
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Fragments of fixpoint logics: Automata and expressiveness

Carreiro, F.M.

Publication date
2015
Document Version
Final published version

Link to publication

Citation for published version (APA):
Carreiro, F. M. (2015). Fragments of fixpoint logics: Automata and expressiveness.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Jul 2022

https://dare.uva.nl/personal/pure/en/publications/fragments-of-fixpoint-logics-automata-and-expressiveness(155e3f1b-bc05-4d9f-aa89-323b94b2b2b5).html

Facundo Carreiro

Fragm
ents of Fixpoint Logics: A

utom
ata and Expressiveness &Automata

Expressiveness

Facundo C
arreiro

F r a g m e n t s
of

Fixpoint Logics

Fragments of Fixpoint Logics
Automata and Expressiveness

Facundo Matías Carreiro

Fragments of Fixpoint Logics
Automata and Expressiveness

ILLC Dissertation Series DS-2015-05

For further information about ILLC-publications, please contact

Institute for Logic, Language and Computation
Universiteit van Amsterdam

Science Park 107
1098 XG Amsterdam

phone: +31-20-525 6051
e-mail: illc@uva.nl

homepage: http://www.illc.uva.nl/

Copyright c© 2015 by Facundo Matías Carreiro

Cover design by Facundo Matías Carreiro.
Printed and bound by GVO drukkers & vormgevers B.V.

ISBN: 978-90-6464-919-6

Fragments of Fixpoint Logics
Automata and Expressiveness

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof.dr. D.C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Aula der Universiteit
op vrijdag 11 december 2015, te 11.00 uur

door

Facundo Matías Carreiro

geboren te Buenos Aires, Argentinië.

Promotor: Prof.dr. Y. Venema Universiteit van Amsterdam

Overige leden: Prof.dr. J.F.A.K. van Benthem Universiteit van Amsterdam
Prof.dr. D.J.N. van Eijck Universiteit van Amsterdam
Prof.dr. M. Otto TU Darmstadt
Prof.dr. I. Walukiewicz Université de Bordeaux
Dr. A. Facchini IDSIA
Dr. M.J. Marx Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Para los abuelos Tinos,
ejemplo de valores, coraje y perseverancia.

v

Contents

Acknowledgments xi

1 Introduction 1
1.1 Featuring logics . 5
1.2 Fragments of fixpoint logics . 9
1.3 Logic and automata . 12
1.4 Expressiveness modulo bisimilarity 19
1.5 Source of the material . 21

2 Preliminaries 23
2.1 Terminology, transition systems and trees 23
2.2 Games . 25
2.3 Parity automata . 27
2.4 The modal µ-calculus . 29
2.5 Logics of programs and games . 31

2.5.1 Propositional Dynamic Logic 31
2.5.2 Concurrent PDL . 33
2.5.3 Game Logic . 34

2.6 Bisimulation . 36
2.7 First-order logic and extensions 36

2.7.1 First-order logic with generalized quantifiers 37
2.7.2 Fixpoint extension of first-order logic 38
2.7.3 First-order logic with transitive closure 39

2.8 Second-order logics . 40
2.9 Notational convention . 42

3 Fragments of fixpoint logics 43
3.1 Completely additive fragments . 44

3.1.1 Fixpoint theory of completely additive maps 47

vii

3.1.2 Characterization of PDL inside µML 51
3.1.3 Characterization of FO(TC1) inside FO(LFP1) 61

3.2 Continuous fragments . 64
3.2.1 Fixpoint theory of continuous maps 65
3.2.2 Characterization of CPDL inside µML 67
3.2.3 Finiteness, µcFOE∞ and WMSO 72

3.3 The question of Game Logic . 76
3.4 Conclusions and open problems 82

4 Subclasses of parity automata 85
4.1 Weak parity automata . 85
4.2 Continuous-weak parity automata 87
4.3 Additive-weak parity automata 88
4.4 Partial unraveling of parity automata 89
4.5 Variants of parity automata . 92
4.6 Conclusions and open problems 94

5 One-step model theory 97
5.1 Single-sorted first-order languages 99

5.1.1 Normal forms . 100
5.1.2 One-step monotonicity . 108
5.1.3 One-step continuity . 114
5.1.4 One-step additivity . 118
5.1.5 Dual fragments . 124

5.2 Selected multi-sorted first-order languages 125
5.2.1 Normal forms . 126
5.2.2 One-step monotonicity . 132
5.2.3 One-step additivity . 134
5.2.4 One-step multiplicativity 139

5.3 Selected modal languages . 139
5.3.1 Normal forms . 140
5.3.2 One-step monotonicity . 141
5.3.3 One-step continuity . 142
5.3.4 One-step additivity . 143
5.3.5 Dual fragments . 144

5.4 Effectiveness of the normal forms 146
5.5 Conclusions and open problems 147

6 Concrete modal automata 149
6.1 Automata for test-free PDL . 150

6.1.1 From formulas to automata 151
6.1.2 From automata to formulas 153

6.2 Automata for PDL . 158

viii

6.2.1 From formulas to automata 159
6.2.2 From automata to formulas 163

6.3 Automata for µcML . 164
6.3.1 From formulas to automata 165
6.3.2 From automata to formulas 169

6.4 Modal automata versus first-order automata 170
6.5 Conclusions and open problems 171

7 Concrete first-order automata 173
7.1 Automata for MSO . 173

7.1.1 From MSO to Aut(FOE1) 174
7.1.2 From Aut(FOE1) to FO(LFP1) 178
7.1.3 From FO(LFP1) to MSO 185
7.1.4 Subtleties of the obtained translations 186

7.2 Automata for WMSO . 187
7.2.1 Simulation theorem . 188
7.2.2 From WMSO to Autwc(FOE∞1) 198
7.2.3 From Autwc(FOE1) to FO(LFP1) 201
7.2.4 From µcFOE∞ to WMSO 202

7.3 Automata for WCL . 202
7.3.1 Simulation theorem . 203
7.3.2 From WCL to Autwa(FOE1) 207
7.3.3 From Autwa(FOE1) to FO(LFP1) 209
7.3.4 From µaFOE» to WCL . 210

7.4 The question of automata for FO(TC1) 212
7.5 Conclusions and open problems 213

8 Expressiveness modulo bisimilarity 215
8.1 Continuous-weak automata . 216

8.1.1 Bisimulation-invariant fragment of WMSO 219
8.2 Additive-weak automata . 220

8.2.1 Bisimulation-invariant fragment of WCL 222
8.2.2 Relative expressive power of PDL, WCL and FO(TC1) . . 223
8.2.3 On the bisimulation-invariant fragment of FO(TC1) 226

8.3 Conclusions and open problems 226

Bibliography 229

Index 241

Samenvatting 247

Abstract 249

ix

Acknowledgments

“It’s life that matters, nothing but
life – the process of discovering, the
everlasting and perpetual process,
not the discovery itself, at all.”

— Fyodor Dostoyevsky, The Idiot

Chronologically, I should first thank Santiago, Carlos, Lucila and my family.
Without their explicit support, even against their own personal interest, I would
have never set foot on the ILLC.

I blindly chose Yde as my supervisor, without knowing him personally or
talking with his students. Shortly after I first met him in Amsterdam, something
happened, which would be excellent for the ILLC and bad for me: he became
director of the ILLC. Nothing had prepared me for a four-year relationship with
someone who is constantly busy and stressed, and is higher than me in the food
chain. Except, of course, living more than twenty years with my parents. In
any case, somehow, fueled by cigarettes and who knows what, Yde found (made)
the time to meet with me almost weekly for four years. Even more, he fully
read and commented every paper and draft that I wrote, and even read the
whole manuscript of my dissertation, many times. This dedication, however,
does not come for free. Yde would not let me get away with an easy PhD. This
can be witnessed by the amount of gray hairs in my head, which have grown
in biblical proportions since I got to Amsterdam. Yde is strict, yes, and he is
demanding; prospective students, be warned. However, I have learned that he
has a property that every logic(ian) would want: consistency. Yde is only as strict
and demanding with you as he is with himself. I have learned much from him. On
a scientific level, I think that he is one of the most integrous researchers I have met.
He would never do something “just because we can”. He only focuses on questions
that matter, conceptually. This is refreshing and inspiring, in an academic world

xi

where many researchers (are forced to) play the game of publishing as much as,
and whatever they can.

To Sumit, I will dedicate a paragraph. When I first met him, he thought
that every European looked and acted the same, and that what we call hippies
were gypsies. By the time we were finishing our dissertations, he was quoting
Dante’s Inferno and, not only could he distinguish Europeans, but he had also
mastered the art of Dutch-Italian mediation. He is one of the most laid-back and
kindest persons I have met. I am happy that we could share four years of deep
conversations and fun activities together.

I learned to dance tango in Amsterdam, where it made for a great distraction
from my PhD. As they say, “it takes two to tango”. Well, in my case, it took far
more than two people for me to dance it. First and foremost I want to thank
Arjan and Marianne from Tango Argentino Amsterdam (a.k.a. de Plantage).1 As
tango teachers, they were the only ones that managed to make me feel comfortable
with the complexities of the dance. But not only that, they went beyond, and
supported me in tough times, always ready to give me an abrazo, even if I did not
show up for months. I have grown fond of them, and have secretly adopted them
as my mother and father figures in Amsterdam. I am also very grateful to Jenny,
Nadine, Aafke, Luc, Dieuwke, Annebeth, Andreea, Violet, Will, Peter and Aysil
for having shared dances with me. I would still be stepping on people’s toes if it
wasn’t for their patience and support.

Giovanni and Margherita, you are community builders, you integrate people.
I still remember Giovanni saying “In our last two parties we had the same group
of people, we are doing something wrong.” You let me into your lives without
asking anything in return, and you also gave me a hand (and a dinner) when I
needed it the most. We need more people like you in the world, and I hope to be
able to repay your kindness.

Many thanks to the commensals of the Dutch Lunch: Hugo, Giovanni, Malvin,
Julia, among others, and specially Dieuwke for the organization and supervision.
In hindsight, it may not have been the best idea in the world to practice Dutch
when we are stuffing food in our mouth, but I think we did learn a lot anyway.
Thank you also for being good friends inside and outside the ILLC, and for eagerly
listening to my PhD horror stories (this also includes Fatemeh and Paula). As
Giovanni said “When you finish your PhD, we have to do a peregrination to some
holy place. Everything that could have gone wrong, went wrong.” Probably it
was not as drastic, but I’m still considering the idea.

The ILLC, as an institute, was an awesome place to do a PhD. The Nether-
lands is one of the few places in the world where people doing research towards
a PhD are not considered students, but workers. It is good to see that the ILLC
implements this in full. I have not heard of or seen a place where PhD candidates
are taken as seriously into account as at the ILLC. I felt part of the staff. Many

1http://www.tangoalma.nl/

xii

http://www.tangoalma.nl/

thanks to the ILLC management, as well. Whenever you had a good idea with a
concrete plan, they were always ready to make it happen. The ILLC really felt
like an oasis amidst the bureaucracy of the FNWI and UvA. Special thanks to
Karine, who helped me get a room in Bos en Lommer when I arrived, and later
assisted me in the yearly negotiations for Borneostraat 60.

Matt, thanks for being the coolest, most curious and open-minded American
I have met, and a great flatmate in Bos en Lommer. You are so cool that I even
wrote “American” instead of “of the United States”.

I would like to sincerely thank the members of my dissertation committee.
They have kindly agreed to read and evaluate the contents of my dissertation,
notwithstanding that their feedback cannot be introduced in the final form of this
dissertation, due to the UvA’s doctoral regulations. I realize that this dissertation
is not exactly a light read, and I appreciate your efforts to go through it.

Huge thanks to my co-authors, Yde, Alessandro, Fabio, Daniel and Lutz. The
whole is clearly greater than the sum of its parts. Without them, this dissertation
would not exist. Our discussions, visits, correspondence, theorem-proving efforts
and cursing together had a big impact both in my life and work. I would also like
to thank the people with whom I did not collaborate directly, but who were always
kind enough to answer my questions by email or discuss them at the blackboard.
Among others, these include Balder, Dietmar, Jouko and Sebastian.

A mis amigos de Buenos Aires, gracias por mantener el contacto, incluso
cuando yo no les hablo por meses. Gracias por seguir invitándome a asados y
reuniones (aunque sea de manera simbólica). Javier B., gracias por tu confianza
e interés en mi trabajo y vida personal, estoy seguro de que te va a ir muy bien
en tu PhD. Javier y Bruno ¡gracias por ser geniales compañeros de viaje! Vivi
y Sergio, gracias por visitarme durante mi primer invierno, y sucumbir al frío y
la oscuridad de Amsterdam. A mi amiga cordobesa, Inés, muchas gracias por
escucharme y aconsejarme, a pesar de ser porteño.

Annebeth, heel erg bedankt voor jouw ondersteuning in alle hoogte- en diepte-
punten, letterlijk en figuurlijk. Jij bent stikdapper, lief en zorgzaam. Hartelijk
dank ook aan Johan, Martine, J.M., Pieter, Geert, en de naamloze kat, voor een
warm welkom.

Amsterdam Facundo Carreiro
August, 2015.

xiii

Chapter 1

Introduction

The general topic of this dissertation is the study of the relative expressive power
of formal languages. In order to slowly get to the specific topic of this thesis, we
first take a hopefully didactic detour through natural language.

Natural languages (as opposed to formal languages) are mainly used to de-
scribe the world and communicate our ideas. However, languages differ in how
they cut up the world, in their expressiveness. For example, English has differ-
ent words for the blue and green colours. On the other hand, ancient Japanese
uses the same word aoi to denote these two colours. A more complex example is
Russian, which has the word zelenyy for green but does not have a word for blue;
however, it does have completely different words for light blue (goluboy) and dark
blue (siniy). Discrepancies between languages are also found in translation. For
example, the Dutch gezellig and Portuguese saudade are known to lack a precise
translation to English.

While writers use language to convey information, the approach that better
relates to the above paragraph is that of linguists : among other things, they study
the individual properties of (natural) languages and how these languages relate
to each other. That is, the languages themselves are the object of study.

In this dissertation we deal with formal languages. As opposed to natural lan-
guages, formal languages are used to describe properties of mathematical objects
(also called models). Just as there are different natural languages with different
properties, there exists a plethora of formal languages with varying qualities. An
example of this variation is witnessed by the natural tension between the ex-
pressiveness of a formal language (i.e., which properties it can describe) and its
computational complexity (i.e., how difficult it is to “process” it with a computer).

The use of formal languages is widespread, including but not limited to phi-
losophy, economics, linguistics, mathematics and computer science. Essentially
any area can use them to specify properties in a precise way. In this dissertation,
we do not use formal languages to formulate properties or model puzzles (i.e., we
are not “writers”). Instead, we consider a number of logics and automata, which

1

2 Chapter 1. Introduction

are special cases of formal languages, and study their particular properties and
interconnections. Among other things, we give translations between automata
and logics.

Our particular perspective will be that of theoretical computer science. In this
field, one of the most important mathematical structures are the so-called labeled
transition systems, which are used to represent programs (also called processes).
A transition system consists of labeled nodes and edges between them. The nodes
represent the states of a process, and the edges represent possible transitions (or
actions) taking the process from one state to another. Moreover, the nodes are
labeled with local information about the state of the process.

In the following paragraphs we give a brief introduction to logic and automata
in computer science. We introduce some basic concepts and motivation for our
research; a more precise historical overview with full references is given in the
following sections of this chapter.

Logic in Computer Science. A typical application of logic is in the area of
software verification. This area is devoted to automatically checking that some
piece of software correctly implements its intended behaviour. This behaviour is
called the specification of the software, and can be written in a logical language.

The kind of properties that one would want to check are typically expressed
in a recursive way: for example “nothing bad ever happens (in the process) if
nothing bad happens in the current state and, after a transition, nothing bad
ever happens.” Unfortunately, the standard and well-studied logical formalisms
of first-order logic and basic modal logic do not have enough expressive power to
express recursive definitions. It is then natural to extend these logics with some
recursive formalism.

A popular extension consists in adding fixpoint operators to these logics, with
which we can encode iterative and recursive behaviour. Leaving the precise syntax
aside for a moment, these operators provide a way to define equations of the form:

safety↔ “everything is locally ok” and “after a transition, safety holds.”

The addition of fixpoint operators to first-order logic results in a very expressive
logic, which also has very high computational complexity. It is therefore very
good for describing structures, and has become a star in the field of descriptive
complexity. However, given its complexity, its full power cannot be used for
verification.

The basic modal logic extended with fixpoint operators gives a very successful
logic called the modal µ-calculus. This logic has a particularly good balance of
high expressiveness and relatively low computational complexity. One of its main
disadvantages, however, is that fixpoint operators are not very friendly when it
comes to actually write complex properties. That is, the resulting formulas are
not exactly easy to read and understand.

3

The literature offers a large range of other options to suit each particular need.
For example, sometimes one does not require the full power of recursion, and
can already express interesting properties based on reachability. The temporal
logics LTL (linear temporal logic) and CTL (computation tree logic) can express
properties of the form “at some point in the future (of the execution), property x
holds” and “property x holds until property y holds.” Moreover, these logics were
designed to be easy to read.

Another important logic to reason about programs is called PDL (proposi-
tional dynamic logic). Contrary to the rest of the logics that we have discussed
so far, it already includes “program constructors” in its syntax, consisting of basic
programs, composition and repetition of programs. Typical properties express-
ible in PDL include “there is a possible execution of program π finishing in state
satisfying x” and “every execution of program π finishes in state satisfying x.”

It is also possible to express full recursive behaviour without using fixpoints.
One way to do it, is to use (monadic) second-order logics. These logics extend
first-order logic, which can quantify over individual states, with the ability to
quantify over sets of states. Two noteworthy examples of second-order logic
are MSO (monadic second-order logic) which quantifies over arbitrary sets and
WMSO (weak MSO) which quantifies over finite sets. Second-order logics usually
have high computational complexity, however it is possible to consider fragments
which are well behaved and provide sufficient expressive power with a reasonable
computational complexity.

As a matter of fact, the logics that we named do not exist in isolation. On the
contrary, there is a rich interaction among them. To name only a few examples, it
is known that PDL can be translated to the µ-calculus; moreover, the µ-calculus
can be translated to first-order logic with (unary) fixpoints, and the latter can be
translated to MSO. These translations give an indication of the relative expressive
power of these logics. On the other hand, for example, the logics MSO and WMSO
are known to be incomparable in terms of expressive power. The list of known
results goes on, but there are also many unknowns.

The analysis of the interconnections among logics gives insight on the land-
scape of the logical world. Moreover, it allows for the transfer of results, from the
more well-known logics to the lesses studied ones. This transfer is not restricted
to theoretical results, but also includes algorithms. For example, if we can trans-
late formulas of a logic L to some other logic L′ then we can use the algorithms
for L′ to decide problems of L.

Logic and automata. Besides logic, the other central component of this disser-
tation is the concept of automaton. An automaton is composed of a set of states
and a transition map, specifying how to get from one state to another state.
That is, an automaton is, itself, very similar to a program or process. Different
types of automata are obtained by adding extra structure to this basic guide-

4 Chapter 1. Introduction
58 Stream automata

✓⌘◆⇣
a0) ✓⌘◆⇣

a1 ✓⌘◆⇣
a2

r, g

-b

r, g

~

r, g

}

b

b

�

An automaton comes to life if we supply it with input, in the form of a stream over
its alphabet: It will process this stream, as follows. Starting from the initial state aI ,
the automaton will step by step pass through the stream, jumping from one state to
another as prescribed by the transition function.

Example 4.6 Let A0 be any automaton with transition diagram and initial state as
given above, and suppose that we give this device as input the stream ↵ = brgbrgbrgbrgbrgb · · · .
Then we find that A0 will make an infinite series of transitions, determined by ↵:

a0
b! a1

r! a2
g! a2

b! a1 · · ·

Thus the machine passes through an infinite sequence of states:

⇢ = a0a1a2a2a1a2a2a1a2a2 . . .

This sequence is called the run of the automaton on the word ↵ — a run of A is thus
an A-stream.

For a second example, on the word ↵0 = brbgbrgrgrgrgrgr · · · the run of the au-
tomaton A0 looks as follows:

a0
b! a1

r! a2
b! a1

g! a2
b! a1

r! a2
g! a2

r! a2
g! · · ·

we see that from the sixth step onwards, the machine device remains circling in its
state a2: · · · a2

r! a2
g! a2

r! · · · . �

Definition 4.7 Given a finite automaton A = hA, �,Acc, aIi, we will write a
c! a0

if a0 = �(a, c). By induction on the length of words we extend this to the relation
⇣ ✓ A ⇥ C⇤ ⇥ A:

• a
✏⇣ a0 i↵ a = a0

• a
wc⇣ a0 i↵ there is a a00 such that a

w⇣ a00 and a00 c! a0.
In words, a

w⇣ a0 if there is a w-labelled path from a to a0.
The run of A on a C-stream � = c0c1c2 . . . is the infinite A-sequence

⇢ = a0a1a2 . . .

such that a0 = aI and ai
ci! ai+1 for every i 2 !. �

Figure 1.1: A finite state automaton on words.

line. Automata are usually seen as a device which is “run” on some mathematical
structure which could be a word, a tree, a transition system or a more general
structure.

An automaton starts in a so-called initial state and explores the structure in
rounds. At each round, the automaton is standing at a state and “looking at” a
part of the given structure. This information, along with the transition map, is
used to decide which will be the next state of the automaton. Eventually, the
automaton may decide to either accept or reject the given structure.

The crucial observation is that we can craft automata to express properties of
mathematical structures, as we did with logical formulas. For example, we can
create an automaton which accepts a transition system if the safety condition
holds, and rejects it otherwise. In the case of automata, the recursive power of
the formalism is explicit in its structure. That is, we can repeat an action if the
transition map of an automaton allows us to cycle through some of its states.

One of the advantages of using automata is that, being themselves a model of
computation, it is easier to give algorithms to compute acceptance (or rejection)
and other tasks. On the other hand, they are not as straightforward to construct
as formulas. That is, logical formulas usually have an inductive (and composi-
tional) definition, which makes them very attractive when proving theorems. The
structure of automata is quite flexible but at the same time less manageable.

All in all, automata and logics complement each other nicely. It is because of
this that much effort has been put into translating logical formulas to different
types of automata and vice-versa. For example, the modal µ-calculus and MSO
are known to precisely correspond, respectively, to different kinds of parity au-
tomata. This connection has been successfully exploited to give important results
about the expressiveness and decidability of both the µ-calculus and MSO.

The logic-automata connection has proven to be a very fruitful area, and there
are many open problems which could provide useful insight. For example, there
are no known automata models for PDL and WMSO.

Our contribution. This dissertation studies the relative expressive power and
properties of several fixpoint and second-order logics. We use the term fixpoint
logic in a broad sense, referring to any logic which can encode some type of
recursion, iteration or repetition.

1.1. Featuring logics 5

Our main objective is to systematically identify several important logics as
precise fragments of other well-known logics. In order to accomplish this task, we
develop automata-theoretic tools to analyze these fragments. The results of this
dissertation provide new insight on the relationship of fixpoint and second-order
logic and produce further evidence of the successful logic-automata connection.

1.1 Featuring logics

The logics featuring in this dissertation can be roughly divided in three categories:
modal logics, (extensions of) first-order logics and (monadic) second-order logics.
The analysis performed in this dissertation encompasses both the relationship of
these logics inside each category and among categories. We start by introducing
the main formalisms of this dissertation. This chapter will be limited to an
intuitive and historical introduction, precise definitions are given in Chapter 2.

Modal logics of games and programs. The language now called Propositional
Dynamic Logic was first investigated by Fischer and Ladner [FL79] as a logic
meant to reason about computer program execution. PDL extends the basic
modal logic with an infinite collection of diamonds 〈π〉 where π denotes a non-
deterministic program. The intended intuitive interpretation of the formula 〈π〉ϕ
is that “some terminating execution of π from the current state leads to a state
satisfying ϕ”. The dual assertion [π]ϕ states that “every terminating execution of
π from the current state leads to a state satisfying ϕ”.

The inductive structure of programs is made explicit in PDL’s syntax, as com-
plex programs are built out of atomic programs using four program constructors.
Formally, the formulas of PDL are given by the following mutual induction:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π ::= ` | π;π | π ⊕ π | π∗ | ϕ?

where p is a proposition letter and ` is an atomic action (or atomic program).
If π1 and π2 are programs then π1;π2 is a program denoting the execution of

π1 and then π2 (called sequential composition), π1 ⊕ π2 is a program denoting a
non-deterministic choice between them (usually written π1 ∪ π2 in the literature)
and π∗1 is a program denoting the repetition of π1 for a finite amount of times
(including zero). In addition, for every formula ϕ ∈ PDL, the program ϕ? tests
whether ϕ holds in the current state.

Given a model M, each program π induces a relation RM
π ⊆M2 which is used

to give semantics to PDL. The intended meaning of this relation is that RM
π (s, t)

iff starting from state s one can successfully execute the program π and arrive
at state t. The meaning of PDL-programs can also be seen in terms of a game
between ∃ and ∀. Under this interpretation, the formula 〈π1 ⊕ π2〉ϕ is be true if

6 Chapter 1. Introduction

∃ can choose one of the programs and execute it successfully, arriving at a state
where ϕ holds.

One of the most important and characteristic features of PDL is that the
program construction π∗ endows PDL with second-order capabilities while still
keeping it decidable (EXPTIME for satisfiability [Pra80] and PTIME for model-
checking [FL79], even with many additional operators [Lan06]).

Concurrent PDL (CPDL) was introduced by Peleg in [Pel85] and extends the
programs of PDL with the concurrent execution operator ⊗ (dual of ⊕). The
intuition behind this new operator is that the program π1 ⊗ π2 succeeds when
both π1 and π2 can be executed simultaneously. If interpreted as a game, this
means that the formula 〈π1 ⊗ π2〉ϕ is true if, no matter which program ∀ chooses,
∃ can successfully execute it, arriving to a state where ϕ holds.

Game Logic (GL) was introduced by Parikh [Par85] and extends PDL with
all program duals. In this context, the programs are called games. Syntactically,
this is obtained by extending the language with a dual operator πδ for each game
π. In this case, the execution of “programs” with the dual operator creates allows
for a rich interaction between ∃ and ∀. Originally, Game Logic was meant to
be interpreted in neighborhood models, used to represent extensive games.1 In
this dissertation we do not consider neighbourhood models and we only focus on
relational models as done in [Ber05]. The rationale behind this choice is that
every logic in this dissertation but GL is interpreted over relational models, and
even there, GL is not well understood. Moreover, relational models are a special
case of neighbourhood models.

Modal µ-calculus. The modal µ-calculus (µML) extends the basic modal
language with a mechanism for forming least (and greatest) fixpoints. It is
highly expressive, subsuming a vast amount of dynamic and temporal logics
such as PDL, CTL∗ and Game Logic, while still being computationally well
behaved: satisfiability can be solved in EXPTIME [EJ99] and model-checking
is in NP ∩ co-NP [ES95]. Moreover, this logic has a beautiful characterization
stating that it can express all bisimulation-invariant properties expressible in
monadic second-order logic [JW96]. All in all, it is one of the most significant
languages on the modal landscape. It was introduced in its present form by
Dexter Kozen [Koz83].

Syntactically, the µ-calculus adds least (µp.ϕ) and greatest (νp.ϕ) fixpoint
operators to the language of basic modal logic, where p is a propositional variable.
In order to give semantics to this operator observe that, given a model S and
a formula ϕ with a free variable p, the extension JϕKS of ϕ in S depends on
the set of points where p holds. This dependence can be formalized as a map

1Neighbourhood models are a generalization of relational models, where the accessibility
relation is of the form R ⊆ S × ℘(S) instead of R ⊆ S × S.

1.1. Featuring logics 7

Fϕ
p : ℘(S)→ ℘(S) given by:

Fϕ
p (Y) := {s ∈ S | ϕ(Y) is true in S}.

The extension Jµp.ϕKS can now be defined as the least fixpoint of Fϕ
p . The dual

operator νp.ϕ is defined analogously, or it can also be considered as a macro-
expression given by νp.ϕ := ¬µp.¬ϕ[p 7→ ¬p].

Formulas of the modal µ-calculus can be classified according to their alter-
nation depth, which roughly is given as the maximal length of a chain of nested
alternating least and greatest fixpoint operators [Niw86]. The hierarchy induced
by the alternation depth, called the “alternation hierarchy”, was shown to be
strict [Bra96, Bra98] and is of special interest in the context of model-checking
algorithms, since the complexity of the algorithms depends exponentially on the
alternation depth of the given formula [EL86, BCM+92].

The alternation-free fragment of the modal µ-calculus (AFMC) is the collec-
tion of µML-formulas without nesting of least and greatest fixpoint operators. It
is not difficult to see that, over arbitrary models, this fragment is less expressive
than the full µML. That is, there is a µML-formula ϕ such that there is no
equivalent formula of AFMC [Par80]. Despite its simplicity, AFMC already ac-
commodates many temporal and dynamic logics such as PDL, CPDL, CTL and
LTL but, for example, it does not cover Game Logic [Ber03].

Extensions of first-order logic. In this dissertation we will consider an exten-
sion of first-order logic with equality (FOE) with the generalized quantifier ∃∞x.ϕ
expressing that there exist infinitely many elements satisfying ϕ. This quantifier
clearly adds new expressive power to FOE. For example, we are now able to char-
acterize the models which have infinite domain, with the formula ∃∞x.>. We will
denote this extended logic as FOE∞.

It is well known that the reflexive-transitive closure R∗ of a binary relation R
is not expressible in first-order logic [Fag75]. Therefore, a straightforward way to
extend first-order logic is to add a reflexive-transitive closure operator:

[TCx,y.ϕ(x,y)](u,v)

which states that (u,v) belongs to the transitive closure of the relation denoted
by ϕ(x,y). In the above expression, the sequences of variables x,y,u,v should
all be of the same length; this length is called the arity of the transitive closure.
This extension of first-order logic, called FO(TC) or sometimes transitive-closure
logic, was introduced by Immerman in [Imm87] where he showed that it captures
the class of NLOGSPACE queries on finite ordered structures.

The fragment FO(TCk) of FO(TC) is given by restricting the arity of the
transitive closure to length k. These fragments naturally induce a hierarchy (the
arity hierarchy) for FO(TC), which was proven strict for finite models [Gro96].

8 Chapter 1. Introduction

Moreover, in some restricted classes of trees, full FO(TC) is even more expres-
sive than MSO [TK09]. In this dissertation, however, we restrict our attention
to FO(TC1), which is FO(TC) restricted to sequences of length one; that is,
the reflexive-transitive closure can only be applied to formulas ϕ(x, y) defining a
binary relation. This fragment of FO(TC) is easily seen to be included in MSO.

A more general way to extend first-order logic is to add a fixpoint operator as
in [Mos08, Mos74, CH82]. Consider, as an example, a first-order formula ϕ(p, x)
where p is a monadic predicate and x is a free variable. The set of elements s ∈M
of some model M which satisfy ϕ(p, s) clearly depends on the interpretation of p.
This dependency can be formalized as a map

Fϕ
p:x(Y) := {s ∈M | ϕ(Y, s) is true in M}.

Assuming that ϕ is monotone in p, the least and greatest fixpoints of this map will
exist by the Knaster-Tarski theorem. It is now easy to extend first-order logic with
a fixpoint construction [LFPp:x.ϕ(p, x)](z) which holds iff the interpretation of z
belongs to the least fixpoint of the map Fϕ

p:x. This extension is called first-order
logic with unary fixpoints and is usually denoted by FO(LFP1). This is because
the arity of the fixpoint relation (in our case p) is unary. As with the transitive
closure operator, we can consider a logic where the arity of the fixpoint is not
bounded. This logic is known as FO(LFP) and was shown to capture PTIME
queries [Imm87] on finite ordered structures. The reader is refereed to [Grä02]
for a great survey on the many variants of the model-checking problem for this
logic. In this dissertation we focus on FO(LFP1), which we will denote as µFOE.

Monadic second-order logics. The second-order logics that we will consider
are clearly extensions of first-order logic, but they deserve a section of their own.
Monadic second-order logic (MSO) extends first-order logic with a new quantifier
∃X.ϕ which quantifies over arbitrary sets (also known as unary predicates).

M, g |= ∃X.ϕ iff there is U ⊆M such that M[X 7→ U], g |= ϕ.

This addition results in huge expressive power, compared to first-order logic. For
example, transitive closure and fixpoint of formulas are both expressible in MSO.
With set quantification, MSO results in a quite versatile specification language.

Model-checking for monadic second-order logic was shown to be PSPACE-
complete [Sto74, Var82]. On the other hand, the satisfiability problem for MSO
is clearly undecidable in the general case, since MSO extends first-order logic.
However, the satisfiability problem for MSO is decidable on trees. This result is
of crucial importance and was proved for incrementally bigger classes of models
using automata-theoretic techniques. We defer this discussion to a later section.

Another second-order logic that will feature in this dissertation is weak MSO.
This logic has the same syntax as MSO, but the intended quantification is over

1.2. Fragments of fixpoint logics 9

finite sets instead of arbitrary ones.

M, g |= ∃finX.ϕ iff there is a finite U ⊆M such that M[X 7→ U], g |= ϕ.

To emphasize the quantification over finite sets we write ∃finX.ϕ instead of ∃X.ϕ.

1.1.1. Remark. The adjective “weak” is a bit misleading, since WMSO is in
general not a fragment of MSO. Indeed, the class of finitely branching trees is
not definable in MSO (see [Wal96]) but is defined using the WMSO-formula
∀x∃finX∀y.(R(x, y) → y ∈ X). The class of well-founded trees, on the other
hand, is definable in MSO but not in WMSO [CF11].

To conclude this section, we introduce the last variant of MSO that we will
use. We call it weak chain logic, since it quantifies over finite chains.

T, g |= ∃fchX.ϕ iff there is a finite chain U ⊆M such that T[X 7→ U], g |= ϕ.

Here, we define a chain on a tree T to be a set X such that all elements of X
belong to the same branch. The original (non-weak) chain logic was introduced by
Thomas in [Tho84], in the context of trees, and further studied in [Tho96, Boj04].

1.2 Fragments of fixpoint logics

The logics mentioned in the previous section do not exist in isolation. On the
contrary, the more we know about their interconnection, the more we can reuse
results and learn about these logics. In this section we discuss some known results
relating the logics of this dissertation, and we outline our main contributions.

Modal realm. It is very well known that PDL can be translated to µML [EL86].
However, the exact fragment of µML that corresponds to PDL is not character-
ized. A key role in this characterization will be played by the fragment of µML
where the fixpoint operator µp.ϕ is restricted to formulas ϕ which are completely
additive in p (we denote this fragment as µaML). A formula ϕ is said to be
completely additive in p if for any family of subsets {Pi}i∈I with Pi ⊆ S satisfies:

Fϕ
p (
⋃
i

Pi) =
⋃
i

Fϕ
p (Pi).

Complete additivity implies monotonicity and, in particular, such a map is de-
termined “point-wise.” That is, for every set P ⊆ S we have:

Fϕ
p (P) =

⋃
t∈P

Fϕ
p ({t}).

10 Chapter 1. Introduction

Complete additivity has been studied by van Benthem (under the name of
‘continuity’ in [Ben96, Ben98]) when considering operations on relations that
preserve bisimulations (called ‘safe for bisimulation’) which can be defined in first-
order logic. Hollenberg [Hol98] also studied complete additivity in the context of
bisimulation-safe operations definable in monadic second-order logic.

The fragment µaML has been syntactically characterized by Fontaine and
Venema [FV12, Fon10]. An early observation, made by Venema in an unpublished
manuscript [Ven08], is that PDL exactly corresponds to µaML and test-free PDL
corresponds to a precise syntactical restriction of µaML, which we call µ−naML.

Theorem ([Ven08, CV14]). PDL is effectively equivalent to µaML and test-free
PDL is effectively equivalent to µ−naML.

The observation made in [Ven08] was of crucial importance to the development
of this dissertation. It provided the necessary insight to build automata for PDL
and approach the bisimulation-invariance problem (as we will discuss later). In
Section 3.1.2 of this dissertation we give a new presentation of the above theorem,
with full proofs. This section also contains a discussion on the peculiarities of
complete additivity which allow these equivalences to hold.

The logic CPDL can also be translated to the modal µ-calculus. However,
complete additivity will not be enough to capture this logic; we can already
conclude this from the above result and the fact that PDL 6⊆ CPDL. The key
concept related to CPDL is that of (Scott) continuity. A map F : ℘(S) → ℘(S)
is called continuous if it is already determined by finite sets (we also say “restricts
to finite sets”). That is,

F (X) =
⋃

Y⊆ωX
F (Y).

The topological terminology stems from the observation that this equation ex-
presses the continuity of the map F with respect to the Scott topology on ℘(S).

The notion of continuity is strictly more general than complete additivity. It is
easy to see that every completely additive map F is continuous, since F restricts
to singletons (and is monotone) then in particular it restricts to finite sets.

Peleg relates CPDL to fragments of µML. First, he considers µcML, the
fragment of µML where the least fixpoint operator is restricted to continuous
formulas. This fragment was also studied by van Benthem [Ben06, Definition 5]
under the name of ‘ω-µ-calculus’ (probably due to the constructivity property).

Second, Peleg also considers a fragment of µcML which he calls simple µcML
and is obtained by forbidding the interleaving of the fixpoint operators. That is,
formulas of the shape µp.ϕ(µq.ϕ′(p)) are not allowed. We follow the terminology
of [SV10] and call this fragment flat µcML and denote it by µcML[. Peleg proves
that CPDL sits somewhere between these fragments, but leaves the strictness of
the inclusions as an open question:

1.2. Fragments of fixpoint logics 11

Theorem ([Pel85, Theorem 2.11]). µcML[⊆ CPDL ⊆ µcML.

Our contribution is to give a syntactic fragment µncML∨ of µcML which pre-
cisely corresponds to CPDL.

Contribution (Section 3.2.2). µcML[⊆ CPDL ≡ µncML∨ ⊆ µcML.

We discuss how µncML∨ is placed inside µcML, but the question whether these
two are equal or distinct is left open. In particular, the strictness of the inclusions
is still open.

The modal µ-calculus and Game Logic have very different syntaxes. The
former contains explicit fixpoint operators, while the latter only has a seemingly
weaker iteration operator. Superficially, these logics look quite different, however,
the relationship between them remains an intriguing topic today.

It is known that GL can be translated to the two variable fragment µML[2] of
the µ-calculus (cf. [BGL05, Lemma 47]). Even then, the question of whether GL
is equivalent to µML was open for a long time, as it was unknown whether µML[2]
was equivalent to the full µML. This question was finally closed by Berwanger
by showing that the variable hierarchy of the µ-calculus is strict.

Theorem ([BGL05, Ber05]). GL 6≡ µML.

However, the GL question is still not fully solved. The exact fragment of µML
(or µML[2]) which corresponds to GL is still unknown. In particular, it is not
known if GL and µML[2] coincide.

Following the methodology that we used for PDL and CPDL, we define a
fragment µML∨ of µML and show that it corresponds to GL. As a corollary, we
actually get that GL ≡ µML∨[2] ≡ µML∨, but the question of whether µML∨[2]
and µML[2] coincide is left open. We also discuss some intuitions and conjectures
that may lead to a separation of these fragments.

Contribution (Section 3.3). GL, µML∨[2] and µML∨ are effectively equivalent.

First- and second-order realm. It is not difficult to see that FO(TC) is
included in FO(LFP) and FO(TC1) is included in µFOE. This can be shown by
a straightforward translation, but the exact fragment of µFOE that corresponds
to FO(TC1) has not been characterized. Similar to what happens with PDL, the
key notion leading to such a characterization is again complete additivity.

First of all, we consider a syntactic fragment µaFOE of µFOE by restricting
the application of the unary fixpoint to formulas which are completely additive.
We prove that FO(TC1) effectively corresponds to this fragment.

Contribution (Section 3.1.3). FO(TC1) is effectively equivalent to µaFOE.

12 Chapter 1. Introduction

As a minor step towards the above contribution we give, in Section 3.1.1, a
general characterization of fixpoints of arbitrary completely additive maps, that
is, maps which need not be induced by a formula.

It follows from results by Väänänen that, if we restrict to monadic signatures,
then WMSO coincides with FOE∞, the extension of first-order logic with the
generalized quantifier ∃∞x.ϕ.

Theorem ([Vää77, Section 6]). WMSO ≡ FOE∞ on monadic signatures.

This theorem can also be given a more direct proof using the normal forms that
we will develop in Chapter 5. We could ask ourselves what happens with this
relationship if we consider (arbitrary) relational signatures, and even consider
the presence of a fixpoint operator. The following proposition shows that this
relationship cannot be lifted for full µFOE over a relational signature.

Contribution (Section 3.2.3). µFOE 6⊆WMSO and hence µFOE∞ 6⊆WMSO.

However, if we consider the logic µcFOE∞ obtained by restricting the fixpoint
operator of µFOE∞ to continuous formulas, then we are in a better shape. The
following holds, even for relational signatures:

Contribution (Section 3.2.3). We have FOE∞ ⊆ µcFOE∞ ⊆ WMSO for
relational signatures, but in general WMSO 6⊆ µcFOE∞.

If we change our context and focus on the class of tree models, the situa-
tion changes dramatically. In the next section we discuss how we use automata-
theoretic methods to prove many results connecting the logics of this dissertation.
Among others, we prove that on trees we do have WMSO ≡ µcFOE∞.

1.3 Logic and automata

It is difficult to over-stress the importance of automata-theoretic techniques in log-
ical questions. Logical languages are declarative and useful to specify structural
properties; automata, on the other hand, are a more explicit model of computa-
tion. The connection between these two perspectives has led to many advances
in both areas. A typical example of a contribution of automata theory to logic is
the proof of decidability results of logical languages using the decidability of the
emptiness problem for automata. For the other direction, if a logic corresponds
to certain automata, and has negation in the language, then one can obtain the
closure of the automata under complementation. By automata means only, this
closure is usually quite difficult to prove for some automata models.

1.3. Logic and automata 13

Automata and classical logics

We start with a historical overview of automata-theoretic methods for classical
logics, mostly second-order logic. Our historical account of early automaton-logic
interaction is largely influenced by the survey by Wolfgang Thomas [Tho96] and
by historical remarks in [Ven11, Boj04, Jac13].

Words. The connection between logic and automata can be traced back to
the seminal work of Büchi [Büc60] and independently of Elgot, and Trakthen-
brot [Elg61, Tra61]. To be technically correct, they were interested in studying
arithmetic, or more specifically weak (monadic) second-order arithmetic.

In the terms of this dissertation, this logic can be described as WMSO over the
class of models based on the structure 〈ω, suc, p1, . . .〉 of the natural numbers with
a successor relation and additional unary predicates. The theory of (W)MSO over
this class of structures is usually denoted (W)S1S meaning “the (weak) theory of
(monadic) second-order with one successor”. Another way to see this class of
structures, perhaps more natural, is to take the class of infinite words.

The main result of Büchi [Büc60], Elgot, and Trakthenbrot is to give finite
automata (on infinite words) which corresponds to weak (monadic) second-order
arithmetic. As a corollary, by observing that WMSO and MSO coincide on finite
words, and giving a proper restriction of Büchi automata to finite words, one
obtains the usual statement of their most celebrated theorem:

Theorem ([Büc60, Elg61, Tra61]). Finite state automata and MSO are effec-
tively equivalent on finite words.

These results were later extended by Büchi to infinite words. He introduced
a type of finite automata with a new acceptance condition, that we now call the
Büchi acceptance condition. Finite automata with such an acceptance condition,
now called Büchi automata, accept an infinite word if it goes through a finite
state infinitely often.

Theorem ([Büc62]). Büchi automata and MSO are effectively equivalent on
infinite words.

The reduction of formulas to automata was the key solution to obtain decid-
ability results for (W)S1S on both finite and infinite words. In particular, this
implied the decidability of important theories such as Presburger arithmetic (i.e.,
FOE with addition and without multiplication, on the natural numbers). Even
nowadays, WS1S still plays a role in verification of reactive systems [HJJ+95].

Infinite trees. After the foundational work on words, results for trees started to
appear. The first structure to be considered was the infinite full binary tree and
its associated theories (W)S2S of “second-order of two successors”. Rabin [Rab69]
introduced tree automata with a Muller acceptance condition [Mul63] and proved
a correspondence for this case.

14 Chapter 1. Introduction

Theorem ([Rab69]). Tree automata and MSO are effectively equivalent on the
infinite binary tree.

This theorem subsumes previous decidability results, and one obtains many
decidability results for several mathematical theories. For more detail the reader
is referred to [Rab69, p. 1].

WMSO was also studied on trees. For example, the following result by Rabin
gives a characterization of WMSO-definability in terms of tree automata with a
Büchi acceptance condition.

Theorem ([Rab70]). A class L of infinite binary trees is definable in WMSO
iff both L and the complement of L are recognizable by Büchi tree automata.

A lot later, in the 90’s, Muller, Saoudi and Schupp [MSS92] introduced weak
alternating automata and gave a characterization for the infinite full k-ary tree
for an arbitrary k (that is, for the class of models based on the full k-ary tree).

Theorem ([MSS92]). WMSO and weak alternating automata are effectively
equivalent on the infinite full k-ary tree.

The novelty in these automata was the introduction of a weak acceptance con-
dition. The ideas behind this condition are quite important, and would continue
to appear in future work, including this dissertation. The weakness condition
imposes a structural restriction on the transition map of the automata. In its
original formulation, it says that the domain of an weak alternating automata
should be partitioned as a disjoint union Q =

⋃
iQi such that there is a par-

tial order v on this partition. Moreover, the transition map should respect this
partition. That is, if a state q ∈ Qi has a transition to q′ ∈ Qj then Qi v Qj.
The ultimate effect of this restriction is that every run of the automaton will ul-
timately stabilize inside some Qi. As each Qi is marked as accepting or rejecting,
this gives a straightforward acceptance condition.

Recent history. In a more contemporary paper [Wal96], Walukiewicz intro-
duced alternating parity automata for MSO on arbitrary trees. These automata
deserve special attention, since throughout this dissertation we will use automata
with parity acceptance condition. That is, each state a is assigned a “parity” or
priority Ω(a), which is just a natural number; infinite runs are then accepting iff
the minimum parity which occurs infinitely often is even.

Theorem ([Wal96]). The logics MSO, FO(LFP1), and alternating parity au-
tomata are effectively equivalent on trees.

Even though this acceptance condition seems far more unnatural than the
Büchi or Muller conditions, it has a strong connection with fixpoints. Intuitively,

1.3. Logic and automata 15

states with an even parity will relate to greatest fixpoints, while those with an
odd parity relate to least fixpoints. Moreover, the relative priority of the states
induces a “fixpoint hierarchy”. The invention of the parity condition is usually
attributed to Emerson and Jutla [EJ91], Mostowski [Mos85] and Wagner while
the connection of automata and fixpoints goes back to Niwiński [Niw86].

Another important milestone for this dissertation is the introduction of what
we call logical automata. In general, the transition map of an automaton specifies
the set of states that can be “reached” from a certain state.

A straightforward way to specify this set is to just give it explicitly, resulting
in a transition map of the form δ : A → ℘(A).2 This type of transition map
is typical of non-deterministic automata where, seen as a game, if the game is
standing at a state a then an existential player ∃ may choose a state from δ(a)
to continue the game.

With the introduction of alternation in the game, the transition map gets
more complex. For example, one could use a map ∆ : A → ℘(℘(A)) where first
∃ suggests a set of states A′ ∈ ∆(a) but ultimately ∀ chooses the state a ∈ A′.

Another way to express alternation and specify the transition map is to use,
instead of explicit sets, logical formulas denoting those sets. We call these logics
one-step logics. This approach is already present in [MS85] using formulas from
propositional logic (using A as the set of propositions) to specify the transition
map. Janin and Walukiweicz [JL04] took this approach one step further, and
gave an equivalent formulation of alternating parity automata using formulas
of (relation-free) FOE in the transition map. We call these automata MSO-
automata and denote them by Aut(FOE1). We will see in later sections that
having such a transition map allows us to get results for the full class of automata
by focusing on properties of the one-step logic.

It is natural to ask if the relation between WMSO and weak automata on k-
ary trees lifts to arbitrary trees. Zanasi [Zan12] shows that considering arbitrary
branching on trees poses fundamental problems. In this setting, weak parity
automata do not correspond to WMSO but to a logic called WFMSO which
quantifies over subsets of well-founded trees.3

Theorem ([Zan12]). Weak alternating parity automata and WFMSO are effec-
tively equivalent on trees.

In another effort to characterize WMSO, Jacobi [Jac13] introduced weak par-
ity automata using (relation-free) WMSO as a one-step logic. However, these

2Transition maps are usually more complex even in the most basic cases. For example, finite
state automata on words already have a map of the form δ : A × Σ → ℘(A) which specifies
the possible next states given the current state and a letter from the alphabet Σ. In this
introduction we choose to simplify the left hand side for presentation purposes.

3The results in [Zan12] are stated for arbitrarily branching trees where all their branches are
infinite. However, the results easily generalize to arbitrary trees.

16 Chapter 1. Introduction

automata (which we denote Autw(WMSO1)) are shown to be too strong to cor-
respond to WMSO on trees.

Theorem ([Jac13]). WMSO (Autw(WMSO1) on trees.

Our contributions. Our first contribution is to give a class of alternating parity
automata which corresponds to WMSO on arbitrary trees. First observe that by
König’s lemma, a subset of a tree T is finite iff it is both a subset of a finitely
branching subtree of T and well-founded, that is, a subset of a subtree of T that
has no infinite branches. This suggests that we may change the definition of MSO-
automata into one of WMSO-automata via two kinds of modifications, roughly
speaking corresponding to a horizontal and a vertical ‘dimension’ of trees.

For the ‘vertical modification’ we can use the weakness condition which, as
shown by Zanasi, gives a logic which quantifies over well-founded sets. The hurdle
to take, in order to find automata for WMSO on trees of arbitrary branching
degree, concerns the horizontal dimension; the main problem lies in finding the
right one-step language for WMSO-automata.

An obvious candidate for this language would be weak monadic second-order
logic itself, or more precisely, its variant WMSO1 over the signature of monadic
predicates (corresponding to the automata states), as done in [Jac13].4 A very
helpful observation, made by Väänänen [Vää77], states that:

WMSO1 ≡ FOE∞1 ,

where FOE∞1 is the extension of FOE1 with the generalized quantifier ∃∞x.ϕ.
Taking the full language of WMSO1 or FOE∞1 as our one-step language would
give too much expressive power, as shown by Jacobi. It is here that we will
crucially involve the notion of continuity.

To define our automata for WMSO first observe that for every automaton A
which has formulas on its transition map using the states A as propositions, we
can associate a graph where a, b ∈ A are connected if b ∈ ∆(a). We say that a
parity automaton A is continuous-weak if for every maximal strongly connected
component C ⊆ A and states a, b ∈ C the following conditions hold:5

(weakness) Ω(a) = Ω(b),

(continuity) If Ω(a) is odd then the formula ∆(a) is continuous in the states C.
if Ω(a) is even then the formula ∆(a) is co-continuous in the states C.

The effect of the (weakness) condition can be proved to be equivalent to the one
based on an ordering v, for our context. An WMSO-automaton is then defined

4Our work on WMSO was done independently of that of Jacobi [Jac13]. Our motivation to
use FOE∞1 as a one-step language came from the observation by Väänänen [Vää77].

5The actual definition that we use has a slightly more complex transition map, but we do
not discuss that here to keep the presentation simple.

1.3. Logic and automata 17

as a continuous-weak automaton based on FOE∞1 ; we denote the class of such
automata as Autwc(FOE∞1).

We prove that these automata precisely correspond to WMSO on arbitrary
trees and in the process we also obtain a characterization of these formalisms as
a fixpoint logic.

Contribution (Section 7.2). Autwc(FOE∞1), µcFOE∞ and WMSO are effec-
tively equivalent on trees.

Our second contribution is to give automata for WCL. In this case, we in-
troduce a new type of additive-weak automata, which replaces the (continuity)
restriction of the above automata by an (additivity) restriction.

(additivity) If Ω(a) is odd then ∆(a) is completely additive in C.
if Ω(a) is even then ∆(a) is completely multiplicative in C.

However, in this case, we use FOE1 as the one-step language. We denote the class
of WCL-automata as Autwa(FOE1).

Contribution (Section 7.3). Autwa(FOE1) and WCL are effectively equivalent
on trees.

In the last section of Chapter 7 we discuss how our work makes some progress
in the quest of developing (logical) parity automata for FO(TC1), and possible
approaches to attack this problem.

Automata and modal logics

Some automata models for the µ-calculus were already introduced in [Niw86]
and [JW95]. However, the logical automata that we use in this dissertation
was first introduced in [JW96]. These automata are remarkably similar to MSO-
automata: they are (logical) alternating parity automata, but the main difference
is in the one-step language. While MSO-automata use FOE1 as their one-step
language, automata for the µ-calculus use FO1. That is, (relation-free) first-order
logic without equality. Following our notation, we denote this class of automata
as Aut(FO1).

Theorem ([JW95]). Aut(FO1) and the modal µ-calculus are effectively equiva-
lent on all models.

Among other results, automata for the µ-calculus were crucial in proving
uniform interpolation for this logic [DH00] and also proving that the µ-calculus
is the bisimulation-invariant fragment of MSO (more on this in the next section).
Moreover, the above equivalence can be used to give a highly simplified proof of
Rabin’s complementation lemma [JW95, Remark 5.8].

18 Chapter 1. Introduction

A very useful observation is that if we add the weakness constraint to au-
tomata for the µ-calculus, we obtain automata for AFMC. That is, the weakness
condition forces the resulting formula to be alternation-free. We use Autw(FO1)
to denote the class of weak parity automata based on the one-step logic FO1.

Theorem ([AN92, KV98]). Autw(FO1) and the alternation-free µ-calculus are
effectively equivalent on all models.

These automata are of particular interest for model checking, since many
temporal logics can be translated to them [KVW00].

The first automata result for PDL was by Streett [Str81, Str82] who translates
PDL (with additional looping and converse operators) to “deterministic two-way
automata on infinite trees” and obtains decidability for the satisfiability prob-
lem. Later, Vardi and Wolper [VW86] showed that PDL can be translated to
Büchi (tree) automata and get sharper complexity results. Muller et al. [MSS88]
showed that many dynamic and temporal logics can be uniformly represented
using weak alternating automata (see last section). This class of automata rec-
ognizes languages that are Büchi and co-Büchi and, on trees, they accept exactly
the languages definable in Weak MSO [MSS92, Rab70].

The mentioned papers, among others, use automata-theoretic techniques to
prove results about PDL, usually giving a translation into some kind of automata.
However, none of them gives a precise characterization. That is, the class of
automata in consideration has automata that do not correspond to an equivalent
PDL formula.

A further contribution of this dissertation is to define two classes of alter-
nating parity automata (in the spirit of µ-automata) which exactly correspond,
respectively, to PDL and its test-free variant PDLtf .

When looking at µ-automata one can see that cycles naturally encode a notion
of repetition (or fixpoint, in this case). When considering PDL, it is obvious that
not any kind of “action” can be repeated. That is, repetitions can only be done
over programs. The slogan that drives the definition of automata for PDL is:

“Maximal strongly connected components correspond to programs.”

Moreover, we will see that connected components correspond to programs cru-
cially involving the iteration operator. Using the insight obtained by the char-
acterization of PDL as a fragment of µML, we define automata for PDL by
restricting µ-automata with both the (weakness) and (additivity) conditions. We
denote the class of these automata with Autwa(FO1).

Contribution (Section 6.1 and 6.2). The following are equivalent on all models:

(i) Autwa(FO1) and PDL,

(ii) Aut−wa(FO1) and test-free PDL.

1.4. Expressiveness modulo bisimilarity 19

Moreover, the equivalences are effective.

Using a similar approach, we can restrict µ-automata with the (weakness)
and (continuity) constraints. In this case we obtain automata for µcML. These
automata will play a role in the next section, where we give a characterization of
the bisimulation-invariant fragment of WMSO.

Contribution (Section 6.3). Autwc(FO1) and µcML are effectively equivalent
on all models.

1.4 Expressiveness modulo bisimilarity
The last chapter of this dissertation concerns the relative expressive power of some
languages when restricted to properties which are bisimulation-invariant. The
interest in such expressiveness questions stems from applications where transition
systems model computational processes, and bisimilar structures represent the
same process. Seen from this perspective, properties of transition structures are
relevant only if they are invariant under bisimilarity. This explains the importance
of bisimulation-invariance results of the form

L′ ≡ L/↔,

stating that, one language L′ is expressively complete with respect to the rele-
vant (i.e., bisimulation-invariant) properties that can be formulated in another
language L. In this setting, generally L is some rich yardstick formalism such
as first-order or monadic second-order logic, and L′ is some modal-style frag-
ment of L, usually displaying much better computational behavior than the full
language L.

A seminal result in the theory of modal logic is van Benthem’s Characteri-
zation Theorem [Ben77], stating that every bisimulation-invariant first-order for-
mula is actually equivalent to (the standard translation of) a modal formula:

ML ≡ FOE/↔.

Over the years, a wealth of variants of the Characterization Theorem have been
obtained. For instance, Rosen proved that van Benthem’s theorem is one of the
few preservation results that transfers to the setting of finite models [Ros97]; for
a recent, rich source of van Benthem-style characterization results, see Dawar and
Otto [DO09]. In this dissertation we are mainly interested is the work of Janin
and Walukiewicz [JW96], who extended van Benthem’s result to the setting of
fixpoint logics, by proving that the modal µ-calculus is the bisimulation-invariant
fragment of monadic second-order logic:

µML ≡ MSO/↔.

20 Chapter 1. Introduction

Despite the continuous study of the connection between modal and classical log-
ics there are still important logics which are not well understood and represent
exciting problems. In particular, the bisimulation-invarant fragments of WMSO
and WCL have not been characterized. Also, it is not known whether there is a
natural classical logic whose bisimulation-invariant fragment corresponds to PDL
(see [Hol98, p. 91]), even though there are results leading towards this direc-
tion [Ben98, Hol98, Ben96].

In this dissertation we crucially use the new parity automata developed for
WMSO, WCL, PDL, and µcML to obtain bisimulation-invariance results.

The one-step approach. When proving results of the form L′ ≡ L/↔, one
of the inclusions is usually given by a translation from L; to L. The inclusion
L′ ⊇ L/↔, however, requires much more work. In the context of fixpoint logics,
the use of automata is a powerful technique to prove this direction.

In the original work of Janin andWalukiewicz [JW96], an important step of the
proof is to define a construction (−)• that transforms automata from Aut(FOE1),
which correspond to MSO, to automata of Aut(FO1), which correspond to µML.
A key observation made by Venema in [Ven14] is that the construction (−)• is
completely determined at the one-step level, by a translation (−)•1 : FOE1 → FO1

satisfying certain properties. Intuitively, if we prove that FOE1/↔ ≡ FO1 (recall
that these are relation-free logics) then we can get MSO/↔ ≡ µML without
too much work. We call this technique the “one-step approach” to bisimulation-
invariance proofs.

In this dissertation we show that this technique provides a nice modular way of
giving (automata-based) bisimulation-invariance proofs and, moreover, it works
for subclasses of parity automata. This one-step approach, however, requires a
detailed development of the model theory of the one-step logics in use.

Contribution (Chapter 5). We give normal forms and syntactic characteri-
zations of the monotone, continuous and completely additive fragments of many
(multi-sorted) one-step logics; among others we study the (relation-free) first-
order languages FO1, FOE1, FOE∞1 and the modal language ML1.

Weak MSO. Of particular importance in the setting of weak monadic second-
order logic is the difference between structures of finite versus arbitrary branching
degree. In the case of finitely branching models, it is not very hard to show that
WMSO is a (proper) fragment of MSO, and it seems to be folklore that WMSO/↔
corresponds to AFMC, the alternation-free fragment of the modal µ-calculus. For
binary trees, this result was proved by Arnold & Niwiński in [AN92]. In the case
of structures of arbitrary branching degree, however, WMSO and MSO have
incomparable expressive power.

For this reason, the relative expressive power of WMSO/↔ and MSO/↔ is
not a priori clear. However, it is reasonable to think that WMSO/↔ is strictly

1.5. Source of the material 21

weaker than AFMC: the class of well-founded trees, which is definable in AFMC
by the simple formula µp.2p, is not definable in WMSO. In this dissertation
we show that WMSO/↔ is indeed smaller than the alternation-free µ-calculus;
moreover, it coincides with µcML.

Contribution (Section 8.1.1). WMSO/↔ is effectively equivalent to µcML.

Propositional Dynamic Logic. Another contribution of this dissertation is
to give a characterization of PDL as the bisimulation-invariant fragment of a
second-order logic.

Contribution (Section 8.2.1). PDL is effectively equivalent to WCL/↔.

This characterization is admittedly not the most natural one. It is thought in
the modal logic community that, as FOE/↔ ≡ ML, then it would be natural to
have FO(TC1)/↔ ≡ PDL. However, there seems to be no proof of this result. In
the last part of Chapter 8 we go into a discussion on the bisimulation-invariant
fragment of FO(TC1). We discuss how our work makes progress towards it, and
possible approaches to obtain it.

1.5 Source of the material
The distribution of the material in this dissertation is somewhat atypical. This
manuscript contains extended and hopefully corrected versions of results pub-
lished in [CV14, CFVZ14a, CFVZ14b, Car15]. However, there is no direct map-
ping between the chapters of this dissertation and the mentioned articles.

The results on PDL are joint work with Yde Venema [CV14], and appear
in Chapter 3 (syntactic fragments) and Chapter 6 (automata characterizations).
The automata and bisimulation-invariance characterization for WCL were pub-
lished in [Car15] and appear respectively in Chapter 7 and Chapter 8.

The automata characterization of WMSO and µcML, and the characteriza-
tion of the bisimulation-invariance fragment of WMSO were given in [CFVZ14a,
CFVZ14b] and appear respectively in Chapter 7, Chapter 6 and Chapter 8. This
is joint work with Alessandro Facchini, Yde Venema and Fabio Zanasi.

The results and discussions for Concurrent PDL and Game Logic are unpub-
lished, and are were obtained in collaboration with Alessandro Facchini during
my research visit to the University of Warsaw in 2014.

The analysis of one-step logics done in Chapter 5 is partially taken from the
papers [CFVZ14a] and [Car15] but some of the results are still unpublished. The
rest of the results and discussions, including the equivalence of FO(TC1) and
µaFOE, are mostly unpublished.

Chapter 2

Preliminaries

2.1 Terminology, transition systems and trees

Throughout this dissertation we fix a set P of elements that will be called propo-
sition letters and denoted with small Latin letters p, q, etc. We also fix a set D
of atomic actions, which will usually correspond to the relations available in our
transition systems.

We use overlined boldface letters to represent sequences, for example a list of
variables x := x1, . . . , xn or a sequence of sets T ∈ ℘(S)n. We blur the distinction
between sets and sequences: a sequence may be used as a set comprised of the
elements of the list; in a similar way, we may assume a fixed order on a set and
see it as a list. To simplify notation, given a map f : An+m → B and a ∈ An,
a′ ∈ Am we write f(a, a′) to denote f(a1, . . . , an, a

′
1, . . . , a

′
m).

Given a binary relation R ⊆ X × Y , for any element x ∈ X, we use R[x] to
denote the set {y ∈ Y | (x, y) ∈ R} of R-successors of x. The relations R+ and
R∗ are defined respectively as the transitive closure of R and the reflexive and
transitive closure of R. The set Ran(R) is defined as

⋃
x∈X R[x]. Sometimes we

write p instead of {p} and Qp instead of Q ∪ {p}.

Transition systems. A labeled transition system (LTS) on the set of proposi-
tions P and actions D is a tuple S = 〈S,R`∈D, κ, sI〉 where S is the universe or
domain of S; the map κ : S → ℘(P) is a marking (or coloring) of the elements in
S; R` ⊆ S2 is the accessibility relation for the atomic action ` ∈ D; and sI ∈ S is
a distinguished node. We use R without a subscript to denote the binary relation
defined as R :=

⋃
`∈DR`. Given a transition system S and s ∈ S we use “S, s” to

denote the transition system which is exactly like S but where the distinguished
point has been changed from sI to s.

Observe that a marking κ : S → ℘(P) can be seen as a valuation κ\ : P→ ℘(S)
given by κ\(p) := {s ∈ S | p ∈ κ(s)}. We say that S is p-free if p /∈ P or p /∈ κ(s)
for all s ∈ S. Given a transition system based on P′ and a set Xp ⊆ S, we use

23

24 Chapter 2. Preliminaries

sI

s0

s00

`, `′

s01

`′

`

s1

s10

`

s11

`, `′

`

sI

s0

s00

`

s01

`′

`

s1

s10

`

s11

`′

`

sI

s0

s01

`′

`

s1

s11

`′

`

`

Figure 2.1: A tree, a strict tree, and an LTS which is not a tree.

S[p 7→ Xp] to denote the transition system 〈S,R`∈D, κ′, sI〉 over P′∪{p} such that
for all s ∈ S we have κ′(s) \ {p} = κ(s) and p ∈ κ′(s) iff s ∈ Xp. Observe that
if p ∈ P′, the value of κ\(p) basically gets redefined, and if p /∈ P′ then κ\ gets
extended with κ\(p) := Xp. We use S[p�Xp] to denote S[p 7→ κ\(p) ∩ Xp]. This
notation extends to tuples of elements, as follows:

κ\(q) := κ\(q1), . . . , κ\(qn)

S[q 7→ X] := S[qi 7→ Xi | 1 ≤ i ≤ n]

S[q�X] := S[qi 7→ κ\(qi) ∩Xi | 1 ≤ i ≤ n].

Trees. A P-tree T is a transition system over P in which every node can be
reached from sI , and every node except sI has a unique R-predecessor; the
distinguished node sI is called the root of T. A tree is called strict when
Ran(R`) ∩ Ran(R`′) = ∅ for every ` 6= `′. Also observe that if there is only
one relation R, the notion of tree and strict tree coincide.

Each node s ∈ T uniquely defines a subtree of T with carrier R∗[s] and root s.
We denote this subtree by T.s. We use the term tree language as a synonym of
class of trees.

A path through S is a sequence π = (si)i<α of elements of S, where α is either
ω or a natural number, and (si, si+1) ∈ R for all i with i + 1 < α. The tree
unraveling of a transition system S is given by Ŝ := 〈Ŝ, R̂`∈D, κ̂, sI〉 where Ŝ is the
set of (D-decorated) finite paths sI →`1 e1 →`2 · · · →`n en in S stemming from
sI ; R̂`(t, t

′) holds iff t′ is an extension of t through the relation `; and the color
of a path t ∈ Ŝ is given by the color of its last node in S. The ω-unraveling Sω of
S is an unraveling which has ω-many copies of each node different from the root.

2.1.1. Remark. The (ω-)unraveling of a transition system is a strict tree.

Chains and generalized chains. Let S be an arbitrary transition system. A
chain on S is a set X ⊆ S such that (X,R∗) is a totally ordered set; i.e., the
following conditions are satisfied for every x, y ∈ X:

(antisymmetry) if xR∗y and yR∗x then x = y,

2.2. Games 25

(transitivity) if xR∗y and yR∗z then xR∗z,

(totality) xR∗y or yR∗x.

A finite chain is a chain based on a finite set. A generalized chain is a set X ⊆ S
such that X ⊆ P , for some path P of S. A generalized finite chain is a finite
subset X ⊆ S such that X ⊆ P , for some finite path P of S.

2.1.2. Fact. Every chain on S is also a generalized chain on S.

(a) (b) (c) (d)

1

2

3

4

5

6

7

1

23

4

5 6

2

3
4

5

6
7

1

2

8

9

1

2

3

4

5

6

7

Figure 2.2: Examples and counter-examples of chains.

In Fig. 2.2 we show some examples of (generalized) chains and non-chains:
in (a) the set Xa = {2, 4} is a finite chain. In (b) the generalized finite chain
Xb = {1, 2, 3, 4, 5, 6} is witnessed, among others, by the path 3→ 4→ 5→ 6→
1→ 2. Observe, however, that Xb is not a chain, since there is no possible total
ordering of Xb by R∗ (antisymmetry fails). In (c) the generalized finite chain
Xc = {1, 3, 4, 5, 6, 7, 9} is witnessed by the path 1→ 2→ · · · → 7→ 2→ 8→ 9;
observe that the element 2 is repeated in the path. Again, Xc is not a finite chain.
In the last example (d), the set Xd = {1, 2, 4, 6} is not a generalized chain (and
hence not a chain).

The following proposition states a useful relationship between chains and gen-
eralized chains: on trees this distinction vanishes.

2.1.3. Proposition. On trees, chains and general chains coincide.

Proof. Observe that every path on a tree T sits inside some branch of T. There-
fore every generalized chain X can be embedded in some branch of T and hence
(X,R∗) will be a total order. The key concept in the background is that on trees
there are no cycles. �

2.2 Games
We introduce some terminology and background on infinite games. All the games
that we consider involve two players called Éloise (∃) and Abelard (∀). In some

26 Chapter 2. Preliminaries

contexts we refer to a player Π to specify a a generic player in {∃,∀}. Given a
set A, by A∗ and Aω we denote respectively the set of words (finite sequences)
and streams (or infinite words) over A.

A board game G is a tuple (G∃, G∀, E,Win), where G∃ and G∀ are disjoint
sets whose union G = G∃ ∪ G∀ is called the board of G, E ⊆ G × G is a binary
relation encoding the admissible moves, and Win ⊆ Gω is a winning condition.
An initialized board game G@uI is a tuple (G∃, G∀, uI , E,Win) where uI ∈ G is
the initial position of the game. A special case of winning condition is induced
by a parity function Ω : G→ N by defining

WinΩ := {g ∈ Gω | the minimum parity occurring infinitely often in g is even}.
In this case, we say that G is a parity game and write G = (G∃, G∀, E,Ω).

Given a board game G, a match of G is simply a path through the graph
(G,E); that is, a sequence π = (ui)i<α of elements of G, where α is either ω or a
natural number, and (ui, ui+1) ∈ E for all i with i + 1 < α. A match of G@uI is
supposed to start at uI . Given a finite match π = (ui)i<k for some k < ω, we call
last(π) := uk−1 the last position of the match; the player Π such that last(π) ∈ GΠ

is supposed to move at this position, and if E[last(π)] = ∅, we say that Π got
stuck in π. A match π is called total if it is either finite, with one of the two
players getting stuck, or infinite. Matches that are not total are called partial.
Any total match π is won by one of the players: If π is finite, then it is won by
the opponent of the player who gets stuck. Otherwise, if π is infinite, the winner
is ∃ if π ∈Win, and ∀ if π 6∈Win.

Given a board game G and a player Π, let PMG
Π denote the set of partial

matches of G whose last position belongs to player Π. A strategy for Π is a
function f : PMG

Π → G. A match π = (ui)i<α of G is f -guided if for each i < α
such that ui ∈ GΠ we have that ui+1 = f(u0, . . . , ui). Let u ∈ G and f be a
strategy for Π. We say that f is a surviving strategy for Π in G@u if

(i) For each f -guided partial match π of G@u, if last(π) is in GΠ then f(π) is
legitimate, that is, (last(π), f(π)) ∈ E.

We say that f is a winning strategy for Π in G@u if, additionally,

(ii) Π wins each f -guided total match of G@u.

If Π has a winning strategy for G@u then u is called a winning position for Π in G.
The set of positions of G that are winning for Π is denoted by WinΠ(G). A strategy
f is called positional if f(π) = f(π′) for each π, π′ ∈ Dom(f) with last(π) =
last(π′). A board game G with board G is determined if G = Win∃(G)∪Win∀(G),
that is, each u ∈ G is a winning position for one of the two players. For parity
games, strategies can be assumed to be positional and every game is determined.

2.2.1. Fact ([EJ91, Mos91]). For every parity game G, there are positional
strategies f∃ and f∀ respectively for player ∃ and ∀, such that for every position
u ∈ G there is a player Π such that fΠ is a winning strategy for Π in G@u.

2.3. Parity automata 27

From now on, we always assume that each strategy we work with in parity games
is positional. Moreover, we will think of a positional strategy fΠ for player Π as
a function fΠ : GΠ → G.

2.3 Parity automata

We recall the definition of a parity automaton, adapted to our setting. As we will
be running parity automata over transition systems with many relations, we will
need to use multi-sorted one-step models. Intuitively, each sort corresponds to
one of the relations of the transition system. Since we will be comparing parity
automata defined in terms of various one-step languages, it makes sense to make
the following abstraction.

2.3.1. Definition. Given a finite set A and sorts S = {s1, . . . , sn}, we define a
one-step model to be a tupleD = (Ds1 , . . . , Dsn , V) consisting of setsDs1 , . . . , Dsn

and a valuation V : A → ℘(
⋃

sDs). We use D to denote the set
⋃

sDs which
we call the domain of D. A one-step model is called strict when the sets Ds∈S
are pairwise disjoint, that is, when Ds1 , . . . , Dsn provide a partition of D. De-
pending on context, elements of A will be called monadic predicates, names or
propositional variables. When the sets Ds∈S are not relevant we will just write
the one-step model as (D, V). The class of all one-step models will be denoted
by M1 and the class of all strict one-step models will be denoted by Ms

1.

1 2 3 4 5 6

{} {b} {a} {a, b} {} {a}

s1 s2 s3

Figure 2.3: One-step model with sorts (above) and valuation (below).

A (multi-sorted) one-step language is a map L assigning to each finite set A
and sorts S, a set L(A,S) of objects called one-step formulas over A (on sorts
S). When the sorts are understood from context (or fixed) we simply write L(A)
instead of L(A,S). We require that L(

⋂
iAi,S) =

⋂
i L(Ai,S), so that for each

ϕ ∈ L(A,S) there is a smallest Aϕ ⊆ A such that ϕ ∈ L(Aϕ,S); this Aϕ is the
set of names that occur in ϕ.

We assume that one-step languages come with a truth relation: given a one-
step model D, a formula ϕ ∈ L is either true or false in D, denoted by, respec-
tively, D |= ϕ and D 6|= ϕ. We also assume that L has a positive fragment L+

characterizing monotonicity. We say that a formula ϕ ∈ L(A,S) is monotone in
a ∈ A iff (D, V) |= ϕ implies (D, V [a 7→ E]) |= ϕ whenever V (a) ⊆ E. Hence, we
require that ϕ ∈ L(A,S) is monotone in all a ∈ A iff it is equivalent to a formula
ϕ′ ∈ L+(A,S).

28 Chapter 2. Preliminaries

Observe that every valuation V : A → ℘(D) can equivalently be seen as a
marking (or coloring) V \ : D → ℘(A) given by V \(d) := {a ∈ A | d ∈ V (a)}
and as a relation ZV := {(a, d) | d ∈ V (a)}. We will use these perspectives
interchangeably.

2.3.2. Definition. A parity automaton based on the one-step language L, ac-
tions D and alphabet ℘(P) is a tuple A = 〈A,∆,Ω, aI〉 such that A is a finite set
of states of the automaton, aI ∈ A is the initial state, ∆ : A× ℘(P)→ L+(A,D)
is the transition map, and Ω : A → N is the parity map. The collection of such
automata will be denoted by Aut(L,P,D). For the rest of the manuscript we fix
the set of actions D and omit it in our notation; we also omit the set P when clear
from context or irrelevant.

Acceptance and rejection of a transition system by an automaton is defined
in terms of the following parity game.

2.3.3. Definition. Given an automaton A = 〈A,∆,Ω, aI〉 in Aut(L,P) and a
P-transition system S = 〈S,R`∈D, κ, sI〉, the acceptance game A(A,S) of A on S
is the parity game defined according to the rules of the following table.

Position Pl’r Admissible moves Parity
(a, s) ∈ A× S ∃ {V : A→ ℘(R[s]) | (R[s], V) |= ∆(a, κ(s))} Ω(a)
V : A→ ℘(S) ∀ {(b, t) | t ∈ V (b)} max(Ω[A])

In this case (R[s], V) denotes (R`1 [s], . . . , R`n [s], V). A transition system S is
accepted by A if ∃ has a winning strategy in A(A, S)@(aI , sI), and rejected if
(aI , sI) is a winning position for ∀.

Given an automaton A and a transition system S we write S A and S |= A
when A accepts S. The former notation is used when the one-step language of the
automaton is modal, and the latter notation is used when the one-step language
is first-order (more on this will be discussed in Chapter 4). Given a state a ∈ A
we use “A, a” to denote the automaton which is like A but where the initial state
is now a.

2.3.4. Definition. Observe that given a parity automaton A we can induce a
graph on A by setting a transition from a to b (notation: a ; b) if b occurs
in ∆(a, c) for some c ∈ ℘(P). We let the reachability relation � denote the
reflexive-transitive closure of the relation ;.

A strongly connected component (SCC) of an automaton A is a subset C ⊆ A
such that for every b, c ∈ C we have b � c and c � b. The SCC is called maximal
(MSCC) when no proper extension of C is an SCC.

Closure under complementation. Many properties of parity automata can
already be determined at the one-step level. An important example concerns the
notion of complementation.

2.4. The modal µ-calculus 29

2.3.5. Definition. Two one-step formulas ϕ and ψ are each other’s Boolean
dual if for every structure (D, V) we have:

(D, V) |= ϕ iff (D, V c) 6|= ψ,

where V c is the valuation given by V c(a) := D \ V (a), for all a. A one-step
language L is closed under Boolean duals if for every set A, each formula ϕ ∈ L(A)
has a Boolean dual ϕδ ∈ L(A).

Following ideas from [MS87, KV09], we can use Boolean duals, together with
a role switch between ∀ and ∃, in order to define a negation or complementation
operation on automata.

2.3.6. Definition. Assume that, for some one-step language L, the map (−)δ

provides, for each set A, a Boolean dual ϕδ ∈ L(A) for each ϕ ∈ L(A). Given
A = 〈A,∆,Ω, aI〉 in Aut(L) we define its complement Aδ as the automaton
〈A,∆δ,Ωδ, aI〉 where ∆δ(a, c) := (∆(a, c))δ, and Ωδ(a) := 1 + Ω(a), for all a ∈ A
and c ∈ ℘(P).

2.3.7. Proposition. Let L and (−)δ be as in the previous definition. For each
automaton A ∈ Aut(L) and each transition system S we have that

Aδ accepts S iff A rejects S.

The proof of Proposition 2.3.7 is based on the fact that the power of ∃ in
A(Aδ, S) is the same as that of ∀ in A(A,S), as defined in [KV09].

As an immediate consequence of this proposition, one may show that if the
one-step language L is closed under Boolean duals, then the class Aut(L) is closed
under taking complementation. Further on in Chapter 4 we will use Proposi-
tion 2.3.7 to show that the same may apply to some subclasses of Aut(L).

2.4 The modal µ-calculus

The modal µ-calculus extends the basic modal language with a mechanism for
forming least (and greatest) fixpoints.

2.4.1. Definition. The language of the modal µ-calculus (µML) on proposi-
tions P and actions D is given by the following grammar:

ϕ ::= q | ¬ϕ | ϕ ∨ ϕ | 〈`〉ϕ | µp.ϕ

where p, q ∈ P, ` ∈ D and p is positive in ϕ (i.e., p is under an even number of
negations).

30 Chapter 2. Preliminaries

A formula ϕ ∈ µML is clean if no two distinct (occurrences of) fixed point
operators in ϕ bind the same variable, and no variable has both free and bound
occurrences in ϕ. If p is a bound variable of a clean formula, we use δp to denote
the binding definition of p and σp to denote the binding type of p. That is, σpp.δp
is the unique subformula of ϕ binding p, with σp ∈ {µ, ν}. In this dissertation we
will assume without loss of generality that our formulas are clean.

The semantics of this language is completely standard. Let S be a transition
system we define it by induction.

S p iff p ∈ κ(sI),

S ¬ϕ iff S 6 ϕ,
S α ∨ β iff S α or S β,
S 〈`〉ϕ iff there exists t ∈ S such that R`(sI , t) and S, t ϕ,
S µp.ψ iff sI ∈

⋂
{X ⊆ S | X ⊇ Fψ

p (X)}.

The map Fψ
p (X) is given as follows:

2.4.2. Definition. For every formula ϕ ∈ µML and propositional variables p
we define, for every transition system S, the map Fϕ

p : ℘(S)n → ℘(S) induced by
ϕ and p as:

Fϕ
p (X) := {s ∈ S | S[p 7→ X], s ϕ}

As the formulas under the fixpoints are positive, their corresponding maps
will be monotone. Hence, by the Knaster-Tarski theorem we know that the least
fixpoint of such a map exists, and that it is precisely given by the expression⋂{X ⊆ S | X ⊇ Fψ

p (X)}. The extension of a formula ϕ ∈ µML in a transition
system S is given by JϕKS := {s ∈ S | S, s ϕ}. The superscript is dropped when
the transition system is clear from context.

2.4.3. Fact. Every formula of µML is equivalent to a formula in negation nor-
mal form, given by the following grammar:

ϕ ::= q | ¬q | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | [`]ϕ | µp.ϕ | νp.ϕ

where p, q ∈ P, ` ∈ D and p is positive in µp.ϕ and νp.ϕ (i.e., p is not negated).

We use the symbol ♥ to refer to an arbitrary modality 〈`〉 or [`] for some `.
The free variables FV(ϕ) of ϕ are the propositional variables which occur in ϕ
and are not bound by a fixpoint operator. We use α E β to denote that β is a
(not necessarily proper) subformula of α. It may be useful to think of this symbol
as if β was ‘hanging from’ the syntactic tree of α.

2.5. Logics of programs and games 31

Formulas of the modal µ-calculus are classified according to their alternation
depth, which roughly is given as the maximal length of a chain of nested alternat-
ing least and greatest fixpoint operators [Niw86]. The alternation-free fragment
of the modal µ-calculus (AFMC) is the collection of µML-formulas without nest-
ing of least and greatest fixpoint operators.

2.4.4. Definition. Let ϕ be a formula of the modal µ-calculus. We say that
ϕ ∈ AFMC iff for all subformulas µp.ψ1 and νq.ψ2 we have that p is not free in
ψ2 and q is not free in ψ1.

It is not difficult to see that, over arbitrary transition systems, this fragment
is less expressive than the whole µML. That is, there is a µML-formula ϕ such
that there is no equivalent formula of AFMC [Par80].

Another interesting fragment of the µ-calculus is the k-variable fragment,
denoted µML[k]. That is, the fragment where only k fixpoint variables might be
(re)used. These fragments naturally define a hierarchy (the variable hierarchy)
which has been shown to be strict by Berwanger [Ber05, BGL05].

Finite approximants of monotone maps. Let F : ℘(S)→ ℘(S) be a mono-
tone map. The approximants of the least fixpoint of F are the sets Fα(∅) ⊆ S,
where α is an ordinal. The map Fα is intuitively the α-fold composition of F .
Formally,

• F 0(X) := ∅,

• Fα+1(X) := F (Fα(X)),

• F λ(X) :=
⋃
α<λ F

α(X) for limit ordinals λ.

The sets Fα(∅) are called approximants because of the following fact.

2.4.5. Fact. For every s ∈ S we have that s ∈ LFP(F) if and only if s ∈ F β(∅)
for some ordinal β.

Moreover, this approximation starts at F 0(∅) = ∅ and grows strictly until
it stabilizes for some ordinal β. This ordinal is called the closure or unfolding
ordinal of F .

2.5 Logics of programs and games

2.5.1 Propositional Dynamic Logic

The language now called Propositional Dynamic Logic was first investigated by
Fischer and Ladner [FL79] as a logic to reason about computer program execu-
tion. In particular, the focus is on non-deterministic programs. PDL extends

32 Chapter 2. Preliminaries

the basic modal logic with an infinite collection of diamonds 〈π〉 where the in-
tended intuitive interpretation of 〈π〉ϕ is that “some terminating execution of the
program π from the current state leads to a state satisfying ϕ”.

The inductive structure of programs is made explicit in PDL’s syntax, as com-
plex programs are built out of atomic programs using four program constructors.

2.5.1. Definition. The language of Propositional Dynamic Logic (PDL) on
propositions P and atomic actions D is given by mutual induction on formulas
(ϕ) and programs (π):

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π ::= ` | π;π | π ⊕ π | π∗ | ϕ?

where p ∈ P and ` ∈ D. We denote this logic by PDL(P,D) and drop P,D when
clear from context. As an abuse of notation we write π ∈ PDL(P,D) to mean
that π is a program of PDL(P,D). The logic called test-free PDL (and denoted
PDLtf) is defined as PDL without the test program “ϕ?”.

Given a formula ϕ ∈ PDL we use FV(ϕ) to denote the propositional variables
occurring in ϕ. This notation extends naturally to programs. Given X ⊆ P we
say that ϕ is X-free if X ∩ FV(ϕ) = ∅.

We give the semantics of PDL by mutual induction, together with the rela-
tion RS

π induced by a program π on a transition system S:

RS
` := R` RS

π;% := RS
π ◦RS

%

RS
π⊕% := RS

π ∪RS
% RS

π∗ := (RS
π)∗

RS
ϕ? := {(s, s) ∈ S × S | S, s ϕ}.

The symbol ◦ denotes relational composition: if R ⊆ X × Y and R′ ⊆ Y × Z
are two binary relations, then their composition R ◦ R′ is the relation given by
R ◦R′ := {(x, z) ∈ X × Z | ∃y ∈ Y : (x, y) ∈ R ∧ (y, z) ∈ R′}.

The semantics of PDL is then given as usual on the Boolean operators and as
follows on modal operators.

S, s 〈π〉ϕ iff there exists t ∈ S such that RS
π(s, t) and S, t ϕ.

We drop the superscript in RS
π when it is clear from context.

2.5.2. Example. One of the most salient properties of PDL is the possibility to
express that there is some R`-path such that p is true at the end, with the formula

2.5. Logics of programs and games 33

〈`∗〉p. This property is not first-order definable. Moreover, many programming-
language constructs can be expressed [GW05, Section 3.2]:

skip := >?

abort := ⊥?

if ϕ then π1 else π2 := (ϕ?;π1)⊕ (¬ϕ?;π2)

while ϕ do π := (ϕ?;π)∗;¬ϕ?

repeat π until ϕ := π;(¬ϕ?;π)∗;ϕ?

For technical reasons, it will be sometimes convenient for us to work with a
version of PDLtf that includes the empty program ε (or skip), which is interpreted
as the identity relation in any labeled transition system. Observe that in full PDL,
the role of ε can be taken by the test program >?.

2.5.3. Remark. It is not difficult to show that adding the skip program does
not add expressive power to PDLtf . To see this, think of the programs of PDLtf

and PDLtfε as the sets of regular expressions over the set D that may and may
not use the empty string symbol ε, respectively. Let ≡` denote the relation of
language equivalence between regular expressions, that is, write π ≡` π′ if π and
π′ denote the same regular language over D.

One may show, by induction on programs, that for any π ∈ PDLtfε either
(a) π ≡` ε, or there is a program % ∈ PDLtfε such that either (b) π ≡` % or (c)
π ≡` ε ⊕ %. Based on this observation we may inductively define a translation
from PDLtfε-formulas to PDLtf -formulas; the key clause of this translation uses
that 〈π〉ϕ is equivalent to either (a) ϕ, (b) 〈%〉ϕ or (c) ϕ ∨ 〈%〉ϕ.

2.5.2 Concurrent PDL

Concurrent PDL is an extension of PDL introduced by Peleg in [Pel85]. This
language contains an operator ⊗ which is the dual of ⊕ and adds expressive
power to PDL. The intuition behind this new operator is that the program
π1 ⊗ π2 suceeds when both π1 and π2 can be executed simultaneously.

2.5.4. Definition. The language of Concurrent PDL (CPDL) on propositions
P and atomic actions D is given by mutual induction on formulas and programs:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π ::= ` | π;π | π ⊕ π | π ⊗ π | π∗ | ϕ?

where p ∈ P, ` ∈ D.

2.5.5. Example. Concurrent PDL features the simultaneous execution of pro-
grams. For example the formula ϕ := 〈(`⊗ `′)∗〉p expresses that I can reach a
state where p holds in a finite amount of steps, while in each step the program
must be able to execute both an ` and `′ transitions.

34 Chapter 2. Preliminaries

(false) (true)

q

p

q

p

p

p pp p

The above figure shows two transition systems where R` is represented by solid
edges and R`′ is represented by dashed edges. In the left one ϕ is false in the
root, and in the right one it is true in the root.

From the above example we see that the execution of a CPDL program cannot
be seen as a path on a transition system, as it was possible with PDL. In this
case, the program π1 ⊗ π2 forced a branching, given by the (parallel) execution
of π1 and π2. This means that programs of CPDL do not (necessarily) induce
a relation on a given transition system. We need the following definition (which
is taken from Pauly [Pau01]) to give semantics to CPDL. For every transition
system S and program π ∈ CPDL we define a function R�

π : ℘(S)→ ℘(S).

R�
` (X) := R−1

` [X] R�
π;π′(X) := R�

π (R�
π′(X))

R�
π⊕π′(X) := R�

π (X) ∪R�
π′(X) R�

π⊗π′(X) := R�
π (X) ∩R�

π′(X)
R�
ϕ?(X) := JϕK ∩X R�

π∗(X) := µY.(X ∪R�
π (Y))

Finally we define the semantics of CPDL as usual on Booleans and

S, s 〈π〉ϕ iff s ∈ R�
π (JϕK).

2.5.6. Theorem ([Pel85, Theorem 2.8]). PDL (CPDL.

2.5.7. Remark. Another extension of PDL is the so-called PDL with intersec-
tion (see [HTK00, Section 10.4] and [Dan84, Har83]). This language adds the
intersection operator π1 ∩ π2 to the available programs. The semantic of this
operator is given as RS

π∩% := RS
π ∩ RS

%. We want to remark that the operators ∩
and ⊗ are not the same. For example, the formula 〈`⊗ `′〉q is true on the left
transition system of Example 2.5.5 while the formula 〈` ∩ `′〉q is false in both of
the transition systems.

2.5.3 Game Logic

Game Logic was introduced by Parikh [Par85] and extends PDL with all program
duals which, in this context, are called games.

2.5. Logics of programs and games 35

2.5.8. Definition. The language of Game Logic (GL) on propositions P and
atomic actions D is given by mutual induction on formulas and games:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ
π ::= ` | π;π | π ⊕ π | π∗ | ϕ? | πδ

where p ∈ P and ` ∈ D.

Game Logic was originally meant to be interpreted in (monotone) neighbor-
hood models.1 However, as transition systems are a special case of neighborhood
models, it is easy to define a semantics directly for our case. We extend the
semantics of CPDL with the following clause for the dual program:

R�
πδ(X) := S \R�

π (S \X)

Finally we define the semantics of GL as usual on Booleans and

S, s 〈π〉ϕ iff s ∈ R�
π (JϕK).

It is worth remarking that GL (and therefore CPDL and PDL) can be trans-
lated to the modal µ-calculus. This connection will be studied in more detail in
Section 3.3 of this dissertation.

2.5.9. Theorem ([Pau01, Section 7.2.2]). GL ⊆ µML.

The syntax of Game Logic can also be presented entirely in dual (and negation)
normal form, as follows.

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈π〉ϕ | [π]ϕ

π ::= ` | `δ | π;π | π ⊕ π | π ⊗ π | π∗ | π◦ | ϕ? | ϕ!

where p ∈ P, ` ∈ D and `δ represents the dual of `. In this presentation, every pro-
gram construction has an explicit dual. The semantics of the new constructions
is given as π◦ := ((πδ)∗)δ and ϕ! := ((πδ)?)δ.

2.5.10. Fact. Every formula ϕ ∈ GL is equivalent to some formula ϕ′ ∈ GL in
dual normal form.

1Neighbourhood models are a generalization of transition systems, where R ⊆ S × ℘(S).

36 Chapter 2. Preliminaries

2.6 Bisimulation

Bisimulation is a notion of behavioral equivalence between processes. For the
case of transition systems, it is formally defined as follows.

2.6.1. Definition. Let S = 〈S,R`∈D, κ, sI〉 and S′ = 〈S ′, R′`∈D, κ′, s′I〉 be transi-
tion systems. A bisimulation is a relation Z ⊆ S × S ′ such that for all (t, t′) ∈ Z
the following holds:

(atom) p ∈ κ(t) iff p ∈ κ′(t′) for all p ∈ P;

(forth) for all ` ∈ D and s ∈ R`[t] there is s′ ∈ R′`[t′] such that (s, s′) ∈ Z;
(back) for all ` ∈ D and s′ ∈ R′`[t′] there is s ∈ R`[t] such that (s, s′) ∈ Z.

Two transition systems S and S′ are bisimilar (denoted S ↔ S′) if there is a
bisimulation Z ⊆ S × S ′ containing (sI , s

′
I).

The following fact about tree unravelings is central in many theorems of modal
logics. It will also play an important role in this dissertation.

2.6.2. Fact. S and its unraveling Ŝ are bisimilar, for every transition system S.

An important concept in the last part of this dissertation is that of bisimula-
tion invariance. It is defined as follows for an arbitrary language L:

2.6.3. Definition. A formula ϕ ∈ L is bisimulation-invariant if S↔ S′ implies
that S ϕ iff S′ ϕ, for all S and S′.

2.6.4. Fact. Every formula of µML (and therefore of GL, CPDL and PDL) is
bisimulation-invariant.

2.7 First-order logic and extensions

We start by introducing the syntax and semantics of first-order logic and then
discuss some extensions that will be used in this dissertation.

2.7.1. Definition. The language of first-order logic with equality (FOE) on a
set of predicates P, actions D and individual variables iVar is given by:

ϕ ::= q(x) | R`(x, y) | x ≈ y | ∃x.ϕ | ¬ϕ | ϕ ∨ ϕ

where p, q ∈ P, ` ∈ D and x, y ∈ iVar. We use FO to denote first-order logic
without equality, which is defined as FOE but without the ≈ predicate.

2.7. First-order logic and extensions 37

The free variables FV(ϕ) of a formula ϕ ∈ FOE are the individual variables
which are not bound by a quantifier. The inductive definition of FV(ϕ) is stan-
dard.

2.7.2. Remark. Every logic in this dissertation will be function-free. That is,
we will not consider logics with function symbols in their signature.

Formulas of FOE will be interpreted over models M = 〈M,R`∈D, κ〉 with an
assignment g : iVar → M . Usually, first-order structures (for the signature that
we use) are given as tuples 〈M,R`∈D, P1, . . .〉 where Pi ⊆M . However, this same
information is encoded in M, since Pi = κ\(pi). The semantics of FOE (and also
FO) is standard, given as follows:

M, g |= pi(x) iff pi ∈ κ(g(x))

M, g |=| x ≈ y iff g(x) = g(y)

M, g |= R`(x, y) iff R`(g(x), g(y))

M, g |= ¬ϕ iff M, g 6|= ϕ

M, g |= ϕ ∨ ψ iff M, g |= ϕ or M, g |= ψ

M, g |= ∃x.ϕ iff there is s ∈M such that M, g[x 7→ s] |= ϕ.

2.7.1 First-order logic with generalized quantifiers

In this subsection we introduce an extension of first-order logic with so called
generalized quantifiers. Mostowski [Mos57] defined unary generalized quantifiers
as follows: a unary generalized quantifier Q is a collection of pairs (J,X) with
X ⊆ J , and satisfying the following condition

If
(
(J,X) ∈ Q, |X| = |Y | ∧ |J \X| = |K \ Y |

)
then (K,Y) ∈ Q.

The semantics of Q is then defined by the following condition

M, g |= Qx.φ(x) iff (M, {s ∈M |M, g[x 7→ s] |= φ(x)}) ∈ Q,
for every model M and assignment g.

In this dissertation we will only focus on the generalized quantifier ∃∞ ex-
pressing that there exist infinitely many elements satisfying a certain condition.
Formally, it is defined as:

∃∞ := {(J,X) | |X| ≥ ℵ0}.
The dual of ∃∞ is ∀∞ = {(J,X) | |J \ X| < ℵ0}. It is worth observing what is
the intended meaning of this quantifier: ∀∞x.ϕ expresses that there are at most
finitely many elements falsifying the formula ϕ.

2.7.3. Definition. The extension of first-order logic with equality (FOE) ob-
tained by adding ∃∞ to the corresponding first-order language is denoted FOE∞.

38 Chapter 2. Preliminaries

2.7.2 Fixpoint extension of first-order logic

In this subsection we give an extension of FOE with a unary fixed point operator.
This extension is known in the literature as FO(LFP1) but we will call it µFOE to
keep a consistent notation for fixpoint extensions (e.g., we use µL for a base logic
L) and fragments thereof (e.g. µXL where X is some restriction on the fixpoint).

Because of the presence of individual variables, the syntax and semantics of
the fixpoint operator is considerably more involved than for the modal µ-calculus.

2.7.4. Definition. The language of first-order logic with equality and unary
fixpoints (µFOE) on a set of predicates P, actions D and individual variables iVar
is given by:

ϕ ::= q(x) | R`(x, y) | x ≈ y | ∃x.ϕ | ¬ϕ | ϕ ∨ ϕ | [LFPp:x.ϕ(p, x)](z)

where p, q ∈ P, ` ∈ D and x, y ∈ iVar. Observe that z is free in the fixpoint clause
and the fixpoint operator binds the designated variables x and p.

The free variables FV(ϕ) of a formula ϕ ∈ µFOE are obtained by extending
the standard definition of FV for FOE with the clause

FV([LFPp:x.ϕ(p, x)](z)) := (FV(ϕ) \ {x}) ∪ {z}.
The semantics of the fixpoint formula [LFPp:x.ϕ(p, x)](z) is the expected one

(as introduced in [CH82, Mos08, Mos74]). First we give a slightly more general
definition than we need right now (which will be useful later). For every model
M, assignment g, and predicates (propositions) Q, the map Fϕ

Q:x : ℘(M)→ ℘(M)
is given as:

Fϕ
Q:x(Y) := {t ∈M |M[Q 7→ Y], g[x 7→ t] |= ϕ(Q, x)}.

The formulaM, g |= [LFPp:x.ϕ(p, x)](z) is then defined to hold iff g(z) ∈ LFP(Fϕ
p:x).

That is, if g(z) is in the least fixpoint of the map Fϕ
p:x.

2.7.5. Remark. Suppose that ϕ ∈ µFOE has free variables FV (ϕ) = {x,y}. If
we consider the fixpoint formula ψ := [LFPp:x.ϕ(p, x)](z) then ψ would have as
free variables FV (ψ) = {z,y}. The free variables of ϕ which are not bound by
the fixpoint (in this case y) are called the parameters of the fixpoint.

Parameters can always be avoided at the expense of increasing the arity of the
fixpoint [Lib04, p. 184]. That is, for example, taking the fixpoint over a relation
P (x1, . . . , xn) instead of just a predicate p. However, in this dissertation we will
only consider fixpoints over unary predicates, and therefore we will allow the use
of parameters unless explicity stated.

The language of µFOE can also be further extended with a greatest fixpoint op-
erator [GFPp:x.ϕ(p, x)](z) whose semantics are given byM, g |= [GFPp:x.ϕ(p, x)](z)
iff g(z) ∈ GFP(Fϕ

p:x). However, this extension does not add expressive power, since
it is possible to prove that [GFPp:x.ϕ(p, x)](z) ≡ ¬[LFPp:x.¬ϕ(¬p, x)](z).

2.7. First-order logic and extensions 39

2.7.3 First-order logic with transitive closure

It is well known that the reflexive-transitive closure R∗ of a binary relation R is
not expressible in first-order logic [Fag75]. Therefore, a straightforward way to
extend first-order logic is to add a reflexive-transitive closure operator:

[TCx,y.ϕ(x,y)](u,v)

which states that (u,v) belongs to the transitive closure of the relation denoted
by ϕ(x,y). In the above expression, the sequences of variables x,y,u,v should
all be of the same length; this length is called the arity of the transitive closure.
This extension of first-order logic, called FO(TC) or sometimes transitive-closure
logic, was introduced by Immerman in [Imm87] where he showed that it captures
the class of NLOGSPACE queries (on ordered structures).

The fragment FO(TCk) of FO(TC) is given by restricting the arity of the
transitive closure to length at most k. These fragments naturally induce a hier-
archy (the arity hierarchy) for FO(TC), which was proven strict for finite mod-
els [Gro96]. Moreover, in some restricted classes of trees, full FO(TC) is even
more expressive than MSO [TK09]. In this dissertation, however, we restrict our
attention to FO(TC1), which is FO(TC) restricted to sequences of length one;
that is, the reflexive-transitive closure can only be applied to formulas ϕ(x, y)
defining a binary relation. FO(TC1) is easily seen to be included in MSO.

2.7.6. Definition. The first-order logic with reflexive-transitive closure of bi-
nary formulas is given by the following grammar:

ϕ ::= p(x) | x ≈ y | R`(x, y) | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | [TCx,y.ϕ(x, y)](z, w)

where p, q ∈ P, ` ∈ D and x, y, z, w ∈ iVar. We denote this logic by FO(TC1).
The semantics for the new operator are:

M, g |= [TCx,y.ϕ(x, y)](u, v) iff (g(u), g(v)) ∈ R∗ϕ

where Rϕ := {(sx, sy) ∈M ×M |M, g[x 7→ sx, y 7→ sy] |= ϕ}.

The notion of “parameter” also makes sense for this logic. We say that z is a
parameter of [TCx,y.ϕ(x, y)](u, v) if z ∈ FV(ϕ) and z /∈ {x, y}.

2.7.7. Remark. The meaning of [TCx,y.ϕ(x, y)](u, v) can be rephrased as saying
that v ∈ ϕ∗[u]; that is, v is a ϕ-descendant of u. This can be expressed with the
formula [LFPp:y.y ≈ u ∨ (∃x.p(x) ∧ ϕ(x, y))](v) –cf. [GKL+05, Example 3.3.8].
However, observe that in order to express the transitive closure with a unary
fixpoint, we had to use u as a parameter of the fixpoint. This variable parameter
was not a parameter in the original transitive-closure.

40 Chapter 2. Preliminaries

2.8 Second-order logics
In this section we define three different monadic second-order logics: standard
monadic-second order logic, weak monadic second-order logic and weak chain
logic. The syntax of the three logics will be the same, but their semantics will
differ in the interpretation of the second-order quantifier ∃p.ϕ.

Monadic second-order logic. In this dissertation we will mostly work with one-
sorted versions of second-order logics, since these will be better suited to work with
automata. That is, instead of having both individual (first-order) variables and
set (second-order) variables, we will only have second-order variables. Individual
variables can clearly be seen as special singleton set variables. We introduce the
required definitions and promptly discuss this topic a bit further.

2.8.1. Definition. The single-sorted monadic second-order logic (MSO) on a
set of predicates P and actions D is given by:

ϕ ::= ⇓p | p v q | R`(p, q) | ¬ϕ | ϕ ∨ ϕ | ∃p.ϕ

where p, q ∈ P and ` ∈ D. We denote this logic by MSO(P,D) and omit P and
D when clear from context. We adopt the standard convention that no letter is
both free and bound in ϕ.

2.8.2. Definition. Let S be a labeled transition system. The semantics of MSO
is defined as follows:

S |= ⇓p iff κ\(p) = {sI}
S |= p v q iff κ\(p) ⊆ κ\(q)

S |= R`(p, q) iff for all s ∈ κ\(p) there is t ∈ κ\(q) such that R`(s, t)

S |= ¬ϕ iff S 6|= ϕ

S |= ϕ ∨ ψ iff S |= ϕ or S |= ψ

S |= ∃p.ϕ iff there is a X ⊆ S such that S[p 7→ X] |= ϕ.

A digression on second-order languages. The reader may have expected a
more standard two-sorted language for second-order logic, for example given by:

ϕ ::= p(x) | R`(x, y) | x ≈ y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | ∃p.ϕ

where p ∈ P, ` ∈ D, x, y ∈ iVar (individual variables), and ≈ is the symbol for
equality. We call this language 2MSO. This semantics of this language is com-
pletely standard, with ∃x denoting first-order quantification (that is, quantifica-
tion over individual states) and ∃p denoting second-order quantification. Both
definitions can be proved to be equivalent.

2.8. Second-order logics 41

Formulas of 2MSO are interpreted over models M = 〈M,R`∈D, κ〉 with an
assignment, that is, a map g : iVar → M interpreting the individual variables
as elements of M . The key point is that MSO can interpret 2MSO by encoding
every individual variable x ∈ iVar as a set variable px denoting a singleton. The
following is a more detailed proof of the remark found in [Ven11].

2.8.3. Proposition. There is a translation (−)t : 2MSO(P,D) → MSO(P]
PX ,D) such that

M, g |= ϕ iff M[px∈iVar 7→ {g(x)}] |= ϕt,

where PX := {px | x ∈ iVar}.

Proof. The translation is inductively defined as follows:

• (p(x))t := px v p,

• (R`(x, y))t := R`(px, py),

• (x ≈ y)t := px v py ∧ py v px,

• Negation and disjunction as usual,

• (∃p.ϕ)t := ∃p.ϕt,
• (∃x.ϕ)t := ∃px.singleton(px) ∧ ϕt

where the translation crucially uses the predicates

empty(p) := ∀q.(p v q)

singleton(p) := ∀q.(q v p→ (empty(q) ∨ p v q))

Observe that the translation does not use the operator ⇓p and hence is well-
defined on models. We leave the proof of the proposition to the reader. �

Weak monadic second-order logic. This logic has basically the same syntax
as MSO. However, when we refer to this logic we will write its existential quan-
tifier as ∃finp.ϕ instead of ∃p.ϕ. The subscript of the quantifier emphasizes that
the quantification of this logic is over finite sets, instead of arbitrary sets:

S |= ∃finp.ϕ iff there is a finite X ⊆ S such that S[p 7→ X] |= ϕ.

We will denote the one- and two-sorted versions of this logic by WMSO(P,D) and
2WMSO(P,D) respectively.

2.8.4. Remark. The adjective “weak” is a bit misleading, since WMSO is in
general not a fragment of MSO. Indeed, the class of finitely branching trees is
not definable in MSO (see [Wal96]) but is defined using the WMSO-formula
∀x∃finX∀y.(R(x, y) → y ∈ X). The class of well-founded trees, on the other
hand, is definable in MSO but not in WMSO [CF11].

42 Chapter 2. Preliminaries

Weak chain logic. The non-weak version of chain logic (CL) was defined
in [Tho96], and studied in the context of trees. CL is a variant of MSO which
changes the usual second-order quantifier to the following quantifier over chains:

T |= ∃chp.ϕ iff there is a chain X ⊆ T such that T[p 7→ X] |= ϕ.

In this dissertation we will only work with a weak version of CL, that is, the
quantification will be over finite chains. On the other hand, we also want to
consider this logic on the class of all transition systems (as opposed to only trees).
To give a definition of weak chain logic we adhere to what we think is the “spirit”
of the definition of CL, as opposed to the “letter.” As observed in Section 2.1, the
concept of chain on trees coincides with that of “subset of a path.” Therefore, on
the class of all models, we choose to define the weak second-order quantifier as:

S |= ∃fchp.ϕ iff there is a generalized finite chain X ⊆ S s.t. S[p 7→ X] |= ϕ.

We will denote the one- and two-sorted versions of this logic by WCL(P,D) and
2WCL(P,D) respectively.

2.8.5. Remark. On trees, it is not difficult to see that WCL ⊆ MSO and
WCL ⊆WMSO, since finite chains are easily definable in both logics.

2.9 Notational convention
The following table works as a summary of the most used notation in this disser-
tation. It should be taken as a set of general rules from which we try to divert as
little as possible.

Concept Notation
Transition system (pointed model) S = 〈S,R`∈D, κ, sI〉
Tree (pointed tree) T = 〈T,R`∈D, κ, sI〉
Model M = 〈M,R`∈D, κ〉
One-step model D = (D, V : A→ ℘(D))
Automaton A,B, . . .
Formula ϕ, ψ, α, β, ξ, χ, . . . Φ,Ψ, . . .
Set A,B,C,D, . . . X, Y, Z,W, . . .

Sequence of objects x,y, . . . a,b, . . . X,Y, . . .
Propositional variable p, q, r, . . .
Individual (first-order) variable x, y, z, w, . . .
Second-order (set) variable X, Y, Z,W, . . . p, q, r, . . .

Assignment (of individual variables) g : iVar→M
Valuation (of names/propositions) V : A→ ℘(D), κ\ : P→ ℘(S)
Marking/coloring V \ : D → ℘(A), κ : S → ℘(P)

Chapter 3
Fragments of fixpoint logics

In this chapter we define and analyze fragments of both modal and first-order
fixpoint logics. The main method that we will use to define these fragments is
the restriction of the application of the fixpoint operator µp.ϕ (and the first-order
equivalent) to formulas ϕ having a special property. The main properties that we
consider are complete additivity and continuity, but we will also consider other
syntactic restrictions and their effects.

Complete additivity. In the first part of the chapter we study the notion of
complete additivity: we start with a characterization of the finite approximants
and fixpoints of completely additive maps. On the modal side, we define several
fragments of µML which are based on different variants of complete additivity
and perform a detailed analysis of their differences and similarities. The main
result related to this analysis are the equivalences

PDL ≡ µaML and PDLtf ≡ µ−aML

characterizing PDL and test-free PDL as fragments of the µ-calculus.
Next, we study complete additivity in the context of first-order with fixpoints.

In this case, our main result is the equivalence

FO(TC1) ≡ µaFOE.

stating that transitive-closure logic is equivalent to the completely additive restric-
tion of µFOE, which in a more standard notation would be called the completely
additive restriction of FO(LFP1).

Continuity. In the second part of this chapter we perform a similar analysis of
the notion of continuity, also giving a characterization of the fixpoints of contin-
uous maps. After that, we first define the continuous restriction µcML of µML
and discuss its properties. The main result on the modal side is the equivalence:

CPDL ≡ µncML∨,

43

44 Chapter 3. Fragments of fixpoint logics

where µncML∨ ⊆ µcML is basically obtained from µcML by adding an extra
‘separation of variables’ constraint under the fixpoint operator.

On the first-order side, we analyze the connection between continuity and
(in)finiteness in first-order logics with fixpoints. This connection was studied by
Park in [Par76] for µFOE. In our case, we consider the logic µFOE∞ which has
an additional generalized quantifier, and its continuous restriction µcFOE∞. Our
main result concerning µFOE∞ is that:

µcFOE∞ (WMSO.

To obtain this result, we show that the (continuous) fixpoint of µcFOE∞ can be
translated to WMSO, even in the presence of a generalized quantifier. We also
discuss a counterexample that entails the strictness of the inclusion. In Chapter 7,
however, we use automata-theoretic tools to prove that the converse of this last
inclusion holds on the class of trees.

The question of Game Logic. In the third and last part of this chapter
we discuss the relationship between the modal µ-calculus and Game Logic. In
particular we approach the question of whether GL is equivalent to the 2-variable
fragment µML[2] of µML. Our result for this part is the equivalence

GL ≡ µML∨[2]

stating that GL is equivalent to the 2-variable fragment of the µ-calculus with
the additional restriction of separation of variables. However, we leave as an
open question whether µML∨[2] is equivalent to µML[2] or not. We also discuss
particularities of these fragments and possible directions to separate them.

Apart from being of independent interest, as shown in this chapter, many of
the introduced fragments will prove of importance in later chapters where we give
automata and bisimulation-invariance characterizations for these logics.

3.1 Completely additive fragments
So far, we have only briefly introduced the notion of complete additivity for maps
F : ℘(S) → ℘(S). We said that such a map is called completely additive if it
distributes over non-empty families of sets, that is:

F (
⋃
i

Pi) =
⋃
i

F (Pi),

for every non-empty family of subsets {Pi ⊆ S}i∈I . However, it is worth pointing
out that the definition of complete additivity which is often found in the literature
asks this condition for every arbitrary family of subsets, that is, including the

3.1. Completely additive fragments 45

empty family. This variant, which we will call normal complete additivity, forces
that F (∅) = ∅. The name comes from the fact that operators preserving the
empty set are called normal. From this observation it follows that the least
fixpoint of these maps are not very interesting.

3.1.1. Fact. LFP(F) = ∅ for every normal and completely additive map F .

In this dissertation we will use both notions. However, depending on the
objective of each section, mostly one of the two will be in the spotlight. In any
case, the two notions are tightly connected.

3.1.2. Fact ([JT51, Theorem 1.5]). A map F : ℘(S) → ℘(S) is completely
additive if and only if F (X) = K ∪G(X) for some K ⊆ S and some normal and
completely additive map G : ℘(S)→ ℘(S).

We now go into an in-depth discussion of the notion of complete additivity
(for non-empty families), in the more general context of maps F : ℘(S)n → ℘(S).

3.1.3. Definition. A map F : ℘(S)n → ℘(S) is called normal (in the product)
if F (∅, . . . ,∅) = ∅ and normal in the jth-coordinate if F (X1, . . . ,∅, . . . , Xn) = ∅
for all X1, . . . , Xn ⊆ S, where the empty set stands (only) in the jth-coordinate.

It is important to observe that these two notions of normality do not coincide.
For example, the map F (A,B) = A ∪ B is normal in the product but it is
not normal in any of the coordinates. We will usually only use the concept of
normality in the product and just call it normality, unless explicitly stated.

3.1.4. Definition. A map F : ℘(S)n → ℘(S) is completely additive in the
jth-coordinate if for every non-empty family of subsets {Yi ⊆ S}i∈I and sets
X1, . . . , Xn ⊆ S it satisfies:

F (X1, . . . ,
⋃
i

Yi, . . . , Xn) =
⋃
i

F (X1, . . . , Yi, . . . , Xn),

where
⋃
i Yi and Yi are standing in the jth coordinate. We say that F is completely

additive (sometimes called completely additive in the product) if for every non-
empty family {Pi ∈ ℘(S)n}i∈I it satisfies:

F (
⋃
i

Pi) =
⋃
i

F (Pi).

3.1.5. Remark. Observe that complete additivity in the jth-coordinate implies
monotonicity in the jth-coordinate. Moreover, if a map is completely additive
then it is so in every coordinate; however, the converse does not hold. A simple
counterexample is given by the map F (A,B) = A ∩B.

46 Chapter 3. Fragments of fixpoint logics

To see that this map is completely additive in both coordinates consider a
non-empty family of subsets {Yi ⊆ S}i∈I and a set X ⊆ S. We only show that
the property holds for the first coordinate, since the second case is symmetric:
F (
⋃
i Yi, X) is, by definition (

⋃
i Yi)∩X. Using the distributive laws this is equiv-

alent to
⋃
i(Yi ∩X) which is, again by definition of F , the same as

⋃
i F (Yi, X).

To check that F is not completely additive (in the product) consider the family
P1 = (A,∅) and P2 = (∅, B) for subsets A,B ⊆ S satisfying A ∩ B 6= ∅. The
following holds:

F ((A,∅) ∪ (∅, B)) = F (A,B) = A ∩B 6= ∅ = F (A,∅) ∪ F (∅, B),

which contradicts the definition of complete additivity in the product.

An alternative characterization of complete additivity in the jth-coordinate is
given by asking that F restricts to singletons (or the empty set) in that coordinate.
More formally, F should satisfy, for every Y ⊆ S, the following:

F (X1, . . . , Y, . . . , Xn) = F (X1, . . . ,∅, . . . , Xn) ∪⋃
y∈Y

F (X1, . . . , {y}, . . . , Xn),

where Y is standing in the jth coordinate. Along the same line, we can give an
alternative characterization of complete additivity in the product. First, we need
the following definition.

3.1.6. Definition. Given X ∈ ℘(S)n we say that Y ∈ ℘(S)n is an atom of X if
and only if Y = (∅, . . . , {xi}, . . . ,∅) for some element xi ∈ Xi standing at some
coordinate i. We say that Q is a quasi-atom if it is an atom or Q = (∅, . . . ,∅).

In this terminology, we can formulate the concept of complete additivity in
the product by asking that F restricts to quasi-atoms; i.e., for every P ∈ ℘(S)n,
it should satisfy:

F (P) =
⋃
{F (Q) | Q is a quasi-atom of P}.

Another way to read this last definition is that every s ∈ F (P) only depends on
at most one singleton on one of the coordinates. Hence, a remarkable property of
these maps is that the coordinates are, in some sense, independent of each other.

3.1.7. Theorem (Separation of variables). A map F : ℘(S)n → ℘(S) is
completely additive if and only if it can be decomposed as

F (X) = K ∪
⋃
i

Gi(Xi),

for a set K ⊆ S and normal completely additive maps G1, . . . , Gn : ℘(S)→ ℘(S).
Moreover, F is normal and completely additive iff F (X) =

⋃
iGi(Xi).

3.1. Completely additive fragments 47

Proof. This theorem was already hinted by Jónsson and Tarski, in a more general
algebraic setting [JT51, Theorem 1.5]. For our case, let K := F (∅, . . . ,∅) and
define Gi(X) := F (∅, . . . , X, . . . ,∅)\K where X is standing in the ith coordinate
and every other argument is ∅. It is easy to see that the required equality holds,
using the definition of completely additive map. �

3.1.1 Fixpoint theory of completely additive maps

As we observed in the previous section, fixpoints of normal and completely addi-
tive maps are trivial. On the other hand, the theory of fixpoints of (non-normal)
completely additive maps is quite rich, and these maps satisfy very nice proper-
ties. One example is the following fact.

3.1.8. Fact. Every completely additive map F : ℘(S) → ℘(S) is constructive,
that is, LFP(F) =

⋃
i∈N F

i(∅).

In this section we study the fixpoints of completely additive maps, mostly
focusing on the approximants of the least fixpoint. We also establish some con-
nections with duality theory.

Suppose now that we are given a map G(X, Y) which is completely additive.
A natural question is whether the (least) fixpoint operation preserves complete
additivity. That is, whether G′(Y) := LFPX .G(X, Y) is completely additive as
well. To answer that question, we will have to look at the finite approximants
of F (X) := G(X, Y) where Y is now fixed. In this subsection we give a fairly
technical and precise characterization of the finite approximants of completely
additive maps, and use it to prove the following theorem.

3.1.9. Definition. Let F : ℘(S)→ ℘(S) and Y ⊆ S. We define the restriction
of F to Y as the function F�Y : ℘(Y)→ ℘(Y) given by F�Y (X) := F (X) ∩ Y .

3.1.10. Theorem.

(1) If G(X,Y) is completely additive then so is H(Y) := LFPX .G(X,Y).

(2) For every completely additive map F : ℘(S)→ ℘(S) and s ∈ S we have that

s ∈ LFP(F) iff there exists a finite set Y such that s ∈ LFP(F�Y)

where Y = {t1, . . . , tk} satisfies ti+1 ∈ F i+1
�Y (∅) \ F i

�Y (∅) and tk = s.

The following lemma gives a precise characterization of the finite approximants
of fixpoints of completely additive functions.

3.1.11. Lemma. Let G : ℘(S)n+1 → ℘(S) be a completely additive map. For
every s ∈ S and Y ∈ ℘(S)n we have that s ∈ LFPX .G(X,Y) iff there exist
t1, . . . , tk ∈ S such that tk = s and the following conditions hold:

48 Chapter 3. Fragments of fixpoint logics

(i) t1 ∈ G(∅,Q) where Q ∈ ℘(S)n is a quasi-atom of Y; and

(ii) ti+1 ∈ G({ti},∅), for all 1 ≤ i < k.

Proof. ⇒ As an abbreviation, define F (X) := G(X,Y). Let s ∈ LFP(F)
and let k′ ∈ N be the smallest k′ such that s ∈ F k′(∅). Such k′ exists because
of Fact 3.1.8 (constructivity). We define elements ui ∈ F i(∅) by downwards
induction:

• Case i = k′: we set ui := s, which belongs to F k′(∅).

• Case i < k′: we want to define ui in terms of ui+1 ∈ F i+1(∅). By definition
we have that ui+1 ∈ G(F i(∅),Y). By complete additivity of G there is a
quasi-atom (T,Q

′
) of (F i(∅),Y) such that ui+1 ∈ G(T,Q

′
). We consider

the shape of the quasi-atom:

(1) If T = {t} and Q
′
= ∅ we set ui := t which satisfies ui+1 ∈ G({ui},∅).

(2) If T = ∅ and Q
′ is a quasi-atom of Y we set Q := Q

′ and finish the
process.

Observe that case (2) will eventually occur. In the worst case this it will
occur when i = 1, because F 0(∅) is defined as ∅.

This process defines a series of elements uk′ , uk′−1, . . . , uj where j ≥ 1. To define
the elements tj we just shift this sequence. That is, we set k := k′ − j + 1 and
ti := uj+i−1 for 1 ≤ i ≤ k.

⇐ This direction will easily follow from this claim:

Claim 1. ti ∈ F i(∅) for all 1 ≤ i ≤ k.

Proof of Claim. We prove it by induction. For the base case, we have by
hypothesis that t1 ∈ G(∅,Q) where Q is a quasi-atom of Y. By monotonicity of
G we then have t1 ∈ G(∅,Y) which means, by definition of F , that t1 ∈ F (∅).
For the inductive case let ti+1 ∈ G({ti},∅). By inductive hypothesys ti ∈ F i(∅)
therefore, by monotonicity of G, we have that ti+1 ∈ G(F i(∅),∅). Again by
monotonicity, we get that ti+1 ∈ G(F i(∅),Y). By definition of F we can conclude
that ti+1 ∈ F i+1(∅). J

In particular, tk = s ∈ F k(∅) and therefore we get s ∈ LFPX .G(X,Y). �

Note that the above lemma is not restricted to any particular logic, as it
expresses a property about an arbitrary completely additive map G. We can now
prove our main theorem about completely additive maps.

3.1. Completely additive fragments 49

Proof of Theorem 3.1.10(1). Let G(X,Y) be a completely additive map and
define H(Y) := LFPX .G(X,Y). Suppose that s ∈ H(Y). Let Q be the quasi-
atom ofY given by Lemma 3.1.11, we will prove that s ∈ H(Q) = LFPX .G(X,Q).
Observe that, by the lemma, t1 ∈ G(∅,Q). The key observation is that as
ti+1 ∈ G({ti},∅), by monotonicity we get that ti+1 ∈ G({ti},Q). From this it
can be easily seen that, as s ∈ G({tk−1},Q) and G is monotone, we get that
s ∈ LFPX .G(X,Q). �

Proof of Theorem 3.1.10(2). Let F : ℘(S)→ ℘(S) be a completely additive
map and let s ∈ S; we prove that s ∈ LFP(F) iff there exists Y such that
s ∈ LFP(F�Y) where Y = {t1, . . . , tk} satisfies ti+1 ∈ F i+1

�Y (∅) \ F i
�Y (∅).

⇒ Let Y = {t1, . . . , tk} be the set obtained using Lemma 3.1.11. In the lemma
we already proved that ti ∈ F i(∅) for all i. We now prove the following stronger
version of the claim:

Claim 2. ti ∈ F i
�Y (∅) for all i.

Proof of Claim. For the base case, we know that t1 ∈ F (∅) by Claim 1
(Lemma 3.1.11); moreover, by definition t1 ∈ Y . Hence t1 ∈ F (∅) ∩ Y which,
by definition of F�Y , is equivalent to t1 ∈ F�Y (∅). For the inductive case let
ti+1 ∈ F i+1(∅). By definition of F i+1 we have that ti+1 ∈ F (F i(∅)). Now we use
the iductive hypothesis and get that ti+1 ∈ F (F i

�Y (∅)). As we did in the base
case, because ti+1 ∈ Y , we know that ti+1 ∈ F (F i

�Y (∅)) ∩ Y which by definition
of F�Y and regrouping we can conclude that ti+1 ∈ F i+1

�Y (∅). J

In particular s ∈ F k
�Y (∅) and therefore s ∈ LFP(F�Y).

⇐ This direction goes through using a monotonicity argument. Using that for
all X we have F�Y (X) ⊆ F (X), it is not difficult to prove that Fα

�Y (X) ⊆ Fα(X)
for all α, which entails that LFP(F�Y) ⊆ LFP(F). �

Connections with duality theory. Further analysis of Theorem 3.1.10(2)
reveals an interesting connection between fixpoints of completely additive maps
and transitive closure of relations. We first recall a relationship between these
maps and relations.

