45 research outputs found

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    Computer Science Logic 2018: CSL 2018, September 4-8, 2018, Birmingham, United Kingdom

    Get PDF

    From Complexity to Algebra and Back: Digraph Classes, Collapsibility, and the PGP

    Get PDF
    Inspired by computational complexity results for the quantified constraint satisfaction problem, we study the clones of idem potent polymorphisms of certain digraph classes. Our first results are two algebraic dichotomy, even "gap", theorems. Building on and extending [Martin CP'11], we prove that partially reflexive paths bequeath a set of idem potent polymorphisms whose associated clone algebra has: either the polynomially generated powers property (PGP), or the exponentially generated powers property (EGP). Similarly, we build on [DaMM ICALP'14] to prove that semi complete digraphs have the same property. These gap theorems are further motivated by new evidence that PGP could be the algebraic explanation that a QCSP is in NP even for unbounded alternation. Along the way we also effect a study of a concrete form of PGP known as collapsibility, tying together the algebraic and structural threads from [Chen Sicomp'08], and show that collapsibility is equivalent to its Pi2-restriction. We also give a decision procedure for k-collapsibility from a singleton source of a finite structure (a form of collapsibility which covers all known examples of PGP for finite structures). Finally, we present a new QCSP trichotomy result, for partially reflexive paths with constants. Without constants it is known these QCSPs are either in NL or Pspace-complete [Martin CP'11], but we prove that with constants they attain the three complexities NL, NP-complete and Pspace-complete

    stateQIP = statePSPACE

    Full text link
    Complexity theory traditionally studies the hardness of solving classical computational problems. In the quantum setting, it is also natural to consider a different notion of complexity, namely the complexity of physically preparing a certain quantum state. We study the relation between two such state complexity classes: statePSPACE, which contains states that can be generated by space-uniform polynomial-space quantum circuits, and stateQIP, which contains states that a polynomial-time quantum verifier can generate by interacting with an all-powerful untrusted quantum prover. The latter class was recently introduced by Rosenthal and Yuen (ITCS 2022), who proved that statePSPACE \subseteq stateQIP. Our main result is the reverse inclusion, stateQIP \subseteq statePSPACE, thereby establishing equality of the two classes and providing a natural state-complexity analogue to the celebrated QIP = PSPACE theorem of Jain, et al. (J. ACM 2011). To prove this, we develop a polynomial-space quantum algorithm for solving a large class of exponentially large "PSPACE-computable" semidefinite programs (SDPs), which also prepares an optimiser encoded in a quantum state. Our SDP solver relies on recent block-encoding techniques from quantum algorithms, demonstrating that these techniques are also useful for complexity theory. Using similar techniques, we also show that optimal prover strategies for general quantum interactive protocols can be implemented in quantum polynomial space. We prove this by studying an algorithmic version of Uhlmann's theorem and establishing an upper bound on the complexity of implementing Uhlmann transformations.Comment: 61 page

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore