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Abstract

This research proposes a new model for constructing decision trees using interval-

valued fuzzy membership values. Most existing fuzzy decision trees do not con-

sider the uncertainty associated with their membership values, however, precise

values of fuzzy membership values are not always possible. In this paper, we

represent fuzzy membership values as intervals to model uncertainty and employ

the look-ahead based fuzzy decision tree induction method to construct decision

trees. We also investigate the significance of different neighbourhood values and

define a new parameter insensitive to specific data sets using fuzzy sets. Some

examples are provided to demonstrate the effectiveness of the approach.

Keywords: Look-ahead based fuzzy decision tree induction, optimal

perimeter, interval-valued fuzzy decision trees.

1. Introduction

Decision tree is a powerful induction method in data mining. However, real-

world applications of decision trees exhibit uncertainty through imprecise data,

vagueness, ambiguity etc [1–4, 25, 27]. To deal with these uncertainties, Fuzzy

Decision Trees (FDT) employing type-1 fuzzy sets have been extensively inves-

tigated [11, 12, 22]. However type-1 fuzzy sets, by their very nature, require
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precise values in their application and determining the exact membership val-

ues in type-1 fuzzy sets is well known to be difficult [19]. In real world data,

however, we may have information on the boundary of values but cannot deter-

mine where it is within the boundaries. In this case, interval values are usually

adopted to represent the uncertainty. The present FDT cannot deal with these

kind of interval values. There have been applications of type-2 fuzzy sets in

decision tree construction [21]. However, these methods are designed to work

with the same data as type-1 models. Therefore, there is a need to investigate

the right way to treat with intervals in data mining problems. As an extension

of the type-1 fuzzy sets, interval-valued fuzzy sets [5–7] are specifically designed

to deal with fuzzy sets with interval representation of values. It is obviously a

natural choice to deal with interval values in FDT problems. Here, we apply

interval-valued fuzzy sets to construct an interval-valued fuzzy decision tree. In

this way, the interval values in a data mining problem does not need to be con-

verted into an average to employ FDT, instead, they can be directly mapped

into an interval-valued fuzzy set and then an interval-valued fuzzy decision tree

can be established without any aggregation operation. It is well known that

aggregation can lose information, and an interval-valued fuzzy decision tree will

certainly convey more information than a traditional FDT, hence the ability to

reveal more useful knowledge from the data than a FDT. Obviously, such an

interval-valued fuzzy decision tree is more powerful in dealing with data mining

problems involving interval representation.

In addition to the novel interval-valued fuzzy decision trees, we present also

a new way to determine the parameters of FDT in look-ahead based fuzzy de-

cision trees (LAFDT). LAFDT was proposed by Dong and Kothari (2001) for

data represented with type-1 fuzzy sets [11]. It can evaluate the classifiability of

instances, that are split along branches of a given node based on evaluating the

texture of the class label surface. This particular method works by finding the

instances that are within a distance threshold from a given instance. This dis-

tance threshold has significant influence on the results of the classification and
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depends on the data sets, however, there is no well developped methodology so

far to determine its value[5]. In this paper, we investigate the significance of

this threshold and define a new parameter which is not sensitive to a specific

data set. In this way, the application of LAFDT is greatly simplified.

Combining interval-valued fuzzy sets and the LAFDT with the proposed new

parameter, we propose a new model to construct a decision tree using interval-

valued fuzzy membership values based on LAFDT induction and interval-valued

fuzzy sets with a new optimal parameter [34]. We call this the Look-Ahead

Based Interval-Valued Fuzzy Decision Tree with Optimal Perimeter of the Neigh-

bourhood (LAIVFDT-OPN). This new model simplifies the application of LAFDT

by employing a parameter insensitive to data set changes on one hand, and im-

proves the classification quality on the other hand by means of the employment

of the full informtion in interval representation through interval-valued fuzzy

sets.

To demonstrate the feasibility of our proposed model, two well known data

sets on weather condition for play [11] and car evaluation [22] are employed

to verify the effectiveness of the proposed new threshold parameter. Although

they have different data sizes and require different threshold values defined in

LAFDT, but our result shows that they share the same threshold parameter

defined in our model. To validate our interval-valued fuzzy decision tree model,

the weather data set is converted into an interval data set by expanding each

value into an interval. Then LAFDT is applied to the orginal weather data set,

and LAIVFDT-OPN is applied to the interval data set of weather data. The

comparison shows that their results are different, and LAIVFDT-OPN obtains

a smaller tree in comparison with LAFDT. It demonstrates that the reservation

of interval values provide more information than otherwise. In the end, we ap-

plied the proposed model to a real world data set from a factory in Tailand to

demonstrate its usage.
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Section 2 provides some necessary background material on LAFDT, and

interval-valued fuzzy sets (IVFS). In Section 3 we propose an extension of

LAFDT induction to LAIVFDT-OPN. Section 4 describes the effect of the

neighbourhood parameter on decision tree construction and Section 5 demon-

strates an example of the application of LAIVFDT to data with uncertain fuzzy

membership values. In Section VI we present results of the experiment on a real

world case study of factory data. Section 6 summaries the results of the study.

2. Preliminaries

2.1. The Look-Ahead Based Fuzzy Decision Tree

There are many different models of FDT [1, 13]. LAFDT induction is one of

the more recent models employed to evaluate the classifiability of the instances

along each branch of the split by linear discriminant (also called a single step)

[1, 10, 11]. In a FDT, the key is to find the appropriate attribute to split samples

into different branches along the tree [1, 15, 16]. The LAFDT has a particular

method of evaluating the classifiability of attributes along the branches of a

node to split and produce a smaller decision tree. A nonparametric method in

LAFDT is to characterise the classifiability of attributes using an occurrence

matrix.

The occurrence matrix is deployed to characterise the texture of the class

label [11] (A data set consists of variables and one for the class label or (n+1)

dimension). The usual approach of LAFDT is, for any instance x, to measure

a distance r between two instances that are within a circular neighbouehood

of radius r based on the distance in Equation (1). The r distance assists in

filtering the instances which exceed the radius r, and to reduce computing time.

Considering the universe of objects described by n attributes, an attribute has

values of fuzzy subsets Ak
1 ,A

k
2 ,...,A

k
mk

(For the list of symbols adopted in this

paper, please refer to appendix). The distance between two objects (or instance
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x and y) can be measured using their fuzzy memberships.

Definition 1: [11] Let µ
(k)
i (x) (1 ≤ k ≤ n, 1 ≤ i ≤ mk,1 ≤ x ≤ N) denote

the membership value of instance x for the ith value of the kth attribute. The

distance between instance x and y is defined by

Dxy =

n∑

k=1

mk∑

i=1

|µ
(k)
i (x)− µ

(k)
i (y)|. (1)

For any object x in the universe, we can restrict its circular neighbourhood

to those objects within a radius r of x. Then local occurrence matrix P for

object x is defined as follows.

Definition 2: [11, 12] Let µj(x), 1 ≤ j ≤ C denote the membership value of

instance x for class j and let µj(x) = [µ1(x),...,µC(x)]. The local co-occurrence

matrix of instance x is defined by

P (x) =
∑

y,Dxy≤r

µ(x)T × µ(y). (2)

where, µ(x)T is a transpose matrix and r is the neighbourhood radius of x.

With a local occurrence matrix, we can derive the co-occurrence matrix for

each attribute.

Definition 3: [11, 12] The local co-occurrence matrix after attribute k is

selected.

W (k) =

mk∑

i=1

∑

x

P (x). (3)

Then, the classifiability of attribute k is

L(k) =
C∑

i=1

W
(k)
ii −

C∑

i=1

C∑

j=1,i̸=j

W
(k)
ij . (4)

According to the values of L(k), we can identify the attribute with the high-

est classifiability in order to build a decision tree.
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2.2. Interval-Valued Fuzzy Sets

In Definition 2, the membership values are required to be precise values.

It is not always possible to have precise membership values, instead, we may

restrict a membership value to an interval and replace a type-1 fuzzy set with

an interval-valued fuzzy set.

Definition 4: [5, 7, 18] LetX denote a universe of discourse. An interval−valued

fuzzy set is an expression A denoted by

A = {(xi, µA(xi))|xi ∈ X; i = 1, 2, ..., n}. (5)

where µA(xi) : X → D([0, 1]), and xi → µA(xi) = [µ
A
(xi), µA(xi)] ∈

D([0, 1]).

If we represent the interval relationship with µ
A
(xi) and νA(xi)=1−µA(xi)

then we get intuitionistic fuzzy sets [5–7]. The interval of intuitionistic fuzzy sets

is denoted by [µA(xi), 1− νA(xi)]. In this paper, we transform the intuitionistic

fuzzy sets into interval-valued fuzzy sets as follows.

