝑋𝑋 and the pair (𝑋𝑋, 𝜏𝜏) is said to be 
an Anti Topological space, if at least one of the following conditions hold good: 

1. ∅𝑁𝑁,  𝑋𝑋𝑁𝑁 ∉ 𝜏𝜏 
2. For  𝑛𝑛 elements 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛 ∈ 𝜏𝜏, ⋂ 𝑎𝑎𝑖𝑖

𝑛𝑛
𝑖𝑖=1 ∉ 𝜏𝜏 [degree of falsehood F] where 𝑛𝑛 is 

finite. 
3. For some 𝑛𝑛 elements 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑛𝑛 ∈ 𝜏𝜏, ⋃ 𝑎𝑎𝑖𝑖𝑖𝑖=1 ∉ 𝜏𝜏 [degree of falsehood F] where 

𝑛𝑛 is finite. 
Remark 1. (Şahin et al., 2021b) The symbol “∈∼” will be used for situations where it is 
an unclear appurtenance (not sure if an element belongs or not to a set). For example, if it 
is not certain whether “a” is a member of the set 𝑃𝑃, then it is denoted by a ∈∼ 𝑃𝑃. 

 

4. ANTI-TOPOLOGICAL- NEIGHBOURHOOD 

Definition 4.1. Let (X, τ)be an Anti-Topological space and let x ϵ X. A subset N of X is said 
to be a τ-Anti-Neighbourhood of x if and only if there exists a τ-Anti-Open set G such that 
x ϵ G ⊂ N. 
Example 1. Let 𝑋𝑋 = {1, 2, 3, 4} be a set and 𝜏𝜏 = {{1, 2}, {2,3}, {3,4}} be a collection of subsets 
of 𝑋𝑋.Then 

i. It is clear that 𝜙𝜙, 𝑋𝑋 ∉ 𝜏𝜏  
ii. Let 𝑞𝑞1 = {1,2}, 𝑞𝑞2 = {2,3}, 𝑞𝑞3 = {3,4} 

                                       Then 𝑞𝑞1 ∩ 𝑞𝑞2 = {1,2} ∩ {2,3} = {2} ∉  𝜏𝜏 
                                                     𝑞𝑞2 ∩ 𝑞𝑞3 = {2,3} ∩ {3,4} = {3} ∉  𝜏𝜏 
                                                     𝑞𝑞1 ∩ 𝑞𝑞3 = {1,2} ∩ {3,4} = 𝜙𝜙 ∉  𝜏𝜏 

iii. Let 𝑞𝑞1 = {1,2}, 𝑞𝑞2 = {2,3}, 𝑞𝑞3 = {3,4} 
                                       Then 𝑞𝑞1 ∪ 𝑞𝑞2 = {1,2} ∪ {2,3} = {1, 2, 3} ∉  𝜏𝜏 
                                                      𝑞𝑞2 ∪ 𝑞𝑞3 = {2,3} ∪ {3,4} = {2, 3, 4} ∉  𝜏𝜏 
                                                      𝑞𝑞1 ∪ 𝑞𝑞3 = {1,2} ∪ {3,4} = {1,2,3,4} ∉  𝜏𝜏 
Therefore (𝑋𝑋, 𝜏𝜏) satisfies the conditions of Anti-Topological space. 
(𝑋𝑋, 𝜏𝜏) is an Anti-Topological space. 
𝜏𝜏-Anti-Neighbourhoods of 1 are {1,2}, {1,2,3}, {1,2,4}, {1,2,3,4} 
𝜏𝜏-Anti-Neighbourhoods of 2 are {1,2}, {2,3}, {1,2,3}, {1,2,4}, {2,3,4}, {1,2,3,4} 
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𝜏𝜏-Anti-Neighbourhoods of 3 are {2,3}, {3,4}, {1,2,3}, {2,3,4}, {1,3,4}, {1,2,3,4} 
𝜏𝜏-Anti-Neighbourhoods of 4 are {3,4}, {1,3,4}, {2,3,4}, {1,2,3,4} 
Now we compare the General topology, Neutro-Topology and Anti-Topology in terms of 
neighbourhood. 
Here is the comparison table: 

 

Table 1:Neighbourhood, Neutro-Neighbourhood and Anti-Neighbourhood 

General Topology Neutro-Topology Anti-Topology 
Theorem 1: A subset of a 
topological space is open if 
and only if it is neighbourhood 
of each of its points. 
Example: Let 𝑋𝑋 = {1,2,3,4,5} 
And 𝜏𝜏 = {𝜙𝜙, {1}, {1,2}, {1,2,5}, 

            {1,3,4}, {1,2,3,4}, 𝑋𝑋} 
Then, 
𝜏𝜏-neighbourhoods of 1 are: 
     {1}, {1,2}, {1,3}, {1,4}, {1,5}, {1,  
     {1,2,4,5}, {1,3,4,5}, and 𝑋𝑋. 
𝜏𝜏-neighbourhoods of 2 are : 
     {1,2}, {1,2,3}, {1,2,4}, {1,2,5}, 
  {1,2,3,4}, {1,2,3,5}, {1,2,4,5},     
and 𝑋𝑋          
  𝜏𝜏-neighbourhoods of 3 are: 
    {1,3,4}, {1,2,3,4}, {1,3,4,5}, 
and 𝑋𝑋  
𝜏𝜏-neighbourhoods of 4 are: 
    {1,3,4}, {1,2,3,4}, {1,3,4,5},  
and  𝑋𝑋.  
𝜏𝜏-neighbourhoods of 5 are : 
{1,2,5}, {1,2,3,5}, {1,2,4,5}  and 
𝑋𝑋  
Here 𝑋𝑋  is neighbourhood of 
each of its points then we get 
that 𝑋𝑋 is open since 𝑋𝑋0 = 𝑋𝑋. 
Conversely, let 𝑋𝑋 is open then 
it is seen from the above 
example that 𝑋𝑋  is 
neighbourhood of each of its 
points since for all 𝑥𝑥 ∈ 𝑋𝑋 there 
exists a 𝐴𝐴 ∈ 𝜏𝜏 such that 𝑥𝑥 ∈
𝐴𝐴 ⊆ 𝑋𝑋. 

Result: A subset of a Neutro-
Topological space is Neutro-
Open if and only if it is 
Neutro-Neighbourhood of 
each of its points. 
   Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} and  
        𝜏𝜏 = {𝜙𝜙, {𝑎𝑎},   {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐},  

{𝑐𝑐, 𝑑𝑑}} 
𝜏𝜏 - Neutro-Neighbourhoods 
of a are, 
{𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑑𝑑}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} 
, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑏𝑏, 𝑑𝑑}, 𝑋𝑋.  
𝜏𝜏 - Neutro-Neighbourhoods 
of b are: 
{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}{𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑑𝑑}, 
{𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝑋𝑋. 
𝜏𝜏 - Neutro-Neighbourhoods 
of c are: 
{𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑}, 
{𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝑋𝑋.  
𝜏𝜏 - Neutro-Neighbourhoods 
of d are: 
{𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑}, 𝑋𝑋. 
We can see from the above 
discussion that 𝐴𝐴 =
{𝑎𝑎, 𝑐𝑐, 𝑏𝑏} is a 𝜏𝜏 -Neutro-
Neighbourhood of each of its 
points.  
Consequently 𝐴𝐴 is a Neutro-
Open set since 𝐴𝐴0 = 𝐴𝐴. 
 a is interior point of 𝐴𝐴, since 
𝑎𝑎 ∈  𝐴𝐴 and there exists {𝑎𝑎} ∈
𝜏𝜏 such that 𝑎𝑎 ∈ {𝑎𝑎} ⊆  𝐴𝐴. 
𝑏𝑏 is interior point of 𝐴𝐴, since 
𝑏𝑏 ∈  𝐴𝐴  and there exists 
{𝑎𝑎, 𝑏𝑏} ∈ 𝜏𝜏  such that 𝑏𝑏 ∈
{𝑎𝑎, 𝑏𝑏} ⊆  𝐴𝐴.  

Result:  A subset of a Anti-
Topological space is Anti-
Open if and only if it is Anti-
Neighbourhood of each of 
its points. 
     Let  𝑋𝑋 = {1,2,3,4} and  

𝜏𝜏 = {{1,2}, {2,3}, {3,4}} 
𝜏𝜏- Anti-Neighbourhoods of 
1 are, 
{1,2}, {1,2,3}, {1,2,4}, {1,2,3,4} 
𝜏𝜏-Anti-Neighbourhoods of 2 
are: 

{1,2}, {2,3}, {1,2,3}, {1,2,4},  
{2,3,4}, {1,2,3,4} 

𝜏𝜏 -Anti-Neighbourhoods of 3 
are:
{2, 3}, {3,4}, {1,2,3}, {1,2,3,4},
{1,3,4} 
𝜏𝜏-Anti-Neighbourhoods of 
4 are: 
{3,4},{1,3,4},{2,3,4}, 
{1,2,3,4} 
We can see from the above 
discussion that 𝐴𝐴 =
{1,2,3} is 𝜏𝜏 -Anti-
Neighbourhood of each of 
its points.  
Consequently 𝐴𝐴 is an Anti-
Open set since 𝐴𝐴0 = 𝐴𝐴. 
 1is interior point of 𝐴𝐴, since 
1  ∈  𝐴𝐴  and there exists 
{1,2} ∈ 𝜏𝜏  such that 1  ∈
{1,2} ⊆  𝐴𝐴. 
2 is interior point of 𝐴𝐴, since 
2  ∈  𝐴𝐴  and there exists 
{1,2} ∈ 𝜏𝜏  such that 2  ∈
{1,2} ⊆  𝐴𝐴.  
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c is interior point of 𝐴𝐴, since 
𝑐𝑐 ∈  𝐴𝐴  and there 
exists {𝑏𝑏, 𝑐𝑐} ∈ 𝜏𝜏 such that 𝑐𝑐 ∈
{𝑏𝑏, 𝑐𝑐} ⊆  𝐴𝐴.  
d is not an interior point of 𝐴𝐴, 
since 𝑑𝑑 ∉  𝐴𝐴  and there does 
not exists 𝐺𝐺 ∈ 𝜏𝜏  such that 
𝑑𝑑 ∈ 𝐺𝐺 ⊆ 𝐴𝐴.  
Therefore, 𝐴𝐴0 = 𝐴𝐴. 
Conversely, 𝐴𝐴 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} is a 
Neutro-Open as 𝐴𝐴0 = 𝐴𝐴.  
Clearly,  
it is τ- Neutro-
Neighbourhood of each of its 
points. 

3 is interior point of 𝐴𝐴, since 
3  ∈  𝐴𝐴  and there 
exists {2,3} ∈ 𝜏𝜏 such that 3 ∈
{2,3} ⊆  𝐴𝐴.  
4 is not an interior point of 
𝐴𝐴 , since 4  ∉  𝐴𝐴  and there 
does not exists 𝐺𝐺 ∈ 𝜏𝜏  such 
that 4 ∈ 𝐺𝐺 ⊆ 𝐴𝐴 . Therefore, 
𝐴𝐴0 = 𝐴𝐴. 
Conversely, 𝐴𝐴 = {1,2,3} is a 
Anti-Open as 𝐴𝐴0 = 𝐴𝐴.  
Clearly,  
it is τ- Anti-Neighbourhood 
of each of its points. 

 Theorem 2: Let 𝑋𝑋 be a 
topological space, and for 
each 𝑥𝑥 ∈  𝑋𝑋 , let 𝑁𝑁(𝑥𝑥)  be the 
collection of all 
neighbourhoods of 𝑥𝑥. Then 
[𝑁𝑁0]: ∀𝑥𝑥 ∈  𝑋𝑋, 𝑁𝑁(𝑥𝑥) ≠  𝜙𝜙 
i.e. every point 𝑥𝑥 has atleast 
on 
neighbourhood. 
[𝑁𝑁(1)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥) ⇒  𝑥𝑥 ∈
 𝑁𝑁i.e. every neighbourhood of 
x contains x. 
[𝑁𝑁(2)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥), 𝑀𝑀 ⊃ 𝑁𝑁 ⇒
 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥). i.e. every set 
containing a neighbourhood 
of x is a neighbourhood of x. 

𝑁𝑁[3]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥)
⇏ 𝑁𝑁 ∩ 𝑀𝑀
∈  𝑁𝑁(𝑥𝑥) 

[𝑁𝑁(4)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥)  ⇒  ∃𝑀𝑀 ∈
𝑁𝑁(𝑥𝑥)  such that, 𝑀𝑀 ⊂  𝑁𝑁  and 
𝑀𝑀 ∈ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∈  𝑀𝑀 

Result: Let 𝑋𝑋  be a Neutro-
Topological space, and for 
each 𝑥𝑥 ∈  𝑋𝑋, let  𝑁𝑁(𝑥𝑥) be the 
collection of all τ- Neutro-
neighbourhoods of 𝑥𝑥. 
Then  
[𝑁𝑁0]: ∀𝑥𝑥 ∈  𝑋𝑋, 𝑁𝑁(𝑥𝑥) ≠  𝜙𝜙 
i.e. every point  𝑥𝑥 has atleast 
a 𝜏𝜏-Neutro-Neighbourhood. 
[𝑁𝑁(1)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥) ⇒  𝑥𝑥 ∈
 𝑁𝑁 i.e. every 𝜏𝜏 -Neutro-
Neighbourhood of 𝑥𝑥 
contains 𝑥𝑥. 
[𝑁𝑁(2)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥), 𝑀𝑀 ⊃ 𝑁𝑁 ⇒
 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥). i.e. every set 
containing a 𝜏𝜏 -Neutro-
Neighbourhood of 𝑥𝑥  is 𝜏𝜏 -
Neutro-Neighbourhood of 𝑥𝑥. 

𝑁𝑁[3]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥)
⇏ 𝑁𝑁 ∩ 𝑀𝑀
∈  𝑁𝑁(𝑥𝑥) 

To show this, an example is 
cited below: 
Example:  
  Let 𝑋𝑋 =  {0,1,2,3} and  
         𝜏𝜏 =
 {𝜙𝜙, 𝑋𝑋, {1}, {2}, {2,3}, 
               {1,3}}.  
τ- Neutro-Neighbourhoods 
of 0 is 𝑋𝑋.  
τ- Neutro-Neighbourhoods 
of 1 are: 
{1}, {0,1}, {1,2}, {1,3}, {0,1,2}, 

Result: Let 𝑋𝑋  be an Anti-
Topological space, and for 
each 𝑥𝑥 ∈  𝑋𝑋, let 𝑁𝑁(𝑥𝑥) be the 
collection of all τ- Anti-
neighbourhoods of 𝑥𝑥. 
Then  
[𝑁𝑁0]: ∀𝑥𝑥 ∈  𝑋𝑋, 𝑁𝑁(𝑥𝑥) ≠  𝜙𝜙 
i.e. every point  𝑥𝑥 has atleast 
one 𝜏𝜏 -Anti -
Neighbourhood. 
[𝑁𝑁(1)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥) ⇒  𝑥𝑥 ∈
 𝑁𝑁 i.e. every 𝜏𝜏 -Anti-
Neighbourhood 
of 𝑥𝑥 contains 𝑥𝑥. 
[𝑁𝑁(2)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥), 𝑀𝑀 ⊃ 𝑁𝑁 ⇒
 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥). 
i.e. every set containing a 𝜏𝜏-
Anti- Neighbourhood of 𝑥𝑥 is 
𝜏𝜏 -Anti -Neighbourhood 
of 𝑥𝑥. 
𝑁𝑁[3]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ∈
𝑁𝑁(𝑥𝑥) ⇏ 𝑁𝑁 ∩ 𝑀𝑀 ∈  𝑁𝑁(𝑥𝑥) To 
show this, an example is 
cited below: 
Example:  
  Let 𝑋𝑋 = {1,2,3,4} and  
         𝜏𝜏 = {{1,2}, {2,3}, {3,4}} 
τ- Anti-Neighbourhoods of 
1 are: 
{1,2}, {1,2,3}, {1,2,4}, {1,2,3,4} 
𝜏𝜏-Anti-Neighbourhoods of 2 
are:  
{1,2}, {2,3}, {1,2,3}, {1,2,4}, 
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{0,1,3}, {1,2,3}, and 𝑋𝑋 
𝜏𝜏 - Neutro-Neighbourhoods 
of 2 are: 
{2}, {0,2}, {1,2}, {2,3}, {0,1,2},  
{1,2,3}, and 𝑋𝑋. 
𝜏𝜏 - Neutro-Neighbourhoods 
of 3 are: 

{1,3}, {2,3}, {0,2,3}, {0,1,3}, 
{1,2,3}, and 𝑋𝑋. 
e.g. {0,1,3}, {0,2,3}  ∈  𝑁𝑁(3)  
but 

{0,1,3} ∩ {0,2,3}  =  {0,3}
∉ 𝑁𝑁(3). 

[𝑁𝑁(4)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥) ⇏  𝑀𝑀 ∈
𝑁𝑁(𝑥𝑥)  such that 𝑀𝑀 ⊂  𝑁𝑁 and 
𝑀𝑀 ∈ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∈  𝑀𝑀. 
e.g. {0,1,2} ∈ 𝑁𝑁(1) then 
{0,1} ∈ 𝑁𝑁(1)  such 
that  {0,1}  ⊂  {0,1,2} 
but {0,1} ∉ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∉ 𝑀𝑀. 

 {2,3,4}, {1,2,3,4} 
𝜏𝜏-Anti-Neighbourhoods of 3 
are:{2, 3}, {3,4}, {1,2,3}, 
{1,2,3,4},{1,3,4} 
𝜏𝜏-Anti-Neighbourhoods of 
4 are: 
{3,4},{1,3,4},{2,3,4}, 
{1,2,3,4} 
e.g. 
{1,2}∈ 𝑁𝑁(2), {2,3} ∈  𝑁𝑁(2)  
But 
 {1,2} ∩ {2,3} =  {2} ∉ 𝑁𝑁(2). 
[𝑁𝑁(4)]: 𝑁𝑁 ∈  𝑁𝑁(𝑥𝑥) ⇏  𝑀𝑀 ∈
𝑁𝑁(𝑥𝑥)  such that 𝑀𝑀 ⊂  𝑁𝑁 and 
𝑀𝑀 ∈ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∈  𝑀𝑀. 
e.g. {1,2,3,4} ∈ 𝑁𝑁(4)  
then {1,3,4} ∈ 𝑁𝑁(1)  such 
that  {1,3,4}  ⊂  {1,2,3,4} 
but {1,3,4} ∉ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 𝜖𝜖𝑀𝑀. 

Theorem 3: Let 𝑋𝑋  be a non-
empty set and with each  𝑥𝑥 ∈
𝑋𝑋 , let there be associated a 
family  𝑁𝑁(𝑥𝑥)  of subsets of 𝑋𝑋, 
called neighbourhoods, 
satisfying the following 
conditions: 
[𝑁𝑁0]: 𝑁𝑁(𝑥𝑥) ≠  𝜙𝜙∀𝑥𝑥 ∈  𝑋𝑋. 
[𝑁𝑁1]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥) ⇒  𝑥𝑥 ∈  𝑁𝑁. 
[𝑁𝑁2]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ⊃  𝑁𝑁 ⇒ 𝑀𝑀 

∈ 𝑁𝑁(𝑥𝑥). 
[𝑁𝑁3]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥) ⇒
 𝑁𝑁 ∩ 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥)[𝑁𝑁4]: 𝑁𝑁 ∈
𝑁𝑁(𝑥𝑥) ⇒  ∃ 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥) such that 
𝑀𝑀 ⊂  𝑁𝑁  and 𝑀𝑀 ∈ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∈
 𝑀𝑀. 
Then there exists a unique 
topology 𝜏𝜏 on 𝑋𝑋 in such a way 
that if 𝑁𝑁∗(𝑥𝑥) is the collection 
of neighbourhoods 
of  𝑥𝑥, defined by the 
topology  𝜏𝜏, then  𝑁𝑁∗(𝑥𝑥) =
𝑁𝑁(𝑥𝑥). 

Result:  Let  𝑋𝑋 be a non-
empty set and with each 𝑥𝑥 ∈
 𝑋𝑋, let there be associated a 
family 𝑁𝑁(𝑥𝑥) of subsets of 𝑋𝑋, 
called  𝜏𝜏 -Neutro-
Neighbourhoods. 
[𝑁𝑁0]: 𝑁𝑁(𝑥𝑥) ≠ 𝜙𝜙 ∀𝑥𝑥 ∈  𝑋𝑋. 
 [𝑁𝑁1]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥) ⇒ 𝑥𝑥 ∈  𝑁𝑁. 
 [𝑁𝑁2]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ⊃ 𝑁𝑁 ⇒
 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥).  
[𝑁𝑁3]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥)

⇏  𝑁𝑁 ∩ 𝑀𝑀
∈ 𝑁𝑁(𝑥𝑥). 

To show this, an example is 
cited below: 
Let 𝑋𝑋 = {0,1,2,3} and  
𝜏𝜏
= �𝜙𝜙, 𝑋𝑋, {1}, {2}, {2,3}, {1,3}�. 
𝜏𝜏 - Neutro-Neighbourhoods 
of 0 is 𝑋𝑋.  
𝜏𝜏 - Neutro-Neighbourhoods 
of 1 are: 
{1}, {0,1}, {1,2}, {1,3}, {0,1,2}, 
{0,1,3}, {1,2,3} and 𝑋𝑋.  
τ- Neutro-Neighbourhoods 
of 2 are: 
{2},{0,2},{1,2},{2,3},{0,1,
2}, {1,2,3}, and 𝑋𝑋.  

Result: Let  𝑋𝑋 be a non-
empty set and with each 𝑥𝑥 ∈
 𝑋𝑋, let there be associated a 
family 𝑁𝑁(𝑥𝑥) of subsets of 𝑋𝑋, 
called  𝜏𝜏 -Anti-
Neighbourhoods. 
[𝑁𝑁0]: 𝑁𝑁(𝑥𝑥) ≠ 𝜙𝜙 ∀𝑥𝑥 ∈  𝑋𝑋. 
 [𝑁𝑁1]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥) ⇒  𝑥𝑥 ∈  𝑁𝑁. 
 [𝑁𝑁2]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ⊃  𝑁𝑁
⇒  𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥). [𝑁𝑁3]: 𝑁𝑁 
∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥) 
⇏  𝑁𝑁 ∩ 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥). 
To show this, an example is 
cited below: 
Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} 

𝜏𝜏 = {{𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}} 
Anti-Neighbourhoods of 
𝑎𝑎 are, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 

{𝑎𝑎, 𝑏𝑏, 𝑑𝑑}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑} 𝑎𝑎𝑛𝑛𝑑𝑑 𝑋𝑋 
Anti-Neighbourhoods of 𝑏𝑏 
are, 
{𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑑𝑑} and 𝑋𝑋  
Anti-Neighbourhoods of 𝑐𝑐 
are, 

{𝑎𝑎, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 
{𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑} and 𝑋𝑋 
Anti-Neighbourhoods of 
𝑑𝑑  are, 
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𝜏𝜏 -Neutro-Neighbourhoods 
of 3 are : 
{1,3}, {2,3}, {0,2,3}, {0,1,3}, {1,2  
and 𝑋𝑋. 
𝑁𝑁[4]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥) ⇏  𝑀𝑀 ∈
𝑁𝑁(𝑥𝑥)  such that 𝑀𝑀 ⊂  𝑁𝑁 
and 𝑀𝑀 ∈ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∈  𝑀𝑀 
e.g.  
{0,1,2} ∈ 𝑁𝑁(1), {0,1} ∈ 𝑁𝑁(1)  
Such that {0,1}  ⊂  {0,1,2}  
but {0,1} ∉  𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∈  𝑀𝑀. 
Then there does not exists a 
unique Neutro-Topology τ 
on  𝑋𝑋  in such a way that 
if  𝑁𝑁∗(𝑥𝑥) is the collection of 
𝜏𝜏 - Neutro-Neighbourhoods 
of 𝑥𝑥, defined by the Neutro-
Topology 𝜏𝜏 since all the 
properties are not satisfied  
by a 𝜏𝜏 -Neutro-
Neighbourhood. 

{𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑} and 𝑋𝑋 
e.g. {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}  ∈ 𝑁𝑁(𝑎𝑎) 
but {𝑎𝑎, 𝑏𝑏} ∩ {𝑎𝑎, 𝑐𝑐} = {𝑎𝑎} ∉
𝑁𝑁(𝑎𝑎)𝑁𝑁[4]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥) ⇏
 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥)  such that 𝑀𝑀 ⊂
 𝑁𝑁 and 𝑀𝑀 ∈ 𝑁𝑁(𝑦𝑦) ∀𝑦𝑦 ∈  𝑀𝑀 
e.g. 𝑋𝑋 ∈ 𝑁𝑁(𝑑𝑑)  then there 
exists {𝑏𝑏, 𝑐𝑐, 𝑑𝑑} ∈ 𝑁𝑁(𝑑𝑑)  such 
that {𝑏𝑏, 𝑐𝑐, 𝑑𝑑} ⊂ 𝑋𝑋  but 
{𝑏𝑏, 𝑐𝑐, 𝑑𝑑} ∉ 𝑁𝑁(𝑦𝑦)∀ 𝑦𝑦 ∈ 𝑀𝑀 
since {𝑏𝑏, 𝑐𝑐, 𝑑𝑑} ∉ 𝑁𝑁(𝑏𝑏) 
Then there does not exists a 
unique Anti-Topology τ 
on  𝑋𝑋  in such a way that 
if 𝑁𝑁∗(𝑥𝑥) is the collection of 
𝜏𝜏- Anti-Neighbourhoods of 
𝑥𝑥 , defined by the Anti-
Topology 𝜏𝜏 since all the 
properties are not satisfied 
by 𝜏𝜏- Anti-Neighbourhood. 

Theorem 4: Let  𝑋𝑋 be a non-
empty set, and for each 𝑥𝑥 ∈ 𝑋𝑋, 
let 𝑁𝑁(𝑥𝑥) be a nonempty 
collection of subsets of 
𝑋𝑋 satisfying the following 
conditions: 
[𝑀𝑀1]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥)  ⇒  𝑐𝑐 ∈  𝑁𝑁 

[𝑀𝑀2]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥), 𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥)  
⇒ 𝑁𝑁 ∩ 𝑀𝑀
∈ 𝑁𝑁(𝑥𝑥) 

Let τ consists of the empty and 
all those non-empty subsets 𝐺𝐺 
of X having the property that 
𝑥𝑥 ∈  𝐺𝐺  implies that there 
exists a 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥)  
such that 𝑥𝑥 ∈  𝑁𝑁 ⊂  𝐺𝐺. Then 𝜏𝜏 
is a topology for 𝑋𝑋. 

Result: Let 𝑋𝑋  be a non-
empty set, and for each 𝑥𝑥 ∈
 𝑋𝑋, let 𝑁𝑁(𝑥𝑥) be a non-empty 
collection of subsets of 𝑋𝑋. 
[𝑀𝑀1]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥)  ⇒  𝑥𝑥 ∈  𝑁𝑁. 
[𝑀𝑀2]: 𝑁𝑁 ∈ 𝑁𝑁(𝑋𝑋), 𝑀𝑀 ∈
𝑁𝑁(𝑥𝑥) ⇏  𝑁𝑁 ∩  𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥) To 
show this, an example is 
cited below: 
 Let 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} 

  𝜏𝜏 = {𝜙𝜙, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, 
{𝑐𝑐, 𝑑𝑑}}  
𝜏𝜏 -Neutro-Neighbourhoods 
of a are: 

{𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑑𝑑}, 
{𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑏𝑏, 𝑑𝑑}, 𝑋𝑋.  

𝜏𝜏 - Neutro-Neighbourhoods 
of b are: 
{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑑𝑑}, 

{𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝑋𝑋. 
𝜏𝜏 - Neutro-Neighbourhoods 
of c are: 
{𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑}, 
{𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 𝑋𝑋.  
𝜏𝜏 - Neutro-Neighbourhoods 
of d are: 
{𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑}, 𝑋𝑋. 
Now  

Result: Let 𝑋𝑋  be a non-
empty set, and for each 𝑥𝑥 ∈
 𝑋𝑋, let 𝑁𝑁(𝑥𝑥) be a non-empty 
collection of subsets of 𝑋𝑋. 
[𝑀𝑀1]: 𝑁𝑁 ∈ 𝑁𝑁(𝑥𝑥) ⇒ 𝑥𝑥 ∈  𝑁𝑁. 

[𝑀𝑀2]: 𝑁𝑁 ∈ 𝑁𝑁(𝑋𝑋), 𝑀𝑀 ∈
𝑁𝑁(𝑥𝑥) ⇏  𝑁𝑁 ∩  𝑀𝑀 ∈ 𝑁𝑁(𝑥𝑥)To 
show this, an example is 

cited below: 
Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} 

𝜏𝜏 = {{𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}} 
Anti-Neighbourhoods of 
𝑎𝑎 are, {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, 
{𝑎𝑎, 𝑏𝑏, 𝑑𝑑}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑} and 𝑋𝑋 
Anti-Neighbourhoods of 𝑏𝑏 
are, 
{𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑏𝑏, 𝑑𝑑} and 𝑋𝑋 
Anti-Neighbourhoods of 𝑐𝑐 
are, 
{𝑎𝑎, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐} , 
{𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑} and 𝑋𝑋 
Anti-Neighbourhoods of 
𝑑𝑑  are, 
{𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐, 𝑑𝑑} 𝑎𝑎𝑛𝑛𝑑𝑑 𝑋𝑋 
e.g. {𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐} ∈ 𝑁𝑁(𝑎𝑎) 
But  
{𝑎𝑎, 𝑏𝑏} ∩ {𝑎𝑎, 𝑐𝑐} = {𝑎𝑎} ∉ 𝑁𝑁(𝑎𝑎) 
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{𝑎𝑎, 𝑏𝑏} ∈  𝑁𝑁(𝑏𝑏) 
{𝑏𝑏, 𝑐𝑐} ∈ 𝑁𝑁(𝑏𝑏) but  
{𝑎𝑎, 𝑏𝑏} ∩ {𝑏𝑏, 𝑐𝑐}  =  {𝑏𝑏} ∉
𝑁𝑁(𝑏𝑏) Therefore the second 
condition is not satisfied by 
Neutro-Neighbourhood. 

Therefore the second 
condition is not satisfied by 
Anti-Neighbourhood. 

 

ANTI-TOPOLOGICAL- BASE 
Definition 4.2. Let  (𝑋𝑋, 𝜏𝜏) be an Anti-Topological space. Then a non-empty sub-collection 
𝐵𝐵 of subsets of 𝑋𝑋 is said to be an Anti-Base for some Anti-Topology on 𝑋𝑋 if the following 
conditions satisfied: 

1. For all 𝑥𝑥 ∈ 𝑋𝑋 there exists 𝐴𝐴 ∈ 𝐵𝐵 such that 𝑥𝑥 ∈ 𝐴𝐴 
2. For some 𝐴𝐴1, 𝐴𝐴2 ∈ 𝐵𝐵 and for 𝑥𝑥 ∈  𝐴𝐴1 ∩ 𝐴𝐴2 there may not exists 𝐴𝐴3 ∈ 𝐵𝐵 such that 𝑥𝑥 ∈

𝐴𝐴3 ∈ 𝐴𝐴1 ∩ 𝐴𝐴2 
Example 2. Let  𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} and 𝜏𝜏 = {{𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑏𝑏, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑑𝑑}, {𝑎𝑎, 𝑑𝑑}} be a 
collection of subsets of  𝑋𝑋. 
Let  𝐵𝐵 = {{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}} . 
 Then 𝐵𝐵 is an Anti-Topological-Base since 

1. For all 𝑥𝑥 ∈ 𝑋𝑋 there exists 𝐴𝐴 ∈ 𝐵𝐵 such that 𝑥𝑥 ∈ 𝐴𝐴 
2. Let {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐} ∈ 𝐵𝐵 but {𝑎𝑎, 𝑏𝑏} ∩ {𝑏𝑏, 𝑐𝑐} = {𝑏𝑏}, we can not get any 𝐴𝐴 ∈ 𝐵𝐵 such that 𝑥𝑥 ∈

𝐴𝐴 ⊆ {𝑏𝑏} 
Now we compare the General-topology, Neutro-Topology and Anti-topology in terms of 
base. 
Here is the comparison table: 

Table 2: Base, Neutro-Base and Anti-Base 

General Topology Neutro-Topology Anti-Topology 
Theorem 1: Let (𝑋𝑋, 𝜏𝜏)  be a 
topological space. A sub-
collection 𝐵𝐵 of 𝜏𝜏 is a base for τ 
if and only if every 𝜏𝜏-open set 
can be expressed as the union of 
members of 𝐵𝐵. 

Result: Let (𝑋𝑋, 𝜏𝜏) be a Neutro-
Topological space. A sub-
collection 𝐵𝐵 of τ is a Neutro-
Base for 𝜏𝜏  if every Neutro-
Open set can be expressed as 
the union of members of 𝐵𝐵 but 
the converse is not true. 
To show that the converse part 
is not true an example is cited 
below. 
Example : 
Let 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} 
     𝜏𝜏 =  {𝜙𝜙, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, 
{𝑐𝑐, 𝑑𝑑}} 
       𝐵𝐵 =  {{𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑐𝑐, 𝑑𝑑}} 
Here not every 𝜏𝜏 -Neutro-

Result: In Anti-topology the 
theorem is not satisfied since 
(1)We can not express any 
Anti-Open set as the union of 
members of anti-Base. 
(2)The converse part is not 
true in Anti-Topology 
because of the third 
condition of Anti-Topology. 
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Open set can be expressed as 
the union of members of 𝐵𝐵. 
It is seen that {𝑏𝑏, 𝑐𝑐} can not be 
expressed as the union of 
members of 𝐵𝐵. 
 

Theorem 2: Let (𝑋𝑋, 𝜏𝜏)  be a 
topological space and 𝐵𝐵  be a 
base for 𝜏𝜏 . Then 𝐵𝐵 has the 
following properties: 
(1) For every 𝑥𝑥 ∈  𝑋𝑋 , there 
exists a 𝐴𝐴 ∈  𝐵𝐵 such that x ∈ B 
i.e  𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵}  
(2) For every 𝐴𝐴1, 𝐴𝐴2 ∈  𝐵𝐵  and 
every point 𝑥𝑥 ∈  𝐴𝐴1 ∩  𝐴𝐴2 there 
exists a 𝐴𝐴 ∈  𝐵𝐵 
such that 𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1  ∩ 𝐴𝐴2  
that is the intersection of any 
two members of 𝐵𝐵 is a union of 
members of 𝐵𝐵. 

Result:  Let (𝑋𝑋, 𝜏𝜏) be a Neutro-
Topological space and 𝐵𝐵 be a 
Neutro-Base for 𝜏𝜏. Then 𝐵𝐵 has 
the following properties :  
(1) For every 𝑥𝑥 ∈  𝑋𝑋  there 
exists a 𝐴𝐴 ∈  𝐵𝐵  such that 𝑥𝑥 ∈
 𝐵𝐵 that is 𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵} 
Therefore we get 𝑋𝑋 = ∪ {𝐴𝐴 ∶
 𝐴𝐴 ∈  𝐵𝐵}. 
(2) For some 𝐴𝐴1, 𝐴𝐴2 ∈ 𝐵𝐵  and 
every point 𝑥𝑥 ∈  𝐴𝐴1  ∩  𝐴𝐴2 
there exists 𝐴𝐴 ∈  𝐵𝐵 such that 
𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1  ∩ 𝐴𝐴2  and for 
some  𝐴𝐴1, 𝐴𝐴2  ∈  𝐵𝐵  for any 𝑥𝑥 ∈
𝐴𝐴1  ∩ 𝐴𝐴2 there does not exist a 
 𝐴𝐴  such that 𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1 ∩
𝐴𝐴2.  
Example: 
Let 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}  
 𝜏𝜏 = {{𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑐𝑐, 𝑑𝑑}} 
(1) For all 𝑥𝑥 ∈  𝑋𝑋 there exists 
𝐴𝐴 ∈  𝐵𝐵  such that 𝑋𝑋 = ∪ {𝐴𝐴 ∶
 𝐴𝐴 ∈  𝐵𝐵} 
(2) {a},{a,b} ∈ B, then there 
exists {a}∈ B such that a 
∈{a}⊂{a}∩{a, b}. 
Again {𝑎𝑎, 𝑏𝑏}, {𝑐𝑐, 𝑑𝑑} ∈  𝐵𝐵  
then {𝑎𝑎, 𝑏𝑏} ∩  {𝑐𝑐, 𝑑𝑑}  =  𝜙𝜙  but 
there does not exist any 𝐴𝐴 ∈
 𝐵𝐵 such that 𝑥𝑥 ∈ 𝐴𝐴 ⊂ {𝑎𝑎, 𝑏𝑏} ∩
{𝑐𝑐, 𝑑𝑑}. 
Therefore the second 
condition of the theorem is not 
satisfied by all 𝐴𝐴 ∈  𝐵𝐵. 

Result: Let (𝑋𝑋, 𝜏𝜏) be an 
Anti-Topological space and 
𝐵𝐵  be an Anti-Base for  𝜏𝜏. 
Then 𝐵𝐵  has the following 
properties :  
(1) For every 𝑥𝑥 ∈  𝑋𝑋  there 
exists a 𝐴𝐴 ∈  𝐵𝐵 such that 𝑥𝑥 ∈
 𝐵𝐵 that is 𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵} 
Therefore, 
 we get 𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵}. 
(2) For every 𝐴𝐴1, 𝐴𝐴2 ∈ 𝐵𝐵 and 
every point 𝑥𝑥 ∈  𝐴𝐴1  ∩  𝐴𝐴2 
there may not exists 𝐴𝐴 ∈
 𝐵𝐵 such that 𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1  ∩
 𝐴𝐴2. 
Example: 
Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} 

𝜏𝜏 = {{𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑐𝑐}, {𝑏𝑏, 𝑐𝑐}, 
{𝑐𝑐, 𝑑𝑑}, {𝑏𝑏, 𝑑𝑑}, {𝑎𝑎, 𝑑𝑑}} 

𝐵𝐵 = {{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}} 
Let 𝐴𝐴1 = {𝑎𝑎, 𝑏𝑏}, 𝐴𝐴2 = {𝑏𝑏, 𝑐𝑐} 
Then 𝐴𝐴1 ∩ 𝐴𝐴2={b} 
But there does not exists 
any 𝐴𝐴 ∈ 𝐵𝐵 such that 𝑥𝑥 ∈ 𝐴𝐴 ⊂
𝐴𝐴1 ∩ 𝐴𝐴2 
Therefore the second 
condition is different in 
Anti-Topological space. 

Theorem 3: Let  𝑋𝑋  be a non-
empty set and let 𝐵𝐵  be a 
collection of subsets of 
𝑋𝑋 satisfying the following 
conditions : 
(1) For every 𝑥𝑥 ∈  𝑋𝑋 ,there 
exists 𝐴𝐴 ∈  𝐵𝐵 such that 𝑥𝑥 ∈
 𝐵𝐵 𝑖𝑖. 𝑟𝑟 𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵} (2) 

Result: Let 𝑋𝑋 be a non-empty 
set and let 𝐵𝐵 be a collection of 
subsets of 𝑋𝑋. 
Then 
(1) For every 𝑥𝑥 ∈  𝑋𝑋, there 
exists a 𝐴𝐴 ∈  𝐵𝐵 such that 𝑥𝑥 ∈
 𝐵𝐵 i.e. 𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈ 𝐵𝐵} 
(2) For some 𝐴𝐴1, 𝐴𝐴2  ∈  𝐵𝐵 and 

Result: Let 𝑋𝑋 be a non-
empty set and let 𝐵𝐵 be a 
collection of subsets of 𝑋𝑋. 
Then 
(1) For every 𝑥𝑥 ∈  𝑋𝑋, there 
exists a 𝐴𝐴 ∈  𝐵𝐵  such that 
𝑥𝑥 ∈  𝐵𝐵  i.e.  𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈
𝐵𝐵} 
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For every 𝐴𝐴1 ∈  𝐵𝐵, 𝐴𝐴2 ∈  𝐵𝐵 and 
every point 𝑥𝑥 ∈  𝐴𝐴1 ∩  𝐴𝐴2 there 
exists a 𝐴𝐴 ∈  𝐵𝐵  such that  𝑥𝑥 ∈
 𝐴𝐴 ⊂  𝐴𝐴1  ∩ 𝐴𝐴2  that is the 
intersection of any two 
members of 𝐵𝐵  is a union of 
members of 𝐵𝐵 . Then there 
exists a unique topology 𝜏𝜏 for 𝑋𝑋 
such that 𝐵𝐵 is a base for 𝜏𝜏. 

every point 𝑥𝑥 ∈  𝐴𝐴1 ∩  𝐴𝐴2 
there exists 𝐴𝐴 ∈  𝐵𝐵 such 
that 𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1  ∩ 𝐴𝐴2 and 
for some 𝐴𝐴1 , 𝐴𝐴2  ∈  𝐵𝐵 for any 
𝑥𝑥 ∈ 𝐴𝐴1  ∩ 𝐴𝐴2 there may not 
exist 𝐴𝐴 such that 𝑥𝑥 ∈  𝐴𝐴 ⊂
 𝐴𝐴1 ∩ 𝐴𝐴2. 
 Let 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑟𝑟} 
       𝜏𝜏 = {𝜙𝜙, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, 
{𝑏𝑏, 𝑑𝑑}, {𝑐𝑐, 𝑑𝑑}, {𝑐𝑐, 𝑑𝑑, 𝑟𝑟}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}} 
        𝐵𝐵 =  {𝜙𝜙, {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑑𝑑}, 

{𝑐𝑐, 𝑑𝑑}, {𝑐𝑐, 𝑑𝑑, 𝑟𝑟}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}} 
Now {𝑎𝑎}, {𝑎𝑎, 𝑏𝑏}  ∈  𝐵𝐵 
then {𝑎𝑎} ∩ {𝑎𝑎, 𝑏𝑏}  =  {𝑎𝑎}. 
For 𝑎𝑎 ∈ {𝑎𝑎}, ∃ {𝑎𝑎} ∈  𝐵𝐵  such 
that 𝑥𝑥 ∈ {𝑎𝑎} ⊂ {𝑎𝑎} ∩ {𝑎𝑎, 𝑏𝑏}. 
But { 𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑑𝑑} ∈  𝐵𝐵, {𝑎𝑎, 𝑏𝑏} ∩
{𝑏𝑏, 𝑑𝑑}  = {𝑏𝑏}But there does not 
exists any  𝐴𝐴 ∈  𝐵𝐵 ⊂ {𝑎𝑎, 𝑏𝑏} ∩
{𝑏𝑏, 𝑑𝑑}. 
Then there exists a unique 
Neutro -Topology 𝜏𝜏  for 𝑋𝑋 
such that 𝐵𝐵 is a Neutro-Base 
for 𝜏𝜏  if the above conditions 
satisfied by 𝐵𝐵. 
So it is seen that the second 
condition is not satisfied. 

(2) For every  𝐴𝐴1, 𝐴𝐴2  ∈  𝐵𝐵 
and for  𝑥𝑥 ∈  𝐴𝐴1 ∩ 𝐴𝐴2  there 
may not exists  𝐴𝐴 ∈  𝐵𝐵  such 
that 𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1  ∩ 𝐴𝐴2. 
Example: 
Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} 

𝜏𝜏 = {{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑎𝑎, 𝑑𝑑}, 
{𝑐𝑐, 𝑑𝑑}, {𝑎𝑎, 𝑐𝑐}, {𝑏𝑏, 𝑑𝑑}} 

𝐵𝐵 = {{𝑎𝑎, 𝑏𝑏}, {𝑎𝑎, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐}} 
Let 𝐴𝐴1 = {𝑎𝑎, 𝑏𝑏}, 𝐴𝐴2  = {𝑎𝑎, 𝑑𝑑} 
Then  

𝐴𝐴1 ∩ 𝐴𝐴2 = {𝑎𝑎, 𝑏𝑏} ∩ {𝑎𝑎, 𝑑𝑑}
= {𝑎𝑎} 

There does not exists any 
𝐴𝐴 ∈ 𝐵𝐵  such that 𝑥𝑥 ∈ 𝐴𝐴 ⊂
𝐴𝐴1  ∩ 𝐴𝐴2 
Thus the second condition is 
different in Anti-
Topological space. 

ANTI-TOPOLOGICAL- SUB-BASE 
Definition 4.3. Let (𝑋𝑋, 𝜏𝜏) be an anti-topological space. A collection 𝐵𝐵′ of subsets of 𝑋𝑋 is 
called an Anti-sub-Base for the Anti-Topology 𝜏𝜏 if and only if 𝐵𝐵′ ⊂ 𝜏𝜏 and finite 
intersection of members of 𝐵𝐵′ form an Anti-Base for 𝜏𝜏 
Example 3. Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑟𝑟, 𝑓𝑓} 
𝜏𝜏 = {{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}, {𝑟𝑟, 𝑓𝑓}, {𝑑𝑑, 𝑟𝑟}, {𝑐𝑐, 𝑓𝑓}, {𝑎𝑎, 𝑑𝑑, 𝑓𝑓}, {𝑎𝑎, 𝑐𝑐, 𝑟𝑟}} 
𝐵𝐵′ = {{𝑎𝑎, 𝑏𝑏}, {𝑐𝑐, 𝑑𝑑}, {𝑟𝑟, 𝑓𝑓}, {𝑑𝑑, 𝑟𝑟}, {𝑏𝑏, 𝑐𝑐}, {𝑐𝑐, 𝑓𝑓}, {𝑎𝑎, 𝑐𝑐, 𝑟𝑟}} 
The finite intersection of members of 𝐵𝐵′ are, 
𝐵𝐵0 = {{𝑎𝑎}, {𝑑𝑑}, {𝑟𝑟}, {𝑐𝑐}, {𝑏𝑏}, {𝑓𝑓}} 
Then 𝐵𝐵0 is a base since  

1. For all 𝑥𝑥 ∈ 𝑋𝑋 there exists 𝐴𝐴 ∈ 𝐵𝐵 such that 𝑥𝑥 ∈ 𝐴𝐴 
2.     {𝑎𝑎}, {𝑑𝑑} ∈ 𝐵𝐵0, then{𝑎𝑎} ∩ {𝑑𝑑} = 𝜙𝜙 

Clearly it is seen that there does not exists any 𝑥𝑥 such that 𝑥𝑥 ∈ 𝐴𝐴 ⊂ 𝐴𝐴1 ∩ 𝐴𝐴2 
Now we compare the General topology, Neutro-Topology and Anti-Topology in terms of 
sub-base. 
Here is the comparison table: 
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Table 3: Sub-base, Neutro-sub-Base and Anti-sub-Base 

General Topology Neutro-Topology Anti-Topology 
Theorem 1: Let 𝐵𝐵∗ be a non-
empty collection of subsets of 
a non-empty set 𝑋𝑋. Then 𝐵𝐵0 is 
a sub-base for a unique 
topology 𝜏𝜏 for X, that is finite 
intersections of members of 
𝐵𝐵∗  form a base for 𝜏𝜏. 

Result: Let 𝐵𝐵∗  be a non-empty 
collection of subsets of a non-
empty set  𝑋𝑋 . Then 𝐵𝐵0 is a 
Neutro-sub-Base for a unique 
Neutro Topology 𝜏𝜏 for X, that is 
finite intersections of members 
of  𝐵𝐵∗  form a base for 𝜏𝜏  if the 
following conditions are 
satisfied by 𝐵𝐵0: 
(1) For every 𝑥𝑥 ∈  𝑋𝑋, ∃ 𝐴𝐴 ∈ 𝐵𝐵0 
such that 𝑥𝑥 ∈  𝐵𝐵0 such that 𝑋𝑋 =
 ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵0} 
(2) For every 𝐴𝐴1 ∈  𝐵𝐵0, 𝐴𝐴2 ∈  𝐵𝐵0, 
every point 𝑥𝑥 ∈ 𝐴𝐴1  ∩  𝐴𝐴2∃ 𝐴𝐴 ∈
 𝐵𝐵0  such that 𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1 ∩
 𝐴𝐴2 and for some 𝐴𝐴1, 𝐴𝐴2  ∈  𝐵𝐵0 
there may not exist any 𝐴𝐴3  ∈ 𝐵𝐵 
such 
that 𝑥𝑥 ∈  𝐴𝐴3  ⊆  𝐴𝐴1 ∩ 𝐴𝐴2 
Let 𝑋𝑋 =  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑟𝑟, 𝑓𝑓} 
Τ= {𝜙𝜙, {𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑑𝑑, 𝑟𝑟}, 

{𝑐𝑐, 𝑑𝑑, 𝑟𝑟}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}, {𝑟𝑟, 𝑓𝑓}} 
Let 𝐵𝐵∗ = {{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏, 𝑐𝑐}, {𝑑𝑑, 𝑟𝑟}, 

{𝑟𝑟, 𝑓𝑓}, {𝑐𝑐, 𝑑𝑑, 𝑟𝑟}, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}} 
The finite intersection of 
members of 
𝐵𝐵∗ are 

𝐵𝐵0 =  {{𝑏𝑏}, {𝑑𝑑}, {𝑟𝑟}, {𝑎𝑎, 𝑏𝑏}, 
{𝑏𝑏, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}, {𝑑𝑑, 𝑟𝑟}, {𝑟𝑟, 𝑓𝑓}, 

{𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}} 
Then 𝐵𝐵0is a Neutro-Base since 
1.For every 𝑥𝑥 ∈  𝑋𝑋, ∃  𝐴𝐴 ∈  𝐵𝐵0 
such that 𝑥𝑥 ∈  𝐵𝐵0. 
2.  {𝑎𝑎, 𝑏𝑏} ∈ 𝐵𝐵0, {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑} ∈
𝐵𝐵𝑜𝑜{𝑎𝑎, 𝑏𝑏}  ∩  {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}  =  {𝑎𝑎, 𝑏𝑏}, 
then for every 𝑥𝑥 ∈ {𝑎𝑎, 𝑏𝑏} ∃  a 
𝐴𝐴 ∈  𝐵𝐵0  such that 𝑥𝑥 ∈  𝐵𝐵0  ⊂
{𝑎𝑎, 𝑏𝑏} ∩ {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑}. Again, 
{𝑏𝑏, 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑} ∈  𝐵𝐵0   {𝑏𝑏, 𝑐𝑐} ∩
{𝑐𝑐, 𝑑𝑑} = {𝑐𝑐}  but there does not 
exist any 𝐴𝐴3  ∈ 𝐵𝐵0 such that 𝑥𝑥 ∈
 𝐴𝐴3  ⊆  𝐴𝐴1 ∩  𝐴𝐴2 
Therefore, the second condition 
of Neutro-sub-Base is not 
satisfied here. 

Result: Let 𝐵𝐵∗ be a non-empty 
collection of subsets of a non-
empty set  𝑋𝑋 . Then 𝐵𝐵0 is an 
Anti-sub-Base for a unique 
Anti-Topology 𝜏𝜏 for X, that is 
finite intersections of 
members of  𝐵𝐵∗  form a base 
for 𝜏𝜏  if the following 
conditions are satisfied by 𝐵𝐵0: 
(1) For every 𝑥𝑥 ∈  𝑋𝑋, ∃ 𝐴𝐴 ∈ 𝐵𝐵0 
such that  𝑥𝑥 ∈  𝐵𝐵0  such that 
𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵0} 
(2) For every 𝐴𝐴1 ∈  𝐵𝐵0, 𝐴𝐴2 ∈
 𝐵𝐵0 , every point x ∈ 𝐴𝐴1  ∩ 
𝐴𝐴2there may not exist A ∈ 𝐵𝐵0 
such that 𝑥𝑥 ∈  𝐴𝐴 ⊂  𝐴𝐴1 ∩ 𝐴𝐴2 
Example: 
Let 𝑋𝑋 = {𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, 𝑟𝑟, 𝑓𝑓} 
𝜏𝜏 = {{𝑎𝑎, 𝑏𝑏}, {𝑏𝑏. 𝑐𝑐}, {𝑐𝑐, 𝑑𝑑}, {𝑑𝑑, 𝑟𝑟}, 
{𝑟𝑟, 𝑓𝑓}, {𝑐𝑐, 𝑓𝑓}, {𝑎𝑎, 𝑑𝑑, 𝑓𝑓}, {𝑏𝑏, 𝑑𝑑, 𝑓𝑓}} 
𝐵𝐵∗ = {{𝑎𝑎, 𝑏𝑏}, {, 𝑑𝑑}, {𝑏𝑏, 𝑐𝑐}, {𝑟𝑟, 𝑓𝑓}, 

{𝑑𝑑, 𝑟𝑟}, {𝑐𝑐, 𝑓𝑓}, {𝑎𝑎, 𝑑𝑑, 𝑓𝑓}} 
Then the finite intersection of 
members of 𝐵𝐵∗ are 
𝐵𝐵0= {{𝑎𝑎}, {𝑏𝑏}, {𝑐𝑐}, {𝑑𝑑}, {𝑟𝑟}, {𝑓𝑓}} 
Then 
(1) For every 𝑥𝑥 ∈  𝑋𝑋, ∃ 𝐴𝐴 ∈ 𝐵𝐵0 
such that 𝑥𝑥 ∈  𝐵𝐵0 such that 

𝑋𝑋 = ∪ {𝐴𝐴 ∶  𝐴𝐴 ∈  𝐵𝐵0} 
(2) {𝑎𝑎}, {𝑏𝑏} ∈ 𝐵𝐵0 
But {𝑎𝑎} ∩ {𝑏𝑏} = 𝜙𝜙 
Therefore, there does not 
exists any 𝐴𝐴 ∈ 𝐵𝐵0  such that 
𝑥𝑥 ∈ 𝐴𝐴 ⊂ 𝐴𝐴1 ∩ 𝐴𝐴2 
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5. CONCLUSION 
In this study, we introduced the notion of Anti-Topological Neighbourhood and Anti-
Topological Base via Anti-Topology. We have discussed some theorems of neighbourhood 
and base. Similarities and differences between neighbourhood, Neutro-Neighbourhood and 
Anti-Neighbourhood as well as base, Neutro-Base and Anti-Base, sub-base, Neutro-sub-
Base and Anti-sub-Base are discussed. We get that a discrete topology and an indiscrete 
topology can not be an Anti Topology since clearly in both cases 𝑋𝑋 and 𝜙𝜙 belongs to them. 
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ABSTRACT 

The principal objective of this study is to extend the application of cubic n-norms, 

specifically within the domain of neutrosophic n-normed linear spaces (NCS). This entails 

adapting the notion of intuitionistic n-norms to harmonize with the neutrosophic 

framework. The research also involves a comprehensive exploration of Cauchy and 

convergent sequences within neutrosophic n-normed spaces. To enhance comprehension, 

visual aids in the form of growth diagrams are incorporated to illustrate normed linear 

structures in a lucid and accessible manner. Moreover, this investigation introduces level 

sets for the innovative construct referred to as n-normed linear space (NRC), which aligns 

with the notion of NCS. The formulation of these level sets is supported by rigorous and 

concrete mathematical demonstrations. Additionally, the concept of automata NCS is 

presented, providing an application of NCS. 

 

.KEYWORDS:  Automata fuzzy n - norm, cubic n - norm, neutrosophic n - norm, automata 
neutrosophic n - norm.  
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1.INTRODUCTION 

 
 Dimension extension is an intriguing concept in the realm of functional analysis. It all began 

with the groundbreaking idea of extending normed linear spaces to two dimensions and n 

dimensions, inspired by Gahler's pioneering work [1,2]. His research sparked interest in 

many researchers who furthered the development of Banach space theory in n dimensions. 

 

  In their research, Narayanan and Vijayabalaji [4] embarked on the task of extending the 

notion of n - NRC into a domain known as fuzzy n - NRC, which integrates fuzzy theory 

with n - NRC principles. Subsequently, Vijayabalaji and Thillaigovindan [8] took the 

initiative to redefine and expand upon the concept of f- n - NRC by incorporating t-norms 

and t-co-norms. A valuable resource for scholars in the field of fuzzy n - NRC can be 

originate in the book authored by Thillaigovindan et al. [7]. This book extensively explores 

various intriguing generalizations of f-n- NRC, including intuitionistic fuzzy n - NRC [9] and 

interval-valued fuzzy n- NRC [10]. In recent years, the academic community has witnessed 

growing research interests in uncertainty set theory [13-44]. 

  In a pioneering work, Jun [3] lead the novel concept of cubic sets, which represents a fusion 

of fuzzy sets and interval-valued fuzzy sets. This innovative idea served as the inspiration 

for Vijayabalaji [12] to further advance the field by introducing cubic n - NRC  (C- n - NRC). 

These C- n - NRC provide a unified framework encompassing all the previously mentioned 

normed structures. 

 Naturally, researchers wondered if these structures could be further generalized. The present 

work addresses this question by leveraging the remarkable structure of neutrosophic sets 

(NS) [5]. NS serves as a comprehensive generalization of all existing uncertainty theories, 
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offering lucid solutions to various problems. Many research treating imprecision and 

uncertainty have been developed and studied [45-64]. 

  It is noteworthy to observe that there has been a notable absence of concrete examples 

illustrating the application of fuzzy n - normed space thus far. Recently, Vijayabalaji and 

Punniyamoorthy [11] addressed this gap by demonstrating the application of fuzzy n - NRC 

through integration with automata theory. This development served as a motivating factor 

for us to extend the application of NCS. Consequently, we have lead the concept of automata 

NCS, and further provided an illustrative application of this concept. 

   

 

This research presents the introduction of NCS in Section 2, which serves as a generalization 

of all the aforementioned structures, accompanied by an illustrative example. Section 3 also 

presents the growth diagram of normed linear structures and provides insights into Cauchy 

sequences and convergent sequences in NCS. Additionally, we introduce level sets for NCS 

with essential results. 

  Section 4 introduces a novel concept of NCS utilizing automata theory, effectively merging 

the principles of NCS with this theoretical framework. Section 5 expounds upon the matrix 

representation of input strings. Section 6 outlines the operations applicable to the matrix 

representation of the string.  Moving forward to Section 7, we present an algorithm for 

identifying the optimal finite automata NCS, offering a clear and detailed illustration through 

an example. Section 8 delineates potential directions for future research, while Section 9 

provides concluding remarks on the entirety of this work. 

  In the context of a given linear space, we typically denote the elements of  as (x1, 

x2,...,xn ). For the sake of simplicity and ease of reference, we will use the term 'Φ' to denote 

nX
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these elements throughout this chapter. Furthermore, we will denote different combinations 

of these elements as follows.                       

(τ 1 , . . . ,  τ n-1 , τ  n ) = (Φ – 1, τ n ), (τ 1, . . . ,   τ  n-1 ,c τ n ) = (Φ – 1, c τ n ),  
(τ 1, . . . ,  τ n-1 , τ ′

n ) = (Φ – 1, τ ′
n ) and  (τ 1, . . . ,  τ n-1 , τ n + τ ′

n ) = (Φ – 1, τ n + τ ′
n ).  

. 
These conventions will be applied consistently throughout the chapter, as appropriate. 
 
 

2. NEUTROSOPHIC  n -  NORMED LINEAR SPACE(NCS) 
 
      
 This section is devoted to the introduction of the concept of NCS. This structure is being 

formulated as a seamless extension that encompasses all pre-existing fuzzy, intuitionistic, 

and cubic structures within the domain of n - NRC. 

Definition 3.1. A neutrosophic n-normed linear space, abbreviated as NCS, is represented as         

S = {(Ⅹ, Μ (Φ, κ), Ρ (Φ, κ), Η (Φ, κ)) | (Φ, κ ) = (τ 1, . . . , τ n, t)∈ Χn × [0, ) }, where X 

is a linear space over a field F, * is a continuous t-norm, ⊕ is a continuous t-co-norm, and 

Μ, Ρ, and Η are neutrosophic sets on Ⅹ × [0, ∞). In this context, Μ represents the truth-

membership function, Ρ represents the falsity-membership function, and Η represents the 

indeterminacy-membership function. These functions satisfy the following conditions: 

 
1. Complementarity: 0 ≤ Μ (Φ, κ ) + Ρ (Φ, κ) + Η (Φ, κ) ≤ 3. 
 
2. Linear Dependency: Μ (Φ, κ) = 1 ⟺ if the elements τ 1,  . . . , τ n in X are linearly 
dependent. 
 
3. Permutation Invariance holds for Μ. 

4. Scaling Property for N: For c ≠ 0 in the field F, Μ (Φ – 1 ,c xn, κ ) = Μ (Φ – 1, ). 

5. Fuzzy Triangle Inequality for Μ: Μ (Φ – 1, τ n, ν)*Μ (Φ – 1, τ ′
n, κ ) Μ (Φ – 1, τ n+ τ ′

n, 
ν + κ ). 
 
6. Continuity for Μ: Μ (Φ, κ) =1 is continuous in t. 
 
7. Complementarity for Ρ: Ρ (Φ, κ) = 0 ⟺ the elements τ1, . . . , τ n in X are linearly 
dependent. 
 
8. Permutation Invariance holds for Ρ. 

∞

||
t
c

≤
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9. Scaling Property for Ρ: For c ≠ 0 in the field F, Ρ (Φ – 1,c τ n, κ ) = Ρ (Φ – 1, τ n, ). 

10. Fuzzy Triangle Inequality for Ρ: Ρ (ΕΦ – 1,τ n,ν) ⊕ Ρ (Φ – 1,τ ′
n, κ )  Ρ (Φ –1,τ n+ τ ′

n, 
ν + κ ). 
 
11. Continuity for Ρ: Ρ (Φ, κ) = 0 is continuous in t. 
 
12. Complementarity for Η: Η (Φ, κ) = 0 ⟺ the elements τ 1 , . . . , τ n in X are linearly 
dependent. 
 
13. Permutation Invariance holds for Η. 

14. Scaling Property for Η: For c ≠ 0 in the field F, Η (Φ – 1,c τ n, κ ) = Η (Φ – 1, τ n, ). 

15. Fuzzy Triangle Inequality for Η: Η (Φ – 1,τ n, ν) ⊕ Η (Φ–1, τ ′
n, κ ) Η (Φ – 1, τ n+ τ ′

n, 

ν + κ). 

16. Continuity for Η: Η (Φ, κ) = 0 is continuous in t. 

In essence, a NCS incorporates truth, falsity, and indeterminacy membership functions to 

capture uncertainty in linear spaces.  

 

To substantiate the definition provided above, we give the following illustrative example. 

Example 3.2. Consider an NRC denoted as (X, ||•, •, . . . , •||). In this space, we define the 

binary operations as follows: 𝑎𝑎 ∗  𝑏𝑏 =  𝑚𝑚𝑖𝑖𝑛𝑛{𝑎𝑎, 𝑏𝑏} and 𝑎𝑎 ⊕  𝑏𝑏 =  𝑚𝑚𝑎𝑎𝑥𝑥{𝑎𝑎, 𝑏𝑏}, for all  𝑎𝑎, 𝑏𝑏 ∈

 [0, 1]. 

Additionally, we set the membership functions as follows: Μ (Φ, κ) = , Ρ (Φ, κ) =

 and    Η (Φ, κ) = .  

With these definitions in place, we can construct a NCS S. 

The development of this normed linear space is visually depicted as follows.  

 

|| c
κ

≤

|| c
κ

≤

Φ+κ
κ  

Φ+

Φ

κ κ
Φ



Editors: Florentin Smarandache, Memet Şahin, Derya Bakbak, Vakkas Uluçay & Abdullah Kargın 
              
 

102 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Growth diagram of normed linear structures 
 
 
 

 

 

 

 

Definition 3.3. In a NCS, S a sequence { τ n} is considered to converge to τ if, for any given 

positive real numbers ω > 0 and κ > 0, where 0 < ω < 1, there exists an integer n0 ∈ N (the 

set of natural numbers) such that the following conditions hold for all n ≥ n0. 

 
1. The truth-membership function Μ ( Φ – 1, τ n –  τ, κ ) > 1 - ω. 

2. The falsity-membership function Ρ (Φ – 1, τ n –  τ, κ) < ω. 

3. The indeterminacy-membership function Η (Φ – 1, τ n –  τ, κ ) < ω. 

 

 

Theorem 3.4. In a NCS, S a sequence { τ n}converges to τ if and only if the truth-membership 

function Μ (Φ – 1, τ n –  τ, κ ) , the falsity-membership function Ρ (Φ – 1, τ n –  τ, κ )

 and the indeterminacy-membership function Η (Φ – 1, τ n –  τ, κ )  as  

1→

0→ 0→ .∞→n

NCS  

cubic  NRC 

intuitionistic fuzzy NRC 

fuzzy NRC 

NRC 

2- NRC 

 NRC 
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Proof. Let's consider the sequence { τ n} that converges to x in S. Fix  Let the sequence         

{ τ n} converges to τ in S. 

According to Definition 3.3, for any given positive real numbers ω > 0 and κ > 0, where 0 < 

ω < 1, ∃ an integer n0∈N (the set of natural numbers) such that the following conditions hold 

for all n ≥ n0: 

 

1. Μ (Φ – 1, τ n –  τ, κ )>1  –  ω. 

2. Ρ (Φ – 1, τ n – τ, κ ) < ω  . 

3.  Η (Φ – 1, τ n –  τ, κ ) < ω  .  

 As we have Μ (Φ – 1, τn –  τ, κ ) , Ρ (Φ – 1, τ n –  τ, κ )   

and Η (Φ – 1, τ n – τ, κ ) . 

Conversely, assume that Μ (Φ – 1, τ n – τ, κ ) , Ρ (Φ – 1, τ n –  τ, κ)   

and Η (Φ – 1, τ n –  τ, κ )  as  

Then for every ω, 0 < ω < 1, ∃ an integer n0 such that 1- Μ (Φ – 1, τ n – τ, κ ) <  ω,   

Ρ (Φ – 1, τ n –  τ, κ ) <  ω and Η (Φ – 1, τ n –  τ, κ ) <  ω. 

Thus Μ (Φ – 1, τ n –  τ, κ) > 1- ω,  Ρ (Φ – 1, τ n –  τ, κ ) < ω  and    Η (Φ – 1, τ n –  τ, κ ) < ω  

for all n ≥ n0. 

Hence { τ n} converges to τ in S. 

Definition 3.4. In a NCS, S, a sequence { τ n}  is considered to be a Cauchy sequence if, for 

any given positive real numbers ω > 0 and κ  > 0, where 0 < ω < 1, there exists an integer n0 

∈ N (the set of natural numbers) such that for all n, k  ≥ n0, the following conditions hold: 

 

1. Μ (Φ – 1, τ n –  τ k, κ ) > 1 –  ω. 

2. Ρ (Φ – 1, τ n –  τ k, κ ) < ω  . 

3. Η (Φ – 1, τ n –  τ k, κ ) < ω  . 

 

 
Theorem 3.4. In a  NCS  S,  every convergent sequence is a Cauchy sequence. 
 
Proof. 

Given that { τ n} converges to τ in S. 

.0t >

⇒ ,∞→n 1→ 0→

0→

1→ 0→

0→ .∞→n
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Let t > 0 and p  (0,1 ). Choose κ  (0,1 ) so that ( 1  – ω ) * ( 1  –  ω ) > 1 –  and ω ⊕ ω 

< .  

As { τ n} converges to τ 

Then there exists an integer n0 ∈ N such that for all n ≥ n0, 

1. Μ (Φ – 1, τ n –  τ, κ ) > 1 – ω 

2. Ρ (Φ – 1, τ n –  τ, κ ) < ω and          

3.  Η (Φ – 1, τ n –  τ, κ ) < ω. 

 

Note that  

Μ (Φ – 1, τ n –  τ k, κ )  

 = Μ (Φ – 1, τ n –  τ + τ  –  τ k, + )   

  Μ (Φ – 1, τ n – τ, ) * Μ (Φ – 1, τ n –  τ k,  ) 

 ( 1  –  ω ) * ( 1  – ω ) 

 > 1 – , for all n, k  ≥ n0. 

 

Also  

Ρ (Φ – 1, τ n – τ k, κ )  

 = Ρ (Φ – 1, τ n –  τ + τ  –  τ k,  + )   

   Ρ (Φ – 1, τ n –  τ, ) ⊕ Ρ (Φ – 1, τ n – τ k,  ) 

   < ω ⊕ ω 

   <  , for all n, k  ≥ n0 

and  

  Η (Φ – 1, τ n – τ k, κ )  

 = Η (Φ – 1, τ n – τ + τ  –  τ k,  + )   

   Η (Φ – 1, τ n – τ, ) ⊕ Μ (Φ – 1, τ n –  τ k,  ) 

   < ω ⊕ ω 

∈ ∈ ∈

∈

2
κ

2
κ

≥
2
t

2
κ

≥

∈

2
κ

2
κ

≤
2
κ

2
κ

∈

2
κ

2
κ

≤
2
κ

2
κ
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   <  , for all n, k  ≥ n0. 

 

So  {τn} is  a Cauchy sequence in S.   

 

Definition 3.5.  In a NCS S, a sequence is regarded as complete if every Cauchy sequence 

contained within it converges. 

Remark 3.6. It is important to acknowledge that there may exist Cauchy sequences in S that 

do not converge. For example, let's consider the sequence in example  3.2. Now, if { τ n}  is 

a sequence in S, then { τ n}  is a Cauchy sequence in an n - NRC if and only if { τ n}  is a 

Cauchy sequence in S. Similarly, { τ n}  is a convergent sequence in an n - NRC if and only 

if { τ n}  is a convergent sequence in S. 

 

 Remark 3.7. In S, if every Cauchy sequence has a convergent subsequence, then it is referred 

to as being complete. 

 

 In fuzzy algebraic structures and even in fuzzy topological structures, the concept of level 

sets plays a pivotal role in extending these structures to higher dimensions. In the case of the 

NCS structure as well, the formation of level sets follows a similar pattern. 

Definition 3.8. Given a NCS, S, its level set is defined as follows. 

 = inf { κ :  Η (Φ, κ)   ,  Μ (Φ, κ) < 1 –   and    Ρ (Φ, κ) < 1 – , (0,1)  }. 

We define this set as - n- NRC of S. 

 

 It's significant to emphasize that the provided definition is applicable under the condition 

(17). This conditional-based approach for level sets is a unique feature not typically found in 

fuzzy algebraic structures. Condition (17) states that Η (Φ, κ) > 0, Μ (Φ, κ) > 0, and Ρ (Φ, κ) 

> 0 when the elements     τ 1, . . . , τ n in the range (0,1) are linearly dependent. 

 

Theorem 3.9. The level set defined in Definition 3.8, along with the condition (17), 

constitutes a - n- NRC. 

Proof. To substantiate this statement, let's verify the four conditions for a - n - NRC as 

∈

η|||| Φ ≥ η η η η ∈

η

η ∈

η
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follows: 

(1)  = 0 

        inf { κ :  Μ (Φ, κ)   ,  Ρ (Φ, κ) < 1 –   and    Η (Φ, κ) < 1 – , (0,1)  } 

        Μ (Φ, κ)   ,  Ρ (Φ, κ) < 1 –   and    Η (Φ, κ) < 1 – , (0,1)   

        Μ (Φ, κ) > 0 ,  Ρ (Φ, κ) > 0  and    Η (Φ, κ) > 0, (0,1)   

       τ 1, . . . ,  τ n are linearly  dependent, from condition (17). 

     Conversely, we assume that  τ 1, . . . , τ  n are linearly  dependent. 

       Μ (Φ, κ) = 1, Ρ (Φ, κ) = 0 and Η (Φ, κ) = 0 , from Definition 2.1. 

       inf { κ :  Μ (Φ, κ)   ,  Ρ (Φ, κ) < 1 –   and    Η (Φ, κ) < 1 – , (0,1)  }= 

0 

        = 0. 

(2) As Μ (Φ, κ), Ρ (Φ, κ) and Η (Φ, κ) is an unvarying in any permutation of τ 1, . . . , τ 

n, it is evident to note that  is an unvarying in any permutation of  τ 1 , . . . ,  τ n. 

(3)  

      = inf {s: Μ (Φ – 1, c τ n, ν )   , Ρ (Φ – 1,c τ n, ν) < 1 –    

and Η (Φ – 1, c τ n, ν) < 1 – , (0,1)} 

      = inf {ν: Μ (Φ – 1, τ n, )  , Ρ (Φ – 1, τ n, ) < 1 –   

and Η (Φ – 1, τ n, ) < 1 – , (0,1)}      

     Let . Then 

      

   = inf { κ |c|: Μ (Φ – 1, τ n, κ )  , Ρ (Φ – 1, τ n, κ ) < 1 –    

and Η (Φ – 1,  τ n, κ ) < 1 – , (0,1)}  

η|||| Φ

⇒ ≥ η η η η ∈

⇒ ≥ η η η η ∈

⇒ η ∈

⇒

⇒

⇒ ≥ η η η η ∈

⇒ η|||| Φ

η|||| E

ητ ||,1|| nc−Φ

≥ η η

η η ∈

|| c
ν

≥ η
|| c

ν η

|| c
ν η η ∈

|| c
νκ =

ητ ||,1|| ncE −

≥ η η

η η ∈
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   =|c| inf { κ: Μ (Φ – 1, τ n, κ )  , Ρ (Φ – 1, τ n, κ  ) < 1 –    

and Η (Φ – 1,  τ n, κ ) < 1 – , (0,1)} 

      = |c| . 

 

(4)   +  

 = inf { κ : Μ (Φ – 1, τ n, κ  )   ,  Ρ (Φ – 1, τ n,  κ ) < 1 –    

and  Η (Φ – 1, τ n, κ ) < 1 – , (0,1) }  

+ inf { s : Μ (Φ – 1, τ n
’, ν)   , Ρ (Φ – 1, τ n

’ , ν) < 1 –    

and Η (Φ – 1, τ n
’ , ν) < 1 – , (0,1) } 

   = inf { κ + ν:  Μ (Φ – 1, τ n, κ  )   , Ρ (Φ – 1, τ n
’, ν )   , Η (Φ – 1, τ n,  κ ) < 1 – 

,                          

      Μ (Φ – 1, τ n
’ , ν) < 1 – ,  Ρ (Φ – 1, τ n, κ) < 1 – ,  Η (Φ – 1, τ n

’ ,ν) < 1 – , 

(0,1) } 

         inf { κ + ν :  Μ (Φ – 1, τ n + τ n
’
 , κ + ν)   , Ρ (Φ – 1, τ n + τ n

’, κ + ν)    and 

                                                                           Η (Φ – 1,   τ n + τ n
’ ,  κ + ν) < 1 – , 

(0,1) } 

         =  inf {ω : Μ (Φ – 1, τ n + τ n
’
 , ω )   , Ρ (Φ – 1,  τ n + τ n

’,  ω)   and  

                                                                             Η (Φ – 1, τ n + τ n
’ , ω) 1– , (0,1)}, ω 

= κ + ν 

         =    . 

4. AUTOMATA NCS 
 

This section endeavors to integrate automata theory with Neutrosophic n - normed linear 

space (NCS) in the subsequent manner. 

 

≥ η η

η η ∈

ητ ||,1|| n−Φ

ητ ||,1|| n−Φ ητ ||,1|| '
n−Φ

≥ η η

η η ∈

≥ η η

η η ∈

≥ η ≥ η

η

η η η η ∈

≥ ≥ η ≥ η

η η ∈

≥ η ≥ η

η η ∈

ηττ ||,1|| '
nn +−Φ
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Definition 4.1. A deterministic finite automata NCS is the quintuple 𝑀𝑀 =

(Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡), Σ, 𝜃𝜃, Ν1(𝐸𝐸, 𝑡𝑡), Ϝ) , where Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡) = {Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡)/𝑖𝑖 = 1,2, … , 𝑘𝑘} . That is, Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡) is the 

non-empty set of states of NCS. 

Σ: collections of input symbols. 

𝜃𝜃: Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡) × Σ × [0,1] → Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡) is the fuzzy changeover function. 

Ν1(𝐸𝐸, 𝑡𝑡): starting state. 

Ϝ: collections of final states and Ϝ is a subset of Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡). 

 

Definition 4.2. A non-deterministic finite automata NCS is the 5-tuple 𝑀𝑀 =

(Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡), Σ, 𝜃𝜃, Ν1(𝐸𝐸, 𝑡𝑡), Ϝ). Where  

Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡) = {Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡)/𝑖𝑖 = 1,2, … , 𝑘𝑘}. That is, Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡)is the non-empty set of states of NCS. 

Σ: collections of input symbols. 

𝜃𝜃: Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡) × Σ × [0,1] → 2Ν𝑖𝑖(𝐸𝐸,𝑡𝑡) is the fuzzy changeover function. 

Ν1(𝐸𝐸, 𝑡𝑡): starting state. 

Ϝ: collections of final states and Ϝ is a subset of Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡). 

 

5. MATRIX FORM OF THE INPUT STRING 
In this section we define the matrix form of the input string of finite automata NCS.  

Definition 5.1. If the matrix form of the special changeover function of the deterministic 

finite automata NCS is defined as  

𝑇𝑇𝑀𝑀(NCS )= 𝜃𝜃 �Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡), 𝑎𝑎, Ν𝑗𝑗(𝐸𝐸, 𝑡𝑡)� = �
(0,1], 𝑖𝑖𝑓𝑓 𝜃𝜃(Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡), 𝑎𝑎) = Ν𝑗𝑗(𝐸𝐸, 𝑡𝑡)

0, 𝑖𝑖𝑓𝑓 𝜃𝜃(Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡), 𝑎𝑎) ≠ Ν𝑗𝑗(𝐸𝐸, 𝑡𝑡)  

Then 𝜃𝜃 =
Ν1
Ν2
Ν𝑚𝑚

Ν1 Ν2 Ν𝑛𝑛

�
𝜃𝜃11 ⋯ 𝜃𝜃1𝑛𝑛

⋮ ⋱ ⋮
𝜃𝜃𝑚𝑚1 ⋯ 𝜃𝜃𝑚𝑚𝑛𝑛

�. 

Similarly we can define the matrix form of the input string of non-deterministic cases. 
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Example 5.2. 

Consider the finite automata NCS 𝑀𝑀 = (Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡), Σ, 𝜃𝜃, Ν1(𝐸𝐸, 𝑡𝑡), Ϝ)  where Ν𝑖𝑖(𝐸𝐸, 𝑡𝑡) =

{Ν1, Ν2, Ν3, Ν4}, Σ = {𝑎𝑎, 𝑏𝑏}, Starting state = Ν1, Ϝ = {Ν3} and the special changeover matrix  

𝜃𝜃 of two different input strings are given by  

𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎) =
Ν1
Ν2
Ν3
Ν4

Ν1                Ν2                  Ν3                 Ν4

�

[0.4,0.2,0.6]
[0.7,0.4,1.0]
[0.8,0.3,0.5]

[0,0,0]

[0,0.4,0.9]
[0,0,0]
[0,0,0]
[0,0,0]

[0.9,0.1,0.6]
[0,0,0]
[0,0,0]

[0.1,0.2,0.3]

[0,0,0]
[0.5,0.8,0.1]

[0,0,0]
[0,0,0]

�                

𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) =
Ν1
Ν2
Ν3
Ν4

Ν1                Ν2                  Ν3                 Ν4

�

[0,0,0]
[0.5,0.5,1.0]
[0.7,0.1,0.1]

[0,0,0]

[0,0.4,0.9]
[0,0,0]
[0,0,0]

[0.2,0.4,0.7]

[0.4,0,0.3]
[0,0,0]
[0,0,0]

[0.3,0.5,0.6]

[0.3,0.4,0.9]
[0.6,0.1,0.3]

[0,0,0]
[1.0,0,0.2]

�                

 
 

 

  

 

 

 

 

Figure 1: Changeover diagram for finite automata NCS 

 
 
 
 

6. OPERATIONS ON MATRIX FORM OF THE STRING 
In this section, we demonstrate various operations performed on the matrix representation 

of the string.. 

Definition 6.1. Matrix of concatenation of the string  

Let 𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎) and 𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) be the special changeover matrix of the finite automata NCS. The 

special changeover matrix of concatenation of the string is defined as 

Ν1 

 

Ν2 

Ν4 
𝑎𝑎[0.4,0.2,0.6] 

𝑎𝑎[0.9,0.1,0.6], 

 

𝑎𝑎, 𝑏𝑏[0,0.4,0.9] 

𝑏𝑏[0.3,0.4,0.9] 

𝑎𝑎[0.8,0.3,0.5], 

 

𝑎𝑎[0.1,0.2,0.3], 

𝑏𝑏[0 3 0 5 0 6] 

𝑎𝑎[0.5,0.8,0.1], 

𝑏𝑏[0 6 0 1 0 3] 

𝑏𝑏[1.0,0,0.2] 

 

Ν3 

𝑎𝑎[0.7,0.4,1.0], 

𝑏𝑏[0 5 0 5 1 0] 

𝑏𝑏[0.2,0.4,0.7] 
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𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎𝑏𝑏) = 𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎 ∪ 𝑏𝑏) = � 
[М𝐦𝐦𝐦𝐦𝐦𝐦(•),Р𝐦𝐦𝐦𝐦𝐦𝐦(•),Н𝐦𝐦𝐦𝐦𝐦𝐦(•)] , 𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎), 𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) ≠ [0,0,0] 
            0,                                              𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎) or 𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) = [0,0,0]  for all i 

and j. 

 

Example 6.2. From example 5.2, the matrix of the concatenation of the strings 𝑎𝑎 and 𝑏𝑏 is  

𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎𝑏𝑏) =
Ν1
Ν2
Ν3
Ν4

Ν1                Ν2                  Ν3                 Ν4

�

[0,0.2,0.6]
[0.5,0.5,1.0]
[0.7,0.3,0.5]

[0,0,0]

[0,0.4,0.9]
[0,0,0]
[0,0,0]
[0,0,0]

[0.4,0.1,0.6]
[0,0,0]
[0,0,0]

[0.1,0.5,0.6]

[0,0,0]
[0.5,0.8,0.3]

[0,0,0]
[0,0,0]

�                

 

Definition 6.3. Matrix of addition of the string 

Let 𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎) and 𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) be the special changeover matrix of the finite automata NCS. The 

special changeover matrix of addition of the string is defined as 

𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎 + 𝑏𝑏) = 𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎 ∪ 𝑏𝑏) = � 
[М𝐦𝐦𝐦𝐦𝐦𝐦(•),Р𝐦𝐦𝐦𝐦𝐦𝐦(•),Н𝐦𝐦𝐦𝐦𝐦𝐦(•)] , 𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎), 𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) ≠ [0,0,0] 
            0,                                              𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎) or 𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) = [0,0,0]   for 

all 𝑖𝑖 and 𝑗𝑗. 

 

Example 6.4. From example 5.2 and 6.2, the matrix of the addition of the strings 𝑎𝑎 and 𝑎𝑎𝑏𝑏 is  

𝛿𝛿𝑖𝑖𝑗𝑗(𝑎𝑎 + 𝑎𝑎𝑏𝑏) =
Ν1
Ν2
Ν3
Ν4

Ν1                Ν2                  Ν3                 Ν4

�

[0.4,0.2,0.6]
[0.5,0.5,1.0]
[0.8,0.3,0.5]

[0,0,0]

[0,0.4,0.9]
[0,0,0]
[0,0,0]
[0,0,0]

[0.9,0.1,0.6]
[0,0,0]
[0,0,0]

[0.1,0.2,0.3]

[0,0,0]
[0.5,0.8,0.1]

[0,0,0]
[0,0,0]

�            

7. APPLICATION 
This section commences with the presentation of an algorithm for identifying the optimal 

finite automata NCS, elucidated through a relevant example. 

Algorithm 7.1. 

Step 1: Define the finite automata NCS. 

Step 2: Construct the matrix of the input strings. 

Step 3: Determine the set of accepted strings. 
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Step 4: Create the matrix of the accepted strings, employing the matrix operation of 

concatenation of the strings. 

Step 5: Eliminate any redundant paths of the accepted strings. 

Step 6: Identify the optimal machine from the assumed machine. 

Example 7.2.  

Problem statement 

In the digital realm, all tasks are interconnected within a single network. This poses a 

challenge for search engines, which may encounter complexities. To streamline the process 

and mitigate these complications, we implement a strategy to eliminate redundant searches 

and identify an optimal search engine. 

Step 1: 

We designate the strings concluding with 𝑎𝑎 or 𝑏𝑏, utilizing the finite automata Neutrosophic 

n - normed linear space (NCS) as illustrated in Example 5.2. 

Step 2: The matrix form of the input strings are 

𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎) =
Ν1
Ν2
Ν3
Ν4

Ν1                Ν2                  Ν3                 Ν4

�

[0.4,0.2,0.6]
[0.7,0.4,1.0]
[0.8,0.3,0.5]

[0,0,0]

[0,0.4,0.9]
[0,0,0]
[0,0,0]
[0,0,0]

[0.9,0.1,0.6]
[0,0,0]
[0,0,0]

[0.1,0.2,0.3]

[0,0,0]
[0.5,0.8,0.1]

[0,0,0]
[0,0,0]

�                

𝜃𝜃𝑖𝑖𝑗𝑗(𝑏𝑏) =
Ν1
Ν2
Ν3
Ν4

Ν1                Ν2                  Ν3                 Ν4

�

[0,0,0]
[0.5,0.5,1.0]
[0.7,0.1,0.1]

[0,0,0]

[0,0.4,0.9]
[0,0,0]
[0,0,0]

[0.2,0.4,0.7]

[0.4,0,0.3]
[0,0,0]
[0,0,0]

[0.3,0.5,0.6]

[0.3,0.4,0.9]
[0.6,0.1,0.3]

[0,0,0]
[1.0,0,0.2]

�                

Step 3: The set of accepted strings are strings that end with 𝑎𝑎 or 𝑏𝑏. 

Step 4: The matrix form of the accepted string 𝑎𝑎𝑏𝑏 is 

𝜃𝜃𝑖𝑖𝑗𝑗(𝑎𝑎𝑏𝑏) =
Ν1
Ν2
Ν3
Ν4

Ν1                Ν2                  Ν3                 Ν4

�

[0,0.2,0.6]
[0.5,0.5,1.0]
[0.7,0.3,0.5]

[0,0,0]

[0,0.4,0.9]
[0,0,0]
[0,0,0]
[0,0,0]

[0.4,0.1,0.6]
[0,0,0]
[0,0,0]

[0.1,0.5,0.6]

[0,0,0]
[0.5,0.8,0.3]

[0,0,0]
[0,0,0]

�                

Step 5: We remove the path of the string 𝑎𝑎𝑏𝑏 from the state Ν1 to Ν4, from the state Ν4 to Ν2 

and from the state Ν4 to Ν4. 
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Step 6: The required optimum machine is 

 

 

 

 

 

 
 

Figure 2: Changeover diagram for optimum finite automata NCS 𝑀𝑀  

 
8. FUTURE RESEARCH DIRECTIONS 

 
      This structure namely neutrosophic n - NRC can be further generalized to neutrosophic 

n - Banach space. Further several operators can be constructed by using neutrosophic n - 

Banach space.  There are lot of scope to form neutrosphic n - inner product space and it can 

be correlated with this new structure namely NCS.  

9. CONCLUSION 
 
This endeavor focuses on establishing the concept of a NCS as a natural extension of the 

cubic NRC. To facilitate better comprehension, a growth diagram of normed structures is 

provided. Application of NCS using automata theory is also provided.  In addition to the 

previous section, our attention now turns towards deducing the open mapping theorem and 

closed graph theorem within the framework of NCS. Furthermore, we have intentions to 

derive the Hahn-Banach theorem for our novel structure in the near future. 
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ABSTRACT 

 In this section, the concept of NeutroSet will be introduced for the first time using 
the concepts of NeutroAlgebra and Anti-Algebra defined by Smarandache. Then, the 
properties of this set structure and operations on sets have been studied by giving examples.  
Additionally, the definition of NeutroRelation, its properties, and results will be given with 
examples. 

 

Keywords: Neutrosophic sets, Algebra, NeutroAlgebra, Anti-Algebra, Partial Algebra, 
Relation.  

 

INTRODUCTION 

The concept of fuzzy sets was first introduced by Zadeh in 1965[1], and since then 
this concept has been used in modelling many problems encountered in real life. In 
traditional fuzzy set logic, where X is a space and A is a subset of X,  𝜇𝜇𝐴𝐴(𝑥𝑥) ∈ [0,1] 
represents a single value. (where  𝜇𝜇: 𝑋𝑋 ⟶ [0,1] is the membership function of the fuzzy set). 
In some cases, the grade of membership itself is uncertain and difficult to define with a value.  
Thus, to eliminate the uncertainty of the grade of membership in fuzzy set logic, interval-
valued fuzzy set logic was proposed [2]. Later, in 1986, Atasanov defined intuitionistic fuzzy 
sets, which are a generalization of these two concepts [3]. According to this definition, where 
tA(x) is the truth value of the membership grade and fA(x) is the false value of the 
membership grade, we have 0 ≤ 𝑡𝑡𝐴𝐴(𝑥𝑥) + 𝑓𝑓𝐴𝐴(𝑥𝑥) ≤ 1 for  𝑡𝑡𝐴𝐴(𝑥𝑥), 𝑓𝑓𝐴𝐴(𝑥𝑥) ∈ [0,1] . 
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The concept of Neutrosophy was first defined by Smarandache in 1995[4]. In his paper a 
new branch of philosophy is defined, called neutrosophy, which studies the origin, nature, 
and scope of neutralities, as well as their interactions with different ideational 
spectra. According to this logic, any idea T is true, I is uncertain, and F is false; where T, I, 
F are standard or non-standard subsets included in the non-standard unit interval  ]0−, 1+[ . 
Fuzzy set is used to tackle the uncertainty using the membership grade, whereas 
neutrosophic set is used to tackle uncertainty using the truth, indeterminacy and falsity 
membership grades which are considered as independent. Neutrosophic set constitutes a 
further generalisation of clasic sets, fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy 
sets, picture fuzzy sets, Pythagorean fuzzy sets, and spherical fuzzy sets, amongst others. 
Since then, this logic has been applied in various domains of science and engineering.  Later, 
as a result of this work, F Smarandache and her colleagues studied single-valued 
neutrosophic sets[5]. The logic of neutrosophy, which is used to solve many uncertain 
problems we encounter in daily life, attracts the attention of scientists in every field, and day 
by day, its effectiveness is being used in medicine, law, robot programming technique, 
artificial intelligence, engineering applications, sociology, psychology, etc. Its use in areas 
is becoming widespread. Many research treating imprecision and uncertainty have been 
developed and studied [15-33]. 

Recently, Florentin Smarandache generalized the classical Algebraic Structures to 
NeutroAlgebraic Structures and AntiAlgebraic Structures in 2019[6]. In another study[7], he 
proved that the NeutroAlgebra is a generalization of Partial Algebra. He considered < A > 
as an item (concept, attribute, idea, proposition, theory, etc.). Through the process of 
neutrosphication, he split the nonempty space and worked onto three regions two opposite 
ones corresponding to <A> and <AntiA>, and one corresponding to neutral (indeterminate) 
<NeutA>  between the opposites, regions that may or may not be disjoint depending on the 
application, but their union equals the whole space. 

 A NeutroAlgebra is an algebra which has at least one NeutroOperation that is well-defined 
for some elements, indeterminate for others, and outer-defined for the others or one 
NeutroAxiom (axiom that is true for some elements, indeterminate for other elements, and 
false for the other elements). A Partial Algebra is an algebra that has at least one partial 
operation (well-defined for some elements, and indeterminate for other elements), and all its 
axioms are classical (i.e., the axioms are true for all elements). Through a theorem he proved 
that NeutroAlgebra is a generalization of Partial Algebra, and examples of NeutroAlgebras 
that are not partial algebras were given. Also, the NeutroFunction and NeutroOperation were 
introduced.  

In recent studies on NeutroAlgebraic structures, Agboola, A. examined NeutroGroup and 
some of its properties[8]. Again, Agboola, A. expanded this group definition and defined the 
concept of NeutroRing in another study[9]. Later, Ibrahim, Muritala and colleagues defined 
the concept of NeutroVectorSpaces[10]. As a result, Şahin, M., and his colleagues defined 
the concept of Neutro-R Module[11] and later the concepts of Neutro-G Module and Anti-
G Module[12]. However, Olgun, N and their colleagues also studied homomorphisms by 
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defining the concept of Neutro Ordered R-module[13]. In recent years, the academic 
community has witnessed growing research interests in uncertainty set theory [34-64]. 

In the light of the above studies, it has been observed that NeutroSet has not been defined in 
the studies carried out so far. In the studies, the classical set definition was used and the 
algebraic structures on the operations defined on this set were examined. In this study, a 
definition of NeutroSet, which has not been made before, will be made and this concept will 
be introduced with examples. Then, the concept of NeutroRelation will be defined and its 
properties will be given with examples. 

 

 
BACKGROUND 

 

This section presents some basic definitions, results of the relations and the 
neutrosophy..  

Definition 1.  [14] :    A and B are sets, the cartesian product of A and B is defined to be the 
set  

𝐴𝐴 × 𝐵𝐵 =   {  (𝑎𝑎, 𝑏𝑏)  |   𝑎𝑎 ∈ 𝐴𝐴 ∧  𝑏𝑏 ∈ 𝐵𝐵   }   

More generally if  𝐴𝐴1 , 𝐴𝐴2 , 𝐴𝐴3 , … , 𝐴𝐴𝑛𝑛  are sets we define their cartesian product by  

 𝐴𝐴1 × 𝐴𝐴2 × 𝐴𝐴3 × … × 𝐴𝐴𝑛𝑛 = { (𝑎𝑎1 , 𝑎𝑎2 , … , 𝑎𝑎𝑛𝑛 )    |     𝑎𝑎1 ∈ 𝐴𝐴1 ,….,𝑎𝑎𝑛𝑛 ∈ 𝐴𝐴𝑛𝑛 }. 

Definition 2. [14] A unary relation on a set A is defined to be a subset of A.   

Definition 3. [14] A n-ary relation on A , for 𝑛𝑛 > 1, is a subset of the n-fold cartesian product 
of 𝐴𝐴 × 𝐴𝐴 × … × 𝐴𝐴.  

Notice that an n-ary relation on A is a unary relation on the n-fold product of 𝐴𝐴 × 𝐴𝐴 × … × 𝐴𝐴. 

This formal definition provide a concrete realization within set theory of the intuitive concept 
of a relation.  

However, as is often the case in set theory, having seen how a concept may be defined set 
theoretically, we revert at once to the more familiar notation. For example, if R is some 
property that applies to pairs of elements of a set A we often speak of ‘’the binary relation R 
on A’’, though strictly speaking the relation concerned is the set 

  {  (𝑎𝑎, 𝑏𝑏)  |   𝑎𝑎 ∈ 𝐴𝐴 ∧  𝑏𝑏 ∈ 𝐴𝐴 ∧ 𝑅𝑅(𝑎𝑎, 𝑏𝑏)   } . 

Also common is the tacit identification of such a property R with the relation it defines, so 
that 𝑅𝑅(𝑎𝑎, 𝑏𝑏) and (𝑎𝑎, 𝑏𝑏) ∈ 𝑅𝑅 mean the same. Indeed, in the specific case of binary relation, It 
sometimes go even further, writing 𝑎𝑎𝑅𝑅𝑏𝑏  instead of 𝑅𝑅(𝑎𝑎, 𝑏𝑏). In the case of ordering relations 
we rarely write < (𝑎𝑎, 𝑏𝑏) or (𝑎𝑎, 𝑏𝑏) ∈<   though from a set theoretic point of view, both could 
be said to be more accurate than the more common notation < 𝑏𝑏 . 
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Binary relation play a particularly important role in set theory and, indeed in mathematics as 
a whole. 

There are several properties that apply to binary relations. 

 

Definition 4. [14] Let R be any binary relation on a set A. We say  

R is reflexive if    (∀𝑎𝑎 ∈ 𝐴𝐴 )    (𝑎𝑎𝑅𝑅𝑎𝑎); 

R is symmetric if    (∀𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 )    (𝑎𝑎𝑅𝑅𝑏𝑏 → 𝑏𝑏𝑅𝑅𝑎𝑎); 

R is antisymmetric if   (∀𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 )    (𝑎𝑎𝑅𝑅𝑏𝑏 ∧ 𝑎𝑎 ≠ 𝑏𝑏) → ¬(𝑏𝑏𝑅𝑅𝑎𝑎); 

R is connected  if   (∀𝑎𝑎, 𝑏𝑏 ∈ 𝐴𝐴 )    (𝑎𝑎 ≠ 𝑏𝑏)  →  (𝑎𝑎𝑅𝑅𝑏𝑏 ∨ 𝑏𝑏𝑅𝑅𝑎𝑎) 

R is transitive if    (∀𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝐴𝐴 )    (𝑎𝑎𝑅𝑅𝑏𝑏 ∧ 𝑏𝑏𝑅𝑅𝑐𝑐)  → (𝑎𝑎𝑅𝑅𝑐𝑐); 

Definition 5. [14]  A binary relation on a set is said to be  an equivalence relation just in case 
it is reflexive, symmetric and transitive.  

If R is an equivalence relation on a set A, the equivalence class of an element a of A under 
the equivalence relation R is defined to be the set  

  [𝑎𝑎] = [𝑎𝑎]𝑅𝑅  =  {𝑏𝑏 ∈ 𝐴𝐴    |     𝑎𝑎𝑅𝑅𝑏𝑏  }    

Result:  [14] Let R be an equivalence relation on a set A. Then R partitions A into a 
collection of disjoint equivalence classes.  

Definition 6. [14] A partial ordering of a set A is a binary relation on a which is reflexive, 
antisymmetric and transitive. Usually (but not always) partial orderings are denoted by the 
symbol ≤ . 

A partially ordered set, or poset consist of a set A together with partial ordering  ≤   of A.  
More formally, we define the poset to be ordered pair (𝐴𝐴, ≤) . 

Definition 7. [7] We recall that in neutrosophy we have for an item <A> ,  its opposite 
<antiA>, and in between them their neutral <neutA>.  

We denoted by <nonA>=<neutA>U<antiA> , where U means union, and <nonA> means 
what is not<A>  Or <nonA> is refined/split into two parts: <neutA> and <antiA>. 

The neutrosophic triplet of<A> is: (<A>,<neutA>,<antiA>), with  
<nonA>=<neutA>U<antiA>. 

Definition 8. [7]  Let U be a universe of discourse, endowed with some well-defined laws, 
a non-empty set S ⊆U  and an Axiom α, defined on S, using these laws. Then:  

1) If all elements of S verify the axiom α, we have a Classical Axiom, or simply we say 
Axiom.  
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2) If some elements of S verify the axiom α and others do not, we have a NeutroAxiom 
(which is also called NeutAxiom).  

3) If no elements of S verify the axiom α, then we have an AntiAxiom.  

The Neutrosophic Triplet Axioms are: (Axiom, NeutroAxiom, AntiAxiom) with  

NeutroAxiom ⋃ AntiAxiom = NonAxiom, and NeutroAxiom ⋂ AntiAxiom = φ 
(empty set), where ⋂ means intersection. 

Theorem 9. [7] The Axiom is 100% true, the NeutroAxiom is partially true (its truth degree 
> 0) and partially false (its falsehood degree > 0), and the AntiAxiom is 100% false. 

Theorem 10. [7]: Let d: {Axiom, NeutroAxiom, AntiAxiom} → [0 ,1] represent the degree 
of negation function. The NeutroAxiom represents a degree of partial negation {d ∊ (0, 1)} 
of the Axiom, while the AntiAxiom represents a degree of total negation {d = 1} of the 
Axiom. 

We denote by  <A>= Axiom; <neutA>= NeutroAxiom (or NeutAxiom); <antiA>= 
AntiAxiom; and <nonA>= NonAxiom in the Neutrosophic Representation. 

Similarly, as in Neutrosophy, NonAxiom is refined/split into two parts: NeutroAxiom and 
AntiAxiom. 

Definition 11. [7] Let U be a universe of discourse, and a non-empty set ⊆ 𝑈𝑈 , endowed 
with a well-defined binary law *   on U. For any 𝑥𝑥, 𝑦𝑦 ∈ 𝑆𝑆    , one has 𝑥𝑥 ∗ 𝑦𝑦 ∈ 𝑆𝑆 . This is called 
Classical Binary Operation.                  If there exist at least  two elements 𝑎𝑎, 𝑏𝑏 ∈ 𝑆𝑆 such that 
𝑎𝑎 ∗ 𝑏𝑏 ∈ 𝑆𝑆 and there exist at least other two elements 𝑐𝑐, 𝑑𝑑 ∈ 𝑆𝑆 such that 𝑐𝑐 ∗ d ∉ 𝑆𝑆 then it is 
called Neutro Defined Binary Operation.  

 

 

Main result 

NeutroSets 
In this section we define a NeutroSet first time by using the definition of a single valued 
neutrosophic set and NeutroAlgebra. 
Definition 12. Let X be a space of points (some objects) with a generic element in X denoted 
by x.  We define a NeutroSet S in X with  

< <S>, <Neut S>, <Anti S> >  

where <S> is classic elements of S,  <Neut S> is the partial elements (a truth- membership 
function TS, an indeterminancy-membership function IS and a falsity-membership function 
FS ) of  S, and  <Anti S> is the non-elements of S.   <Neut S>= {(𝑇𝑇𝑆𝑆(𝑥𝑥), 𝐼𝐼𝑆𝑆(𝑥𝑥),  𝐹𝐹𝑆𝑆(𝑥𝑥))  ∶
      𝑥𝑥 ∈ 𝑆𝑆  } 

We know  𝑇𝑇𝑆𝑆(𝑥𝑥), 𝐼𝐼𝑆𝑆(𝑥𝑥) and 𝐹𝐹𝑆𝑆(𝑥𝑥)  are real standart or non standart subsets of ]0−, 1+[ . that 
is                 
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      𝑇𝑇𝑆𝑆: 𝑋𝑋 ⟶]0−, 1+[                      𝐼𝐼𝑆𝑆: 𝑋𝑋 ⟶]0−, 1+[         and    𝐹𝐹𝑆𝑆: 𝑋𝑋 ⟶]0−, 1+[ 

There is no restriction on the sum of 𝑇𝑇𝑆𝑆(𝑥𝑥), 𝐼𝐼𝑆𝑆(𝑥𝑥) and 𝐹𝐹𝑆𝑆(𝑥𝑥) so,  

                          0− ≤ 𝑠𝑠𝑢𝑢𝑝𝑝𝑇𝑇𝑆𝑆(𝑥𝑥) + 𝑠𝑠𝑢𝑢𝑝𝑝𝐼𝐼𝑆𝑆(𝑥𝑥) + 𝑠𝑠𝑢𝑢𝑝𝑝𝐹𝐹𝑆𝑆(𝑥𝑥) ≤ 3+ 

Example 13.  Let our space X be pieces of iron placed on A4 paper. When a material with 
a magnetic effect is placed in the middle of the paper, we will see that some iron pieces are 
affected by this magnetism and move. Let's define the iron pieces that stick to the material 
with this magnetic effect as a classical set. Therefore, the definition of the classical set is 
insufficient to distinguish between iron pieces affected by this material and iron pieces that 
are not affected at all. In this case, if we consider the neutrosophic cluster logic for the less 
affected iron pieces, we can exactly model the space we are working in with the modeling 
we call neutro cluster. The difference between the set newly defined here and the 
Neutrosophic set is that the known operations of the set apply in the same way to the 
operations on elements that definitely belong to the set and those that do not definitely belong 
to the set. Here, neutrosophic logic is used for uncertain situations.  The problem is modelled 
in Figure 1 below. In this Figure 1 , the entire A4 paper is modelled as the X space, the inner 
circle as the special material, the outer circle as the domain of the material, and the xi 's as 
the iron pieces on the paper. 

 

 

 

      X Space 

 

 

                   x23                                                                      X19                                                          x25                    x26 

                                X13                    x18 

                   x24                x11                              x1                           x20 

                                                                          x12           x2         x3     x4        x5                                                   x29  

                                                                                                                             x6          x7       x8              x9     x17 

              x30                                                             x14                        x10                                         

                            x28                             x15                           x16                          x21                                   x22                      x27 

 

 

 

 

Figure 1 
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Let a set S in X space be defined as the set of elements that are affected, unaffected, or 
containing uncertainty by the material that has a magnetic effect. Then S NeutroSet is 
defined by 

S= <<S Classical set>, <Neutrosophic Set>, <Anti S>>  

   =<<x1, x2, x3, x4, x5, x6, x7, x8, x9, x10>, 
<(x11,0.4,0.7,0.3),(x12,0.6,0.5,0.2),(x13,0.5,0.5,0.3),               
(x14,0.7,0.4,0.1),(x15,0.2,0.2,0.7),(x16,0.6,0.5,0.1),(x17,0.5,0.5,0.2),(x18,0.6,0.4,0.3),(x19,0.2,
0.2,0.8),(x20,0.7,0.1,0,4),      (x21,0.7,0.3,0.1),(x22,0.3,0.3,0.7 >,< x23, x24, x25, x26, x27, x28, x29, 
x30 >> 

Definition 14. The complement of a NeutroSet S is denoted by  SC and defined by 

                             < <AntiS>, <Neutc S>, <S> >   

where <Neutc S>={(1 − 𝑇𝑇𝑆𝑆(𝑥𝑥), 1 − 𝐼𝐼𝑆𝑆(𝑥𝑥),  1 − 𝐹𝐹𝑆𝑆(𝑥𝑥))  ∶       𝑥𝑥 ∈ 𝑆𝑆  }. 

Example 15. If NeutroSet S in Example 13 is taken, then the complement of a NeutroSet S 
is found as the set       

SC=<< x23, x24, x25, x26, x27, x28, x29, x30 >, 
<(x11,0.6,0.3,0.7),(x12,0.4,0.5,0.8),(x13,0.5,0.5,0.7),               
(x14,0.3,0.6,0.9),(x15,0.8,0.8,0.3),(x16,0.4,0.5,0.9),(x17,0.5,0.5,0.8),(x18,0.4,0.6,0.7),(x19,0.8,
0.8,0.2),(x20,0.3,0.9,0,6), (x21,0.3,0.7,0.9),(x22,0.7,0.7,0.3 >,<x1, x2, x3, x4, x5, x6, x7, x8, x9, 
x10>>.  

Proposition 16. The complement of the complement of a NeutroSet S is itself. That is (SC 
)C=S . 

Proof: It is obtain the easily from the Definition 14 .  

Definition 17.  Let W and S be two NeutroSets. If                                                                                                             

i)    < 𝑊𝑊 > ⊆ < 𝑆𝑆 >  and      < 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖 𝑆𝑆 > ⊆ < 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖 𝑊𝑊 >   
ii)    𝑖𝑖𝑛𝑛𝑓𝑓𝑇𝑇𝑊𝑊(𝑥𝑥) ≤ 𝑖𝑖𝑛𝑛𝑓𝑓𝑇𝑇𝑆𝑆(𝑥𝑥), 𝑠𝑠𝑢𝑢𝑝𝑝𝑇𝑇𝑊𝑊(𝑥𝑥) ≤ 𝑠𝑠𝑢𝑢𝑝𝑝𝑇𝑇𝑆𝑆(𝑥𝑥) 
iii)    𝑖𝑖𝑛𝑛𝑓𝑓𝐹𝐹𝑊𝑊(𝑥𝑥) ≤ 𝑖𝑖𝑛𝑛𝑓𝑓𝐹𝐹𝑆𝑆(𝑥𝑥), 𝑠𝑠𝑢𝑢𝑝𝑝𝐹𝐹𝑊𝑊(𝑥𝑥) ≤ 𝑠𝑠𝑢𝑢𝑝𝑝𝐹𝐹𝑆𝑆(𝑥𝑥) 
then W is a NeutroSubset of the NeutroSet S.  

Example 18. If NeutroSet S in Example 13 and W=<< x1, x2, x3, x4, x5>, 
<(x11,0.4,0.7,0.3),(x13,0.5,0.5,0.3),               
(x18,0.6,0.4,0.3),(x19,0.2,0.2,0.8),(x20,0.7,0.1,0,4)>,< x6, x7, x8, x9, x10, x23, x24, x25, x26, x27, 
x28, x29, x30>> is taken, then it is obtain that W is a NeutroSubset of the NeutroSet S. 

Definition 19.  Let W and S be two NeutroSets. The union of two NeutroSets is defined by  

< < 𝑊𝑊 ∪ 𝑆𝑆 >, < 𝑁𝑁𝑟𝑟𝑢𝑢𝑡𝑡(𝑊𝑊 ∪ 𝑆𝑆) >, < 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑊𝑊 ∪ 𝑆𝑆) >                  

where                                                 𝑇𝑇(𝑊𝑊∪𝑆𝑆) (𝑥𝑥) = max { 𝑇𝑇𝑤𝑤(𝑥𝑥), 𝑇𝑇𝑆𝑆(𝑥𝑥)}    

𝐼𝐼(𝑊𝑊∪𝑆𝑆) (𝑥𝑥) = max { 𝐼𝐼𝑤𝑤(𝑥𝑥), 𝐼𝐼𝑆𝑆(𝑥𝑥)}  
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𝐹𝐹(𝑊𝑊∪𝑆𝑆) (𝑥𝑥) = max {𝐹𝐹𝑤𝑤(𝑥𝑥), 𝐹𝐹𝑆𝑆(𝑥𝑥)}   

for all x in X. 

Example 20. Let X={a,b,d,e,f,g,m,x,y,c,t,z,k,h,j} be any space and let W, S be NeutroSets 
of X. If  

W=<<a,b,e,x,y>, <(c,0.5,0.4,0.3),(t,0.7,0.2,0.4),(z,0.3,0.4,0.6),(k,0.2,0.2,0.8)>,< d,f,g,m,>> 

S==<<a,d,f,m,x,>, <(c,0.6,0.5,0.2),(h,0.4,0.6,0.3),(j,0.4,0.6,0.5),(k,0.6,0.3,0.3)>,< 
b,e,y,g>> are taken 

then it is obtain that                                                           

Neutro( 𝑊𝑊 ∪
𝑆𝑆 )=<<a,b,e,x,y,d,f,m>,<(c,0.6,0.5,0.4),(t,0.7,0.2,0.4),(z,0.3,0.4,0.6),(k,0.6,0.3,0.8), 
(h,0.4,0.6,0.3),(j,0.4,0.6,0.5)>,< g>>. 

 

Corollary 21: 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑊𝑊 ∪ 𝑆𝑆) is not equal to 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑊𝑊) ∪ 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑆𝑆). 

Proof: Looking at Example 20, this result can be easily obtained. 

Definition 22.  Let W and S be two NeutroSets. The intersection of two NeutroSets is defined 
by  

< < 𝑊𝑊 ∩ 𝑆𝑆 >, < 𝑁𝑁𝑟𝑟𝑢𝑢𝑡𝑡(𝑊𝑊 ∩ 𝑆𝑆) >, < 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑊𝑊 ∩ 𝑆𝑆) >                  

where                                                 𝑇𝑇(𝑊𝑊∩𝑆𝑆) (𝑥𝑥) = min { 𝑇𝑇𝑤𝑤(𝑥𝑥), 𝑇𝑇𝑆𝑆(𝑥𝑥)}       

𝐼𝐼(𝑊𝑊∩𝑆𝑆) (𝑥𝑥) = min {𝐼𝐼𝑤𝑤(𝑥𝑥), 𝐼𝐼𝑆𝑆(𝑥𝑥)}   

𝐹𝐹(𝑊𝑊∩𝑆𝑆) (𝑥𝑥) = min {𝐹𝐹𝑤𝑤(𝑥𝑥), 𝐹𝐹𝑆𝑆(𝑥𝑥)}   

for all x in X. 

Example 23. Let X={a,b,d,e,f,g,m,x,y,c,t,z,k,h,j} be any space and let W, S be NeutroSets 
of X. If  

W=<<a,b,e,x,y>, <(c,0.5,0.4,0.3),(t,0.7,0.2,0.4),(z,0.3,0.4,0.6),(k,0.2,0.2,0.8)>,< d,f,g,m,>> 

S==<<a,d,f,m,x,>, <(c,0.6,0.5,0.2),(h,0.4,0.6,0.3),(j,0.4,0.6,0.5),(k,0.6,0.3,0.3)>,< 
b,e,y,g>> are taken 

then it is obtain that                                                           

Neutro(𝑊𝑊 ∩ 𝑆𝑆)=<<a,x>,<(c,0.5,0.4,0.2),(k,0.2,0.2,0.3)>,< b,d,e,f,g,m,y>>. 

Corollary 24: 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑊𝑊 ∩ 𝑆𝑆) is not equal to 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑊𝑊) ∩ 𝐴𝐴𝑛𝑛𝑡𝑡𝑖𝑖(𝑆𝑆). 

Proof: Looking at Example 23, this result can be easily obtained. 
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Properties Of NeutroSet Operations 

Let A, B, C  be NeutroSets in the universal NeutroSet U. Then we have   

i) (Commutativity)  𝐴𝐴 ∪ 𝐵𝐵 = 𝐵𝐵 ∪ 𝐴𝐴    ,  𝐴𝐴 ∩ 𝐵𝐵 = 𝐵𝐵 ∩ 𝐴𝐴  and 𝐴𝐴 × 𝐵𝐵 = 𝐵𝐵 × 𝐴𝐴   . 
ii) (Associativity) 𝐴𝐴 ∪ (𝐵𝐵 ∪ 𝐶𝐶) = (𝐴𝐴 ∪ 𝐵𝐵) ∪ 𝐶𝐶 ,  𝐴𝐴 ∩ (𝐵𝐵 ∩ 𝐶𝐶) = (𝐴𝐴 ∩ 𝐵𝐵) ∩ 𝐶𝐶  

and 𝐴𝐴 × (𝐵𝐵 × 𝐶𝐶) = (𝐴𝐴 × 𝐵𝐵) × 𝐶𝐶  . 
iii) (Distributivity)   𝐴𝐴 ∪ (𝐵𝐵 ∩ 𝐶𝐶) = (𝐴𝐴 ∪ 𝐵𝐵) ∩ (𝐴𝐴 ∪ 𝐶𝐶) ,   𝐴𝐴 ∩ (𝐵𝐵 ∪ 𝐶𝐶) = (𝐴𝐴 ∩

𝐵𝐵) ∪ (𝐴𝐴 ∩ 𝐶𝐶)   𝐴𝐴 ∩ 𝐵𝐵 = 𝐵𝐵 ∩ 𝐴𝐴  and 𝐴𝐴 × 𝐵𝐵 = 𝐵𝐵 × 𝐴𝐴   . 
iv) 𝐴𝐴 ∪ 𝐴𝐴 = 𝐴𝐴 ,  𝐴𝐴 ∩ 𝐴𝐴 = 𝐴𝐴 
v) 𝐴𝐴 ∪ ∅ = 𝐴𝐴 ,  𝐴𝐴 ∩ ∅ = ∅ , ∪ 𝑈𝑈 = 𝑈𝑈 , and  𝐴𝐴 ∩ 𝑈𝑈 = 𝐴𝐴  . 
vi) (De Morgan Laws)  (𝐴𝐴 ∪ 𝐵𝐵)𝑐𝑐 = 𝐴𝐴𝑐𝑐 ∩ 𝐵𝐵𝑐𝑐   and (𝐴𝐴 ∩ 𝐵𝐵)𝑐𝑐 = 𝐴𝐴𝑐𝑐 ∪ 𝐵𝐵𝑐𝑐  
vii) (𝐴𝐴𝑐𝑐)𝑐𝑐 = 𝐴𝐴. 
The above properties are easily obtained if the definitions of neutro sets are used. 

 

NeutroRelation    

In this section, we define a NeutroRelation by using the NeutroSet. 

 

Definition 25.   :    A and B are NeutroSets, the cartesian product of A and B is defined to 
be the NeutroSet  

𝐴𝐴 × 𝐵𝐵 =   {  (𝑎𝑎, 𝑏𝑏)  |   𝑎𝑎 ∈ 𝐴𝐴 ∧  𝑏𝑏 ∈ 𝐵𝐵   }   

More generally if  𝐴𝐴1 , 𝐴𝐴2 , 𝐴𝐴3 , … , 𝐴𝐴𝑛𝑛  are sets we define their cartesian product by  

 𝐴𝐴1 × 𝐴𝐴2 × 𝐴𝐴3 × … × 𝐴𝐴𝑛𝑛 = { (𝑎𝑎1 , 𝑎𝑎2 , … , 𝑎𝑎𝑛𝑛 )    |     𝑎𝑎1 ∈ 𝐴𝐴1 ,….,𝑎𝑎𝑛𝑛 ∈ 𝐴𝐴𝑛𝑛 }. 

Definition 26.  An a binary relation on a set A is defined to be a subset of × 𝐴𝐴 .  

Definition 27.  A n-ary relation on A , for 𝑛𝑛 > 1, is a subset of the n-fold cartesian product 
of 𝐴𝐴 × 𝐴𝐴 × … × 𝐴𝐴.  

Notice that an n-ary relation on A is a unary relation on the n-fold product of 𝐴𝐴 × 𝐴𝐴 × … × 𝐴𝐴. 

Example 28. Let X={a,b,d,e,f,g,m,x,y,c,t,z,k,h,j} be any space and let A=<<a,b,e,x,y>, 
<(c,0.5,0.4,0.3),(t,0.7,0.2,0.4),(z,0.3,0.4,0.6),(k,0.2,0.2,0.8)>,< d,f,g,m,>>   be NeutroSet of 
X.  Then a NeutroRelation  is defined  any subset of  the NeutroSubsets of 𝐴𝐴 × 𝐴𝐴 .  

 

Conclusions 

In the studies on NeutroAlgebra carried out so far, the classical set definition has been used 
and the algebraic structures related to the operations defined on this set have been examined. 
In this study, NeutroSet was defined for the first time. Additionally, this concept and its 
results are introduced with examples. Then, the concept of NeutroRelationship is defined 
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and its features are given with examples. By using these new concepts, some algebraic 
structures can be established and new studies can be carried out in the future.  
 

Future Research Directions 
 

The authors hope that the proposed the concept of NeotroSet can be applied to the definition 
of newly defined algebraic structures. 
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ABSTRACT 
In recent years, machine learning has been widely used for regression and 

classification problems in engineering, finance, agriculture, image recognition, Natural 
Language Processing (NLP), health, etc. With this interest, many studies have been 
conducted to increase efficiency and examine the impact of different perspectives on the 
learning process. However, few papers exist on using Neutrosophy with machine learning 
algorithms. The data preprocessing step is important for artificial neural networks to process 
data. Neutrosophy adds a different perspective to the data preprocessing step and offers a 
highly effective solution for handling noisy, corrupted, incomplete, ambiguous data. 
Neutrosophic Logic (NL) labeled data as true (T), indeterminacy (I), and false (F) in the data 
preprocessing step to create a neutrosophic space. Then, the hybrid structure is achieved by 
applying the desired machine learning methods. Promising results have been obtained using 
the concept of neutrosophy with machine learning algorithms in the computer field. In this 
paper, a literature review was conducted to analyze how neurosophic is used with machine 
learning algorithms and for which type of problems. 

Keywords: Neutrosophy, Machine learning, Artificial neural network. 

INTRODUCTION 

 
Several theories for uncertainty express situations where lack of information, truth, 

or falsity is uncertain. These theories are fuzzy, intuitionistic fuzzy, rough set, plithogenic 
sets, neutrosophy, etc. [1]. Neutrosophy was introduced by Florentin Smarandache in 1995. 
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Some statements are only partially true, not completely true for events and situations in our 
daily lives. This situation shows the opposite of the classical theorem, which states that it 
shows a 100% true situation in a space in any field of science [2]. Smarandache proposes the 
Neutro and Anti Theorem as an alternative to the classical theorem for any branch of science 
[3]. A neutrosophic set is a branch of neutrosophy that studies neutrality and the interaction 
of the ratios of neutrality. It calls the structure containing the relations and properties defined 
to determine the neutrosophic set of a frame, the resulting determination of which is called 
the Single-Valued Neutrosophic Set (SVNS). Neutrosophic sets are a generalization of 
intuitionistic fuzzy sets and fuzzy sets. While a Neutrosophic set (NS) corresponds to the 
general concept of sets in Neutrosophy, NL includes the concepts of true, false, and 
indeterminate, which are neutrosophic components. SVNS is a set obtained by 
systematically evaluating classical, fuzzy, and interval-valued fuzzy sets. With SVNS, 
properties of transactions and relationships are obtained [4].  

When dealing with unsupervised data, ambiguities can be encountered, which can be 
dealt with in practice through the concept of neutrosophy as long as there is a relationship 
between the data. However, Fuzzy Cognitive Maps (FCMs) are needed for Neutrosophic 
Cognitive Maps (NCMs). NCMs are created using neutrosophic fields, graphs, vector 
spaces, and matrices [5].  

The normalization, discretization, feature engineering, feature selection, noise 
reduction, outlier detection, normalization, missing value filling, and converting categorical 
values into numerical values that the algorithms can understand (many machine learning 
algorithms work with numerical values) [6]. From an engineering point of view, applying 
the neutrosophic set to data sets via set theory operators is realized in the data preprocessing 
step. Neutrosophic set theory can treat ambiguous, inconsistent, incomplete, ambiguous, and 
inaccurate datasets in computer science [7]. In deep learning, the results are usually labeled 
as true and false, while in neutrosophy, uncertainty is added to these situations, so the output 
layer must be set for three positions.  

Data, referred to as big data, is collected through many environments and devices 
with the development of the internet and technology. Thanks to the development of storage 
structures and software, enormous amounts of data with more attributes can be stored. 
However, reducing the attributes has become necessary due to the processing costs and time 
requirements of many attributes, and it can be done via NS. In addition, considering it as a 
hybrid of the rough set theory proposed by Broumi [8] and the Rough Neutrosophic Set 
(RNS), it provides a better solution than NS in uncertain and insufficient data sets [9]. NL 
introduces uncertainty by interpreting the outcomes of a situation as the human brain 
interprets them. In recent years, the academic community has witnessed growing research 
interests in uncertainty set theory [46-90]. Neutrosophic logic differs from intuitionistic 
fuzzy logic by distinguishing between absolute and relative truth. A new parallelized filter 
feature technique based on rough neutrosophic set theory (Sp-RSNT) is proposed by [9], 
integrating NS and RNS to handle uncertain and missing data while using the feature 
reduction method.  All NS, SVNS, NL, RNS, and Sp-RSNT help achieve promising results 
for some problems, efficiency, reducing loss, and accuracy.  

 
Very few studies review Neutrosophy and machine learning papers [10]. The main 

contribution of this paper is to provide information on how to use Neutrosophic approaches 
for which problem types and in which machine learning steps, summarized in four different 
groups. This paper will contribute to the studies that research the solution to uncertainties, 



                                                   
Neutrosophic SuperHyperAlgebra And New Types of Topologies 

135 
 

give an idea to researchers, and prevent wasting time; these groups answer the following 
questions. 

1. Which Neutrosophic methods are used in data preprocessing methods in the 
literature? 

2. Which type of machine learning is used in the literature with neutrosophy? 
3. Which types of methods like Neutrosophy, Neutrosophy with statistical methods, 

and Neutrosophy with machine learning are used in the literature? 
4. Which type of problems are used neutrosophy or machine learning with 

neutrosophy?  
 
The rest of this paper is organized as follows: In the ‘Literature’ section, reviewed 

studies that use the Neutrosophy approach to machine learning algorithms and the 
contribution of their results. Section 'Conclusion' includes recommendations and general 
conceptions. 

 
LITERATURE REVIEW 

In the literature, numerous studies show that Neutrosophy plays an important role in 
complex disease diagnosis with small data samples where machine learning methods are not 
used. A few of them, for example, use the neutrosophy refined (multiple) method with 
several rows in a table labeled T, F, and I [11]. Another study was conducted on a case study 
with a three-way decision model by creating Single-Valued Neutrosophic Probabilistic 
Rough Multisets (SVNPRMs) on two universes using SVNM and probabilistic rough sets 
(PRS) together [12], and a few additional studies are [13], [14]. 

 Neutrosophy with machine learning examples is mainly used in medical image 
detection for disease diagnosis [15]. Still, since there are cases where the disease is unclear, 
applying Neutrosophy has provided an advantage to machine learning methods in this 
problem. They used a multi-attribute group decision-making approach for single-valued 
triangular neutrosophic numbers (TNNs) [16] in combination with the Convolutional Neural 
Networks (CNN) method from Deep CNN (DCNNs) for classification and image 
segmentation of image data of a skin disease called melanoma [17].  

 
The study used a neutrosophic set and theory to convert medical images for 

diagnosing COVID 19 and different types of viruses from the grayscale image to the 
neutrosophic domain. They labeled the images as true, false, and ambiguous. They then 
experimented with these labeled data in Deep Transfer Learning (DTL) models on 
Restnet18, Googlenet, and Alexnet, achieving 87.1% accuracy, suggesting using 
neutrosophic sets [18]. Additionally, [18] using neutrosophy achieved 1% better results in 
classification error than [19] not using neutrosophy. In [20], the authors use spatial and 
neutrosophic descriptors with pre-trained network parameters (VGGNet, GoogleNet, 
AlexNet, ResNet, and DenseNet) as feature extractors with the CNN method. Then, using 
Long Short-Term Memory (LSTM) and Bi-directional LSTM (Bi-LSTM) network layers, 
they train the classification problem and obtain the results. The paper results from the 
proposed system are 96.3% accurate and 95.75% precise. 

Extract features using grayscale images because the image is too big. Adding 
neutrosophic closeness values [-1.1] to regularly distributed inputs ensured anomaly and 
linear separability. Then, Neutrosophic Support Vector Machine (N-SVM) was used to 
account for undefined or outliers input and compare the results of a conventional Support 
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Vector Machine (SVM). So, their N-SVM classification accuracy results outperform SVM 
[21]. 

They reformulated SVM for neutrosophy and proposed a solution to the sensitivity 
of SVM to noise and outliers. Their results show that their proposed SVM outperforms the 
traditional SVM in  classification accuracy and Matthews correlation coefficient (MCC) 
[22]. 

 
They [23] proposed a deep neural network base consisting of residual blocks with a 

softmax block after each block, segmented the image using the single-valued pentagonal 
neutrosophic number (SVPNN) method, and labeled malignant or non-malicious using 
machine learning. When they compared their proposed segmentation and classification 
method with K-Nearest Neighbor (KNN), YOLO, Decision Tree (DT), SVM, Multilayer 
Perceptron (MLP), Random Forest (RF), Bayesian Network (BN), and Naive Bayes (NB) 
algorithms, they obtained better results accuracy. Results found that the accuracy increased 
from 91% to 99.50% for the PH2 dataset, from 91.50% to 99.33% for ISIC 2017, from 
90.53% to 98.56% for ISIC 2018, and from 90.35% to 99.04% for ISIC 2019 with the data 
preprocessing step in 4 datasets. 

They used the Neutrosophic Graph Cut-based Segmentation (NGCS) method in the 
data preprocessing phase of cervical cancer data. They used the Neutrosophic C-Means 
Clustering Technique (NCMCT) to determine uncertainty membership with NGCS. As a 
result, they achieved better accuracy than the traditional Graph-cut technique by using 
Principal Component Analysis (PCA) on the dataset and SVM for classification [24]. 

With NS, the noisy data for each pixel is labeled as uncertainty, thus creating a two-
path network, which is also used in N-CNN. Weights were updated by merging these two 
parallel paths in CNN. They concluded that this new N-CNN resulted in better results than 
the traditional CNN [25]. 

 
Detecting anomalies in time series data collected with Industrial Internet of Things 

(IIoT) tools can offer a solution to both security problems and problems caused by the size 
of the data.  A heuristic-based neutrosophic model is proposed in [26] for the anomaly 
detection problem. In the proposed model, neutrosophy data preprocessing is used to widen 
the difference between abnormalities and normals, and the data set is processed so that the 
data set is represented by T, F, and I in the neutrosophic matrix. In the data preprocessing 
step, the normal distribution of the data was obtained with the neutrosophy method in the 
multi-feature data space. Since the data set is a time series, they conducted experiments using 
variable-length time windows. They proved that better results are obtained in anomaly 
detection with the unsupervised structure they call Time2Event. 

 
The hybrid structure of machine learning models with neutrosophy is used in 

sentiment analysis problems, especially [27], [28], [29]. Neutrosophic sentiment analysis 
models NLP, speech, and text sentiment, and it will also contribute to the studies when 
researching the solution to contain uncertainties [30]. Sentiment analysis tools divide posts 
on social media into two groups, labeled as positive and negative. Neutrosophic helps to 
understand social media better by adding a third status, which is neutral [28]. They proposed 
the concept of multi refined neutrosophic set (MRNS) and added the concepts of strong, 
weak, and uncertain to the existing concepts of T, F, and I by adding three elements for T 
and F. Thus, the set has seven features with different proportions of values [29].  
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In the preprocessing step, they [31] used Pre-trained Language Models (PLMs) 
(Bidirectional Encoder Representations from Transformers (BERT), A Lite BERT 
(ALBERT), A Robustly Optimized BERT Approach (RoBERTa), and MPNet) and Bi-
LSTM. After that, using SVNS values, they defined a membership function for each emotion 
as neutral, aggressive, and non-aggressive. They used clustering techniques, the Gaussian 
Mixture Model (GMM), and k-means. With their proposed model, they identified positive 
and negative extremes. They marked the data at a certain distance as neutral in K-means, 
saving time and resources and finding a result equivalent to the most recently developed 
models. 

 
The analytic network process (ANP), a generalization of the Analytic Hierarchy 

Process (AHP), is called Neutrosophic ANP (N-ANP) using SVNSs.  In data preprocessing, 
they created a network structure that captures the complex interdependencies and 
interrelationships between attributes from the questionnaires stored in matrices.  To obtain a 
suitable benchmark for the entities and NL and Multi-Criteria Decision-Making (MCDM), 
using self-attribute reduction associated with multi-attribute utility theory (MAUT), this data 
set used decision trees (DT), K-Nearest Neighbors (KNN) and NB algorithms [32]. They 
used a drone selection problem, MCDM, with decision-making applications for 
Neutrosophic, Evaluation of Mixed Data (EVAMIX), and CRITIC [33]. 

They [34] proposed the Neutrosophic Gamma Distribution (NGD) model for dealing 
with uncertain statistical datasets since gamma distribution is insufficient in some 
applications when dealing with uncertain data. They constructed an estimation framework 
to handle the uncertain parameters of the NGD, analyzed it with cooling system downtime 
data, and evaluated the Monte Carlo simulation. They concluded that the NGD is more 
flexible than the gamma distribution. 

Linear regression has traditionally been widely used in many fields with qualitative 
data. Linear regression, one of the regression analyses used in machine learning, is used 
when the data consists of one or more predictors and independent variables. The dependent 
variable or variables are predicted using independent variables [35].  

They introduced the concept of correlation and correlation coefficients for the 
uncertainty and imprecision of data using neutrosophic clusters [36]. Using a linear 
regression model, they then applied these coefficients and relationships to neutrosophic data 
[37]. 

They prepared the dataset unsupervised with NCM and FCM, worked on many 
different example problems, and did not use machine learning methods [5]. 

 
The most widely used machine learning methods with Neutrosophy papers are CNN 

[20], [25];  LSTM [20]; Support Vector Machine (SVM) [10], [21], [24], [22], [38]; N-SVM 
[21], [22]; NB [32]; Decision Trees (DT) [32]; MLP [39]; K-NN classifier [10], [32], [38]; 
Bi-LSTM [28], [31], [40]; K-Means [27], [31]; Gaussian Mixture Model (GMM) [31]; Gated 
Recurrent Units (GRU) [28], CNN Bi-LSTM [41], Bidirectional Encoder Representations 
from Transformers (BERT) [40], a multivalued neutrosophic convolutional LSTM (MVN-
ConvLSTM) [42], A Lite BERT (ALBERT) [40], A Robustly Optimised BERT Approach 
(RoBERTa) [40], Masked and Permuted Pre-training for Language Understanding (MPNet) 
[40]. 
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Table 1: Preprocessing methods of Neutrosophy 
Data preprocessing methods Type of Neutrosophy 

Classification NS and NL [7], TNN [17] 
Reducing the size of attributes through attribute 
selection 

Neutrosophic Cognitive Maps (NCM) [5], 
Rough  Neutrosophic Set Theory (Sp-RSNT) [9], 
NL- MAUT [32], MRSS [29] 

Handle noisy, corrupted, incomplete, and ambiguous 
data 

RNS [8], SVNS [4], [31], hybrid RNS-SVNS 
[43],N-ANP [32] 

Image segmentation NGCS and NCMCT [24], Triangular Neutrosophic 
Number (TNN) [17], SVPNN and PNN [23] 

Regression Neutrosophic regression [37] 
 
In Table 1, studies that include examples of the use of neutrosophy in the data preprocessing step are 

collected. 
Table 2: Type of machine learning 

Type of machine learning  
unsupervised [5], [17], [20], [25], [41] 
supervised [18], [21], [23], [24], [31], [32], [39], [40] 
Regression  

 
In Table 2, different learning algorithms are used depending on whether the data used, if labled is 

called supervised learning or unlabled is unsupervised learning Regression is used when the data are floating 
numbers. 

 
Table 3: Type of hybrid methods 

Type of methods  
Neutrosophy [11], [12], [13], [15], [17], [19], [26], [41] 
Neutrosophy with statistical methods [14], [34] 
Neutrosophy with machine learning [17], [18], [21], [23], [25], [28], [31], [32], [40], [41] 

 
Table 3 lists the papers where neutrosophy is used alone and hybrid with machine learning or statistical 
methods. 

Table 4: Type of problems 
Type of problem Neutrosophy Neutrosophy with machine learning 

Medical applications [11], [12], [13], [14], [15] [17], [18], [20], [21], [23], [24], [39] 
Image processing [17], [19], [24] [21], [23], [24], [25], [39] 
Time series dataset [26]  
Sentiment analysis (NLP, 
speech, and text ) 

[27], [28], [29] [31], [40], [41] 

Decision support systems [33] [32] 
Anomaly detection [26]  
IIoT  [26], [38] 
Instruction detection  [42] 
Discrimination  [22] 
Regression [44], [45]  

 
In Table 4 applying Neutrosophy to problems such as medical applications, image 
processing, time series dataset, instruction detection, sentiment analysis (NLP, speech and 
text), decision support systems, anomaly detection, IIoT and regression are grouped 
according to whether machine learning is used or not. 
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CONCLUSIONS 

Neutrosophy offers a remarkable solution as it provides a new perspective in data 
preprocessing and problem solving for many problems that can be solved with machine 
learning. It is an effective method as it surpasses traditional methods in many applications. 
This paper examines the use of Neutrosophic in machine learning algorithms at which stage 
and for which problems. These problems are medical applications image processing, time 
series dataset, sentiment analysis (NLP, speech, and text), decision support systems, 
anomaly detection, IIoT, instruction detection, discrimination, and regression. It has been 
applied in the data preprocessing step and by using it in to a few machine learning 
algorithms. In particular, different types of machine learning algorithms such as SVM, CNN, 
K-NN, MLP and LSTM are used. 

 

Abbreviations 

AHP: Analytic Hierarchy Process 

ANP: Analytic Network Process  

ALBERT: A Lite Bidirectional Encoder Representations from Transformers 

BERT: Bidirectional Encoder Representations from Transformers 

Bi-LSTM: Bi-directional Long Short-Term Memory  

BN: Bayesian Network 

CNN: Convolutional Neural Network  

DCNNs: Deep Convolutional Neural Networks 

DT: Decision Tree 

DTL: Deep Transfer Learning 

EVAMIX: Evaluation of Mixed Data 

F: False 

FCMs: Fuzzy Cognitive Maps 

GMM: Gaussian Mixture Model 

GRU: Gated Recurrent Units 

I: Indeterminacy 

IIoT: Industrial Internet of Things 

KNN: K-Nearest Neighbors 

LSTM: Long Short-Term Memory 

https://tureng.com/tr/turkce-ingilizce/abbreviations
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MCC: Matthews correlation coefficient 

MCDM: Multi-Criteria Decision-Making 

MLP: Multilayer Perceptron 

MPNet: Masked and Permuted Pre-training for Language Understanding 

MRNS: Multi Refined Neutrosophic Set 

NB: Naive Bayes 

NCMs: Neutrosophic Cognitive Maps 

NCMCT: Neutrosophic C-Means Clustering Technique 

NGCS: Neutrosophic Graph Cut-based Segmentation 

NGD: Neutrosophic Gamma Distribution 

NL: Neutrosophic logic 

NLP: Natural Language Processing 

NS: Neutrosophic set 

N-SVM: Neutrosophic Support Vector Machine 

PLMs: Pre-trained Language Models 

RF: Random Forest 

RoBERTa: Robustly Optimized BERT Approach 

RNS: Rough Neutrosophic Set  

Sp-RSNT: Parallelized Filter Feature Technique Based on Rough Neutrosophic Set Theory 

SVM: Support Vector Machine 

SVNPRMs: Single-Valued Neutrosophic Probabilistic Rough Multisets 

SVNS: Single-Valued Neutrosophic Set  

PCA: Principal Component Analysis 

PRS: Probabilistic Rough Sets 

T: True 

TNNs: Triangular Neutrosophic Numbers 
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Abstract 

In this study, we propose a novel decision-making method based on trapezoidal fuzzy 
multi-numbers and their different centroid points. The proposed method aims to handle 
decision problems involving multiple criteria or attributes, each characterized by fuzzy 
information in the form of trapezoidal fuzzy multi-numbers. To do this, we first give 
some basic notions and operations of trapezoidal fuzzy multi-numbers (TFM-numbers). 
Secondly, we give different centroid points of TFM-numbers including desired 
properties. Then, we give an algorithm to solve multi-criteria decision-making problems 
by using proposed centroid points under TFM-numbers. Finally, we give an application 
to show the usage of the method on a real-life problem with TFM-numbers. 

Keywords: decision-making, fuzzy logic, trapezoidal fuzzy multi-numbers, 
centroid points, uncertainty. 

1. Introduction 

 
Fuzzy set theory, introduced by Zadeh [46] in 1965, extends the classical set 

theory to handle uncertain information. Then, it has been applied in various fields. For 
example, transportation planning [27], agro-industrial engineering, technology 
applications [19], education [30, 31], and law [5]. In time, some special types of fuzzy 
sets have been introduced such as fuzzy numbers with operations proposed and their 
relationships studied in [13]. An overview of works on fuzzy numbers provided and 
extended known operations of fuzzy sets given in [14]. The median method introduced 
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to find the best solution for a transportation problem in [39]. Yun et al. [45] generalized 
triangular fuzzy numbers based on Zadeh's extension principle. Another examples on 
trapezoidal and triangular fuzzy numbers can be found in [1, 2, 6, 7, 10, 11, 12, 15, 20, 
25, 26]. 

Due to the membership values of fuzzy sets being in [0,1], they may not provide 
complete information in some problems where each element can have different 
membership values. Therefore, a different generalization of fuzzy sets called multi-
fuzzy sets (fuzzy bags) was introduced by Yager [44]. Then, Miyamoto [21, 22], 
Sebastian, and Ramakrishnan [32-34] further expanded Yager's concept to handle 
uncertainty. Also, there have been numerous studies on multi-fuzzy sets, such as [23, 
24, 35-38, 40, 41]. In 2018, by using the real number set ℝ, as a universe set in fuzzy 
multi-sets,  Ulucay et al. [42] developed trapezoidal fuzzy multi-numbers. Then, many 
authors have studied TFM-numbers. For example, on similarity measures [17, 28, 29, 
43], on distance measures [12,17] and on aggregation operators [12,18]. 

           As we know, no studies have been conducted on TFM-numbers related to centroid 
points and circumcenter of the centroids. To fill this gap, we build this paper. 

             2. Preliminaries 

In this section, we give some basic notions related to fuzzy set, fuzzy number, fuzzy multi-
set, and trapezoidal fuzzy multi-set which are needed for the rest of the paper. 
 
Definition 2.1  [46] Let 𝑋𝑋 be a non-empty set. A fuzzy set 𝐹𝐹 on 𝑋𝑋 is defined as follows: 

𝐹𝐹 = ��𝑥𝑥, 𝜇𝜇𝐹𝐹(𝑥𝑥)�: 𝑥𝑥 ∈ 𝑋𝑋�  

where 𝜇𝜇𝐹𝐹:𝑋𝑋 →[0,1] for 𝑥𝑥 ∈ 𝑋𝑋. 

Definition 2.2 [47] A t -norm is a function 𝑡𝑡: [0,1] × [0,1] → [0,1] which satisfies the 

following properties: 

i. 𝑡𝑡(0,0) = 0 and 𝑡𝑡(𝜇𝜇𝑋𝑋1(𝑥𝑥),1) = 𝑡𝑡(1, 𝜇𝜇𝑋𝑋1(𝑥𝑥)) = 𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸 

ii. If 𝜇𝜇𝑋𝑋1(𝑥𝑥) ≤ 𝜇𝜇𝑋𝑋3(𝑥𝑥) and 𝜇𝜇𝑋𝑋2(𝑥𝑥) ≤ 𝜇𝜇𝑋𝑋4(𝑥𝑥), then 𝑡𝑡(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝜇𝜇𝑋𝑋2(𝑥𝑥)) ≤ 𝑡𝑡(𝜇𝜇𝑋𝑋3(𝑥𝑥), 𝜇𝜇𝑋𝑋4(𝑥𝑥)) 

iii. 𝑡𝑡(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝜇𝜇𝑋𝑋2(𝑥𝑥)) = 𝑡𝑡(𝜇𝜇𝑋𝑋2(𝑥𝑥), 𝜇𝜇𝑋𝑋1(𝑥𝑥)) 

iv. 𝑡𝑡(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝑡𝑡(𝜇𝜇𝑋𝑋2(𝑥𝑥), 𝜇𝜇𝑋𝑋3(𝑥𝑥))) = 𝑡𝑡(𝑡𝑡(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝜇𝜇𝑋𝑋2(𝑥𝑥), 𝜇𝜇𝑋𝑋3(𝑥𝑥)) 

 

Definition 2.3 [47] A s-norm is a function  𝑠𝑠: [0,1] × [0,1] → [0,1]  which satisfies the 

following properties: 

i. 𝑠𝑠(1,1) = 1  and  𝑠𝑠(𝜇𝜇𝑋𝑋1(𝑥𝑥),0) = 𝑠𝑠(0, 𝜇𝜇𝑋𝑋1(𝑥𝑥)) = 𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝑥𝑥 ∈ 𝐸𝐸 
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ii. If 𝜇𝜇𝑋𝑋1(𝑥𝑥) ≤ 𝜇𝜇𝑋𝑋3(𝑥𝑥)  and 𝜇𝜇𝑋𝑋2(𝑥𝑥) ≤ 𝜇𝜇𝑋𝑋4(𝑥𝑥) , then 𝑠𝑠(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝜇𝜇𝑋𝑋2(𝑥𝑥)) ≤

𝑠𝑠(𝜇𝜇𝑋𝑋3(𝑥𝑥), 𝜇𝜇𝑋𝑋4(𝑥𝑥)) 

iii. 𝑠𝑠(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝜇𝜇𝑋𝑋2(𝑥𝑥)) = 𝑠𝑠(𝜇𝜇𝑋𝑋2(𝑥𝑥), 𝜇𝜇𝑋𝑋1(𝑥𝑥)) 

iv. 𝑠𝑠(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝑠𝑠(𝜇𝜇𝑋𝑋2(𝑥𝑥), 𝜇𝜇𝑋𝑋3(𝑥𝑥))) = 𝑠𝑠(𝑠𝑠(𝜇𝜇𝑋𝑋1(𝑥𝑥), 𝜇𝜇𝑋𝑋2)(𝑥𝑥), 𝜇𝜇𝑋𝑋3(𝑥𝑥)) 

 

Definition 2.4 [16] Let  𝜂𝜂𝐴𝐴 ∈ [0,1]  and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 ∈ ℝ such that 𝑎𝑎 ≤ 𝑏𝑏 ≤ 𝑐𝑐 ≤ 𝑑𝑑 . Then, a 
generalized trapezoidal fuzzy number (GTF-number) 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴〉 is a special fuzzy 
set on the real number set ℝ, whose membership functions are defined as follows: 

 𝜇𝜇𝐴𝐴(𝑥𝑥) = �

(𝑥𝑥 − 𝑎𝑎)𝜂𝜂𝐴𝐴/(𝑏𝑏 − 𝑎𝑎) 𝑎𝑎 ≤ 𝑥𝑥 < 𝑏𝑏
𝜂𝜂𝐴𝐴 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐
(𝑑𝑑 − 𝑥𝑥)𝜂𝜂𝐴𝐴/(𝑑𝑑 − 𝑐𝑐) 𝑐𝑐 < 𝑥𝑥 ≤ 𝑑𝑑
0 𝑜𝑜𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑟𝑟

 

If  𝜂𝜂𝐴𝐴 = 1, then A is called a trapezoidal fuzzy number and denoted by 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑)〉. 

Definition 2.5 [8] Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴〉  be a GTF-number with its membership function 
𝜂𝜂𝐴𝐴(𝑥𝑥). Centroid point of 𝐴𝐴 is denoted by C(x(A), y(A)) and given as follows: 

𝑥𝑥(𝐴𝐴) =
∫𝑏𝑏

𝑎𝑎 𝑥𝑥 (𝑥𝑥−𝑎𝑎)𝜂𝜂𝐴𝐴
(𝑏𝑏−𝑎𝑎)

𝑑𝑑𝑥𝑥 + ∫𝑐𝑐
𝑏𝑏 𝜂𝜂𝐴𝐴𝑥𝑥𝑑𝑑𝑥𝑥 + ∫𝑑𝑑

𝑐𝑐 𝑥𝑥 (𝑑𝑑−𝑥𝑥)𝜂𝜂𝐴𝐴
(𝑑𝑑−𝑐𝑐)

𝑑𝑑𝑥𝑥

∫𝑏𝑏
𝑎𝑎

(𝑥𝑥−𝑎𝑎)𝜂𝜂𝐴𝐴
(𝑏𝑏−𝑎𝑎)

𝑑𝑑𝑥𝑥 + ∫𝑐𝑐
𝑏𝑏 𝜂𝜂𝐴𝐴𝑑𝑑𝑥𝑥 + ∫𝑑𝑑

𝑐𝑐
(𝑑𝑑−𝑥𝑥)𝜂𝜂𝐴𝐴

(𝑑𝑑−𝑐𝑐)
𝑑𝑑𝑥𝑥

, 

𝑦𝑦(𝐴𝐴) =
∫𝜂𝜂𝐴𝐴

0 𝑦𝑦 𝑦𝑦(𝑏𝑏−𝑎𝑎)+𝑎𝑎𝜂𝜂𝐴𝐴
𝜂𝜂𝐴𝐴

𝑑𝑑𝑦𝑦 − ∫𝜂𝜂𝐴𝐴
0 𝑦𝑦 𝑑𝑑𝜂𝜂𝐴𝐴−(𝑑𝑑−𝑐𝑐)𝜂𝜂𝐴𝐴

𝜂𝜂𝐴𝐴
𝑑𝑑𝑦𝑦

∫𝜂𝜂𝐴𝐴
0

𝑦𝑦(𝑏𝑏−𝑎𝑎)+𝑎𝑎𝜂𝜂𝐴𝐴
𝜂𝜂𝐴𝐴

𝑑𝑑𝑦𝑦 − ∫𝜂𝜂𝐴𝐴
0

𝑑𝑑𝜂𝜂𝐴𝐴−(𝑑𝑑−𝑐𝑐)𝜂𝜂𝐴𝐴
𝜂𝜂𝐴𝐴

𝑑𝑑𝑦𝑦
 

Theorem 2.6 [8] Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴〉  be a GTF-number. Centroid point of 𝐴𝐴 , 
C(x(A), y(A)),  computed as follows: 

𝑥𝑥(𝐴𝐴) =
(𝑐𝑐2 + 𝑑𝑑2 − 𝑎𝑎2 − 𝑏𝑏2 + 𝑐𝑐𝑑𝑑 − 𝑎𝑎𝑏𝑏)

3(𝑐𝑐 + 𝑑𝑑 − 𝑎𝑎 − 𝑏𝑏)
, 𝑦𝑦(𝐴𝐴) =

𝜂𝜂𝐴𝐴(2𝑏𝑏 + 𝑎𝑎 − 𝑑𝑑 − 2𝑐𝑐)
3(𝑏𝑏 + 𝑎𝑎 − 𝑑𝑑 − 𝑐𝑐)

 

Definition 2.7 [9] Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴〉  be a GTF-number. Score of A, denoted by s(A), 
is defined  as follows: 

s(A)= x(A).y(A) 

where 
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𝑥𝑥(𝐴𝐴) =
∫𝑏𝑏

𝑎𝑎 𝑥𝑥 (𝑥𝑥−𝑎𝑎)𝜂𝜂𝐴𝐴
(𝑏𝑏−𝑎𝑎)

𝑑𝑑𝑥𝑥 + ∫𝑐𝑐
𝑏𝑏 𝜂𝜂𝐴𝐴𝑥𝑥𝑑𝑑𝑥𝑥 + ∫𝑑𝑑

𝑐𝑐 𝑥𝑥 (𝑑𝑑−𝑥𝑥)𝜂𝜂𝐴𝐴
(𝑑𝑑−𝑐𝑐)

𝑑𝑑𝑥𝑥

∫𝑏𝑏
𝑎𝑎

(𝑥𝑥−𝑎𝑎)𝜂𝜂𝐴𝐴
(𝑏𝑏−𝑎𝑎)

𝑑𝑑𝑥𝑥 + ∫𝑐𝑐
𝑏𝑏 𝜂𝜂𝐴𝐴𝑑𝑑𝑥𝑥 + ∫𝑑𝑑

𝑐𝑐
(𝑑𝑑−𝑥𝑥)𝜂𝜂𝐴𝐴

(𝑑𝑑−𝑐𝑐)
𝑑𝑑𝑥𝑥

, 

𝑦𝑦(𝐴𝐴) =
∫𝜂𝜂𝐴𝐴

0 𝑦𝑦 𝑦𝑦(𝑏𝑏−𝑎𝑎)+𝑎𝑎𝜂𝜂𝐴𝐴
𝜂𝜂𝐴𝐴

𝑑𝑑𝑦𝑦 − ∫𝜂𝜂𝐴𝐴
0 𝑦𝑦 𝑑𝑑𝜂𝜂𝐴𝐴−(𝑑𝑑−𝑐𝑐)𝜂𝜂𝐴𝐴

𝜂𝜂𝐴𝐴
𝑑𝑑𝑦𝑦

∫𝜂𝜂𝐴𝐴
0

𝑦𝑦(𝑏𝑏−𝑎𝑎)+𝑎𝑎𝜂𝜂𝐴𝐴
𝜂𝜂𝐴𝐴

𝑑𝑑𝑦𝑦 − ∫𝜂𝜂𝐴𝐴
0

𝑑𝑑𝜂𝜂𝐴𝐴−(𝑑𝑑−𝑐𝑐)𝜂𝜂𝐴𝐴
𝜂𝜂𝐴𝐴

𝑑𝑑𝑦𝑦
 

 

Definition 2.8 [32] Let 𝑋𝑋 be a non-empty set. A fuzzy-multi set G on 𝑋𝑋 is defined as 
follows: 

𝐺𝐺 = ��𝑥𝑥, 𝜇𝜇𝐺𝐺
1 (𝑥𝑥), 𝜇𝜇𝐺𝐺

2(𝑥𝑥), … , 𝜇𝜇𝐺𝐺
𝑖𝑖 (𝑥𝑥), . . . �: 𝑥𝑥 ∈ 𝑋𝑋�  

where  𝜇𝜇𝐺𝐺
𝑖𝑖 : 𝑋𝑋 → [0, 1] for all i ∈ {1, 2, ..., p} and 𝑥𝑥 ∈ 𝑋𝑋. 

Definition 2.9 [42] Let 𝜂𝜂𝐴𝐴
𝑖𝑖 ∈ [0,1] (𝑖𝑖 ∈ {1,2, . . . , 𝑇𝑇}) and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑 ∈ ℝ such that 𝑎𝑎 ≤ 𝑏𝑏 ≤

𝑐𝑐 ≤ 𝑑𝑑. Then, a trapezoidal fuzzy multi-number (TFM-number) 𝐴𝐴 =

〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉 is a special fuzzy multi-set on the real number set ℝ, whose 

membership functions are defined as follows: 

 𝜇𝜇𝐴𝐴
𝑖𝑖 (𝑥𝑥) =

⎩
⎪
⎨

⎪
⎧

(𝑥𝑥−𝑎𝑎)
(𝑏𝑏−𝑎𝑎)

𝜂𝜂𝐴𝐴
𝑖𝑖 , 𝑎𝑎 ≤ 𝑥𝑥 < 𝑏𝑏

𝜂𝜂𝐴𝐴
𝑖𝑖 , 𝑏𝑏 ≤ 𝑥𝑥 ≤ 𝑐𝑐

(𝑑𝑑−𝑥𝑥)
(𝑑𝑑−𝑐𝑐)

𝜂𝜂𝐴𝐴
𝑖𝑖 , 𝑐𝑐 < 𝑥𝑥 ≤ 𝑑𝑑

0, 𝑜𝑜𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑟𝑟,

 

Definition 2.10 [42] Let 𝐴𝐴1 = 〈(𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1); 𝜂𝜂𝐴𝐴1
1 , 𝜂𝜂𝐴𝐴1

2 , … , 𝜂𝜂𝐴𝐴1
𝑇𝑇 〉 and  

 𝐴𝐴2 = 〈(𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2); 𝜂𝜂𝐴𝐴2
1 , 𝜂𝜂𝐴𝐴2

2 , . . . , 𝜂𝜂𝐴𝐴2
𝑇𝑇 〉 be two TFM-numbers and 𝛾𝛾 ≥ 0 be any real 

number. Then, 

i. 𝐴𝐴1 + 𝐴𝐴2 = 〈(𝑎𝑎1 + 𝑎𝑎2, 𝑏𝑏1 + 𝑏𝑏2, 𝑐𝑐1 + 𝑐𝑐2, 𝑑𝑑1 + 𝑑𝑑2); 

                              𝜂𝜂𝐴𝐴1
1 + 𝜂𝜂𝐴𝐴2

1 − 𝜂𝜂𝐴𝐴1
1 𝜂𝜂𝐴𝐴2

1 , 𝑠𝑠 𝜂𝜂𝐴𝐴1
2 + 𝜂𝜂𝐴𝐴2

2 − 𝜂𝜂𝐴𝐴1
2 𝜂𝜂𝐴𝐴2

2 , … , 𝜂𝜂𝐴𝐴1
𝑇𝑇 + 𝜂𝜂𝐴𝐴2

𝑇𝑇 − 𝜂𝜂𝐴𝐴1
𝑇𝑇 𝜂𝜂𝐴𝐴2

𝑇𝑇 〉 

ii. 𝐴𝐴1. 𝐴𝐴2 =

⎩
⎪
⎨

⎪
⎧〈(𝑎𝑎1𝑎𝑎2, 𝑏𝑏1𝑏𝑏2, 𝑐𝑐1𝑐𝑐2, 𝑑𝑑1𝑑𝑑2); 𝜂𝜂𝐴𝐴1

1 𝜂𝜂𝐴𝐴2
1 , 𝜂𝜂𝐴𝐴1

2 𝜂𝜂𝐴𝐴2
2 , . . . , 𝜂𝜂𝐴𝐴1

𝑇𝑇 𝜂𝜂𝐴𝐴2
𝑇𝑇 〉  (𝑑𝑑1 > 0, 𝑑𝑑2 > 0)

〈(𝑎𝑎1𝑑𝑑2, 𝑏𝑏1𝑐𝑐2, 𝑐𝑐1𝑏𝑏2, 𝑑𝑑1𝑎𝑎2); 𝜂𝜂𝐴𝐴1
1 𝜂𝜂𝐴𝐴2

1 , 𝜂𝜂𝐴𝐴1
2 𝜂𝜂𝐴𝐴2

2 , . . . , 𝜂𝜂𝐴𝐴1
𝑇𝑇 𝜂𝜂𝐴𝐴2

𝑇𝑇 〉  (𝑑𝑑1 < 0, 𝑑𝑑2 > 0)
〈(𝑑𝑑1𝑑𝑑2, 𝑐𝑐1𝑐𝑐2, 𝑏𝑏1𝑏𝑏2, 𝑎𝑎1𝑎𝑎2); 𝜂𝜂𝐴𝐴1

1 𝜂𝜂𝐴𝐴2
1 , 𝜂𝜂𝐴𝐴1

2 𝜂𝜂𝐴𝐴2
2 , . . . , 𝜂𝜂𝐴𝐴1

𝑇𝑇 𝜂𝜂𝐴𝐴2
𝑇𝑇 〉  (𝑑𝑑1 < 0, 𝑑𝑑2 < 0)
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iii. 𝛾𝛾𝐴𝐴1 = 〈(𝛾𝛾𝑎𝑎1, 𝛾𝛾𝑏𝑏1, 𝛾𝛾𝑐𝑐1, 𝛾𝛾𝑑𝑑1); 1 − (1 − 𝜂𝜂𝐴𝐴1
1 )𝛾𝛾, 1 − (1 − 𝜂𝜂𝐴𝐴1

2 )𝛾𝛾, … ,1 − (1 − 𝜂𝜂𝐴𝐴1
𝑇𝑇 )𝛾𝛾. 

iv. 𝐴𝐴1
𝛾𝛾 = 〈(𝑎𝑎1

𝛾𝛾, 𝑏𝑏1
𝛾𝛾, 𝑐𝑐1

𝛾𝛾, 𝑑𝑑1
𝛾𝛾); (𝜂𝜂𝐴𝐴1

1 )𝛾𝛾, (𝜂𝜂𝐴𝐴1
2 )𝛾𝛾, … , (𝜂𝜂𝐴𝐴1

𝑇𝑇 )𝛾𝛾〉 

 

Definition 2.11 [42]  Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  be a TFM-number. Then, 

i. If 𝑎𝑎 > 0, A is called a positive TFM-number, 

ii. If 𝑑𝑑 > 0, A is called a negative TFM-number, 

iii. If 𝑎𝑎 < 0 and 𝑑𝑑 > 0, A is called neither a positive nor negative TFM-number. 

 

Throughout the paper, we will work on positive TFM-numbers. 

Definition 2.12  Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  be a TFM-number. Centroid points of 

𝐴𝐴 is given as follows: 

(𝐶𝐶1(𝑥𝑥1(𝐴𝐴), 𝑦𝑦1(𝐴𝐴)), 𝐶𝐶2(𝑥𝑥2(𝐴𝐴), 𝑦𝑦2(𝐴𝐴)), … , 𝐶𝐶𝑇𝑇(𝑥𝑥𝑇𝑇(𝐴𝐴), 𝑦𝑦𝑇𝑇(𝐴𝐴))) 

where 

       𝑥𝑥𝑖𝑖(𝐴𝐴) =
∫𝑏𝑏

𝑎𝑎 𝑥𝑥
(𝑥𝑥−𝑎𝑎)𝜂𝜂𝐴𝐴

𝑖𝑖

(𝑏𝑏−𝑎𝑎) 𝑑𝑑𝑥𝑥+∫𝑐𝑐
𝑏𝑏 𝜂𝜂𝐴𝐴

𝑖𝑖 𝑥𝑥𝑑𝑑𝑥𝑥+∫𝑑𝑑
𝑐𝑐 𝑥𝑥

(𝑑𝑑−𝑥𝑥)𝜂𝜂𝐴𝐴
𝑖𝑖

(𝑑𝑑−𝑐𝑐) 𝑑𝑑𝑥𝑥

∫𝑏𝑏
𝑎𝑎

(𝑥𝑥−𝑎𝑎)𝜂𝜂𝐴𝐴
𝑖𝑖

(𝑏𝑏−𝑎𝑎) 𝑑𝑑𝑥𝑥+∫𝑐𝑐
𝑏𝑏 𝜂𝜂𝐴𝐴

𝑖𝑖 𝑑𝑑𝑥𝑥+∫𝑑𝑑
𝑐𝑐

(𝑑𝑑−𝑥𝑥)𝜂𝜂𝐴𝐴
𝑖𝑖

(𝑑𝑑−𝑐𝑐) 𝑑𝑑𝑥𝑥
, (𝑖𝑖 = 1,2, . . . , 𝑇𝑇), 

         𝑦𝑦𝑖𝑖(𝐴𝐴) =
∫𝜂𝜂𝐴𝐴

𝑖𝑖

0 𝑦𝑦
𝑦𝑦(𝑏𝑏−𝑎𝑎)+𝑎𝑎𝜂𝜂𝐴𝐴

𝑖𝑖

𝜂𝜂𝐴𝐴
𝑖𝑖 𝑑𝑑𝑦𝑦−∫𝜂𝜂𝐴𝐴

𝑖𝑖

0 𝑦𝑦
𝑑𝑑𝜂𝜂𝐴𝐴

𝑖𝑖 −(𝑑𝑑−𝑐𝑐)𝜂𝜂𝐴𝐴
𝑖𝑖

𝜂𝜂𝐴𝐴
𝑖𝑖 𝑑𝑑𝑦𝑦

∫𝜂𝜂𝐴𝐴
𝑖𝑖

0
𝑦𝑦(𝑏𝑏−𝑎𝑎)+𝑎𝑎𝜂𝜂𝐴𝐴

𝑖𝑖

𝜂𝜂𝐴𝐴
𝑖𝑖 𝑑𝑑𝑦𝑦−∫𝜂𝜂𝐴𝐴

𝑖𝑖
0

𝑑𝑑𝜂𝜂𝐴𝐴
𝑖𝑖 −(𝑑𝑑−𝑐𝑐)𝜂𝜂𝐴𝐴

𝑖𝑖

𝜂𝜂𝐴𝐴
𝑖𝑖 𝑑𝑑𝑦𝑦

,  (𝑖𝑖 = 1,2, . . . , 𝑇𝑇) 

Theorem 2.13  Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  be a TFM-number. Centroid points of 

𝐴𝐴, denoted by (𝐶𝐶1(𝑥𝑥1(𝐴𝐴), 𝑦𝑦1(𝐴𝐴)), 𝐶𝐶2(𝑥𝑥2(𝐴𝐴), 𝑦𝑦2(𝐴𝐴)), … , 𝐶𝐶𝑇𝑇(𝑥𝑥𝑇𝑇(𝐴𝐴), 𝑦𝑦𝑇𝑇(𝐴𝐴)))  is computed as 

follows: 

       𝑥𝑥𝑖𝑖(𝐴𝐴) = (𝑐𝑐2+𝑑𝑑2−𝑎𝑎2−𝑏𝑏2+𝑐𝑐𝑑𝑑−𝑎𝑎𝑏𝑏)
3(𝑐𝑐+𝑑𝑑−𝑎𝑎−𝑏𝑏)

,  𝑦𝑦𝑖𝑖(𝐴𝐴) = 𝜂𝜂𝐴𝐴
𝑖𝑖 (2𝑏𝑏+𝑎𝑎−𝑑𝑑−2𝑐𝑐)
3(𝑎𝑎+𝑏𝑏−𝑑𝑑−𝑐𝑐)

,  (𝑖𝑖 = 1,2, . . . , 𝑇𝑇) 

Definition 2.14 [42] Let 𝐴𝐴𝑖𝑖 = 〈(𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 , 𝑐𝑐𝑖𝑖, 𝑑𝑑𝑖𝑖); 𝜂𝜂𝐴𝐴𝑖𝑖
1 , 𝜂𝜂𝐴𝐴𝑖𝑖

2 , . . . , 𝜂𝜂𝐴𝐴𝑖𝑖
𝑇𝑇 〉   be a collection of TFM-

numbers and 𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑛𝑛)𝑇𝑇 their weight vector. Then, the trapezoidal fuzzy multi-

geometric operator (𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺) is defined as follows: 

𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴1, 𝐴𝐴2, . . . , 𝐴𝐴𝑛𝑛) = 𝐴𝐴1
𝑤𝑤1 x 𝐴𝐴2

𝑤𝑤2 x … x 𝐴𝐴𝑛𝑛
𝑤𝑤𝑛𝑛  
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Theorem 2.15 [42] Let 𝐴𝐴𝑖𝑖 = 〈(𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖, 𝑑𝑑𝑖𝑖); 𝜂𝜂𝐴𝐴𝑖𝑖
1 , 𝜂𝜂𝐴𝐴𝑖𝑖

2 , . . . , 𝜂𝜂𝐴𝐴𝑖𝑖
𝑇𝑇 〉   be a collection of TFM-

numbers and 𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, . . . , 𝑒𝑒𝑛𝑛)𝑇𝑇  their weight vector. Aggregated value by using the 
TFM weighted geometric (𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺 ) operator is also a TFM-number and computed as 
follows: 

𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴1, 𝐴𝐴2, … , 𝐴𝐴𝑛𝑛) 

=  〈��
𝑛𝑛

𝑖𝑖=1

𝑎𝑎𝑖𝑖
𝑤𝑤𝑖𝑖 , �

𝑛𝑛

𝑖𝑖=1

𝑏𝑏𝑖𝑖
𝑤𝑤𝑖𝑖 , �

𝑛𝑛

𝑖𝑖=1

𝑐𝑐𝑖𝑖
𝑤𝑤𝑖𝑖 , �

𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑖𝑖
𝑤𝑤𝑖𝑖� ; �

𝑛𝑛

𝑖𝑖=1

(𝜂𝜂𝐴𝐴𝑖𝑖
1 )𝑤𝑤𝑖𝑖 , �

𝑛𝑛

𝑖𝑖=1

(𝜂𝜂𝐴𝐴𝑖𝑖
2 )𝑤𝑤𝑖𝑖 , . . . , �

𝑛𝑛

𝑖𝑖=1

(𝜂𝜂𝐴𝐴𝑖𝑖
𝑇𝑇 )𝑤𝑤𝑖𝑖〉 

 

              3. Some Centroid Point of TFM-numbers  
 

In this section, we propose some novel centroid point methods of TFM-numbers for 
decision-making problems. Firstly, we propose a method by inspiring the area of a rectangle 
composed of centroid points. Then, we give another method based on the distance between 
the centroid and the zero point. In addition, a new method given based on the spread of the 
TFM-numbers. Afterward, we use the circumcenter of the centroids by dividing the given 
TFM-number into three parts, two triangles and one rectangle. Then, we use the distance 
between the circumcenter and centroid to rank TFM-numbers. Lastly, we present a method 
including the centroid of the centroids of TFM-numbers. 

The following definition firstly proposed by Chu and Tsao [9] for trapezoidal fuzzy numbers 
and triangular fuzzy numbers. We extended the definition to TFM-numbers as follows: 

Definition 3.1  Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  be a TFM-number. Based on the 

centroid point, 

1.Score function of 𝐴𝐴 denoted by 𝑆𝑆1(𝐴𝐴) is computed as follows: 

𝑆𝑆1(𝐴𝐴) = ∑𝑇𝑇
𝑖𝑖=1 𝑥𝑥𝑖𝑖(𝐴𝐴)𝑦𝑦𝑖𝑖(𝐴𝐴)

𝑇𝑇
, (𝑖𝑖 = 1,2, . . . , 𝑇𝑇) 

where,  

       𝑥𝑥𝑖𝑖(𝐴𝐴) = (𝑐𝑐2+𝑑𝑑2−𝑎𝑎2−𝑏𝑏2+𝑐𝑐𝑑𝑑−𝑎𝑎𝑏𝑏)
3(𝑐𝑐+𝑑𝑑−𝑎𝑎−𝑏𝑏)

,  𝑦𝑦𝑖𝑖(𝐴𝐴) = 𝜂𝜂𝐴𝐴
𝑖𝑖 (2𝑏𝑏+𝑎𝑎−𝑑𝑑−2𝑐𝑐)
3(𝑎𝑎+𝑏𝑏−𝑑𝑑−𝑐𝑐)

,  (𝑖𝑖 = 1,2, . . . , 𝑇𝑇) 

Example 3.2 Let 𝐴𝐴 = 〈(2,3,4,8); 0.1,0.4,0.8,0.5〉 be a TFM-number. Then, 

((𝑥𝑥1(𝐴𝐴), 𝑦𝑦1(𝐴𝐴)), (𝑥𝑥2(𝐴𝐴), 𝑦𝑦2(𝐴𝐴)), (𝑥𝑥3(𝐴𝐴), 𝑦𝑦3(𝐴𝐴)), (𝑥𝑥4(𝐴𝐴), 𝑦𝑦4(𝐴𝐴))) 

= ((4.42,0.03),(4.42,0.19),(4.42,0.38),(4.42,0.24)) 

Therefore, 
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𝑆𝑆1(𝐴𝐴) = ∑4
𝑖𝑖=1 𝑥𝑥𝑖𝑖(𝐴𝐴)𝑦𝑦𝑖𝑖(𝐴𝐴)

4
= 𝑥𝑥1(𝐴𝐴).𝑦𝑦1(𝐴𝐴)+𝑥𝑥2(𝐴𝐴).𝑦𝑦2(𝐴𝐴)+𝑥𝑥3(𝐴𝐴).𝑦𝑦3(𝐴𝐴)+𝑥𝑥4(𝐴𝐴).𝑦𝑦4(𝐴𝐴)

4
=0.92 

 

The following definition firstly proposed by Cheng [8] for triangular fuzzy numbers and we 
extended the definition to TFM-numbers as follows: 

2.Score function of 𝐴𝐴 denoted by 𝑆𝑆2(𝐴𝐴) is computed as follows: 

 𝑆𝑆2(𝐴𝐴) =
∑𝑇𝑇

𝑖𝑖=1 �𝑥𝑥2𝑖𝑖(𝐴𝐴)+𝑦𝑦2
𝑖𝑖(𝐴𝐴)

𝑇𝑇
 

Example 3.3 Let’s consider TFM-number 𝐴𝐴 given in Example 3.2. Then, 

((𝑥𝑥1(𝐴𝐴), 𝑦𝑦1(𝐴𝐴)), (𝑥𝑥2(𝐴𝐴), 𝑦𝑦2(𝐴𝐴)), (𝑥𝑥3(𝐴𝐴), 𝑦𝑦3(𝐴𝐴)), (𝑥𝑥4(𝐴𝐴), 𝑦𝑦4(𝐴𝐴) 

= ((4.42,0.03),(4.42,0.19),(4.42,0.38),(4.42,0.24)) 

Therefore, 

𝑆𝑆2(𝐴𝐴) =
∑4

𝑖𝑖=1 �𝑥𝑥2
𝑖𝑖(𝐴𝐴) + 𝑦𝑦2

𝑖𝑖(𝐴𝐴)

4
 

 =
�𝑥𝑥21(𝐴𝐴)+𝑦𝑦2

1(𝐴𝐴)+�𝑥𝑥22(𝐴𝐴)+𝑦𝑦2
2(𝐴𝐴)+�𝑥𝑥23(𝐴𝐴)+𝑦𝑦2

3(𝐴𝐴)+�𝑥𝑥24(𝐴𝐴)+𝑦𝑦2
4(𝐴𝐴)

4
 

 = √4.422+0.032+√4.422+0.192+√4.422+0.382+√4.422+0.242

4
 

 = 4.42 

 

The following method proposed by Bakar and Gegov [3] for trapezoidal fuzzy numbers and 
triangular fuzzy numbers. We extended the method to TFM-numbers as follows: 

3.Score function of 𝐴𝐴 denoted by 𝑆𝑆3(𝐴𝐴) is computed as follows: 

 𝑆𝑆3(𝐴𝐴) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥) × 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑦𝑦) 

where 

𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥) = |𝑑𝑑 − 𝑥𝑥𝑖𝑖(𝐴𝐴)| + |𝑥𝑥𝑖𝑖(𝐴𝐴) − 𝑎𝑎| and shows spreading of 𝐴𝐴 horizontally and 

𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑦𝑦) = ∑𝑇𝑇
𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝐴𝐴)

𝑇𝑇
  and it shows the spreading of 𝐴𝐴 vertically. 
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Here, since 𝑎𝑎 ≤ 𝑥𝑥𝑖𝑖(𝐴𝐴) ≤ 𝑑𝑑, we get 

𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥) = |𝑑𝑑 − 𝑥𝑥𝑖𝑖(𝐴𝐴)| + |𝑥𝑥𝑖𝑖(𝐴𝐴) − 𝑎𝑎| = 𝑑𝑑 − 𝑥𝑥𝑖𝑖(𝐴𝐴) + 𝑥𝑥𝑖𝑖(𝐴𝐴) − 𝑎𝑎 = 𝑑𝑑 − 𝑎𝑎 

Example 3.4 Let’s consider TFM-number 𝐴𝐴 given in Example 3.2. Then, 

 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥) = 𝑑𝑑 − 𝑎𝑎 = 8 − 2 = 6 

 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑦𝑦) = ∑𝑇𝑇
𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝐴𝐴)

𝑇𝑇
= ∑4

𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝐴𝐴)
4

= 𝑦𝑦1(𝐴𝐴)+𝑦𝑦2(𝐴𝐴)+𝑦𝑦3(𝐴𝐴)+𝑦𝑦4(𝐴𝐴)
4

= 0.03+0.19+0.38+0.24
4

=
0.21 

Therefore, 

 𝑆𝑆3(𝐴𝐴) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥) × 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑦𝑦) = 6 × 0.21 = 1.26 

Property 3.5 Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  and 𝐵𝐵 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐵𝐵

1 , 𝜂𝜂𝐵𝐵
2 , . . . , 𝜂𝜂𝐵𝐵

𝑇𝑇〉  be 
two TFM-numbers. If 𝜂𝜂𝐴𝐴

𝑖𝑖 >𝜂𝜂𝐵𝐵
𝑖𝑖  (𝑖𝑖 = 1,2, . . . , 𝑇𝑇), then 𝑆𝑆3(𝐴𝐴)> 𝑆𝑆3(𝐵𝐵). 

Proof: Since 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥) = |𝑑𝑑 − 𝑥𝑥𝑖𝑖(𝐴𝐴)| + |𝑥𝑥𝑖𝑖(𝐴𝐴) − 𝑎𝑎| = 𝑑𝑑 − 𝑎𝑎 and 

 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐵𝐵𝑥𝑥) = |𝑑𝑑 − 𝑥𝑥𝑖𝑖(𝐵𝐵)| + |𝑥𝑥𝑖𝑖(𝐵𝐵) − 𝑎𝑎| = 𝑑𝑑 − 𝑎𝑎, we have 

𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥)=𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐵𝐵𝑥𝑥) 

 On the other hand, 

 since 𝜂𝜂𝐴𝐴
𝑖𝑖 >𝜂𝜂𝐵𝐵

𝑖𝑖  (𝑖𝑖 = 1,2, . . . , 𝑇𝑇), we get 

𝑦𝑦𝑖𝑖(𝐴𝐴) = ∑𝑇𝑇
𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝐴𝐴)

𝑇𝑇
> ∑𝑇𝑇

𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝐵𝐵)
𝑇𝑇

= 𝑦𝑦𝑖𝑖(𝐵𝐵) (𝑖𝑖 = 1,2, . . . , 𝑇𝑇). 

This means 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡�𝐴𝐴𝑦𝑦� > 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐵𝐵𝑦𝑦). As a result; 

𝑆𝑆3(𝐴𝐴) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴𝑥𝑥) × 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡�𝐴𝐴𝑦𝑦� > 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐵𝐵𝑥𝑥) × 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡�𝐵𝐵𝑦𝑦� = 𝑆𝑆3(𝐵𝐵) 

Property 3.6  Let 𝐴𝐴, and 𝐵𝐵  be two TFM-numbers The score function 𝑆𝑆𝑘𝑘 (𝑘𝑘 = 1,2,3) 
obviously satisfies the following conditions: 

1. 𝑆𝑆𝑘𝑘(𝐴𝐴) > 0  (non-negativity) 
2. 𝑆𝑆𝑘𝑘(𝐴𝐴 + 𝐵𝐵)= 𝑆𝑆𝑘𝑘(𝐵𝐵 + 𝐴𝐴) (commutativity) 

 
Property 3.7  Let 𝐴𝐴, and 𝐵𝐵  be two TFM-numbers. The score function 𝑆𝑆𝑘𝑘 (𝑘𝑘 = 1,2,3) 
generally doesn’t satisfy the following conditions: 

1. 𝑆𝑆𝑘𝑘(𝐴𝐴 + 𝐵𝐵)= 𝑆𝑆𝑘𝑘(𝐴𝐴) + 𝑆𝑆𝑘𝑘(𝐵𝐵)   
2. 𝑆𝑆𝑘𝑘(𝐴𝐴. 𝐵𝐵)=  𝑆𝑆𝑘𝑘(𝐴𝐴). 𝑆𝑆𝑘𝑘(𝐵𝐵) 
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Proof  The proof will be presented for 𝑆𝑆1. It will be enough to give a counter-example for 
proof.  

Let 𝐴𝐴 = 〈(2,3,4,5); 0.4,0.1,0.2,0.7〉  and 𝐵𝐵 = 〈(1,2,4,7); 0.2,0.7,0.6,0.4〉  be two TFM-
numbers. Then, we have 

𝐴𝐴 + 𝐵𝐵 = 〈(3,5,8,12); 0.52,0.73,0.68,0.82〉 and  𝐴𝐴. 𝐵𝐵 =
〈(2,6,16,35); 0.08,0.07,0.12,0.28〉. Additionally, if we find scores of 𝐴𝐴, 𝐵𝐵, 𝐴𝐴 + 𝐵𝐵, and 𝐴𝐴. 𝐵𝐵 
as follows, respectively: 

𝑆𝑆1(𝐴𝐴) = 0.57, 𝑆𝑆1(𝐵𝐵) = 0.81, 𝑆𝑆1(𝐴𝐴 + 𝐵𝐵) = 2.31 and 𝑆𝑆1(𝐴𝐴. 𝐵𝐵) = 0.99.  

Therefore, we have 

1. 𝑆𝑆1(𝐴𝐴 + 𝐵𝐵)=2.31 ≠ 0.57 + 0.81 = 𝑆𝑆1(𝐴𝐴) + 𝑆𝑆1(𝐵𝐵) and 
2. 𝑆𝑆1(𝐴𝐴. 𝐵𝐵)=0.99 ≠ 0.57x0.81 = 𝑆𝑆1(𝐴𝐴). 𝑆𝑆1(𝐵𝐵) 

 
For 𝑆𝑆2 and 𝑆𝑆3,  the proof can be similarly done.  

In the following method, to define a new score function, we give an algorithm by finding the 
circumcenter of the centroids. 

 

Figure  1: Centroids’ circumcenter 

  

Since TFM-number 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  has 𝑇𝑇  membership values, at 

the end of the process of finding centroids, we get 𝑇𝑇 circumcenter of centroids. Thus, we 
should consider all of these during the decision-making process.  
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Definition 3.8  Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  be a TFM-number. Based on the 

circumcenter of the centroids denoted by 
�𝑃𝑃1(𝑥𝑥�1(𝐴𝐴), 𝑦𝑦�1(𝐴𝐴)), 𝑃𝑃2(𝑥𝑥�2(𝐴𝐴), 𝑦𝑦�2(𝐴𝐴)), … , 𝑃𝑃𝑇𝑇(𝑥𝑥�𝑇𝑇(𝐴𝐴), 𝑦𝑦�𝑇𝑇(𝐴𝐴))� 

4.Score function of 𝐴𝐴 denoted by 𝑆𝑆4(𝐴𝐴) is computed as follows: 

𝑆𝑆4(𝐴𝐴) =
∑𝑇𝑇

𝑖𝑖=1 |𝑃𝑃𝑖𝑖𝐶𝐶𝑖𝑖|
𝑇𝑇

 

where 

𝑃𝑃𝑖𝑖 is the circumcenter of the centroids of the triangle △ 𝑁𝑁𝑀𝑀𝑁𝑁, seen in Figure 1. 

𝐶𝐶𝑖𝑖 is centroid of 𝐴𝐴 which is given in Definition 2.12. 

Example 3.9 Let 𝐴𝐴 = 〈(2,3,4,7); 0.3,0.5,0.1〉 be a TFM-number. Then, 

circumcenters of the centroids of 𝐴𝐴: 

 (𝑃𝑃1(3.83, −12.37), 𝑃𝑃2(3.83, −7.29), 𝑃𝑃3(3.83, −37.45)) 

centroid points of 𝐴𝐴: 

(𝐶𝐶1(4.11,0.10),  𝐶𝐶2(4.11,0.24), 𝐶𝐶3(4.11,0.05)) 

Therefore, 

 𝑆𝑆4(𝐴𝐴) = ∑3
𝑖𝑖=1 |𝑑𝑑𝑖𝑖𝐶𝐶𝑖𝑖|

3
= |𝑑𝑑1𝐶𝐶1|+|𝑑𝑑2𝐶𝐶2|+|𝑑𝑑3𝐶𝐶3|

3
= 19.16 

 

            There are several methods to find the center of the circumcenter of the triangle given 
in Figure 1. Here, an algorithm is presented for finding the center of the circumcircle of the 
triangle by utilizing the midpoint and slope of the two sides of the formed triangle along with 
their corresponding equations. 

Algorithm 1 

Step 1 Find the centroid points of each part of the trapezoid as follows for all 𝑖𝑖  (𝑖𝑖 =
1,2, . . . , 𝑇𝑇): 

As is known, the abscissa and ordinate of the centroid of a triangle are respectively 
the averages of the abscissas and ordinates of the triangle’s vertices’ coordinates. Similarly, 
the abscissa and ordinate of the centroid of a rectangle are respectively the averages of the 
abscissas and ordinates of the rectangle’s vertices’ coordinates.  

Centroid of the △ 𝐴𝐴𝐵𝐵𝐸𝐸: 𝑁𝑁(𝑎𝑎+2𝑏𝑏
3

, 𝜂𝜂𝐴𝐴
𝑖𝑖

3
) 
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Centroid of the 𝐴𝐴𝐶𝐶𝐹𝐹𝐸𝐸: 𝑀𝑀(𝑏𝑏+𝑐𝑐
2

, 𝜂𝜂𝐴𝐴
𝑖𝑖

2
) 

Centroid of the △ 𝐶𝐶𝐷𝐷𝐹𝐹: 𝑁𝑁(2𝑐𝑐+𝑑𝑑
3

, 𝜂𝜂𝐴𝐴
𝑖𝑖

3
) 

 

Step 2 

 

 

 

      Figure  2: Centroids’ circumcenter 

Find the midpoints of [𝑁𝑁𝑀𝑀] and [𝑀𝑀𝑁𝑁] as follows: 

Midpoint of [𝑁𝑁𝑀𝑀]: 𝑅𝑅(2𝑎𝑎+7𝑏𝑏+3𝑐𝑐
12

, 5𝜂𝜂𝐴𝐴
𝑖𝑖

12
) 

Midpoint of [𝑀𝑀𝑁𝑁]: 𝑆𝑆(3𝑏𝑏+7𝑐𝑐+2𝑑𝑑
12

, 5𝜂𝜂𝐴𝐴
𝑖𝑖

12
) 

Step 3 Find the slopes of [𝑁𝑁𝑀𝑀] and [𝑀𝑀𝑁𝑁] as follows: 

Slope of [𝑁𝑁𝑀𝑀]: 𝑚𝑚𝑁𝑁𝑀𝑀 = −𝜂𝜂𝐴𝐴
𝑖𝑖

2𝑎𝑎+𝑏𝑏−3𝑐𝑐
 

Slope of [𝑀𝑀𝑁𝑁]: 𝑚𝑚𝑀𝑀𝑀𝑀 = 𝜂𝜂𝐴𝐴
𝑖𝑖

3𝑏𝑏−𝑐𝑐−2𝑑𝑑
 

Step 4 Find the slopes of [𝑃𝑃𝑖𝑖𝑅𝑅] and [𝑃𝑃𝑖𝑖𝑆𝑆] as follows: 

Since [𝑃𝑃𝑖𝑖𝑅𝑅] ⊥ [𝑁𝑁𝑀𝑀] and [𝑃𝑃𝑖𝑖𝑆𝑆] ⊥ [𝑀𝑀𝑁𝑁], we get that: 

𝑚𝑚𝑑𝑑𝑖𝑖𝑅𝑅 = 2𝑎𝑎+𝑏𝑏−3𝑐𝑐
𝜂𝜂𝐴𝐴

𝑖𝑖    and  𝑚𝑚𝑑𝑑𝑖𝑖𝑆𝑆 = −3𝑏𝑏+𝑐𝑐+2𝑑𝑑
𝜂𝜂𝐴𝐴

𝑖𝑖   

Step 5 Find the equation of the [𝑃𝑃𝑖𝑖𝑅𝑅] and [𝑃𝑃𝑖𝑖𝑆𝑆] as follows: 
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Equation of the [𝑃𝑃𝑖𝑖𝑅𝑅]: ℓ𝑑𝑑𝑖𝑖𝑅𝑅: 𝑦𝑦 = 2𝑎𝑎+𝑏𝑏+3𝑐𝑐
𝜂𝜂𝐴𝐴

𝑖𝑖 (𝑥𝑥 − 2𝑎𝑎+7𝑏𝑏−3𝑐𝑐
12

) + 5𝜂𝜂𝐴𝐴
𝑖𝑖

12
 

Equation of the [𝑃𝑃𝑖𝑖𝑆𝑆]: ℓ𝑑𝑑𝑖𝑖𝑆𝑆: 𝑦𝑦 = −3𝑏𝑏+𝑐𝑐+2𝑑𝑑
𝜂𝜂𝐴𝐴

𝑖𝑖 (𝑥𝑥 − 3𝑏𝑏+7𝑐𝑐+2𝑑𝑑
12

) + 5𝜂𝜂𝐴𝐴
𝑖𝑖

12
 

Step 6 Find the intersection of ℓ𝑑𝑑𝑖𝑖𝑅𝑅 and ℓ𝑑𝑑𝑖𝑖𝑆𝑆. Intersection point is circumcenter of centroids: 

ℓ𝑑𝑑𝑖𝑖𝑅𝑅 ∩ ℓ𝑑𝑑𝑖𝑖𝑆𝑆 = 𝑃𝑃𝑖𝑖(
𝛼𝛼𝛽𝛽 − 𝛾𝛾𝛾𝛾

12(𝛼𝛼 − 𝛾𝛾)
,
𝛼𝛼𝛽𝛽𝛾𝛾 − 𝛼𝛼𝛾𝛾𝛾𝛾 + 5𝛼𝛼(𝜂𝜂𝐴𝐴

𝑖𝑖 )2 − 5𝛾𝛾(𝜂𝜂𝐴𝐴
𝑖𝑖 )2

12𝜂𝜂𝐴𝐴
𝑖𝑖 (𝛼𝛼 − 𝛾𝛾)

) 

where, 

𝛼𝛼 = 2𝑎𝑎 + 𝑏𝑏 − 3𝑐𝑐, 

𝛽𝛽 = 2𝑎𝑎 + 7𝑏𝑏 + 3𝑐𝑐, 

𝛾𝛾 = −3𝑏𝑏 + 𝑐𝑐 + 2𝑑𝑑, 

𝛾𝛾 = 3𝑏𝑏 + 7𝑐𝑐 + 2𝑑𝑑 

 

In the following, inspired by Babu et al. [2], we give a method to find the centroid of the 
centroids and its properties. 

 

Figure  3: Centroid of the centroids 

Centroid of the △ 𝐴𝐴𝐵𝐵𝐸𝐸: 𝑁𝑁(𝑎𝑎+2𝑏𝑏
3

, 𝜂𝜂𝐴𝐴
𝑖𝑖

3
) 

Centroid of the ▭𝐴𝐴𝐶𝐶𝐹𝐹𝐸𝐸: 𝑀𝑀(𝑏𝑏+𝑐𝑐
2

, 𝜂𝜂𝐴𝐴
𝑖𝑖

2
) 

Centroid of the △ 𝐶𝐶𝐷𝐷𝐹𝐹: 𝑁𝑁(2𝑐𝑐+𝑑𝑑
3

, 𝜂𝜂𝐴𝐴
𝑖𝑖

3
) 
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As seen in Figure 3, 𝑅𝑅𝑖𝑖 is the centroid of the 𝐴𝐴𝐵𝐵𝐸𝐸 triangle. Since we know the coordinates 
of three vertices of the triangle, we can easily find the coordinates of the 𝑅𝑅𝑖𝑖 as follows: 

𝑅𝑅𝑖𝑖 �
2𝑎𝑎 + 7𝑏𝑏 + 7𝑐𝑐 + 2𝑑𝑑

18
,
7𝜂𝜂𝐴𝐴

𝑖𝑖

18
� 

Definition 3.10  Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  be a TFM-number. Based on the 

centroid of the centroid points of 𝐴𝐴  denoted by 
�𝑅𝑅1(�̇�𝑥1(𝐴𝐴), �̇�𝑦1(𝐴𝐴)), 𝑅𝑅2(�̇�𝑥2(𝐴𝐴), �̇�𝑦2(𝐴𝐴)), … , 𝑅𝑅𝑇𝑇(�̇�𝑥𝑇𝑇(𝐴𝐴), �̇�𝑦𝑇𝑇(𝐴𝐴))� 

5.Score function of 𝐴𝐴 denoted by 𝑆𝑆5(𝐴𝐴) is computed as follows:

𝑆𝑆5(𝐴𝐴) =
∑𝑇𝑇

𝑖𝑖=1 �̇�𝑥𝑖𝑖(𝐴𝐴).�̇�𝑦𝑖𝑖(𝐴𝐴)
𝑇𝑇

, (𝑖𝑖 = 1,2, . . . , 𝑇𝑇) 

where, 

�̇�𝑥𝑖𝑖(𝐴𝐴) = 2𝑎𝑎+7𝑏𝑏+7𝑐𝑐+2𝑑𝑑
18   and  �̇�𝑦𝑖𝑖(𝐴𝐴) = 7𝜂𝜂𝐴𝐴

𝑖𝑖

18

Example 3.11 Let 𝐴𝐴 = 〈(3,5,6,9); 0.2,0.3,0.1,0.6〉 be a TFM-number. Then, the centroid 
of the centroid points of A is 

 (𝑅𝑅1(5.61,0.07), 𝑅𝑅2(5.61,0.11), 𝑅𝑅3(5.61,0.03), 𝑅𝑅4(5.61,0.23)). 

Therefore, 

𝑆𝑆5(𝐴𝐴) =
∑4

𝑖𝑖=1 �̇�𝑥𝑖𝑖(𝐴𝐴).�̇�𝑦𝑖𝑖(𝐴𝐴)
4

= �̇�𝑥1(𝐴𝐴).�̇�𝑦1(𝐴𝐴)+�̇�𝑥2(𝐴𝐴).�̇�𝑦2(𝐴𝐴)+�̇�𝑥3(𝐴𝐴).�̇�𝑦3(𝐴𝐴)+�̇�𝑥4(𝐴𝐴).�̇�𝑦4(𝐴𝐴)
4

=0.61 

Property 3.12 Let 𝐴𝐴 = 〈(𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  be a TFM-number. If, 𝜂𝜂𝐴𝐴

𝑖𝑖 =1 (𝑖𝑖 =
1,2, . . . , 𝑇𝑇), then, the score function of 𝐴𝐴 is linear. 

Proof Let 𝐴𝐴 = 〈(𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉  and 𝐵𝐵 = 〈(𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2); 𝜂𝜂𝐵𝐵

1 , 𝜂𝜂𝐵𝐵
2 , . . . , 𝜂𝜂𝐵𝐵

𝑇𝑇〉  be 
two TFM-numbers, 𝜂𝜂𝐴𝐴

𝑖𝑖 = 𝜂𝜂𝐵𝐵
𝑖𝑖 = 1 (𝑖𝑖 = 1,2, . . . , 𝑇𝑇) and 𝛾𝛾1, 𝛾𝛾1 ∈ ℝ . We need to show the 

following equality which means the linearity of 𝑆𝑆5: 

𝑆𝑆5(𝛾𝛾1𝐴𝐴 + 𝛾𝛾2𝐵𝐵) = 𝛾𝛾1𝑆𝑆5(𝐴𝐴) + 𝛾𝛾2𝑆𝑆5(𝐵𝐵) 

Since 𝜂𝜂𝐴𝐴
𝑖𝑖 =𝜂𝜂𝐵𝐵

𝑖𝑖 =1 (𝑖𝑖 = 1,2, . . . , 𝑇𝑇), 𝐴𝐴 and 𝐵𝐵 are trapezoidal fuzzy numbers and denoted by 

 𝐴𝐴 = (𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1) and 𝐵𝐵 = (𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2).  Thus, 

𝑆𝑆5�𝛾𝛾1𝐴𝐴 + 𝛾𝛾2𝐵𝐵�

=
2�𝛾𝛾1𝑎𝑎1 + 𝛾𝛾2𝑎𝑎2� + 7�𝛾𝛾1𝑏𝑏1 + 𝛾𝛾2𝑏𝑏2� + 7�𝛾𝛾1𝑐𝑐1 + 𝛾𝛾2𝑐𝑐2� + 2�𝛾𝛾1𝑑𝑑1 + 𝛾𝛾2𝑑𝑑2�

18
7

18
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                          =2𝛾𝛾1𝑎𝑎1+7𝛾𝛾1𝑏𝑏1+7𝛾𝛾1𝑐𝑐1+2𝛾𝛾1𝑑𝑑1+2𝛾𝛾2𝑎𝑎2+7𝛾𝛾2𝑏𝑏2+7𝛾𝛾2𝑐𝑐2+2𝛾𝛾2𝑑𝑑2
18

7
18

 

                   =𝛾𝛾1(2𝑎𝑎1+7𝑏𝑏1+7𝑐𝑐1+2𝑑𝑑1)+𝛾𝛾2(2𝑎𝑎2+7𝑏𝑏2+7𝑐𝑐2+2𝑑𝑑2)

18
7

18
 

                           =𝛾𝛾1𝑆𝑆5(𝐴𝐴) + 𝛾𝛾2𝑆𝑆5(𝐵𝐵) 

Property 3.13  Let 𝐴𝐴, and 𝐵𝐵  be two TFM-numbers. The score function 𝑆𝑆𝑘𝑘 (𝑘𝑘 = 4, 5) 
generally doesn’t satisfy the following conditions: 

1. 𝑆𝑆𝑘𝑘(𝐴𝐴 + 𝐵𝐵)= 𝑆𝑆𝑘𝑘(𝐴𝐴) + 𝑆𝑆𝑘𝑘(𝐵𝐵)   
2. 𝑆𝑆𝑘𝑘(𝐴𝐴. 𝐵𝐵)=  𝑆𝑆𝑘𝑘(𝐴𝐴). 𝑆𝑆𝑘𝑘(𝐵𝐵) 

 

Proof  The property can be proven similar to Property 3.7. 

Definition 3.14  Let 𝐴𝐴 = 〈(𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1, 𝑑𝑑1); 𝜂𝜂𝐴𝐴
1 , 𝜂𝜂𝐴𝐴

2 , . . . , 𝜂𝜂𝐴𝐴
𝑇𝑇〉, 𝐵𝐵 =

〈(𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2, 𝑑𝑑2); 𝜂𝜂𝐵𝐵
1 , 𝜂𝜂𝐵𝐵

2 , . . . , 𝜂𝜂𝐵𝐵
𝑇𝑇〉 be two TFM-numbers and 𝑆𝑆𝑘𝑘 (𝑘𝑘 = 1,2, … ,5) be score 

functions given in the previous sections. Then, 

    1.  If 𝑆𝑆𝑘𝑘(𝐴𝐴) > 𝑆𝑆𝑘𝑘(𝐵𝐵) then 𝐵𝐵 is smaller than 𝐴𝐴, denoted by 𝐴𝐴 ≻ 𝐵𝐵 

    2.  If 𝑆𝑆𝑘𝑘(𝐵𝐵) > 𝑆𝑆𝑘𝑘(𝐴𝐴) then 𝐴𝐴 is smaller than 𝐵𝐵, denoted by 𝐴𝐴 ≺ 𝐵𝐵 

    3.  If 𝑆𝑆𝑘𝑘(𝐴𝐴) = 𝑆𝑆𝑘𝑘(𝐵𝐵) then 𝐴𝐴 is similar to 𝐵𝐵, denoted by 𝐴𝐴 ≃ 𝐵𝐵 

 

               4.   An Approach to Decision-Making Problems 

In this section, we propose a method to solve multi-criteria decision-making problems and 
give a numerical example. 

Definition 4.1 [16] Let 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚} be set of alternatives, 𝐶𝐶 = {𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛}  be set 
of criteria and 𝑣𝑣 = (𝑣𝑣1, 𝑣𝑣2, . . . , 𝑣𝑣𝑛𝑛) be weights vector such that 𝑣𝑣𝑗𝑗 > 0 and  ∑𝑛𝑛

𝑗𝑗=1 𝑣𝑣𝑗𝑗 = 1. 
Then, the characteristic of the alternative 𝑥𝑥𝑖𝑖 on criteria 𝑐𝑐𝑗𝑗 is represented by the TFM-number 
𝐴𝐴𝑖𝑖𝑗𝑗 = 〈(𝑎𝑎𝑖𝑖𝑗𝑗, 𝑏𝑏𝑖𝑖𝑗𝑗 , 𝑐𝑐𝑖𝑖𝑗𝑗, 𝑑𝑑𝑖𝑖𝑗𝑗); 𝜂𝜂𝐴𝐴𝑖𝑖𝑖𝑖

1 , 𝜂𝜂𝐴𝐴𝑖𝑖𝑖𝑖
2 , . . . , 𝜂𝜂𝐴𝐴𝑖𝑖𝑖𝑖

𝑇𝑇 〉. All the possible values that the alternative 𝑥𝑥𝑖𝑖 
(𝑖𝑖 = 1,2, . . . , 𝑚𝑚) satisfies the criteria 𝑐𝑐𝑗𝑗 (𝑗𝑗 = 1,2, . . . , 𝑛𝑛) represented in the following TFM 
decision matrix (𝐴𝐴𝑖𝑖𝑗𝑗)𝑚𝑚𝑥𝑥𝑛𝑛;  

 (𝐴𝐴𝑖𝑖𝑗𝑗)𝑚𝑚𝑥𝑥𝑛𝑛 =

⎝

⎜
⎛

𝐴𝐴11 𝐴𝐴12 ⋯ 𝐴𝐴1𝑛𝑛
𝐴𝐴21 𝐴𝐴22 ⋯ 𝐴𝐴2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝐴𝐴𝑚𝑚1 𝐴𝐴𝑚𝑚2 ⋯ 𝐴𝐴𝑚𝑚𝑛𝑛

⎠

⎟
⎞

𝑚𝑚x𝑛𝑛
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Linguistic terms TFM-numbers 
Definitely-low(DL) 〈(0.01,0.05,0.10,0.15);0.9,0.85,0.70,0.75〉 

Too-Low(TL) 〈(0.05,0.10,0.15,0.20);0.80,0.75,0.70,0.70〉 
Very-Low(VL) 〈(0.10,0.15,0.18,0.25);0.78,0.81,0.69,0.71〉 

Low(L) 〈(0.12,0.20,0.20,0.30);0.76,0.65,0.67,0.65〉 
Fairly-low(FL) 〈(0.15,0.23,0.25,0.35);0.65,0.70,0.60,0.60〉 

Medium(M) 〈(0.25,0.30,0.35,0.40);0.45,0.40,0.55,0.50〉 
Fairly-high(FH) 〈(0.30,0.35,0.40,0.45);0.60,0.45,0.60,0.55〉 

High(H) 〈(0.40,0.45,0.50,0.55);0.70,0.50,0.65,0.70〉 
Very-High(VH) 〈(0.45,0.55,0.65,0.75);0.80,0.60,0.70,0.75〉 
Too-High(TH) 〈(0.50,0.60,0.70,0.80);0.90,0.70,0.80,0.95〉 

Definitely-high(DH) 〈(0.70,0.80,0.90,1.00);0.95,0.80,0.90,1.00〉 
Table  1: TFM-numbers of linguistic terms 

Algorithm 2 

Step 1 Present TFM decision matrix showing results of the evaluation of the expert based 
upon the characteristic of the alternative 𝑥𝑥𝑖𝑖  (𝑖𝑖 = 1,2, . . . , 𝑚𝑚)  satisfies the attribute 𝑐𝑐𝑗𝑗 
(𝑖𝑖 = 1,2, . . . , 𝑛𝑛) based on linguistic terms Table 1 as follows: 

(𝐴𝐴𝑖𝑖𝑗𝑗)𝑚𝑚𝑥𝑥𝑛𝑛 =

⎝

⎜
⎛

𝐴𝐴11 𝐴𝐴12 ⋯ 𝐴𝐴1𝑛𝑛
𝐴𝐴21 𝐴𝐴22 ⋯ 𝐴𝐴2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝐴𝐴𝑚𝑚1 𝐴𝐴𝑚𝑚2 ⋯ 𝐴𝐴𝑚𝑚𝑛𝑛

⎠

⎟
⎞

𝑚𝑚x𝑛𝑛

 

Step 2 For all 𝑖𝑖 (𝑖𝑖 = 1,2, … , 𝑚𝑚) find the aggregation values according to the 𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺 
operator, to obtain the ultimate performance value corresponding to the alternative 𝑥𝑥𝑖𝑖 
(𝑖𝑖 = 1,2, … , 𝑚𝑚) according to attribute 𝑐𝑐𝑗𝑗 (𝑖𝑖 = 1,2, . . . , 𝑛𝑛) as follows: 

𝐴𝐴𝑖𝑖 = 𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴𝑖𝑖1, 𝐴𝐴𝑖𝑖2, . . . , 𝐴𝐴𝑖𝑖𝑛𝑛),  (𝑖𝑖 = 1,2, . . . , 𝑚𝑚) 

Step 3 Find centroid points of 𝐴𝐴𝑖𝑖 (𝑖𝑖 = 1,2, . . . , 𝑚𝑚) by using Definition 2.12, circumcenter of 
the centroids  by using Algorithm 1 and centroid of the centroids by using Definition 3.10, 
respectively as follows: 

(𝐶𝐶1(𝑥𝑥1(𝐴𝐴𝑖𝑖), 𝑦𝑦1(𝐴𝐴𝑖𝑖)), 𝐶𝐶2(𝑥𝑥2(𝐴𝐴𝑖𝑖), 𝑦𝑦2(𝐴𝐴𝑖𝑖)), … , 𝐶𝐶𝑇𝑇(𝑥𝑥𝑇𝑇(𝐴𝐴𝑖𝑖), 𝑦𝑦𝑇𝑇(𝐴𝐴𝑖𝑖)))  

(𝑃𝑃1(�̅�𝑥1(𝐴𝐴𝑖𝑖), 𝑦𝑦�1(𝐴𝐴𝑖𝑖)), 𝑃𝑃2(�̅�𝑥2(𝐴𝐴𝑖𝑖), 𝑦𝑦�2(𝐴𝐴𝑖𝑖)), … , 𝑃𝑃𝑇𝑇(�̅�𝑥𝑇𝑇(𝐴𝐴𝑖𝑖), 𝑦𝑦�𝑇𝑇(𝐴𝐴𝑖𝑖))) 

(𝑅𝑅1(�̇�𝑥1(𝐴𝐴𝑖𝑖), �̇�𝑦1(𝐴𝐴𝑖𝑖)), 𝑅𝑅2(�̇�𝑥2(𝐴𝐴𝑖𝑖), �̇�𝑦2(𝐴𝐴𝑖𝑖)), … , 𝑅𝑅𝑇𝑇(�̇�𝑥𝑇𝑇(𝐴𝐴𝑖𝑖), �̇�𝑦𝑇𝑇(𝐴𝐴𝑖𝑖))) (𝑖𝑖 = 1,2, . . . , 𝑚𝑚). 

Step 4 Find the score of each 𝐴𝐴𝑖𝑖 (𝑖𝑖 = 1,2, . . . , 𝑚𝑚) by using the given methods. 

Step 5 Rank all the alternatives 𝐴𝐴𝑖𝑖  (𝑖𝑖 = 1,2, . . . , 𝑚𝑚) and select the best one, in accordance 
with the score of each 𝐴𝐴𝑖𝑖 . The bigger the score, the better the alternatives 𝐴𝐴𝑖𝑖 as seen in 
Definition 3.14. 
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              4.1  Numerical Example 
 

To show the usefulness of the proposed method, we give the following application. 

Example 4.2 Suppose that a businessman aims to build a shopping mall in a region which 
contains so many cities. He doesn’t know exactly where to build the shopping mall since 
there are many alternatives of the city and attributes. After a short consideration, he managed 
to shrink the alternatives’ list and just five alternatives (𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4, 𝑥𝑥5}) left to be 
chosen. The businessman will choose a city from the alternatives’ list according to four 
attributes: 

i. Population  (𝑐𝑐1) 
ii. Purchasing power (𝑐𝑐2) 

iii. Human resource (𝑐𝑐3) 
iv. Intracity transportation (𝑐𝑐4) 

 
The weight vector of the attributes is w=(0.3,0.2,0.4,0.1). The businessman considers the 
alternatives in the context of the linguistic terms given in Table 1. The process of finding the 
best choice is given as follows: 

Step 1 Alternatives and attributes evaluated by the businessman and results of the evaluation 
are presented in the TFM decision matrix (𝐴𝐴𝑖𝑖𝑗𝑗)5×4 as follows: 

(𝐴𝐴𝑖𝑖𝑗𝑗)5×4 =  

⎝

⎜
⎜
⎛

〈(0.10,0.15,0.18,0.25); 0.78,0.81,0.69,0.71〉 〈(0.15,0.23,0.25,0.35); 0.65,0.70,0.60,0.60〉
〈(0.05,0.10,0.15,0.20); 0.80,0.75,0.70,0.70〉 〈(0.12,0.20,0.20,0.30); 0.76,0.65,0.67,0.65〉
〈(0.12,0.20,0.20,0.30); 0.76,0.65,0.67,0.65〉 〈(0.50,0.60,0.70,0.80); 0.90,0.70,0.80,0.95〉
〈(0.25,0.30,0.35,0.40); 0.45,0.40,0.55,0.50〉 〈(0.05,0.10,0.15,0.20); 0.80,0.75,0.70,0.70〉
〈(0.50,0.60,0.70,0.80); 0.90,0.70,0.80,0.95〉 〈(0.70,0.80,0.90,1.00); 0.95,0.80,0.90,1.00〉

 

 
〈(0.30,0.35,0.40,0.45); 0.60,0.45,0.60,0.55〉 〈(0.45,0.55,0.65,0.75); 0.80,0.60,0.70,0.75〉
〈(0.25,0.30,0.35,0.40); 0.45,0.40,0.55,0.50〉 〈(0.40,0.45,0.50,0.55); 0.70,0.50,0.65,0.70〉
〈(0.12,0.20,0.20,0.30); 0.76,0.65,0.67,0.65〉 〈(0.25,0.30,0.35,0.40); 0.45,0.40,0.55,0.50〉
〈(0.50,0.60,0.70,0.80); 0.90,0.70,0.80,0.95〉 〈(0.25,0.30,0.35,0.40); 0.45,0.40,0.55,0.50〉
〈(0.40,0.45,0.50,0.55); 0.70,0.50,0.65,0.70〉 〈(0.12,0.20,0.20,0.30); 0.76,0.65,0.67,0.65〉

⎠

⎟
⎟
⎞

   

Step 2 For all i (i=1,2,...,5), the aggregation values according to the TFMWG operator are 
computed, to obtain the ultimate performance value corresponding to the alternative 𝑥𝑥𝑖𝑖 
(i=1,2,...,5) as follows: 

𝐴𝐴1 = 𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴11, 𝐴𝐴12, 𝐴𝐴13, 𝐴𝐴14) 
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      =〈(0.196,0.261,0.301,0.378); 0.404,0.382,0.600,0.483〉 

𝐴𝐴2 = 𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴21, 𝐴𝐴22, 𝐴𝐴23, 𝐴𝐴24 

      =〈(0.140,0.207,0.252,0.317); 0.345,0.365,0.478,0.396〉 

𝐴𝐴3 = 𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴31, 𝐴𝐴32, 𝐴𝐴33, 𝐴𝐴34) 

      = 〈(0.172,0.259,0.272,0.356); 0.355,0.362,0.523,0.463〉 

𝐴𝐴4 = 𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴41, 𝐴𝐴42, 𝐴𝐴43, 𝐴𝐴44) 

      = 〈(0.239,0.318,0.390,0.459); 0.497,0.456,0.591,0.579〉 

 𝐴𝐴5 = 𝑇𝑇𝐹𝐹𝑀𝑀𝑊𝑊𝐺𝐺(𝐴𝐴51, 𝐴𝐴52, 𝐴𝐴53, 𝐴𝐴54) 

       = 〈(0.424,0.508,0.568,0.653); 0.821,0.761,0.812,0.719〉 

 

Step 3 Centroid points of 𝐴𝐴𝑖𝑖  (𝑖𝑖 = 1,2, . . . ,5) computed with the help of the formula of 
𝑥𝑥𝑖𝑖(𝐴𝐴) and 𝑦𝑦𝑖𝑖(𝐴𝐴) given in Definition 2.12 as follows: 

For  𝐴𝐴1  

(𝐶𝐶1(0.284, 0.143), 𝐶𝐶2(0.284, 0.194), 𝐶𝐶3(0.284, 0.278), 𝐶𝐶4(0.284, 0.243)) 

For  𝐴𝐴2  

(𝐶𝐶1(0.228, 0.124), 𝐶𝐶2(0.228, 0.193), 𝐶𝐶3(0.228, 0.304), 𝐶𝐶4(0.228, 0.204)) 

For  𝐴𝐴3  

(𝐶𝐶1(0.270, 0.103), 𝐶𝐶2(0.270, 0.206), 𝐶𝐶3(0.270, 0.287), 𝐶𝐶4(0.270, 0.256)) 

For  𝐴𝐴4  

(𝐶𝐶1(0.351, 0.198), 𝐶𝐶2(0.351, 0.278), 𝐶𝐶3(0.351, 0.310), 𝐶𝐶4(0.351, 0.292)) 

For  𝐴𝐴5  

(𝐶𝐶1(0.538, 0.297), 𝐶𝐶2(0.538, 0.299), 𝐶𝐶3(0.538, 0.398), 𝐶𝐶4(0.538, 0.402)) 

 

         The circumcenter of centroids computed by Algorithm 1 as follows: 

For  𝐴𝐴1  
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(𝑃𝑃1(0.282, 0.159), 𝑃𝑃2(0.282, 0.149), 𝑃𝑃3(0.282, 0.241), 𝑃𝑃4(0.282, 0.198)) 

For  𝐴𝐴2  

(𝑃𝑃1(0.228, 0.135), 𝑃𝑃2(0.228, 0.142), 𝑃𝑃3(0.228, 0.191), 𝑃𝑃4(0.228, 0.187)) 

For  𝐴𝐴3  

(𝑃𝑃1(0.268, 0.136), 𝑃𝑃2(0.268, 0.151), 𝑃𝑃3(0.268, 0.221), 𝑃𝑃4(0.268, 0.191)) 

For  𝐴𝐴4  

(𝑃𝑃1(0.352, 0.193), 𝑃𝑃2(0.352, 0.169), 𝑃𝑃3(0.352, 0.235), 𝑃𝑃4(0.352, 0.221)) 

For  𝐴𝐴5  

(𝑃𝑃1(0.537, 0.298), 𝑃𝑃2(0.537, 0.251), 𝑃𝑃3(0.537, 0.297), 𝑃𝑃4(0.537, 0.332)) 

and 

         Centroid of the centroids computed by Definition 3.10 as follows: 

For  𝐴𝐴1  

(𝑅𝑅1(0.282,0.022), 𝑅𝑅2(0.282,0.021), 𝑅𝑅3(0.282,0.033), 𝑅𝑅4(0.282,0.026)) 

For  𝐴𝐴2  

(𝑅𝑅1(0.229,0.019), 𝑅𝑅2(0.229,0.020), 𝑅𝑅3(0.229,0.026), 𝑅𝑅4(0.229,0.022)) 

For  𝐴𝐴3 

(𝑅𝑅1(0.265,0.019), 𝑅𝑅2(0.265,0.020), 𝑅𝑅3(0.265,0.029), 𝑅𝑅4(0.265,0.025)) 

For  𝐴𝐴4 

(𝑅𝑅1(0.352,0.027), 𝑅𝑅2(0.352,0.025), 𝑅𝑅3(0.352,0.032), 𝑅𝑅4(0.352,0.032)) 

For  𝐴𝐴5 

(𝑅𝑅1(0.538,0.045), 𝑅𝑅2(0.538,0.042), 𝑅𝑅3(0.538,0.045), 𝑅𝑅4(0.538,0.039)) 

 

Step 4 

Scores  𝑆𝑆𝑘𝑘 (𝑘𝑘 = 1,2, … ,5) of  each 𝐴𝐴𝑖𝑖 denoted by 𝑺𝑺𝒌𝒌(𝑨𝑨𝒊𝒊 ) (𝑖𝑖 = 1,2, . . . , 𝑚𝑚) given as 
follows: 

𝑆𝑆1(𝐴𝐴1 ) = ∑4
𝑖𝑖=1 𝑥𝑥𝑖𝑖(𝐴𝐴)𝑦𝑦𝑖𝑖(𝐴𝐴)

4
=𝑥𝑥1(𝐴𝐴)𝑦𝑦1(𝐴𝐴)+𝑥𝑥2(𝐴𝐴)𝑦𝑦2(𝐴𝐴)+𝑥𝑥3(𝐴𝐴)𝑦𝑦3(𝐴𝐴)+𝑥𝑥4(𝐴𝐴)𝑦𝑦4(𝐴𝐴)

4
=0.062 
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Similarly, 

𝑆𝑆1(𝐴𝐴2 )=0.044 

𝑆𝑆1(𝐴𝐴3 )=0.058 

𝑆𝑆1(𝐴𝐴4 )=0.089 

𝑆𝑆1(𝐴𝐴5 )=0.188 

 

𝑆𝑆2(𝐴𝐴1 ) =
∑4

𝑖𝑖=1 �𝑥𝑥2
𝑖𝑖(𝐴𝐴) + 𝑦𝑦2

𝑖𝑖(𝐴𝐴)

4
=

�𝑥𝑥2
1(𝐴𝐴) + 𝑦𝑦2

1(𝐴𝐴) + �𝑥𝑥2
2(𝐴𝐴) + 𝑦𝑦2

2(𝐴𝐴) + �𝑥𝑥2
3(𝐴𝐴) + 𝑦𝑦2

3(𝐴𝐴) + �𝑥𝑥2
4(𝐴𝐴) + 𝑦𝑦2

4(𝐴𝐴)

4
= 0.378 

           

Similarly, 

𝑆𝑆2(𝐴𝐴2 )=0.295 

𝑆𝑆2(𝐴𝐴3 )=0.330 

𝑆𝑆2(𝐴𝐴4 )=0.441 

𝑆𝑆2(𝐴𝐴5 )=0.656 

 

𝑆𝑆3(𝐴𝐴1 ) = 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴1 𝑥𝑥) × 𝑑𝑑𝑖𝑖𝑠𝑠𝑡𝑡(𝐴𝐴1 𝑦𝑦)= (𝑑𝑑 − 𝑎𝑎) ∑4
𝑖𝑖=1 𝑦𝑦𝑖𝑖(𝐴𝐴)

4
= 

                               =(0.378 − 0.196)  𝑦𝑦1(𝐴𝐴)+𝑦𝑦2(𝐴𝐴)+𝑦𝑦3(𝐴𝐴)+𝑦𝑦4(𝐴𝐴)
4

=0.045 

Similarly, 

𝑆𝑆3(𝐴𝐴2 )=0.034 

𝑆𝑆3(𝐴𝐴3 )=0.046 

𝑆𝑆3(𝐴𝐴4 )=0.063 

𝑆𝑆3(𝐴𝐴5 )=0.089 

 

𝑆𝑆4(𝐴𝐴1 ) = ∑4
𝑖𝑖=1 |𝑑𝑑𝑖𝑖𝐶𝐶𝑖𝑖|

4
=|𝑑𝑑1𝐶𝐶1|+|𝑑𝑑2𝐶𝐶2|+|𝑑𝑑3𝐶𝐶3|+|𝑑𝑑4𝐶𝐶4|

4
=0.057 

Similarly, 
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𝑆𝑆4(𝐴𝐴2 )=0.049 

𝑆𝑆4(𝐴𝐴3)=0.058 

𝑆𝑆4(𝐴𝐴4)=0.066 

𝑆𝑆4(𝐴𝐴5)=0.075 

 

 

𝑆𝑆5(𝐴𝐴1 ) =
∑4

𝑖𝑖=1 �̇�𝑥𝑖𝑖(𝐴𝐴).�̇�𝑦𝑖𝑖(𝐴𝐴)
4

= �̇�𝑥1(𝐴𝐴).�̇�𝑦1(𝐴𝐴)+�̇�𝑥2(𝐴𝐴).�̇�𝑦2(𝐴𝐴)+�̇�𝑥3(𝐴𝐴).�̇�𝑦3(𝐴𝐴)+�̇�𝑥4(𝐴𝐴).�̇�𝑦4(𝐴𝐴)
4

=0.0071 

Similarly, 

𝑆𝑆5(𝐴𝐴2 )=0.0049 

𝑆𝑆5(𝐴𝐴3)=0.0061 

𝑆𝑆5(𝐴𝐴4)=0.0102 

𝑆𝑆5(𝐴𝐴5)=0.0229 

 

Step 5 

           We rank all the alternatives 𝐴𝐴𝑖𝑖  (𝑖𝑖 = 1,2, . . . ,5) according to their scores as follows: 

𝑆𝑆1(𝐴𝐴5 ) >  𝑆𝑆1(𝐴𝐴4 ) > 𝑆𝑆1(𝐴𝐴3 ) > 𝑆𝑆1(𝐴𝐴1 )   > 𝑆𝑆1(𝐴𝐴2 ) ⇒ 𝐴𝐴5 >𝐴𝐴4 >𝐴𝐴3 >𝐴𝐴1 >𝐴𝐴2  

𝑆𝑆2(𝐴𝐴5 ) > 𝑆𝑆2(𝐴𝐴4 ) > 𝑆𝑆2(𝐴𝐴1 ) > 𝑆𝑆2(𝐴𝐴3 ) > 𝑆𝑆2(𝐴𝐴2 ) ⇒ 𝐴𝐴5 >𝐴𝐴4 >𝐴𝐴1 >𝐴𝐴3 >𝐴𝐴2  

𝑆𝑆3(𝐴𝐴5 ) > 𝑆𝑆3(𝐴𝐴4 ) > 𝑆𝑆3(𝐴𝐴3 ) > 𝑆𝑆3(𝐴𝐴1 ) > 𝑆𝑆3(𝐴𝐴2 ) ⇒ 𝐴𝐴5 >𝐴𝐴4 >𝐴𝐴3 >𝐴𝐴1 >𝐴𝐴2  

𝑆𝑆4(𝐴𝐴5 ) > 𝑆𝑆4(𝐴𝐴4 ) > 𝑆𝑆4(𝐴𝐴3 ) > 𝑆𝑆4(𝐴𝐴1 ) > 𝑆𝑆4(𝐴𝐴2 ) ⇒ 𝐴𝐴5 >𝐴𝐴4 >𝐴𝐴3 >𝐴𝐴1 >𝐴𝐴2  

𝑆𝑆5(𝐴𝐴5 ) > 𝑆𝑆5(𝐴𝐴4 ) > 𝑆𝑆5(𝐴𝐴1 ) > 𝑆𝑆5(𝐴𝐴3 ) > 𝑆𝑆5(𝐴𝐴2 ) ⇒ 𝐴𝐴5 >𝐴𝐴4 >𝐴𝐴1 >𝐴𝐴3 >𝐴𝐴2  

     Therefore the best alternative is 𝐴𝐴5. If the decision maker doesn’t want to select 𝐴𝐴5, then 
he should select the 𝐴𝐴4  as the second best alternative. 

 

5. Conclusion 
 

In this study, we proposed a decision-making method based on the circumcenter of centroids 
and centroid points. Through the utilization of trapezoidal fuzzy multi-numbers, the 
proposed method captured the vagueness associated with decision criteria, allowing for a 
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more accurate representation of uncertainty. By employing the circumcenter of centroids and 
centroid points as a measure of central tendency, the method facilitated the evaluation and 
comparison of alternatives. The method provided an overall assessment of each alternative, 
enabling decision-makers to identify the most preferable options. The method successfully 
integrated the various fuzzy criteria and provided a clear preference order, assisting the 
decision-makers in choosing the most suitable choices for decision-makers. The proposed 
decision-making methods offer several advantages. They allow decision-makers to explicitly 
model uncertainty, consider multiple criteria, and capture the trade-offs among them.  

       Future research could focus on extending the proposed method to handle decision 
problems with a larger number of criteria or incorporating additional types of fuzzy numbers. 
Furthermore, the applicability of the method in different domains and real-world scenarios 
could be explored to validate its robustness and effectiveness. 
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ABSTRACT 

It becomes even more complex with complex architectural problems, and decision-
making methods are needed, and it is understood how important decision-making methods 
are. While the use of decision-making methods in the field of engineering is dominant, their 
use in the field of architecture is becoming more and more widespread. It can be listed as 
reaching an optimum solution with the targeted and designed alternatives with these 
methods, evolving the design process, allowing recycling, controlling these processes and 
creating data for architecture in the future. In this chapter, intuitionistic trapezoidal fuzzy 
multi-numbers weighted harmonic mean (ITFMNWHM) is developed to aggregate the 
decision information. The desirable properties of this operator are presented in detail. 
Further, we develop an approach to multi-citeria decision-making (MCDM) problem on the 
basis of the proposed developed aggregation operator. And then, we developed a score 
function for intuitionistic trapezoidal fuzzy multi-numbers. Finally, the effectiveness and 
applicability of our proposed MCDM model, as well as comparison analysis with other 
approaches are illustrated with a practical example.  

 

Keywords: intuitionistic fuzzy sets, intuitionistic fuzzy multi-sets, intuitionistic trapezoidal 

fuzzy multi-numbers, weighted harmonic aggragation operators, multi-criteria decision-

making. 
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1. Introduction 

The nature of the data is typically uncertain and such that, technology, economics, 
artificial intelligence and healthcare etc. imprecise in many real world problems. In the field 
of decision analysis, it is extremely challenging to arrive at precise conclusions based on 
evidence that is hazy or ambiguous. Generally, most of the existing methods provide 
deterministic solutions to the optimization problems under a uncertanity environment. But 
in practice, the decision-making may not have specific, accurate and comprehensive idea on 
these solutions. Since decision making problems which contain uncertain are difficult to 
model and solve, and it is a need for us to develop some mathematical theories.  

 
   The concept of fuzzy sets was first initiated by Zadeh [1] to manage uncertainty in real 
life. It has emerged that one component is insufficient to represent some special types of 
information. In this situation, a component namely non-membership value is invited to 
illustrate the information properly and in addition to this new component Atanassov [2] first 
defined the intuitionistic fuzzy set. Because of its ability to measure the fuzziness in a quite 
precise and comprehensive manner, intuitionistic fuzzy set theory has achieved a great deal. 
In some ambiguous circumstances, however, the sum of the grades of positive membership 
and negative membership can exceed 1, which is not suitable for intuitionistic fuzzy set. 
Yager [3] conducted the first study on the fuzzy multisets. They defined the concept of fuzzy 
multisets and basic operations including desired properties. Then, Shinoj and John [4] 
introduced intuitionistic fuzzy multisets based on fuzzy multisets and intuitionistic fuzzy 
sets.  As a result, the multisets have been gradually drawn attention by the scholars [5-7]. 
Although the fuzzy multi-number and intuitionistic fuzzy multi-number are important tools 
to model problems involving uncertainty, these theories are inadequate to model some 
uncertainties. Therefore, many extended forms of the theories have been studied on fuzzy 
numbers [8-14], intuitionistic fuzzy numbers [15-18], fuzzy multi-numbers [19-24], and 
other fuzzy sets [25-28], but very few methods consider value of the uncertainty in the 
occurrences are more than one. The theories have studied in various areas such as [32-46]. 
 

Over the course of the past few decades, there has been a growing interest in the 
strategies for constructing novel aggeration operators to merge information. Harmonic mean 
operator is the one of the basic operators. Because of their effectiveness and numerous 
benefits, aggeration operators have developed into an essential component of the decision- 
making process. The harmonic mean is also used to reduce the influence on the average of 
elements in a data array that has very high values than others.  It is very usable when there 
are anomalous alternative preferences made by decision makers. In most cases, these 
aggeration operators are predicated on a variety of operational rules that are designed to 
combine a limited number of neutrosophic numbers into a single neutrosophic number. In 
the literature, there few fuzzy harmonic operators developed by some researchers Aydın et 
al. [47], Shit et al. [48], Zhao et al. [49] and Xu [50].  

 
   In order to use the concept of fuzzy multi sets to define an uncertain quantity or a quantity 
difficult to quantify, in Ulucay et al. [19] the authors put forward the concept of trapezoidal 
fuzzy multi-numbers (TFM-numbers). They developed some harmonic aggregation 
operators of TFM-numbers. 
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2. Preliminary 

This section firstly introduces several the known definitions and propositions that would be 
helpful for better study of this paper. 
 
Definition 2.1 (Zimmermann 1993) A t-norm is a function t: [0,1] × [0,1] → [0,1] which 

satisfies the following properties: 

v. t(0,0) = 0 and t(μX1(x),1) = t(1, μX1(x)) = μX1(x), x ∈ E  

vi. If μX1(x) ≤ μX3(x) and μX2(x) ≤ μX4(x), then 

t(μX1(x), μX2(x)) ≤ t(μX3(x), μX4(x))  

vii. t(μX1(x), μX2(x)) = t(μX2(x), μX1(x))  

viii. t(μX1(x), t(μX2(x), μX3(x))) =

t(t(μX1(x), μX2(x), μX3(x))  

 

Definition 2.2 (Zimmermann 1993) An s-norm is a function  s: [0,1] × [0,1] → [0,1] which 

satisfies the following properties: 

v. s(1,1) = 1  and  s(μX1(x),0) = s(0, μX1(x)) = μX1(x), x ∈ E 

vi. if μX1(x) ≤ μX3(x) and μX2(x) ≤ μX4(x), then 

s(μX1(x), μX2(x)) ≤ s(μX3(x), μX4(x))  

vii. s(μX1(x), μX2(x)) = s(μX2(x), μX1(x)) 

s(μX1(x), s(μX2(x), μX3(x))) = s(s(μX1(x), μX2)(x), μX3(x))  

 

Definition 2.3 [1] The fuzzy sets defined on a non-empty Y  as objects having the form 
{ , ( ) : }ϕ= ∈FF y y y Y  where the functions : [0,1]ϕ →F Y for .∈y Y  

Definition 2.4 [6] Let Y  be a non-empty set. A multi-fuzzy set G  on Y  is defined as 

{ }1 2, ( ), ( ),..., ( ),... :ϕ ϕ ϕ= ∈i
G G GG y y y y y Y  where : [0,1]ϕ →i

G Y  for all i∈ { }1,2,..., p  

and .∈y Y  

Definition 2.5 [19] An ITFM number [ ] ( ) ( )1 2 1 2, , , ; , ,..., , , ,...,ϕ ϕ ϕ σ σ σ= p p
A A A A A Aa a b c d  on  (The set 

of all ITFM-number on  will be denoted by Ω .) is characterized by membership functions and non-
membership functions are defined as, respectively:  
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( ) / ( ),
,                        

( )
( ) / ( ),
0,                         otherwise

ϕ
ϕ

µ
ϕ

 − − ≤ ≤
 ≤ ≤= 

− − ≤ ≤


i
A

i
Ai

A i
A

y a b a a y b
b y c

y
d y d c c y d  

( ) ( ) ,
( )

,                           
( )

( ) ( ) ,
( )

1,                              otherwise.

σ

σ

σ

 − + −
≤ ≤ −

 ≤ ≤= 
− + − ≤ ≤ −




i
A

i
Ai

A i
A

b y y a a y b
b a

b y c
v y

y c d y c y d
d c

 

Definition 2.6 [19] Let [ ] ( ) ( )1 2 1 2
1 1 1 1, , , ; , ,..., , , ,..., ,ϕ ϕ ϕ σ σ σ= p p

A A A A A AA a b c d

[ ] ( ) ( )1 2 1 2
2 2 2 2, , , ; , ,..., , , ,...,ϕ ϕ ϕ σ σ σ= p p

B B B B B BB a b c d ∈Ω and 0γ ≠  be any real number. Then,

[ ]1 2 1 2 1 2 1 21.  , , , ;+ = + + + +A B a a b b c c d d  

( ) ( )1 1 2 2 1 1 2 2( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) .ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ σ σP P P P
A B A B A B A B A B A Bs s s t t t

[ ]1 2 1 2 1 2 1 22.  ,  ,  ,  ;− = − − − −A B a a b b c c d d  

( ) ( )1 1 2 2 1 1 2 2( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) .ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ σ σP P P P
A B A B A B A B A B A Bs s s t t t

 

[ ] ( ) ( )

[ ] ( )

1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2 1 2

1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2

, , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) , (d 0,d 0)

, , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),..., (
3. .

ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ σ σ

ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ σ

> >

=

p p P P
A B A B A B A B A B A B

p p P
A B A B A B A B A B A

a a b b c c d d t t t s s s

a d b c c b d a t t t s s s
A B ( )

[ ] ( ) ( )

1 2

1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2 1 2

, ) , (d 0,d 0)

, , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) , (d 0,d 0)

σ

ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ σ σ






< >




< <



P
B

p p P P
A B A B A B A B A B A Bd d c c b b a a t t t s s s
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4. 

( ) ( )

( )

1 1 2 2 1 1 2 21 1 1 1
1 2

2 2 2 2

1 1 2 2 1 1 2 21 1 1 1

2 2 2 2

, , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) , ( 0, 0)

, , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),
/

ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ σ σ

ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ

 
> > 

 

 
 =  

p p P P
A B A B A B A B A B A B

p p
A B A B A B A B A B

a b c d t t t s s s d d
d c b a

d c b a t t t s s
A B d c b a ( )

( ) ( )

1 2

1 1 2 2 1 1 2 21 1 1 1
1 2

2 2 2 2

..., ( , ) , ( 0, 0)

, , , ; ( , ), ( , ),..., ( , ) , ( , ), ( , ),..., ( , ) , ( 0, 0)

σ σ

ϕ ϕ ϕ ϕ ϕ ϕ σ σ σ σ σ σ








< >



   < <   



P P
A B

p p P P
A B A B A B A B A B A B

s d d

d c b a t t t s s s d d
a b c d

 

5. [ ] ( ) ( )1 2 1 2
1 1 1 1, , , ; 1 (1 ) ,1 (1 ) ,...,1 (1 ) , ( ) , ( ) ,..., ( ) ( 0).γ γ γ γ γ γγ γ γ γ γ ϕ ϕ ϕ σ σ σ γ= − − − − − − ≥p P

A A A A A AA a b c d  

6. 
( ) ( )( )1 2 1 2

1 1 1 1, , , ; ( ) , ( ) ,..., ( ) , 1 (1 ) ,1 (1 ) ,...,1 (1 ) ( 0).γ γ γ γ γ γ γ γ γ γ γϕ ϕ ϕ σ σ σ γ = − − − − − − ≥ 
P p

A A A A A AA a b c d  

Definition 2.7 [19] Let [ ] ( ) ( )1 2 1 2
1 1 1 1, , , ; , ,..., , , ,..., .ϕ ϕ ϕ σ σ σ= ∈Ωp p

A A A A A AA a b c d . Then, the 

normalized ITFM-number of A is given by 

( ) ( )1 2 1 21 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , , ; , ,..., , , ,..., .ϕ ϕ ϕ σ σ σ
 

=  + + + + + + + + + + + + 
p p

A A A A A A
a b c dA

a b c d a b c d a b c d a b c d
 

 

Definition 2.8 (Xu 2009)  Let 𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛 be 𝑛𝑛 real numbers. Then, harmonic mean 
operator  

𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛𝑖𝑖𝑐𝑐(𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛) = 𝑛𝑛
1

𝓍𝓍1
+ 1

𝓍𝓍2
+ 1

𝓍𝓍3
+ ⋯ +  1

𝓍𝓍𝑛𝑛

 (8) 

= 𝑛𝑛
∑ 1

𝓍𝓍𝑖𝑖

𝑛𝑛
𝑗𝑗=1

  

 

Definition 2.9 (Xu 2009)  Let 𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛 be 𝑛𝑛 real numbers. Then, weighted 
harmonic mean operator  

𝑀𝑀𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑒𝑒𝑑𝑑 ℎ𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛𝑖𝑖𝑐𝑐(𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛) = 𝑛𝑛
𝑤𝑤1
𝓍𝓍1

+ 𝑤𝑤2
𝓍𝓍2

+ 𝑤𝑤3
𝓍𝓍3

+ ⋯ +  𝑤𝑤𝑛𝑛
𝓍𝓍𝑛𝑛

 (9) 
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= 𝑛𝑛
∑ 𝑤𝑤𝑖𝑖

𝓍𝓍𝑖𝑖

𝑛𝑛
𝑗𝑗=1

  

where 𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 is a weight vector of 𝓍𝓍𝑗𝑗 (𝑗𝑗 = 1,2,3, … , 𝑛𝑛), 𝑒𝑒𝑗𝑗 ∈ [0,1] and � 𝑒𝑒𝑗𝑗

𝑛𝑛

𝑗𝑗=1
= 1. 

3. Some weight harmonic mean operators for ITFM-numbers 

Definition 3.1 Let  ℒ𝑎𝑎 = ⟨[ar, br, cr, dr]; � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �, �ϑℒ𝑟𝑟

1 , ϑℒ𝑟𝑟
2 , … , ϑℒ𝑟𝑟

P �� be a 

collection of ITFM-numbers for (𝑟𝑟 = 1,2,3, … , 𝑛𝑛). A mapping  𝑓𝑓ITFMNWHM
𝑒𝑒 : ℒ𝑟𝑟

𝑛𝑛 → ℒ   is called 

intuitionistic trapezoidal fuzzy multi-numbers weighted harmonic mean (ITFMNWHM) operator 

if it satisfies:  

ITFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) =
1

∑ 𝑤𝑤𝑟𝑟
ℒ𝑟𝑟

𝑛𝑛
𝑎𝑎=1

 

 

 

(10) 

 

where 𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 is the associated weight vector of ℒ𝑎𝑎 for 𝑟𝑟 = 1,2,3, … , 𝑛𝑛 and 

� 𝑒𝑒𝑎𝑎

𝑛𝑛

𝑎𝑎=1

= 1. 

Theorem 3.2 Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr]; � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �, �ϑℒ𝑟𝑟

1 , ϑℒ𝑟𝑟
2 , … , ϑℒ𝑟𝑟

P �� be a collection 

of ITFM-numbers for 𝑟𝑟 = 1,2,3, … , 𝑛𝑛 , 𝑘𝑘 = 1,2.3, … 𝑝𝑝 and the associated weight vector of ℒ𝑎𝑎  is 

𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 for ∑ 𝑒𝑒𝑎𝑎
𝑛𝑛
𝑎𝑎=1 = 1 then  

 

ITFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) =
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

+ ⋯ + 𝑤𝑤𝑛𝑛
ℒ𝑛𝑛

 

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑛𝑛
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrn
r=1

n
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
p )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrn
r=1

n
r=1

� 

�
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

n
r=1

, 
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2 ∏ (ϑℒ𝑟𝑟
2 )w𝑟𝑟n

r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟n
r=1

n
r=1

, . . . ,
2 ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟n
r=1

∏ (2 − ϑℒ𝑟𝑟

p )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟n
r=1

n
r=1

��           (11) 

Proof  When n=2, then ITFMNWHM(ℒ1, ℒ2) is calculated as follows:  

 

NVNTNWHM(ℒ1, ℒ2) =
1

∑ 𝑤𝑤𝑟𝑟
ℒ𝑟𝑟

2
𝑎𝑎=1

= 

1
𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

 

 

=
1

𝑤𝑤1

⟨[a1,b1,c1,d1];� 𝜇𝜇ℒ1
1 ,𝜇𝜇ℒ1

2 ,…,𝜇𝜇ℒ1
P �,�ϑℒ1

1 ,ϑℒ1
2 ,…,ϑℒ1

P ��

+ 𝑤𝑤2

⟨[a2,b2,c2,d2];� 𝜇𝜇ℒ2
1 ,𝜇𝜇ℒ2

2 ,…,𝜇𝜇ℒ2
P �,�ϑℒ2

1 ,ϑℒ2
2 ,…,ϑℒ2

P ��

 

 

=
1

𝑒𝑒1
1

�� 1
d1

, 1
c1

, 1
b1

, 1
a1

�;� 𝜇𝜇ℒ1
1 ,𝜇𝜇ℒ1

2 ,…,𝜇𝜇ℒ1
P �,�ϑℒ1

1 ,ϑℒ1
2 ,…,ϑℒ1

P ��

+𝑒𝑒2
1

�� 1
d2

, 1
c2

, 1
b2

, 1
a2

�;� 𝜇𝜇ℒ2
1 ,𝜇𝜇ℒ2

2 ,…,𝜇𝜇ℒ2
P �,�ϑℒ2

1 ,ϑℒ2
2 ,…,ϑℒ2

P ��

 

 
 

=
1
1

��𝑤𝑤1
d1

,𝑤𝑤1
c1

,𝑤𝑤1
b1

,𝑤𝑤1
a1

�;�
�1+𝜇𝜇ℒ1

1 �
𝑤𝑤1−�1−𝜇𝜇ℒ1

1 �
𝑤𝑤1

�1+𝜇𝜇ℒ1
1 �

𝑤𝑤1
+�1−𝜇𝜇ℒ1

1 �
𝑤𝑤1,

�1+𝜇𝜇ℒ1
2 �

𝑤𝑤1−�1−𝜇𝜇ℒ1
2 �

𝑤𝑤1

�1+𝜇𝜇ℒ1
2 �

𝑤𝑤1
+�1−𝜇𝜇ℒ1

2 �
𝑤𝑤1�,�

2�ϑℒ1
1 �

𝑤𝑤1

�2−ϑℒ1
1 �

𝑤𝑤1
+�ϑℒ1

1 �
𝑤𝑤1,

2�ϑℒ1
2 �

𝑤𝑤2

�2−ϑℒ1
2 �

𝑤𝑤2
+�ϑℒ1

2 �
𝑤𝑤2��

+ 1

��𝑤𝑤2
d2

,𝑤𝑤2
c2

,𝑤𝑤2
b2

,𝑤𝑤2
a2

�;�
�1+𝜇𝜇ℒ1

1 �
𝑤𝑤1−�1−𝜇𝜇ℒ1

1 �
𝑤𝑤1

�1+𝜇𝜇ℒ1
1 �

𝑤𝑤1+�1−𝜇𝜇ℒ1
1 �

𝑤𝑤1,
�1+𝜇𝜇ℒ1

2 �
𝑤𝑤1−�1−𝜇𝜇ℒ1

2 �
𝑤𝑤1

�1+𝜇𝜇ℒ1
2 �

𝑤𝑤1+�1−𝜇𝜇ℒ1
2 �

𝑤𝑤1�,�
2�ϑℒ1

1 �
𝑤𝑤1

�2−ϑℒ1
1 �

𝑤𝑤1+�ϑℒ1
1 �

𝑤𝑤1,
2�ϑℒ1

2 �
𝑤𝑤2

�2−ϑℒ1
2 �

𝑤𝑤2+�ϑℒ1
2 �

𝑤𝑤2��

 

= 1 ���
𝑒𝑒𝑎𝑎

d𝑎𝑎

2

𝑎𝑎=1

, �
𝑒𝑒𝑎𝑎

c𝑎𝑎

2

𝑎𝑎=1

, �
𝑒𝑒𝑎𝑎

b𝑎𝑎

2

𝑎𝑎=1

, �
𝑒𝑒𝑎𝑎

a𝑎𝑎

2

𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr2

r=1
2
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wr2
r=1

2
r=1

�  

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

�, 

�
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟2
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟2
r=1

2
r=1

,
2 ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟2
r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟2
r=1

2
r=1

�� 
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= 1 ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

2
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

2
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

2
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

2
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr2

r=1
2
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wr2
r=1

2
r=1

�  

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

�, 

�
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟2
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟2
r=1

2
r=1

,
2 ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟2
r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟2
r=1

2
r=1

��                    

 

Suppose that Equation 12 holds for 𝑛𝑛 = 𝑘𝑘, i.e., 

NVNTNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑘𝑘) =
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

+ ⋯ + 𝑤𝑤𝑘𝑘
ℒ𝑘𝑘

 

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑘𝑘
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr𝑘𝑘

r=1
k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrk
r=1

k
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
p )wrk

r=1
k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk
r=1

k
r=1

� 

 , �
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟k
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟k
r=1

k
r=1

, 

2 ∏ (ϑℒ𝑟𝑟
2 )w𝑟𝑟k

r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟k
r=1

k
r=1

, . . . ,
2 ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟k
r=1

∏ (2 − ϑℒ𝑟𝑟

p )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟k
r=1

k
r=1

�� 

 

For 𝑛𝑛 = 𝑘𝑘 + 1, using above expression and operational laws, we have 

 

NVNTNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑘𝑘, ℒ𝑘𝑘+1) = 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑘𝑘
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr𝑘𝑘

r=1
k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrk
r=1

k
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk
r=1

k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk
r=1

k
r=1

� 
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, �
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟k
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟k
r=1

k
r=1

, 

2 ∏ (ϑℒ𝑟𝑟
2 )w𝑟𝑟k

r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟k
r=1

k
r=1

, . . . ,
2 ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟k
r=1

∏ (2 − ϑℒ𝑟𝑟

p )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟k
r=1

k
r=1

�� 

= ��
1

𝑤𝑤𝑘𝑘+1
a𝑘𝑘+1

,
1

𝑤𝑤𝑘𝑘+1
b𝑘𝑘+1

,
1

𝑤𝑤𝑘𝑘+1
c𝑘𝑘+1

,
1

𝑤𝑤𝑘𝑘+1
d𝑘𝑘+1

� ; �
(1 + 𝜇𝜇ℒ𝑘𝑘+1

1 )w𝑘𝑘+1 − (1 − 𝜇𝜇ℒ𝑘𝑘+1
1 )w𝑘𝑘+1

(1 + 𝜇𝜇ℒ𝑘𝑘+1
1 )w𝑘𝑘+1 + (1 − 𝜇𝜇ℒ𝑘𝑘+1

1 )w𝑘𝑘+1
 

(1 + 𝜇𝜇ℒ𝑘𝑘+1
2 )w𝑘𝑘+1 − (1 − 𝜇𝜇ℒ𝑘𝑘+1

2 )w𝑘𝑘+1

(1 + 𝜇𝜇ℒ𝑘𝑘+1
2 )w𝑘𝑘+1 + (1 − 𝜇𝜇ℒ𝑘𝑘+1

2 )w𝑘𝑘+1
, . . . ,

(1 + 𝜇𝜇ℒ𝑘𝑘+1
p )w𝑘𝑘+1 − (1 − 𝜇𝜇ℒ𝑘𝑘+1

p )w𝑘𝑘+1

(1 + 𝜇𝜇ℒ𝑘𝑘+1

p )w𝑘𝑘+1 + (1 − 𝜇𝜇ℒ𝑘𝑘+1

p )w𝑘𝑘+1
�, 

 �
2(ϑℒ𝑘𝑘+1

1 )wk+1

(2 − ϑℒ𝑘𝑘+1
1 )wk+1 + (ϑℒ𝑘𝑘+1

1 )wk+1
, 

2(ϑℒ𝑘𝑘+1
2 )wk+1

(2 − ϑℒ𝑘𝑘+1
2 )wk+1 + (ϑℒ𝑘𝑘+1

2 )wk+1
, . . . ,

2(ϑℒ𝑘𝑘+1
p )wk+1

(2 − ϑℒ𝑘𝑘+1

p )wk+1 + (ϑℒ𝑘𝑘+1

p )wk+1
�� 

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr𝑘𝑘+1

r=1
k+1
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrk+1
r=1

k+1
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk+1
r=1

k+1
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk+1
r=1

k+1
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk+1
r=1

k+1
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk+1
r=1

k+1
r=1

� 

 , �
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟k+1
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟k+1
r=1

k+1
r=1

, 

2 ∏ (ϑℒ𝑟𝑟
2 )w𝑟𝑟k+1

r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟k+1
r=1

k+1
r=1

, . . . ,
2 ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟k+1
r=1

∏ (2 − ϑℒ𝑟𝑟

p )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟k+1
r=1

k+1
r=1

�� 

So, the proof is complete. 

Next, it can be easily shown that the proposed operator has the following properties. 

Theorem 3.3 (Idempotency)   

Let  ℒ𝑎𝑎 = ⟨[ar, br, cr, dr]; � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �, �ϑℒ𝑟𝑟

1 , ϑℒ𝑟𝑟
2 , … , ϑℒ𝑟𝑟

P ��  be a collection of ITFM-

numbers for 𝑟𝑟 = 1,2,3, … , 𝑛𝑛. If ℒ𝑛𝑛 = ℒ for all 𝑟𝑟 that is all are identical then, 

 

ITFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) = ℒ.                                                 (12) 

Proof  We know that 
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ITFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) =
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

+ ⋯ + 𝑤𝑤𝑛𝑛
ℒ𝑛𝑛

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑛𝑛
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrn
r=1

n
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
p )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrn
r=1

n
r=1

�, 

�
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

n
r=1

, 

2 ∏ (ϑℒ𝑟𝑟
2 )w𝑟𝑟n

r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟n
r=1

n
r=1

, . . . ,
2 ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟n
r=1

∏ (2 − ϑℒ𝑟𝑟

p )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟n
r=1

n
r=1

�� 

= ��
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

a

,
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

b

,
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

c

,
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

d

� ; �
(1 + 𝜇𝜇ℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1 − (1 − 𝜇𝜇ℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(1 + 𝜇𝜇ℒ
1)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (1 − 𝜇𝜇ℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

 

(1 + 𝜇𝜇ℒ
2)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 − (1 − 𝜇𝜇ℒ

2)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(1 + 𝜇𝜇ℒ
2)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (1 − 𝜇𝜇ℒ

2)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

, . . . ,
(1 + 𝜇𝜇ℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1 − (1 − 𝜇𝜇ℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(1 + 𝜇𝜇ℒ
𝑝𝑝)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (1 − 𝜇𝜇ℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

�, 

 �
2(ϑℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(2 − ϑℒ
1)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (ϑℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

, 

2(ϑℒ
2)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1

(2 − ϑℒ
2)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (ϑℒ

2)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

, . . . ,
2(ϑℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(2 − ϑℒ
𝑝𝑝)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (ϑℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

�� 

= ��
1
1
a

,
1
1
b

,
1
1
c

,
1
1
d

� ; �
(1 + 𝜇𝜇ℒ

1) − (1 − 𝜇𝜇ℒ
1)

(1 + 𝜇𝜇ℒ
1) + (1 − 𝜇𝜇ℒ

1)
,
(1 + 𝜇𝜇ℒ

2) − (1 − 𝜇𝜇ℒ
2)

(1 + 𝜇𝜇ℒ
2) + (1 − 𝜇𝜇ℒ

2)
, …  ,

(1 + 𝜇𝜇ℒ
𝑝𝑝) − (1 − 𝜇𝜇ℒ

𝑝𝑝)
�1 + 𝜇𝜇ℒ

𝑝𝑝� + (1 − 𝜇𝜇ℒ
𝑝𝑝)

  

�
2(ϑℒ

1)
(2 − ϑℒ

1) + (ϑℒ
1)

,
2(ϑℒ

2)
(2 − ϑℒ

2) + (ϑℒ
2)

, . . . ,
2(ϑℒ

𝑝𝑝)
(2 − ϑℒ

𝑝𝑝) + (ϑℒ
𝑝𝑝)

�� = ℒ. 

Theorem 3.4 (Monotoniticy property): 

Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr]; � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �, �ϑℒ𝑟𝑟

1 , ϑℒ𝑟𝑟
2 , … , ϑℒ𝑟𝑟

P �� and  

ℒ𝑎𝑎
′ = ⟨[a𝑎𝑎

′ , b𝑎𝑎
′ , c𝑎𝑎

′ , d𝑎𝑎
′ ]; � �𝜇𝜇ℒ𝑟𝑟

′ �
1

, �𝜇𝜇ℒ𝑟𝑟
′ �

2
, … , �𝜇𝜇ℒ𝑟𝑟

′ �
𝑝𝑝

� , � �ϑℒ𝑟𝑟
′ �

1
, �ϑℒ𝑟𝑟

′ �
2

, … , �ϑℒ𝑟𝑟
′ �

𝑝𝑝
�� 

be two collection of ITFM-numbers. If ar ≤ a𝑎𝑎
′ , br ≤ b𝑎𝑎

′ ,  cr ≤ c𝑎𝑎
′ , dr ≤ d𝑎𝑎

′ , 𝜇𝜇ℒ𝑟𝑟
1 ≤ �𝜇𝜇ℒ𝑟𝑟

′ �
1

, 

𝜇𝜇ℒ𝑟𝑟
2 ≤ �𝜇𝜇ℒ𝑟𝑟

′ �
2

, … , 𝜇𝜇ℒ𝑟𝑟

p ≤ �𝜇𝜇ℒ𝑟𝑟
′ �

𝑝𝑝
and ϑℒ𝑟𝑟

1 ≥ �ϑℒ𝑟𝑟
′ �

1
, ϑℒ𝑟𝑟

2 ≥ �ϑℒ𝑟𝑟
′ �

2
, … , ϑℒ𝑟𝑟

p ≥ �ϑℒ𝑟𝑟
′ �

𝑝𝑝
then  
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ITFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) ≤ ITFMNWHM𝜑𝜑(ℒ1
′ , ℒ2

′ , ℒ3
′ , … , ℒ𝑛𝑛

′ ).                   (13) 

Proof. Since ar ≤ a𝑎𝑎
′  and 𝜑𝜑r ≥ 0 for all r.  

1
ar

≥
1
a𝑎𝑎

′ ⟹
𝜑𝜑r

ar
≥

𝜑𝜑r

a𝑎𝑎
′ ⟹ �

𝜑𝜑r

ar

𝑛𝑛

𝑟𝑟=1

≥ �
𝜑𝜑r

a𝑎𝑎
′

𝑛𝑛

𝑟𝑟=1

⟹  
1

∑ 𝜑𝜑r
ar

𝑛𝑛
𝑟𝑟=1

 ≤
1

∑ 𝜑𝜑r
a𝑟𝑟

′
𝑛𝑛
𝑟𝑟=1

 

the other calculations are calculated as follows: 
1

∑ 𝜑𝜑r
br

𝑛𝑛
𝑟𝑟=1

 ≤
1

∑ 𝜑𝜑r
b𝑟𝑟

′
𝑛𝑛
𝑟𝑟=1

,
1

∑ 𝜑𝜑r
cr

𝑛𝑛
𝑟𝑟=1

 ≤
1

∑ 𝜑𝜑r
c𝑟𝑟

′
𝑛𝑛
𝑟𝑟=1

,
1

∑ 𝜑𝜑r
dr

𝑛𝑛
𝑟𝑟=1

 ≤
1

∑ 𝜑𝜑r
d𝑟𝑟

′
𝑛𝑛
𝑟𝑟=1

 

 

𝜇𝜇ℒ𝑟𝑟
1 ≤ �𝜇𝜇ℒ𝑟𝑟

′ �
1

⟹ −𝜇𝜇ℒ𝑟𝑟
1 ≥ − �𝜇𝜇ℒ𝑟𝑟

′ �
1

⟹ �1 − 𝜇𝜇ℒ𝑟𝑟
1 � ≥ �1 − �𝜇𝜇ℒ𝑟𝑟

′ �
1

� ⟹ �1 − 𝜇𝜇ℒ𝑟𝑟
1 �

𝜑𝜑r

≥ �1 − �𝜇𝜇ℒ𝑟𝑟
′ �

1
�

𝜑𝜑r
 

 

⟹ ��1 − 𝜇𝜇ℒ𝑟𝑟
1 �

𝜑𝜑r
𝑛𝑛

𝑎𝑎=1

≥ � �1 − �𝜇𝜇ℒ𝑟𝑟
′ �

1
�

𝜑𝜑r
𝑛𝑛

𝑎𝑎=1

⟹ 1 − ��1 − 𝜇𝜇ℒ𝑟𝑟
1 �

𝜑𝜑r
𝑛𝑛

𝑎𝑎=1

≤ 1 − � �1 − �𝜇𝜇ℒ𝑟𝑟
′ �

1
�

𝜑𝜑r
,

𝑛𝑛

𝑎𝑎=1

 

similarly 

ϑℒ𝑟𝑟
1 ≥ �ϑℒ𝑟𝑟

′ �
1

⟹ �ϑℒ𝑟𝑟
1 �

𝜑𝜑r ≥ ��ϑℒ𝑟𝑟
′ �

1
�

𝜑𝜑r
⟹ ��ϑℒ𝑟𝑟

1 �
𝜑𝜑r

𝑛𝑛

𝑟𝑟=1
≥ � ��ϑℒ𝑟𝑟

′ �
1

�
𝜑𝜑r

𝑛𝑛

𝑟𝑟=1
 

therefore  

ITFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) ≤ ITFMNWHM𝜑𝜑(ℒ1
′ , ℒ2

′ , ℒ3
′ , … , ℒ𝑛𝑛

′ ). 

Theorem 3.5 (Commutativity Property):  

Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr]; � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �, �ϑℒ𝑟𝑟

1 , ϑℒ𝑟𝑟
2 , … , ϑℒ𝑟𝑟

P ��  

be a collection of positive ITFM-numbers and 𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇  be an associated 

weight vector where 𝑒𝑒𝑎𝑎 ∈ [0,1], ∑ 𝑒𝑒𝑎𝑎
𝑛𝑛
𝑎𝑎=1 = 1. 

ITFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) = ITFMNWHM𝜑𝜑(ℒ1
′ , ℒ2

′ , ℒ3
′ , … , ℒ𝑛𝑛

′ ).                   (14) 

where ℒ𝑛𝑛
′  is any permutation of ℒ𝑛𝑛 for 𝑟𝑟 = 1,2,3, … , 𝑛𝑛. 

Proof. We get from Equation (11). Since ℒ𝑛𝑛
′  is any permutation of ℒ𝑛𝑛. Therefore 

ITFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) =
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

+ ⋯ + 𝑤𝑤𝑛𝑛
ℒ𝑛𝑛
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= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑛𝑛
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrn
r=1

n
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
p )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrn
r=1

n
r=1

� 

 , �
2 ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

∏ (2 − ϑℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

n
r=1

, 

2 ∏ (ϑℒ𝑟𝑟
2 )w𝑟𝑟n

r=1

∏ (2 − ϑℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

2 )w𝑟𝑟n
r=1

n
r=1

, . . . ,
2 ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟n
r=1

∏ (2 − ϑℒ𝑟𝑟

p )w𝑟𝑟 + ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟n
r=1

n
r=1

��                    

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

′
𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
𝑏𝑏𝑟𝑟

′
𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
𝑐𝑐𝑟𝑟

′
𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
𝑑𝑑𝑟𝑟

′
𝑛𝑛
𝑎𝑎=1

� ; �
∏ (1 + (𝜇𝜇′)ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − (𝜇𝜇′)ℒ𝑟𝑟
1 )wrn

r=1
n
r=1

∏ (1 + (𝜇𝜇′)ℒ𝑟𝑟
1 )wr + ∏ (1 − (𝜇𝜇′)ℒ𝑟𝑟

1 )wrn
r=1

n
r=1

 

∏ (1 + (𝜇𝜇′)ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − (𝜇𝜇′)ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + (𝜇𝜇′)ℒ𝑟𝑟
2 )wr + ∏ (1 − (𝜇𝜇′)ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

, . . . ,
∏ (1 + (𝜇𝜇′)ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − (𝜇𝜇′)ℒ𝑟𝑟
p )wrn

r=1
n
r=1

∏ (1 + (𝜇𝜇′)ℒ𝑟𝑟

p )wr + ∏ (1 − (𝜇𝜇′)ℒ𝑟𝑟

p )wrn
r=1

n
r=1

� 

 , �
2 ∏ ((ϑ′)ℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

∏ (2 − (ϑ′)ℒ𝑟𝑟
1 )w𝑟𝑟 + ∏ ((ϑ′)ℒ𝑟𝑟

1 )w𝑟𝑟n
r=1

n
r=1

, 

2 ∏ ((ϑ′)ℒ𝑟𝑟
2 )w𝑟𝑟n

r=1

∏ (2 − (ϑ′)ℒ𝑟𝑟
2 )w𝑟𝑟 + ∏ ((ϑ′)ℒ𝑟𝑟

2 )w𝑟𝑟n
r=1

n
r=1

, . . . ,
2 ∏ (ϑℒ𝑟𝑟

p )w𝑟𝑟n
r=1

∏ (2 − (ϑ′)ℒ𝑟𝑟

p )w𝑟𝑟 + ∏ ((ϑ′)ℒ𝑟𝑟

p )w𝑟𝑟n
r=1

n
r=1

��                    

=
1

𝑤𝑤1
ℒ1

′ + 𝑤𝑤2
ℒ2

′ + ⋯ + 𝑤𝑤𝑛𝑛
ℒ𝑛𝑛

′

 

= ITFMNWHM𝜑𝜑(ℒ1
′ , ℒ2

′ , ℒ3
′ , … , ℒ𝑛𝑛

′ ). 

Hence the proof completed. 

Theorem 3.6 (Boundedness Property): 

Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr]; � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �, �ϑℒ𝑟𝑟

1 , ϑℒ𝑟𝑟
2 , … , ϑℒ𝑟𝑟

P ��  

be a collection of positive ITFM-numbers and let, 

ℒ𝑎𝑎
+ = ��max

𝑎𝑎
{ar} , max

𝑎𝑎
{br} , max

𝑎𝑎
{𝑐𝑐r} , max

𝑎𝑎
{dr}� ; � max

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

1 � , max
𝑎𝑎

�𝜇𝜇ℒ𝑟𝑟
2 � , … , max

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

p ��, 

� min
𝑎𝑎

�ϑℒ𝑟𝑟
1 � , min

𝑎𝑎
�ϑℒ𝑟𝑟

2 � , … , min
𝑎𝑎

�ϑℒ𝑟𝑟

p ��� 

ℒ𝑎𝑎
− = ��min

𝑎𝑎
{ar} , min

𝑎𝑎
{br} , min

𝑎𝑎
{𝑐𝑐r} , min

𝑎𝑎
{dr}� ; � min

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

1 � , min
𝑎𝑎

�𝜇𝜇ℒ𝑟𝑟
2 � , … , min

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

p ��,       
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� max
𝑎𝑎

�ϑℒ𝑟𝑟
1 � , max

𝑎𝑎
�ϑℒ𝑟𝑟

2 � , … , max
𝑎𝑎

�ϑℒ𝑟𝑟

p ��� 

Then, 

ℒ𝑎𝑎
− ≤ ITFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) ≤ ℒ𝑎𝑎

+.                                      (15) 

 

Proof. Since min
𝑎𝑎

{ar} ≤ ar ≤ max
𝑎𝑎

{ar} , ∀𝑟𝑟 

 

𝜑𝜑r

min
𝑎𝑎

{ar} ≥
𝜑𝜑r

ar
≥

𝜑𝜑r

max
𝑎𝑎

{ar} ⇒ �
𝜑𝜑r

min
𝑎𝑎

{ar}

𝑛𝑛

𝑎𝑎=1

≥ �
𝜑𝜑r

ar

𝑛𝑛

𝑎𝑎=1

≥ �
𝜑𝜑r

max
𝑎𝑎

{ar}

𝑛𝑛

𝑎𝑎=1

 

 

⇒
1

∑ 𝜑𝜑r
min

𝑟𝑟
{ar}

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
ar

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
max

𝑟𝑟
{ar}

𝑛𝑛
𝑎𝑎=1

                      

 

In the same way, 

⇒
1

∑ 𝜑𝜑r
min

𝑟𝑟
{br}

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
br

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
max

𝑟𝑟
{br}

𝑛𝑛
𝑎𝑎=1

 

⇒
1

∑ 𝜑𝜑r
min

𝑟𝑟
{cr}

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
cr

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
max

𝑟𝑟
{cr}

𝑛𝑛
𝑎𝑎=1

 

⇒
1

∑ 𝜑𝜑r
min

𝑟𝑟
{dr}

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
dr

𝑛𝑛
𝑎𝑎=1

≤
1

∑ 𝜑𝜑r
max

𝑟𝑟
{dr}

𝑛𝑛
𝑎𝑎=1

 

and, 

min
𝑎𝑎

{𝜇𝜇r} ≤ 𝜇𝜇r ≤ max
𝑎𝑎

{𝜇𝜇r} ⇒ �1 − min
𝑎𝑎

{𝜇𝜇r}� ≥ (1 − 𝜇𝜇r) ≥ �1 − max
𝑎𝑎

{𝜇𝜇r}� 

                                      ⇒ �1 − min
𝑎𝑎

{𝜇𝜇r}�
𝜑𝜑r

≥ (1 − 𝜇𝜇r)𝜑𝜑r ≥ �1 − max
𝑎𝑎

{𝜇𝜇r}�
𝜑𝜑r

, 𝜑𝜑r ≥ 0, ∀r. 

                                   = � �1 − min
𝑎𝑎

{𝜇𝜇r}�
𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

≥ �(1 − 𝜇𝜇r)𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

≥ � �1 − max
𝑎𝑎

{𝜇𝜇r}�
𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

 

= 1 − � �1 − min
𝑎𝑎

{𝜇𝜇r}�
𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

≤ 1 − �(1 − 𝜇𝜇r)𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

≤ 1 − � �1 − max
𝑎𝑎

{𝜇𝜇r}�
𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

 

 

Again, 



                                                   
Neutrosophic SuperHyperAlgebra And New Types of Topologies 

185 
 

 

min
𝑎𝑎

{ϑr} ≤ ϑr ≤ max
𝑎𝑎

{ϑr} ⇒ �min
𝑎𝑎

{ϑr}�
𝜑𝜑r

≤ (ϑr)𝜑𝜑r ≤ �max
𝑎𝑎

{ϑr}�
𝜑𝜑r

, 𝜑𝜑r ≥ 0, ∀r 

            = � �min
𝑎𝑎

{ϑr}�
𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

≤ �(ϑr)𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

≤ � �max
𝑎𝑎

{ϑr}�
𝜑𝜑r

𝑛𝑛

𝑎𝑎=1

. 

 

Definition 3.2 Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr]; � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �, �ϑℒ𝑟𝑟

1 , ϑℒ𝑟𝑟
2 , … , ϑℒ𝑟𝑟

P ��  

be a collection of positive ITFM-number, then 

𝑆𝑆(ℒ𝑎𝑎) =
1

4𝑝𝑝
[𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑] × �2𝑝𝑝 + � 𝜇𝜇ℒ𝑟𝑟

P

𝑝𝑝

𝑎𝑎=1

− � ϑℒ𝑟𝑟
P

𝑝𝑝

𝑎𝑎=1

� 

and 

𝐴𝐴(ℒ𝑎𝑎) =
1

4𝑝𝑝
[𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑] × �2𝑝𝑝 + � 𝜇𝜇ℒ𝑟𝑟

P

𝑝𝑝

𝑎𝑎=1

+ � ϑℒ𝑟𝑟
P

𝑝𝑝

𝑎𝑎=1

� 

is called the score and accuracy degrees of ℒ𝑎𝑎, respectively. 

Example 3.2 : Let ℒ = ⟨[1,2,6,9]; ( 0.2,0.6,0.4), (0.3,0.5,0.4)⟩ be NVNT-number then,  

𝑆𝑆(ℒ) =
1

4.3
[1 + 2 + 6 + 9] × �6 + (0.2 + 0.6 + 0.4) − (0.3 + 0.5 + 0.4)� = 9 

𝐴𝐴(ℒ) =
1

4.3
[1 + 2 + 6 + 9] × �6 + (0.2 + 0.6 + 0.4) + (0.3 + 0.5 + 0.4)� = 12.6 

Definition 3.4 Let ℒ𝑎𝑎
1 and ℒ𝑎𝑎

2 be two ITFM-numbers; 

a. If 𝑆𝑆(ℒ𝑎𝑎
1 ) < 𝑆𝑆(ℒ𝑎𝑎

2 ), then  ℒ𝑎𝑎
1 is smaller than ℒ𝑎𝑎

2, denoted by ℒ𝑎𝑎
1 < ℒ𝑎𝑎

2. 

b. If 𝑆𝑆(ℒ𝑎𝑎
1 ) = 𝑆𝑆(ℒ𝑎𝑎

2 ); 

i. If 𝐴𝐴(ℒ𝑎𝑎
1 ) < 𝐴𝐴(ℒ𝑎𝑎

2 ), then  ℒ𝑎𝑎
1 is smaller than ℒ𝑎𝑎

2, denoted by ℒ𝑎𝑎
1 < ℒ𝑎𝑎

2.  

ii. If 𝐴𝐴(ℒ𝑎𝑎
1 ) = 𝐴𝐴(ℒ𝑎𝑎

2 ), then  ℒ𝑎𝑎
1 and ℒ𝑎𝑎

2 are the same, denoted by ℒ𝑎𝑎
1 = ℒ𝑎𝑎

2. 

4. An algorithm for proposed work 

In this section, we shall present a multi-criteria decision-making problem with normalized 

ITFM-numbers under neutrosophic information using ITFMNWHM operator. 

Assume that U = {U1, U2, … , Um} be the set of altenatives and C = {c1, c2, … , cn} be the set 

of criterias; 
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(Ukj)mxn  =

⎝

⎜⎜
⎛

U11 U12
U21 U22

⋮ ⋮
⋮ ⋮

Um1 Um2

              ⋯              U1n
⋯ U2n
⋯ ⋮
⋯ ⋮
⋯ Umn

  

⎠

⎟⎟
⎞

   

such that 

Ukj = 〈�akj, bkj, ckj, dkj�, �𝜇𝜇kj
1 , 𝜇𝜇kj

2 , 𝜇𝜇kj
3 , … , 𝜇𝜇kj

p � , �ϑkj
1 , ϑkj

2 , ϑkj
3 , … , ϑkj

p �〉,  (k=1,2,…,m) and 

(j=1,2,…,n). 

It is carried out the following algorithm to get best choice: 

Step 1: Identify and determine the criterias and alternatives and then construct decision 

matrices, 

(Ukj)mxn, (k=1,2,…,m; j=1,2,…,n). 

Step 2: Get preferable for U1, U2, … , Um  based on 𝐹𝐹𝑖𝑖 (𝑖𝑖 = 1,2,3, … , 𝑚𝑚)  to aggregate the 

normalized ITFM-numbers ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛 as; 

𝐹𝐹𝑖𝑖 = ITFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛). 

Step 3: Calculate score value whose formula is given in Definition 3.2 for each 𝐹𝐹𝑖𝑖  to rank 

alternatives. 

Step 4: Rank all score value of 𝐹𝐹𝑖𝑖 according to descending order. 

 

5. Application of the proposed method 

 In this section, an explanatory example is given to view the strength of the presented work. 

Architecture means the design of structures. It means designing and shaping structures in a 

way. It requires great imagination. Then it should be transferred to paper. At this stage, there 

may be some difficulties, and in terms of time and design, it will be difficult to put the design 

literally on paper. So it would be better to use computer-aided programs. The Deniz 

architecture firm wants to choose the computer aided programs for drawing the entrance gate 

of the AVM. Therefore, there are five computer programs indicated u_i (i=1,2,3,4,5) are 

available. For this computer aided programs have a criteria set 𝐶𝐶 = {𝑐𝑐1 =  RAM;  𝑐𝑐2 =

 SSD, 𝑐𝑐2 =  price  }.Using the computer data, the proposed algorithm will select the best 

computer aided program for the Ezgi architecture firm.  In addition, is computed using 

proposed method as follows:  
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Algorithm: 

Step 1: The evaluation matrix(Ukj)5x3 is given by an expert as; 

 (Ukj)5x3 =

u1
u2
u3
u4
u5 ⎝

⎜⎜
⎛

⟨[0.12,0.25,0.41,0.69]; (0.3,0.5,0.7,0.8), (0.6,0.3,0.5,0.6)⟩
⟨[0.33,0.35,0.36,0.45]; (0.4,0.2,0.3,0.5), (0.7,0.5,0.6,0.8)⟩
⟨[0.56,0.62,0.69,0.76]; (0.7,0.6,0.4,0.8), (0.4,0.3,0.4,0.5)⟩
⟨[0.13,0.29,0.46,0.99]; (0.8,0.7,0.5,0.6), (0.1,0.5,0.7,0.7)⟩
⟨[0.11,0.21,0.43,0.78]; (0.7,0.8,0.9,0.9), (0.1,0.7,0.8,0.4)⟩

 

                            

⟨[0.18,0.32,0.38,0.43]; (0.5,0.3,0.4,0.6), (0.4,0.6,0.5,0.7)⟩
⟨[0.11,0.15,0.18,0.23]; (0.3,0.7,0.9,0.9), (0.3,0.4,0.7,0.5)⟩
⟨[0.45,0.66,0.72,0.75]; (0.6,0.8,0.9,0.8), (0.2,0.3,0.6,0.6)⟩
⟨[0.07,0.15,0.27,0.37]; (0.3,0.9,0.8,0.4), (0.1,0.1,0.4,0.3)⟩
⟨[0.08,0.13,0.19,0.69]; (0.2,0.5,0.7,0.9), (0.6,0.7,0.8,0.8)⟩

 

                              

⟨[0.18,0.27,0.50,0.85]; (0.2,0.7,0.8,0.9), (0.2,0.5,0.6,0.4)⟩
⟨[0.11,0.23,0.38,0.63]; (0.3,0.8,0.9,0.7), (0.1,0.4,0.8,0.6)⟩
⟨[0.45,0.53,0.63,0.83]; (0.1,0.6,0.9,0.5), (0.1,0.3,0.5,0.8)⟩
⟨[0.07,0.73,0.83,0.93]; (0.4,0.5,0.7,0.6), (0.3,0.6,0.7,0.2)⟩
⟨[0.08,0.43,0.68,0.74]; (0.5,0.7,0.8,0.3), (0.4,0.2,0.9,0.7)⟩⎠

⎟⎟
⎞

 

 

Step 2: Calculated for u1, u2, … , um based on 𝐹𝐹𝑖𝑖 (𝑖𝑖 = 1,2,3, … , 𝑚𝑚) to aggregate the 

normalized ITFM-numbers ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛 follow as; 

𝐹𝐹1 = ⟨[0.160,0.280,0.429,0.625]; (0.001,0.004,0.01,0.03), (0.4,0.53,0.58,0.58)⟩ 

𝐹𝐹2 = ⟨[0.132,0.209,0.271,0.383]; (0.001,0.006,0.02,0.02), (0.3,0.48,0.73,0.64)⟩ 

𝐹𝐹3 = ⟨[0.473,0.582,0.592,0.783]; (0.002,0.017,0.03,0.02), (0.25,0.37,0.55,0.68)⟩ 

𝐹𝐹4 = ⟨[0.079,0.267,0.431,0.614]; (0.004,0.022,0.02,0.007), (0.23,0.38,0.62,0.38)⟩ 

𝐹𝐹5 = ⟨[0.086,0.208,0.332,0.731]; (0.003,0.017,0.04,0.02), (0.4,0.48,0.85,0.67)⟩ 

Step 3: The calculated score value whose formula is given in Definition 3.2 for each F to 

rank alternatives; 

𝑆𝑆(𝐹𝐹1) =
1

4.4
[0.16 + 0.28 + 0.429 + 0.625]

× �8 + (0.001 + 0.004 + 0.01 + 0.003) − (0.4 + 0.53 + 0.58 + 0.58)�

= 0.557 
Similar to 

 𝑆𝑆(𝐹𝐹2) = 0.366, 𝑆𝑆(𝐹𝐹3) = 0.981, 𝑆𝑆(𝐹𝐹4) = 0.560, 𝑆𝑆(𝐹𝐹5) = 0.481 

Step 4: Based on the score values S(𝐹𝐹i)(i = 1,2, . . . ,5) the ranking of alternatives uk(k =

1,2, . . . ,5) are shown in Figure 1 and given as; 
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u3 > u4 > u1 > u5 > u2. 

Finally the best alternative is u3. 
 

 
3.   

Figure 1 The ranking of alternatives  uk (k = 1,2, . . . ,5) 
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ABSTRACT 
Long Short-Term Memory (LSTM) is an exclusive form of Recurrent Neural Network 
(RNN) purpose to overcome exploding or vanishing gradient problems in traditional RNN. 
In this paper, to reach a lower lost result of the Bitcoin price prediction using LSTM, we 
want to set the hyperparameters. In this study, our aim is to detect dominant hyperparameters 
and their values to speed up the optimization process. This problem is a multivariate time 
series problem. Hyperparameters and their values are applied to the data set, and the obtained 
values are categorized and presented. The best working parameter set is applied by 
continuing with the best parameters obtained at each step, and prediction results are obtained 
with the predict function 

Keywords: Machine learning, LSTM, Bitcoin. 

INTRODUCTION 

Deep learning has promising results in many areas. It produces the best results in 
speech recognition [1], object recognition [2], financial forecasts [3] and many more. It is 
also observed that the areas where deep learning is applied an enormous amount of the 
dataset, the number of model parameters, and the optimization of the parameters can 
significantly increase the accuracy of the predictions [4], [5]. Complex algorithms such as 
machine learning algorithms and especially Deep learning produce different results 
depending on the hyperparameters chosen and the combinations of values they take [6]. 
Multilayer neural networks are not specific to the problems they are studying, so their 
methods may need a lot of adaptation [7]. Given the excessive parameterization of LSTM, 
generalization performance is largely based on the ability to regularize models sufficiently; 
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for this reason, hyperparameter optimization is necessary [8]. LSTM unit consists of a cell, 
an entry gate, an exit gate, and a forgetting gate. The cell remembers the values randomly, 
the three gates coordinate with the information flows entering and leaving the cell. When 
solving problems in artificial neural networks, there are hyperparameters that play an 
important role in the solution, apart from the internal parameters used by the algorithms. 
These hyperparameters vary depending on the data set. In LSTM, hyperparameters and their 
values contribute to the solution [9]. LSTM is considered as a solution to the exploding 
gradient problem caused by very large or very small weights. In addition, overfitting is 
prevented by dropout, which is one of the layer parameter values. There are basically two 
approaches to hyperparameter adjustment: manual and automatic. This paper examined the 
manual approaches. 

LITERATURE REVIEW 

Which hyperparameters to use with which values requires expertise since they are 
specific to the problems and data sets. In the literature, there are efforts to obtain better results 
by using different hyperparameters, as well as studies to strengthen the prediction through 
different spaced data sets in time series problems such as Bitcoin price. In reference [3], 
which used data sets from different time intervals, better results were obtained from the 
second data set, even though there was less data in the minute data set. They used the dataset 
after converting them from the stock exchange data at 1-minute intervals to the 1-day interval 
trading exchange data on Theil-Sen Regression, Huber Regression LSTM, Gated Recurrent 
Unit (GRU). LSTM is second only to GRU and shows the best accuracy result with Mean 
Squared Error (MSE) [10]. 

In addition, because the dataset with 1-minute interval has more space and losses, [3] 
and [11] created the second dataset in the references to include 30, 60, 120, and 180 minutes 
of data and used it in the network. Looking at the references [3] and [11], they found that 
when making Bitcoin price estimates, the use of hourly, minute datasets instead of daily data 
results in better profits thanks to the increasing frequency of the dataset. However, since the 
Bitcoin prediction they [10] found the best result in the literature with a single-layered daily 
dataset. As a result, daily prices in this report were used in LSTM. They [12] investigated in 
detail a manually defined subset of possible hyperparameters with grid search. In some cases, 
a single poorly selected hyperparameter, such as a very large learning rate or a very large 
dropout rate, will prevent the model from learning effectively. This causes most of the trials 
to fail. For this reason, if we will use a grid search to avoid this, we must first calculate the 
possibilities with grid search after manually observing the effect of hyperparameters on 
performance. 

In this paper, we assessed hyperparameters like go_backward, activation function, 
optimizer, batch size, learning rate, and epochs.  

LSTM (LONG SHORT TERM MEMORY) 

 LSTM can figure out great numbers of time series datasets unanswerable by feed-
forward networks using fixed-size time Windows [13]. Time series data frequently have 
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periodical patterns, where the observations increase and decrease over long periods. LSTM 
networks can be used to remember long-short-term correlation in data. LSTM networks have 
been proven to model temporary sequences and their long-term dependencies more 
accurately than the traditional RNN model [13]. We might need five or ten, operating 
parallel, in what we will call a “layer". This concept of a layer is discussed below. Each 
LSTM cell consists of three gates. The first gate, it stands for the forget gate, which lets the 
network to take out data transmitted by the previous cell. The second gate stands for the 
input gate, which processes entry information at a certain time. The last gate combines the 
information on the first gate and the second gate to feed the after cell of the LSTM network 
with a bit of new information. 

.  
Figure 1. LSTM [13] 

 

 

 

 

LSTM takes three parameters at each step, ,  and , finally producing  and 
 results. 

MATERIAL AND METHODS 

This section will describe the methods we used to optimize LSTM hyperparameters 
coded with Python (version 3.6.5) in Spyder (version 3.2.8). We were used manual 
approaches with the Keras library (version 2.2.4). There are three backend applications in 
Keras: The TensorFlow backend, the Theano backend, and the Cognitive Toolkit (CNTK) 
backend. This paper used TensorFlow (Version 1.9.0) backend. There are many parameters 
that we can use LSTM with Keras. If we want to create the LSTM network, it can be used 
as a sequential () or functional Application Programming Interface (API). 
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Go backward: It can be 'True' or 'False'. If it is 'True', the input sequence processes 
from backward, return reversed backward of sequence. 

Dropout, recurrent dropout: It takes values between 0 and 1. It is a regularization 
technique for reducing overfitting in neural networks. Rate is a parameter of dropout and 
controls the dropout intensity in the neural network. 

 

Figure 2. Neural Network without Dropout 

 

Figure 3. Neural Network with Dropout 
 

The neural network structure before applying dropout in Fig. 2. After applying 
dropout in Fig.3, the network becomes sparse. When used dropout, it should utilize some 
adjustment to the hyperparameters [15], [14]. Based on the reference [15], they recommend 
increasing network size, learning rate, and momentum. Based on the reference [14], they are 
recommendations that change the learning rate, weight decay, momentum, max-norm, 
number of units in a layer, among others. They are recommendations that increase network 
size, learning rate, number of units in a layer, and momentum. Also, add max-norm 
regularization and change weight decay. Based on the reference [16], they found that deep 
LSTM’s significantly outperformed shallow LSTMs. 

RESULTS AND DISCUSSION 

Using a great number of evaluations, we can identify architecture and parameter 
selections to improve performance in many use cases. The contribution of this report is an 
in-depth analysis to identify parameters that are very important and less important for 
optimizing hyperparameters. As a result of these tests were carried out to see the contribution 
of daily and hourly data sets to Bitcoin price prediction. The daily data set consists of 2211 
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lines from 27 December 2013 to 14 January 2020, while the hourly data set consists of 21029 
records from 18 August 2017 to 14 January 2020 23:00. It was observed that the MSE and 
Root Mean Squared Error (RMSE) values of the daily data set gave better results than the 
hourly data set. These results are in line with the results of reference [10], and with the result 
of 0.000001 we have achieved a better result than both GRU 0.00002 and LSTM 0.000431. 

Experiments with the go-backyard parameter, as can be seen in Table 1, show 
improvements in the result when it is appropriate for the dataset, but the effect decreases 
with increasing epoch. 

Table 1. The effects epoch and go-backward on the RMSE and MSE. 

Epoch Go_backwa
rd MSE RMSE 

1000 False 0,000221 0,015 

1000 True 0,000284 0,017 

100 False 0,000421 0,021 

100 True 0,000489 0,022 

1 True 0,048001 0,219 

1 False 0,058856 0,243 

In deep learning algorithms, the number of layers and complexity increases and as a 
result, the weights need to be updated many times. However, there is no specific number for 
this update process. It is increased as long as the result obtained improves and the increase 
is stopped at the optimum result [17]. As can be seen in Table 2, epoch increases the 
prediction result and decrease the loss. 

Table 2. The effects of the epoch on the MSE and RMSE 

Epoch Batch 
size 

Activatio
n 

Function 
Optimizer MSE RMSE 

1000 100 tanh adam 0,000221 0,015 

100 100 tanh adam 0,000369 0,019 

Batch represents the amount of data that deep learning algorithms will process 
independently in each iteration [18]. In the experiments where the effect of batch size on 
learning was examined while the other parameters were constant, it had a positive effect on 
the results, as seen in Table 3. 

Table 3. The effects of the batch size on the MSE and RMSE 

Epoch Batch 
size 

Activation 
Function Optimizer MSE RMSE 
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100 200 tanh adam 0,000271 0,016 

100 100 tanh adam 0,000369 0,019 

100 110 tanh adam 0,000386 0,02 

100 30 tanh adam 0,000389 0,02 

100 90 tanh adam 0,000446 0,021 

There are many activation functions,and these are linear, tanh, sigmoid, softmax, 
Relu, softplus, softsign, selu, elu, and exponential. Based on the reference [19], they 
conclude that the sigmoid suffers from the disappearing gradient, so there is almost no sign 
flow from the neuron to its weight. Sigmoid is also not centered to zero, consequently, the 
gradient can be high or low. On the contrary, the tanh output is zero-centered for this reason 
in practice is all the time preferred for sigmoid. In the experiments, we performed with 
activation functions such as tanh, relu, sigmoid, and softmax. The best results were obtained 
with tanh, although the results were close to each other, as seen in Table 4. 

Table 4. The effects of the activation function on the MSE and RMSE 
Activation 
function 

MSE RMSE 

tanh 0.000424 0.020601 
relu 0.000439 0.020963 

sigmoid 0.000616 0.024817 
softmax 0.000734 0.027101 

 

The optimizer is an important hyperparameter of the LSTM. Stochastic gradient 
descent (SGD), RMSprop, Adam, Adadelta, Adagrad, Adamax, Nadam, and Ftrl are 
optimizers [7]. Since the best results in the activation function are obtained with tanh, Table 
5 shows the results obtained from the experiments using tanh for the optimizer. 

Table 5. The effects of the activation function and optimizers on the MSE 
Optimizers Activation 

function 
MSE 

adagrad tanh 0.000385 

adamax tanh 0.000393 

adam tanh 0.000401 

rmsprop tanh 0.000406 

sgd tanh 0.000439 
adadelta tanh 0.109229 

 

We chose SGD from SGD and Adadelta, which produced the worst results in our trials on 
optimizers. We selected the tanh activation function from the results of our trials regarding 
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activation functions because it is the function that produces the best result both in SGD 
and in general. Besides, after achieving a good MSE and RMSE value with learning rate = 
0.2 and epoch= 100, the improvement in MSE and RMSE values when the epoch= 1000 is 
almost one hundred thousand. That is, it is almost unaffected by the epoch. However, it is 
limited to knowing when and to what value it will change the learning speed [20]. Finally, 
the predicted and actual values obtained with the best parameter set are visualized in Figure 
1. 

  

Figure 1. LSTM results. 

CONCLUSIONS 

In this paper, the LSTM structure and the results obtained from the values of the 
hyperparameters are discussed. Our aim is speed up the optimization process and decrease 
loss, for this we examined LSTM with hyperparameters and their values. As a result, it was 
observed that the proposed hyperparameters and values improved learning and consequently 
reduced the loss. Thanks to our pre-existing intuition about their roles/effects, we managed 
to achieve the best result when determining the parameters and making changes to the 
parameters. 

Abbreviations 

API: Application Programming Interface 

CNTK: Cognitive Toolkit 

GRU: Gated Recurrent Unit 

LSTM: Long Short-Term Memory 

MSE: Mean Squared Error 

RMSE: Root Mean Squared Error 

RNN: Recurrent Neural Network 

SGD: Stochastic gradient descent 

https://tureng.com/tr/turkce-ingilizce/abbreviations
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Some harmonic aggragation operators with trapezoidal 
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ABSTRACT 

 
Different frameworks can be chosen to solve multicriteria decision making (MCDM) 

problems emerging in business, cyber environment, economy, health care, engineering and 
other areas. Uncertainty, vagueness and non-rigid boundaries of the initial information are 
frequently noticed when dealing with the practicalities of the MCDM tasks. Trapezoidal 
fuzzy multi-numbers express abundant and flexible information in a suitable manner and are 
very useful to depict the decision information in the procedure of decision making. In this 
chapter, trapezoidal fuzzy multi-numbers weighted harmonic mean (TFMNWHM) is 
developed to aggregate the decision information. The desirable properties of this operator 
are presented in detail. Further, we develop an approach to multi-citeria decision-making 
(MCDM) problem on the basis of the proposed developed aggregation operator. And then, 
we developed a score function for trapezoidal fuzzy multi-numbers. Finally, the 
effectiveness and applicability of our proposed MCDM model, as well as comparison 
analysis with other approaches are illustrated with a practical example. 

  

Keywords: Fuzzy sets, Fuzzy multi-sets, trapezoidal fuzzy multi-numbers, harmonic 

aggragation operators, multi-criteria decision-making. 
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1.Introduction 

 
With the revolutionary developments in the last quarter century in the field of tech-

nology, mankind has reached a standard of living and style that he could not even imag-ine. 
The enlargement of the possibilities in the information environment of the newly de-
veloping technology is the biggest problem for the lawyers in defining the terms. Comput-
ers have shrunk, mobile phones have become almost computers, and the living space where 
these two devices cannot be taken or used has almost disappeared. These develop-ments 
have also caused some important problems in the field of law, new concepts have emerged, 
the definitions of these concepts have begun to be discussed and to have legal consequences. 
However, following the developments in this field and putting forth ap-propriate definitions, 
reconciliation in the international arena and regulation in the na-tional field is the difficulties 
faced by the lawyers. So, solving fuzzy phenomena and un-certain events in real life is 
necessary as science and technology advance. 

 
To address such problems, Zadeh [1] pioneered the concept of “fuzzy set” theory, which 

allows ambiguity to be described using mathematical models. Soon after the definition of 
fuzzy set, the set has been successfully applied in engineering, game theory, multi-agent 
systems, control systems, decision-making and so on. In the fuzzy sets, an element in a 
universe has a membership value in [0, 1]; however, the  membership value is inadequate 
for providing complete information in some problems as there are situations where each 
element has different membership values. For this reason, a different generalization of fuzzy 
sets, namely multi-fuzzy sets, has been introduced. Yager [2] first proposed multi-fuzzy sets 
as a generalization of multisets and fuzzy sets. An element of a multi-fuzzy set may possess 
more-than-one membership value in [0, 1] (or there may be repeated occurrences of an 
element). Some Works on the multi-sets have been undertaken by Sebastian and 
Ramakrishnan [3], Syropoulos [4], Maturo [5], Miyamoto [6, 7] and so on. Recently, 
research on fuzzy numbers, with the universe of discourse as the real line, has studied. 

 
Over the course of the past few decades, there has been a growing interest in the 

strategies for constructing novel aggeration operators to merge information. Harmonic mean 
operator is the one of the basic operators. Because of their effectiveness and numerous 
benefits, aggeration operators have developed into an essential component of the decision- 
making process. The harmonic mean is also used to reduce the influence on the average of 
elements in a data array that has very high values than others.  It is very usable when there 
are anomalous alternative preferences made by decision makers. In most cases, these 
aggeration operators are predicated on a variety of operational rules that are designed to 
combine a limited number of neutrosophic numbers into a single neutrosophic number. In 
the literature, there few fuzzy harmonic operators developed by some researchers Aydın et 
al. [8], Shit et al. [9], Zhao et al. [10] and Xu [11]. They have also been widely studied in 
the field of uncertainties [13-43]. 

In order to use the concept of fuzzy multi sets to define an uncertain quantity or a quantity 
difficult to quantify, in Ulucay et al. [12] the authors put forward the concept of trapezoidal 
fuzzy multi-numbers (TFM-numbers). They developed some harmonic aggregation 
operators of TFM-numbers.   
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2.Preliminary 

Definition 2.1[1]Let X  be a non-empty set. A fuzzy set F  on X  is defined as: 
{ , (x) : x X}FF x µ= ∈ where : [0,1]F Xµ → for x∈ X . 