It is known from the early work of Jónsson and Tarski [JT51, Theorem 3.10],
that normal completely additive maps and relations are duals. The (simplified)
spirit of this correspondence is as follows: Given a normal and completely additive
map F : ℘(S)→ ℘(S) it is possible to construct a relation F♦ ⊆ S×S by setting
F♦(s, t) iff s ∈ F ({t}). At the same time, given a relation R ⊆ S × S one can
construct a normal and completely additive map R♦ : ℘(S) → ℘(S) by setting
R♦(X) := R−1[X]. In a nutshell,

The normal and completely additive map F is dual to the relation F♦.

50 Chapter 3. Fragments of fixpoint logics

F 2(∅)F 3(∅)F 4(∅)F 5(∅)F 6(∅) F (∅) = I

Figure 3.1: First approximants of F and relation F�.

3.1.12. Remark. There is much more to be said about the above correspondence
and other important results like the categorical duality developed by Thomason
in [Tho75]. Such a discussion falls outside the scope of this dissertation, and we
refer the reader to, for example [BRV01, Section 5.4].

On the other hand, if we want to consider non-normal completely additive
maps then this correspondence does not work anymore, since R♦(∅) = ∅ for
every R. Intuitively, we are losing the information of F (∅).

Broadly speaking, this problem can be fixed by adding a new set among the
ingredients, as follows: Given a completely additive map F : ℘(S) → ℘(S) it is
possible to give a tuple (F�, I) consisting of a set I ⊆ S of impossible worlds and a
relation F� ⊆ (S \I)×S by setting I := F (∅) and F�(s, t) iff s ∈ F ({t}).1 At the
same time, given a tuple (R, I) with R ⊆ (S \I)×S and I ⊆ S, one can construct
a completely additive map R� : ℘(S) → ℘(S) by setting R�(X) := R−1[X] ∪ I.
In other words,

The completely additive map F corresponds to the tuple (F�, F (∅)).

3.1.13. Remark. The above paragraph presents a simplified view on a duality
between BAOs and Kripke frames with impossible worlds (cf. [PSZng]). A Kripke
frame with impossible worlds [Kri65, Sections 3,7] is a tuple W = 〈W,R,N〉
where W is a non-empty set, N ⊆ W and R ⊆ N ×W . The set N is supposed to
represent the normal worlds, which are the complement of the impossible worlds.
Observe that if N is the full set W (which is connected to F (∅) = ∅), the kind
of structures we get are isomorphic to Kripke frames.

Fig. 3.1 shows the approximants of a completely additive map in the light of
this duality. If we look at how the relation (F�) is defined in the Kripke model with
impossible worlds we would see that it traverses backwards the approximants.
Moreover, the impossible worlds are the worlds that have no outgoing arrows.

We can now finally analyze the statement of Theorem 3.1.10(2). An alterna-
tive way to read this result, is that an element s belongs to the least fixed point
of a completely additive map F iff there is a finite sequence of elements from

1Recall that as F� ⊆ (S \ I)× S, in this definition s /∈ I.

3.1. Completely additive fragments 51

F (∅), F 2(∅), . . . which eventually reaches s. With this in mind and looking at
Fig. 3.1, Theorem 3.1.10(2) can be reformulated as follows:

3.1.14. Corollary. Let F : ℘(S) → ℘(S) be completely additive. For every
s ∈ S we have that s ∈ LFP(F) if and only if s ∈ (F−1

�)∗[F (∅)].

In other words, this corollary builds upon the previous correspondence by stating
that to calculate the least fixpoint of F one can look at the transitive closure of
(a derived relation based on) the dual relation.

The least fixpoint LFP(F) corresponds to the set (F−1
�)∗[F (∅)].

In later sections we will see that if F is induced by a formula and we can
express transitive closure in our logic then (F−1

�)∗ becomes definable. Therefore,
we will be able to translate fixpoints of completely additive maps to transitive
closure of an induced relation.

3.1.2 Characterization of PDL inside µML

It is well known that PDL can be translated to µML. However, the exact fragment
of µML that corresponds to PDL has not been characterized. As we will see, the
key notion leading to such a characterization is that of complete additivity.

3.1.15. Definition. We say that ϕ ∈ µML is completely additive in Q ⊆ P if

S ϕ iff S[Q�Y] ϕ for some quasi-atom Y of κ\(Q),

for every transition system S. For a definition of normal complete additivity we
just replace quasi-atoms with atoms.

Recall that the map κ : S → ℘(P) is the coloring of the transition map S, and
the valuation κ\ : P→ ℘(S) was defined as κ\(p) = {s ∈ S | p ∈ κ(s)}.

It is also possible to give the following alternative definition, which enables us
to use the fixpoint theory of completely additive maps, when useful.

3.1.16. Proposition. A formula ϕ ∈ µML is (normal and) completely additive
in Q ⊆ P iff the associated functional Fϕ

Q is (normal and) completely additive, for
every transition system S.

The property of normal complete additivity was studied by van Benthem
under the name of ‘continuity’ [Ben96]. He gave a syntactic characterization of
the fragment of ML having this property.

52 Chapter 3. Fragments of fixpoint logics

3.1.17. Theorem ([Ben96, Theorem 5.19]). A formula ϕ ∈ ML is normal
and completely additive in Q iff it is equivalent to a formula given by the fragment
MLnADDQ of ML which is defined as follows:

ϕ := q | ψ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ

where ` ∈ D, q ∈ Q, and ψ ∈ ML is Q-free.

Hollenberg [Hol98] also studied this notion, and started to move towards PDL.
He proved a characterization for some programs of PDL. As he only considered
formulas of ML, he could only capture the star-free programs of PDL.

3.1.18. Theorem ([Hol98, Theorem 2.6.6]). A formula ϕ ∈ ML is normal
and completely additive in p if and only if ϕ ≡ 〈π〉p for some p-free and star-free
program π ∈ PDL.

If we consider the modal µ-calculus instead of ML, the following example
shows that there is an increase in expressive power, even with respect to com-
pletely additive formulas.

3.1.19. Example. The formula ϕ = µp.q∨〈`〉p induces a normal and completely
additive map Fϕ

q : ℘(S)→ ℘(S). However, ϕ is not equivalent to any formula in
MLnADDq. This is easily seen because ϕ ≡ 〈`∗〉q is not expressible in ML.

Fontaine and Venema [Fon10, FV12] gave a syntactic fragment µMLnADDQ

of µML –which is basically the closure of MLnADDQ under the least fixpoint
operator– and showed that ϕ ∈ µML is normal and completely additive in p iff
it is equivalent to a formula in that fragment [Fon10, Theorem 5.5.3].

3.1.20. Definition. Given a set Q ⊆ P, the fragment µMLnADDQ of µML is
inductively defined as follows:

ϕ := q | α ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | µp.ϕ′

where ` ∈ D, q ∈ Q, p ∈ P, α ∈ µML is Q-free and ϕ′ ∈ µMLnADDQp.

3.1.21. Theorem. A formula ϕ ∈ µML is normal and completely additive in Q
iff it is equivalent to a formula of µMLnADDQ.

Proof. Fontaine proves this equivalence for Q = {p} in [Fon10, Theorem 5.5.3],
however, in the inductive proof of this statement she actually uses the loaded
statement of this theorem, for the fixpoint case. As we saw in Lemma 3.1.11,
complete additivity in the product is critical to make the proof go through in the
fixpoint case, and this is the reason for the need of the loaded statement. �

3.1. Completely additive fragments 53

A few syntactic properties of this fragment are stated in the following proposition.

3.1.22. Proposition. Let ϕ ∈ µMLnADDQ, the following holds:

(i) ϕ is alternation-free,

(ii) Every variable bound by a least fixpoint is existential (i.e., is only in the
scope of diamonds); dually, every variable bound by a greatest fixpoint is
universal (i.e., is only in the scope of boxes).

Unfortunately, no matter which syntactic fragment we choose to characterize
normal and complete additivity, we will not be able to lift the exact statement
of Theorem 3.1.18 to the µ-calculus. The following proposition shows that there
are normal and completely additive formulas of µML which do not correspond to
any program of PDL.

3.1.23. Proposition. There is a formula ϕ ∈ µML which is normal and com-
pletely additive in p but cannot be written as a PDL formula 〈π〉p.

Proof. Let ϕ := (µq.2q) ∧ p, this formula is normal and completely additive
in p. For example, this can be seen by using that ϕ ∈ µMLnADDp. However, the
formula is true at a point iff p holds in the point and the generated subtree is
well-founded. This cannot be expressed in PDL [HTK00, Theorem 10.16]. �

A close inspection of this counterexample reveals that µMLnADDQ gives too
much freedom in the clause α ∧ ϕ, by letting α ∈ µML. We will see later that
this kind of conjunction corresponds to a test on the PDL side, and hence we
would be allowing tests of arbitrary µML formulas (in the example, a formula
expressing well-foundedness).

It was also suggested in [Fon10, Remark 5.5.1] that PDL might be equivalent
to the fragment of µML where the fixpoint operator µp.ϕ is restricted to formulas
ϕ which are normal and completely additive in p. However, if ϕ is normal then
µp.ϕ ≡ ⊥. Therefore, this cannot be the case. To be fair, this suggestion was
almost right, and we will come back to this issue at the end of the section.

We now define another fragment µnaML of µML which intends to be equivalent
to PDL and restricts the use of fixpoints of µML to formulas of a special form.
Namely, the least fixpoint should be used as µp.β ∨ϕ where ϕ ∈ µMLnADDp and
β is p-free. Observe that if ϕ is normal and completely additive then β ∨ ϕ is
(non-normal) completely additive.

3.1.24. Definition. Formulas of µnaML are given by the following induction:

α := p | ¬α | α ∨ α | 〈`〉α | µp.β ∨ ϕ,

where p ∈ P, ` ∈ D, β ∈ µnaML is p-free and ϕ ∈ µMLnADDp ∩ µnaML.

54 Chapter 3. Fragments of fixpoint logics

Along the same line, we can define a similar pair of fragments µ−naML and
µMLnADD−Q to characterize test-free PDL. The main difference between the
fragments µMLnADDQ and µMLnADD−Q is that the latter does not contain a
clause for conjunction-with-constant (which amounts to testing).

3.1.25. Definition. Given a set of propositionsQ ⊆ P, the formulas of fragment
µMLnADD−Q of µML are defined as follows:

ϕ := q | ϕ ∨ ϕ | 〈`〉ϕ | µp.ϕ′

where ` ∈ D, q ∈ Q, p ∈ P, and ϕ′ ∈ µMLnADD−Qp. Formulas of µ−naML are given
by the following induction:

α := p | ¬α | α ∨ α | 〈`〉α | µp.β ∨ ϕ,
where p ∈ P, ` ∈ D, β ∈ µ−naML is p-free and ϕ ∈ µMLnADD−p ∩ µ−naML.

A remarkable property of both µMLnADDQ and µMLnADD−Q, which can be
seen as the syntactic version of Theorem 3.1.7, is the following separation of
variables.

3.1.26. Proposition. Given ϕ ∈ µMLnADDQ we can effectively construct a col-
lection of formulas {γp ∈ µMLnADDp | p ∈ Q} such that ϕ ≡ ∨p∈Q γp and every
γp is Q \ {p}-free. Moreover, if ϕ ∈ µMLnADD−Q then every γp ∈ µMLnADD−p .

Proof. Using Theorem 3.1.7 we can see that setting γp := ϕ[q 7→ ⊥ | q ∈ Q\{p}]
works. It is also clear that every γp is Q \ {p}-free and normal and completely
additive in p. �

We are now ready to prove the main theorem of this section, characterizing
(test-free) PDL and programs as a fragment of the modal µ-calculus.

3.1.27. Theorem. PDL and test-free PDL are effectively equivalent to the frag-
ments µnaML and µ−naML, respectively.

The theorem follows directly from Propositions 3.1.29 and 3.1.30 below. We
start with the direction from PDL and PDLtf to µnaML and µ−naML.

3.1.28. Definition. By a simultaneous induction on formulas and programs of
PDL, we define, for each program π ∈ PDL, a function fπ : µML→ µML on the
set of modal fixpoint formulas, and a map (−)t from PDL to µML:

f`(α) := 〈`〉α
fϕ?(α) := ϕt ∧ α
fπ⊕π′(α) := fπ(α) ∨ fπ′(α)
fπ;π′(α) := fπ(fπ′(α))
fπ∗(α) := µp.α ∨ fπ(p)

pt := p
(¬ϕ)t := ¬ϕt
(ϕ0 ∨ ϕ1)t := ϕt0 ∨ ϕt1
(〈π〉ϕ)t := fπ(ϕt)

where, in the clause for fπ∗ , p is a fresh variable.

3.1. Completely additive fragments 55

The following proposition says that the translation (−)t is the required em-
bedding of PDL into the fragment µnaML.

3.1.29. Proposition.

(1) for every program π ∈ PDL, and every formula α ∈ µnaML:

(1a) fπ(α) belongs to µnaML,
(1b) fπ(α) ∈ µMLnADDQ and FV(fπ(α)) = FV(α) ∪ FV(π),

given α ∈ µMLnADDQ and FV(π) ∩Q = ∅, and
(1c) 〈π〉α ≡ fπ(α).

(2) for every formula α ∈ PDL:

(2a) αt ∈ µnaML, and
(2b) α ≡ αt.

Analogous statements can be proved for PDLtf , µMLnADD−Q and µ−naML.

Proof. We prove it by simultaneous induction on formulas and programs.

Proof of item (1):

• First consider the case where π = ` for some atomic program `. Recall that
f`(α) is then defined as 〈`〉α. Items (1a) and (1b) are immediate by the defi-
nition of the fragments µnaML and µMLnADDQ, and (1c) is immediate by the
definition of f`.

• In case π = ψ? for some ψ ∈ PDL, by the induction hypothesis on formulas
we may assume that ψt belongs to µnaML and FV(ψt) = FV(ψ). For (1a),
recall that α ∈ µnaML. Then fπ(α) = ψt ∧α belongs to µnaML since µnaML is
closed under taking conjunctions. For (1b), let Q be a set of variables such that
α ∈ µMLnADDQ and FV(π) ∩Q = ∅. By the latter fact, FV(ψ) ∩Q = ∅, so
ψ (and ψt) is a Q-free formula. From this it is immediate that fπ(α) = ψt ∧ α
belongs to µMLnADDQ. For (1c) observe that the equivalence of 〈ψ?〉α and
ψt ∧ α is immediate by the inductive hypothesis (ψ ≡ ψt) and the meaning of
test programs.

• The case that π = π′ ⊕ π′′ is easy and left for the reader.

• For the case that π = π′;π′′, first consider a formula α ∈ µnaML. Then by
successively applying the inductive hypothesis to π′ and π′′, we see that first the
formula fπ′′(α), and then the formula fπ(α) = fπ′(fπ′′(α)) belongs to µnaML.
This proves (1a). For (1b), let Q be a set of variables such that α ∈ µMLnADDQ

and no variable from Q occurs in π. Then in particular, no variable from Q
occurs in π′′ nor in π′. Hence, by the inductive hypothesis for π′′ we find that

56 Chapter 3. Fragments of fixpoint logics

fπ′′(α) ∈ µMLnADDQ, and subsequently applying the inductive hypothesis for
π′ we see that fπ(α) = fπ′(fπ′′(α)) ∈ µMLnADDQ. The statement on the free
variables can be verified in the same way. For (1c), it suffices to check the
validity of the following chain of equivalences:

〈π′;π′′〉α ≡ 〈π′〉〈π′′〉α ≡ 〈π′〉fπ′′(α) ≡ fπ′(fπ′′(α)).

• Consider the case where π = %∗. Take an arbitrary formula α ∈ µnaML.
Recall that fπ(α) is defined as µp.α ∨ f%(p), where p occurs neither in α nor
in %. For (1a), we apply the inductive hypothesis (1a) and (1b) to % and the
formula p ∈ µMLnADDp, and get that f%(p) ∈ µMLnADDp∩µnaML. Therefore
µp.α∨f%(p) indeed belongs µnaML. For (1b), let Q be a set of variables that do
not occur in %, assume that α ∈ µMLnADDQ. Since p does not occur in α this
means that α ∈ µMLnADDQp. We already proved that f%(p) ∈ µMLnADDp

for (1a). Moreover we also get FV(f%(p)) = FV(%) ∪ {p} and therefore f%(p) is
Q \ {p}-free. From this we can conclude that f%(p) ∈ µMLnADDQp. Hence the
disjunction α ∨ f%(p) belongs to µMLnADDQp, and from this we may conclude
that fπ(α) ∈ µMLnADDQ. It is also clear that FV(fπ(α)) = FV(α) ∪ FV(π).
For (1c), we verify that 〈%∗〉α ≡ µp.α ∨ 〈%〉p ≡ µp.α ∨ f%(p) ≡ fπ(α).

Proof of item (2): we only consider the inductive case where α is of the form
〈π〉β. Inductively, we may assume that βt ∈ µnaML and that β ≡ βt. Applying
the inductive hypothesis to the program π we obtain: by (1a) that αt = fπ(βt)
belongs to µnaML; and by (1c) that αt = fπ(βt) is equivalent to the formula
α = 〈π〉β. This suffices to prove the proposition. �

The translation in the other direction is provided by the following proposition.

3.1.30. Proposition. The following procedures can be performed effectively:

(i) Given a formula α ∈ µnaML, return an equivalent formula αs ∈ PDL.
Moreover, if α ∈ µ−naML then αs ∈ PDLtf .

(ii) Given ϕ ∈ µMLnADDp ∩ µnaML, return a p-free program π ∈ PDL such
that ϕ ≡ 〈π〉p. Moreover, if ϕ ∈ µMLnADD−p ∩ µ−naML, then π ∈ PDLtf .

Proof. We prove the proposition via a mutual induction on the fragments µnaML
and µMLnADDp. The stronger statements concerning formulas in the restricted
fragments follow from an easy inspection.

Proof of item (i): Leaving the other cases to the reader, we focus on the inductive
step, where we are dealing with a formula µp.β ∨ ϕ, where β ∈ µnaML is p-free
and ϕ ∈ µMLnADDp. In order to find the right translation for this formula, we
use the induction hypothesis twice. We use item (ii) on ϕ, that is, we assume

3.1. Completely additive fragments 57

that ϕ ≡ 〈π〉p where π ∈ PDL is p-free. We also apply item (i) on β, and hence
we know that βs ≡ β and βs ∈ PDL. Hence, if we define the translation as

(µp.β ∨ ϕ)s := 〈π∗〉βs,

it is easy to verify that this definition satisfies the required properties.

Proof of item (ii): If ϕ = p, define π := >?. (If additionally ϕ ∈ µMLnADD−p
and we need to land in test-free PDL, we set π := ε. This is the reason for adding
the skip program ε to PDLtf). With this definition, we have that ϕ = p ≡ 〈π〉p.
For the inductive step, we do as follows:

• First consider the case that ϕ = ϕ′ ∨ ϕ′′. Then inductively ϕ′ ≡ 〈π′〉p, and
ϕ′′ ≡ 〈π′′〉p. It is straightforward to verify that setting π := π′ ⊕ π′′ works.

• Consider the case that ϕ = α ∧ ϕ′, where α ∈ µML is p-free, and the formula
ϕ′ ∈ µMLnADDQ. We now crucially use that as ϕ ∈ µMLnADDp∩µnaML then
α ∈ µnaML. Using the inductive hypothesis, by item (i), we have α ≡ αs for
αs ∈ PDL and, by item (ii), we have ϕ′ ≡ 〈π′〉p. It follows that

ϕ ≡ 〈αs?;π′〉p.

Therefore, setting π := αs?;π′ works.

• For ϕ = 〈`〉ϕ′, we inductively have that ϕ′ ≡ 〈π′〉p From this it follows that
ϕ ≡ 〈`;π′〉p. And therefore we set π := `;π′.

• Finally, consider the case that ϕ = µq.ϕ′ where ϕ′ ∈ µMLnADDpq. Using
Proposition 3.1.26 we assume, without loss of generality, that ϕ′′ was already
rewritten as a disjunction of formulas separating the variables.2 That is, we
only consider the case ϕ = µq.ψp ∨ ψq where ψp ∈ µMLnADDp is q-free and
ψq ∈ µMLnADDq is p-free. Using item (ii) of the inductive hypothesis we get
that ϕ ≡ µq.〈πp〉p ∨ 〈πq〉q for some πp, πq ∈ PDL. From this, it is easy to see
that the following equivalence holds:

ϕ ≡ 〈π∗q ;πp〉p.

The above equation justifies setting π := π∗q ;πp.

This finishes the proof of the proposition. �

As a corollary of these propositions, we can now extend the connection between
MLnADD and star-free PDL-programs implied by Theorem 3.1.18 to µMLnADD
and full PDL-programs.

2The induction can be stated in a different way that makes it clear that this increase in
formula complexity does not bring problems. We do not do it because it would make the
presentation more involved.

58 Chapter 3. Fragments of fixpoint logics

3.1.31. Corollary. A formula ϕ ∈ µML belongs to µMLnADDp∩µnaML (resp.
to µMLnADD−p ∩ µ−naML) iff it is equivalent to 〈π〉p for some p-free program
π ∈ PDL (resp. π ∈ PDLtf).

Proof. The left-to-right direction is given by Proposition 3.1.30(ii) and the other
direction is given by Proposition 3.1.29(1). �

Relation to non-normal complete additivity. The results of this section
were, in most cases, developed for normal complete additivity since, as witnessed
by the above corollary, this notion seems to be closely connected with PDL pro-
grams. However, a similar analysis can be done for complete additivity.

We can define two fragments µMLADDQ and µaML of µML. The first one,
intends to capture completely additive formulas of µML. The second one restricts
the fixpoints directly to formulas of µMLADDQ.

3.1.32. Definition. Given a set of propositions Q ⊆ P, the formulas of the
fragment µMLADDQ of µML are given as follows:

ϕ := q | α | α ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | µp.ϕ′

where ` ∈ D, q ∈ Q, p ∈ P, α ∈ µML is Q-free and ϕ′ ∈ µMLADDQp. Formulas
of µaML are given by:

α := p | ¬α | α ∨ α | 〈`〉α | µp.ϕ,

where p ∈ P, ` ∈ D and ϕ ∈ µMLADDp ∩ µaML.

The difference between µMLnADDQ and µMLADDQ is the addition of an extra
clause α ∈ µML; the difference between µnaML and µaML is the removal of the
disjunct in the fixpoint operator. The following proposition is easily checked.

3.1.33. Proposition. Every ϕ ∈ µMLADDQ is completely additive in Q.

In Fact 3.1.2 we say that completely additive maps can be represented as the
union of a constant and a normal and completely additive map. This representa-
tion transfers to formulas as well. We prove the following stronger proposition.

3.1.34. Proposition. If ϕ ∈ µML is completely additive in Q (in particular, if
ϕ ∈ µMLADDQ) then ϕ ≡ ψ∨ϕ′ for some ϕ′ ∈ µMLnADDQ and Q-free ψ ∈ µML.

Proof. We set ψ := ϕ[q 7→ ⊥ | q ∈ Q] and γ := ϕ ∧ ¬ψ. It is straightforward to
see that ϕ ≡ ψ ∨ γ and that γ ∈ µML is normal and completely additive in Q.
Moreover, as ψ ∈ µML is Q-free, then ψ ∈ µMLADDQ. Using Theorem 3.1.21
on γ we get a formula ϕ′ ∈ µMLnADDQ such that γ ≡ ϕ′. Putting everything
together, we get that ϕ ≡ ψ ∨ ϕ′ with ϕ′ ∈ µMLnADDQ. �

3.1. Completely additive fragments 59

As a corollary of the last two propositions, we get the soundness and com-
pleteness of the fragment µMLADDQ with respect to the property of complete
additivity in Q.

3.1.35. Corollary. A formula ϕ ∈ µML is completely additive in Q iff it is
equivalent to a formula of µMLADDQ.

Proof. The right-to-left direction is direct by Proposition 3.1.33. For the other
direction, consider a formula ϕ ∈ µML which is completely additive in Q. We use
Proposition 3.1.34 and get that ϕ ≡ ψ∨ϕ′ where ψ isQ-free and ϕ′ ∈ µMLnADDQ.
As µMLnADDQ ⊆ µMLADDQ, we have ϕ′ ∈ µMLADDQ. Using that the fragment
µMLADDQ is closed under disjunction, we get that ψ ∨ ϕ′ ∈ µMLADDQ. �

In the light of Proposition 3.1.34 and Corollary 3.1.31, the following proposi-
tion is straightforward.

3.1.36. Proposition. A formula ϕ ∈ µML belongs to µMLADDp ∩ µaML iff it
is equivalent to ψ ∨ 〈π〉p for some p-free program π ∈ PDL and p-free ψ ∈ PDL.

It should be observed that µMLADDQ 6≡ µMLnADDQ. However, the frag-
ments µaML and µnaML are in fact equivalent. This gives us two ways to look
at PDL in the light of the µ-calculus.

3.1.37. Proposition. µaML ≡ µnaML and hence µaML ≡ PDL.

Proof. The difference between µaML and µnaML lies in the fixpoint operator.

(i) The fragment µnaML has a clause µp.ϕ with ϕ ∈ µMLADDp ∩ µaML,

(ii) The fragment µaML has a clause µp.β ∨ ϕ where β ∈ µnaML is p-free and
ϕ ∈ µMLnADDp ∩ µnaML.

For the direction from (i) to (ii) we focus on the fixpoint clause µp.ϕ with ϕ ∈
µMLADDp∩µaML. We make a detour through PDL applying Proposition 3.1.36
and getting ϕ ≡ ψ ∨ 〈π〉p for some p-free program π ∈ PDL and p-free ψ ∈ PDL.
We now apply Proposition 3.1.29(2) on ψ and Proposition 3.1.29(1) on 〈π〉p and
get that ϕ ≡ ψ ∨ 〈π〉p ≡ ψ′ ∨ fπ(p) where ψ′ ∈ µnaML is p-free and fπ(p) belongs
to µMLnADDp ∩ µnaML.

For the other direction, there is no need for a translation (i.e., the identity
translation works), we only need a change of perspective. The key argument is
that if β is p-free and ϕ ∈ µMLnADDp then β ∨ ϕ ∈ µMLADDp. �

60 Chapter 3. Fragments of fixpoint logics

From these last propositions we may conclude that PDL programs are better
related to normal complete additivity, whereas PDL is better related to (non-
normal) complete additivity, since we can get it by restricting the fixpoint oper-
ator directly to that fragment. If we now look back at the suggestion of [Fon10,
Remark 5.5.1] which stated that PDL might be obtained by restricting the least
fixpoint of µML to normal complete additivity we can see that even though not
correct, the suggestion was on the right path. Moreover, in [Fon08] the author
actually suggests that PDL could be obtained by restricting the least fixpoint to
non-normal complete additivity. Therefore, it could be that this discrepancy is
just an artifact from the transcription of [Fon08] to [Fon10].

To close this section, we would like to make a few remarks about some nice
properties of complete additivity, and how this properties produce an extremely
malleable fragment µMLnADDQ. The question that we would like to discuss is:
what does µMLnADDQ have, that makes it translatable to PDL? This question
is interesting, since in later sections we will try to translate other (not-so-well-
behaved) fragments into CPDL and GL.

Separation of variables. It is well-known that star-free PDL (that is, PDL
without the iteration operator) has the same expressive power as the multi-modal
logic ML based on D. This can already be seen in the translations of this chapter
or, for example, by the equivalences 〈π ⊕ π′〉ϕ ≡ 〈π〉ϕ ∨ 〈π′〉ϕ, 〈ψ?〉ϕ ≡ ψ ∧ ϕ,
etc., which provide a way to rewrite any star-free PDL formula to ML.

Therefore, the crucial step in our proofs is, unsurprisingly, the handling of the
fixpoint operator. Concretely, in the proof of Theorem 3.1.30(ii) consider the case
of a formula µp.ϕ′ with ϕ′ ∈ µMLnADDQp. In our proof we use Proposition 3.1.26
together with the inductive hypothesis to rewrite this formula as:

µp.(〈πq〉q ∨ 〈πp〉p).

To simplify and abstract our setting, we can write this as γ = µp.(α∨〈π〉p), where
α ∈ PDL is p-free. Observe that if we consider γ in the light of the game semantics
for the µ-calculus then its evaluation game would broadly go as follows: first the
fixpoint gets discarded and we are left with the main proper subformula; after
that, ∃ makes the choice of whether she wants to consider a potential repetition
(choosing the disjunct which has p) or finish the repetitions (choosing α, which is
p-free). Of course, as we are considering a least fixpoint, she can only regenerate
p finitely many times if she wants to (have a chance to) win. From this analysis,
it should be clear that

µp.(〈πq〉q ∨ 〈πp〉p) ≡ 〈π∗〉α.

The main point that we are trying to make is that, from all the nice prop-
erties that we get from the completely additive fragment, we mainly used that

3.1. Completely additive fragments 61

if we have a formula µp.ϕ then we can separate ϕ in two disjuncts such that
(1) one disjunct has a program-like syntax (obtained inductively) and is q-free;
and (2) the other disjunct is p-free. Luckily, these requirements are easily satisfied
by completely additive formulas. However, we will see that this need not be the
case for continuous formulas.

The separation and freeness constraints are, we think, tightly related to the
control that ∃ has in a formula of the form 〈π∗〉α, since she should be able to
always choose the number of repetitions.

Two variables are enough. PDL is not only translatable to µML (or, as we
know now, to µaML) but it can already be translated to the two-variable fragment
of µML, that is, µML[2]. This phenomenon also happens with CPDL and Game
Logic [BGL05, Lemma 47]. It can be proved that thanks to the separation of
variables under the fixpoint it is possible to rewrite any formula of µaML with
just two binding variables. We discuss this further in Section 3.3 in the context
of Game Logic.

3.1.3 Characterization of FO(TC1) inside FO(LFP1)

It is well-known that the transitive closure of FO(TC1) can be expressed with
the fixpoint operators of µFOE. In fact, we explicitly showed how to do it in
Remark 2.7.7. In this section we prove that FO(TC1) is equivalent to µaFOE,
the fragment of µFOE where the least fixpoint operator is restricted to completely
additive formulas. That is,

FO(TC1) ≡ µaFOE over all models.

3.1.38. Definition. We say that ϕ ∈ µFOE is completely additive in Q ⊆ P if
for every model M and assignment g it satisfies

M, g |= ϕ iff M[Q�Y], g |= ϕ for some quasi-atom Y of κ\(Q).

3.1.39. Proposition. If ϕ ∈ µFOE is completely additive in Q then the associ-
ated functional Fϕ

Q:x : ℘(M)n → ℘(M) is completely additive, for every model M
and variable x ∈ FV(ϕ).

Proof. Fix a model M, assignment g and free variable x ∈ FV(ϕ). We want to
prove that Fϕ

Q:x(Z) is completely additive. An element t belongs to Fϕ
Q:x(Z) iff

M[Q 7→ Z], g[x 7→ t] |= ϕ. By complete additivity of ϕ, this occurs iff M[Q 7→
Y], g[x 7→ t] |= ϕ for some quasi-atom Y of Z. By definition of Fϕ

Q:x, this is
equivalent to saying that t ∈ Fϕ

Q:x(Y). Therefore, Fϕ
Q:x is completely additive. �

Next, we provide a definition of a fragment of µFOE, and shortly after that
we prove that every formula in this fragment is completely additive.

62 Chapter 3. Fragments of fixpoint logics

3.1.40. Definition. Let Q ⊆ P be a set of monadic predicates. The fragment
µFOEADDQ is defined by the following rules:

ϕ ::= ψ | q(x) | ∃x.ϕ(x) | ϕ ∨ ϕ | ϕ ∧ ψ | [LFPp:x.ξ(p, x)](z)

where q ∈ Q, ψ ∈ µFOE is Q-free, p ∈ P \ Q and ξ(p, x) ∈ µFOEADDQp.

Observe that, in this definition, the atomic formulas given by equality and
relations are taken into account by the ψ clause.

3.1.41. Proposition. Every ϕ ∈ µFOEADDQ is completely additive in Q.

Proof. The proof goes by induction.

• If ϕ = ψ ∈ µFOE is Q-free then changes in the Q part of the valuation will
make no difference and hence the condition is trivial.

• Case ϕ = q(x): if M, g |= q(x) then g(x) ∈ κ\(q). Clearly, we can restrict the
valuation of q to {g(x)} and get M[q�{g(x)};Q \ {q} 7→ ∅], g |= q(x).

• Case ϕ = ϕ1∨ϕ2: assume M, g |= ϕ. Without loss of generality we can assume
that M, g |= ϕ1 and hence by induction hypothesis there is a quasi-atom Y of
κ\(Q) such that M[Q�Y], g |= ϕ1 which clearly satisfies M[Q�Y], g |= ϕ.

• Case ϕ = ϕ1 ∧ψ: assume M, g |= ϕ. By induction hypothesis we have a quasi-
atom Y of κ\(Q) such that M[Q�Y], g |= ϕ1. Observe that M, g |= ψ and as ψ
is Q-free we also have M[Q�Y], g |= ψ. Hence, M[Q�Y], g |= ϕ holds.

• Case ϕ = ∃x.ϕ′(x) and M, g |= ϕ. By definition there exists u ∈ M such that
M, g[x 7→ u] |= ϕ′(x). By induction hypothesis there exists a quasi-atom Y of
κ\(Q) such that M[Q�Y], g[x 7→ u] |= ϕ′(x) and hence M[Q�Y], g |= ∃x.ϕ′(x).

• Let ϕ be [LFPp:x.ψ(p, x)](z), we have to prove that

M, g |= ϕ iff M[Q�Y], g |= ϕ for some quasi-atom Y of κ\(Q).

By semantics of the fixpoint operator M, g |= ϕ iff g(z) ∈ LFP(Fψ
p:x). It will be

useful to take a slightly more general perspective and consider the map

Fψ
Qp:x(P,Z) := {t ∈M |M[p 7→ P ;Q 7→ Z], g[x 7→ t] |= ψ}

and observe that Fψ
p:x(P) = Fψ

Qp:x(P, κ
\(Q)) and therefore their least fixpoints

will be the same. By inductive hypothesis and Proposition 3.1.39, we know
that Fψ

Qp:x(P,Z) is completely additive. Using Theorem 3.1.10(1) we get that
LFPP .F

ψ
Qp:x(P,Z) is completely additive as well. In particular,

t ∈ LFPP .F
ψ
Qp:x(P, κ

\(Q)) if and only if

t ∈ LFPP .F
ψ
Qp:x(P,Y) for some quasi-atom Y of κ\(Q).

From this we can conclude that M, g |= ϕ iff M[Q�Y], g |= ϕ, for some quasi-
atom Y of κ\(Q). Hence, ϕ is completely additive in Q.

3.1. Completely additive fragments 63

This finishes all the cases. �

This proves that the above fragment is “sound” with respect to the property
of complete additivity. We conjecture that the fragment is also “complete” with
respect to this property, i.e., that every formula of µFOE which is completely
additive in Q is equivalent to a formula in µFOEADDQ.

3.1.42. Conjecture. Every formula of µFOE which is completely additive in Q
is equivalent to some formula of µFOEADDQ.

Finally, we define µaFOE:

3.1.43. Definition. The fragment µaFOE of µFOE is given by the following
restriction of the fixpoint operator to the completely additive fragment:

ϕ ::= q(x) | R`(x, y) | x ≈ y | ∃x.ϕ | ¬ϕ | ϕ ∨ ϕ | [LFPp:x.ξ(p, x)](z)

where p, q ∈ P, ` ∈ D, x, y ∈ iVar; and ξ(p, x) ∈ µFOEADDp ∩ µaFOE.

We are now ready to prove the main theorem of this section.

3.1.44. Theorem. The logics FO(TC1) and µaFOE are effectively equivalent.

This theorem follows directly from Proposition 3.1.45 and 3.1.46 below, where
we give effective translations that witness the equivalence.

3.1.45. Proposition. FO(TC1) can be effectively translated to µaFOE.

Proof. In Remark 2.7.7 we observed that the reflexive-transitive closure of a
formula can be expressed as a fixed point. That is,

[TCx,y.ϕ(x, y)](u, v) ≡ [LFPp:y.y ≈ u ∨ (∃x.p(x) ∧ ϕ(x, y))](v).

It is easy to see (syntactically) that the formula inside the fixpoint is completely
additive in p (which is a fresh variable); therefore it belongs to µaFOE. Moreover,
the equivalence holds for all models, in particular, for trees. �

3.1.46. Proposition. µaFOE can be effectively translated to FO(TC1).

Proof. An inductive translation from µaFOE to FO(TC1) is straightforward
for most of the cases. The only difficult step is to show that we can translate
a fixpoint into a transitive closure. To do it, we will crucially use the insight
developed in Section 3.1.1.

Let ϕ(p, z) belong to µFOEADDp. We want to show that [LFPp:z.ϕ(p, z)](x)
can be expressed in FO(TC1). Consider first the map Fϕ

p:z : ℘(M) → ℘(M)
induced by ϕ. For notational simplicity we will write F instead of Fϕ

p:z. By
Corollary 3.1.14 we have that LFP(F) = (F−1

�)∗[F (∅)]. It only remains to observe
that the required relations can be defined in FO(TC1), as follows:

64 Chapter 3. Fragments of fixpoint logics

• v ∈ F (∅) is equivalent to ϕ(⊥, v),

• F�(u, v) is equivalent to ϕ(p, u)[p(y) 7→ v ≈ y].

To finish, we define the translation of the fixpoint as

([LFPp:z.ϕ(p, z)](x))t := ∃e.e ∈ F (∅) ∧ [TCx,y.F�(y, x)](e, x).

The correctness of this translation is justified by Corollary 3.1.14. �

3.2 Continuous fragments
We introduced the notion of continuity for maps F : ℘(S)→ ℘(S) by asking that
F should restrict to finite subsets. That is,

F (X) =
⋃

Y⊆ωX
F (Y).

This notion is strictly more general than complete additivity. It is easy to see
that every completely additive map G is continuous, since G restricts to singletons
(and is monotone) then in particular it restricts to finite sets.

3.2.1. Fact. Every completely additive map is continuous.

As an example of a continuous map which is not completely additive one can
define F (X) to be ∅ for quasi-atoms and X otherwise. However, we shall see
that more natural examples can be induced from formulas.

3.2.2. Remark. The name continuity comes from the fact that this definition
coincides with that of continuous maps with respect to Scott topologies [GHK+80].
This topological perspective will not play a role, and we refrain from explaining
it further. The interested reader is referred to the nice and compact presentation
given in [Fon10, Section 5.4.1].

As we did with additivity, we now discuss the notion of continuity in the more
general context of maps F : ℘(S)n → ℘(S).

3.2.3. Definition. A map F : ℘(S)n → ℘(S) is continuous in the jth-coordinate
if for every X1, . . . , Xn ⊆ S it satisfies:

F (X1, . . . , Xj, . . . , Xn) =
⋃

Y⊆ωXj
F (X1, . . . , Y, . . . , Xn).

We say that F is continuous (sometimes called continuous in the product) if for
every X ∈ ℘(S)n it satisfies:

F (X) =
⋃

Y⊆ωX

F (Y).

3.2. Continuous fragments 65

Even though continuous maps are a generalization of completely additive
maps, the following properties continue to hold for them.

3.2.4. Fact. Every continuous map is monotone and constructive.

On the other hand, there are still important differences: first observe that
continuity does not force F (∅) = ∅. A more important observation is the fol-
lowing.

3.2.5. Proposition. A map F : ℘(S)n → ℘(S) is continuous (in the product)
iff it is continuous in every coordinate.

The map F (A,B) = A ∩ B can be seen to be continuous but, as observed
in Remark 3.1.5, we know that F (A,B) 6= F (A,∅) ∪ F (∅, B). More generally
F cannot be decomposed as two continuous maps G1, G2 depending only on A
and B, respectively. This shows that, unfortunately, the property of separation
of variables does not hold for continuous maps.

3.2.1 Fixpoint theory of continuous maps

Suppose now that we are given a map G(X, Y) which is continuous. A natural
question is whether the (least) fixpoint operation preserves continuity. That is,
whether G′(Y) := LFPX .G(X, Y) is continuous as well. To answer that question,
we will have to look at the finite approximants of F (X) = G(X, Y) where Y is
now fixed. In this subsection we give a fairly technical and precise characterization
of the finite approximants of continuous maps, and use it to prove the following
theorem.

3.2.6. Theorem.

(1) If G(X,Y) is continuous then so is H(Y) := LFPX .G(X,Y).

(2) For every continuous map F : ℘(S)→ ℘(S) and s ∈ S we have that

s ∈ LFP(F) iff there exists a finite set Y such that s ∈ LFP(F�Y).

The following lemma gives a precise characterization of the finite approximants
of fixpoints of continuous functions.

3.2.7. Lemma. Let G : ℘(S)n+1 → ℘(S) be a continuous map. For every s ∈ S
and Y ∈ ℘(S)n we have that s ∈ LFPX .G(X,Y) iff for some k there exist sets
T1, . . . , Tk ⊆ω S and Q ⊆ω Y such that s ∈ Tk and the following conditions hold:

• T1 ⊆ω G(∅,Q); and

• Ti+1 ⊆ω G(Ti,Q), for all 1 ≤ i < k.

66 Chapter 3. Fragments of fixpoint logics

Proof. ⇒ As an abbreviation, define F (X) := G(X,Y). Let s ∈ LFP(F)
and k′ ∈ N be the smallest k′ such that s ∈ F k′(∅). Such k′ exists because of
Fact 3.2.4 (constructivity). We define sets Ui ⊆ω F i(∅) by downwards induction:

• Case i = k′: we set Ui := {s}, which satisfies Ui ⊆ω F k′(∅).