Given µA(xi) = [µ
A
(xi), µA(xi)] = [µA(xi), 1 − νA(xi)]. Then we can rep-

resent the distance between set A and B in the form of interval-valued fuzzy

sets:

d =
1

2

n∑

i=1

[|µ
A
(xi)− µ

B
(xi)|+ |µA(xi)− µB(xi)|]. (6)

3. Effect of the neighbourhood parameter on decision tree construc-

tion

As demonstrated in Equation (2), a predefined parameter neighbourhood

radius r is necessary for a given data set in a look-ahead algorithm. Dong et

al. (2001) comment that “r should be large enough such that each instance

has a few instances in its neighbourhood r also should be small enough to keep

the calculation of co-occurrence matrix local” [12]. Obviously, it is necessary to
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investigate the role of neighbourhood r values in constructing a decision tree [33].

To identify the role of neighbourhood r values for different data sets, two

data sets are adopted in our experiment here: weather [11] and car [22]. The

weather data set is obtained from [11, 33]. There are four attributes: “outlook”,

“temperature”, “humidity”, “wind” and one classification attribute: “plan”.

Their values are described as fuzzy subsets: the “outlook” can be sunny, cloudy

or rain; “temperature” can be hot, mild or cool; “humidity” can be humid

or dry; “wind” can be windy or calm and “plan” can be A,B or C. The car

evaluation data set comes from [22]. It is comprised of six attributes: “buying”,

“maint”, “doors”, “persons”, “lug boot” and “safety” and one classification

attribute: “car evaluation”. The concepts of car acceptability can be described

by: “buying” for purchase price, “maint” for price of maintenance, “doors”

for the number of doors, “Persons” for capacity in terms of persons to carry,

“lug boot” for the size of luggage and “safety” for estimated safety of the car.

The attribute values of each attribute and classification attribute are described

as fuzzy subsets: “buying” and “maint” can be very high, high, medium or low;

“doors” can be 2, 3, 4 or 5-more; “persons” can be 2, 4 or more; “lug boot”

can be small, medium or big and “safety” can be low, medium and high and

“car evaluation” can be unacceptable, acceptable, good or very good [22]. Both

data sets are represented by their corresponding fuzzy membership values for

the subsets of their attributes. There are 16 instances in the weather data set

and 87 instances in the car evaluation data set. Based on these data sets, we can

evaluate the effect of neighbourhood parameter on decision tree construction.

Based on the Equations (1-5), we got L(k) values for each attribute in each

data set under different neighbourhood r values. The results are shown in Figure

1 and 2.

From Figure 1 and 2, it is obvious that the dominance of attributes can be

classified into two different regions with respect to r values. In Figure 1, wind

has the larger L(k) value when r < 5, but temperature gets a larger value when

≥ 5. Similar situations happen in Figure 2. Obviously, the selection of r value
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Figure 1: L(k) and r values classify by attributes (Weather data set)

Figure 2: L(k) and r values classify by attributes (Car data set)

can change the preferred attribute for the same data set, and we have to know

which r value is the ideal one.

For the weather data set, the ideal r value is 3 according to [11]. In this

sense, the preferred attribute to split the tree in the root node is wind. It is
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obvious that a less effective tree would be constructed if we selected a r value

from the region where r ≥ 5. This fact tells us that we have to know the right

region before we determine the r value. In the weather data set, it is the region

where 1 < r < 5. In this region, the only r value satisfying “large enough” and

“small enough” in the same time as required by Ming Dong [12] is 3. In weather

data set, the smallest tree is established when r = 3.

Similar to the weather data set, there are two different regions of r values in

the car evaluation data set as shown in Figure 8: one for r ≤ 5 and the other

for r > 5. Persons has the larger L(k) values when r ≤ 5. However, Lug boot

would be selected when r > 5. We could not construct the tree by select a r

value from the region where 0.5 < r < 1 due to the equal L(k) values for all

attributes. It is obvious that any r value between 1 and 5 will give the same

dominate attribute. As an example, we tested r = 2 and r = 8, and the result

tree has 87 nodes for r = 2, but 83 nodes for r = 8. Thus, Lug boot appears

as a better choice to split the root node compared with persons. Obviously, the

region where r > 5 is preferred in the car data set. r = 8 looks fine with the

“large enough” and “small enough” principle in the second region. In this case,

we tested only some r values between 0.5 and 10. There is no reason to stop at

10. Then the question is how to know which region is ideal and the size of each

region.

Obviously, the value of r has a significant impact on the structure of the

tree. In fact, for each specific data set, there exists an ideal r value which helps

to split the samples to construct a tree with a relatively small size. When the

r value is too small, there are less samples in the neighbourbhood belonging to

the same class, so the tree would be very big; however, when r value is too big,

most samples will go to one class, which cannot differentiate different classes.

Therefore, it is essential here to find a right value for r, which cannot be too

small or too big. The r value depends on the size of the data, which makes

it more difficult to know the right value of r for each data set. So far, there

is no clear way to identify the r value, and it has become a bottleneck for the
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application of LAFDT. An alternative parameter insensitive to the change of

data size would certainly be a significant help in this situation.

Considering the role of r value, it defines the neighbourhood of a sample x.

If we consider those samples within the r distance as a neighbour set of x, we

can actually define a fuzzy set for x’s neighbourhood, and an α cut of this fuzzy

set could obviously determine the size of this neighbourhood.

Let S be the universe of samples (objects) S={x1,x2,...,xn} and xc ∈ S. The

neighbourhoods of xc is a subset A⋆(xc) ⊆ S : A⋆(xc)={neighbourhood of xc}.

Obviously, A⋆(xc) can be described by A⋆(xc) = {xi | xi ∈ S, 0 ≤ µ̄c(xi) ≤ 1}.

Its fuzzy membership value could be derived according to the distance between

xi and xc : i = 1, 2, ..., n. For a given distance Dxixc
, we have µ̄c(xi), which is

a membership value for xi ∈ A⋆(xc).

µ̄c(xi) =
D −Dxixc

D
. (7)

HereD is the boundary value ofDxixc
. For example, we could useDxixcmin(max)

,

then D = Dxixcmin(max)
. Dxixcmin(max)

is the minimum of the maximum values

of Dxixc
for all xi in A⋆(xc).

It is clear that when µ̄c(xi) approaches to 1, xi is near to xc. In this sense,

we can identify the neighbours of xc using µ̄c(xi). For a set B⋆(xc) ⊆ A⋆(xc), if

xi ∈ B⋆(xc), then xi is near to xc with a membership value higher than a given

value α. Clearly, this is α-cut of A⋆(xc). The set B⋆(xc) can be represented

as B⋆(xc) = {xi | xi ∈ S, µ̄c(xi) ≥ α}; i = 1, ..., n. We call B⋆(xc) as the

neighbourhood set of xc.

For a given optimal value of r, it is clear that we could find a corresponding

value of α. We can get an α-cut equivalent to the neighbourhood set obtained

according to neighbourhood radius r in LAFDT. The samples of set A⋆(xc)

are associated with a family of crisp subsets and the restriction of samples is

that their membership values are greater than or equal to some chosen value
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α in [0,1] [25]. Consequently, we obtain a crisp subset B⋆(xc). In this way, α

can play the same role as r, and we can replace r with α in LAVIFDT-OPN.

The r value depends on the data set. There is no bound to r value. However,

α is bound within 0 and 1. Thus, we can replace the neighbourhood r with

α in Equation (2). Through the known r values for some data sets, we can

find the corresponding α values, and if its change is much less than r values,

then it is obviously more convenient to use α value instead of r value. There

is no systematic method for the selection of r value at the moment, but there

are some well known data sets with r values which could be identified through

comparative study in experiment. So, we can find α values which are equivalent

to those r values, and if the ideal α values do not change significantly with a

significant change of the ideal r values, then we can set that α value as the

optimised one.

4. Look-Ahead Based Interval-Valued Fuzzy Decision Tree with Op-

timal Perimeter of the Neighbourhood

As discussed in section II, there are situations where a precise fuzzy mem-

bership value is not available but a restriction of the possible values into an

interval is possible. Hence it is necessary to introduce interval-valued fuzzy sets

into fuzzy decision trees. Such an extension will further complicate the identifi-

cation of suitable neighbourhood parameter and a parameter insensitive to the

change of data is required. Here, an interval-valued fuzzy decision tree with op-

timal parameter of neighbourhood (LAIVFDT-OPN) is developped to further

enhance the existing LAFDT.

The key step in LAFDT is the calculation of the distance between two sam-

ples or instances. In LAIVFDT-OPN, the two samples or instances involved

are combined using two interval-valued fuzzy sets with elements of attributes.

In LAFDT, the distance between two instances is calculated as the distance

between two fuzzy sets, as shown in Equation (1). Obviously, Equation (1) is
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not applicable here, and the distance between two interval-valued fuzzy sets in

Equation (6) should be applied.