Definition 2.2[2] t-norms are associative, monotonic and commutative two valued 
functions t that map from [0,1]× [0,1] into [0,1]. These properties are formulated with the 
following conditions: 

1. (0,0) 0t =  and 1 1 1
( (x),1) (1, (x)) (x)x x xt tµ µ µ= =  

2. If 1 3
(x) (x)x xµ µ≤ and 2 4

(x) (x)x xµ µ≤  then 1 2 3 4
( (x), (x)) t( (x), (x))x x x xt µ µ µ µ≤ , 

3. 1 2 2 1
( (x), (x)) ( (x), (x))x x x xt tµ µ µ µ= , 

4. 1 2 3 1 2 3
( (x), t( (x), (x))) ( ( (x), (x)), (x))x x x x x xt t tµ µ µ µ µ µ=  

Definition 2.3[2] s -norms are associative, monotonic and commutative two placed 
functions s which map from [0,1]× [0,1] into [0,1]. These properties are formulated with the 
following conditions: 

1. (1,1) 1s =  and ( )1 1 1
( (x),0) 0, (x) (x)x x xs sµ µ µ= = , 

2. If 1 3
(x) (x)x xµ µ≤  and 2 4

(x) (x)x xµ µ≤ , then 1 2 3 4
( (x), (x)) ( (x), (x))x x x xs sµ µ µ µ≤ , 

3. 1 2 2 1
( (x), (x)) ( (x), (x))x x x xs sµ µ µ µ= , 

4. 1 2 3 1 2 3
( (x), ( (x), (x))) ( ( (x), (x)), (x))x x x x x xs s s sµ µ µ µ µ µ= . 

t -norm and t -conorm is related in a sense of logical duality. Typical dual pairs of non-
parametrized t -norm and t -conorm are compiled below: 

1. Drastic product:
{ } { }1 2 1 2

1 2

min (x), (x) ,max (x), (x) 1
( (x), (x))

0
x x x x

w x xt
otherwise

µ µ µ µ
µ µ

 == 


 

2. Drastic sum:       
{ } { }1 2 1 2

1 2

max (x), (x) ,min (x), (x) 0
( (x), (x))

1
x x x x

w x xs
otherwise

µ µ µ µ
µ µ

 == 


 

3. Bounded product: 
{ }1 2 1 21( (x), (x)) max 0, (x) (x) 1x x x xt µ µ µ µ= + −  

4. Bounded sum: 
{ }1 2 1 21( (x), (x)) min 1, (x) (x)x x x xs µ µ µ µ= +  

5. Einstein product: 
1 2

1 2

1 2 1 2

1.5

(x). (x)
( (x), (x))

2 [ (x) (x) (x). (x)]
x x

x x
x x x x

t
µ µ

µ µ
µ µ µ µ

=
− + −  

6. Einstein sum: 
1 2

1 2

1 2

1.5

(x) (x)
( (x), (x))

1 (x). (x)
x x

x x
x x

s
µ µ

µ µ
µ µ

+
=

+  
7. Algebraic product: 
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1 2 1 22 ( (x), (x)) (x). (x)x x x xt µ µ µ µ=  
8. Algebraic sum: 

1 2 1 2 1 22 ( (x), (x)) (x) (x) (x). (x)x x x x x xs µ µ µ µ µ µ= + −  
9. Hamacher product: 

1 2

1 2

1 2 1 2

2.5

(x). (x)
( (x), (x))

(x) (x) (x). (x)
x x

x x
x x x x

t
µ µ

µ µ
µ µ µ µ

=
+ −  

10. Hamacher Sum: 
1 2 1 2

1 2

1 2

2.5

(x) (x) 2. (x). (x)
( (x), (x))

1 (x). (x)
x x x x

x x
x x

s
µ µ µ µ

µ µ
µ µ

+ −
=

−  
11. Minimum: 

{ }1 2 1 23( (x), (x)) min (x), (x)x x x xt µ µ µ µ=  
12. Maximum: 

{ }1 2 1 23( (x), (x)) max (x), (x)x x x xs µ µ µ µ=  
Definition 2.4 [3] Let X be a non-empty set. A multi-fuzzy set G  on X  is defined as 

{ }1 2, (x), (x),..., (x),... :i
G G GG x x Xµ µ µ= ∈  where : [0,1]i

G Xµ →  for all i∈ { }1,2,..., p  and 

x X∈  
Definition 2.5 [12] Let [0,1]i

Aη ∈ { }(i 1,2,..., )p∈  and , , ,a b c d ∈ R such that a b c d≤ ≤ ≤

. Then, a trapezoidal fuzzy multi-number (TFM number) ( ) 1 2, , , ; , ,..., p
A A Aa a b c d η η η=  is a 

special fuzzy multi-set on the real number set R , whose membership functions are defined 
as 
 

1 1 1 1 1

1 1

1 1 1 1 1

(x ) / ( )

(x)
( x) / ( )

0

i
A

i
Ai

A i
A

a b a a x b
b x c

d d c c x d
otherwise

η
η

µ
η

 − − ≤ ≤
 ≤ ≤= 

− − ≤ ≤
  

Note that the set of all TFM-number on R will be denoted by Λ . 
Definition 2.6[12] Let ( ) 1 2

1 1 1 1, , , ; , ,..., p
A A AA a b c d η η η= , ( ) 1 2

2 2 2 2, , , ; , ,..., p
B B BB a b c d η η η=

∈Λ and 0γ ≠  be any real number. Then, 

1. ( ) 1 1 2 2
1 2 1 2 1 2 1 2, , , ; ( , ), ( , ),..., ( , )P P

A B A B A BA B a a b b c c d d s s sη η η η η η+ = + + + +  

2. ( ) 1 1 2 2
1 2 1 2 1 2 1 2, , , ; ( , ), ( , ),..., ( , )P P

A B A B A BA B a d b c c b d a s s sη η η η η η− = − − − −  
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3. 

( )

( )

( )

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

11 1 2 2

, , , ;
(d 0,d 0)

( , ), ( , ),..., ( , )

, , , ;
. (d 0,d 0)

( , ), ( , ),..., ( , )

,c , , ;
(d 0,

( , ), ( , ),..., ( , )

p p
A B A B A B

p p
A B A B A B

p p
A B A B A B

a a b b c c d d

t t t

a d b c c b d a
A B

t t t

d d c b b a a

t t t

η η η η η η

η η η η η η

η η η η η η

> >

= < >

< 2d 0)











<
  

4. 

( )

( )

( )

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 21 1 2 2

1 2 1 2 1 2 1 2

1 1 2 2

/ , / , / , / ;
( 0, 0)

( , ), ( , ),..., ( , )

/ , / , / , / ;
/ ( 0, 0)

( , ), ( , ),..., ( , )

/ , / , / , / ;

( , ), ( , ),..., (

p p
A B A B A B

p p
A B A B A B

A B A B A

a d b c c b d a
d d

t t t

d d c c b b a a
A B d d

t t t

d a c b b c a d

t t t

η η η η η η

η η η η η η

η η η η η

> >

= < >

1 2( 0, 0)
, )p p

B

d d
η











< <
  

5. ( ) 1 2
1 1 1 1, , , ;1 (1 ) ,1 (1 ) ,...,1 (1 ) ( 0)p

A A AA a b c d γ γ γγ γ γ γ γ η η η γ= − − − − − − ≥  

6. ( ) 1 2
1 1 1 1, , , ;( ) , ( ) ,..., ( ) ( 0)P

A A AA a b c dγ γ γ γ γ γ γ γη η η γ= ≥
 

Definition 2.7[12] Let ( ) 1 2
1 1 1 1, , , : , ,..., p

A A AA a b c d η η η= ∈ Λ ,Then, normalized TFM-
number of A is given by 

 
   

1 21 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

, , , ; , ,..., p
A A A

a b c dA
a b c d a b c d a b c d a b c d

η η η
 

=  + + + + + + + + + + + +      
 

Definition 2.7 [11]  Let 𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛 be 𝑛𝑛 real numbers. Then, harmonic mean 
operator  

𝑀𝑀ℎ𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛𝑖𝑖𝑐𝑐(𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛) = 𝑛𝑛
1

𝓍𝓍1
+ 1

𝓍𝓍2
+ 1

𝓍𝓍3
+ ⋯ +  1

𝓍𝓍𝑛𝑛

 (1) 

= 𝑛𝑛
∑ 1

𝓍𝓍𝑖𝑖

𝑛𝑛
𝑗𝑗=1

  

Definition 2.8 [11]  Let 𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛 be 𝑛𝑛 real numbers. Then, weighted harmonic 
mean operator  
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𝑀𝑀𝑤𝑤𝑒𝑒𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑒𝑒𝑑𝑑 ℎ𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑛𝑛𝑖𝑖𝑐𝑐(𝓍𝓍1, 𝓍𝓍2, 𝓍𝓍3, … , 𝓍𝓍𝑛𝑛) = 𝑛𝑛
𝑤𝑤1
𝓍𝓍1

+ 𝑤𝑤2
𝓍𝓍2

+ 𝑤𝑤3
𝓍𝓍3

+ ⋯ +  𝑤𝑤𝑛𝑛
𝓍𝓍𝑛𝑛

 (2) 

= 𝑛𝑛
∑ 𝑤𝑤𝑖𝑖

𝓍𝓍𝑖𝑖

𝑛𝑛
𝑗𝑗=1

  

where 𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 is a weight vector of 𝓍𝓍𝑗𝑗 (𝑗𝑗 = 1,2,3, … , 𝑛𝑛), 𝑒𝑒𝑗𝑗 ∈ [0,1] and � 𝑒𝑒𝑗𝑗

𝑛𝑛

𝑗𝑗=1
= 1. 

3. Some weight harmonic mean operators for TFM-numbers 

Definition 3.1 Let  ℒ𝑎𝑎 = ⟨[ar, br, cr, dr];  � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �� be a collection of TFM-

numbers for (𝑟𝑟 = 1,2,3, … , 𝑛𝑛) . A mapping   𝑓𝑓TFMNWHM
𝑒𝑒 : ℒ𝑟𝑟

𝑛𝑛 → ℒ    is called trapezoidal fuzzy 

multi-numbers weighted harmonic mean (TFMNWHM) operator if it satisfies:  

TFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) =
1

∑ 𝑤𝑤𝑟𝑟
ℒ𝑟𝑟

𝑛𝑛
𝑎𝑎=1

 

 

 

(3) 

 

where 𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 is the associated weight vector of ℒ𝑎𝑎 for 𝑟𝑟 = 1,2,3, … , 𝑛𝑛 and 

� 𝑒𝑒𝑎𝑎

𝑛𝑛

𝑎𝑎=1

= 1. 

Theorem 3.2 Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr];  � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �� be a collection of TFM-numbers 

for 𝑟𝑟 = 1,2,3, … , 𝑛𝑛 , 𝑘𝑘 = 1,2.3, … 𝑝𝑝 and the associated weight vector of ℒ𝑎𝑎  is 𝑒𝑒 =

(𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 for ∑ 𝑒𝑒𝑎𝑎
𝑛𝑛
𝑎𝑎=1 = 1 then  

 

TFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) =
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

+ ⋯ + 𝑤𝑤𝑛𝑛
ℒ𝑛𝑛

 

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑛𝑛
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrn
r=1

n
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
p )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrn
r=1

n
r=1

���           (4) 
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Proof  When n=2, then TFMNWHM(ℒ1, ℒ2) is calculated as follows:  

 

TFMNWHM(ℒ1, ℒ2) =
1

∑ 𝑤𝑤𝑟𝑟
ℒ𝑟𝑟

2
𝑎𝑎=1

= 
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

 

 

=
1

𝑤𝑤1

⟨[a1,b1,c1,d1];� 𝜇𝜇ℒ1
1 ,𝜇𝜇ℒ1

2 ,…,𝜇𝜇ℒ1
P ��

+ 𝑤𝑤2

⟨[a2,b2,c2,d2]; � 𝜇𝜇ℒ2
1 ,𝜇𝜇ℒ2

2 ,…,𝜇𝜇ℒ2
P ��

 

 

=
1

𝑒𝑒1
1

�� 1
d1

, 1
c1

, 1
b1

, 1
a1

�;� 𝜇𝜇ℒ1
1 ,𝜇𝜇ℒ1

2 ,…,𝜇𝜇ℒ1
P ��

+𝑒𝑒2
1

�� 1
d2

, 1
c2

, 1
b2

, 1
a2

�; � 𝜇𝜇ℒ2
1 ,𝜇𝜇ℒ2

2 ,…,𝜇𝜇ℒ2
P ��

 

 
 

=
1
1

��𝑤𝑤1
d1

,𝑤𝑤1
c1

,𝑤𝑤1
b1

,𝑤𝑤1
a1

�;�
�1+𝜇𝜇ℒ1

1 �
𝑤𝑤1−�1−𝜇𝜇ℒ1

1 �
𝑤𝑤1

�1+𝜇𝜇ℒ1
1 �

𝑤𝑤1
+�1−𝜇𝜇ℒ1

1 �
𝑤𝑤1,

�1+𝜇𝜇ℒ1
2 �

𝑤𝑤1−�1−𝜇𝜇ℒ1
2 �

𝑤𝑤1

�1+𝜇𝜇ℒ1
2 �

𝑤𝑤1
+�1−𝜇𝜇ℒ1

2 �
𝑤𝑤1��

+ 1

��𝑤𝑤2
d2

,𝑤𝑤2
c2

,𝑤𝑤2
b2

,𝑤𝑤2
a2

�;,�
�1+𝜇𝜇ℒ1

1 �
𝑤𝑤1−�1−𝜇𝜇ℒ1

1 �
𝑤𝑤1

�1+𝜇𝜇ℒ1
1 �

𝑤𝑤1+�1−𝜇𝜇ℒ1
1 �

𝑤𝑤1 ,
�1+𝜇𝜇ℒ1

2 �
𝑤𝑤1−�1−𝜇𝜇ℒ1

2 �
𝑤𝑤1

�1+𝜇𝜇ℒ1
2 �

𝑤𝑤1+�1−𝜇𝜇ℒ1
2 �

𝑤𝑤1��

 

= 1 ���
𝑒𝑒𝑎𝑎

d𝑎𝑎

2

𝑎𝑎=1

, �
𝑒𝑒𝑎𝑎

c𝑎𝑎

2

𝑎𝑎=1

, �
𝑒𝑒𝑎𝑎

b𝑎𝑎

2

𝑎𝑎=1

, �
𝑒𝑒𝑎𝑎

a𝑎𝑎

2

𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr2

r=1
2
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wr2
r=1

2
r=1

�  

,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
2 )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

��� 

  

= 1 ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

2
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

2
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

2
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

2
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr2

r=1
2
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wr2
r=1

2
r=1

�  

,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
2 )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

��                    
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Suppose that Equation 4 holds for 𝑛𝑛 = 𝑘𝑘, i.e., 

TFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑘𝑘) =
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

+ ⋯ + 𝑤𝑤𝑘𝑘
ℒ𝑘𝑘

 

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑘𝑘
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr𝑘𝑘

r=1
k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrk
r=1

k
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
p )wrk

r=1
k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk
r=1

k
r=1

�� 

 

For 𝑛𝑛 = 𝑘𝑘 + 1, using above expression and operational laws, we have 

 

TFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑘𝑘 , ℒ𝑘𝑘+1) = 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑘𝑘
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑘𝑘
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr𝑘𝑘

r=1
k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrk
r=1

k
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk
r=1

k
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk
r=1

k
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk
r=1

k
r=1

�� 

= ��
1

𝑤𝑤𝑘𝑘+1
a𝑘𝑘+1

,
1

𝑤𝑤𝑘𝑘+1
b𝑘𝑘+1

,
1

𝑤𝑤𝑘𝑘+1
c𝑘𝑘+1

,
1

𝑤𝑤𝑘𝑘+1
d𝑘𝑘+1

� ; �
(1 + 𝜇𝜇ℒ𝑘𝑘+1

1 )w𝑘𝑘+1 − (1 − 𝜇𝜇ℒ𝑘𝑘+1
1 )w𝑘𝑘+1

(1 + 𝜇𝜇ℒ𝑘𝑘+1
1 )w𝑘𝑘+1 + (1 − 𝜇𝜇ℒ𝑘𝑘+1

1 )w𝑘𝑘+1
 

(1 + 𝜇𝜇ℒ𝑘𝑘+1
2 )w𝑘𝑘+1 − (1 − 𝜇𝜇ℒ𝑘𝑘+1

2 )w𝑘𝑘+1

(1 + 𝜇𝜇ℒ𝑘𝑘+1
2 )w𝑘𝑘+1 + (1 − 𝜇𝜇ℒ𝑘𝑘+1

2 )w𝑘𝑘+1
, . . . ,

(1 + 𝜇𝜇ℒ𝑘𝑘+1
p )w𝑘𝑘+1 − (1 − 𝜇𝜇ℒ𝑘𝑘+1

p )w𝑘𝑘+1

(1 + 𝜇𝜇ℒ𝑘𝑘+1

p )w𝑘𝑘+1 + (1 − 𝜇𝜇ℒ𝑘𝑘+1

p )w𝑘𝑘+1
�� 

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑘𝑘+1
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wr𝑘𝑘+1

r=1
k+1
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrk+1
r=1

k+1
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk+1
r=1

k+1
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrk+1
r=1

k+1
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk+1
r=1

k+1
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrk+1
r=1

k+1
r=1

�� 

So, the proof is complete. 

Next, it can be easily shown that the proposed operator has the following properties. 
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Theorem 3.3 (Idempotency)   

Let  ℒ𝑎𝑎 = ⟨[ar, br, cr, dr];  � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P ��  be a collection of TFM-numbers for 𝑟𝑟 =

1,2,3, … , 𝑛𝑛. If ℒ𝑛𝑛 = ℒ for all 𝑟𝑟 that is all are identical then, 

 

TFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) = ℒ.                                                 (5) 

Proof  We know that 

TFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) =
1

𝑤𝑤1
ℒ1

+ 𝑤𝑤2
ℒ2

+ ⋯ + 𝑤𝑤𝑛𝑛
ℒ𝑛𝑛

 

= ��
1

∑ 𝑤𝑤𝑟𝑟
a𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
b𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
c𝑟𝑟

𝑛𝑛
𝑎𝑎=1

,
1

∑ 𝑤𝑤𝑟𝑟
d𝑟𝑟

𝑛𝑛
𝑎𝑎=1

� ; �
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

1 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
1 )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
1 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

1 )wrn
r=1

n
r=1

 

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟
2 )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

2 )wrn
r=1

n
r=1

, . . . ,
∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )w𝑟𝑟 − ∏ (1 − 𝜇𝜇ℒ𝑟𝑟
p )wrn

r=1
n
r=1

∏ (1 + 𝜇𝜇ℒ𝑟𝑟

p )wr + ∏ (1 − 𝜇𝜇ℒ𝑟𝑟

p )wrn
r=1

n
r=1

�� 

= ��
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

a

,
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

b

,
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

c

,
1

∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

d

� ; �
(1 + 𝜇𝜇ℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1 − (1 − 𝜇𝜇ℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(1 + 𝜇𝜇ℒ
1)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (1 − 𝜇𝜇ℒ

1)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

 

(1 + 𝜇𝜇ℒ
2)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 − (1 − 𝜇𝜇ℒ

2)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(1 + 𝜇𝜇ℒ
2)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (1 − 𝜇𝜇ℒ

2)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

, . . . ,
(1 + 𝜇𝜇ℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1 − (1 − 𝜇𝜇ℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

(1 + 𝜇𝜇ℒ
𝑝𝑝)∑ 𝑒𝑒𝑟𝑟

𝑛𝑛
𝑟𝑟=1 + (1 − 𝜇𝜇ℒ

𝑝𝑝)∑ 𝑒𝑒𝑟𝑟
𝑛𝑛
𝑟𝑟=1

�� 

= ��
1
1
a

,
1
1
b

,
1
1
c

,
1
1
d

� ; �
(1 + 𝜇𝜇ℒ

1) − (1 − 𝜇𝜇ℒ
1)

(1 + 𝜇𝜇ℒ
1) + (1 − 𝜇𝜇ℒ

1)
,
(1 + 𝜇𝜇ℒ

2) − (1 − 𝜇𝜇ℒ
2)

(1 + 𝜇𝜇ℒ
2) + (1 − 𝜇𝜇ℒ

2)
, … ,

(1 + 𝜇𝜇ℒ
𝑝𝑝) − (1 − 𝜇𝜇ℒ

𝑝𝑝)
�1 + 𝜇𝜇ℒ

𝑝𝑝� + (1 − 𝜇𝜇ℒ
𝑝𝑝)

��

= ℒ. 

Theorem 3.4 (Monotoniticy property): 

Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr];  � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P ��   and  

ℒ𝑎𝑎
′ = ⟨[a𝑎𝑎

′ , b𝑎𝑎
′ , c𝑎𝑎

′ , d𝑎𝑎
′ ]; , � �𝜇𝜇ℒ𝑟𝑟

′ �
1

, �𝜇𝜇ℒ𝑟𝑟
′ �

2
, … , �𝜇𝜇ℒ𝑟𝑟

′ �
𝑝𝑝

�� 

be two collection of TFM-numbers. If ar ≤ a𝑎𝑎
′ , br ≤ b𝑎𝑎

′ ,  cr ≤ c𝑎𝑎
′ , dr ≤ d𝑎𝑎

′  𝑎𝑎𝑛𝑛𝑑𝑑  𝜇𝜇ℒ𝑟𝑟
1 ≤

�𝜇𝜇ℒ𝑟𝑟
′ �

1
, 

𝜇𝜇ℒ𝑟𝑟
2 ≤ �𝜇𝜇ℒ𝑟𝑟

′ �
2

, … , 𝜇𝜇ℒ𝑟𝑟

p ≤ �𝜇𝜇ℒ𝑟𝑟
′ �

𝑝𝑝
then  

TFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) ≤ TFMNWHM𝜑𝜑(ℒ1
′ , ℒ2

′ , ℒ3
′ , … , ℒ𝑛𝑛

′ ).                   (6) 
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Theorem 3.5 (Commutativity Property):  

Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr];  � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �� be a collection of positive TFM-numbers and 

𝑒𝑒 = (𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3, … , 𝑒𝑒𝑛𝑛)𝑇𝑇 be an associated weight vector where 𝑒𝑒𝑎𝑎 ∈ [0,1], ∑ 𝑒𝑒𝑎𝑎
𝑛𝑛
𝑎𝑎=1 = 1. 

TFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) = TFMNWHM𝜑𝜑(ℒ1
′ , ℒ2

′ , ℒ3
′ , … , ℒ𝑛𝑛

′ ).                   (7) 

where ℒ𝑛𝑛
′  is any permutation of ℒ𝑛𝑛 for 𝑟𝑟 = 1,2,3, … , 𝑛𝑛. 

 

Theorem 3.6 (Boundedness Property): 

Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr];  � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P �� be a collection of positive TFM-numbers and 

let, 

ℒ𝑎𝑎
+ = ��max

𝑎𝑎
{ar} , max

𝑎𝑎
{br} , max

𝑎𝑎
{𝑐𝑐r} , max

𝑎𝑎
{dr}� ; � max

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

1 � , max
𝑎𝑎

�𝜇𝜇ℒ𝑟𝑟
2 � , … , max

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

p ��� 

ℒ𝑎𝑎
− = ��min

𝑎𝑎
{ar} , min

𝑎𝑎
{br} , min

𝑎𝑎
{𝑐𝑐r} , min

𝑎𝑎
{dr}� ; � min

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

1 � , min
𝑎𝑎

�𝜇𝜇ℒ𝑟𝑟
2 � , … , min

𝑎𝑎
�𝜇𝜇ℒ𝑟𝑟

p ��� 

then, 

ℒ𝑎𝑎
− ≤ TFMNWHM𝜑𝜑(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛) ≤ ℒ𝑎𝑎

+.                                      (8) 

Definition 3.2 Let ℒ𝑎𝑎 = ⟨[ar, br, cr, dr];  � 𝜇𝜇ℒ𝑟𝑟
1 , 𝜇𝜇ℒ𝑟𝑟

2 , … , 𝜇𝜇ℒ𝑟𝑟
P ��  be a collection of positive 

TFM-number, then 

𝑆𝑆(ℒ𝑎𝑎) =
1

4𝑝𝑝
[𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑𝑑] × �2𝑝𝑝 + � 𝜇𝜇ℒ𝑟𝑟

P

𝑝𝑝

𝑎𝑎=1

�. 

Example 3.2 : Let ℒ = ⟨[3,5,6,10]; , ( 0.4,0.7,0.9)⟩ be NVNT-number then,  

𝑆𝑆(ℒ) =
1

4.3
[3 + 5 + 6 + 10] × �6 + (0.4 + 0.7 + 0.9)� = 16 

Definition 3.4 Let ℒ𝑎𝑎
1 and ℒ𝑎𝑎

2 be two TFM-numbers; 

c. If 𝑆𝑆(ℒ𝑎𝑎
1 ) < 𝑆𝑆(ℒ𝑎𝑎

2 ), then  ℒ𝑎𝑎
1 is smaller than ℒ𝑎𝑎

2, denoted by ℒ𝑎𝑎
1 < ℒ𝑎𝑎

2. 

4.An algorithm for proposed work 

In this section, we shall present a multi-criteria decision-making problem with normalized 

TFM-numbers under uncertain information using TFMNWHM operator. 

Assume that U = {U1, U2, … , Um} be the set of altenatives and C = {c1, c2, … , cn} be the set 

of criterias; 
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(Ukj)mxn  =

⎝

⎜⎜
⎛

U11 U12
U21 U22

⋮ ⋮
⋮ ⋮

Um1 Um2

              ⋯              U1n
⋯ U2n
⋯ ⋮
⋯ ⋮
⋯ Umn

  

⎠

⎟⎟
⎞

   

such that 

Ukj = 〈�akj, bkj, ckj, dkj�, �𝜇𝜇kj
1 , 𝜇𝜇kj

2 , 𝜇𝜇kj
3 , … , 𝜇𝜇kj

p �〉, (k=1,2,…,m) and (j=1,2,…,n). 

It is carried out the following algorithm to get best choice: 

Step 1: Identify and determine the criterias and alternatives and then construct decision 

matrices, 

(Ukj)mxn, (k=1,2,…,m; j=1,2,…,n). 

Step 2: Get preferable for U1, U2, … , Um  based on 𝐹𝐹𝑖𝑖 (𝑖𝑖 = 1,2,3, … , 𝑚𝑚)  to aggregate the 

normalized TFM-numbers ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛 as; 

𝐹𝐹𝑖𝑖 = TFMNWHM(ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛). 

Step 3: Calculate score value whose formula is given in Definition 3.2 for each 𝐹𝐹𝑖𝑖  to rank 

alternatives. 

Step 4: Rank all score value of 𝐹𝐹𝑖𝑖 according to descending order. 

5.Application of the proposed method 

 In this section, an explanatory example is given to view the strength of the presented work. 

The increase in cyber war threats in the world obliges states to take precautions in this regard. 

Although developed countries have come a long way in this regard, there are still many 

countries that do not take adequate steps in this regard. Especially underde-veloped and 

developing countries, as they are insufficient in cyber warfare, can be vul-nerable and suffer 

victimization in case of any cyber-attack. In order to prevent this situa-tion, a few developing 

countries that decided to take action have taken the models of the countries that have 

achieved success in this subject to examination and have decided to take the model they 

found suitable for them as an example.  Especially developing countries wants to use 

proposed method when choosing a model. The models he can take to are U = {u1 =

USA model,  u2 = Russian model, u3 = Türkiye model   ,  u4 = China model, u5 =

Holland model}  and according to three criteria determined  C = {c1 = full protection,

c2 =  price, c3 = usefulness}. Thent we try to choose and rank all alternatives Kk for all 

k=1,2,…,5 by using the following algorithm. 
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Algorithm: 

Step 1: The evaluation matrix(Ukj)5x3 is given by an expert as; 

 (Ukj)5x3

=

u1
u2
u3
u4
u5 ⎝

⎜⎜
⎛

⟨[0.22,0.25,0.41,0.69]; (0.3,0.5,0.7,0.8), ⟩
⟨[0.31,0.35,0.36,0.45]; (0.7,0.5,0.6,0.8)⟩
⟨[0.46,0.62,0.69,0.76]; (0.7,0.6,0.4,0.8)⟩
⟨[0.23,0.29,0.46,0.99]; (0.1,0.5,0.7,0.7)⟩
⟨[0.20,0.21,0.43,0.78]; (0.1,0.7,0.8,0.4)⟩

⟨[0.28,0.32,0.38,0.43]; (0.4,0.6,0.5,0.7)⟩
⟨[0.12,0.15,0.18,0.23]; (0.3,0.4,0.7,0.5)⟩
⟨[0.55,0.66,0.72,0.75]; (0.6,0.8,0.9,0.8)⟩
⟨[0.14,0.15,0.27,0.37]; (0.1,0.1,0.4,0.3)⟩
⟨[0.12,0.13,0.19,0.69]; (0.6,0.7,0.8,0.8)⟩

 

         

⟨[0.28,0.27,0.50,0.85]; (0.2,0.5,0.6,0.4)⟩
⟨[0.22,0.23,0.38,0.63]; (0.1,0.4,0.8,0.6)⟩
⟨[0.37,0.53,0.63,0.83]; (0.1,0.3,0.5,0.8)⟩
⟨[0.67,0.73,0.83,0.93]; (0.3,0.6,0.7,0.2)⟩
⟨[0.42,0.43,0.68,0.74]; (0.5,0.7,0.8,0.3)⟩⎠

⎟⎟
⎞

 

 

Step 2: Calculated for u1, u2, … , um based on 𝐹𝐹𝑖𝑖 (𝑖𝑖 = 1,2,3, … , 𝑚𝑚) to aggregate the 

normalized TFM-numbers ℒ1, ℒ2, ℒ3, … , ℒ𝑛𝑛 follow as; 

𝐹𝐹1 = ⟨[0.262,0.280,0.429,0.625]; (0.0009,0.0070,0.0110,0.0132)⟩ 

𝐹𝐹2 = ⟨[0.180,0.209,0.271,0.383]; (0.0009,0.0034,0.0209,0.0138)⟩ 

𝐹𝐹3 = ⟨[0.442,0.582,0.592,0.783]; (0.0020,0.0077,0.0108,0.0406)⟩ 

𝐹𝐹4 = ⟨[0.239,0.267,0.431,0.614]; (0.0001,0.0013,0.0105,0.0019)⟩ 

𝐹𝐹5 = ⟨[0.195,0.208,0.332,0.731]; (0.0013,0.0210,0.0406,0.0048)⟩ 

Step 3: The calculated score value whose formula is given in Definition 3.2 for each F to 

rank alternatives; 

𝑆𝑆(𝐹𝐹1) =
1

4.4
[0.262 + 0.28 + 0.429 + 0.625]

× �8 + (0.0009 + 0.007 + 0.011 + 0.00132)� = 0.8001 

Similar to 

 𝑆𝑆(𝐹𝐹2) = 0.5241, 𝑆𝑆(𝐹𝐹3) = 1.2553, 𝑆𝑆(𝐹𝐹4) = 0.7768, 𝑆𝑆(𝐹𝐹5) = 0.7392 

Step 4: Based on the score values S(𝐹𝐹i)(i = 1,2, . . . ,5) the ranking of alternatives uk(k =

1,2, . . . ,5) are shown in Figure 1 and given as; 

 

u3 > u1 > u4 > u5 > u2. 

Finally the best alternative is u3. 
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Figure 1 The ranking of alternatives  uk (k = 1,2, . . . ,5) 
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Abstract  
The present study explores two distinct kinds of neutrosophic numbers to solve a 
neutrosophic control of inventory issue with an immediate return for defective items: 
triangular neutrosophic values and trapezoidal neutrosophic values. The triangular and 
trapezoidal neutrosophic figures represent the neutrosophic perfect rate(NPR), neutrosophic 
demand rates(NDR), and neutrosophic cost of purchase(NCP), respectively. To determine 
the ideal order quantity (IOQ) in neutrosophic terms, the median rule is applied. The idea 
for a model is presented with an example of Python analysis. 

Keywords: Demand, Inventory Model, Fuzzy set, Neutrosophic, Defuzzification, Python. 

1. Introduction  
L. Zadeh (1965) was the first to present the idea of fuzzy sets. Since that time, numerous 
applications involving uncertainty have made extensive use of fuzzy sets and fuzzy logic. 
However, it has been shown that there are still some instances that fuzzy sets cannot account 
for, hence the interval-valued (Iv) fuzzy sets(FS) (Zadeh, 1975) was proposed to account for 
those circumstances. While fuzzy set theory is particularly effective at handling uncertainties 
resulting from the ambiguity or partial belongingness of an element in a set, it is unable to 
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simulate various types of uncertainties that are present in various real-world issues, such as 
those that include incomplete information. Atanassov (1986) created intuitionistic fuzzy sets 
(IFs), a further generalisation of the fuzzy set. The studies need to give more emphasis on 
some important elements while working with inventory models, like deterioration. In recent 
years, the academic community has witnessed growing research interests in uncertainty set 
theory [26-56]. It is evident that depreciation is a time-dependent factor and that it also 
worsens with passage of time, which reduces consumer demand for the commodity. Holding 
costs thus have a considerable impact on the value of the amount that is stored. Products that 
are kept in storage gradually lose value due to depreciation. Iron, steel, toys, electronic 
devices, furniture, tools, jewellery, cars, sporting goods, and other durable things degrade 
slowly over time. Chang (2004) demonstrated how fuzzy sets theory may be used in the 
EOQ model that includes imperfect items of quality. The problem of receiving inventory in 
poor condition was looked at. For each order lot, Eroglu and Ozdemir in 2007 developed an 
EOQ model that accounts for certain damaged goods and backordered shortages. Wee 
(2007), which are released a study on an optimal inventory concept for products with 
imperfect cleanliness and shortfall backordering. This study made the assumption that all 
customers would be willing to wait for a new supply in cases of shortage. In a fuzzy 
inventory model developed by Ranganathan & Thirunavukarasu (2015), subpar products are 
returned right away. A paradigm for a non-scarce neutrosophic assessment was put out by 
Mullai & Broumi (2018). Smarandache was (2006) show that introduced neutrosophic set 
and neutrosophic logic by looking at non-standard analysis. Many research treating 
imprecision and uncertainty have been developed and studied[57-76]. Using neutrosophic 
concepts as neutrosophic ideal rate, neutrosophic market rate, and neutrosophic buy cost, 
this work aims to explore the inventory control issues with quick returns for defective goods 
before determining the neutrosophic ideal order quantity. Finally, a numerical illustration of 
the suggested model is offered. Food items, medications, clothing, cosmetics, and other 
semi-durable goods experience fast fluctuations in the deterioration rate. The study of the 
degradation of items in systems of inventory is also essential due to the diverse deteriorating 
patterns in the EOQ (economic order quantity) model. Tadikamalla developed an EOQ 
model using a gamma distribution to show the constant, increasing, and decreasing rates of 
deterioration over time. Alshanbari et al. suggested a two-parameter Weibull distribution-
based inventory model for deteriorating goods. Wang and Lin developed the best 
replenishment technique by combining degradation, market demand, and price variations. 
Demand is important for inventory management because it is impossible to estimate future 
inventory without taking demand into account. The demand rate varies depending on the 
item. At the beginning of the cycle, several products experience an increase in demand. 
While the demand rate (DR) for some things remains constant, it increases as the product 
nears its end. The interest demand (ID) for baked items like bread, candy, cakes, & so on 
increases at the start of the cycle since consumers like freshly made goods. The expiration 
date causes the demand rate for products like fish, fruits and vegetables, and so on to decrease 
at the conclusion of the cycle. The inconsistent behavior of the systems is explained by 
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neutrosophic numbers. Since the majority of the parameters, in reality, are unclear, 
neutrosophic numbers are essential in this scenario for removing uncertainty. Others, 
however, such as domestic commodities like milk, sugar, and other dairy products, as well 
as furniture and electrical equipment, have a stable demand rate throughout the cycle and a 
rising pace of demand at the end. Khedlekar and Sukhla developed a dynamic pricing model 
for logarithmic demand. Smaila and Chukwu presented a model of EOQ with quadratic 
patterns of demand and quasi-partial backlogs. Dutta Choudhury et al. created an inventory 
model employing a two-component demand. Prasad & Mukherjee developed an inventory 
model with time-dependent demand and stock availability. Wu developed a plan for stocks 
for demand patterns with a maximum lifespan under trade credits and a trapezoidal shape. 
Mullai and Surya developed a price-break EOQ model using triangular neutrosophic 
numbers to represent neutrosophic demand and purchasing cost. Mariagrazia et al. developed 
a supplier selection technique using uncertainty. Ge and Zhang presented an inventory model 
in a fuzzy, ambiguous setting. De developed an inventory model for the non-random 
uncertain environment using the neutrosophic fuzzy technique. The ability of machine 
learning algorithms to address a range of problems has long been a mystery, despite the 
recent ten years' worth of attention they have gotten. The vast majority of these techniques 
work under the assumption that the data is required to be true, complete, and unadulterated. 
Since the machine learning system cannot work if the learning issues are defined under a 
collection of unclear or inconsistent data, the data must be prepared, which makes the data 
science process exceedingly time-consuming and impractical. However, incomplete, 
inconsistent, unreliable, and confusing information is typically present in real learning 
problems. If we can model the learning problem as it is while utilising the flaws in the 
material, the data science process, which commonly switches from modelling, which is the 
last stage, to planning, which is the first step, can be sped up. Single-valued set neutrosophic 
(SVNs) are a paradigm for modelling missing information. Contrary to conventional 
machine learning methods, single-valued neutrosophic algorithms for learning cope with 
learning challenges involving complex information modelling by manipulating incomplete 
information. Recently, a variety of machine-learning techniques have been created to 
improve the performance of current learning algorithms and deal with imperfect input in 
practical settings. 

2. Assumptions & Notations for Neutrosophic Inventory Model With Quick 
Return for Damaged Materials 

2.1 Notations 

R= Rate of Neutrosophic-Demand (Units per Year) 

S=Neutrosophic-Unit Selling Cost 

C=Neutrosophic-Purchase Cost  

A=Neutrosophic-Hold price 
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B=Neutrosophic-Hold price  

F=Neutrosophic-Order price 

U=Neutrosophic-Perfect Cost 

Y=Neutrosophic-Deficiency Rate 

W=Rate of Neutrosophic-Screening (Units per Year) 

Z=Neutrosophic-Screening Unit Cost 

D=Neutrosophic-Order Size 

Q=Neutrosophic-Cycle Length 

2.2 Assumption  

• A neutrosophic lot-size of D is thereafter replenished at the start of every 
neutrosophic inventory cycle (NIC). 

• The neutrosophic lot should be screened periodically Q to time Qe. The 
rates of neutrophil demand (ND) and neutrophil screenings happen at the 
same time, and the former is higher than the latter (e > R). 

• Following examination, any product that is shown to be flawed will be 
promptly sent back to the supplier. 

• To avoid shortages, assume that at certain points throughout the screening 
procedure, the wide range of excellent goods is at least equivalent to the 
neutrosophic demand. e≥ R/U. 

• The neutrosophic EOQ paradigm provides support for all additional 
hypotheses. 

3. Neutrosophic Inventory Model With Quick Return for Damaged Materials: 
The Model Description 

This portion provides neutrosophic triangular method(NTM) & neutrosophic trapezoidal 
method(NTrM) for the neutrosophic inventory framework with quick return for damaged 
materials to determine the ideal order quantity. 

3.1 Neutrosophic Inventories Modelling with Quick Return for Damaged Material 
applying a triangular approach 

In this model, we assume that the triangle neutrosophic values U, R, and C correspond to the 
neutrosophic perfection rate, neutrosophic supply rate, and neutrosophic purchase cost. 

Suppose, 

𝑈𝑈 = (𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3)(𝑈𝑈1′, 𝑈𝑈2′, 𝑈𝑈3′)(𝑈𝑈1”, 𝑈𝑈2”, 𝑈𝑈3”), 
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𝑅𝑅 = (𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3)(𝑅𝑅1′, 𝑅𝑅2′, 𝑅𝑅3′)(𝑅𝑅1", 𝑅𝑅2", 𝑅𝑅3"), 

𝐶𝐶 = (𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3)(𝐶𝐶1′, 𝐶𝐶2′, 𝐶𝐶3′)(𝐶𝐶1", 𝐶𝐶2", 𝐶𝐶3"). 

The Neutrosophic Overall Profitability (Y (D)) then looks like this: 

𝑌𝑌(𝐷𝐷) = 𝑆𝑆𝑅𝑅 − (𝐶𝐶 ⊗  𝑅𝑅) +
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶 ⊗  𝑅𝑅) −
𝐴𝐴𝐷𝐷
2

(𝐶𝐶 ⊗   𝑈𝑈) − �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� �
𝑅𝑅
𝑈𝑈

�

−
𝐴𝐴𝐷𝐷
2𝑟𝑟

�𝐶𝐶 ⊗ �
𝑅𝑅
𝑈𝑈

�� 

The formula for the Neutrosophic the total expenses are as follows: 

𝑌𝑌(𝐷𝐷) = 𝑆𝑆�(𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3) + (𝑅𝑅1"+R2" + 𝑅𝑅3")�

− ��(𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3) + (𝐶𝐶1+C2"+C3)�

+ �(𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3) + (𝑅𝑅1"+R2 + 𝑅𝑅3")��

+
𝐴𝐴𝐷𝐷
2𝑟𝑟

��(𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3) + (𝐶𝐶1+C2 + 𝐶𝐶3"))

+ �(𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3) + (𝑅𝑅1+R2 + 𝑅𝑅3")���

−
𝐴𝐴𝐷𝐷
2

�(𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3) + (𝐶𝐶1"+C2" + 𝐶𝐶3") +  (𝑈𝑈1 + 𝑈𝑈2 + 𝑈𝑈3�

+ (𝑈𝑈1"+U2" + 𝑈𝑈3")

− �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� ��
𝑅𝑅1
𝑈𝑈1

+
𝑅𝑅2
𝑈𝑈2

+
𝑅𝑅3
𝑈𝑈3

� + �
𝑅𝑅1"
𝑈𝑈1"

+
𝑅𝑅2"
𝑈𝑈2"

+
𝑅𝑅3"
𝑈𝑈3"

��

−
𝐴𝐴𝐷𝐷
2𝑟𝑟

�
𝐶𝐶1𝑅𝑅1

𝑈𝑈1
+

𝐶𝐶2𝑅𝑅2
𝑈𝑈2

+
𝐶𝐶3𝑅𝑅3

𝑈𝑈3
� + �

𝐶𝐶1"𝑅𝑅1"
𝑈𝑈1"

+
𝐶𝐶2"𝑅𝑅2"

𝑈𝑈2"
+

𝐶𝐶3"𝑅𝑅3"
𝑈𝑈3"

�) 

Given by is the Defuzzified Neutrosophic Overall Cost (DNOC). 
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𝑌𝑌(𝐷𝐷) =
1
8

{𝑆𝑆�(𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3) + (𝑅𝑅1"+R2" + 𝑅𝑅3")�

− ��(𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3) + (𝐶𝐶1+C2"+C3)�

+ �(𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3) + (𝑅𝑅1"+R2 + 𝑅𝑅3")��

+
𝐴𝐴𝐷𝐷
2𝑟𝑟

��(𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3) + (𝐶𝐶1+C2 + 𝐶𝐶3"))

+ �(𝑅𝑅1 + 𝑅𝑅2 + 𝑅𝑅3) + (𝑅𝑅1+R2 + 𝑅𝑅3")���

−
𝐴𝐴𝐷𝐷
2

�(𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3) + (𝐶𝐶1"+C2" + 𝐶𝐶3") +  (𝑈𝑈1 + 𝑈𝑈2 + 𝑈𝑈3�

+ (𝑈𝑈1"+U2" + 𝑈𝑈3")

− �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� ��
𝑅𝑅1
𝑈𝑈1

+
𝑅𝑅2
𝑈𝑈2

+
𝑅𝑅3
𝑈𝑈3

� + �
𝑅𝑅1"
𝑈𝑈1"

+
𝑅𝑅2"
𝑈𝑈2"

+
𝑅𝑅3"
𝑈𝑈3"

��

−
𝐴𝐴𝐷𝐷
2𝑟𝑟

�
𝐶𝐶1𝑅𝑅1

𝑈𝑈1
+

𝐶𝐶2𝑅𝑅2
𝑈𝑈2

+
𝐶𝐶3𝑅𝑅3

𝑈𝑈3
� + �

𝐶𝐶1"𝑅𝑅1"
𝑈𝑈1"

+
𝐶𝐶2"𝑅𝑅2"

𝑈𝑈2"
+

𝐶𝐶3"𝑅𝑅3"
𝑈𝑈3"

�)} 

We get, 

𝑅𝑅 = �𝐵𝐵
𝐴𝐴

 

Where, 𝐵𝐵 = 2𝑏𝑏𝑟𝑟�(𝑅𝑅1 + 2𝑅𝑅2 + 𝑅𝑅3) + (𝑅𝑅1, 2R2 + 𝑅𝑅3”)� 

𝐴𝐴 = 𝑎𝑎�(𝐶𝐶1 + 2𝐶𝐶2 + 𝐶𝐶3) + (𝐶𝐶1" + 2𝐶𝐶2" + 𝐶𝐶3")�[�1 − (𝑈𝑈1 + 2𝑈𝑈2 + 𝑈𝑈3)
+ (𝑈𝑈1+2U2 + 𝑈𝑈3)))((R1+2R2+R3)+(R1 + 2𝑅𝑅2+R3)�
+ 𝑟𝑟((𝑈𝑈12 + 2𝑈𝑈22 + 𝑈𝑈32) + (𝑈𝑈1"2 + 2𝑈𝑈2"2 + 𝑈𝑈3"2)] 

The parameters for the neutrosophic perfection rate, neutrosophic supply rate, and 
neutrosophic cost of purchase are U, R, and C, respectively. The neutrosophic-holding 
expense per unit time and the neutrosophic-holding expense per units/per unit time, 
respectively, are indicated above by the letters A and B. 

3.2 Neutrosophic Inventory Modelling with a Trapezoidal Method including Quick 
Return for Damage Materials 

In this model, we assume that the trapezoidal neutrosophic values U, R, and C for the 
neutrosophic perfection rate, neutrosophic supply rate, and neutrosophic purchase cost. 

Let,𝑈𝑈 = (𝑈𝑈1, 𝑈𝑈2, 𝑈𝑈3, 𝑈𝑈4)(𝑈𝑈1′, 𝑈𝑈2′, 𝑈𝑈3′, 𝑈𝑈4′)(𝑈𝑈1”, 𝑈𝑈2”, 𝑈𝑈3”, 𝑈𝑈4”), 

𝑅𝑅 = (𝑅𝑅1, 𝑅𝑅2, 𝑅𝑅3, 𝑅𝑅4)(𝑅𝑅1′, 𝑅𝑅2′, 𝑅𝑅3′, 𝑅𝑅4′)(𝑅𝑅1,R2, 𝑅𝑅3,R4), 

𝐶𝐶 = (𝐶𝐶1, 𝐶𝐶2, 𝐶𝐶3, 𝐶𝐶4)(𝐶𝐶1′, 𝐶𝐶2′, 𝐶𝐶3′, 𝐶𝐶4′)(𝐶𝐶1", 𝐶𝐶2", 𝐶𝐶3", 𝐶𝐶4") 
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The Neutrosophic Total Gain Y(R)is the following. 

𝑌𝑌(𝐷𝐷) = 𝑆𝑆𝑅𝑅 − (𝐶𝐶 ⊗  𝑅𝑅) +
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶 ⊗  𝑅𝑅) −
𝐴𝐴𝐷𝐷
2

(𝐶𝐶 ⊗   𝑈𝑈) − �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� �
𝑅𝑅
𝑈𝑈

� −
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶

⊗ (𝑅𝑅/𝑈𝑈)) 

The formula for the Neutrosophic total expenditure (NTE) is as follows: 

𝑌𝑌(𝐷𝐷) = � 𝑆𝑆𝑅𝑅 − (𝐶𝐶 𝑅𝑅) +
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶 𝑅𝑅) −
𝐴𝐴𝐷𝐷
2

(𝐶𝐶 𝑈𝑈) − �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� �
𝑅𝑅
𝑈𝑈

� −
𝐴𝐴𝐷𝐷
2𝑟𝑟

�𝐶𝐶 �
𝑅𝑅
𝑈𝑈

��
4

𝑖𝑖=1

+ 

� 𝑆𝑆𝑅𝑅′ − (𝐶𝐶′𝑅𝑅′) +
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶′𝑅𝑅′) −
𝐴𝐴𝐷𝐷
2

(𝐶𝐶′𝑈𝑈′) − �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� �
𝑅𝑅′

𝑈𝑈′� −
𝐴𝐴𝐷𝐷
2𝑟𝑟

�𝐶𝐶′ �
𝑅𝑅′

𝑈𝑈′�� +
4

𝑖𝑖=1

 

� 𝑆𝑆𝑅𝑅" − �𝐶𝐶"𝑅𝑅"� +
𝐴𝐴𝐷𝐷
2𝑟𝑟

�𝐶𝐶"𝑅𝑅"� −
𝐴𝐴𝐷𝐷
2

�𝐶𝐶"𝑈𝑈"� − �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� �
𝑅𝑅"

𝑈𝑈"� −
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶"(𝑅𝑅"/𝑈𝑈"))
4

𝑖𝑖=1

 

The Defuzzified Neutrosophic Total Cost (DNTC) is given by 

𝑌𝑌(𝐷𝐷) =
1
8

[� 𝑆𝑆𝑅𝑅 − (𝐶𝐶 𝑅𝑅) +
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶 𝑅𝑅) −
𝐴𝐴𝐷𝐷
2

(𝐶𝐶 𝑈𝑈) − �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� �
𝑅𝑅
𝑈𝑈

� −
𝐴𝐴𝐷𝐷
2𝑟𝑟

�𝐶𝐶 �
𝑅𝑅
𝑈𝑈

��
4

𝑖𝑖=1

+ 

� 𝑆𝑆𝑅𝑅" − �𝐶𝐶"𝑅𝑅"� +
𝐴𝐴𝐷𝐷
2𝑟𝑟

�𝐶𝐶"𝑅𝑅"� −
𝐴𝐴𝐷𝐷
2

�𝐶𝐶"𝑈𝑈"� − �
𝐵𝐵
𝐷𝐷

+ 𝑍𝑍� �
𝑅𝑅"

𝑈𝑈"� −
𝐴𝐴𝐷𝐷
2𝑟𝑟

(𝐶𝐶"(𝑅𝑅"/𝑈𝑈"))
4

𝑖𝑖=1

] 

 
We get, 

𝐷𝐷 = �
∑ 2𝐵𝐵𝑟𝑟(𝑅𝑅 + 𝑅𝑅")4

𝑖𝑖=1
∑ {𝐴𝐴(𝐶𝐶 + 𝐶𝐶)[(1-(U+U"))(𝑅𝑅 + 𝑅𝑅") + 𝑟𝑟(𝑈𝑈2 + 𝑈𝑈2")]}4

𝑖𝑖=1
 

The Neutrosophic-Order Size for the Neutrosophic Inventory Model with Quick Returning 
for Damaged Materials can be found here. 

4. Neutrosophic Inventory Model with Quick Return for Damaged Materials: 
Mathematical Example 

An organisation needs to determine the EOQ. However, the business is protected and will 
immediately refund any damaged items. According to the corporation, the overall demand 
(R) would likely be 4500 units year. Additionally, the buy price (c) is about $20 each order, 
& perfect rates (U) and insufficient rates (Y) are both 0.9 for each order. The holding costs 
(A) are estimated to be about 0.25 cents per unit, the holding costs (B) to be about 100 cents 
per order, the sale price (S) to be about 175200, and the screening price (Z) to be about 0.5 
cents. 
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The mathematical calculations and tables of Neutrosophic Inventory Model  are as follows: 

TABLE 1 Optimal order quantity for Neutrosophic Inventory Model -Using Triangular 
number(TN) 

Parameters/Cases CRISP 
SET(CS) 

FUZZY 
SET(FS) 

INTUTIONSTIC 
FUZZY SET(IFS) 

NEUTROSOPHIC 
SET(NS) 

R 4500 (4300, 
4500, 
4600)  
 

(4300, 4500, 
4600)  
(4100, 4500, 
4800)  

(4300, 4500, 4600)  
(4100, 4500, 
48000)  
(3900, 4500, 5000)  

U 0.9 (0.7, 0.9, 
1.0)  
 

(0.7, 0.9, 1.0)  
(0.3, 0.9, 1.1)  

(0.7, 0.9, 1.0)  
(0.3, 0.9, 1.1)  
(0.1, 0.9, 1.3)  

C 20 (18, 20, 
21)  

 

(18, 20, 21)  
(16, 20, 23)  

(18, 20, 21)  
(16, 20, 23)  
(14, 20, 25)  

OPTIMAL ORDER 
QUANTITY(OOQ) 

1276.49 418.864  
 

212.83  
 

205.637  
 

 

TABLE 2 Optimal order quantity for Neutrosophic Inventory Model -Using Trapezoidal 
number(TrN) 

Parameters/Cases  CRISP 
SET(CS
) 

FUZZY 
SET(FS) 

INTUTIONSTIC 
FUZZY SET(IFS) 

NEUTROSOPHIC 
SET(NS) 

D  4500  (4300, 
4400, 4600, 
4700)  
 

4300, 4400, 4600, 
4700)  
(4100, 4200, 4800, 
4900)   

(4300, 4400, 4600, 
4700)  
(4100, 4200, 4800, 
4900)  
(3900, 4000, 5000, 
5100)  

Q 0.9 (0.7, 0.8, 
1.0, 1.1)  
 

(0.7, 0.8, 1.0, 1.1)  
(0.3, 0.6, 0.9, 1.2)  

(0.7, 0.8, 1.0, 1.1)  
(0.3, 0.6, 0.9, 1.2)  
(0.1, 0.5, 1.3, 1.7)  

C 20 (18, 19, 21, 
22)  

 

(18, 19, 21, 22)  
(16, 17, 23, 24)  

(18, 19, 21, 22)  
(16, 17, 23, 24)  
(14, 15, 25, 26)  

OPTIMAL ORDER 
QUANTITY(OOQ) 

1276.49 409.64  
 

200.165  
 

199.918 
 

 

5. Neutrosophic Inventory Model Sensitivity Analysis & Observations With 
Quick Return For Damaged Materials 

This section analyses the best order amount for the following sets: The findings are compared 
graphically. 
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Figure 1. Sensitivity Analysis (Neutrosophic Inventory Model With Quick Return For 

Damaged Materials) for  (CS), (FS), (IFS), and (NS) by triangular method(TM). 

 
Figure 2. Sensitivity Analysis (Neutrosophic Inventory Model With Quick Return For 

Damaged Materials) for (CS), (FS), (IFS), and (NS) by trapezoidal method (TrM). 
When compared to a crisp, fuzzy, and intuitionistic fuzzy set, a neutrosophic set provides 
the best solution for the ideal order quantity, according to the research discussed above. The 
trapezoidal neutrosophic method gives a better answer for the ideal order amount than the 
triangular neutrosophic approach happens. The neutrosophic optimal order quantity is 
minimum, illustrated in the Figure 1 & Figure 2. 
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6. Python Analysis - Neutrosophic Inventory Model with Quick Return for 
Damaged Materials 

An informative violin-plot(VP) is superior to a straightforward box plot. In actuality, the 
violin-plot(VP) displays the entire distribution of the data, whereas a box plot just displays 
summary statistics like mean. 

import matplotlib.pyplot as plt 

import numpy as np 

np.random.seed(10) 

collectn_1 = np.random.normal(418, 212, 205) 

collectn_2 = np.random.normal(409, 200, 199) 

## combine these different collections into a list 

data_to_plot = [collectn_1, collectn_2] 

# Create a figure instance 

fig = plt.figure() 

# Create an axes instance 

ax = fig.add_axes([0,0,1,1]) 

# Create the boxplot 

bp = ax.violinplot(data_to_plot) 

plt.show() 
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Figure 3. Python: Employ the triangular & trapezoidal methods to compare the 
Neutrosophic Inventory Model with Quick Return for Damaged Materials. 

According to the research examined above, a neutrosophic set provides the best answer for 
the optimal order amount when compared to a crisp, fuzzy, and intuitionistic fuzzy set. In 
comparison to the triangular neutrosophic approach, the trapezoidal neutrosophic method 
provides a superior solution for the optimal order quantity.  Figures illustrate that the 
neutrosophic optimal order quantity is minimal. 

7. Conclusion 
In neutrosophic perspectives, the study discusses the difficulty of inventory management 
with speedy returns for subpar products. The neutrosophic perfect rate, neutrosophic desire 
rate, and neutrosophic purchasing cost are calculated for the neutrosophic model using 
triangles and trapezoid neutrosophic numbers. The neutrosophic optimal order quantity is 
calculated using triangles and trapezoid neutrosophic numbers, and the problem is defuzzed 
using the median rule. According to the study, the trapezoid neutrosophic number provides 
a better answer for the ideal order amount than the triangular neutrosophic number. The 
trapezoidal neutrosophic method allows for both maintaining neutrosophic levels of stock 
and increasing total neutrosophic income. 
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Abstract

In the chapter, we introduce a new method for assessing solutions for multiple attribute decision-
making problems that involve trapezoidal fuzzy multi numbers (TFM-numbers). To do this, we’ve
developed a TFM-Bonferroni geometric mean operator to aggregate trapezoidal fuzzy multi numbers
and examine properties of the TFM-Bonferroni geometric mean operator. Furthermore, we present an
approach for multiple attribute decision making in the context of the TFM-numbers. To show the
effectiveness and applicability of our method, we give a practical example under trapezoidal fuzzy multi
contexts. In our concluding remarks, we introduce a comparative analysis table comparing our method
with pre-existing techniques.

Keywords Fuzzy multi set·Trapezoidal fuzzy number·Trapezoidal fuzzy multi numbers·Bonferroni ge-
ometric mean·Multiple attribute decision making

1 Introduction

By expanding the classical set under uncertain information fuzzy set theory, proposed by Zadeh in 1965.
After of introduction of the theory, it has found wide application areas in the literature. For instance,
Marimin and Musthofa (2013) delved into the implications of fuzzy logic systems within agro-industrial
technology and engineering. Another notable contribution was by Bozkurt et al. (2022), where they applied
fuzzy logic in the legal domain, specifically for assessing the role of national human rights in safeguarding
and endorsing human rights. As the field matured, specialized versions of fuzzy sets emerged, particularly
focused on the real number set, R. Dubois and Prade (1993) then provided a comprehensive review of
fuzzy numbers, further extending established operations on R. Yun et al. (2009) formulated generalized
triangular fuzzy numbers based on Zadeh’s extension principle. Rezvani (2015) approached the ranking of
exponential trapezoidal fuzzy numbers using variance. Further readings on trapezoidal and triangular fuzzy
numbers include works by Alim et al. (2015), Ban and Coroianu (2015), Chen and Wang (2006), Deli (2020,
2021). In recent years, Yager (1986) proposed a novel expansion of fuzzy sets known as multi-fuzzy sets
(or fuzzy bags). which is generalization of multi-sets and fuzzy sets. Then, multi-fuzzy sets are studied in
Miyamoto (2000, 2004), Muthuraj and Balamurugan (2013), Ramakrishnan and Sebastian (2010), Sebastian
and Ramakrishnan (2011a, 2011b). Moreover, Ulucay et al. (2018) proposed the trapezoidal fuzzy multi-
numbers on the real number set R. Then, Keles (2019), Sahin et al. (2019b), Ulucay (2020) are some of the
done works.

Introduced by Bonferroni in 1950, Bonferroni operators are adept at identifying interrelations among
various factors to aggegate trapezoidal fuzzy multi numbers. The operators have been the focal point of
numerous research endeavors such as; Yager (2009), Yu et al. (2012), Zhu et al. (2013), Gong et al. (2016),
Garg and Arora (2018), Wang et al. (2019), Wang and Li. (2020), Deli (2021), Yang and Pang (2022),
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Abbas et al. (2022), Kesen and Deli (2022), Banerjee et al. (2022), Ayub and Malik (2022), Kakati and
Borkotokey (2022). But there hasn’t been a study on Bonferroni aggregation operators based on trapezoidal
fuzzy multi-numbers. Therefore, in second section, we provides foundational knowledge by defining terms
such as fuzzy sets, fuzzy numbers, fuzzy multi-sets, and trapezoidal fuzzy multi-numbers. In third section,
we developed a TFM-Bonferroni geometric mean operator. In fourth section, we introduce an algorithm for
multi-attribute decision-making within the context of trapezoidal fuzzy multi numbers. In fifth section, an
illustrative example is given to see application of the method. In sixth section, we give an analysis of the
proposed approach by providing a brief comparative analysis of the methods with existing methods. Finally
some conclusions are given in seventh section. The present expository chapter is a condensation of part of
the dissertation prepared by Kesen (2022).

2 Essential terms and operations

In this section, we proposed some basic concepts related to fuzzy sets, fuzzy numbers, fuzzy-multi sets
and trapezoidal fuzzy multi-numbers which are needful for the next sections.

Definition 2.1 (Zadeh 1965) Let X be a non-empty set. A fuzzy set 𝟋 on X is defined as:

𝟋 = {⟨x, µ𝟋(x)⟩ : x ∈ X}

where µ𝟋 : X → [0, 1] for x ∈ X.

Definition 2.2 (Ramakrishnan and Sebastian 2010) Let X be a non-empty set. A multi-fuzzy set G on X
is defined as:

G = {⟨x, µ1
G(x), µ

2
G(x), ..., µ

i
G(x), ...⟩ : x ∈ X}

where µi
G : X → [0, 1] for all i ∈ {1, 2, ..., p} and x ∈ X.

Definition 2.3 (Kaufmann and Gupta 1988) Let wxi
∈ [0, 1], xi, yi, zi, ti ∈ R and xi ≤ yi ≤ zi ≤ ti.

A trapezoidal fuzzy number N = ⟨(xi, yi, zi, ti);wN ⟩ is a special fuzzy set on the real number set R. Its
membership function is given as;

µN (x) =


(x− xi)wN/(yi − xi), xi ≤ x < yi
wN , yi ≤ x ≤ zi
(ti − x)wN/(ti − zi), zi < x ≤ ti
0, otherwise

Definition 2.4 (Ulucay et al. 2018) Let ηsN ∈ [0, 1] s ∈ {1, 2, ..., p} and xi, yi, zi, ti ∈ R such that xi ≤ yi ≤
zi ≤ ti. Then, trapezoidal fuzzy multi-number (TFM-number) shown by N = ⟨(xi, yi, zi, ti); η

1
N , η2N , ..., ηPN ⟩

is a special fuzzy multi-set on the real numbers set R and its membership functions are defined as:

µs
N (x) =


(x− xi)η

s
N/(yi − xi) xi ≤ x ≤ yi
ηsN yi ≤ x ≤ zi

(ti − x)ηsN/(ti − zi) zi ≤ x ≤ ti
0 otherwise

Note that the set of all TFM-number on R+ will be denoted by ℧(R+), {1, 2, ..., n} and {1, 2, ...,m} will
be denoted by In and Im respectively.

Definition 2.5 (Ulucay et al. 2018) Let N1 = ⟨(x1, y1, z1, t1); η
1
N1

, η2N1
, ..., ηPN1

⟩,
N2 = ⟨(x2, y2, z2, t2); η

1
N2

, η2N2
, ..., ηPN2

⟩ ∈ ℧(R+) and γ ̸= 0, γ ∈ R. Then,
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1. N1 +N2 = (x1 + x2, y1 + y2, z1 + z2, t1 + t2);
η1N1

+ η1N2
− η1N1

.η1N2
, η2N1

+ η2N2
− η2N1

.η2N2
, ..., ηPN1

+ ηPN2
− ηPN1

.ηPN2
)⟩

2. N1 ×N2 =


⟨(x1x2, y1y2, z1z2, t1t2); η

1
N1

.η1N2
, η2N1

.η2N2
, ...ηPN1

.ηPN2
)⟩ (t1 > 0, t2 > 0)

⟨(x1t2, y1z2, z1y2, t1x2); η
1
N1

.η1N2
, η2N1

.η2N2
, ...ηPN1

.ηPN2
)⟩ (t1 < 0, t2 > 0)

⟨(t1t2, z1z2, y1y2, x1x2); η
1
N1

.η1N2
, η2N1

.η2N2
, ...ηPN1

.ηPN2
)⟩ (t1 < 0, t2 < 0)

3. γN1 = ⟨(γx1, γy1, γz1, γt1); 1− (1− η1N1
)γ , 1− (1− η2

N̄1
)γ , ..., 1− (1− ηpN1

)γ⟩(γ ≥ 0)

4. Nγ
1 = ⟨(xγ

1 , y
γ
1 , z

γ
1 , t

γ
1); (η

1
N1

)γ , (η2N1
)γ , ..., (ηPN1

)γ⟩(γ ≥ 0)

Definition 2.6 (Kesen and Deli, 2022) Let N1 = ⟨(x1, y1, z1, t1); η
1
N1

, η2N1
, ..., ηPN2

⟩,
N2 = ⟨(x2, y2, z2, t2); η

1
N2

, η2N2
, ..., ηPN2

⟩ ∈ ℧(R+). Followings are right:

� If x1 < x2, y1 < y2, z1 < z2, t1 < t2, η
1
N1

< η1N2
,η2N1

< η2N2
,...,ηPN1

< ηPN2
then N1 < N2.

� If x1 > x2, y1 > y2, z1 > z2, t1 > t2, η
1
N1

> η1N2
,η2N1

> η2N2
,...,ηPN1

> ηPN2
then N1 > N2.

� If x1 = x2, y1 = y2, z1 = z2, t1 = t2, η
1
N1

= η1N2
,η2N1

= η2N2
,...,ηPN1

= ηPN2
then N1 = N2.

Definition 2.7 (Kesen and Deli, 2022) Let N = ⟨(x1, y1, z1, t1); η
1
N , η2N , ..., ηPN ⟩ be a TFM-number. Value

of N denoted V al(N ) based on centroid point denoted by deff(N i) is computed as;

V al(N ) =

P∑
i=1

deff(Ni)

P

where

deff(Ni) =

y1∫
x1

x
(x−x1)η

i
N

(y1−x1)
dx+

z1∫
y1

xηiNdx+
t1∫
z1

x
(t1−x)ηi

N

(t1−z1)
dx

y1∫
x1

(x−x1)ηi
N

(y1−x1)
dx+

z1∫
y1

ηiNdx+
t1∫
z1

(t1−x)ηi
N

(t1−z1)
dx

, (i = 1, 2, ..., P )

Definition 2.8 (Kesen and Deli, 2022) Let N = ⟨(x, y, z, t); η1N , η2N , ..., ηPN ⟩ be a TFM-number and P is
number of ηiN . Then score of N denoted S(N) is defined as:

S(N) =
t2 + z2 − x2 − y2

2.P

P∑
s=1

ηsN

2.1 Critic method for determining of weight of criteria

CRITIC method which was firstly introduced by Diakoulaki et al. (1995) helps to decision makers to
determine the weight of each criteria by means of values in the decision matrix. Its steps are given follows:

Step 1 Construct the decision matrix according to decision makers’ preferences:

(Dij)mxn =


x11 x12 · · · x1x

x21 x22 · · · x2x

...
...

. . .
...

xm1 xm2 · · · xmn



239



Step 2 Find normalised decision matrix as follows:

(D̄ij)mxn =


r11 r12 · · · r1r
r21 r22 · · · r2r
...

...
. . .

...
rm1 rm2 · · · rmn


where

rij =
xij − xmin

j

xmax
j − xmin

j

(j ∈ In) for benefit attribute

rij =
xmax
j − xij

xmax
j − xmin

j

(j ∈ In) for cost attribute

Step 3 Construct the relation-coefficient matrix as follows:

ρjk =

m∑
i=1

(rij − r̄j).(rik − r̄k)√
m∑
i=1

(rij − r̄j)2.
m∑
i=1

(rik − r̄k)2

(j, k ∈ In)

Step 4 Critic method aims to get information from contrast and conflicts in the criteria. In this context,
combining two concept and expressing aggregated information in j th criterion, cj is computed as follows:

cj = σj

n∑
k=1

(1− ρjk) (j ∈ In)

where

σj =

√√√√√ m∑
i=1

(rij − r̄j)2

m− 1

Step 5 Computing weights of criteria:

wj =
cj
n∑

k=1

cj

3 Bonferroni geometric mean operators on TFM numbers

Here, TFM-Bonferroni geometric mean operator to aggregate the TFM-information is developed. It is
quoted/adopted and/or inspired and/or generalized from Deli (2020, 2021), Deli and Keles (2021), Yu et al.
(2012).

3.1 Bonferroni geometric mean operator on TFM numbers

Definition 3.1 Let Ni = ⟨(xi, yi, zi, ti); η
1
Ni

, η2Ni
, ..., ηPNi

⟩ (i ∈ In) be a TFM-numbers’ collection, p and

q > 0. Then, TFM Bonferroni geometric mean operator denoted by TFMBGM (p,q) is defined as:

TFMBGM (p,q)(N1, N2, ..., Nn) =
1

p+ q

n⊗
i,j=1,i ̸=j

((p.Ni ⊕ q.Nj))
1

n.(n−1) (1)

or

TFMBGM (p,q)(N1, N2, ..., Nn) =
1

p+ q

n⊗
i,j=1,i<j

((p.Ni ⊕ q.Nj)⊗ (p.Nj ⊕ q.Ni))
2

n.(n−1) (2)
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Theorem 3.2 Let Ni = ⟨(xi, yi, zi, ti); η
1
Ni

, η2Ni
, ..., ηPNi

⟩ (i ∈ In) be a collection of TFM-numbers, p and

q > 0. Then, aggregated value by using TFMBGM (p,q) operator is a TFM-number and computed as follows:

TFMBGM (p,q)(N1, N2, ..., Nn) =⟨( 1

p+ q

n∏
i,j=1,i<j

((p.xi + q.xj).(p.xj + q.xi))
2

n.(n−1) ,

1

p+ q

n∏
i,j=1,i<j

((p.yi + q.yj).(p.yj + q.yi))
2

n.(n−1) ,

1

p+ q

n∏
i,j=1,i<j

((p.zi + q.zj).(p.zj + q.zi))
2

n.(n−1) ,

1

p+ q

n∏
i,j=1,i<j

((p.ti + q.tj).(p.tj + q.ti))
2

n.(n−1) );

1− (1−
n∏

i,j=1,i<j

[(1− (1− η1Ni
)p.(1− η1Nj

)q).

(1− (1− η1Nj
)p.(1− η1Ni

)q)]
2

n.(n−1) )
1

p+q ,

1− (1−
n∏

i,j=1,i<j

[(1− (1− η2Ni
)p.(1− η2Nj

)q).

(1− (1− η2Nj
)p.(1− η2Ni

)q)]
2

n.(n−1) )
1

p+q , ...,

1− (1−
n∏

i,j=1,i<j

[(1− (1− ηPNi
)p.(1− ηPNj

)q).

(1− (1− ηPNj
)p.(1− ηPNi

)q)]
2

n.(n−1) )
1

p+q ⟩

(3)

Proposition 3.3 Let Ni = ⟨(xi, yi, zi, ti); η
1
Ni

, η2Ni
, ..., ηPNi

⟩ (i ∈ In) and Mi = ⟨(ki, li,mi, ni); η
1
Mi

, η2Mi
, ..., ηPMi

⟩
(i ∈ In) be two collections of TFM-numbers,

1. (Monotonicity) Based on Definition 2.6, if xi ≤ ki, yi ≤ li, zi ≤ mi, ti ≤ ni(i ∈ In) and η1Ni
≤ η1Mi

,
η2Ni

≤ η2Mi
,...,ηpNi

≤ ηpMi
then

TFMBGM (p,q)(N1, N2, ..., Nn) ≤ TFMBGM (p,q)(M1,M2, ...,Mn)

2. (Boundedness)
N− ≤ TFMBGM (p,q)(N1, N2, ..., Nn) ≤ N+

where
N+ = ⟨(max{xi}i∈In ,max{yi}i∈In ,max{zi}i∈In ,max{ti}i∈In);

max{η1Ni
}
i∈In

,max{η2Ni
}
i∈In

, ...,max{ηPNi
}
i∈In

⟩

and
N− = ⟨(min{xi}i∈In ,min{yi}i∈In ,min{zi}i∈In ,min{ti}i∈In);

min{η1Ni
}
i∈In

,min{η2Ni
}
i∈In

, ...,min{ηPNi
}
i∈In

⟩

3. (Commutativity) If (Ṅ1, Ṅ2, ..., Ṅn) any permutation of (N1, N2, ..., Nn), then

TFMBGM (p,q)(N1, N2, ..., Nn) = ( 1
n.(n−1)

n⊗
i,j=1,i ̸=j

(Np
i ⊕Nq

j ))
1

p+q

= ( 1
n.(n−1)

n⊕
i,j=1,i ̸=j

(Ṅi
p ⊕ Ṅj

q
)

1
p+q

= TFMBGM (p,q)(Ṅ1, Ṅ2, ..., Ṅn)
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4. (Idempotent Commutativity) If we interchange p and q parameters, we have:

TFMBGM (p,q)(N1, N2, ..., Nn) =
1

p+q

n⊗
i,j=1,i<j

((p.Ni ⊕ q.Nj)⊗ (p.Nj ⊕ q.Ni))
2

n.(n−1)

= 1
q+p

n⊗
i,j=1,i<j

((q.Ni ⊕ p.Nj)⊗ (q.Nj ⊕ p.Ni))
2

n.(n−1)

= TFMBGM (q,p)(N1, N2, ..., Nn)

Next, if we change the parameters p and q of the TFMBGM (p,q) operator then, we can get some special
cases of TFMBGM (p,q) as follows:

Case 1. If q = 0, TFMBGM (p,q) operator converted into a generalized TFM geometric mean operator:

TFMBGM (p,q) (N1, N2, ..., Nn) =
1
p

n⊗
i,j=1,i<j

(p.Ni ⊗ p.Nj)
2

n.(n−1)

= ⟨( 1p
n∏

i,j=1,i<j

(pxi.pxj)
2

n.(n−1) , 1
p

n∏
i,j=1,i<j

(pyi.pyj)
2

n.(n−1) ,

1
p

n∏
i,j=1,i<j

(pzi.pzj)
2

n.(n−1) , 1
p

n∏
i,j=1,i<j

(pti.ptj)
2

n.(n−1) );

1− (1−
n∏

i,j=1,i<j

[(1− (1− η1Ni
)p.(1− (1− η1Nj

)p]
2

n.(n−1) )
1
p ,

1− (1−
n∏

i,j=1,i<j

[(1− (1− η2Ni
)p.(1− (1− η2Nj

)p]
2

n.(n−1) )
1
p , ...,

1− (1−
n∏

i,j=1,i<j

[(1− (1− ηPNi
)p.(1− (1− ηPNj

)p]
2

n.(n−1) )
1
p ⟩

= TFMBGM (p,0)(N1, N2, ..., Nn)

(4)

Case 2. If p = 1 and q = 0, TFMBGM (p,q) operator converted into a TFM geometric mean operator:

TFMBGM (p,q)(N1, N2, ..., Nn) =
n⊗

i,j=1,i<j

(Ni ⊗Nj)
2

n.(n−1)

=⟨(
n∏

i,j=1,i<j

(xi.xj)
2

n.(n−1) ,
n∏

i,j=1,i<j

(yi.yj)
2

n.(n−1) ,

n∏
i,j=1,i<j

(zi.zj)
2

n.(n−1) ,
n∏

i,j=1,i<j

(ti.tj)
2

n.(n−1) );

1− (1−
n∏

i,j=1,i<j

[(1− (1− η1Ni
).(1− (1− η1Nj

)]
2

n.(n−1) ),

1− (1−
n∏

i,j=1,i<j

[(1− (1− η2Ni
).(1− (1− η2Nj

)]
2

n.(n−1) ), ...,

1− (1−
n∏

i,j=1,i<j

[(1− (1− ηPNi
).(1− (1− ηPNj

)]
2

n.(n−1) )⟩

(5)

Case 3. If p = 2 and q = 0, TFMBGM (p,q) operator converted into TFM square geometric mean
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operator:

TFMBGM (p,q) ((N1, N2, ..., Nn) =
1
2

n⊗
i,j=1,i<j

(2.Ni ⊗ 2.Nj)
2

n.(n−1)

= ⟨( 12
n∏

i,j=1,i<j

(2xi.2xj)
2

n.(n−1) , 1
2

n∏
i,j=1,i<j

(2yi.2yj)
2

n.(n−1) ,

1
2

n∏
i,j=1,i<j

(2zi.2zj)
2

n.(n−1) , 1
2

n∏
i,j=1,i<j

(2ti.2tj)
2

n.(n−1) );

1− (1−
n∏

i,j=1,i<j

[(1− (1− η1Ni
)2.(1− (1− η1Nj

)2]
2

n.(n−1) )
1
2 ,

1− (1−
n∏

i,j=1,i<j

[(1− (1− η2Ni
)2.(1− (1− η2Nj

)2]
2

n.(n−1) )
1
2 , ...,

1− (1−
n∏

i,j=1,i<j

[(1− (1− ηPNi
)2.(1− (1− ηPNj

)2]
2

n.(n−1) )
1
2 , ⟩

(6)

Case 4. If p = q = 1, TFMBGM (p,q) operator converted into a TFM interrelated square geometric
mean operator:

TFMBGM (p,q)(N1, N2, ..., Nn) =
1

2

n⊗
i,j=1,i<j

((Ni ⊕Nj)⊗ (Nj ⊕Ni))
2

n.(n−1)

=⟨(1
2

n∏
i,j=1,i<j

((xi + xj)
2)

2
n.(n−1) ,

1

2

n∏
i,j=1,i<j

((yi + yj)
2)

2
n.(n−1) ,

1

2

n∏
i,j=1,i<j

((zi + zj)
2)

1
n.(n−1) ,

1

2

n∏
i,j=1,i<j

((ti + tj)
2)

2
n.(n−1) );

1− (1−
n∏

i,j=1,i<j

[(1− (1− η1Ni
).(1− η1Nj

)).

(1− (1− η1Nj
).(1− η1Ni

))]
2

n.(n−1) )
1
2 ,

1− (1−
n∏

i,j=1,i<j

[(1− (1− η2Ni
).(1− η2Nj

)).

(1− (1− η2Nj
).(1− η2Ni

))]
2

n.(n−1) )
1
2 , ...,

1− (1−
n∏

i,j=1,i<j

[(1− (1− ηPNi
).(1− ηPNj

)).

(1− (1− ηPNj
).(1− ηPNi

))]
2

n.(n−1) )
1
2 ⟩

=TFMBGM (1,1)(N1, N2, ..., Nn)

(7)

Now, we give an example to illustrate the results below:

Example 3.4 Assume that we have three TFM-numbers as follows;

N1 = ⟨(0.1, 0.4, 0.5, 0.6); 0.5, 0.3, 0.4, 0.2⟩
N2 = ⟨(0.1, 0.2, 0.5, 0.8); 0.9, 0.6, 0.3, 0.5⟩
N3 = ⟨(0.2, 0.3, 0.3, 0.4); 0.7, 0.8, 0.3, 0.4⟩.

Then based on the operations in Definition 2.5 and Equation (3) for p, q = 1, we have

N1
1 ⊕N1

2 = ⟨(0.2, 0.6, 1, 1.4); 0.95, 0.72, 0.58, 0.6⟩
N1

2 ⊕N1
1 = ⟨(0.2, 0.6, 1, 1.4); 0.95, 0.72, 0.58, 0.6⟩

N1
1 ⊕N1

3 = ⟨(0.3, 0.7, 0.8, 1); 0.85, 0.86, 0.58, 0.52⟩
N1

3 ⊕N1
1 = ⟨(0.3, 0.7, 0.8, 1); 0.85, 0.86, 0.58, 0.52⟩

N1
2 ⊕N1

3 = ⟨(0.3, 0.5, 0.8, 1.2); 0.97, 0.92, 0.51, 0.7⟩
N1

3 ⊕N1
2 = ⟨(0.3, 0.5, 0.8, 1.2); 0.97, 0.92, 0.51, 0.7⟩
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and then we obtain:

TFMBGM (1,1)(N1, N2, N3) = ⟨(0.034, 0.176, 0.371, 0.706); 0.612, 0.440, 0.168, 0.201⟩

In a similar way, if p, q = 2, from Equation (3) we have:

TFMBGM (2,2)(N1, N2, N3) = ⟨(0.068, 0.353, 0.742, 1.413); 0.637, 0.486, 0.227, 0.261⟩

if p = 1, q = 3, from Equation (3) we have:

TFMBGM (1,3)(N1, N2, N3) = ⟨(0.067, 0.348, 0.734, 1.392); 0.613, 0.450, 0.225, 0.248⟩

if p = 3, q = 1, from Equation (3) we have:

TFMBGM (3,1)(N1, N2, N3) = ⟨(0.067, 0.348, 0.734, 1.392); 0.613, 0.450, 0.225, 0.248⟩

if p = 10, q = 2, from Equation (3) we have:

TFMBGM (10,2)(N1, N2, N3) = ⟨(0.199, 1.032, 2.186, 4.131); 0.576, 0.406, 0.284, 0.267⟩

Definition 3.5 Let Ni = ⟨(xi, yi, zi, ti); η
1
Ni

, η2Ni
, ..., ηPNi

⟩ (i ∈ In) be a TFM-numbers’ collection, p, q > 0

and Ni’s weight vector is w = (w1, w2, ..., wn)
T . Here, wi is Ni’s importance degree, satisfying wi ∈ [0, 1],

(i ∈ In) such that
n∑

i=1

wi = 1. Then, weighted trapezoidal fuzzy multi geometric Bonferroni mean denoted by

TFMBGM
(p,q)
w is defined as:

TFMBGM
(p,q)
w (N1, N2, ..., Nn) = 1

p+q (
n⊗

i,j=1,i<j

((p.Nwi
i ⊕ q.N

wj

j )⊗ (p.N
wj

j ⊕ q.Nwi
i ))

2
n.(n−1)

Theorem 3.6 Let Ni = ⟨(xi, yi, zi, ti); η
1
Ni

, η2Ni
, ..., ηPNi

⟩ (i ∈ In) be a TFM-numbers’ collection, p, q > 0

and Ni’s weight vector is w = (w1, w2, ..., wn)
T . Here, wi is Ni’s importance degree, satisfying wi ∈ [0, 1],

(i ∈ In) such that
n∑

i=1

wi = 1. Then, aggregated value by using TFMBGM
(p,q)
w operator is a TFM-number

and computed as follows:

TFMBGM (p,q)
w (N1, N2, ..., Nn) =⟨( 1

p+ q

n∏
i,j=1,i<j

((p.xwi
i + q.x

wj

j ).(p.x
wj

j + q.xwi
i ))

2
n.(n−1) ,

1

p+ q

n∏
i,j=1,i<j

((p.ywi
i + q.y

wj

j ).(p.y
wj

j + q.ywi
i ))

2
n.(n−1) ,

1

p+ q

n∏
i,j=1,i<j

((p.zwi
i + q.z

wj

j ).(p.z
wj

j + q.zwi
i ))

2
n.(n−1) ,

1

p+ q

n∏
i,j=1,i<j

((p.twi
i + q.t

wj

j ).(p.t
wj

j + q.twi
i ))

2
n.(n−1) );

1− (1−
n∏

i,j=1,i<j

[(1− (1− (η1Ni
)wi)p.(1− (η1Nj

)wj )q).

(1− (1− (η1Nj
)wj )p.(1− (η1Ni

)wi)q)]
2

n.(n−1) )
1

p+q ,

1− (1−
n∏

i,j=1,i<j

[(1− (1− (η2Ni
)wi)p.(1− (η2Nj

)wj )q).

(1− (1− (η2Nj
)wj )p.(1− (η2Ni

)wi)q)]
2

n.(n−1) )
1

p+q , ...,

1− (1−
n∏

i,j=1,i<j

[(1− (1− (ηPNi
)wi)p.(1− (ηPNj

)wj )q).

(1− (1− (ηPNj
)wj )p.(1− (ηPNi

)wi)q)]
2

n.(n−1) )
1

p+q ⟩

(8)
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4 An approach to multi attribute making problems for TFM-
numbers

In this section, based on Bonferroni geometric mean operator of generalized hesitant TFM-numbers
proposed by Deli (2021), we developed an algorithm to solve multi attribute making problems by using
TFM-Bonferroni geometric mean operator for aggregating the trapezoidal fuzzy multi information.

Definition 4.1 (Ulucay et al. 2018) Let Z = {zi|i ∈ Im} be alternatives’ set, C = {cj |j ∈ In} set of criteria
and w = (w1, w2, ..., wn) be weights’ set. Here, wj (j ∈ In) is the weight of criteria cj such that wj > 0 and
n∑

j=1

wj = 1. Then, the characteristic of the alternative zi on criteria cj is represented by the TFM-number

N ij. All the possible values that the alternative zi (i ∈ Im) satisfies the criteria cj (j ∈ In) represented in
the following TFM decision matrix (N ij)mxn;

(N ij)mxn =


N11 N12 · · · N1n

N21 N22 · · · N2n

...
...

. . .
...

Nm1 Nm2 · · · Nmn



Note: In next examples, Table 1 (Kesen and Deli, 2022) as follows will be used as linguistic terms table.

Table 1: TFM-numbers of linguistic terms
Linguistic terms TFM-numbers
Definitely-low(DL) ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩
Too-Low(TL) ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩
Very-Low(VL) ⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩
Low(L) ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩
Fairly-low(FL) ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩
Medium(M) ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩
Fairly-high(FH) ⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩
High(H) ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩
Very-High(VH) ⟨(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3⟩
Too-High(TH) ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩
Definitely-high(DH) ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩

Algorithm

Step 1 Present TFM decision matrix showing results of evaluation of the expert based upon the char-
acteristic of the alternative zi (i ∈ Im) satisfies the criteria cj (j ∈ In) based on linguistic terms Table 1
as;

(N ij)mxn =


N11 N12 · · · N1n

N21 N22 · · · N2n

...
...

. . .
...

Nm1 Nm2 · · · Nmn


Step 2 Find the weights of criteria as follows:

Substep 1 Construct a matrix consisting of real numbers by value of TFM-numbers obtain from
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defuzzification of each element of the decision matrix (N ij)mxn by using Definition 2.7 as follows:

(Dij)mxn =


x11 x12 · · · x1x

x21 x22 · · · x2x

...
...

. . .
...

xm1 xm2 · · · xmn


Substep 2 Find the weights of criteria according to criteria in the decision making problem and

values in (Dij)mxn matrix by using critic method given in Subsection 2.1:

w = (w1, w2, ..., wn)

Step 3 For all i (i ∈ Im), find the aggregation values according to Equation (8) in order to obtain the
ultimate performance value corresponding to the alternative zi (i ∈ Im) as;

N i = TFMBGM (p,q)
w (N i1, N i2, ..., N in)(i ∈ Im)

Step 4 Calculate score value whose formula is given in Definition 2.8 for each (N i) (i ∈ Im) and rank
all the alternatives.

5 Illustrative example

Here, we give an illustrative example to show effectiveness of the proposed method and see results.

Example 5.1 Assume that a car fleet selection problem can be used as a multiple attribute decision making
problem in which alternatives are car fleets to be selected by considering the attributes under consideration.
A manager of a courier company aims to hire a new car fleet to speed up delivering of items they transport.
After pre-assessment, five alternatives Z = {xi|i ∈ I5} have remained to be selected. Also, there are four
attributes to be considered;

1. Carbon emission level (c1)

2. Comfort (c2)

3. Safety (c3)

4. Low fuel consuming (c4)

Step 1 Evaluation results of the manager are presented in TFM decision matrix (N ij)5×4 as;

(N ij)5×4 =
⟨(0.10, 0.15, 0.15, 0.20); 0.2, 0.4, 0.5, 0.3⟩ ⟨(0.15, 0.20, 0.25, 0.30); 0.4, 0.6, 0.2, 0.5⟩
⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩
⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩ ⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩
⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.05, 0.10, 0.15, 0.20); 0.2, 0.3, 0.4, 0.1⟩
⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.70, 0.80, 0.90, 1.00); 0.7, 0.8, 0.9, 0.2⟩

⟨(0.30, 0.35, 0.40, 0.45); 0.6, 0.1, 0.8, 0.4⟩ ⟨(0.45, 0.55, 0.65, 0.75); 0.7, 0.8, 0.6, 0.3⟩
⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩ ⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩
⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩ ⟨(0.01, 0.05, 0.10, 0.15); 0.1, 0.2, 0.3, 0.4⟩
⟨(0.50, 0.60, 0.70, 0.80); 0.1, 0.7, 0.8, 0.9⟩ ⟨(0.25, 0.30, 0.35, 0.40); 0.4, 0.5, 0.6, 0.8⟩
⟨(0.40, 0.45, 0.50, 0.55); 0.8, 0.9, 0.3, 0.6⟩ ⟨(0.10, 0.20, 0.20, 0.30); 0.3, 0.4, 0.8, 0.1⟩


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Step 2

Substep 1 Construct a matrix consisting of real numbers by defuzzification of each element of the
decision matrix (N ij)mxn by using Definition 2.7 as follows:

(Dij)mxn =


0, 1500 0, 2250 0, 3750 0, 6000
0, 1250 0, 2000 0, 3250 0, 4750
0, 8500 0, 6500 0, 2000 0, 0779
0, 3250 0, 1250 0, 6500 0, 3250
0, 6500 0, 8500 0, 4750 0, 2000


Substep 2 Find the weights of criteria according to criteria in the decision making problem and

values in (Dij)mxn matrix by using critic method given in Subsection 2.1:

w = (0.328, 0.250, 0.197, 0.223)

Step 3 For all i (i ∈ I5), the aggregation values are computed as stated in the Equation (8) for p = 1
and q = 1 to obtain the final performance value as:

N1 = TFMBGM
(1,1)
w (N11, N12, N13, N14)

= ⟨(0.9081, 1.0340, 1.1009, 1.2061); 0.7441, 0.7383, 0.7745, 0.6944⟩
N2 = TFMBGM

(1,1)
w (N21, N22, N23, N24)

= ⟨(0.7675, 0.9405, 1.0216, 1.1460); 0.7075, 0.7764, 0.7836, 0.6390⟩
N3 = TFMBGM

(1,1)
w (N31, N32, N33, N34)

= ⟨(0.8962, 1.1440, 1.2700, 1.4227); 0.6085, 0.7932, 0.8895, 0.6741⟩
N4 = TFMBGM

(1,1)
w (N41, N42, N43, N44)

= ⟨(0.9051, 1.0430, 1.1563, 1.2564); 0.6075, 0.7695, 0.8266, 0.8503⟩
N5 = TFMBGM

(1,1)
w (N51, N52, N53, N54)

= ⟨(1.2255, 1.3916, 1.4665, 1.5988); 0.7240, 0.8792, 0.8886, 0.7208⟩

Step 4 The scores of N i (i ∈ I5) (s(N i)) are computed as:

s(N1) = 0.2851, s(N2) = 0.3209, s(N3) = 0.5652, s(N4) = 0.3849, s(N5) = 0.5093

and all the alternatives ranked as:
z3 > z5 > z4 > z2 > z1

247



Table 2: Rankings for some alternatives in terms of different TFMBGM
(p,q)
w of Example 5.1

(p, q) i 1 2 3 4 5 Ranking

(1.0, 1.0) s(N i) 0.2851 0.3209 0.5652 0.3849 0.5093 z3 > z5 > z4 > z2 > z1

(1.0, 0.5) s(N i) 0.1547 0.1761 0.3100 0.2102 0.2804 z3 > z5 > z4 > z2 > z1

(0.5, 1.0) s(N i) 0.1547 0.1761 0.3100 0.2102 0.2804 z3 > z5 > z4 > z2 > z1

(2.0, 2.0) s(N i) 1.1673 1.2882 2.3014 1.5829 2.0331 z3 > z5 > z4 > z2 > z1

(3.0, 3.0) s(N i) 2.6159 2.8570 5.1540 3.5727 4.5176 z3 > z5 > z4 > z2 > z1

(0.5, 0.6) s(N i) 0.0804 0.0918 0.1612 0.1094 0.1484 z3 > z5 > z4 > z2 > z1

(0.7, 0.8) s(N i) 0.1561 0.1770 0.3110 0.2113 0.2829 z3 > z5 > z4 > z2 > z1

(0.8, 0.7) s(N i) 0.1561 0.1770 0.3110 0.2113 0.2829 z3 > z5 > z4 > z2 > z1

(0.4, 0.5) s(N i) 0.0519 0.0595 0.1045 0.0709 0.0971 z3 > z5 > z4 > z2 > z1

(0.5, 0.4) s(N i) 0.0519 0.0595 0.1045 0.0709 0.0971 z3 > z5 > z4 > z2 > z1

(0.5, 2.0) s(N i) 0.0292 0.0338 0.0599 0.0406 0.0558 z3 > z5 > z4 > z2 > z1

(2.0, 0.5) s(N i) 0.0292 0.0338 0.0599 0.0406 0.0558 z3 > z5 > z4 > z2 > z1

(3.0, 1.0) s(N i) 1.1346 1.2764 2.2718 1.5499 1.9816 z3 > z5 > z4 > z2 > z1

(1.0, 3.0) s(N i) 1.1346 1.2764 2.2718 1.5499 1.9816 z3 > z5 > z4 > z2 > z1

(5.0, 5.0) s(N i) 7.1780 7.7713 14.1343 9.8966 12.3458 z3 > z5 > z4 > z2 > z1
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6 Comparative study

In the following, we compare our proposed method with some other methods given by Kesen and Deli
(2022), Deli and Keles (2021), Ulucay (2020), Ulucay et al. 2018 and Sahin et al. (2019a), based on Example
5.1.

Developed aggregation technique called TFM-Bonferroni geometric mean operator can be used to handle
the multiple attribute decision making problems. Therefore, in order to compare the performance of the
proposed method based on Example 5.1 with some existing methods in Kesen and Deli (2022), Deli and
Keles (2021), Ulucay (2020), Ulucay et al. 2018 and Sahin et al. (2019a), a comparative study is presented
and their corresponding final rankings are summarized in Table 3. From the Table 3, it is clear that the
ranking order of the alternatives are generally same. Also, if we choose different values of (p, q) the ranking
order of the alternatives is generally same as found the existing approaches in Kesen and Deli (2022), Deli
and Keles (2021), Ulucay (2020), Ulucay et al. 2018 and Sahin et al. (2019a). Thus, our proposed method
can be suitably utilized to solve by aggregating the multi attribute decision making problems in addition
to the other existing methods under trapezoidal fuzzy multi information. Also, in the developed method,
the solutions of Example 5.1 with different values of (p, q) is shown in Table 2. As seen in the table, the
results are approximately the same. So, the introduced method is flexible that contain the existing methods
according to the value of (p, q) and it has more application fields than existing methods to overcome the
limitations of the multi attribute decision making problems.

Table 3: Ranking for all alternatives according to different methods and proposed methods of Example 5.1

Method Operator Ranking

Method of Ulucay et al. (2018) TFMGw z5 > z3 > z4 > z1 > z2

Proposed method TFMBGM
(1,1)
w z3 > z5 > z4 > z2 > z1

Proposed method TFMBGM
(2,2)
w z3 > z5 > z4 > z2 > z1

Method of Ulucay (2020) Sw z4 > z3 > z1 > z5 > z2

Method of Sahin et al. (2019a) Dw z3 > z5 > z1 > z4 > z2

Method of Deli and Keles (2021) Si z5 > z3 > z4 > z1 > z2

Method of Kesen and Deli (2022) TFMBHM
(1,1)
w z1 > z3 > z5 > z2 > z4

7 Conclusion

This study introduces a solution to the challenge of multi-attribute decision-making using trapezoidal
fuzzy multi numbers (TFM-numbers). Initially, an aggregation method called TFM-Bonferroni geometric
mean operator is proposed for aggregating trapezoidal fuzzy multi information. Then, properties and special
cases of this technique are further explored. Furthermore, an algorithm is devised for multi-attribute decision-
making within trapezoidal fuzzy multi environments. This method was then applied to a multi-criteria
decision-making problem within the trapezoidal multi fuzzy context. To demonstrate the efficacy of our
results, a hands-on example is provided. To conclude, In future, we plan to extend our work to TOPSIS
method, VIKOR method, QUALIFLEX method, ELECTRE I method, ELECTRE II method, ELECTRE
III method, defuzzification techniques, and so on.
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In general, a system S (that may be a company, association, institution, society, country, 
etc.) is formed by sub-systems Si { or P(S), the powerset of S }, and each sub-system Si is 
formed by sub-sub-systems Sij { or P(P(S)) = P2(S) } and so on. That’s why the n-th PowerSet 
of a Set S  { defined recursively and denoted by Pn(S) = P(Pn-1(S) } was introduced, to better 
describes the organization of people, beings, objects etc. in our real world. 

The n-th PowerSet was used in defining the SuperHyperOperation, SuperHyperAxiom, 
and their corresponding Neutrosophic SuperHyperOperation, Neutrosophic SuperHyperAxiom 
in order to build the SuperHyperAlgebra and Neutrosophic SuperHyperAlgebra. In general, in 
any field of knowledge, one in fact encounters SuperHyperStructures, 
https://fs.unm.edu/SuperHyperAlgebra.pdf. 

Also, six new types of topologies have been introduced in the last years (2019-2022), 
such as: Refined Neutrosophic Topology, Refined Neutrosophic Crisp Topology, 
NeutroTopology, AntiTopology, SuperHyperTopology, and Neutrosophic 
SuperHyperTopology, http://fs.unm.edu/TT/.
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