• Case i < k′: we want to define Ui in terms of Ui+1 ⊆ω F i+1(∅). By
definition we have that Ui+1 ⊆ω G(F i(∅),Y). By continuity of G there
is (T,Qi) ⊆ω (F i(∅),Y) such that Ui+1 ⊆ω G(T,Qi). We consider the
shape of T : if T 6= ∅ we set Ui = T which satisfies Ui+1 ⊆ω G(Ui,Qi);
otherwise we set Q :=

⋃
i<k′Qi and finish the process. Observe that the

second case will eventually occur. In the worst case this it will occur when
i = 1, because F 0(∅) = ∅.

This process defines a series of sets Uk′ , Uk′−1, . . . , Uj where j ≥ 1. To define the
sets Tj we just shift this sequence. That is, we set k := k′−j+1 and Ti := Uj+i−1

for 1 ≤ i ≤ k.
⇐ This direction is proved as in Lemma 3.1.11 by first showing that Ti ⊆ω

F i(∅) for all 1 ≤ i ≤ k. �

We can now prove our main theorem about continuous functionals.

Proof of Theorem 3.2.6(1). Let G(X,Y) be a continuous functional and de-
fine H(Y) := LFPX .G(X,Y). Suppose that s ∈ H(Y). Let T1, . . . , Tk ⊆ω S
and Q ⊆ω Y be the sets given by Lemma 3.2.7. We will now prove that
s ∈ H(Q) = LFPX .G(X,Q). Observe that, by the mentioned lemma, we have
T1 ⊆ω G(∅,Q) and Ti+1 ⊆ω G(Ti,Q). From this it can be easily seen that
Ti ⊆ LFPX .G(X,Q) for each i. As the lemma states that s ∈ Tk, we can conclude
that s ∈ LFPX .G(X,Q). �

Proof of Theorem 3.2.6(2). Let F : ℘(S) → ℘(S) be continuous and s ∈ S;
we prove that s ∈ LFP(F) iff there exists a finite Y such that s ∈ LFP(F�Y).

⇒ Let T1, . . . , Tk ⊆ω S be the sets obtained using Lemma 3.2.7 and define
Y =

⋃
i Ti. In the lemma we already proved that Ti ⊆ω F i(∅) for all i. This

relationship can be lifted to Ti ⊆ω F i
�Y (∅) for all i (as we did in the proof of

Theorem 3.1.10(2)). In particular, we have that s ∈ {s} = Tk ⊆ω F k
�Y (∅) and

therefore s ∈ LFP(F�Y).

⇐ This direction goes through using a monotonicity argument. Using that for
all X we have F�Y (X) ⊆ F (X), it is not difficult to prove that Fα

�Y (X) ⊆ Fα(X)
for all α, which entails that LFP(F�Y) ⊆ LFP(F). �

3.2. Continuous fragments 67

3.2.2 Characterization of CPDL inside µML

It is known that CPDL can be translated to the µ-calculus, moreover, it can be
translated to a smaller fragment µcML of µML which relates to the property of
continuity. However, even though the concept of continuity is a generalization of
complete additivity, it lacks several important features. In this section we identify
a fragment of µML which corresponds to CPDL and discuss how continuity and
other properties play a role in this correspondence.

3.2.8. Definition. We say that ϕ ∈ µML is continuous in Q ⊆ P if

S ϕ iff S[Q�Y] ϕ for some Y ⊆ω κ\(Q),

for every transition system S.

It is useful to remark that the equivalence of continuity in the product and
continuity in every variable stated in Proposition 3.2.5 transfers to the setting of
formulas, via the following proposition.

3.2.9. Proposition. A formula ϕ ∈ µML is continuous in Q ⊆ P iff the asso-
ciated functional Fϕ

Q is continuous, for every transition system S.

Fontaine [Fon08, Fon10] gave a syntactic fragment of µML and showed that
ϕ ∈ µML is continuous in p iff it is equivalent to a formula in that fragment.

3.2.10. Definition. Given a set Q ⊆ P, the fragment µMLCONQ of µML is
inductively defined as follows:

ϕ := q | α | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | µp.ϕ′

where ` ∈ D, q ∈ Q, p ∈ P, α ∈ µML is Q-free and ϕ′ ∈ µMLCONQp.

3.2.11. Theorem ([Fon10, Theorem 5.4.4]). A formula ϕ ∈ µML is contin-
uous in p iff it is equivalent to a formula of µMLCONp.

This fragment was also studied by van Benthem [Ben06, Definition 5] under
the name of ‘ω-µ-calculus’ (probably due to the constructivity property). A few
syntactic properties of this fragment are stated in the following proposition.

3.2.12. Proposition. Let ϕ ∈ µMLCONQ, the following holds:

(i) ϕ is alternation-free,

(ii) Every variable bound by a least fixpoint is existential (i.e., is only in the
scope of diamonds); dually, every variable bound by a greatest fixpoint is
universal (i.e., is only in the scope of boxes).

68 Chapter 3. Fragments of fixpoint logics

Using that a formula is continuous in Q iff it is continuous in every q ∈ Q
(Proposition 3.2.5) we can prove the following corollary.

3.2.13. Corollary. A formula ϕ ∈ µML is continuous in Q iff it is equivalent
to a formula of µMLCONQ.

Proof. Using Proposition 3.2.5 and that µMLCONQ ≡
⋂
q∈Q µMLCONq. �

Given the analysis performed in Section 3.1.2 it is natural to ask if (normal
and) continuous formulas of µML correspond to programs of CPDL. Unfortu-
nately, the same counterexample ϕ = (µq.2q) ∧ p of Proposition 3.1.23 applies,
since CPDL also fails to express well-foundedness.

3.2.14. Proposition. There is a formula ϕ ∈ µML which is normal and con-
tinuous in p but cannot be written as a CPDL-formula 〈π〉p.

Proof. Direct from the observation that CPDL can be translated to the con-
tinuous fragment µcFOE of the first-order µ-calculus µFOE, but µcFOE cannot
express well-foundedness [Par76, Section 4]. �

We now finally introduce the fragment µcML of µML considered in [Pel85,
Fon08, Fon10], which restricts the least fixpoint operator µp.ϕ to µMLCONp. This
fragment will play an important role in later chapters, independently of CPDL.

3.2.15. Definition. Formulas of µcML are given by the following induction:

α := p | ¬α | α ∨ α | 〈`〉α | µp.ϕ,

where p ∈ P, ` ∈ D and ϕ ∈ µMLCONp ∩ µcML.

Peleg also considers a fragment of µcML which he calls simple µcML, and
which is obtained by forbidding the interleaving of the fixpoint operators. That is,
formulas of the shape µp.ϕ(µq.ϕ′(p)) are not allowed. We follow the terminology
of [SV10] and call this fragment flat µcML and denote it by µcML[.

3.2.16. Theorem ([Pel85, Theorem 2.11]). µcML[⊆ CPDL ⊆ µcML.

The strictness of these two inclusions is still an open problem, which is dis-
cussed in the last part of this chapter. We conjecture that they are both strict.

3.2.17. Conjecture. µcML[(CPDL (µcML.

In the remainder of this section we introduce a (syntactic) restriction µncML∨

of µcML and prove that CPDL ≡ µncML∨. Therefore the relationship between
the mentioned languages is as follows:

µcML[⊆ CPDL ≡ µncML∨ ⊆ µcML.

3.2. Continuous fragments 69

3.2.18. Definition. Given a set of propositions Q ⊆ P, the formulas of the
fragment µMLnCON∨Q of µML are given as follows:

ϕ := q | α ∧ ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | µp.ϕ′ ∨ ϕ′′

where ` ∈ D, q ∈ Q, p ∈ P, α ∈ µML is Q-free, ϕ′ ∈ µMLnCON∨Q is p-free and
ϕ′′ ∈ µMLnCON∨p is Q-free. Formulas of µncML∨ are given as follows:

α := p | ¬α | α ∨ α | 〈`〉α | µp.β ∨ ϕ,

where p ∈ P, ` ∈ D, β ∈ µncML∨ is p-free and ϕ ∈ µMLnCON∨p ∩ µncML∨.

The fragment µMLnCON∨Q has two main differences with µMLCONp. The
first difference is the removal of the α ∈ µML clause and the addition of α ∧ ϕ.
This change amounts to getting ‘normality’ without losing the power to do tests
(that is, having conjunction-with-constant).

However, this change is not crucial, as we will see later in Proposition 3.2.27.
The second (and key) difference is the separation of variables under the fixpoint
operator, forced by the µp.ϕ′ ∨ ϕ′′ clause where ϕ′ ∈ µMLnCON∨Q is p-free and
ϕ′′ ∈ µMLnCON∨p is Q-free.

3.2.19. Proposition. Every ϕ ∈ µMLnCON∨Q is normal and continuous in Q.

Proof. Continuity is direct because µMLnCON∨p ⊆ µMLCONp. Normality is
easily proved by induction. �

A natural question is whether the logics µcML and µncML∨, which use the
fragments µMLCONQ and µMLnCON∨p respectively, are equivalent or not. In the
case of complete additivity, it is not too difficult to see that an analogous state-
ment holds (mainly because of the separation of variables, cf. Proposition 3.1.26
and Proposition 3.1.37). In the current case, however, we were not able to estab-
lish the precise relationship between these fragments. We conjecture that these
logics are different, some intuitions will be discussed in Section 3.3 in the context
of Game Logic.

3.2.20. Conjecture. µcML 6⊆ µncML∨.

Finally, we prove the characterization of CPDL inside µML.

3.2.21. Theorem. CPDL is effectively equivalent to µncML∨.

The theorem follows directly from Propositions 3.2.23 and 3.2.24 below. We
start with the direction from CPDL to µncML∨.

70 Chapter 3. Fragments of fixpoint logics

3.2.22. Definition. We extend the translations fπ : µML → µML and (−)t :
PDL→ µML of Definition 3.1.28 with the clause

fπ⊗π′(α) := fπ(α) ∧ fπ′(α),

and get a translation (−)t : CPDL→ µML.

The following proposition says that the translation (−)t is the required em-
bedding of CPDL into the fragment µncML∨.

3.2.23. Proposition.

(1) for every program π ∈ CPDL, and every formula α ∈ µncML∨:

(1a) fπ(α) belongs to µncML∨,
(1b) fπ(α) ∈ µMLnCON∨Q and FV(fπ(α)) = FV(α) ∪ FV(π),

given α ∈ µMLnCON∨Q and FV(π) ∩Q = ∅, and
(1c) 〈π〉α ≡ fπ(α).

(2) for every formula α ∈ CPDL:

(2a) αt ∈ µncML∨, and
(2b) α ≡ αt.

Proof. Most of the proof is exactly as Proposition 3.1.29. We only prove item (1)
for the case of the new program and the star.

• Suppose π = π′ ⊗ π′′ and consider a formula α ∈ µncML∨. By inductive
hypothesis we have fπ′(α) ∈ µncML∨, fπ′(α) ≡ 〈π′〉α and analogous statements
for π′′. To prove (1a) just observe that µncML∨ is closed under conjunction,
therefore fπ(α) = fπ′(α) ∧ fπ′′(α) belongs to µncML∨. Item (1b) is proved
similarly, using (1b) of the inductive hypothesis. For (1c) we simply verify that
〈π′〉α ∧ 〈π′′〉α ≡ 〈π′ ⊗ π′′〉α by the semantics of CPDL.

• Suppose π = %∗ and consider a formula α ∈ µncML∨. Recall that fπ(α) is
defined as µp.α ∨ f%(p), where p does not occur in neither α nor %. To prove
(1a), we apply the inductive hypothesis (1a) and (1b) to % and the formula p ∈
µMLnCON∨p , and get that f%(p) ∈ µMLnCON∨p∩µncML∨. Therefore µp.α∨f%(p)
indeed belongs µncML∨. For (1b), let Q be a set of variables that do not occur
in %, assume that α ∈ µMLnCON∨Q. We already proved for (1a) that f%(p) ∈
µMLnCON∨p . Observing that FV(f%(p)) = FV(%) ∪ {p}, we can conclude that
µp.α ∨ f%(p) belongs to the set µMLnCON∨Q and FV(fπ(α)) = FV(α)∪ FV(π).
For (1c), it is obvious that 〈%∗〉α ≡ µp.α ∨ 〈%〉p ≡ µp.α ∨ f%(p) ≡ fπ(α).

This finishes the proof. �

3.2. Continuous fragments 71

The translation in the other direction is provided by the following proposition.

3.2.24. Proposition. The following procedures can be performed effectively:

(i) Given a formula α ∈ µncML∨, return an equivalent formula αs ∈ CPDL.

(ii) Given a formula ϕ ∈ µMLnCON∨p ∩ µncML∨, return a p-free program π ∈
CPDL such that ϕ ≡ 〈π〉p.

Proof. Most of the proof is done by mutual induction like Proposition 3.1.30,
we focus on proving point (ii) for the case of the conjunction and fixpoint.

Suppose ϕ = ϕ′ ∧ ϕ′′ belongs to µncML∨, then by definition of the fragment
both ϕ′, ϕ′′ ∈ µncML∨ as well. Applying the inductive hypothesis to both formulas
we get that ϕ ≡ 〈π′〉p ∧ 〈π′′〉p for p-free programs π′, π′′ ∈ CPDL. It is only left
to observe that 〈π′〉p ∧ 〈π′′〉p ≡ 〈π′ ⊗ π′′〉p.

Suppose ϕ = µq.ϕ′∨ϕ′′ where ϕ′ ∈ µMLnCON∨p is q-free and ϕ′′ ∈ µMLnCON∨q
is p-free. Using item (ii) of the inductive hypothesis on both formulas we get that
ϕ ≡ µp.(〈π′〉p ∨ 〈π′′〉q) where π′, π′′ ∈ CPDL are pq-free. From this, it is easy to
see that ϕ ≡ 〈(π′′)∗;π′〉p. �
As a corollary of these propositions, we get a characterization for CPDL-programs.

3.2.25. Corollary. A formula ϕ ∈ µML belongs to µMLnCON∨p ∩ µncML∨ iff
it is equivalent to 〈π〉p for some p-free program π ∈ CPDL.

Proof. The left-to-right direction is given by Proposition 3.2.24(ii) and the other
direction is given by Proposition 3.2.23(1). �

Relation to non-normal continuity. As for additivity, the results of this sec-
tion were mostly developed for normal continuity to get a clean characterization
for CPDL programs (cf. Corollary 3.2.25). The same analysis could have been
done by defining fragments based on non-normal continuity.

3.2.26. Definition. Given a set Q ⊆ P, the fragment µMLCON∨Q of µML is
inductively defined as follows:

ϕ := q | α | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | µp.ϕ′ ∨ ϕ′′

where ` ∈ D, q ∈ Q, p ∈ P, α ∈ µML is Q-free, ϕ′ ∈ µMLCON∨Q is p-free and
ϕ′′ ∈ µMLCON∨p is Q-free. Formulas of µcML∨ are given as follows:

α := p | ¬α | α ∨ α | 〈`〉α | µp.ϕ,
where p ∈ P, ` ∈ D and ϕ ∈ µMLCON∨p ∩ µcML∨.

It should be observed that µMLCON∨Q 6≡ µMLnCON∨Q. However, the frag-
ments µcML∨ and µncML∨ are in fact equivalent. The following proposition is
proved similar to Proposition 3.1.37.

3.2.27. Proposition. µcML∨ ≡ µncML∨ and hence µcML∨ ≡ CPDL.

72 Chapter 3. Fragments of fixpoint logics

3.2.3 Finiteness, µcFOE∞ and WMSO

In this section we study the relationship of continuity in first-order languages
and (in-)finiteness in second order languages. Park [Par76, Section 4] defined
a continuous fragment of µFOE and proved that it is included in the infinitary
language Lω1ω; that is, first-order logic with countably infinite conjunctions and
disjunctions in addition to the usual finite operations.

For this section, however, we are more interested in considering WMSO as
a target language. To begin with, we consider the case of monadic signatures,
that is, signatures with relations of arity at most one (i.e, predicates). It follows
from results by Väänänen that, for monadic signatures, WMSO coincides with
an extension FOE∞ of first-order logic, with an additional generalized quantifier
∃∞x.ϕ stating that there are infinitely many elements satisfying ϕ.

3.2.28. Theorem ([Vää77, Section 6]). WMSO on a monadic signature is
equivalent to monadic FOE∞.

This theorem can also be given a more direct proof using the normal forms that
we will develop in Chapter 5. We could ask ourselves what happens with this
relationship if we consider (arbitrary) relational signatures, and even consider
the presence of a fixpoint operator. The following proposition shows that this
relationship cannot be lifted for full µFOE over a relational signature.

3.2.29. Proposition. µFOE 6⊆WMSO and hence µFOE∞ 6⊆WMSO.

Proof. In µFOE we can define the class of well-founded trees but this cannot be
done in WMSO. This follows from the fact that WMSO can only define properties
of trees that, from a topological point of view, are Borel, which is not the case of
the class of well-founded trees. See e.g. [CF11]. �

However, if we consider the logic µcFOE∞ obtained by restricting the fixpoint
operator of µFOE∞ to continuous formulas, then we are in a better shape. The
main result of this section is that, even for relational signatures, the following
inclusion holds:

µcFOE∞ ⊆WMSO.

Unfortunately, other inclusion does not hold in general.

3.2.30. Proposition. WMSO 6⊆ µcFOE∞.

Proof. The first observation is that, on finite models we have that MSO 6⊆ µFOE.
This result is discussed in [Sch06, p. 2] as a corollary of [Daw98, Theorem 4.11].
The next observation is that, again on finite models, we have WMSO ≡ MSO
and also µcFOE∞ ⊆ µFOE, since the generalized quantifier ∃∞ trivializes. Hence
on finite models we get WMSO 6⊆ µcFOE∞. The final step is to realize that if
WMSO 6⊆ µcFOE∞ for finite models then then inclusion cannot hold for arbitrary
models. �

3.2. Continuous fragments 73

This proposition shows that WMSO and µcFOE∞ cannot be equivalent for
arbitrary models. Nevertheless, in Chapter 7, we use automata-theoretic tools to
prove that the equivalence does hold for tree models. For the moment, we begin
with the necessary definitions to develop the main theorem of this section.

3.2.31. Definition. We say that ϕ ∈ µFOE∞ is continuous in Q ⊆ P if for
every model M and assignment g it satisfies

M, g |= ϕ iff M[Q�Y], g |= ϕ for some finite set Y ⊆ω κ\(Q).

3.2.32. Proposition. If ϕ ∈ µFOE∞ is continuous in Q then the functional
Fϕ
Q:x : ℘(M)n → ℘(M) is continuous, for every model M and variable x ∈ FV(ϕ).

Proof. Fix a model M, assignment g and free variable x ∈ FV(ϕ). We want to
prove that Fϕ

Q:x(Z) is continuous. An element t belongs to Fϕ
Q:x(Z) iff M[Q 7→

Z], g[x 7→ t] |= ϕ. By continuity of ϕ, this occurs iff M[Q 7→ Y], g[x 7→ t] |= ϕ for
some Y ⊆ω Z. By definition of Fϕ

Q:x, this is equivalent to saying that t ∈ Fϕ
Q:x(Y).

Therefore, Fϕ
Q:x is continuous. �

Next, we provide a definition of a fragment of µFOE∞, and shortly after that
we prove that every formula in this fragment is continuous.

3.2.33. Definition. Let Q ⊆ P be a set of monadic predicates. The fragment
µFOE∞CONQ(P,D) is defined by the following rules:

ϕ ::= ψ | q(x) | ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ |Wx.(ϕ, ψ) | [LFPp:x.ξ(p, x)](z)

where q ∈ Q, ψ ∈ µFOE∞(P\Q,D), p ∈ P\Q and ξ(p, x) ∈ µFOE∞CONQp(P,D).
The shorthand quantifier Wx.(ϕ, ψ) is defined as ∀x.(ϕ ∨ ψ) ∧ ∀∞x.ψ.

Observe that the atomic formulas given by equality and relations are taken
into account by this definition in the ψ clause.

Universal quantification is usually problematic for preserving continuity be-
cause of its potentially infinite nature. However, in the case of Wx.(ϕ, ψ), the
combination of both quantifiers ensures that all the elements are covered by ϕ∨ψ
but only finitely many are required to make ϕ true (which contains q ∈ Q). This
gives no trouble for continuity in Q.

3.2.34. Proposition. Every ϕ ∈ µFOE∞CONQ is continuous in Q.

Proof. The proof goes by induction. Most cases are proved exactly as in Propo-
sition 3.1.41, we focus on the inductive step of the fixpoint operator, conjunction
and the new quantifier.

74 Chapter 3. Fragments of fixpoint logics

• Case ϕ = ϕ1 ∧ ϕ2: assume M, g |= ϕ. By induction hypothesis we have sets
Y1,Y2 ⊆ω κ\(Q) such that M[Q�Yi], g |= ϕi. By monotonicity we also have
that M[Q�Y1 ∪Y2], g |= ϕi and hence M[Q�Y1 ∪Y2], g |= ϕ. This finishes the
case because Y1 ∪Y2 is finite.

• Let ϕ be [LFPp:x.ψ(p, x)](z), we have to prove that

M, g |= ϕ iff M[Q�Y], g |= ϕ for some Y ⊆ω κ\(Q).

By semantics of the fixpoint operator M, g |= ϕ iff g(z) ∈ LFP(Fψ
p:x). It will be

useful to take a slightly more general perspective and consider the map

Fψ
Qp:x(P,Z) := {t ∈M |M[p 7→ P ;Q 7→ Z], g[x 7→ t] |= ψ}

and observe that Fψ
p:x(P) = Fψ

Qp:x(P, κ
\(Q)) and therefore their least fixpoints

will be the same. By inductive hypothesis and Proposition 3.2.32, we know that
Fψ
Qp:x(P,Z) is continuous. Using Theorem 3.2.6(1) we get that LFPP .Fψ

Qp:x(P,Z)
is continuous as well. In particular,

t ∈ LFPP .F
ψ
Qp:x(P, κ

\(Q)) if and only if

t ∈ LFPP .F
ψ
Qp:x(P,Y) for some Y ⊆ω κ\(Q).

From this we conclude that M, g |= ϕ iff M[Q�Y], g |= ϕ, for some Y ⊆ω κ\(Q).
Hence, ϕ is continuous in Q.

• Case Wx.ϕ′: by definition of the quantifier this formula is equivalent to

∀x. (ϕ(x) ∨ ψ(x))︸ ︷︷ ︸
α(x)

∧∀∞x.ψ(x)︸ ︷︷ ︸
β

.

Let M, g |= Wx.ϕ′. By induction hypothesis, for every gu := g[x 7→ u] which
satisfies M, gu |= α(x) there is Yu ⊆ω κ\(Q) such that M[Q�Yu], gu |= α(x).
The crucial observation is that because of β, only finitely many elements make
ψ(x) false. Let Y :=

⋃{Yu | M, gu 6|= ψ(x)}. Note that Y is a finite union of
finite sets, hence finite.

Claim 1. M[Q�Y], g |= ϕ′.

Proof of Claim. It is clear that M[Q�Y], g |= β because ψ is Q-free. To
show that ∀x.α(x) is true we have to show that M[Q�Y], gu |= ϕ(x) ∨ ψ(x) for
every u ∈ M . We consider two cases: (i) if M, gu |= ψ(x) we are done, again
because ψ is Q-free; (ii) if the former is not the case thenYu ⊆ Y; moreover, we
knew that M[Q�Yu], gu |= α(x) and by monotonicity of α(x) we can conclude
that M[Q�Y], gd |= α(x). J

3.2. Continuous fragments 75

This concludes all the new cases. �

This proves that the above fragment is “sound” with respect to the property
of continuity. We conjecture that the fragment is also “complete” with respect
to this property, i.e., that every formula of µFOE∞ which is continuous in Q is
equivalent to a formula in µFOE∞CONQ.

3.2.35. Conjecture. Every formula ϕ ∈ µFOE∞ which is continuous in Q is
equivalent to some formula ϕ′ ∈ µFOE∞CONQ.

Finally, we define µcFOE∞:

3.2.36. Definition. The fragment µcFOE∞ of µFOE∞ is given by the following
restriction of the fixpoint operator to the continuous fragment:

ϕ ::= q(x) | R`(x, y) | x ≈ y | ∃x.ϕ | ∃∞x.ϕ | ¬ϕ | ϕ ∨ ϕ | [LFPp:x.ξ(p, x)](z)

where p, q ∈ P, ` ∈ D, x, y ∈ iVar; and ξ(p, x) ∈ µFOE∞CONp ∩ µcFOE∞.

We are now ready to prove the main theorem of this section. In this case
we will make use of the correspondence between single-sorted WMSO and the
two-sorted version 2WMSO given in Section 2.8.

3.2.37. Proposition. There is an effective translation (−)t from µcFOE∞ to
2WMSO such that for every model M, assignment g and ϕ ∈ µcFOE∞ we have:
M, g |= ϕ if and only if M, g |= ϕt.

Proof. Clearly the interesting cases are the generalized quantifier and fixpoint
operator. The former is easy to translate, as follows:

(∃∞x.ϕ)t := ∀finY.∃x.(¬Y (x) ∧ ϕt(x))

Turning to the fixpoint case, in this proof we will use Fψ to denote Fψ
p:y. We

define the translation of the fixpoint as follows:

([LFPp:y.ψ(p, y)](x))t := ∃finY.
(
∀finW ⊆ Y.W ∈ PRE(Fψ

�Y)→ x ∈ W
)

W ∈ PRE(Fψ
�Y) := ∀v.ψt(W, v) ∧ v ∈ Y → v ∈ W.

Claim 1. The translation of the fixpoint is correct.

First recall that the translation of [LFPp:y.ψ(p, y)](x) into MSO is given by:

∀W.
(
W ∈ PRE(Fψ)→ x ∈ W

)
. (t-MSO)

where W ∈ PRE(Fψ) expresses that W is a prefixpoint of Fψ : ℘(S) → ℘(S).
This translation is based on the following fact about fixpoints of monotone maps:

s ∈ LFP(Fψ) iff s ∈
⋂
{W ⊆ S | W ∈ PRE(Fψ)}. (PRE)

76 Chapter 3. Fragments of fixpoint logics

It is easy to see that (t-MSO) exactly expresses that g(x) has to belong to every
prefixpoint of Fψ. In our translation (−)t, however, we cannot make use of the
set quantifier ∃W , since we are dealing with WMSO. The crucial observation
is that, as Fψ : ℘(S) → ℘(S) is continuous, then we can use Theorem 3.2.6 to
prove that, without loss of generality, we can restrict ourselves to finite sets, in
the following sense:

s ∈ LFP(Fψ) iff s ∈ LFP(Fψ
�Y) for Y ⊆ω S (Theorem 3.2.6)

iff s ∈
⋂
{W ⊆ Y | W ∈ PRE(Fψ

�Y)} for Y ⊆ω S (PRE)

A crucial observation about these equations is that we have W ⊆ Y instead of
W ⊆ S because Fψ

�Y : ℘(Y) → ℘(Y). Therefore, the translation (−)t basically
expresses the same as (t-MSO) but relativized to a finite set Y . The correctness
of the translation is then justified by the above equations. �

3.3 The question of Game Logic
The syntax of Game Logic is very different from that of the modal µ-calculus. The
latter contains explicit fixpoint operators, while the former only has a seemingly
weaker iteration operator. Superficially, these logics look quite different, however,
the relationship between them remains an intriguing topic today.

Initially, there was considerable evidence to think that these logics could be
equivalent. For example, GL cannot be embedded in any fixed level of the alter-
nation hierarchy of µML. To see this, consider the following fact of µML: given
a number n of parities, the µ-calculus can express the existence of a winning
strategy for any given parity game, with a formula W n [EJ91]. The number of
parities in such a game is strongly related to the alternation hierarchy of µML.

3.3.1. Theorem ([Bra96, Bra98]). Every W n ∈ µML can be expressed with
alternation n and not with alternation n− 1.

Berwanger showed that GL can also express these formulas, and therefore it
traverses the whole alternation hierarchy of µML. This result contrasts with the
cases of PDL and CPDL, which belong to the alternation-free fragment of µML.

3.3.2. Theorem ([Ber03, Theorem 7]). No finite level of the alternation hi-
erarchy of µML captures the expressive power of GL.

It was known that GL can be translated to the two variable fragment µML[2] of
the µ-calculus (cf. [BGL05, Lemma 47]). Even then, the question of whether GL
is equivalent to µML was open, as it was unknown whether µML[2] is equivalent
to the full µML. This question was finally closed by Berwanger by showing that
the variable hierarchy of the µ-calculus is strict.

3.3. The question of Game Logic 77

3.3.3. Theorem ([BGL05, Ber05]). GL 6≡ µML.

In spite of the remarkable results that we just named, the GL question is
still not fully solved. The exact fragment of µML (or µML[2]) which corresponds
to GL is still unknown. In particular, it is not known whether GL and µML[2]
coincide. In this section we address this question, but unfortunately we do not
provide a complete answer.

Following the methodology of the previous sections we define a fragment µML∨

of µML and show that it corresponds to GL. As a corollary, we actually get that
GL ≡ µML∨[2] ≡ µML∨, but the question of whether µML∨[2] and µML[2]
coincide is left open. We also discuss some intuitions and conjectures that may
lead to a separation of these fragments.

In the previous sections we played with several restrictions on the fixpoint
operator, most notably, complete additivity and continuity, together with a sep-
aration of variables. In this section we only keep the separation of variables and
monotonicity. As we saw, the former seems to be connected to PDL-like syn-
taxes. The latter, on the other hand, is no restriction at all, since already in µML
formulas under fixpoints are required to be monotone.

3.3.4. Definition. Given a set Q ⊆ P, the fragment µMLMON∨Q of µML is
inductively defined as follows:

ϕ := q | p′ | ¬p′ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | [`]ϕ | µp.ϕ′ ∨ ϕ′′ | νp.ϕ′ ∧ ϕ′′

where ` ∈ D, q ∈ Q, p ∈ P, p′ ∈ P \ Q, ϕ′ ∈ µMLMON∨Q is p-free and ϕ′′ ∈
µMLMON∨p is Q-free. Formulas of µML∨ are given as follows:

α := p | ¬α | α ∨ α | 〈`〉α | µp.β ∨ ϕ,

where p ∈ P, ` ∈ D, β ∈ µML∨ is p-free and ϕ ∈ µMLMON∨p ∩ µML∨.

3.3.5. Remark. The fragment µMLMON∨Q is just the monotone (positive) frag-
ment of µML (see [DH00] and [Fon10, Section 5.1.4]) with the additional con-
straint of separation of variables. We introduced this fragment in negation nor-
mal form, hoping that it would more clearly show its structure. However, it can
be equivalently defined as follows:

ϕ := p ∈ P | ¬ϕ | ϕ ∨ ϕ | 〈`〉ϕ | µq.ϕ′ ∨ ϕ′′

asking that every q ∈ Q is positive (i.e., under an even number of negations).

3.3.6. Proposition. Every µMLMON∨Q is monotone in Q.

Proof. Corollary of the characterization of monotonicity given in [DH00]. �

78 Chapter 3. Fragments of fixpoint logics

A crucial property of the fragments that we have just defined is that they are
closed under Boolean duals. This feature acts as a counterpart to the closure of
GL games under duals. We now define the concept of Boolean dual for µML.

3.3.7. Definition. For every formula ϕ ∈ µML we define the Boolean dual
ϕδ ∈ µML of ϕ by induction:

pδ := p (¬ϕ)δ := ¬ϕδ

(ϕ ∧ ψ)δ := ϕδ ∨ ψδ (ϕ ∨ ψ)δ := ϕδ ∧ ψδ

(〈`〉ϕ)δ := [`]ϕδ ([`]ϕ)δ := 〈`〉ϕδ

(µp.ϕ)δ := νp.ϕδ (νp.ϕ)δ := µp.ϕδ

3.3.8. Proposition. For every transition system S we have that

S ϕ iff S[p 7→M \ κ\(p) | p ∈ P] 6 ϕ.

Moreover, the transformation (−)δ preserves the positivity of the variables.

The following proposition is easily verified using the definition of the fragments.

3.3.9. Proposition.

(i) If ϕ ∈ µML∨[k] then ϕδ ∈ µML∨[k],

(ii) If ϕ ∈ µMLMON∨Q[k] then ϕδ ∈ µMLMON∨Q[k].

Finally, we prove that GL and µML∨ are equivalent.

3.3.10. Theorem. The logics GL, µML∨ and µML∨[2] are effectively equivalent.

The theorem follows directly from Propositions 3.3.13 and 3.3.15 below. We
first prove that GL can be translated to µML∨[2].

3.3.11. Definition. By a simultaneous induction on formulas and games of GL,
we define, for each game π ∈ GL, functions fxπ , f yπ : µML → µML on the set of
modal fixpoint formulas, and a map (−)t : GL→ µML:

fx` (α) := 〈`〉α
fxϕ?(α) := ϕt ∧ α
fxπ⊕π′(α) := fxπ (α) ∨ fxπ′(α)
fxπ;π′(α) := fxπ (fxπ′(α))
fxπ∗(α) := µy.α ∨ f yπ (y)
fx
πδ

(α) := ¬fxπ (¬α)

f y` (α) := 〈`〉α
f yϕ?(α) := ϕ ∧ α
f yπ⊕π′(α) := f yπ (α) ∨ f yπ′(α)
f yπ;π′(α) := f yπ (f yπ′(α))

f yπ∗(α) := µx.α ∨ fxπ (x)
f y
πδ

(α) := ¬f yπ (¬α)

pt := p
(¬ϕ)t := ¬ϕt

(ϕ0 ∨ ϕ1)t := ϕt0 ∨ ϕt1
(〈π〉ϕ)t := fxπ (ϕt)

3.3. The question of Game Logic 79

3.3.12. Remark. Since we do not want the variables x, y to conflict with other
variables in the translation, we take them to be propositional variables which are
available in µML[2] but not in GL. An alternative way to prevent the conflict is
to think that both GL and µML[2] share the same variables but the translation
(ϕ)t of a formula ϕ ∈ GL uses the functions fx, f y for some distinct x, y /∈ FV(ϕ).

The following proposition says that the translation (−)t is the required em-
bedding of GL into the fragment µML∨[2].

3.3.13. Proposition.

(1) for every game π ∈ GL, and y-free αx ∈ µML∨[2], x-free αy ∈ µML∨[2]:

(1a) fxπ (αx) is y-free, f yπ (αy) is x-free and both belong to µML∨[2],
(1b) f zπ(αz) ∈ µMLMON∨Q and FV(f zπ(αz)) = FV(αz) ∪ FV(π),

given αz ∈ µMLMON∨Q and FV(π) ∩Q = ∅ for z ∈ {x, y}; and
(1c) 〈π〉α ≡ fπ(α).

(2) for every formula α ∈ GL:

(2a) αt ∈ µML∨[2],
(2b) α ≡ αt.

Proof. Most of the proof is exactly as that of Proposition 3.1.29. We only prove
item (1) for the case of the star and dual and we prove the statements only for
fxπ , as the case of f yπ is completely symmetric.

Suppose π = %∗ and consider a y-free formula αx ∈ µML∨[2]. Recall that
fxπ (αx) is defined as µy.αx ∨ f y% (y). For (1a) first observe that as y gets bound
by the least fixpoint then clearly fxπ (αx) is y-free. By Remark 3.3.12 y /∈ FV(π),
moreover y ∈ µMLMON∨y . Hence, by inductive hypothesis f y% (y) ∈ µMLMON∨y
and therefore fxπ (αx) ∈ µML∨[2]. For (1b) assume that αx ∈ µMLMON∨Q and
FV(π) ∩ Q = ∅. The first observation is that αx ∈ µMLMON∨Q is y-free by
hypothesis. We already proved for (1a) that f y% (y) ∈ µMLMON∨y . It is only left
to observe that FV(f y% (y)) = FV(%) ∪ {y} to conclude that µy.α ∨ f y% (y) belongs
to the set µMLMON∨Q and FV(fπ(α)) = FV(α) ∪ FV(π). For (1c), it is obvious
that 〈%∗〉α ≡ µy.α ∨ 〈%〉y ≡ µy.α ∨ f y% (y) ≡ fxπ (α).

For the dual recall that fx
πδ

(α) is defined as ¬fxπ (¬α). Items (1a) and (1b)
are direct by Proposition 3.3.9, that is, the closure of the relevant fragments
under Boolean duals. For (1c) first we use the inductive hypothesis and get that
fxπ (¬α) ≡ 〈π〉¬α. Therefore, ¬fxπ (¬α) ≡ ¬〈π〉¬α from which it is straightforward
to show that ¬fxπ (¬α) ≡ 〈πδ〉α. �

A close look at this translation and proof reveals that the exact same technique
works for PDL and CPDL. That is, not only can PDL and CPDL be translated to
µML∨[2] but they can also be translated to µnaML[2] and µncML∨[2], respectively.

80 Chapter 3. Fragments of fixpoint logics

3.3.14. Corollary. PDL ≡ µnaML[2] and CPDL ≡ µncML∨[2].

The translation in the other direction is provided by the following proposition.

3.3.15. Proposition. The following procedures can be performed effectively:

(i) Given a formula α ∈ µML∨, return an equivalent formula αs ∈ GL.

(ii) Given a formula ϕ ∈ µMLMON∨p ∩ µML∨, return a p-free game π ∈ GL
such that ϕ ≡ 〈π〉p.

Proof. We prove the proposition via a mutual induction on the fragments µML∨

and µMLMON∨p . Leaving item (i) to the reader (which is proved just like in
Proposition 3.1.30) we focus on item (ii). Let ϕ ∈ µMLMONp ∩ µML∨, we prove
some of the most interesting cases and leave the rest to the reader.

• In case ϕ = p, simply take π := >?; clearly ϕ ≡ 〈>?〉p.

• In case ϕ = q (the case ¬q is similar) we use α := 〈q?;¬q!〉p as a formula. To
prove that ϕ ≡ α assume first that q is false, then ∃ fails at q? and α is false. If
q is true then ∃ goes through q? but then ∀ fails at ¬q! (ϕ! is the dual of ϕ?),
therefore α is true. Observe that the p here is irrelevant.

• As an example of a Boolean connective consider ϕ = ϕ1 ∧ ϕ2. Using the
inductive hypothesis we get ϕi ≡ 〈πi〉p and hence ϕ ≡ 〈π1〉p ∧ 〈π2〉p. It is
straightforward to verify that ϕ ≡ 〈π1 ⊗ π2〉p.

• As an example of a modality consider ϕ = [d]ϕ′. By inductive hypothesis we
get ϕ′ ≡ 〈π′〉p and hence ϕ ≡ [d]〈π′〉p. It is straightforward to verify that
ϕ ≡ 〈dδ;π′〉p.

• Let ϕ be µq.ϕ′ ∨ ϕ′′ where ϕ′ ∈ µMLMON∨p is q-free and ϕ′′ ∈ µMLMON∨q is
p-free. By inductive hypothesis on both formulas we get that ϕ′ ≡ 〈π′〉q and
ϕ′′ ≡ 〈π′′〉p. We have already seen that then ϕ ≡ 〈(π′′)∗;π′〉q.

• The case of the greatest fixpoint is solved dually. Let ϕ be of the form νq.ϕ′∧ϕ′′
where ϕ′ ∈ µMLMON∨p is q-free and ϕ′′ ∈ µMLMON∨q is p-free. By inductive
hypothesis on both formulas we get that ϕ′ ≡ 〈π′〉q and ϕ′′ ≡ 〈π′′〉p. In this
case we use the dual (−)◦ of (−)∗ and verify that ϕ ≡ 〈(π′′)◦;π′〉q.

This finishes the proof of both statements. �

3.3. The question of Game Logic 81

νx

∧
p µy

∨

〈`1〉

y

〈`2〉

µy

∨

x 〈`1〉

y

νx

〈b〉

∧

〈a〉x 〈b〉

νy

∧

〈a〉

〈a〉x ∧ 〈b〉y

〈b〉

〈b〉x ∧ 〈a〉y

Figure 3.2: Fixpoint interleaving of µML∨[2] and µML[2].

What is special about GL? Given what we proved in this section, the ques-
tion of whether GL is equivalent to µML[2] can be reduced to the question of the
equivalence of µML[2] and µML∨[2]. The only (but not minor) difference between
these fragments is the separation constraint under the fixpoint operator. We con-
jecture that this two fragments have different expressive power, and proceed to
give some intuitions that may help for further research.

3.3.16. Conjecture. µML[2] 6⊆ µML∨[2].

Our main observation is that formulas of µML∨[2] have a very special structure
in the interleaving of the fixpoints. To give an example, consider the GL formula
ϕ = 〈(`∗1; `2; `∗1)◦〉p. This formula can be translated to the fragment µML∨[2] as:

ϕt = νx.p ∧
(
µy.〈`2〉(µy.x ∨ 〈`1〉y) ∨ 〈`1〉y

)
.

In Fig. 3.2 we draw the formula structure of ϕt ∈ µML∨[2] and of a formula which
we call χ2 ∈ µML[2], which is hard for the second level of the variable hierarchy
of µML. That is, there is no formula in µML[1] equivalent to χ2 (see [Ber05,
Corollary 5.3.4]).

The formula structure of ϕt clearly mimics the sequentiality of the game (or
program) structure of ϕ. For example, after the definition of each fixpoint, the
interested player has to already choose whether (s)he is interested to possibly
regenerate the fixpoint variable, or to exit the component altogether. This corre-
sponds to the iteration construct.

Another feature that we consider even more crucial is the following: the regen-
eration structure of µML∨ is very simple. Consider the evaluation of the formula
〈(`∗1; `2; `∗1)◦〉p. We start with the game (`∗1; `2; `∗1)◦ and ∀ has to choose if he wants

82 Chapter 3. Fragments of fixpoint logics

to regenerate the star-dual. Suppose he does. Then ∃ has to play `1 a number of
times. This is clearly done in µML∨ with a fixpoint operator. The observation is
that after ∃ is done, the game has to continue with `2;`∗1 before ∀ gets the option
to regenerate the star-dual again. That is, it is not possible to break the play
of the game in the middle, and regenerate a star or star-dual. In other words,
this means that if x and y bind two different fixpoints (i.e., stars or star-duals)
then we shouldn’t be able to have a formula like 〈`1〉x ∧ 〈`2〉y in the scope of
these fixpoints, as this formula is regenerating different variables depending on
the action.

The formula structure of χ2 is clearly more complex, and it is not known to
us whether this formula can be taken (maybe with a complexity blowup) to the
simpler form of µML∨[2].

3.4 Conclusions and open problems

In this chapter we studied some fragments of modal and first-order fixpoint logics.
In particular, we made a thorough analysis of complete additivity and continuity
both abstractly (at the level of maps) and of the logics resulting from a restriction
of the fixpoint operator to these notions.

On the modal side we gave characterizations of PDL-like logics as fragments
of the modal µ-calculus. Namely, we identified fragments of µML correspond-
ing to PDL, CPDL and GL. We saw that in the case of PDL everything ran
smoothly thanks to the multiple nice properties of complete additivity. However,
the cases of CPDL and GL required some extra constraints which need to be
further contemplated.

On the first-order side, we showed that first-order logic with transitive closure
is equivalent to first-order logic with completely additive fixpoints. We also con-
sidered the effect of continuous fixpoints in µcFOE∞ and showed that this logic
is properly included in WMSO.

Open problems. We already discussed several open problems in each of the
sections of this chapter. As a summary, we provide a list with some additional
problems.

1. Separation of variables : In the modal sections of this chapter we saw that, in
order to translate a fragment of µML into a PDL-like syntax, it seemed crucial
to ‘separate variables’ under the fixpoint operator. This constraint may really
be crucial or it could be possible that every formula of µML can be transformed
into an equivalent formula in such a form. Conjecture 3.2.20 and 3.3.16 depend
on an answer to this question, which would separate or prove equivalent GL
and µML[2].

3.4. Conclusions and open problems 83

2. Succinctness of the fragments : In this chapter we proved that some (fragments
of) logics are effectively equivalent. Even then, one of the formalisms may be
more succinct than its correspondent in expressing certain properties. For
example, if we take PDL and µaML, there seems to be a blowup in formula
complexity when going from PDL to µaML (see Propositions 3.1.30 and 3.1.26).
It would be interesting to understand the relationship between this formalisms
in terms of succinctness.

3. Characterization of full FO(TC) inside FO(LFP): In this chapter we gave a
precise characterization of the relationship between FO(TC1) and FO(LFP1).
It would be worth checking if this relationship lifts to FO(TC) and FO(LFP).

4. Equivalence of fragments modulo fixpoint : In [Fon10, Fon08] Fontaine and
Venema study the continuous fragment µMLCONQ of µML. They remark
that every continuous formula is constructive [FLV10, Proposition 5.4.2], but
that the converse is not true. For example the formula ϕ = 2p ∧ 22⊥ is
constructive but not continuous. However, they observe that µp.ϕ ≡ µp.22⊥
and therefore there is a continuous formula ϕ′ = 22⊥ such that ϕ and ϕ′

are equivalent modulo fixpoint. The question is raised of whether it is always
possible to find such a continuous formula.

Going back to this chapter, our study of the property of separation of vari-
ables suggests further research in this direction. In Proposition 3.2.5 we dis-
cussed that the map F (A,B) = A ∩ B cannot be expressed as the union of
two maps G(A), G′(B). However, we can do that modulo fixpoint. That is,
LFPA.LFPB.F (A,B) = ∅ and therefore if we define G(A) = ∅ and G′(B) = ∅
we certainly have LFPA.LFPB.F (A,B) = LFPA.LFPB.G(A) ∪G′(B).

The main point is, to prove that µML[2] is equivalent to µML∨[2] (or not) we
can focus on checking whether the property of separation of variables is crucial
or not modulo fixpoint.

5. Models definable by PDL, CPDL and GL: One of the main problems with
working with these logics is that we lack a good semantic characterization of
the classes of transition systems, or properties, which are definable in them.
Suppose that we have a class of transitions systems C: which properties should
C satisfy to be definable in, for example, PDL? We know that it should be
closed under bisimulation, however, that should also be the case for C to be
definable in µML and even in ML. It would be very helpful to have clear model
theoretic properties to tear all these logics apart.

6. Semantic characterizations inside µML: We have given a characterization of
PDL as a syntactic fragment of µML. Namely, the fragment µaML which is
related to the property of complete additivity. This is a good start, but it would
also be interesting to have a characterization of the following style: “a formula

84 Chapter 3. Fragments of fixpoint logics

ϕ ∈ µML is equivalent to a formula ϕ′ ∈ PDL iff the semantic property P holds
on ϕ”. A candidates for P could be of the style ‘invariance under a different
notion of (bi-)simulation or EF game.’ Similar characterizations would also
prove useful for CPDL and GL.

7. Decidability of membership in PDL, CPDL and GL: In [Ott99] Otto showed
that given a formula of ϕ ∈ µML it is decidable to know if it is equivalent to
some formula in the basic modal logic. However, it is unknown if we can de-
cide whether ϕ is equivalent to a formula in {PDL,CPDL,GL}. The fragments
presented in this chapter give some insight, since now the question can equiva-
lently be cast with respect to the fragments {µaML, µcML∨, µML∨}. However,
the question remains open.

8. Separate µcML[and µcML: Peleg leaves the open question of whether µcML[

and µcML are equivalent [Pel85, after Theorem 2.11]. We conjecture that
CPDL 6⊆ µcML[. One way to prove it would be to prove that PDL 6⊆ µML[1].
Although quite intuitive, we could not find a proof of this statement. Suppose
that it holds, then we can separate µcML[and µcML as follows:

As observed in [SV10], flat fragments of the µ-calculus can be reduced to their
one-variable fragment. That is, in particular µcML[≡ µcML[[1]. Intuitively,
the non-interleaving of the fixpoint operators lets us reuse the same binding
variable over and over again. From this observation we get CPDL 6⊆ µcML[,
since already PDL 6⊆ µML[1].

Intuitively, µcML[would only be able to express (in the best case) the fragment
of CPDL without nesting of star operators, but already the star-height of PDL
formulas is strict [Egg63, Corollary 1].

Chapter 4

Subclasses of parity automata

One of the main objectives of this dissertation is to provide a set of automata-
theoretic tools to analyze fragments of fixpoint logics. In particular, we are in-
terested in studying the fragments given in Chapter 3. In the current chapter
we make a first step in this direction by introducing several subclasses of parity
automata. These subclasses are inspired by the fragments of Chapter 3 and will
try to parallel, on the automata side, the additivity and continuity constraints of
the syntactic fragments. Our definitions will be given for parity automata over
arbitrary one-step languages, and we will focus our discussion to the intuitions
and motivations behind these definitions. Concrete automata (i.e., over particular
one-step languages) of these classes will be examined in later chapters.

In the last part of this chapter we introduce a general technique (due to
Janin [Jan06]) to bring parity automata into a tree-like shape. That is, we show
how every parity automata can be unraveled to obtain an equivalent automata
which looks like a tree with back edges. This structure has the advantage of
being ‘almost a (fixpoint) formula’ and therefore it is easy to translate it to an
appropriate fixpoint language.

To finish, we introduce other possible equivalent definitions of parity au-
tomata. These different perspectives will become useful in later chapters.

Even though we use parity automata running over labeled transition systems,
in this chapter we choose to restrict most of our discussion (but not the definitions)
to trees. The only reason is that the intuitions are easier to visualize over tree
structures than on arbitrary models.

4.1 Weak parity automata

In this section we introduce and briefly discuss the notion of weak (alternating)
parity automata. This class of automata is defined by posing an additional re-
striction on the parity map, which results in weaker expressive power.

85

86 Chapter 4. Subclasses of parity automata

Weak automata were introduced in [MSS92] to study weak definability [Rab70]
in trees with fixed finite branching degree. That is, to study the classes (also called
languages) of k-ary trees which can be defined in WMSO.

4.1.1. Definition. The class Autw(L) of weak automata is given by the au-
tomata A = 〈A,∆,Ω, aI〉 from Aut(L) such that the following condition holds:

(weakness) if a � b and b � a then Ω(a) = Ω(b).

The intuition is that every run of a weak automaton A stabilizes on (‘gets
trapped into’) some strongly connected component C ⊆ A after finitely many
steps, and therefore the only parity seen infinitely often after that point will be
the parity of C. Moreover, as only one parity can be repeated infinitely often,
the precise number does not matter; only the parity does:

4.1.2. Fact ([NSW02]). Every weak automaton A = 〈A,∆,Ω, aI〉 is equivalent
to a weak automaton A′ = 〈A,∆,Ω′, aI〉 with parity map Ω′ : A→ {0, 1}.

Proof. Just define Ω′(a) := Ω(a) mod 2. �

From now on we assume such a map for weak parity automata. The special
structure of weak alternating automata is reflected in their attractive computa-
tional properties [KV01, KVW00]. If we think about trees, the leading intuition
is that the weakness condition restricts the processing of the ‘vertical dimension’
of input trees. In the context of trees of bounded branching, this restriction is all
that is needed to characterize WMSO.

4.1.3. Theorem ([MSS92, Theorem 1]). A k-ary tree language is accepted by
a weak automaton iff it is definable in WMSO.

However, if the branching of the tree is not bounded, the story is quite differ-
ent. This scenario was studied in [Zan12, FVZ13] where it was shown that weak
automata capture a different logic.

4.1.4. Theorem ([FVZ13, Theorem 2]). An (arbitrarily branching) tree lan-
guage is accepted by a weak automaton iff it is definable in WFMSO.

In this case, WFMSO stands for well-founded MSO, a variant of MSO which
quantifies over (subsets of) well-founded trees. Moreover, it is shown that in
the class of arbitrary trees, the logics WFMSO and WMSO are incomparable
(see [Zan12, Corollary 5.16]).

The different behaviour of weak automata depending on the branching degree
of the trees can be explained if we look at the runs of such automata. Intu-
itively, the problem is that weak automata can process well-founded but inifinitely
branching trees. On the other hand, a finite subset of a tree (as quantified by
WMSO) is always embedded in a well-founded and finitely branching subtree. In
the following sections we will consider additional constraints to solve this problem.

4.2. Continuous-weak parity automata 87

No alternation. If we think of parity automata as the automata counter-
part of fixpoint logics, it is known that the (Mostowski) index of the automata
(i.e., the range of the parity map) is tightly connected to the alternation of fix-
points [Wil01]. As weak automata can be thought of as having a parity map
with range {0, 1} (cf. Fact 4.1.2) this means that, on the fixpoint side, the corre-
sponding logic will be alteration-free. This correspondence was proved between
concrete weak automata (based on FO) and the alternation-free µ-calculus, for
increasingly more general structures in [AN92, KV05, KV98, KV03].

4.2 Continuous-weak parity automata
We will introduce the notion of continuous-weak (alternating) parity automata
which combines the ‘vertical’ constraint given by the weakness condition (cf. Sec-
tion 4.1) with an additional restriction on the transition map, which amounts to
a ‘horizontal’ constraint.

As we discussed, the weakness condition on parity automata does not seem
to be enough to capture WMSO, since we can still define infinitely branching
well-founded trees. The intuition on what is missing comes the fragments of
Chapter 3: If we look at the fragments µcML and µcFOE∞, and particularly
to Proposition 3.2.37 we see that restricting the (least) fixpoints to continuous
formulas is tightly connected to finiteness. Namely, we observed that the least
fixpoint of a continuous formula can be assumed to be finite (in the sense of
Theorem 3.2.6). As the fixpoints are matched with cycles in the automata, we
would like to impose some kind of continuity constraint on cycles. The resulting
notion is as follows:

4.2.1. Definition. The class Autwc(L) of continuous-weak automata is given by
the automata A = 〈A,∆,Ω, aI〉 from Aut(L) such that for every maximal strongly
connected component C ⊆ A and states a, b ∈ C the following conditions hold:

(weakness) Ω(a) = Ω(b),

(continuity) for every color c ∈ ℘(P):
If Ω(a) is odd then ∆(a, c) is continuous in C.
if Ω(a) is even then ∆(a, c) is co-continuous in C.

For this definition to make sense, we need to give a notion of (co-)continuity
for one-step languages. We introduce it promptly, but postpone the discussion of
this particular one-step version to Chapter 5.

4.2.2. Definition. We say that ϕ ∈ L(A) is continuous in a ∈ A if ϕ is mono-
tone in a and additionally, for every (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ then ∃U ⊆ω V (a) such that (D, V [a 7→ U]), g |= ϕ.

88 Chapter 4. Subclasses of parity automata

We say that ϕ is co-continuous in a ∈ A if the Boolean dual ϕδ of ϕ (cf. Defini-
tion 2.3.5) is continuous in a ∈ A.

Recall from Section 3.2 that continuity in the product coincides with continuity in
every variable. Therefore we say that ϕ is continuous in C ⊆ A iff ϕ is continuous
in every a ∈ C.

Intuitively, the continuity restriction has the following effect when combined
with the weakness restriction: suppose that the run of a continuous-weak au-
tomaton stays inside a connected component C for some rounds of the acceptance
game. Moreover, suppose that the parity of C is odd. For this case, the continu-
ity condition lets us assume without loss of generality that the nodes of the tree
coloured with some state of C form a finitely branching and well-founded subtree.
The reason for this is that at each round of the acceptance game –because of
continuity– player ∃ can play a valuation where at most finitely many nodes are
colored with C. After that, ∀ subsequently chooses an element coloured by C, a
new round starts. Repeating this strategy for a finite number of rounds will de-
fine a finitely branching well-founded subtree. Observe also that, on trees, every
finite set is included in a finitely branching and well-founded subtree; and every
such subtree is finite. This is the rationale behind trying to characterize WMSO
with continuous-weak automata.

4.3 Additive-weak parity automata
In this section we introduce and briefly discuss the notion of additive-weak (alter-
nating) parity automata. This class of automata combines the ‘vertical’ constraint
given by the weakness condition (cf. Section 4.1) with an additional restriction
on the transition map, which amounts to a ‘horizontal’ constraint.

The driving intuition behind this kind of automata is that we would like
to have an automata counterpart for WCL. In Section 4.2 we used an extra
continuity constraint on the cycles of the automata, to make continuous-weak
automata ‘work with’ finite trees. In this case, we will use an additivity constraint
to make additive-weak automata work with finite paths.

4.3.1. Definition. We say that ϕ ∈ L(A) is completely additive in {a} ⊆ A if
ϕ is monotone in every ai and, for every (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ then (D, V [a 7→ Q]), g |= ϕ for some quasi-atom Q of V (a).

We say that ϕ is completely multiplicative in {a} ⊆ A if the Boolean dual ϕδ of
ϕ (cf. Definition 2.3.5) is completely additive in {a} ⊆ A.

A more systematic study of the notions of one-step complete additivity and
multiplicativity, together with concrete cases will be given in Chapter 5. We now
formally define additive-weak automata for an arbitrary one-step language.

4.4. Partial unraveling of parity automata 89

4.3.2. Definition. The class Autwa(L) of additive-weak automata is given by
the automata A = 〈A,∆,Ω, aI〉 from Aut(L) such that for everymaximal strongly
connected component C ⊆ A and states a, b ∈ C the following conditions hold:

(weakness) Ω(a) = Ω(b),

(additivity) for every color c ∈ ℘(P):
If Ω(a) is odd then ∆(a, c) is completely additive in C.
if Ω(a) is even then ∆(a, c) is completely multiplicative in C.

Intuitively, the additivity restriction has the following effect: while a run of
an additive automaton stays inside a connected component with odd parity, we
can assume without loss of generality that the nodes of the tree coloured with
some state of C form a path in the tree. The reason for this is that at each step
–because of complete additivity– player ∃ can play a valuation where at most
one node is colored with C. Therefore, if ∀ chooses the element coloured by C, a
repetition of this step will define a path.

4.4 Partial unraveling of parity automata

Regarding their structure, parity automata are much more flexible than formulas.
In general, the syntax tree of a formula (e.g., of first-order logic or modal logic)
induces, as the name hints, a tree. In the case of formulas of fixpoint logics (like
the first-order and modal µ-calculus) we can see the formulas as a tree with extra
edges going from fixpoint variables to their binding definitions (see e.g., Fig. 3.2).
On the other hand, parity automata can induce arbitrary graphs.

In this section we present a general procedure to transform an arbitrary parity
automaton into a parity automaton whose induced graph is a tree with back
edges. As observed, this kind of structure has a natural counterpart as a formula.
Moreover, we show that this transformation preserves the weakness, continuity
and additivity conditions.

0

1 2

3

0

1

2′ 3

2

µa0.ϕ0

νa1.ϕ1

ϕ2′(a0) ϕ3(a1)

ϕ2(a0)

Figure 4.1: Automata, finite unraveling and formula structure.

Once we have automata of this shape, it is easy to translate them to fixpoint
formulas, as we will do in later chapters. Intuitively, the tree part of the automa-
ton is used to define the scaffolding of the corresponding formulas. On top of

90 Chapter 4. Subclasses of parity automata

that, the nodes which are the target of back-edges will correspond to binding def-
initions of fixpoint variables. Fig. 4.1 gives an example where the target formula
is taken to be in the µ-calculus. This is done for illustrative reasons.

4.4.1. Definition. A directed graph (G,R ⊆ G2) is a tree with back-edges if
there is a partition R = E] B of the edges into tree edges and back edges such
that (G,E) is indeed a directed tree, and whenever (u, v) ∈ B, then (v, u) ∈ E∗.

Berwanger [Ber05] shows that every finite transition system can be trans-
formed, via partial unraveling, into a bisimilar finite model which is a tree with
back edges. An unraveling technique is also present in Janin’s habilitation the-
sis [Jan06, Section 3.2.3], where he puts modal parity automata into the shape of
trees with back edges. We adapt these ideas to our setting by defining a similar
transformation on parity automata of an arbitrary one-step language L.

For every automaton A we will define an unraveling Au. We want the latter
automaton to satisfy the following two properties:

(i) Au is a tree with back-edges,

(ii) For every cycle, the state which is located highest in the tree (i.e., closest
to the root) has the minimum parity among the states of the cycle (i.e., the
maximum priority).

Item (ii) is not necessary for Au to be equivalent to A. However, as illustrated in
Fig. 4.1, we will later use the tree structure of the unraveled automaton to define
a fixpoint formula. In these formulas, the fixpoint operator which is higher in the
tree has the highest priority. It is because of this that we want higher states to
have higher priority. We refer the reader to Fig. 4.2 for an example of unraveling,
and in particular, of the requirements of item (ii).

4.4.2. Definition. The finite (or partial) unraveling of a parity automaton A =
〈A,∆,Ω, aI〉 is the parity automaton Au = 〈Au,∆u,Ωu, auI 〉 such that

1. Au is made of finite sequences a ∈ A+ where a0 = aI and ai ;A ai+1,

2. auI is the one-element sequence containing only aI ,

3. Every element of Au is reachable from auI ,

4. Ωu(a·ak) = Ω(ak), and

5. ∆u(a·ak, c) = ∆(ak, c)[b 7→ update(a·ak, b) | b ∈ A] where update(a0, . . . , ak, b)
is defined as the shortest prefix a0, . . . , ai of a0, . . . , ak, b such that (a) ai = b
and, (b) for every i < j ≤ k we have that Ω(ai) ≤ Ω(aj); that is, the minimum
parity encountered in the cycle ai, ai+1, . . . , ai is Ω(ai).

It is worth observing that Au can be constructed from A with a cardinality at
most doubly exponential in the size of A; in particular, condition (5) can be
satisfied [Jan06, Lemma 3.2.3.2].

4.4. Partial unraveling of parity automata 91

9 7 8 3

9 7 8 3 8 7 8

Figure 4.2: Partial unraveling with parities (grows to right).

4.4.3. Remark. Condition (5b) is there to ensure that the target of a back-edge
is ‘of maximum priority’ (i.e., minimum parity) among the elements of the given
cycle. In our case, as the automata that we use are weak, all the parities of the
elements of a given cycle are the same. Since the resulting formula will not have
any alternation, we could have simply left condition (5b) out. We chose to keep
it for compatibility with the results of [Jan06], and because we will need it in
Section 7.1.2, were we recall how to turn MSO-automata into formulas.

4.4.4. Lemma ([Jan06, Lemma 3.2.3.2]). A ≡ Au.

We devote the rest of this section to proving that the unraveling construction
preserves the weakness, continuity and additivity constraints. Define the projec-
tion last : A+ → A as last(a0, . . . , ak) := ak. For sets B ⊆ A+ the projection is
extended to last : ℘(A+) → ℘(A) by defining last(B) := {last(a) | a ∈ B}. The
following observations will be useful:

4.4.5. Proposition.

1. If C ⊆ Au is a strongly connected component in Au then last(C) is a strongly
connected component in A.

2. Ω(last(C)) = Ωu(C), for every strongly connected component C ⊆ Au.

Proof. Item (2) is direct by definition of Ωu. To prove item (1) it is enough
to prove that if a0, . . . , ak ≺Au b0, . . . , bk′ then ak ≺A bk′ , as strongly connected
components are defined in terms of ≺. Now, because ≺ is the reflexive-transitive
closure of ;, it will actually be enough to prove that if a0, . . . , ak ;Au b0, . . . , bk′
then ak ;A bk′ . For this, just observe that if a0, . . . , ak ;Au b0, . . . , bk′ then,
by construction of ∆u in Definition 4.4.2, we have that b0, . . . , bk′ is the result
of replacing the name bk′ in ∆(ak, c) with the outcome of the function update.
Therefore, to have b0, . . . , bk′ in ∆u(a0, . . . , ak, c), we must have bk′ in ∆(ak, c) in
the first place. By definition of ;A this means that ak ;A bk′ . �

We start with the preservation of the weakness condition.

4.4.6. Proposition. If A ∈ Autw(L) then Au ∈ Autw(L).

92 Chapter 4. Subclasses of parity automata

Proof. By Proposition 4.4.5(1) we know that if C is a maximal strongly con-
nected component in Au then last(C) will also be a strongly connected com-
ponent in A. As A is weak, then every element of last(C) will have the same
parity, which we call Ωu(last(C)). Using Proposition 4.4.5(2), we know that
Ω(last(C)) = Ωu(C), and therefore get that every element of C has the same
parity. �

4.4.7. Proposition. If A ∈ Autwa(L) then Au ∈ Autwa(L).

Proof. The weakness condition is preserved by Proposition 4.4.6. For the ad-
ditivity condition let C ⊆ Au be a maximally connected component with odd
Ωu(C) and let a be an element of C. We want to prove that ∆u(a, c) is com-
pletely additive in C, for every color c ∈ ℘(P). Define ϕ := ∆(last(a), c). It is
not difficult to observe that, as last(a) is in the connected component last(C),
then ϕ is completely additive in last(C). The key observation now is that if we
substitute all the names in ϕ from last(C) with some new set of names A′ then
the new formula will be completely additive in A′. To conclude, we just recall
that ∆u(a, c) is obtained by substituting the names from last(C) in ϕ with new
names that belong to C. Using the previous observation, we get that ∆u(a, c) is
completely additive in C. We leave the case of even Ωu(C) to the reader. �

4.4.8. Proposition. If A ∈ Autwc(L) then Au ∈ Autwc(L).

Proof. Same as additivity. �

4.5 Variants of parity automata

In Section 2.3 we defined parity automata for an arbitrary language L as a tuple
A = 〈A,∆,Ω, aI〉 with ∆ : A × ℘(P) → L+(A,D) and whose semantics is given
by the following parity game.1

Position Pl’r Admissible moves Parity
(a, s) ∈ A× S ∃ {V : A→ ℘(R[s]) | (R[s], V) |= ∆(a, κ(s))} Ω(a)
V : A→ ℘(S) ∀ {(b, t) | t ∈ V (b)} max(Ω[A])

This will be the main definition of parity automata used throughout this
dissertation. Nevertheless, in some special situations, it is useful to consider
other definitions of such automata which will turn out to be equivalent but (in
that context) easier to manipulate. In this section we discuss variants of parity
automata and how they are connected.

1Recall that L+ is the positive fragment of L.

4.5. Variants of parity automata 93

Modal and first-order automata. One of the most important families of
one-step languages that we will use is that of first-order languages. For example,
we have already seen that Aut(FOE1) captures MSO on trees [Wal96], and that
Aut(FO1) captures µML on all models [JW95]. However, there is a clear difference
between these logics: MSO is an extension of first-order logic, and in most cases
it is useful to work with automata based on FOE1 when trying to study MSO;
on the other hand, µML is a modal logic, and hence it is sometimes tedious to
work with FO1 when a modal language would be a closer match.

If we compare FO1 with, say, modal logic we see that the first language is
fit to describe one-step models of the form (D, V) while formulas of modal logic
are evaluated at points. However, observe that if the acceptance game of some
automaton is standing at some basic position (a, s) then the formulas

∃x.(b(x) ∧ c(x)) ∨ ∀y.d(y) and 3(b ∧ c) ∨2d

basically describe the same requirements over the set R[s]. The only difference is
that while the former is directly evaluated at R[s], the latter should be evaluated
directly at s. It is possible, then, to slightly modify our definition of parity
automata to work with modal one-step languages.

4.5.1. Definition. A modal parity automaton is a parity automaton based on
a modal language, whose semantics is given as follows. Given a model S and
a parity automaton A based on a modal language we define the rules for the
acceptance game A(A,S) as follows:

Position Pl’r Admissible moves Parity
(a, s) ∈ A× S ∃ {V : A→ ℘S | S, V, s ∆(a, κ(s))} Ω(a)
V : A→ ℘S ∀ {(a, s) | a ∈ A, s ∈ V (a)} max(Ω[A])

We also use Aut(L) to denote the class of these automata, since the acceptance
game that should be played will be clear from the choice of L.

In Chapter 6 we define concrete cases of modal automata. We will then
show that those automata can be equivalently seen as automata based on FO1.
Moreover, this equivalence will carry over to the subclasses of parity automata
that we use.

Chromatic and achromatic automata. Our definition of parity automata
on a set of propositions P includes a transition map ∆ : A × ℘(P) → L+(A). In
the acceptance game of such automata, the second coordinate of the transition
map is used to get different formulas depending on the coloring κ(s) of the current
node. We call this kind of transition map and automata chromatic, since we think
of ℘(P) as an alphabet of colors [Ven11]. This perspective is very useful, as we
will see, to prove simulation theorems and closure under projection.

94 Chapter 4. Subclasses of parity automata

In other situations, which arise mostly when considering modal automata, it is
more useful to have a transition map of the form ∆′ : A→ L+(A,P) and transfer
the requirements on the coloring of the current node to the formula itself. We call
this type of automata and transition map achromatic. For example, suppose that
∆ : A×℘(P)→ L+(A) is based on a modal language L+(A) without propositions,
we can define ∆′ : A→ L+(A,P) as follows:

∆′(a) :=
∨
{(
∧
p∈c

p ∧
∧
p/∈c
¬p) ∧∆(a, c) | c ∈ ℘(P)}.

It is clear that ∆ and ∆′ carry the same information, however, the acceptance
game has to be modified in order to work with transition maps like ∆′.

4.5.2. Definition. An achromatic modal parity automaton is a tuple A =
〈A,∆,Ω, aI〉 with ∆ : A → L+(A,D,P) and whose semantics is given by the
following parity game.

Position Pl’r Admissible moves Parity
(a, s) ∈ A× S ∃ {V : A→ ℘S | S, V, s ∆(a)} Ω(a)
V : A→ ℘S ∀ {(a, s) | a ∈ A, s ∈ V (a)} max(Ω[A])

We also use Aut(L) to denote the class of these automata, since the acceptance
game that should be played will be clear from the shape of ∆.

4.5.3. Remark. Chromatic and achromatic automata can also be analyzed un-
der the light of coalgebra, as observed in Chapter 1. Chromatic automata present
an asymmetry between the models they run on, and the kind of one-step formulas
they contain. That is, these automata (and all the automata considered in this
dissertation) run on labeled transition systems on propositions P, which can be
seen as coalgebras for the functor F (X) := ℘(P) × ℘(X). However, the transi-
tion map contains formulas without propositions, that is, they are more suited
to describe coalgebras for the functor F ′(X) := ℘(X). In the case of achromatic
automata, the symmetry is restored since both the automata and the formulas
are intended for the functor F .

We do not define all combinations of (a)chromatic and (non-)modal automata
since not all of them are natural. Moreover, in this dissertation we will only use
chromatic first-order automata and achromatic modal automata.

4.6 Conclusions and open problems
Observe that the additivity and continuity conditions on parity automata were
given semantically. In Chapter 5 we formally define every one-step language
used in this dissertation and give syntactic characterizations of their completely
additive and continuous fragments. In later chapters we take advantage of the
mentioned characterizations and give concrete definitions of the automata intro-
duced in this chapter.

4.6. Conclusions and open problems 95

Open problems. The aim of this chapter was to introduce some new definitions
and discuss some known notions and techniques on parity automata. Most of the
results that use these definitions and techniques will be in later chapters, where,
in turn, open problems will be stated.

Chapter 5

One-step model theory

One of the advantages of taking an automata approach to fixpoint logics is that
their complexity can be divided in two simpler and clearly defined parts: a graph
structure representing the repetitions (i.e., the states of the automata) and a
transition map with a simple one-step logic.

In this chapter we focus on the latter part. We introduce the one-step logics
that we use in this dissertation and carry on an in-depth study of them. Our
objective is to provide normal forms and characterize several fragments of this
logics (continuous, completely additive, etc.) The results of this analysis will be
crucial in later chapters, when we prove properties of automata based on these
languages.

The one-step languages that we will consider are of two types: first-order
based, and modal. The first-order languages that we study can be further divided
into single-sorted andmulti-sorted. While the relationship between first-order and
modal languages has already been discussed in Section 4.5, the introduction of
sorts in first-order languages deserves a short discussion.

As mentioned in Section 2.3, the one-step formulas in the transition map of an
automaton are used in the acceptance game of parity automata. In each round,
the game is standing at a position (a, s) where a is a state of the automaton
and s is an element of the labeled transition system. At this point, ∃ has to
provide a coloring of the successors of s, precisely specified by (the formula in)
the transition map of a. If the labeled transition system contains just one binary
relation R, we can unambiguously specify the valid colorings on R[s] using a
single-sorted formula of FO1(A). For example, the formula ∃x.a(x) ∧ ∀y.b(y)
specifies all colorings of R[s] where there is at least one element colored with
state a and all elements are colored with state b. However, if the labeled transition
system contains many binary relations R1, . . . , Rn we need some way to specify,
without ambiguity, to which relation do the quantified elements belong. This
leads us to adding sorted quantification ∃x:s.ϕ to the first-order language, where
s belongs to some set of sorts S = {s1, . . . , sn} representing the relations.

97

98 Chapter 5. One-step model theory

Single-sorted Normal form Monotone Continuous Additive
FO1 Fact 5.1.6 Thm. 5.1.22 Thm. 5.1.37 Thm. 5.1.49
FOE1 Thm. 5.1.12 Thm. 5.1.27 – Thm. 5.1.45
FOE∞1 Thm. 5.1.18 Thm. 5.1.31 Thm. 5.1.41 –
Multi-sorted Normal form Monotone Continuous Additive
FO1 Prop. 5.2.5 Thm. 5.2.18 – Thm. 5.2.30
FOE1 Thm. 5.2.17 Thm. 5.2.22 – Thm. 5.2.26
ML1 Thm. 5.3.6 Thm. 5.3.7 Thm. 5.3.12 Thm. 5.3.16

Table 5.1: Results of Chapter 5.

5.0.1. Remark. This issue could have been solved in other ways. For exam-
ple, instead of taking a transition map ∆ : A × ℘(P) → FO1(A,S) as sug-
gested in the above paragraph, one could have taken a transition map of the form
∆ : A× ℘(P)× {1, . . . , n} → FO1(A) which basically provides a single-sorted for-
mula for each relation. This approach avoids adding sorts to the one-step lan-
guage, but entails other technical problems for the kind of (fragment) analysis
that we want to perform.

In this chapter we start with an analysis of single-sorted first-order languages.
Next, we perform a multi-sorted analysis for a selected subset of these languages,
which will later be used in automata running on labeled transition systems with
many relations. The generalization to many sorts does not contain any fundamen-
tally new concept or technique, but it requires a careful crafting of more complex
normal forms. To finish the chapter, we perform a similar study on some modal
one-step languages. Table 5.1 shows a summary of the results which are proved
in this chapter.

Basic definitions. The notions of (multi-sorted) one-step model and language
were given in Section 2.3 and will be promptly recalled in the following sections,
we now give a few general definitions. Given a finite set of names A and S ⊆ A,
we introduce the notation

τS(x) :=
∧
a∈S

a(x) ∧
∧

a∈A\S
¬a(x).

The formula τS(x) is called an A-type, we usually blur the distinction between
τS(x) and S and call S an A-type as well. A positive A-type only bears positive
information, and is defined as τ+

S (x) :=
∧
a∈S a(x). We use the convention that,

if S is the empty set, then τ+
S (x) is > and we call it an empty positive A-type.

Given a one-step model D we use |S|D to denote the number of elements that
realize the A-type τS in D. Formally, |S|D := |{d ∈ |D| : D |= τS(d)}|.

5.1. Single-sorted first-order languages 99

5.1 Single-sorted first-order languages
5.1.1. Definition. The set FOE1(A) of one-step first-order sentences (with
equality) is given by the sentences formed by

ϕ ::= > | ⊥ | a(x) | x ≈ y | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ

where x, y ∈ iVar, a ∈ A. The one-step logic FO1(A) is as FOE1(A) but without
equality. The set FOE∞1 (A) of one-step first-order sentences with generalized
quantifier ∃∞ (with equality) is defined analogously by just adding the clauses for
the generalized quantifiers ∃∞x.ϕ and ∀∞x.ϕ.

5.1.2. Remark. The elements > and ⊥ are added for technical reasons. Even
though they are already definable in FOE1(A), this will not necessarily be the
case in other fragments that will be defined later.

Recall from Section 2.3 that formulas of an arbitrary (single-sorted) one-step
language L are interpreted over (single-sorted) one-step models, that is, a tuple
D = (D, V : A→ ℘D). Whenever we say ‘one-step model’ in this section we will
be referring to single-sorted one-step models. Recall that the class of all one-step
models is denoted by M1 and that we write L+(A) to denote the fragment where
every predicate a ∈ A occurs only positively. Without loss of generality, from
now on we always assume that every bound variable occurring in a sentence is
bound by an unique quantifier (generalized or not).

5.1.3. Definition. Let ϕ ∈ FOE∞1 (A) be a formula, D = (D, V) be a one-step
model and g : iVar → ℘(D) be an assignment. The semantics of FOE∞1 (A) is
given as follows:

D, g |= a(x) iff g(x) ∈ V (a),

D, g |= x ≈ y iff g(x) = g(y),

D, g |= ∃x.ϕ iff D, g[x 7→ d] |= ϕ for some d ∈ D,
D, g |= ∃∞x.ϕ iff D, g[x 7→ d] |= ϕ for infinitely many distinct d ∈ D,

while the Boolean connectives are defined as expected.

Recall that ∀∞x.ϕ expresses that there are at most finitely many elements
falsifying the formula ϕ.

5.1.4. Definition. The quantifier rank qr(ϕ) of a formula ϕ ∈ FOE∞1 (hence
also for FO1 and FOE1) is defined as follows

• If ϕ is atomic then qr(ϕ) = 0,

• If ϕ = ¬ψ then qr(ϕ) = qr(ψ),

100 Chapter 5. One-step model theory

• If ϕ = ψ1 ∧ ψ2 or ϕ = ψ1 ∨ ψ2 then qr(ϕ) = max{qr(ψ1), qr(ψ2)},
• If ϕ = Qx.ψ for Q ∈ {∃,∀,∃∞, ∀∞} then qr(ϕ) = 1 + qr(ψ).

Given a one-step logic L we write D ≡Lk D′ to indicate that the one-step models
D and D′ satisfy exactly the same formulas ϕ ∈ L with qr(ϕ) ≤ k. The logic L
will be omitted when it is clear from context.

A partial isomorphism between two (single-sorted) one-step models (D, V)
and (D′, V ′) is a partial function f : D → D′ which is injective and satisfies that
d ∈ V (a)⇔ f(d) ∈ V ′(a) for all a ∈ A and d ∈ Dom(f).

Given two sequences d ∈ Dk and d′ ∈ D′k we use f : d 7→ d′ to denote the
partial function f : D ⇀ D′ defined as f(di) := d′i. We explicitly avoid cases
where there exist di, dj such that di = dj but d′i 6= d′j.

5.1.1 Normal forms

In this section we provide normal forms for the single-sorted one-step logics FO1,
FOE1 and FOE∞1 . These normal forms will be pivotal to characterize the different
fragments of these logics, in later sections.

Normal form for FO1

We start by stating a normal form for one-step first-order logic without equality.
A formula in basic form gives a complete description of the types that are satisfied
in a one-step model.

5.1.5. Definition. A formula ϕ ∈ FO1(A) is in basic form if ϕ =
∨∇FO(Σ)

where each disjunct is of the form

∇FO(Σ) =
∧
S∈Σ

∃x.τS(x) ∧ ∀x.
∨
S∈Σ

τS(x)

for some set of types Σ ⊆ ℘A.

It is easy to prove, using Ehrenfeucht-Fraïssé games, that every formula of
first-order logic without equality over a unary signature (i.e., FO1) is equivalent
to a formula in basic form. Proof sketches can be found in [GTW02, Lemma
16.23] and [Ven14, Proposition 4.14]. We omit a full proof because it is very
similar to the following more complex cases.

5.1.6. Fact. Every formula of FO1(A) is equivalent to a formula in basic form.

5.1. Single-sorted first-order languages 101

Normal form for FOE1

When considering a normal form for FOE1, the fact that we can ‘count types’
using equality yields a more involved basic form.

5.1.7. Definition. We say that a formula ϕ ∈ FOE1(A) is in basic form if
ϕ =

∨∇FOE(T,Π) where each disjunct is of the form

∇FOE(T,Π) = ∃x.
(
diff(x) ∧

∧
i

τTi(xi) ∧ ∀z.(diff(x, z)→
∨
S∈Π

τS(z))
)

such that T ∈ ℘(A)k for some k and Π ⊆ T. The predicate diff(y), stating that
the elements y are distinct, is defined as diff(y1, . . . , yn) :=

∧
1≤m<m′≤n(ym 6≈ ym′).

We prove that every formula of monadic first-order logic with equality (i.e.,
FOE1) is equivalent to a formula in basic form. This result seems to be folklore,
however, we provide a detailed proof because some of its ingredients will be used
later, when we give a normal form for FOE∞1 . We start by defining the following
relation between one-step models.

5.1.8. Definition. Let D and D′ be one-step models. For every k ∈ N, the
relation D ∼=

k D′ is defined as

D ∼=
k D′ ⇐⇒ ∀S ⊆ A

(
|S|D = |S|D′ < k

or |S|D, |S|D′ ≥ k
)

Intuitively, two models are related by ∼=
k when their type information coin-

cides ‘modulo k’. Later we will prove that this is the same as saying that they
cannot be distinguished by a formula of FOE1 with quantifier rank lower or equal
to k. For the moment, we prove the following properties of ∼=

k .

5.1.9. Proposition. The following hold:

(i) ∼=
k is an equivalence relation,

(ii) ∼=
k has finite index,

(iii) Every E ∈ M1/∼=
k is characterized by a formula ϕ=

E ∈ FOE1(A) with
qr(ϕ=

E) = k.

Proof. We only prove the last point. Let E ∈ M1/∼=
k and let D ∈ E be a

representative. Call S1, . . . , Sn ⊆ A to the types such that |Si|D = ni < k and
S ′1, . . . , S

′
m ⊆ A to those satisfying |S ′i|D ≥ k. Now define

ϕ=
E :=

∧
i≤n

(
∃x1, . . . , xni .diff(x1, . . . , xni) ∧∧
j≤ni

τSi(xj) ∧ ∀z.diff(x1, . . . , xni , z)→ ¬τSi(z)
)
∧∧

i≤m

(
∃x1, . . . , xk.diff(x1, . . . , xk) ∧

∧
j≤k

τS′i(xj)
)

102 Chapter 5. One-step model theory

First note that the union of all the Si and S ′i yields all the possible A-types, and
that if a type is not realized at all, then it will correspond to some Sj with nj = 0.
It is easy to see that qr(ϕ=

E) = k and that D′ |= ϕ=
E iff D′ ∈ E. Observe that ϕ=

E

gives a specification of E “type by type”. �

Next we recall a (standard) notion of Ehrenfeucht-Fraïssé game for FOE1

which will be used to establish the connection between ∼=
k and ≡FOE

k .

5.1.10. Definition. Let D0 = (D0, V0) and D1 = (D1, V1) be one-step models.
We define the game EF=

k (D0,D1) between ∀ and ∃. If Di is one of the models we
use D−i to denote the other model. A position in this game is a pair of sequences
s0 ∈ Dn

0 and s1 ∈ Dn
1 with n ≤ k. The game consists of k rounds where in round

n+ 1 the following steps are made

1. ∀ chooses an element di in one of the Di,

2. ∃ responds with an element d−i in the model D−i.

3. Let si ∈ Dn
i be the sequences of elements chosen up to round n, they are

extended to si
′ := si · di. Player ∃ survives the round iff she does not get stuck

and the function fn+1 : s0
′ 7→ s1

′ is a partial isomorphism of one-step models.

Player ∃ wins iff she can survive all k rounds. Given n ≤ k and si ∈ Dn
i such that

fn : s0 7→ s1 is a partial isomorphism, we use EF=
k (D0,D1)@(s0, s1) to denote

the (initialized) game where n moves have been played and k − n moves are left
to be played.

5.1.11. Lemma. The following are equivalent

1. D0 ≡FOE
k D1,

2. D0 ∼=
k D1,

3. ∃ has a winning strategy in EF=
k (D0,D1).

Proof. Step (1) to (2) is direct by Proposition 5.1.9. For (2) to (3) we give a
winning strategy for ∃ in EF=

k (D0,D1). We do it by showing the following claim

Claim 1. Let D0 ∼=
k D1 and si ∈ Dn

i be such that n < k and fn : s0 7→ s1 is a
partial isomorphism; then ∃ can survive one more round in EF=

k (D0,D1)@(s0, s1).

Proof of Claim. Let ∀ pick di ∈ Di such that the type of di is T ⊆ A. If di had
already been played then ∃ picks the same element as before and fn+1 = fn. If di
is new and |T |Di

≥ k then, as at most n < k elements have been played, there is
always some new d−i ∈ D−i that ∃ can choose that matches di. If |T |Di

= m < k
then we know that |T |D−i = m. Therefore, as di is new and fn is injective, there
must be a d−i ∈ D−i that ∃ can choose. J

5.1. Single-sorted first-order languages 103

Step (3) to (1) is a standard result [EF95, Corollary 2.2.9] which we prove
anyway because we will need to extend it later. We prove the following loaded
statement.

Claim 2. Let si ∈ Dn
i and ϕ(z1, . . . , zn) ∈ FOE1(A) be such that qr(ϕ) ≤ k−n.

If ∃ has a winning strategy in the game EF=
k (D0,D1)@(s0, s1) then D0 |= ϕ(s0)

iff D1 |= ϕ(s1).

Proof of Claim. If ϕ is atomic the claim holds because of fn : s0 7→ s1 being
a partial isomorphism. Boolean cases are straightforward. Let ϕ(z1, . . . , zn) =
∃x.ψ(z1, . . . , zn, x) and suppose D0 |= ϕ(s0). Hence, there exists d0 ∈ D0 such
that D0 |= ψ(s0, d0). By hypothesis we know that ∃ has a winning strategy
for EF=

k (D0,D1)@(s0, s1). Therefore, if ∀ picks d0 ∈ D0 she can respond with
some d1 ∈ D1 and has a winning strategy for EF=

k (D0,D1)@(s0·d0, s1·d1). By
induction hypothesis, because qr(ψ) ≤ k − (n+ 1), we have that D0 |= ψ(s0, d0)
iff D1 |= ψ(s1, d1) and hence D1 |= ∃x.ψ(s1, x). The opposite direction is proved
by a symmetric argument. J

Combining these claims finishes the proof of the lemma. �

5.1.12. Theorem. Every ψ ∈ FOE1(A) is equivalent to a formula in basic form.

Proof. Let qr(ψ) = k and let JψK be the class of models satisfying ψ. As
M1/≡FOE

k is the same as M1/∼=
k by Lemma 5.1.11, it is easy to see that ψ is

equivalent to
∨{ϕ=

E | E ∈ JψK/∼=
k }. Now it only remains to see that each ϕ=

E is
equivalent to ∇FOE(T,Π) for some Π ⊆ ℘A and Ti ⊆ A.

The crucial observation is that we will useT and Π to give a specification of the
types “element by element”. Let D ∈ E be a representative. Call S1, . . . , Sn ⊆ A
to the types such that |Si|D = ni < k and S ′1, . . . , S

′
m ⊆ A to those satisfying

|S ′i|D ≥ k. The size of the sequence T is defined to be (
∑n

i=1 ni) + k ×m where
T is contains exactly ni occurrences of type Si and k occurrences of each S ′j.
On the other hand Π = {S ′1, . . . , S ′m}. It is straightforward to check that ϕ=

E

is equivalent to ∇FOE(T,Π), however, the quantifier rank of the latter is only
bounded by k × 2|A| + 1. �

Normal form for FOE∞1

The logic FOE∞1 extends FOE1 with the capacity to tear apart finite and infinite
sets of elements. This is reflected in the normal form for FOE∞1 by adding extra
constraints to the normal form of FOE1.

5.1.13. Definition. We say that a formula ϕ ∈ FOE∞1 (A) is in basic form if
ϕ =

∨∇FOE∞(T,Π,Σ) where each disjunct is of the form

∇FOE∞(T,Π,Σ) = ∇FOE(T,Π ∪ Σ) ∧∇∞(Σ)

104 Chapter 5. One-step model theory

where
∇∞(Σ) :=

∧
S∈Σ

∃∞y.τS(y) ∧ ∀∞y.
∨
S∈Σ

τS(y)

for some set of types Π,Σ ⊆ ℘A and each Ti ⊆ A.

Intuitively, the formula ∇∞(Σ) says that (1) for every type S ∈ Σ, there are
infinitely many elements satisfying S and (2) only finitely many elements do not
satisfy any type in Σ.

A short argument reveals that, intuitively, every disjunct expresses that each
one-step model satisfying it admits a partition of its domain in three parts:

(i) distinct elements t1, . . . , tn with type T1, . . . , Tn,

(ii) finitely many elements whose types belong to Π, and

(iii) for each S ∈ Σ, infinitely many elements with type S.

In the same way as before, we define a relation ∼∞k which refines ∼=
k by adding

information about the (in-)finiteness of the types.

5.1.14. Definition. Let D and D′ be one-step models. For every k ∈ N, the
relation D ∼∞k D′ is defined as follows:

D ∼∞0 D′ ⇐⇒ always
D ∼∞k+1 D

′ ⇐⇒ D ∼=
k+1 D

′ and
∀S ⊆ A

(
|S|D, |S|D′ < ω or |S|D, |S|D′ ≥ ω

)
5.1.15. Proposition. The following hold:

(i) ∼∞k is an equivalence relation,

(ii) ∼∞k has finite index,

(iii) ∼∞k is a refinement of ∼=
k ,

(iv) Every E ∈ M1/∼∞k is characterized by a formula ϕ∞E ∈ FOE∞1 (A) with
qr(ϕ) = k.

Proof. We only prove the last point, for k > 0. Let E ∈M1/∼∞k and let D ∈ E
be a representative of the class. Let E ′ ∈ M1/∼=

k be the equivalence class of D
with respect to ∼=

k . Let S1, . . . , Sn ⊆ A be all the types such that |Si|D ≥ ω.

ϕ∞E := ϕ=
E′ ∧∇∞({S1, . . . , Sn}).

It is not difficult to see that qr(ϕ∞E) = k and that D′ |= ϕ∞E iff D′ ∈ E. �

Now we give a notion of Ehrenfeucht-Fras̈sé game for FOE∞1 . In this case the
game extends EF=

k with a move for ∃∞.

5.1. Single-sorted first-order languages 105

5.1.16. Definition. Let D0 = (D0, V0) and D1 = (D1, V1) be one-step models.
We define the game EF∞k (D0,D1) between ∀ and ∃. A position in this game is
a pair of sequences s0 ∈ Dn

0 and s1 ∈ Dn
1 with n ≤ k. The game consists of k

rounds, where in round n + 1 the following steps are made. First ∀ chooses to
perform one of the following types of moves:

(a) Second-order move

1. ∀ chooses an infinite set Xi ⊆ Di,
2. ∃ responds with an infinite set X−i ⊆ D−i,
3. ∀ chooses an element x−i ∈ X−i,
4. ∃ responds with an element xi ∈ Xi.

(b) First-order move

1. ∀ chooses an element di ∈ Di,
2. ∃ responds with an element d−i ∈ D−i.

Let si ∈ Dn
i be the sequences of elements chosen up to round n, they are extended

to si
′ := si · di. ∃ survives the round iff she does not get stuck and the function

fn+1 : s0
′ 7→ s1

′ is a partial isomorphism of one-step models.

This game can be seen as an adaptation of the Ehrenfeucht-Fras̈sé game for
monotone generalized quantifiers found in [KV95] to the case of full monadic
first-order logic.

5.1.17. Lemma. The following are equivalent:

1. D0 ≡FOE∞

k D1,

2. D0 ∼∞k D1,

3. ∃ has a winning strategy in EF∞k (D0,D1).

Proof. Step (1) to (2) is direct by Proposition 5.1.15. For (2) to (3) we show

Claim 1. Let D0 ∼∞k D1 and si ∈ Dn
i be such that n < k and fn : s0 7→ s1 is a

partial isomorphism; then ∃ can survive one more round in EF∞k (D0,D1)@(s0, s1).

Proof of Claim. We focus on the second-order moves because the first-order
moves are the same as in the corresponding Claim of Lemma 5.1.11. Let ∀ choose
an infinite set Xi ⊆ Di, we would like ∃ to choose a set X−i ⊆ D−i such that the
following conditions hold:

(a) The map fn is a well-defined partial isomorphism between the restricted one-
step models D0|X0 and D1|X1,

106 Chapter 5. One-step model theory

Xi

Di D�i

Figure 5.1: Elements of type S have coloured background.

(b) For every type S we have that there is an element d ∈ Xi of type S which is
not connected by fn iff there is such an element in X−i,

(c) X−i is infinite.

First we prove that such a set exists. To satisfy item (a) she just needs to add to
X−i the elements connected to Xi by fn; this is not a problem.

For item (b) we proceed as follows: for every type S such that there is an
element d ∈ Xi of type S, we add a new element d′ ∈ D−i of type S to X−i. To
see that this is always possible, observe first that D0 ∼∞k D1 implies D0 ∼=

k D1.
Using the properties of this relation, we divide in two cases:

• If |S|Di ≥ k we know that |S|D−i ≥ k as well. From the elements of D−i of
type S, at most n < k are used by fn. Hence, there is at least one d′ ∈ D−i
of type S to choose from.

• If |S|Di < k we know that |S|Di = |S|D−i . From the elements of Di of type
S, at most |S|Di − 1 are used by fn. The reason for the −1 is that we are
assuming that we have just chosen a d ∈ Xi which is not in fn. Using that
|S|Di = |S|D−i and that fn is a partial isomorphism we can again conclude
that there is at least one d′ ∈ D−i of type S to choose from.

For item (c) observe that as Xi is infinite but there are only finitely many types,
there must be some S such that |S|Xi ≥ ω. It is then safe to add infinitely many
elements for S in X−i while considering point (b). Moreover, the existence of
infinitely many elements satisfying S in D−i is guaranteed by D0 ∼∞k D1.

Having shown that ∃ can choose a set X−i satisfying the above conditions,
it is now clear that using point (b) ∃ can survive the “first-order part” of the
second-order move we were considering. This finishes the proof of the claim. J

5.1. Single-sorted first-order languages 107

Going back to the proof of Lemma 5.1.17, for step (3) to (1) we prove the following.

Claim 2. Let si ∈ Dn
i and ϕ(z1, . . . , zn) ∈ FOE∞1 (A) be such that qr(ϕ) ≤

k − n. If ∃ has a winning strategy in EF∞k (D0,D1)@(s0, s1) then D0 |= ϕ(s0) iff
D1 |= ϕ(s1).

Proof of Claim. All the cases involving operators of FOE1 are the same as
in Lemma 5.1.11. We prove the inductive case for the generalized quantifier. Let
ϕ(z1, . . . , zn) be of the form ∃∞x.ψ(z1, . . . , zn, x) and let D0 |= ϕ(s0). Hence,
there is an infinite set X0 ⊆ D0 such that

D0 |= ψ(s0, x0) if and only if x0 ∈ X0. (5.1)

By hypothesis we know that ∃ has a winning strategy for EF∞k (D0,D1)@(s0, s1).
Therefore, if ∀ plays a second-order move by picking X0 ⊆ D0 she can respond
with some infinite set X1 ⊆ D1. We claim that D1 |= ψ(s1, x1) for every x1 ∈ X1.
First observe that if this holds then the set X ′1 := {d1 ∈ D1 | D1 |= ψ(s1, d1)}
must be infinite, and hence D1 |= ∃∞x.ψ(s1, x).

Assume, for a contradiction, that D1 6|= ψ(s1, x
′
1) for some x′1 ∈ X1. Let ∀

play that x′1 as the second part of his move. Then, as ∃ has a winning strategy,
she will respond with some x′0 ∈ X0 such that she has a winning strategy for
EF∞k (D0,D1)@(s0·x′0, s1·x′1). By induction hypothesis, as qr(ψ) ≤ k − (n + 1),
this means that D0 |= ψ(s0, x

′
0) iff D1 |= ϕ(s1, x

′
1) which contradicts (5.1). The

other direction is symmetric. J

Combining the claims finishes the proof of the lemma. �

5.1.18. Theorem. Every formula ϕ ∈ FOE∞1 (A) is equivalent to a formula in
basic form.

Proof. This can be proved using the same technique as in Theorem 5.1.12. Hence
we only focus on showing that ϕ∞E ≡ ∇FOE∞(T,Π,Σ) for some Π,Σ ⊆ ℘A and
Ti ⊆ A. Recall that

ϕ∞E = ϕ=
E′ ∧∇∞({S1, . . . , Sn})

where {S1, . . . , Sn} are all the types that should be satisfied by infinitely many
elements. Using Theorem 5.1.12 on ϕ=

E′ we know that this is equivalent to

ϕ∞E = ∇FOE(T
′
,Π′) ∧∇∞({S1, . . . , Sn})

for some Π′ ⊆ ℘A and T ′i ⊆ A. Now separate Π′ as Π′ = Π] Σ where Σ :=
{S1, . . . , Sn} is composed of the infinite types and Π := Π′ \Σ is composed of the
finite types. After a minor rewriting, we get that

ϕ∞E ≡ ∇FOE(T
′
,Π ∪ Σ) ∧∇∞(Σ).

Therefore, we can conclude that ϕ∞E ≡ ∇FOE∞(T
′
,Π,Σ). �

108 Chapter 5. One-step model theory

The following stronger normal form will be useful in later chapters.

5.1.19. Proposition. For every formula in the basic form
∨∇FOE∞(T,Π,Σ)

it is possible to assume, without loss of generality, that Σ ⊆ Π.

Proof. This is direct from observing that ∇FOE∞(T,Π,Σ) is equivalent to
∇FOE∞(T,Π ∪ Σ,Σ). To check it we just unravel the definitions and observe
that ∇FOE(T,Π ∪ Σ) ∧∇∞(Σ) is equivalent to ∇FOE(T,Π ∪ Σ ∪ Σ) ∧∇∞(Σ). �

5.1.2 One-step monotonicity

Given a one-step logic L(A) and formula ϕ ∈ L(A). We say that ϕ is monotone
in {a} ⊆ A if for every one step model (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ and V (a) ⊆ E then (D, V [a 7→ E]), g |= ϕ.

5.1.20. Remark. It is easy to prove that a formula is monotone in {a} ⊆ A iff
it is monotone in every ai. Therefore, in the following proofs we will, in general,
consider monotonicity in every single ai instead of in the full a. This is equivalent,
and only done to avoid an even more complex notation.

Monotonicity is usually tightly related to positivity. If the quantifiers are well-
behaved (i.e., monotone) then a formula ϕ will usually be monotone in a ∈ A iff
a has positive polarity in ϕ, that is, if it only occurs under an even number of
negations. This is the case for all one-step logics considered in this dissertation.
In this section we give a syntactic characterization of monotonicity for several
one-step logics.

5.1.21. Definition. Given S ⊆ A and A′ ⊆ A we use the following notation

τA
′

S (x) :=
∧
b∈S

b(x) ∧
∧

b∈A\(S∪A′)
¬b(x),

for what we call the A′-positive A-type τA′S . Intuitively, τA′S works almost like
the A-type τS, but discarding the negative information for the names in A′. If
A′ = {a} we write τaS instead of τ {a}S . Observe that with this notation, τ+

S is
equivalent to τAS .

Monotone fragment of FO1

5.1.22. Theorem. A formula of FO1(A) is monotone in A′ ⊆ A iff it is equiv-
alent to a sentence given by:

ϕ ::= ψ | a(x) | ∃x.ϕ | ∀x.ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where a ∈ A′, ψ ∈ FO1(A \ A′). We denote this fragment as FO1MONA′(A).

5.1. Single-sorted first-order languages 109

The result will follow from the following two lemmas and Remark 5.1.20.

5.1.23. Lemma. Every ϕ ∈ FO1MONa(A) is monotone in a.

Proof. The proof is a routine argument by induction on the complexity of ϕ. �

Before going on we need to introduce a bit of new notation. In Section 5.1.1
we introduced the formula ∇FO(Σ). We now give a few variants of this notation,
which will be crucial to build the normal forms of the fragments discussed in this
dissertation.

5.1.24. Definition. Let A′ ⊆ A be a finite set of names. The A′-positive variant
of ∇FO(Σ) is given as follows:

∇A′

FO(Σ) :=
∧
S∈Σ

∃x.τA′S (x) ∧ ∀x.
∨
S∈Σ

τA
′

S (x).

We also introduce the following generalized forms of the above notation:

∇A′

FO(Σ,Π) :=
∧
S∈Σ

∃x.τA′S (x) ∧ ∀x.
∨
S∈Π

τA
′

S (x).

The positive variants of the above notations are defined as ∇+
FO(Σ) := ∇A

FO(Σ)
and ∇+

FO(Σ,Π) := ∇A
FO(Σ,Π).

To prove that the fragment FO1MONa is complete for monotonicity in a, we
need to show that every formula which is monotone in a is equivalent to some
formula in FO1MONa. We prove a stronger result: we give a translation that con-
structively maps arbitrary formulas into FO1MONa. The interesting observation
is that the translation will preserve truth iff the given formula is monotone in a.

5.1.25. Lemma. There exists a translation (−)� : FO1(A)→ FO1MONa(A) such
that a formula ϕ ∈ FO1(A) is monotone in a ∈ A if and only if ϕ ≡ ϕ�.

Proof. To define the translation we assume, without loss of generality, that ϕ is
in the normal form

∨∇FO(Σ) given in Definition 5.1.5, that is:

∇FO(Σ) :=
∧
S∈Σ

∃x.τS(x) ∧ ∀x.
∨
S∈Σ

τS(x).

We define the translation as (
∨∇FO(Σ))� :=

∨∇a
FO(Σ).

From the construction it is clear that ϕ� ∈ FO1MONa(A) and therefore the
right-to-left direction of the lemma is immediate by Lemma 5.1.23. For the left-to-
right direction assume that ϕ is monotone in a, we have to prove that (D, V) |= ϕ
if and only if (D, V) |= ϕ�.

110 Chapter 5. One-step model theory

⇒ This direction is trivial.

⇐ Assume (D, V) |= ϕ� and let Σ be such that (D, V) |= ∇a
FO(Σ). Because

of the universal part of ∇a
FO(Σ), it is safe to assume that the only (a-positive)

types realized in (D, V) are exactly those in Σ; moreover, it is also safe to assume
that every type has a (single) distinct witness (this is because (D, V) can be
proved to be FO1-equivalent to such a model). For every S ∈ Σ, let dS be the
witness of the a-positive type τaS(x) in (D, V). Let U := {dS | S ∈ Σ, a /∈ S} and
V ′ := V [a 7→ V (a) \ U].

Claim 1. (D, V ′) |= ∇FO(Σ).

Proof of Claim. First we show that the existential part of the normal form is
satisfied. That is, that for every S ∈ Σ we have a witness for the full type τS(x).
If a ∈ S the witness is given by ϕ�, that is, dS. If a /∈ S then we specially crafted
dS to be a witness. The universal part is clearly satisfied. J

To finish observe that, by monotonicity of ϕ, we get (D, V) |= ϕ. �

Putting together the above lemmas we obtain Theorem 5.1.22. Moreover,
a careful analysis of the translation gives us the following corollary, providing
normal forms for the monotone fragment of FO1.

5.1.26. Corollary. Let ϕ ∈ FO1(A), the following hold:

(i) The formula ϕ is monotone in A′ ⊆ A iff it is equivalent to a formula in
the basic form

∨∇A′
FO(Σ) for some types Σ ⊆ ℘A.

(ii) The formula ϕ is monotone in every a ∈ A (i.e., ϕ ∈ FO+
1 (A)) iff ϕ is

equivalent to a formula
∨∇+

FO(Σ) for some types Σ ⊆ ℘A.

Monotone fragment of FOE1

5.1.27. Theorem. A formula of FOE1(A) is monotone in A′ ⊆ A iff it is equiv-
alent to a sentence given by:

ϕ ::= ψ | a(x) | ∃x.ϕ | ∀x.ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where a ∈ A′ and ψ ∈ FOE1(A\A′). We denote this fragment as FOE1MONA′(A).

Observe that, in this definition, the equality predicate is taken into account
by the ψ clause. Before going on we need to introduce a bit of new notation.

5.1. Single-sorted first-order languages 111

5.1.28. Definition. Let A′ ⊆ A be a finite set of names. The monotone variant
of ∇FOE(T,Π) is given as follows:

∇A′

FOE(T,Π) := ∃x.
(
diff(x) ∧

∧
i

τA
′

Ti
(xi) ∧ ∀z.(diff(x, z)→

∨
S∈Π

τA
′

S (z))
)
.

When the set A′ is a singleton {a} we will write a instead of A′. The positive
variant of ∇FOE(T,Π) is defined as above but with + in place of A′.

The result follows from the following lemma.

5.1.29. Lemma. The following hold:

1. Every ϕ ∈ FOE1MONA′(A) is monotone in A′.

2. There exists a translation (−)� : FOE1(A) → FOE1MONA′(A) such that a
formula ϕ ∈ FOE1(A) is monotone in A′ if and only if ϕ ≡ ϕ�.

Proof. In Theorem 5.1.31 this result is proved for FOE∞1 (i.e., FOE1 extended
with generalized quantifiers). It is not difficult to adapt the proof for FOE1.
Intuitively, the translation is defined as ϕ� := ϕ[¬a(x) 7→ > | a ∈ A′] for ϕ in
negation normal form. �

Combining the normal form for FOE1 and the above lemma, we obtain the
following corollary providing a normal form for the monotone fragment of FOE1.

5.1.30. Corollary. Given ϕ ∈ FOE1(A), the following hold:

(i) The formula ϕ is monotone in A′ ⊆ A iff it is equivalent to a formula in
the basic form

∨∇A′
FOE(T,Π) where for each disjunct we have T ∈ ℘(A)k

for some k and Π ⊆ T,

(ii) The formula ϕ is monotone in all a ∈ A (i.e., ϕ ∈ FOE+
1 (A)) iff it is equiv-

alent to a formula in the basic form
∨∇+

FOE(T,Π) where for each disjunct
we have T ∈ ℘(A)k for some k and Π ⊆ T.

Monotone fragment of FOE∞1

5.1.31. Theorem. A formula of FOE∞1 (A) is monotone in A′ ⊆ A iff it is equiv-
alent to a sentence given by:

ϕ ::= ψ | a(x) | ∃x.ϕ | ∀x.ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃∞x.ϕ | ∀∞x.ϕ

where a ∈ A′ and ψ ∈ FOE∞1 (A \ A′). We call this fragment FOE∞1 MONA′(A).

Observe that x ≈ y and x 6≈ y are included in the case ψ ∈ FOE∞1 (A \ A′).
The result will follow from the following two lemmas and Remark 5.1.20.

112 Chapter 5. One-step model theory

5.1.32. Lemma. Every ϕ ∈ FOE∞1 MONa(A) is monotone in a.

Proof. The proof is basically the same as Lemma 5.1.23. That is, we show by
induction, that any one-step formula ϕ in the fragment (which may not be a
sentence) satisfies, for every one-step model (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ and V (a) ⊆ E then (D, V [a 7→ E]), g |= ϕ.

We focus on the generalized quantifiers. Let (D, V), g |= ϕ and V (a) ⊆ E.

• Case ϕ = ∃∞x.ϕ′(x). By definition there exists an infinite set I ⊆ D such
that for all d ∈ I we have (D, V), g[x 7→ d] |= ϕ′(x). By induction hypothesis
(D, V [a 7→ E]), g[x 7→ d] |= ϕ′(x) for all d ∈ I. Therefore (D, V [a 7→ E]), g |=
∃∞x.ϕ′(x).

• Case ϕ = ∀∞x.ϕ′(x). Hence there exists I ⊆ D such that for all d ∈ I we
have (D, V), g[x 7→ d] |= ϕ′(x) and D \ I is finite. By induction hypothesis
(D, V [a 7→ E]), g[x 7→ d] |= ϕ′(x) for all d ∈ I. Therefore (D, V [a 7→ E]), g |=
∀∞x.ϕ′(x).

This finishes the proof. �

Before going on, we introduce some notation.

5.1.33. Definition. Let A′ ⊆ A be a finite set of names. The A′-positive variant
of ∇FOE∞(T,Π,Σ) is given as follows:

∇A′

FOE∞(T,Π,Σ) := ∇A′

FOE(T,Π ∪ Σ) ∧∇A′

∞(Σ)

∇A′

FOE(T,Λ) := ∃x.
(
diff(x) ∧

∧
i

τA
′

Ti
(xi) ∧ ∀z.(diff(x, z)→

∨
S∈Λ

τA
′

S (z))
)

∇A′

∞(Σ) :=
∧
S∈Σ

∃∞y.τA′S (y) ∧ ∀∞y.
∨
S∈Σ

τA
′

S (y).

When the set A′ is a singleton {a} we will write a instead of A′. The positive
variant of ∇FOE∞(T,Π,Σ) is defined as ∇+

FOE∞(T,Π,Σ) := ∇A
FOE∞(T,Π,Σ).

We are now ready to give the translation.

5.1.34. Lemma. There is a translation (−)� : FOE∞1 (A) → FOE∞1 MONa(A)
such that a formula ϕ ∈ FOE∞1 (A) is monotone in a if and only if ϕ ≡ ϕ�.

Proof. We assume that ϕ is in the normal form
∨∇FOE∞(T,Π,Σ) where

∇FOE∞(T,Π,Σ) = ∇FOE(T,Π ∪ Σ) ∧∇∞(Σ).

5.1. Single-sorted first-order languages 113

for some sets of types Π,Σ ⊆ ℘A and each Ti ⊆ A. For the translation we define

(
∨
∇FOE∞(T,Π,Σ))� :=

∨
∇a

FOE∞(T,Π,Σ).

From the construction it is clear that ϕ� ∈ FOE∞1 MONa(A) and therefore the
right-to-left direction of the lemma is immediate by Lemma 5.1.32. For the left-to-
right direction assume that ϕ is monotone in a, we have to prove that (D, V) |= ϕ
if and only if (D, V) |= ϕ�.

⇒ This direction is trivial.

⇐ Assume (D, V) |= ϕ�, and in particular that (D, V) |= ∇a
FOE∞(T,Π,Σ).

Observe that the elements of D can be partitioned in the following way:

(a) Distinct elements ti ∈ D such that each ti satisfies τaTi(x),
(b) Disjoint sets {DS ⊆ D | S ∈ Σ} such that each DS is infinite and every

d ∈ DS is a witness for the a-positive type S ∈ Σ,
(c) A finite set DΠ ⊆ D of witnesses of the a-positive types in Π.

Following this partition, every element d ∈ D is be the witness of an a-type in
either (a) T, (b) Σ, or (c) Π. We use Sd ∈ T∪Π∪Σ to denote the a-type which
d witnesses. Now, we are talking about a-types, there might be a slight difference
between Sd and the actual type that each d has (namely V \(d)). That is, it could
be that d ∈ V (a) but that a /∈ Sd. What we want to do now is to shrink V in such
a way that the witnessed (Sd) type and the actual type coincide. We give a new
valuation U defined as U \(d) := Sd.1 Observe that U(a) ⊆ V (a) and U(b) = V (b)
for b ∈ A \ {a}.
Claim 1. (D,U) |= ϕ.

Proof of Claim. First we check that (D,U) |= ∇FOE(T,Π ∪ Σ). It is easy
to see that the elements ti work as witnesses for the full types Ti. That is
(D,U) |= τTi(ti) for every i. To prove the universal part of the formula it is
enough to show that:

1. Every element d ∈ DΠ realizes the full type Sd ∈ Π,
2. For all S ∈ Σ, every element of DS realizes the full type S.

Let d be an element of either DΠ or any of the DS. By (b) and (c) we know
(D, V) |= τaSd(d). If a ∈ Sd we can trivially conclude (D,U) |= τSd(d). If a /∈ Sd,
by definition of U we know that d /∈ U(a) and hence we can also conclude that
(D,U) |= τSd(d).

To prove that (D,U) |= ∧
S∈Σ ∃∞y.τS(y) ∧ ∀∞y.∨S∈Σ τS(y) we only need to

observe that the existential part is satisfied because each DS is infinite by (c) and
the universal part is satisfied because the set DΠ ∪T is finite by (b). J

1Recall that a valuation U : A → ℘D can also be represented as a marking U \ : D → ℘A
given by U \(d) := {a ∈ A | d ∈ V (a)}.

114 Chapter 5. One-step model theory

To finish the proof, note that by monotonicity of ϕ we get (D, V) |= ϕ. �

Putting together the above lemmas we obtain Theorem 5.1.31. Moreover,
a careful analysis of the translation gives us the following corollary, providing
normal forms for the monotone fragment of FOE∞1 .

5.1.35. Corollary. Let ϕ ∈ FOE∞1 (A), the following hold:

(i) The formula ϕ is monotone in A′ ⊆ A iff it is equivalent to a formula∨∇A′

FOE∞(T,Π,Σ) for Σ ⊆ Π ⊆ ℘A and T ∈ ℘(A)k for some k.

(ii) The formula ϕ is monotone in every a ∈ A (i.e., ϕ ∈ FOE∞1
+(A)) iff it

is equivalent to a formula in the basic form
∨∇+

FOE∞(T,Π,Σ) for types
Σ ⊆ Π ⊆ ℘A and T ∈ ℘(A)k for some k.

Proof. We only remark that to obtain Σ ⊆ Π in the above normal forms it is
enough to use Proposition 5.1.19 before applying the translation. �

5.1.3 One-step continuity

Recall from Chapter 4 that a formula ϕ ∈ L(A) is continuous in {a} ⊆ A if ϕ is
monotone in a and additionally, for every (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ then ∃U ⊆ω V (a) such that (D, V [a 7→ U]), g |= ϕ.

5.1.36. Remark. It was proved in Proposition 3.2.5 that continuity in the prod-
uct coincides with continuity in every variable. Therefore, in the following proofs
we will, in general, consider continuity in every single ai instead of in the full a.
This is equivalent, and only done to avoid an even more complex notation.

In this section we will characterize the continuous fragment of FO1 and FOE∞1
but we will not characterize that of FOE1, since it is not used in this dissertation.

Continuous fragment of FO1

5.1.37. Theorem. A formula of FO1(A) is continuous in A′ ⊆ A iff it is equiv-
alent to a sentence given by:

ϕ ::= ψ | a(x) | ∃x.ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where a ∈ A′ and ψ ∈ FO1(A \ A′). We denote this fragment as FO1CONA′(A).

The theorem will follow from the next two lemmas and Remark 5.1.36.

5.1.38. Lemma. Every ϕ ∈ FO1CONa(A) is continuous in a.

5.1. Single-sorted first-order languages 115

Proof. First observe that ϕ is monotone in a by Theorem 5.1.22. We show,
by induction, that any one-step formula ϕ in the fragment (which may not be a
sentence) satisfies, for every one-step model (D, V), assignment g : iVar→ D,

if (D, V), g |= ϕ then ∃U ⊆ω V (a) such that (D, V [a 7→ U]), g |= ϕ.

• If ϕ = ψ ∈ FO1(A \ {a}) changes in the a part of the valuation will make no
difference and hence the condition is trivial.

• Case ϕ = a(x): if (D, V), g |= a(x) then g(x) ∈ V (a). Clearly, g(x) ∈ V [a 7→
{g(x)}](a) and hence (D, V [a 7→ {g(x)}]), g |= a(x).

• Case ϕ = ϕ1 ∨ ϕ2: assume (D, V), g |= ϕ. Without loss of generality we can
assume that (D, V), g |= ϕ1 and hence by induction hypothesis we have that
there is U ⊆ω V (a) such that (D, V [a 7→ U]), g |= ϕ1 which clearly implies
(D, V [a 7→ U]), g |= ϕ.

• Case ϕ = ϕ1 ∧ ϕ2: assume (D, V), g |= ϕ. By induction hypothesis we have
U1, U2 ⊆ω V (a) such that (D, V [a 7→ U1]), g |= ϕ1 and (D, V [a 7→ U2]), g |= ϕ2.
By monotonicity this also holds with V [a 7→ U1 ∪U2] and therefore (D, V [a 7→
U1 ∪ U2]), g |= ϕ.

• Case ϕ = ∃x.ϕ′(x) and (D, V), g |= ϕ. By definition there exists d ∈ D
such that (D, V), g[x 7→ d] |= ϕ′(x). By induction hypothesis there exists
U ⊆ω V (a) such that (D, V [a 7→ U]), g[x 7→ d] |= ϕ′(x) and hence (D, V [a 7→
U]), g |= ∃x.ϕ′(x).

This finishes the proof. �

5.1.39. Lemma. There is a translation (−)	 : FO1MONa(A) → FO1CONa(A)
such that a formula ϕ ∈ FO1MONa(A) is continuous in a if and only if ϕ ≡ ϕ	.

Proof. To define the translation we assume, without loss of generality, that ϕ is in
the basic form

∨∇a
FO(Σ). For the translation, let (

∨∇a
FO(Σ))	 :=

∨∇a
FO(Σ,Σ−a)

where Σ−a := {S ∈ Σ | a /∈ S}.

From the construction it is clear that ϕ	 ∈ FO1CONa(A) and therefore the
right-to-left direction of the lemma is immediate by Lemma 5.1.38. For the left-to-
right direction assume that ϕ is continuous in a, we have to prove that (D, V) |= ϕ
iff (D, V) |= ϕ	, for every one-step model (D, V). We will take a slightly different
but equivalent approach.

It is easy to prove that (D, V) ≡FO (D × ω, Vπ) where D × ω has countably
many copies of each element in D and Vπ(a) := {(d, k) | d ∈ V (a), k ∈ ω}.
Moreover, as ϕ is continuous in a there is U ⊆ω Vπ(a) such that V ′π := V [a 7→ U]
satisfies (D × ω, Vπ) |= ϕ iff (D × ω, V ′π) |= ϕ. Therefore, it is enough to prove
that (D × ω, V ′π) |= ϕ iff (D × ω, V ′π) |= ϕ	.

116 Chapter 5. One-step model theory

⇒ Let (D × ω, V ′π) |= ∇a
FO(Σ), we show that (D × ω, V ′π) |= ∇a

FO(Σ,Σ−a). The
existential part of ∇a

FO(Σ,Σ−a) is trivially true. We have to show that every
element of (D×ω, V ′π) realizes an a-positive type in Σ−a . Take (d, k) ∈ D×ω and
let T be the (full) type of (d, k). If a /∈ T then trivially T ∈ Σ−a and we are done.
Suppose a ∈ T . Observe that in D × ω we have infinitely many copies of d ∈ D.
However, as V ′π(a) is finite, there must be some (d, k′) with type T ′ := T \ {a}.
For ∇a

FO(Σ) to be true we must have T ′ ∈ Σ and hence T ′ ∈ Σ−a . It is easy to see
that (d, k) realizes the a-positive type T ′.

⇐ Let (D × ω, V ′π) |= ∇a
FO(Σ,Σ−a), we show that (D × ω, V ′π) |= ∇a

FO(Σ). The
existential part is trivial. For the universal part just observe that Σ−a ⊆ Σ. �

Putting together the above lemmas we obtain Theorem 5.1.37. Moreover,
a careful analysis of the translation gives us the following corollary, providing
normal forms for the continuous fragment of FO1.

5.1.40. Corollary. Let ϕ ∈ FO1(A), the following hold:

(i) The formula ϕ is continuous in a ∈ A iff it is equivalent to a formula∨∇a
FO(Σ,Σ−a) for some types Σ ⊆ ℘A, where Σ−a := {S ∈ Σ | a /∈ S}.

(ii) If ϕ is monotone in A (i.e., ϕ ∈ FO+
1 (A)) then ϕ is continuous in a ∈ A iff

it is equivalent to a formula in the basic form
∨∇+

FO(Σ,Σ−a) for some types
Σ ⊆ ℘A, where Σ−a := {S ∈ Σ | a /∈ S}.

Continuous fragment of FOE∞1

5.1.41. Theorem. A formula of FOE∞1 (A) is continuous in A′ ⊆ A iff it is
equivalent to a sentence given by:

ϕ ::= ψ | a(x) | ∃x.ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ |Wx.(ϕ, ψ)

where a ∈ A′ and ψ ∈ FOE∞1 (A \ A′). Recall from Definition 3.2.33 that
Wx.(ϕ, ψ) is defined as ∀x.(ϕ(x) ∨ ψ(x)) ∧ ∀∞x.ψ(x). We denote this fragment
as FOE∞1 CONA′(A).

The theorem will follow from the next two lemmas and Remark 5.1.36.

5.1.42. Lemma. Every ϕ ∈ FOE∞1 CONa(A) is continuous in a.

Proof. Observe that monotonicity of ϕ is guaranteed by Theorem 5.1.31. We
show, by induction, that any formula of the fragment (which may not be a sen-
tence) satisfies, for every one-step model (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ then ∃U ⊆ω V (a) such that (D, V [a 7→ U]), g |= ϕ.

5.1. Single-sorted first-order languages 117

We focus on the inductive case of the new quantifier. Let ϕ′ = Wx.(ϕ, ψ), i.e.,

ϕ′ = ∀x. (ϕ(x) ∨ ψ(x))︸ ︷︷ ︸
α(x)

∧∀∞x.ψ(x)︸ ︷︷ ︸
β

.

Let (D, V), g |= ϕ′. By induction hypothesis, for every gd := g[x 7→ d] which
satisfies (D, V), gd |= α(x) there is Ud ⊆ω V (a) such that (D, V [a 7→ Ud]), gd |=
α(x). The crucial observation is that because of β, only finitely many elements of
d make ψ(d) false. Let U :=

⋃{Ud | (D, V), gd 6|= ψ(x)}. Note that U is a finite
union of finite sets, hence finite.

Claim 1. Let VU := V [a 7→ U]; then we have (D, VU), g |= ϕ′.

Proof of Claim. It is clear that (D, VU), g |= β because ψ is a-free. To show
that the first conjunct is true we have to show that (D, VU), gd |= ϕ(x) ∨ ψ(x)
for every d ∈ D. We consider two cases: (i) if (D, V), gd |= ψ(x) we are done,
again because ψ is a-free; (ii) if the former is not the case then Ud ⊆ U ; moreover,
we knew that (D, V [a 7→ Ud]), gd |= α(x) and by monotonicity of α(x) we can
conclude that (D, VU), gd |= α(x). J

This finishes the proof of the lemma. �

5.1.43. Lemma. There is a translation (−)	 : FOE∞1 MONa(A)→ FOE∞1 CONa(A)
such that a formula ϕ ∈ FOE∞1 MONa(A) is continuous in a if and only if ϕ ≡ ϕ	.

Proof. We assume that ϕ is in basic normal form, i.e., ϕ =
∨∇a

FOE∞(T,Π,Σ).
For the translation let (

∨∇a
FOE∞(T,Π,Σ))	 :=

∨∇a
FOE∞(T,Π,Σ)	 where

∇a
FOE∞(T,Π,Σ)	 :=

{
⊥ if a ∈ ⋃Σ

∇a
FOE∞(T,Π,Σ) otherwise.

First we prove the right-to-left direction of the lemma. By Lemma 5.1.42 it
is enough to show that ϕ	 ∈ FOE∞1 CONa(A). We focus on the disjuncts of ϕ	.
The interesting case is when a /∈ ⋃Σ. If we rearrange ∇a

FOE∞(T,Π,Σ) and define
the formulas ϕ′, ψ as follows:

∇a
FOE∞(T,Π,Σ) ≡ ∃x.

(
diff(x) ∧

∧
i

τaTi(xi) ∧

∀z.(¬diff(x, z) ∨
∨
S∈Π

τaS(z)︸ ︷︷ ︸
ϕ′(x,z)

∨
∨
S∈Σ

τaS(z)︸ ︷︷ ︸
ψ(z)

) ∧

∀∞y.
∨
S∈Σ

τaS(y)︸ ︷︷ ︸
ψ(y)

)
∧
∧
S∈Σ

∃∞y.τaS(y),

118 Chapter 5. One-step model theory

then we get that

∇aFOE∞(T,Π,Σ) ≡ ∃x.
(

diff(x) ∧
∧
i

τaTi(xi) ∧Wz.(ϕ′(x, z), ψ(z))
)
∧
∧
S∈Σ

∃∞y.τaS(y)

which, because a /∈ ⋃Σ, is in the required fragment.
For the left-to-right direction of the lemma we have to prove that ϕ ≡ ϕ	.

⇐ Let (D, V) |= ϕ	. The only difference between ϕ and ϕ	 is that some
disjuncts may have been replaced by ⊥. Therefore this direction is trivial.

⇒ Let (D, V) |= ϕ. Because ϕ is continuous in a we may assume that V (a) is fi-
nite. Let ∇a

FOE∞(T,Π,Σ) be a disjunct of ϕ such that (D, V) |= ∇a
FOE∞(T,Π,Σ).