Considering the same universe for attributes and instances in section II, we

have the following definition for the distance between two instances.

Definition 5: Let µ
(k)
i (x)= [µ(k)

i
(x),µ

(k)
i (x)] and µ

(k)
i (y)=[µ(k)

i
(y),µ

(k)
i (y)];

(1 ≤ k ≤ n, 1 ≤ i ≤ mk) denote the interval−valued fuzzy membership value of

instance x and y for the ith value of kth attribute. The distance between the

two instances is

D̂xy =
1

2

n∑

k=1

mk∑

i=1

[|µ(k)
i

(x)− µ(k)
i

(y)|+ |µ
(k)
i (x)− µ

(k)
i (y)|]. (8)

For any instance in the universe, we can restrict its circular neighbourhood

to those objects within a radius r of x. Then a local co-occurrence matrix P

for object x is defined.

Definition 6: Let µ̂j(x), 1 ≤ j ≤ C indicate the interval-valued fuzzy mem-

bership value of instance x for class j and let µ̂j(x) = [[µ
1
(x), µ1(x)], ..., [µC

(x), µC(x)]].

The local co-occurrence matrix of instance x is

P̂ (x) =
∑

y,µ̄x(y)≥α

µ̂(x)T × µ̂(y). (9)

where, µ̄x(y) represents the fuzzy membership for y belong to the neigh-

bourhood set of x, µ̂(x)T is a transpose matrix and α is the α-cut value for the

neighbourhood of x.

For look-ahead based interval-valued fuzzy decision tree (LAIVFDT), the

local co-occurrence matrix of instance x is

P̂ (x) =
∑

y,Dxy≤r

µ̂(x)T × µ̂(y). (10)

where, r is neighbourhood radius of x.

From Equation (4), let L
(k)
r=c {k = 1, ..., n; c = 1, ...,m} represent the corre-

sponding values of Lk for different r values and L
(k)
α=t {k = 1, ..., n; t = 0, ..., 1}

for different α values. TL(r,α) is an average difference between Lk
r=c and Lk

α=t
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for all attributes. We have

TL(r,α)|r=c,α=t =
1

n

n∑

k=1

∣∣∣L(k)
r=c − L

(k)
α=t

∣∣∣ (11)

where c represents r value, c ≥ 0, 0 ≤ t ≤ 1 and n ≥ 1.

If the minimum value of TL(r,α) is reached at t = T , then we get α value:

α = T . Based on TL(r,α) value we can identify the ideal α value.

According to the P̂ (x) matrix, each matrix element is represented by an in-

terval value. Schneider et al.(1996) described an interval X as a closed, bounded

set of real numbers, in which {x|X ≤ x ≤ X,x ∈ X} can be denoted as

X = [X,X] [9]. For all real number X,X, Y and Y . Such that 0 ≤ X ≤ X ≤ 1

and 0 ≤ Y ≤ Y ≤ 1 [8–10]. The rules of interval arithmetic are as follows

• Addition: [X,X]+[Y ,Y ] = [X+Y ,X+Y ].

• Subtraction: [X,X]-[Y ,Y ] = [X-Y ,X-Y ].

• Multiplication:[X,X]*[Y ,Y ] = [X*Y ,X*Y ].

• Division: [X,X]/[Y , Y ] = [X/Y ,X/Y ].

assuming 0 < Y

• Distribution law:

min([X,X],[Y ,Y ])=[min(X,Y ),min(X,Y )] and

max([X,X],[Y ,Y ])=[max(X,Y ),max(X,Y )].

Note that the operation [X,X]/[Y ,Y ] is undefined, if Y=0, Y=0, or if both

Y=0 and Y = 0 [9].

Therefore, the rules of interval arithmetic above are employed for calculating

the P̂ (x) matrix in Equation (9), the Ŵ (k) matrix in Equation (12) and the L̂(k)

matrix in Equation (13). With the local occurrence matrix, we can derive the

co-occurrence matrix for each attribute.

Definition 7: The local co-occurrence matrix for attribute k is selected as

follows:
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Ŵ (k) =

mk∑

i=1

∑

x

P̂ (x). (12)

then, the classifiability of attribute k is

L̂(k) =
C∑

i=1

w
′(k)
ii −

C∑

i=1

∑

j=1,i̸=j

w
′(k)
ij . (13)

where, w
′(k)
ii and w

′(k)
ij are elements of Ŵ (x). C is the number of fuzzy

subsets of the classification attribute.

For classification of L(k) values, we can identify the attribute k with the high-

est classifiability to build an interval-valued fuzzy decision tree. For LAIVFDT-

OPN, it is worked out comparing two or more L(k) values and the highest single

value is chosen. When the membership values are represented by intervals, the

L̂(k) value is an interval. The comparison of L̂(k) values is not as simple as other

values. In this case, the values of L̂(k) are compared through their probability

[9]. This probability is used to consider the chance of the occurrence of a sample

x and y in the intervals.

For example, let X=[x,x] and Y=[y,y] denote the interval of X and Y ,

respectively. Suppose that the sample x is in the interval X and y is in the

interval Y . The relationship between x and y can be either x<y, x = y or x ≥ y.

For a complete discussion of the relationship between x and y, Schneidel et al.

(1996) evaluated P (x ≤ y), P (x > y) and P (x ≥ y) as follows [9]. P (x ≤ y)

is derived from P (x < y) or the probability of x = y within the interval of

intersection X ∩ Y . It is denoted by P (x ≤ y) = P (x < y) + P (x = y) or

P (x ≤ y) = P (x < y). For the probability of x > y and x ≥ y, P (x > y) is

obtained by P (x > y) = 1− P (x ≤ y) and P (x ≥ y) is derived from P (x ≥ y)

= 1 − P (x < y). Only the probability of x < y is needed in this context.

The probability of x < y is split into three types: P (x ≤ y)I , P (x ≤ y)P and

P (x ≤ y)F [9].

1. P (x < y)I : x and y are inXI =X ∩ Y and x < y is within the intersection.
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2. P (x < y)P : x precedes the intersecting intervals .

3. P (x < y)F : x is in the intersecting interval and y follows.

According to [9], there are six possible cases of the probability P (x < y).

The six possible situations could be represented using probability P (x < y) as

follows [9].

1. If x precedes y entirely, there is no overlapping. (X ∩ Y ) = Φ and X

precedes Y then P (x < y) = 1 (Figure 1).

2. If (X ∩ Y ) ̸= Φ and (x < y) then P (x < y) = P (x < y)I + P (x < y)P +

P (x < y)F (Figure 2).

3. If (x < y) and x precedes (X ∩ Y ) then P (x < y) = P (x < y)I +

P (x < y)P (Figure 3).

4. If (x < y) and x is in (X ∩ Y ) and y follows then P (x < y) = P (x < y)I

+ P (x < y)F (Figure 4).

5. If (x < y) is in (X ∩ Y ) then P (x < y) = P (x < y)I (Figure 5).

6. If x follows y entirely, there is no overlapping. (X ∩ Y ) = Φ and X follows

Y . Then P (x < y) = 0 (Figure 6).

Figure 3: The probability of P (x < y) = 1

Figure 4: The probability of P (x < y) = P (x < y)I + P (x < y)P + P (x < y)F

In general, the equation of P (x < y) is P (x < y) = P (x < y)I + P (x < y)P

+ P (x < y)F . Obviously, if P (x < y) > 0.5, it means that there is greater
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Figure 5: The probability of P (x < y) = P (x < y)I + P (x < y)P

Figure 6: The probability of P (x < y) = P (x < y)I + P (x < y)F

Figure 7: The probability of P (x < y) = P (x < y)I

Figure 8: The probability of P (x < y) = 0

opportunity for x < y then x > y. In this case, we can consider x < y more

possible than x > y. Then the attribute represented by y should be have pri-

ority over the attribute. The probability of P (x < y) is employed to find the

maximum L̂(k) value.

Therefore, a fuzzy decision tree can be constructed by the following algo-

rithm.

Step 1: Fuzzify the training data and testing data into interval-valued fuzzy

sets.
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Step 2: Compute the distance D̂xy between all instance x and y by Equation

8.

Step 3: Calculate the local co-occurrence matrix P̂ (x) by comparison with

the α value which is computed by Equation 9. Compute the local co-

occurrence matrix P̂ (x) by Equation 9. P̂ (x) is subject to the restriction

of α.

Step 4: Select an attribute and sum the local co-occurrence matrix (Ŵ (k))

along each branch using Equation 12.

step 5: Normalise the matrix and calculate L̂(k) using equation 13.

Step 6: Repeating step 4 to step 5 for all attributes.

Step 7: The attribute with the maximum probability for having greater L̂(k)

than others is selected for the corresponding node to split the sample set

into next layer branches.

7.1 For the root node, select the attribute with the highest possibility

for having a greater value of the look-ahead term L̂(k) than others.

7.2 For each child node, the attribute with the highest possibility to

have a greater L̂(k) value than that of the left attribute is selected to

further split branches of the decision tree.

7.3 The node is a leaf node if enough of the instances corresponds to the

same class of classification.

Note:

1. L(k) value and TL(r,α) value are computed by Equation (4) and (11),

respectively. The minimum value of TL(r,α) at α = t is selected for the

optimal α value.

2. The algorithm of LAIVFDT can be founded on [33].
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The proposed algorithm has potentially significant computation complexity.

In Step 2, if the number of attributes and their associated value sets are con-

sidered as equivalent which can increase by the same size m, the Equation 8

has complexity of O(m2). However, if we fix the number of attributes and their

associated value sets, the complexity of Equation 8 is O(1). In Step 3, if we

still refer the size of samples as m, the Equation 9 introduces a computation

complexity of O(m). In Step 4, if we fix the sizes of the value subsets of at-

tributes, the computational complexity of Equation 12 is O(m2). If we consider

the size of the value subsets a variable in the same level as m, then we have

the complexity as O(m3). Step 5 involves all the complexity in Step 4, and is

compounded by the number of classes. If we consider the number of class as

a variable size, then the complexity is even higher than Step 4. Due to this

computational complexity, we restrict our applications here to some small size

data sets where the computational complexity does not pose serious problems.

However, the computational complexity is a potential problem of the proposed

algorithm, and we will address it in our future work.

5. Applications

In this section, we verify the applicability of a single α parameter across two

different data sets in Section 3 using the traditional LAFDT method firstly, and

then demonstrate the feasibility of the proposed LAIVFDT together with the

proposed α parameter using the weather data set. In the end, the proposed

model is applied to a real world data set (a data set from real world factory).

For the first two data sets, the primary aim is to compare their r values and

identify their α value, so all samples in the data sets are applied to establish the

trees to make comparison. For the real world application data set, we randomly

divide the data set into two parts, 100 samples for training to establish the tree,

and another 100 samples for testing.
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5.1. Feasibility of the parameter α

Based on Equations (8-10) and our two data sets in section IV, some ex-

periments are carried out in this section to demonstrate the feasibility of the

proposed parameter α. The results of TL(r,α) is shown in Figure 9 and 10. In

Figures 9 and 10, “alpha” refers to α, and each curve represents a different α

value.

Figure 9: L, TL(k) and r values classify by α values (Weather data set)

Figure 9 gives the result of weather data set. It is clear that TL(r,α) reaches

the minimum value when α = 0.4 and r = 3 or α = 0.6 and r = 2. It means

that we can either select the corresponding α value as α = 0.4 or α = 0.6. For

attribute selection in weather data set, there is no difference between r = 2 and

r = 3, however, there is a different α value associated with each of them. To

make a choice between these two values, we have to look at the decision trees

constructed from each of them. Table II lists the corresponding experiment

results for decision tree construction under different r and α values. Obviously,

the decision tree for α = 0.4 and α = 0.6 are different: α = 0.4 results in a

smaller decision tree. Thus, the optimal α value is 0.40 for weather data set.

In Figure 10, both α = 0.4 and α = 0.2 reach the minimum when r > 6. α
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Figure 10: L, TL(k) and r values classify by α values (Car data set)

values could be 0.2 or 0.4 in this case. We constructed decision trees by using

r values at r = 6, 7 and 8, and the results in table 1 show that there is no

big difference for the decision trees constructed with these values. The r value

corresponding to α = 0.2 is very large, and include nearly all samples. In that

sense, it is not a “local occurrence” anymore. Therefore, α = 0.4 should be

selected to satisfy the “local” methodology.

Obviously, α = 0.4 is valid in both data sets. Considering the fact that α is

restricted in [0,1], then its value is stable even if the r value changes significantly.

With different data, r could change significantly, but α is relatively stable and

it provides an alternative to r in LAFDT.

For LAFDT, the function of r value is to restrict a reasonable local area

to construct a simple and effective tree. In this sense, the data size and data

distribution should have a significant impact on its value. In comparison with

r, α value is determined from a fuzzy set defined on the data set in relation to

its size and data distribution. Therefore, for each ideal r value, there should

be an ideal α corresponding to that value. Although the r value can change

significantly from one data set to another, we expect a relative stable α value
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due to its bounded domain [0, 1]. The two experiments here have confirmed

this expectation as the first step, but we should certainly verify it with more

experiments. This paper has just started this comparison, and we expect more

test experiments in the future to further confirm it.

Table 1: Comparison of L, TL, r and α values

Data set r value L TL α value Nodes Attribute Remark

Weather 2 0.2329 0.0000 0.60 19 Wind * Decision tree could not

3 0.0886 0.0000 0.40 18 Wind construct due to the equal

6 −0.1192 0.0425 0.20 19 Temperature L(k) values for all attributes.

7 −0.1192 0.0389 0.20 19 Temperature

Car 1 −0.3355 0.0612 0.80 * *

2 −0.3427 0.0552 0.80 87 Persons

6 −0.4357 0.0021 0.20 83 Lug boot

7 −0.4368 0.0028 0.40 83 Lug boot

8 −0.4371 0.0022 0.40 83 Lug boot

5.2. Feasibility of interval-valued fuzzy decision tree method

Table 2: Interval-valued weather data set

Outlook Temperature Humidity Wind Plan

Sunny Cloudy Rain Hot Mild Cool Humid Dry Windy Calm Plan A Plan B Plan C

0.6-0.8 0.0-0.2 0.0-0.1 0.9-1.0 0.0-0.1 0.0-0.1 0.7-0.9 0.1-0.3 0.3-0.5 0.5-0.7 0.0-0.1 0.3-0.5 0.5-0.7

0.2-0.4 0.7-0.9 0.0-0.1 0.5-0.7 0.3-0.5 0.0-0.1 0.0-0.1 0.9-1.0 0.0-0.1 0.9-1.0 0.9-1.0 0.2-0.4 0.0-0.1

0.0-0.1 0.6-0.8 0.2-0.4 0.7-0.9 0.1-0.3 0.0-0.1 0.0-0.2 0.8-1.0 0.1-0.3 0.7-0.9 0.2-0.4 0.5-0.7 0.0-0.2

0.0-0.3 0.6-0.8 0.0-0.2 0.2-0.4 0.6-0.8 0.0-0.1 0.1-0.3 0.7-0.9 0.2-0.4 0.6-0.8 0.8-1.0 0.0-0.2 0.0-0.1

0.0-0.1 0.0-0.2 0.8-1.0 0.6-0.8 0.2-0.4 0.0-0.1 0.4-0.6 0.4-0.6 0.4-0.6 0.4-0.6 0.0-0.1 0.0-0.1 0.9-1.0

0.0-0.1 0.6-0.8 0.2-0.4 0.0-0.1 0.2-0.4 0.6-0.8 0.6-0.8 0.2-0.4 0.3-0.5 0.5-0.7 0.1-0.3 0.0-0.1 0.7-0.9

0.0-0.1 0.2-0.4 0.6-0.8 0.0-0.1 0.0-0.1 0.9-1.0 0.0-0.1 0.9-1.0 0.0-0.2 0.8-1.0 0.0-0.1 0.0-0.1 0.9-1.0

0.0-0.1 0.9-1.0 0.0-0.1 0.0-0.1 0.1-0.3 0.7-0.9 0.1-0.3 0.7-0.9 0.0-0.1 0.9-1.0 0.6-0.8 0.0-0.1 0.2-0.4

0.4-0.6 0.6-0.8 0.0-0.1 0.9-1.0 0.0-0.1 0.0-0.1 0.5-0.7 0.3-0.5 0.6-0.8 0.2-0.4 0.1-0.3 0.7-0.9 0.0-0.1

0.4-0.6 0.5-0.7 0.0-0.1 0.0-0.1 0.2-0.4 0.6-0.8 0.0-0.1 0.9-1.0 0.8-1.0 0.0-0.2 0.0-0.1 0.2-0.4 0.6-0.8

0.6-0.8 0.2-0.4 0.0-0.1 0.9-1.0 0.0-0.1 0.0-0.1 0.9-1.0 0.0-0.1 0.1-0.3 0.7-0.9 0.3-0.5 0.8-1.0 0.0-0.1

0.1-0.3 0.5-0.7 0.1-0.3 0.0-0.1 0.9-1.0 0.0-0.1 0.2-0.4 0.6-0.8 0.2-0.4 0.6-0.8 0.6-0.8 0.1-0.3 0.0-0.2

0.8-1.0 0.0-0.2 0.0-0.1 0.1-0.3 0.7-0.9 0.0-0.1 0.2-0.4 0.8-1.0 0.9-1.0 0.0-0.1 0.0-0.1 0.0-0.1 0.9-1.0

0.0-0.1 0.8-1.0 0.0-0.2 0.0-0.1 0.8-1.0 0.0-0.2 0.0-0.2 0.8-1.0 0.6-0.8 0.2-0.4 0.0-0.1 0.0-0.1 0.9-1.0

0.0-0.1 0.0-0.1 0.9-1.0 0.0-0.1 0.0-0.1 0.9-1.0 0.9-1.0 0.0-0.1 0.7-0.9 0.1-0.3 0.0-0.1 0.0-0.1 0.9-1.0

0.9-1.0 0.0-0.1 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.0-0.1 0.9-1.0 0.0-0.1 0.9-1.0 0.3-0.5 0.4-0.6 0.0-0.1
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Mendel et al. (2006) suggested that a membership degree µA(x) can be

provided by an expert with an appropriate degree µ̃A(x) and a bound △x de-

scribing his uncertainty [17]. For example, an interval of possible values of uncer-

tainty can be expressed as [µ
A
(x), µA(x)] = [µ̃A(x)−△x, µ̃A(x) +△x]. There-

fore, an interval-valued membership value is assigned as [µ
A
(x), µA(x)], 0 ≤

µ
A
(x), µA(x) ≤ 1. In this way, the weather data set in Section 3 is converted

into interval representation as shown in Table 2. The results are derived using

the algorithm proposed in Section 4, as shown in Figure (11),(12) and (13).

Figure 11: Interval-valued fuzzy decision tree of weather data set with r = 2

We used 16 instances of the interval valued data set and tested them with

r = 0.5, 1, 2, 3, 4, 5 and 6. Figure 11 to 13 illustrate the decision trees with

different r values. The trees in Figures 11 and 13 have 19 nodes and Figure 12

has 21 nodes; the number of nodes in Figure 11 and 13 is less than in Figure 12.

Thus, the decision tree in Figures 11 and 13 are better than the tree in Figure

12. The interval-valued fuzzy decision tree with r = 2 in Figure 11 and r = 0.5

in Figure 13 can be selected for a root node of the tree.

For the given data set in Table 2, we constructed decision trees with r =
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Figure 12: Interval-valued fuzzy decision tree of weather data set with r = 1

0.5, 1, 2, 3, 4, 5 and 6. When r = 0.5 and 2 we obtain the smallest tree with

19 nodes. when r = 1 the trees have 21 nodes. When r = 3, 4, 5 and 6 the

trees could not be constructed, because there was not a dominant attribute for

a root node. For example, if we select r = 0.5, we get the results of L̂(k) for

each attribute at root node as follows (see Table 3):

L̂(Outlook) = [-0.89,0.75]

L̂(Temperature) = [-1.54,1.40]

L̂(Humidity) = [-0.97,0.83]

L̂(Wind) = [-1.22,1.01]

Table 3: The results of L̂(x)

r Outlook Temperature Humidity Wind

0.5 [−0.89, 0.75] [−1.54, 1.40] [−0.97, 0.83] [−1.22, 1.01]

1 [−0.94, 0.76] [−1.48, 1.34] [−1.04, 0.89] [−1.33, 1.13]

2 [−1.15, 0.66] [−1.66, 1.04] [−1.27, 1.04] [−1.62, 1.13]

3 [−1.51, 0.74] [−1.96, 1.22] [−1.34, 0.61] [−1.57, 0.82]

4 [−1.61, 0.67] [−2.04, 1.10] [−1.39, 0.40] [−1.75, 0.75]

5 [−1.61, 0.66] [−2.08, 1.14] [−1.35, 0.38] [−1.71, 0.70]

6 [−1.56, 0.62] [−2.06, 1.11] [−1.36, 0.39] [−1.70, 0.70]
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Figure 13: Interval-valued fuzzy decision tree of weather data set with r = 0.5

Table 4 illustrates the probability of x < y for each pair of L̂(k) with r =

0.5, 1, 2, 3, 4, 5 and 6. Using the algorithm in section 4, each pair of L̂(k)

is compared, e.g. the probability for L̂(Wind) ≤ L̂(Humidity) with r = 0.5 is

0.516. As we can see, it has a confidence or about 51.6%. From Table 4, we can

see all values in Humidity column with r = 0.5 are greater or equal to 0.5. It

indicates that the probability for any other attribute to have a lower L̂(x) value

than Humidity is greater than 0.5. Therefore, we can draw our conclusion that

Humidity should be selected as the root attribute to split the tree into branches.

The probability for L̂(Wind) ≤ L̂(Temperature) is 0.512. As we can see, it

has a confidence or about 51.1%. From Table 4, we can see all values in the Tem-

perature column with r = 0.5 are greater or equal to 0.5. It indicates that the

probability for any other attribute to have a lower L̂(x) value than Temperature

is greater than 0.5. Therefore, we can draw our conclusion that Temperature

should be selected as the root attribute to split the tree into branches.

However, the probability for Temperature to have a larger L(k) value than

Wind is 0.512, but the probability between Humidity and Wind is 0.516 and the

probability of L(k) for Humidity is greater than Wind. Thus, we should select
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Humidity.

Similar comparisons can be done for r = 1 and r = 2. With r = 3, 4, 5 and

6, each column has both values greater than 0.5 and values less than 0.5. It

indicates that we cannot find any dominant attribute to start as a root node.

Table 4: The probability of P (x < y) of L̂(k)

x \ y r Outlook Temperature Humidity Wind

Outlook 0.5 − 0.500 0.500 0.484

Temperature 0.279 − 0.500 0.488

Humidity 0.500 0.500 − 0.484

Wind 0.516 0.512 0.516 −

Outlook 1 − 0.507 0.508 0.496

Temperature 0.301 − 0.498 0.489

Humidity 0.492 0.502 − 0.490

Wind 0.504 0.511 0.510 −

Outlook 2 − 0.476 0.485 0.500

Temperature 0.335 − 0.513 0.524

Humidity 0.515 0.487 − 0.511

Wind 0.500 0.476 0.489 −

Outlook 3 − 0.267 0.129 0.188

Temperature 0.116 − 0.502 0.498

Humidity 0.871 0.498 − 0.496

Wind 0.812 0.502 0.504 −

Outlook 4 − 0.244 0.067 0.166

Temperature 0.107 − 0.492 0.490

Humidity 0.933 0.508 − 0.498

Wind 0.834 0.510 0.502 −

Outlook 5 − 0.252 0.063 0.154

Temperature 0.102 − 0.495 0.489

Humidity 0.937 0.505 − 0.492

Wind 0.846 0.511 0.508 −

Outlook 6 − 0.252 0.070 0.162

Temperature 0.098 − 0.497 0.492

Humidity 0.930 0.503 − 0.494

Wind 0.838 0.508 0.506 −

Obviously, with the proposed look-ahead based interval-valued fuzzy deci-

sion tree (LAIVFDT), data with uncertain fuzzy membership values could be

adopted to construct a fuzzy decision tree. Therefore, a precise fuzzy member-

ship is not a precondition to construct a decision tree anymore. Such relaxation

can significantly benefit data mining where precise fuzzy membership values are

difficult to get. In this paper, we tested with different r such as r = 0.5, 1, 2, 3,

4, 5 and 6, respectively. The difference of fuzzy decision trees using LAIVFDT

and LAFDT are listed as follows:
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1. A smaller decision tree is obtained when r = 0.5 or r = 2 in LAIVFDT

and r = 3 in LAFDT, where the r value in LAIVFDT is less than the r

value in LAFDT method.

2. If the distance r changes then the dominant attribute is changed. Thus,

r is significant in constructing the tree.

3. LAIVFDT can construct a decision tree using intervalvalued fuzzy mem-

bership values.

4. The decision tree from uncertain membership values is different from that

of precise membership values. We cannot take the average value of an

interval-valued membership to construct the decision tree.

The data in Table 2 shows the data of interval-valued weather data set

for construction of LAIVFDT. Figure 13 illustrates the LAIVFDT of weather

data for r = 0.5. Figure 14 denotes the LAIVFDT-OPN of weather data using

restriction α = 0.40. There are 19 and 17 nodes in Figure 13 and 14, respectively.

It demonstrates the superiority of the proposed LAIVFDT-OPN method over

the traditional LAIVFDT method.

In comparison with LAIVFDT , The LAIVFDT-OPN uses a simple α value

which significantly simplifies the task of r value determination, and provides a

better value in most cases than a trial value of r.

5.3. Real World Case study

To demonstrate the applicability of the proposed LAIVFDT model, we ap-

ply it to a real world machine maintenance example.

5.3.1. The Experiment With DDK Factory Data

The data set is a historical record of daily preventive maintenance injection

machine check sheet, and it contains 200 instances gathered by Department of

Machine Maintenance, DDK (Thailand) Ltd. For the specific machines in this
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Figure 14: Interval-valued fuzzy decision tree of weather data set with α = 0.40

research, eleven important positions must be checked every day. Their symbols

and associated physical meaning are described as follows [35].

1. D1 is a position of safety door in non-operation side of an injection ma-

chine;

2. D2 is a position of emergency stop button operation (rear) on the molding

machine;

3. D3 is a position of water jacket temperature setting;

4. D4 is a position of an electric line and sensor thermocouple line of heater

barrel;

5. D5 is a position of purge cover interlock;

6. D6 is a position of melt leakage at a nozzle;

7. D7 is a position of emergency stop button operation (front) on the molding

machine;

8. D8 is instead of a position of a safety door in operation side of injection

molding machine;

9. D9 is a position of mold mounting bolts and bolts/nuts at fixed platen;
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10. D10 is a position mold mounting bolts and bolts/nuts at moved platen;

11. D11 is mold die cleaning, e.g. Tie bar.

Table 5: Interval-valued factory data set
D1 D2 D3 D4 D5 D6

NOP PAF COF NOP PAF COF NOP PAF COF NOP PAF COF NOP PAF COF NOP PAF COF

0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.2 0.6-0.8 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.2 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.2

0.6-0.8 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.7-0.9 0.3-0.5 0.1-0.3 0.6-0.8 0.3-0.5 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.2 0.8-1.0 0.5-0.7 0.1-0.3

0.6-0.8 0.3-0.5 0.0-0.2 0.6-0.8 0.4-0.6 0.0-0.1 0.3-0.5 0.6-0.8 0.2-0.4 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.1-0.3 0.6-0.8 0.4-0.6 0.0-0.1

0.9-1.0 0.5-0.7 0.0-0.2 0.7-0.9 0.3-0.5 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.2 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.2 0.1-0.3 0.7-0.9 0.3-0.5

0.7-0.9 0.5-0.7 0.0-0.1 0.0-0.2 0.8-1.0 0.5-0.7 0.6-0.8 0.3-0.5 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.0-0.2 0.8-1.0 0.5-0.7 0.7-0.9 0.4-0.6 0.0-0.1

0.8-1.0 0.5-0.7 0.0-0.1 0.7-0.9 0.4-0.6 0.1-0.3 0.7-0.9 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.1-0.3 0.6-0.8 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1

0.6-0.8 0.4-0.6 0.0-0.1 0.7-0.9 0.5-0.7 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.2

0.3-0.5 0.8-1.0 0.2-0.4 0.6-0.8 0.3-0.5 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.2 0.0-0.2 0.7-0.9 0.3-0.5 0.7-0.9 0.4-0.6 0.0-0.1 0.9-1.0 0.5-0.7 0.0-0.2

0.6-0.8 0.3-0.5 0.0-0.1 0.8-1.0 0.5-0.7 0.1-0.3 0.8-1.0 0.5-0.7 0.1-0.3 0.7-0.9 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.2 0.8-1.0 0.5-0.7 0.0-0.1

0.8-1.0 0.4-0.6 0.1-0.3 0.7-0.9 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.2

0.7-0.9 0.4-0.6 0.0-0.2 0.8-1.0 0.4-0.6 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1

0.7-0.9 0.3-0.5 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.0-0.2 0.8-1.0 0.3-0.5

0.6-0.8 0.4-0.6 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.9-1.0 0.5-0.7 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1

0.8-1.0 0.5-0.7 0.1-0.3 0.9-1.0 0.5-0.7 0.0-0.2 0.8-1.0 0.5-0.7 0.0-0.2 0.9-1.0 0.5-0.7 0.1-0.3 0.6-0.8 0.3-0.5 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

0.7-0.9 0.3-0.5 0.1-0.3 0.7-0.9 0.4-0.6 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1

Table 6: Interval-valued factory data set (Continue)

D7 D8 D9 D10 D11 Status

NOP PAF COF NOP PAF COF NOP PAF COF NOP PAF COF NOP PAF COF ACT UAC

0.7-0.9 0.4-0.6 0.0-0.1 0.7-0.9 0.5-0.7 0.0-0.2 0.6-0.8 0.3-0.5 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.2 0.7-0.9 0.3-0.5 0.0-0.2 0.7-0.9 0.1-0.3

0.8-1.0 0.5-0.7 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.1-0.3 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.0-0.2

0.6-0.8 0.4-0.6 0.0-0.1 0.3-0.5 0.8-1.0 0.0-0.2 0.1-0.3 0.7-0.9 0.3-0.5 0.7-0.9 0.3-0.5 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.2-0.4 0.7-0.9

0.9-1.0 0.5-0.7 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.7-0.9 0.3-0.5 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.7-0.9 0.2-0.4

0.8-1.0 0.5-0.7 0.0-0.2 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.2 0.6-0.8 0.4-0.6 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.2 0.6-0.8 0.1-0.3

0.8-1.0 0.4-0.6 0.0-0.1 0.7-0.9 0.3-0.5 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.2 0.7-0.9 0.3-0.5

0.7-0.9 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.2 0.6-0.8 0.3-0.5 0.0-0.1 0.6-0.8 0.2-0.4

0.7-0.9 0.3-0.5 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.2 0.8-1.0 0.5-0.7 0.0-0.2 0.7-0.9 0.3-0.5 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.0-0.2 0.8-1.0

0.8-1.0 0.5-0.7 0.0-0.2 0.8-1.0 0.5-0.7 0.1-0.3 0.7-0.9 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.1 0.8-1.0 0.1-0.3

0.8-1.0 0.4-0.6 0.0-0.1 0.7-0.9 0.3-0.5 0.0-0.1 0.7-0.9 0.3-0.5 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.7-0.9 0.1-0.3

0.2-0.4 0.6-0.8 0.4-0.6 0.7-0.9 0.4-0.6 0.0-0.1 0.1-0.3 0.4-0.6 0.7-0.9 0.6-0.8 0.3-0.5 0.0-0.2 0.1-0.3 0.7-0.9 0.4-0.6 0.1-0.3 0.7-0.9

0.7-0.9 0.4-0.6 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.1 0.8-1.0 0.0-0.2

0.8-1.0 0.5-0.7 0.0-0.1 0.6-0.8 0.4-0.6 0.0-0.1 0.8-1.0 0.5-0.7 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.1 0.7-0.9 0.4-0.6 0.0-0.2 0.6-0.8 0.3-0.5

0.7-0.9 0.4-0.6 0.0-0.2 0.8-1.0 0.5-0.7 0.0-0.1 0.6-0.8 0.3-0.5 0.1-0.3 0.6-0.8 0.3-0.5 0.0-0.1 0.6-0.8 0.3-0.5 0.0-0.1 0.7-0.9 0.2-0.4

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

0.8-1.0 0.5-0.7 0.0-0.1 0.7-0.9 0.3-0.5 0.1-0.3 0.8-1.0 0.5-0.7 0.0-0.1 0.8-1.0 0.4-0.6 0.0-0.2 0.8-1.0 0.5-0.7 0.0-0.1 0.6-0.8 0.1-0.3

All attributes are recorded as normal operation (NOP), partial failure (PAF)

or completely failure (COF) and the classification attribute (status attribute)

has its value as acceptable (ACT) or unacceptable (UAC). With the assitance

of the technitians who recorded these data, we have converted these data into
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normalised interval values as shown in Table 5 and 6.

5.3.2. Comparison of LAIVFDT-OPN, LAIVFDT and F-ID3

Using the proposed LAIVFDT-OPN method with α = 0.40 and 100 in-

stances randomly selected from the data set, a decision tree can be contructed

from the DDK factory data set. According to the algorithm discussed in Section

4, the key is to choose the right attribute as the start node in root and each

branch level. To identify the suitable attribute, the L(k) values have to be cal-

culated firstly. Table 7 and 8 illustrate the L(k) values of each attribute under

different levels of each branch. For example, the highest value of L(k) values for

level 1 is [-0.55,1.02]. Thus, the root node is “D9”. For level 2, the first branch

is “D9=NOP” where the highest value [-0.51,1.04] is for “D10” so that “D10”

is selected for the node of that branch. The next branch is “D9=PAF” and its

highest value [-1.61,2.29] is for “D4” so “D4” is selected. The final branch of

“D9” node is “D9=COF” where its L(k) values for all attributes are equal and

there is only one instance in this branch. Thus, we come to a leaf node where

status=UAC. In this way, a decision tree is established as shown in Figure 15. In

this tree, the number of nodes is 40. Similarly, we can construct decision trees us-

ing LAFDT and F-ID3 as well. Together with our results from the weather data

set in previous section, the results from LAIVFDT-OPN, LAIVFDT, LAFDT

and F-ID3 is compared in Table 9. Obviously, for the weather data set, the

LAIVFDT-OPN method is better than LAFDT method, LAIVFDT method

and F-ID3 method due to the smallest amount of nodes and levels. There are

17 nodes in the resulted tree from LAIVFDT-OPN, but 18, 19 nodes and 20

nodes in the treess from LAFDT method, LAIVFDT method and F-ID3 re-

spectively. For DDK factory data set, LAIVFDT-OPN method is also better

than other methods due to the smallest amount of nodes and levels. There are

40 nodes for LAFDT and LAIVFDT methods and 52 nodes for F-ID3 method.

There are 6 levels for the tree constructed using LAIVFDT-OPN method, 10

levels for the tree with LAFDT method and 11 levels for the tree from F-ID3

29



method.

Figure 15: Interval-valued fuzzy decision tree of DDK factory data set with α = 0.40

In Figure 15, the fuzzy decision tree looks unbalanced. The data set in

Table 5 and 6 are not well balanced. The data of daily preventive maintenance

injection machine check sheet contains more Normal Operation status, and only

a small fraction of data for Partial Failure status and Completely Failure status.

From Figure 15, the best node for a root node is “D9” node. The decision tree

in 15 is obtained by choosing “D9” as root node. To check the tree shape of

trees rooted from other attributes, a different attribute can be selected as the

root node. For example, we take the second best node “D4” as the root node,

there are 3 possible branches:

1. D4=NOP has 93 nodes.

2. D4=PAF has 7 nodes.
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Table 7: L(k) values of each factor (with α = 0.40)

L(k) values

Level 1 Level 2 Level 3 Level 4

Factor - D9=NOP D9=PAF D9=COF D9=NOP D9=NOP D9=PAF D9=NOP D9=NOP D9=NOP

- - - - D10=NOP D10=PAF D4=NOP D10=NOP D10=NOP D10=PAF

- - - - - - - D4=NOP D4=PAF D3=NOP

D1 [−0.64, 0.98] [−0.55, 1.01] [−1.70, 2.33] [−2.66, 2.66]∗ [−0.51, 1.03] [−0.62, 1.53] [−1.73, 2.48]∗ [−0.48, 1.01] [−1.19, 1.25] [−0.60, 1.96]

D2 [−0.63, 0.98] [−0.54, 1.00] [−1.70, 2.33] [−2.66, 2.66]∗ [−0.52, 1.03] [−0.44, 1.30] [−1.63, 1.35] [−0.48, 1.02] [−1.15, 1.23] [−0.30, 1.30]

D3 [−0.62, 0.98] [−0.55, 1.01] [−1.63, 2.20] [−2.66, 2.66]∗ [−0.52, 1.03] [−0.75, 2.00]∗ [−1.53, 2.28] [−0.46, 1.05] [−1.15, 1.23] -

D4 [−0.62, 0.99] [−0.52, 1.01] [−1.61, 2.29]∗ [−2.66, 2.66]∗ [−0.47, 1.04]∗ [−0.62, 1.53] - - - [−0.60, 1.96]

D5 [−0.61, 0.99] [−0.52, 1.02] [−1.49, 2.12] [−2.66, 2.66]∗ [−0.52, 1.03] [−0.80, 1.95] [−1.73, 2.48]∗ [−0.48, 1.02] [−1.15, 1.23] [−0.86, 2.46]∗

D6 [−0.63, 0.99] [−0.51, 0.99] [−1.70, 2.33] [−2.66, 2.66]∗ [−1.67, 1.42] [−0.77, 1.73] [−1.73, 2.48]∗ [−0.50, 1.05] [−1.22, 1.33] [−0.86, 2.46]∗

D7 [−0.61, 1.01] [−0.55, 1.02] [−1.93, 2.54] [−2.66, 2.66]∗ [−0.52, 1.02] [−0.87, 1.99] [−1.77, 2.50] [−0.62, 0.99] [−1.15, 1.23] [−0.86, 2.46]∗

D8 [−0.60, 0.99] [−0.51, 1.03] [−1.60, 2.10] [−2.66, 2.66]∗ [−0.50, 1.04] [−0.87, 1.99] [−1.41, 1.94] [−0.43, 1.04]∗ [−1.15, 1.23] [−0.86, 2.46]∗

D9 [−0.55, 1.02]∗ - - - - - - - - -

D10 [−0.59, 1.02] [−0.51, 1.04]∗ [−1.47, 2.05] [−2.66, 2.66]∗ - - [−1.53, 2.19] - - -

D11 [−0.61, 1.03] [−0.53, 1.03] [−1.93, 2.54] [−2.66, 2.66]∗ [−0.51, 1.04] [−0.87, 1.99] [−1.77, 2.50] [−0.49, 1.02] [−0.77, 0.98]∗ [−0.86, 2.46]∗

Note: ∗ The highest L(k) value is selected. If equal L(k) value, one L(k) value of them is

selected.

3. D4=COF has 0 node.

Obviously, this is an unbalanced tree as well. In a similar way, we can show

the trees rooted from other attributes are also unbalanced trees.

5.3.3. Accuracy of prediction of LAIVFDT-OPN algorithm

As aforementioned, 100 samples randomly selected from the data set are

taken to establish the decision trees, and the 100 samples are employed to test

the performance of the established trees. Three performance criteria are mea-

sured: accuracy, sensitivity and specificity [36, 37]. The performance evaluation

are defined by

Accuracy =
TP + TN

TP + TN + FP + FN
. (14)

Sensitivity =
TP

TP + FN
. (15)

Specificity =
TN

TN + FP
. (16)
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Table 8: L(k) values of each factor (with α = 0.40) (Continue)

L(k) values

Level 5 Level 6

Factor D9=NOP D9=NOP D9=NOP D9=NOP D9=NOP D9=NOP D9=NOP

D10=NOP D10=NOP D10=PAF D10=NOP D10=NOP D10=NOP D10=NOP

D4=NOP D4=PAF D3=NOP D4=NOP D4=NOP D4=NOP D4=PAF

D8=NOP D8=PAF D11=NOP D8=NOP D8=NOP D8=PAF D11=NOP

- - - D6=NOP D6=PAF D3=NOP D6=NOP

D1 [−0.43, 1.02] [−0.87, 0.99] [−0.79, 0.97] [−0.45, 1.07]∗ [−0.48, 1.56]∗ [−1.19, 1.28]∗ [−0.67, 1.07]∗

D2 [−0.43, 1.02] [−0.86, 0.98] [−0.78, 0.98] [−0.45, 1.07]∗ [−0.87, 1.51] [−0.86, 0.90] [−0.82, 0.93]

D3 [−0.44, 1.06] [−0.98, 1.25]∗ - [−0.47, 1.07] [−0.87, 1.51] - [−0.82, 0.93]

D4 - - [−0.78, 0.98] - - - -

D5 [−0.44, 1.03] [−0.87, 0.99] [−0.78, 0.98] [−0.46, 1.08] [−0.87, 1.51] [−1.19, 1.28]∗ [−0.82, 0.93]

D6 [−0.45, 1.07]∗ [−0.87, 0.99] [−0.69, 1.06]∗ - - [−1.19, 1.28]∗ -

D7 [−0.44, 1.02] [−0.87, 0.99] [−0.78, 0.98] [−0.46, 1.07] [−0.87, 1.51] [−1.19, 1.28]∗ [−0.82, 0.93]

D8 - - [−0.78, 0.98] - - - [−0.82, 0.93]

D9 - - - - - - -

D10 - - - - - - -

D11 [−0.44, 1.03] [−0.87, 0.99] - [−0.46, 1.08] [−0.87, 1.51] [−1.19, 1.28]∗ -

Table 9: Comparison of F-ID3, LAFDT, LAIVFDT and LAIVFDT-OPN methods

Data set Method Data type Instances Restriction Nodes Levels Root node

Weather F-ID3 SV 16 - 20 3 Outlook

LAFDT SV 16 r = 3.0 18 4 Wind

LAIVFDT IV 16 r = 6.0 19 4 Humidity

LAIVFDT-OPN IV 16 α = 0.40 17 3 Humidity

DDK F-ID3 SV 100 - 52 11 D9

factory LAFDT SV 100 r = 6.0 40 10 D3

LAIVFDT-OPN IV 100 α = 0.40 40 6 D9

Note: SV and IV stand for single value and interval value, respectively.

where TP and TN are the number of true positives and true negatives, re-

spectively. FP and FN are the number of false positives and false negatives,

respectively [36, 37].

In Table 11, the test results of LAIVFDT-OPN algorithm using Equation

(14) - (16) are displayed to compare the correct and incorrect classification from

each class. The number of acceptable status is higher than half of the testing

samples at about 58 out of 100 instances. Table 11 illustrates the sensitivity

and specificity by proportion of acceptable and unacceptable machine status.
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The accuracy of prediction by LAIVFDT-OPN method is approximately 79.0%.

Sensitivity and specificity of “ACT” is 0.879 and 0.618 respectively and “UAC”

has inverse values.

Table 10: The outcome of LAIVFDT-OPN experiment

Model Status of machine Predictive value

LAIVFDT-OPN Test outcome Positive 58 21 79

Negative 13 8 21

Total 71 29 100

Table 11: The class-wise statistics for performance evaluation of LAIVFDT-OPN method

LAIVFDT-OPN model

Classes Status

Acceptable (ACT) Unacceptable (UAC)

Number of instances 76 24

True positives 58 21

True negatives 21 58

False positives 13 8

False negatives 8 13

Sensitivity 0.879 0.618

Specificity 0.618 0.879

Accuracy 79.0% 79.0%

Table 12: Execution Times (in Seconds) for LAIVFDT-OPN model

Data set Execution time(s) of LAIVFDT-OPN model

Training data Testing data

DDK factory (100 instances) 199.5 197.4

The execution time of LAIVFDT-OPN model associates with the size of the

generated rule base. Table 12 compares the execution times of both the training

data and the testing data by LAIVFDT-OPN model; the execution time in this

table is not noticeable by the user on small data set.

Table 13 illustrates the outcome of F-ID3, LAFDT and LAIVFDT-OPN

methods using the remaining 100 samples/instances for testing the models. The
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Table 13: The outcome of F-ID3, LAFDT and LAIVFDT-OPN experiment

Model Status of machine Total of

Acceptable(ACT) Unacceptable(UAC) predictive value

F-ID3 Test outcome Positive 52 20 72

Negative 16 12 28

Total 68 32 100

LAFDT Test outcome Positive 56 20 76

Negative 15 9 24

Total 71 29 100

LAIVFDT-OPN Test outcome Positive 58 21 79

Negative 13 8 21

Total 71 29 100

total percentages of predictive value for the positive test outcome are at about

72%, 76% and 79% for F-ID3, LAFDT and LAIVFDT-OPN, respectively. And

the negative test outcomes are at about 28%, 24% and 21% for F-ID3, LAFDT

and LAIVFDT-OPN, respectively. 71% of the acceptable statuses are LAFDT

and LAIVFDT-OPN methods and F-ID3 method has 68%. 29% of the unac-

ceptable statuses are LAFDT and LAIVFDT-OPN methods and F-ID3 method

has 32%.

Table 14: The class-wise statistics for performance evaluation of F-ID3, LAFDT and

LAIVFDT-OPN methods

Model

Classes F-ID3 LAFDT LAIVFDT-OPN

Number of leaves 27 21 23

Status of machine ACT UAC ACT UAC ACT UAC

Number of instances 76 24 76 24 76 24

True positives 52 20 56 20 58 21

True negatives 20 52 20 56 21 58

False positives 16 12 15 9 13 8

False negatives 12 16 9 15 8 13

Sensitivity 0.813 0.556 0.862 0.571 0.879 0.618

Specificity 0.556 0.813 0.571 0.862 0.618 0.879

Accuracy 72.0% 72.0% 76.0% 76.0% 79.0% 79.0%

Table 14 illustrates the performance evaluation of F-ID3, LAFDT and LAIVFDT-

OPN methods. In table 14, LAIVFDT-OPN method has the highest amount

of instances of acceptable status in the true positives at 58 instances and the
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F-ID3 has the lowest at 52 samples. F-ID3 method has the highest amount

of instances of acceptable status in false positive at 16 instances and LAFDT

and LAIVFDT-OPN have 15 and 13 instances, respectively. F-ID3 and LAFDT

method have the lowest amount of instances of unacceptable status in true neg-

ative at 20 instances and LAIVFDT-OPN method has 21 instances. The lowest

amount of instances of unacceptable status in false negative is LAIVFDT-OPN

at 8 instances and the F-ID3 has the highest at 12 instances. LAIVFDT-OPN

method has the highest percentage of accuracy at about 79.0%. The second

highest percentage is LAFDT method at about 76.0% and the lowest percent-

age is F-ID3 method at about 72.0%. The most sensitivity to the least sensitivity

are LAIVFDT-OPN, LAIVFDT and F-ID3, respectively.

Comparing the results in Table 14, it is clear that LAIVFDT-OPN out-

performs both LAIVFDT and F-ID3, and LAIVFDT gives better results than

F-ID3. As our analysis in previous sections, the full employment of interval

information in LAIVFDT-OPN and LAIVFDT enables them to produce better

trees in terms of size and suitability to wider uncertainties. The LAIVFDT-

OPN directly applies a α value which has been known to be a near optimised

value for α, but LAIVFDT has to make many trails to find a suitable r value.

Therefore, LAIVFDT-OPN has good chance to outperform LAIVFDT in most

cases.

6. Conclusions

In this paper, we proposed LAIVFDT-OPN method to apply interval-valued

fuzzy sets to construct an interval-valued fuzzy decision tree. In the proposed

model, Hamming distance between two interval-valued fuzzy sets is applied to

measure the distance between the two instances. A probability model is em-

ployed to compare intervals to determine the classifiability of each attribute. A

systematic algorithm was established to construct a decision tree from data with

uncertain membership values. Our examples demonstrate that the proposed
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method does construct an acceptable decision tree when interval-valued fuzzy

membership values are involved in the data set. To determine the ideal distance

restriction in LAIVFDT method, the significance of different distance restiction

values was investigated and a new parameter α for restricting neighbourhood

instances in LAIVFDT induction with optimal distance for fuzzy data was pro-

posed and an optimal α value was identified for the experiment data sets. Our

preliminary experiment results show that the ideal distance restriction changes

with data set but α is much more stable. Our experiments are still limited in

terms of the number of data sets and their scope, but it does demonstrate the

potential of the proposed model.
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Appendices

List of symbols

Notation Description

r A distance between the two instances.

Ak
1 ,Ak

2 ,...,Ak
mk

An attribute has values of fuzzy sets Ak
1 ,Ak

2 ,...,Ak
mk

Ak
1 ,Ak

2 ,...,Ak
mk

.

µk
i (x) The membership value of instance x for the ith value of kth attribute.

Dxy The distance between instance x and y.

µj(x) The membership value of instance x for class j.

P (x) The local co-occurrence matrix of instance x.

W (k) The local co-occurrence matrix after attribute k is selected.

L(k) The classifiability of attribute k.

µAk
(x) An interval-valued fuzzy set.

[µA(xi), 1 − νA(xi)]. The interval of intuitionistic fuzzy sets; where νA(xi)=1 - µA(xi)

µA(xi) µA(xi) = [µ
A

(xi), µA(xi)] = [µ
A

(xi), 1 − νA(xi)].

d The distance between A and B in the form of interval-valued fuzzy sets.

µ
(k)
i

(x) The interval-valued fuzzy membership value of instance x for the ith and kth attribute,

where µ
(k)
i

(x) = [µ
(k)
i

(x), µ
(k)
i

(x)].

S An universe of sample (objects) S = S1, S2, . . . , Sn and xc ∈ S.

A⋆(xc) A set of the neighbourhoods of xc that can be described by

A⋆(xc) = {xi | xi ∈ S, 0 ≤ µc(xi) ≤ 1}.

B⋆(xc) A set of the neighbourhoods of xc described by A⋆(xc) that it can be described by

B⋆(xc) = {xi | xi ∈ S, µ̄c(xc) ≥ α}; i = 1, 2, 3, ..., n.

µ̂(x)j The interval-valued fuzzy membership value of instance x for class j and

let [µ
1
(x), µ1(x)], . . . , [µ

c
(x), µc(x)].

µ̂(y) The fuzzy membership for y belong to the neighbourhood set of x.

P̂ (x) The local co-occurrence matrix of instance x for the interval-valued fuzzy membership value.

α The α-cut value for the neighbourhood of x; where 0 ≤ α ≤ 1.

A(k) or A(k)(x) A fuzzy set.

L
(k)
r=c The corresponding value of Lk for the different r values.

L
(k)
α=t The corresponding value of Lk for the different α values.

TL(c,t)|r=c,α=t An average difference between an average difference between L
(k)
r=c and L

(k)
α=t for all attributes.

X = [X,X] An interval X as a closed, bounded set of real numbers, where X ≤ x ≤ X.

Ŵ (k) The local co-occurrence matrix after attribute k is selected.

L̂(k) The classifiability of attribute k for the interval-valued fuzzy membership value.

P (x < y)I Probability for x and y to belong to Xi = X ∩ Y and x < y is within the intersection.

P (x < y)P Probability for x precedes the intersecting intervals.

P (x < y)F Probability for x to locate in the intersecting interval and y follows.

∅ An empty set.
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