If a /∈ ⋃Σ we trivially conclude that (D, V) |= ϕ	 because the disjunct re-
mains unchanged. Suppose now that a ∈ ⋃Σ, then there must be some S ∈ Σ
with a ∈ S. Because (D, V) |= ∇a

FOE∞(T,Π,Σ) we have, in particular, that
(D, V) |= ∃∞y.τaS(x) and hence V (a) must be infinite which is absurd. �

Putting together the above lemmas we obtain Theorem 5.1.41. Moreover,
a careful analysis of the translation gives us the following corollary, providing
normal forms for the continuous fragment of FOE∞1 .

5.1.44. Corollary. Let ϕ ∈ FOE∞1 (A), the following hold:

(i) The formula ϕ is continuous in a ∈ A iff it is equivalent to a formula in the
basic form

∨∇a
FOE∞(T,Π,Σ) for some types Σ ⊆ Π ⊆ ℘A and Ti ⊆ A such

that a /∈ ⋃Σ.

(ii) If ϕ is monotone in every element of A (i.e., ϕ ∈ FOE∞1
+(A)) then ϕ

is continuous in a ∈ A iff it is equivalent to a formula in the basic form∨∇+
FOE∞(T,Π,Σ) for some types Σ ⊆ Π ⊆ ℘A and Ti ⊆ A such that

a /∈ ⋃Σ.

Proof. We only remark that to obtain Σ ⊆ Π in the above normal forms it is
enough to use Proposition 5.1.19 before applying the translation. �

5.1.4 One-step additivity

Recall from Chapter 4 that a formula ϕ ∈ L(A) is completely additive in {a} ⊆ A
if ϕ is monotone in every ai and, for every (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ then (D, V [a 7→ Q]), g |= ϕ for some quasi-atom Q of V (a).

We start by giving a characterization of the completely additive fragment of
FOE1 and then use it to give a similar characterization for FO1.

5.1. Single-sorted first-order languages 119

Completely additive fragment of FOE1

5.1.45. Theorem. A formula of FOE1(A) is completely additive in A′ ⊆ A iff
it is equivalent to a sentence given by:

ϕ ::= ψ | a(x) | ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ψ

where a ∈ A′ and ψ ∈ FOE1(A \ A′). Observe that the equality is included in ψ.
We denote this fragment as FOE1ADDA′(A).

The theorem will follow from the next two lemmas.

5.1.46. Lemma. Every ϕ ∈ FOE1ADDA′(A) is completely additive in A′.

Proof. First observe that ϕ is monotone in every a ∈ A′ by Theorem 5.1.27.
We show, by induction, that any formula ϕ in the fragment (which may not be a
sentence) satisfies, for every one-step model (D, V) and assignment g : iVar→ D,

if (D, V), g |= ϕ then (D, V [A′ 7→ Q]), g |= ϕ for some quasi-atom Q of V (A′).

The cases are as follows:

• If ϕ = ψ ∈ FO1(A \ A′) changes in the A′-part of the valuation will make
no difference and hence the condition is trivial.

• Case ϕ = ai(x) with ai ∈ A′: if (D, V), g |= ai(x) then g(x) ∈ V (ai). If
we take Q to be an atom of V (A′) such that Qi := {g(x)} it is clear that
g(x) ∈ V [A′ 7→ Q](ai) and hence (D, V [A′ 7→ Q]), g |= ai(x).

• Case ϕ = ϕ1 ∨ ϕ2: this case is solved applying the inductive hypothesis to
one of the disjuncts. Details are left to the reader.

• Case ϕ = ϕ1 ∧ ψ: assume (D, V), g |= ϕ. By induction hypothesis we have
that (D, V [A′ 7→ Q]), g |= ϕ1 for some Q. Observe that (D, V), g |= ψ
and as ψ is A′-free we also have (D, V [A′ 7→ Q]), g |= ψ. Therefore we can
conclude that (D, V [a′ 7→ Q]), g |= ϕ.

• Case ϕ = ∃x.ϕ′: assume (D, V), g |= ϕ. By definition there exists d ∈ D
such that (D, V), g[x 7→ d] |= ϕ′. By induction hypothesis we have that
(D, V [A′ 7→ Q]), g[x 7→ d] |= ϕ′ for some Q. Therefore we can conclude
that (D, V [A′ 7→ Q]), g |= ∃x.ϕ′.

This finishes the proof. �

5.1.47. Lemma. There is a translation (−)⊕ : FOE1MONA′(A)→ FOE1ADDA′(A)
such that ϕ ∈ FOE1MONA′(A) is completely additive in A′ if and only if ϕ ≡ ϕ⊕.

120 Chapter 5. One-step model theory

Proof. We assume that ϕ is in basic form, i.e., ϕ =
∨∇A′

FOE(T,Π) with Π ⊆ T.
First, we intuitively consider some conditions on an arbitrary disjunct∇A′

FOE(T,Π)
of ϕ that would force the existence of at least two elements, each satisfying a(x)
for some a ∈ A′. Clearly, any formula that forces this, goes against the spirit of
complete additivity.

(i) There are a, b ∈ Ti ∩ Tj for distinct a, b ∈ A′ or distinct i, j.
(ii) There is some S ∈ Π such that S ∩ A′ 6= ∅.

Now, we give a translation which eliminates (replaces with ⊥) the subformulas
forcing the above cases. We define (

∨∇A′
FOE(T,Π))⊕ :=

∨∇A′
FOE(T,Π)⊕ and

∇A′

FOE(T,Π)⊕ :=

{
⊥ if (i) holds,
∇A′

FOE(T,Π×A′) otherwise,

where Π×A′ := {S ∈ Π | A′ ∩ S = ∅}.
First we prove the right-to-left direction of the lemma. Inspecting the syn-

tactic form of ϕ⊕ it is not difficult to see that ϕ⊕ ∈ FOE1ADDA′(A), as given in
Theorem 5.1.45. Using Lemma 5.1.46 we can conclude that ϕ⊕ (and therefore ϕ
as well) is completely additive in A′. For the left-to-right direction of the lemma
we assume ϕ to be completely additive in A′ and have to prove ϕ ≡ ϕ⊕.

⇐ Let (D, V) |= ϕ⊕. It is enough to show that (D, V) |= ∇A′
FOE(T,Π×A′) implies

(D, V) |= ∇A′
FOE(T,Π) for every disjunct. The key observation is that Π×A′ ⊆ Π.

⇒ Let (D, V) |= ϕ. By complete additivity in A′ we have that (D, V [A′ 7→
Q]) |= ϕ for some quasi-atom Q of V (A′). To improve readability we define
V ′ := V [A′ 7→ Q]. We now work with (D, V ′) because (by monotonicity, which
is implied by complete additivity) it will be enough to prove that (D, V ′) |= ϕ⊕.

As (D, V ′) |= ϕ, we know there is some disjunct ∇A′
FOE(T,Π) of ϕ witnessing

the satisfaction. We fix it and prove the following claim.

Claim 2. For every b, b′ ∈ A′, if b ∈ Ti and b′ ∈ Tj then b = b′ and i = j.

Proof of Claim. Suppose that there are distinct Ti, Tj ∈ T such that b ∈
Ti∩Tj. This would require at least two distinct elements to satisfy b(x). However,
this cannot occur because V ′(A′) is a quasi-atom. The case where b 6= b′ is handled
in a similar way: suppose that b ∈ Ti, b′ ∈ Tj and b 6= b′. Using what we just
proved, let us assume that i = j. Therefore, this requires the existence of an
element which is colored with both b and b′. However, as V ′(A′) is a quasi-atom,
this cannot occur if b 6= b′. J

To finish, we show that condition (ii) is taken care of.

Claim 3. If (D, V ′) |= ∇A′
FOE(T,Π) then (D, V ′) |= ∇A′

FOE(T,Π×A′).

5.1. Single-sorted first-order languages 121

Proof of Claim. Assume (D, V ′) |= ∇A′
FOE(T,Π) and that d ∈ D is one of

the elements which is not a witness for T; therefore, d has to satisfy some type
Sd ∈ Π. If Sd ∩ A′ = ∅ we are done, because in that case Sd ∈ Π×A′ . Suppose
that Sd ∩ A′ 6= ∅, this means that d is colored with some a ∈ A′. As V ′(A′)
is a quasi-atom, this means that no other element can be colored with A′. The
final observation is that, as Π ⊆ T, then Sd ∈ T. This means that there should
exist an element d′ 6= d which is colored with the same a ∈ A′ but we have just
observed that this cannot occur. We conclude that every d ∈ D has to satisfy
some type S ∈ Π with S ∩ A′ = ∅. J

This finishes the proof. �

Putting together the above lemmas we obtain Theorem 5.1.45. Moreover,
a careful analysis of the translation gives us the following corollary, providing
normal forms for the completely additive fragment of FOE1.

5.1.48. Corollary. Let ϕ ∈ FOE1(A), the following hold:

(i) The formula ϕ is completely additive in A′ ⊆ A iff it is equivalent to a
formula in the basic form

∨∇A′
FOE(T,Π) where T ∈ ℘(A)k for some k,

Π ⊆ T and for every disjunct: Π is A′-free and there is at most one element
of A′ in the concatenation of the lists T1·T2· · ·Tk.

(ii) If ϕ is monotone in A (i.e., ϕ ∈ FOE+
1 (A)) then ϕ is completely additive

in A′ ⊆ A iff it is equivalent to a formula
∨∇+

FOE(T,Π) where T ∈ ℘(A)k

for some k, Π ⊆ T and for every disjunct: Π is A′-free and there is at most
one element of A′ in the concatenation of the lists T1·T2· · ·Tk.

Completely additive fragment of FO1

5.1.49. Theorem. A formula of FO1(A) is completely additive in A′ ⊆ A iff it
is equivalent to a sentence generated by the following grammar:

ϕ ::= ψ | a(x) | ∃x.ϕ | ϕ ∨ ϕ | ϕ ∧ ψ

where a ∈ A′ and ψ ∈ FO1(A \ A′). We denote this fragment as FO1ADDA′(A).

The theorem will follow from the next two lemmas.

5.1.50. Lemma. Every ϕ ∈ FO1ADDA′(A) is completely additive in A′.

Proof. As FO1ADDA′(A) is included in FOE1ADDA′(A) we can simply use
Lemma 5.1.46 for FOE1ADDA′(A) and conclude what we want. �

122 Chapter 5. One-step model theory

In Lemma 5.1.47 we gave a translation which transforms every formula ϕ of
FOE1(A) to an equivalent formula in FOE1ADDA′(A), given that ϕ is completely
additive in A′. As FO1(A) ⊆ FOE1(A), it is tempting to use this same translation
to obtain a characterization for FO1(A). The main problem is that the target
of this translation always uses equality (in the predicate ‘diff’) and therefore
would not work for FOE1. The next definition and proposition show that we can
still make use of this translation but on top of that we need to forget (erase)
the equality constraints. If we do that, we will obtain a normal form for the
completely additive fragment of FO1(A).

5.1.51. Definition. The translation (−)• : FOE1(A)→ FO1(A) on formulas of
FOE1(A) which are in normal form, is defined as follows:

(∇FOE(T,Π))• := ∇FO(T,Π)

and for α =
∨
i ψi we define α• :=

∨
i ψ
•
i . We extend this translation to the

monotone and positive fragments as expected, i.e.: (∇A′
FOE(T,Π))• := ∇A′

FO(T,Π)
and (∇+

FOE(T,Π))• := ∇+
FO(T,Π).

Observe that on the right hand side of the above definitions, T is seen as a
set. The key property of this translation is the following.

5.1.52. Proposition. For every one-step model (D, V) and every α ∈ FOE1(A)
in normal form we have:

(D, V) |= α• iff (D × ω, Vπ) |= α,

where the valuation Vπ is given by V \
π ((d, k)) := V \(d).

We call these one-step models D and Dω respectively. Observe that the model
Dω has ω-many copies of each element of D.

Proof. We will prove that D |= ∇FO(T,Π) iff Dω |= ∇FOE(T,Π). The cases of
the monotone and positive fragments are proved in the same way.

⇒ Let D |= ∇FO(T,Π), we prove that Dω |= ∇FOE(T,Π). The existential
part (i.e., T) is straightforward, by observing that in Dω we can choose as many
distinct witnesses for each Ti as we want, because of the ω-expansion. For the
universal part, observe that ∇FO(T,Π) states that every d ∈ D satisfies some
type in Π. Therefore, the same happens with the elements of Dω. In particular,
for the elements that are not witnesses for T. Therefore, Dω |= ∇FOE(T,Π).

⇐ Let Dω |= ∇FOE(T,Π), we prove that D |= ∇FO(T,Π). For the existential
part, consider an arbitrary Ti, we show that it has a witness in D. We know by
hypothesis that there is some (d, k) ∈ Dω which is a witness for Ti. It is easy to see
that d works as a witness for Ti in D. For the universal part, consider an element

5.1. Single-sorted first-order languages 123

d ∈ D, we show that it satisfies some type in Π. If there is some (d, k) ∈ Dω such
that (d, k) is not a witness of T then we are done, as it should satisfy some type
in Π by the semantics of ∇FOE(T,Π). The key observation is that there is always
such an element, because at most |T| elements of {(d, n) | n ∈ N} function as
witnesses for T. �

We are now ready to state the lemma which provides a translation for FO1.

5.1.53. Lemma. There is a translation (−)⊕ : FO1MONA′(A) → FO1ADDA′(A)
such that ϕ ∈ FO1MONA′(A) is completely additive in A′ if and only if ϕ ≡ ϕ⊕.

Proof. To define the translation (−)⊕ : FO1MONA′(A)→ FO1ADDA′(A) we will
use the translation for FOE1 given in Lemma 5.1.47. To avoid confusion, we call
it (−)⊕FOE : FOE1MONA′(A) → FOE1ADDA′(A). We define, for every formula
ϕ ∈ FO1MONA′(A):

ϕ⊕ := (ϕ⊕FOE)•.

⇐ A short argument reveals that indeed ϕ⊕ ∈ FO1ADDA′(A), and therefore by
Lemma 5.1.50 the formula ϕ⊕ is completely additive in A′. As ϕ is equivalent to
ϕ⊕, it is also completely additive in A′.

⇒ For this direction we assume that ϕ ∈ FO1MONA′(A) is completely additive
in A′ and we prove that for every (D, V) we have (D, V) |= ϕ iff (D, V) |= ϕ⊕.

(D, V) |= ϕ iff (D × ω, Vπ) |= ϕ (Properties of FO1)
iff (D × ω, Vπ) |= ϕ⊕FOE (Lemma 5.1.47)
iff (D, V) |= (ϕ⊕FOE)• (Proposition 5.1.52)
iff (D, V) |= ϕ⊕. (Definition of ϕ⊕)

This finishes the proof. �

Putting together the above lemmas we obtain Theorem 5.1.49. Moreover,
a careful analysis of the translation gives us normal forms for the completely
additive fragment of FO1.

5.1.54. Corollary. Let ϕ ∈ FO1(A) and, given Σ ⊆ ℘(A), let LΣ ∈ A∗ be the
list with repetitions of elements of A in Σ. The following hold:

(i) The formula ϕ is completely additive in A′ ⊆ A iff it is equivalent to a
formula in the basic form

∨∇A′
FO(Σ,Π) where Σ ⊆ ℘(A) and for every

disjunct: Π is A′-free and there is at most one element of A′ in LΣ.

(ii) If ϕ is monotone in A (i.e., ϕ ∈ FO+
1 (A)) then ϕ is completely additive

in A′ ⊆ A iff it is equivalent to a formula of the form
∨∇+

FO(Σ,Π) where
Σ ⊆ ℘(A) and for every disjunct: Π is A′-free and there is at most one
element of A′ in LΣ.

124 Chapter 5. One-step model theory

5.1.5 Dual fragments

In this section we give syntactic characterizations of the co-continuous and com-
pletely multiplicative fragments of several one-step logics. These notions are dual
to continuity and complete additivity, respectively. We first give a concrete defi-
nition of the dualization operator of Definition 2.3.5.

5.1.55. Definition. The dual ϕδ ∈ FOE∞1 (A) of ϕ ∈ FOE∞1 (A) is given by:

(a(x))δ := a(x) (¬a(x))δ := ¬a(x)

(>)δ := ⊥ (⊥)δ := >
(x ≈ y)δ := x 6≈ y (x 6≈ y)δ := x ≈ y

(ϕ ∧ ψ)δ := ϕδ ∨ ψδ (ϕ ∨ ψ)δ := ϕδ ∧ ψδ

(∃x.ψ)δ := ∀x.ψδ (∀x.ψ)δ := ∃x.ψδ

(∃∞x.ψ)δ := ∀∞x.ψδ (∀∞x.ψ)δ := ∃∞x.ψδ

5.1.56. Remark. Observe that if ϕ ∈ L(A) for L ∈ {FO1,FOE1,FOE∞1 } then
ϕδ ∈ L(A). Moreover, the operator preserves positivity of the predicates, that is,
if ϕ ∈ L+(A) then ϕδ ∈ L+(A).

The proof of the following proposition is a routine check.

5.1.57. Proposition. For every ϕ ∈ FOE∞1 (A), ϕ and ϕδ are Boolean duals.

We are now ready to give the syntactic definition of the dual fragments for
the one-step logics into consideration.

5.1.58. Definition. The fragment FOE∞1 CONA′(A) is given by the sentences
generated by:

ϕ ::= ψ | a(x) | ∀x.ϕ | ∀∞x.ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ
where a ∈ A′ and ψ ∈ FOE∞1 (A \ A′). Observe that the equality is included in
ψ. The fragment FO1CONA′(A) is defined as FOE∞1 CONA′(A) but without the
clause for ∀∞ and with ψ ∈ FO1(A \ A′).

The fragment FOE1MULA′(A) is given by the sentences generated by:

ϕ ::= ψ | a(x) | ∀x.ϕ | ϕ ∧ ϕ | ϕ ∨ ψ

where a ∈ A′ and ψ ∈ FOE1(A \ A′). Again, the equality is included in ψ. The
fragment FO1MULA′(A) is defined as FOE1MULA′(A) but with ψ ∈ FO1(A \A′).

The following proposition states that the above fragments are actually the
duals of the fragments defined earlier in this chapter.

5.2. Selected multi-sorted first-order languages 125

5.1.59. Proposition. The following hold:

FOE∞1 CONA′(A) = {ϕ | ϕδ ∈ FOE∞1 CONA′(A)}
FO1CONA′(A) = {ϕ | ϕδ ∈ FO1CONA′(A)}
FO1MULA′(A) = {ϕ | ϕδ ∈ FO1ADDA′(A)}

FOE1MULA′(A) = {ϕ | ϕδ ∈ FOE1ADDA′(A)}.
Proof. Easily proved by induction. �

As a corollary, we get a characterization for co-continuity and multiplicativity.

5.1.60. Corollary.

(i) Let L ∈ {FO1,FOE∞1 }. A formula ϕ ∈ L(A) is co-continuous in a ∈ A if
and only if it is equivalent to some ϕ′ ∈ LCONa(A).

(ii) Let L ∈ {FO1,FOE1}. A formula ϕ ∈ L(A) is completely multiplicative in
A′ ⊆ A if and only if it is equivalent to some ϕ′ ∈ LMULA′(A).

Proof. Consequence of Proposition 5.1.59 and 5.1.57. �

5.2 Selected multi-sorted first-order languages
In this section we give normal forms and characterizations for a few selected multi-
sorted one-step languages. These results will be generalizations of the analogous
results for the single-sorted scenario.

5.2.1. Definition. The set FOE1(A,S) of (multi-sorted) one-step first-order
sentences (with equality) is given by the sentences formed by

ϕ ::= > | ⊥ | a(x) | x ≈ y | ¬ϕ | ϕ ∨ ϕ | ∃x:s.ϕ

where x, y ∈ iVar, a ∈ A and s ∈ S. The one-step logic FO1(A,S) of multi-sorted
first-order sentences without equality is defined similarly.

Recall from Section 2.3 that formulas of an arbitrary multi-sorted one-step
language L are interpreted over multi-sorted one-step models, that is, a tuple
D = (Ds1 , . . . , Dsn , V : A → ℘(

⋃
sDs)) where the si belong to a set of sorts S

and we use D to denote
⋃

sDs. Whenever we say ‘one-step model’ in this section
we will be referring to a multi-sorted one-step model. A one-step model is called
strict when the sets Ds∈S are pairwise disjoint, that is, when Ds1 , . . . , Dsn is a
partition of D. When the sets Ds∈S are not relevant we will just write the one-
step model as (D, V). The class of all one-step models will be denoted by M1

and the class of all strict one-step models will be denoted by Ms
1.

The multi-sorted semantics that we will use in this dissertation is slightly
non-standard: for example, the individual variables and names (predicates) do
not have a fixed sort. We define the semantics formally to avoid confusion.

126 Chapter 5. One-step model theory

5.2.2. Definition. Let ϕ ∈ FOE1(A,S) be a formula, D = (Ds1 , . . . , Dsn , V)
be a one-step model on sorts S and g : iVar → ℘(D) be an assignment. The
semantics of FOE1(A,S) is given as follows:

D, g |= a(x) iff g(x) ∈ V (a),

D, g |= x ≈ y iff g(x) = g(y),

D, g |= ∃x:s.ϕ iff D, g[x 7→ d] |= ϕ for some d ∈ Ds,

while the Boolean connectives are defined as expected.

Given a one-step modelD we use |S|sD to denote the number of elements of sort
s ∈ S that realize the A-type τS in D. Formally, |S|sD := |{d ∈ Ds : D |= τS(d)}|.

A partial isomorphism between two one-step models D = (Ds1 , . . . , Dsn , V)
and D′ = (D′s1 , . . . , D

′
sn
, V ′) is a partial function f : D ⇀ D′ which is injective

and for all d ∈ Dom(f) it satisfies the following conditions:

(sorts) d and f(d) have the same sorts,

(atom) d ∈ V (a)⇔ f(d) ∈ V ′(a), for all a ∈ A.
Given two sequences d ∈ Dk and d′ ∈ D′k we use f : d 7→ d′ to denote the partial
function f : D ⇀ D′ defined as f(di) := d′i. We explicitly avoid cases where there
exist di, dj such that di = dj but d′i 6= d′j.

5.2.1 Normal forms

In this section we provide normal forms for the multi-sorted one-step logics
FO1(A,S) and FOE1(A,S).

Normal form for FO1

We start by stating a normal form for one-step first-order logic without equality.
A formula in basic form gives a complete description of the types that are satisfied
in a one-step model.

5.2.3. Definition. We say that a formula ϕ ∈ FO1(A,S) is in basic form if
ϕ =

∨∧
s∇FO(Σ)s where in each conjunct

∇FO(Σ)s :=
∧
S∈Σ

∃x:s.τS(x) ∧ ∀x:s.
∨
S∈Σ

τS(x)

for some set of types Σ ⊆ ℘(A).

The subindex s ∈ S in ∇FO(Σ)s denotes that this formula describes the
elements of sort s of the one-step model. Therefore, a multi-sorted formula
ϕ ∈ FO1(A,S) in basic form is comprised of many disjuncts, each one having
a description of the elements of each sort.

5.2. Selected multi-sorted first-order languages 127

5.2.4. Remark. FO1 cannot distinguish between arbitrary and strict one-step
models. More formally, every arbitrary one-step model D = (D1, . . . , Dn, V) is
equivalent (for FO1) to the model Dn := (D1 × {1}, . . . , Dn × {n}, Vπ) where
Vπ(a) := {(d, k) | d ∈ V (a), k ∈ {0, . . . , n}}. Therefore, when proving results for
FO1, it is not difficult to see that we can restrict to the class of strict models.

It is not difficult to prove, using Ehrenfeucht-Fraïssé games, that every formula
of multi-sorted FO1 is equivalent to a formula in basic form over strict models.
By Remark 5.2.4 the normal form also holds over arbitrary models. We omit a
full proof for this case because it is very similar to that of FOE1.

5.2.5. Proposition. Every formula of FO1(A,S) is equivalent to a formula in
basic form.

Normal form for FOE1

In this subsection we have to pay particular attention to the kind of one-step
models that we are working with. The case of FOE1 is much more complicated,
as this logic can distinguish between strict and arbitrary one-step models. We
first give a normal form for strict models and then lift it to arbitrary models.

The strict case. We prove that every formula of multi-sorted monadic first-
order logic with equality (i.e., FOE1) is equivalent to a formula in strict basic
form over strict models.

5.2.6. Definition. We say that a formula ϕ ∈ FOE1(A,S) is in strict basic
form if ϕ =

∨∧
s∇FOE(T,Π)s where in each conjunct we have:

∇FOE(T,Π)s := ∃x:s.
(
diff(x) ∧

∧
i

τTi(xi) ∧ ∀z:s.(diff(x, z)→
∨
S∈Π

τS(z))
)

such that T ∈ ℘(A)k for some k, s ∈ S and Π ⊆ T.

We start by defining the following relation between strict one-step models.

5.2.7. Definition. Let D and D′ be strict one-step models. For every k ∈ N
we define the following relation:

D ∼=
k D′ ⇐⇒ ∀S ⊆ A, s ∈ S.

(
|S|sD = |S|sD′ < k or |S|sD, |S|sD′ ≥ k

)
.

Intuitively, two models are related by ∼=
k when their type information coin-

cides ‘modulo k’. Later we will prove that this is the same as saying that they
cannot be distinguished by a formula of FOE1 with quantifier rank lower or equal
to k. For the moment, we prove the following properties of ∼=

k .

128 Chapter 5. One-step model theory

5.2.8. Proposition. The following hold

(i) ∼=
k is an equivalence relation,

(ii) ∼=
k has finite index,

(iii) Every E ∈ Ms
1/∼=

k is characterized by a formula ϕ=
E ∈ FOE1(A,S) with

qr(ϕ=
E) = k.

Proof. We only prove the last point. Let E ∈ Ms
1/∼=

k and let D ∈ E be
a representative. For every s ∈ S call S1, . . . , Sn ⊆ A to the types such that
|Si|sD = ni < k and S ′1, . . . , S ′m ⊆ A to those satisfying |S ′i|sD ≥ k. Now define

ϕ=
E,s :=

∧
i≤n

(
∃x1, . . . , xni :s.diff(x1, . . . , xni) ∧∧
j≤ni

τSi(xj) ∧ ∀z:s.diff(x1, . . . , xni , z)→ ¬τSi(z)
)
∧∧

i≤m

(
∃x1, . . . , xk:s.diff(x1, . . . , xk) ∧

∧
j≤k

τS′i(xj)
)

Finally set ϕ=
E :=

∧
s ϕ

=
E,s.

First note that the union of all the Si and S ′i yields all the possible A-types,
and that if a type is not realized at all, then it will correspond to some Sj with
nj = 0. It is easy to see that qr(ϕ=

E) = k and that D′ |= ϕ=
E iff D′ ∈ E. Observe

that the formula ϕ=
E gives a specification of E “sort by sort and type by type”. �

In the following definition we recall the notion of Ehrenfeucht-Fraïssé game
for FOE1, slightly adapted for the multi-sorted setting, which will be used to
establish the connection between ∼=

k and ≡FOE
k .

5.2.9. Definition. Let D0 = (D0, V0) and D1 = (D1, V1) be strict multi-sorted
one-step models. We define the game EF=

k (D0,D1) between ∀ and ∃. If Di is one
of the models we use D−i to denote the other model, and we do the same with
elements. Note that in this definition the index i will never refer to a sort, but
to one of the models. A position in this game is a pair of sequences s0 ∈ Dn

0 and
s1 ∈ Dn

1 with n ≤ k. The game consists of k rounds where in round n + 1 the
following steps are made

1. ∀ chooses an element di in one of the Di,

2. ∃ responds with an element d−i in the model D−i.

3. Let si ∈ Dn
i be the sequences of elements chosen up to round n, they are

extended to si
′ := si · di. Player ∃ survives the round iff she does not get stuck

and the function fn+1 : s0
′ 7→ s1

′ is a partial isomorphism of one-step models.

5.2. Selected multi-sorted first-order languages 129

Player ∃ wins iff she can survive all k rounds. Given n ≤ k and si ∈ Dn
i such that

fn : s0 7→ s1 is a partial isomorphism, we use EF=
k (D0,D1)@(s0, s1) to denote

the (initialized) game where n moves have been played and k − n moves are left
to be played.

5.2.10. Lemma. The following are equivalent

1. D0 ≡FOE
k D1,

2. D0 ∼=
k D1,

3. ∃ has a winning strategy in EF=
k (D0,D1).

Proof. Step (1) to (2) is direct by Proposition 5.2.8. For (2) to (3) we give a
winning strategy for ∃ in EF=

k (D0,D1). We do it by showing the following claim

Claim 1. Let D0 ∼=
k D1 and si ∈ Dn

i be such that n < k and fn : s0 7→ s1 is a
partial isomorphism; then ∃ can survive one more round in EF=

k (D0,D1)@(s0, s1).

Proof of Claim. Let ∀ pick di ∈ Di such that di has type T ⊆ A and sort
s ∈ S. If di had already been played then ∃ picks the same element as before and
fn+1 = fn. If di is new and |T |sDi

≥ k then, as at most n < k elements have been
played, there is always some new d−i ∈ D−i that ∃ can choose that matches di.
If |T |sDi

= m < k then we know that |T |sD−i = m. Therefore, as di is new and fn
is injective, there must be a d−i ∈ D−i of sort s that ∃ can choose. J

Step (3) to (1) is a standard result [EF95, Corollary 2.2.9] in the unsorted
setting, we prove it for the multi-sorted setting and for completeness sake.

Claim 2. Let si ∈ Dn
i and ϕ(z1, . . . , zn) ∈ FOE1(A) be such that qr(ϕ) ≤ k−n.

If ∃ has a winning strategy in EF=
k (D0,D1)@(s0, s1) then D0 |= ϕ(s0) if and only

if D1 |= ϕ(s1).

Proof of Claim. If ϕ is atomic the claim holds because of fn : s0 7→ s1
being a partial isomorphism (more specifically, the atom condition). Boolean
cases are straightforward. Let ϕ(z1, . . . , zn) = ∃x:s.ψ(z1, . . . , zn, x) and suppose
D0 |= ϕ(s0). Hence, there exists d0 ∈ D0 of sort s such that D0 |= ψ(s0, d0).
By hypothesis we know that ∃ has a winning strategy for EF=

k (D0,D1)@(s0, s1).
Therefore, if ∀ picks d0 ∈ D0 she can respond with some d1 ∈ D1 and has a
winning strategy for EF=

k (D0,D1)@(s0·d0, s1·d1). First observe that, as ∃ survives
the round, then s0·d0 7→ s1·d1 is a partial isomorphism and hence (by the sorts
condition) the lements d0 and d1 will have the same sort. By induction hypothesis,
because qr(ψ) ≤ k− (n+ 1), we have that D0 |= ψ(s0, d0) iff D1 |= ψ(s1, d1) and
hence D1 |= ∃x:s.ψ(s1, x). The other direction is symmetric. J

Combining these claims finishes the proof of the lemma. �

130 Chapter 5. One-step model theory

5.2.11. Theorem. Over strict models, every formula ϕ ∈ FOE1(A,S) is equiv-
alent to a formula ψ ∈ FOE1(A,S) in strict basic form.

Proof. Let qr(ϕ) = k and let JϕK be the class of models satisfying ϕ. As
Ms

1/≡FOE
k is the same as Ms

1/∼=
k by Lemma 5.2.10, it is easy to see that ϕ ≡∨{ϕ=

E | E ∈ JϕK/∼=
k }. Remember that ϕ=

E is defined as
∧

s ϕ
=
E,s. Therefore, it

is enough to see that each ϕ=
E,s is equivalent to some ∇FOE(T,Π)s where Ti ⊆ A

and Π ⊆ T. From this, we can conclude that ϕ is equivalent to ψ :=
∨{ϕ=

E | E ∈
JϕK/∼=

k }. This can be done exactly as in Theorem 5.1.12. �

The arbitrary case. We now prove that we can also give a normal form for
arbitrary models. As an intuition on why the strict normal form “lifts” to arbitrary
models observe that any one-step model on sorts S can be seen as a strict one-step
model on sorts ℘(S).

5.2.12. Definition. For an arbitrary one-step model D on sorts S we define
D↑ to be the strict one-step model on sorts ℘(S) obtained by redefining the sorts
of D as follows: an element d of D↑ belongs to the sort S ⊆ S iff it belongs to all
the sorts s ∈ S in D and it does not belong to any sort s′ ∈ S \ S in D.

For every ϕ ∈ FOE1(A,S) we define the translation ϕ↑ ∈ FOE1(A,℘(S)) in-
ductively: it behaves homomorphically in every operator which is not a quantifier,
and it is defined as follows for quantifiers.

(∃x:s.ϕ(x))↑ :=
∨
{∃x:S.ϕ↑(x) | {s} ⊆ S ⊆ S}

(∀x:s.ϕ(x))↑ :=
∧
{∀x:S.ϕ↑(x) | {s} ⊆ S ⊆ S}.

The following proposition states the expected relationship.

5.2.13. Proposition. For every ϕ ∈ FOE1(A,S) and arbitrary one-step model
D on sorts S we have that D |= ϕ iff D↑ |= ϕ↑.

Proof. This proposition is proved by induction, we focus on the existential case.
That is, we prove that D |= ∃x:s.ϕ(x) iff D↑ |= (∃x:s.ϕ(x))↑.
⇒ Let d ∈ Ds be the witness of sort s for ϕ. Let S ⊆ S be the set of sorts

to which d belongs in D. Observe that by definition of D↑, the element d (only)
belongs to the sort S in D↑. Hence, using the inductive hypothesis we get that
D↑ |= ∃x:S.ϕ↑(x). Finally, as {s} ⊆ S, this implies that D↑ |= (∃x:s.ϕ(x))↑.
⇐ This direction is easier and left to the reader. �

The next step is to use Theorem 5.2.11 (over strict models) to get a strict
normal form ψ of ϕ↑. After that we want to transfer the normal form to arbitrary

5.2. Selected multi-sorted first-order languages 131

models, therefore we need something like a converse of Proposition 5.2.13. With
this in mind, we introduce the following abbreviation ∃x:S!:

∃x:S!.ϕ(x) := ∃x, x1:s1, . . . , xn:sn.equal(x, x1, . . . , xn) ∧
(∧
s∈S\S

∀z:s.x 6= z
)
∧ ϕ(x)

where S = {s1, . . . , sn} and equal(y1, . . . , yn) :=
∧

1≤m<n(ym ≈ ym+1). Intuitively,
the quantifier ∃x:S! says that there is an element x which belongs exactly to the
sorts S ⊆ ℘(S).

5.2.14. Definition. For every ψ ∈ FOE1(A,℘(S)) we define the translation
ψ↓ ∈ FOE1(A,S) inductively: it behaves homomorphically in every operator
which is not a quantifier, and it is defined as follows for quantifiers.

(∃x:S.ψ(x))↓ := ∃x:S!.ψ↓(x) and (∀x:S.ψ(x))↓ := ¬∃x:S!.¬ψ↓(x)

for S ∈ ℘(S).

The following proposition states the expected relationship.

5.2.15. Proposition. For every ψ ∈ FOE1(A,℘(S)) and arbitrary one-step
model D on sorts S we have that D |= ψ↓ iff D↑ |= ψ.

We are now ready to state the normal form of FOE1 for arbitrary models and
generalize Theorem 5.2.11.

5.2.16. Definition. We say that a formula ϕ ∈ FOE1(A,S) is in basic form if
ϕ =

∨∧
S∇FOE(T,Π)S where in each conjunct we have:

∇FOE(T,Π)S := ∃x:S!.
(
diff(x) ∧

∧
i

τTi(xi) ∧ ∀z:S!.(diff(x, z)→
∨
S∈Π

τS(z))
)

such that T ∈ ℘(A)k for some k, S ⊆ S is non-empty and Π ⊆ T.

5.2.17. Theorem. Every ϕ ∈ FOE1(A,S) is equivalent to a formula in basic
form.

Proof. We use the notation that we have developed in this subsection and
proceed as follows:

D |= ϕ iff D↑ |= ϕ↑ (Proposition 5.2.13)
iff D↑ |= ψ (Theorem 5.2.11: strict normal form)
iff D |= ψ↓. (Proposition 5.2.15)

Observe that by construction ψ↓ is in basic normal form. �

132 Chapter 5. One-step model theory

5.2.2 One-step monotonicity

Monotone fragment of FO1

5.2.18. Theorem. A formula of FO1(A,S) is monotone in A′ ⊆ A iff it is equiv-
alent to a sentence given by the following grammar:

ϕ ::= ψ | a(x) | ∃x:s.ϕ | ∀x:s.ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where a ∈ A′, s ∈ S and ψ ∈ FO1(A \ A′,S). We denote this fragment as
FO1MONA′(A,S).

Before going on we need to introduce a bit of new notation.

5.2.19. Definition. Let A′ ⊆ A be a finite set of names. The monotone and
positive variants of ∇FO(Σ)s are given as follows:

∇A′

FO(Σ)s :=
∧
S∈Σ

∃x:s.τA
′

S (x) ∧ ∀x:s.
∨
S∈Σ

τA
′

S (x)

∇+
FO(Σ)s :=

∧
S∈Σ

∃x:s.τ+
S (x) ∧ ∀x:s.

∨
S∈Σ

τ+
S (x).

We also introduce the following generalized forms of the above notation:

∇A′

FO(Σ,Π)s :=
∧
S∈Σ

∃x:s.τA
′

S (x) ∧ ∀x:s.
∨
S∈Π

τA
′

S (x)

∇+
FO(Σ,Π)s :=

∧
S∈Σ

∃x:s.τ+
S (x) ∧ ∀x:s.

∨
S∈Π

τ+
S (x).

When the set A′ is a singleton {a} we will write a instead of A′.

The result follows from the following lemma.

5.2.20. Lemma. The following hold:

1. Every ϕ ∈ FO1MONA′(A,S) is monotone in A′.

2. There exists a translation (−)� : FO1(A,S)→ FO1MONA′(A,S) such that
a formula ϕ ∈ FO1(A,S) is monotone in A′ if and only if ϕ ≡ ϕ�.

Proof. In Section 5.1.2 this result is proved for single-sorted FO1. It is not
difficult to adapt the proof for multi-sorted FO1. For item (2), if we assume
that ϕ is in negation normal form, the translation is basically defined as ϕ� :=
ϕ[¬a(x) 7→ > | a ∈ A′] for ϕ in negation normal form. �

Combining the normal form theorem for FO1 and the above lemma, we obtain
the following corollary providing a normal form for the monotone fragment of FO1.

5.2. Selected multi-sorted first-order languages 133

5.2.21. Corollary. Let ϕ ∈ FO1(A,S), the following hold:

(i) The formula ϕ is monotone in A′ ⊆ A iff it is equivalent to a formula in
the basic form

∨∧
s∇A′

FO(Σ)s for some types Σ ⊆ ℘A.

(ii) The formula ϕ is monotone in all a ∈ A (i.e., ϕ ∈ FO+
1 (A,S)) iff ϕ is

equivalent to a formula in the basic form
∨∧

s∇+
FO(Σ)s for some types

Σ ⊆ ℘A.

Monotone fragment of FOE1

5.2.22. Theorem. A formula of FOE1(A,S) is monotone in A′ ⊆ A iff it is
equivalent to a sentence given by:

ϕ ::= ψ | a(x) | ∃x:s.ϕ | ∀x.ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

where a ∈ A′, s ∈ S and ψ ∈ FOE1(A \ A′,S). We denote this fragment as
FOE1MONA′(A,S).

Before going on we need to introduce a bit of new notation.

5.2.23. Definition. Let A′ ⊆ A be a finite set of names. The monotone variant
of ∇FOE(Σ,Π)S is given as follows:

∇A′FOE(T,Π)S := ∃x:S!.
(
diff(x) ∧

∧
i

τA
′

Ti (xi) ∧ ∀z:S!.(diff(x, z)→
∨
S∈Π

τA
′

S (z))
)
.

When the set A′ is a singleton {a} we will write a instead of A′. The positive
variant of ∇FOE(Σ,Π) is defined as above but with + in place of A′. All these
variants can also be defined with s ∈ S instead of S ⊆ S.

The result follows from the following lemma.

5.2.24. Lemma. The following hold:

1. Every ϕ ∈ FOE1MONA′(A,S) is monotone in A′.

2. There exists a translation (−)� : FOE1(A,S) → FOE1MONA′(A,S) such
that a formula ϕ ∈ FOE1(A,S) is monotone in A′ if and only if ϕ ≡ ϕ�.

Proof. In Section 5.1.2 this result is proved for single-sorted FOE1. It is not
difficult to adapt the proof for multi-sorted FOE1. Intuitively, the translation is
defined as ϕ� := ϕ[¬a(x) 7→ > | a ∈ A′] for ϕ in negation normal form. �

Combining the normal form theorem for FOE1 and the above lemma, we
obtain the following normal forms for the monotone fragment of FOE1.

134 Chapter 5. One-step model theory

5.2.25. Corollary. Given ϕ ∈ FOE1(A,S), the following hold:

(i) The formula ϕ is monotone in A′ ⊆ A iff it is equivalent to a formula in
the basic form

∨∧
S∇A′

FOE(T,Π)S where for each conjunct there are T and
Π satisfying Ti ∈ ℘(A) and Π ⊆ T,

(ii) The formula ϕ is monotone in all a ∈ A (i.e., ϕ ∈ FOE+
1 (A)) iff it is

equivalent to a formula in the basic form
∨∧

S∇+
FOE(T,Π)S where for each

conjunct there are T and Π satisfying Ti ∈ ℘(A) and Π ⊆ T.

(iii) Over strict one-step models the normal forms hold with S replaced by s.

5.2.3 One-step additivity

As we did in the single-sorted case, we start by giving a characterization of the
completely additive fragment of FOE1(A,S) and then use it to give a similar
characterization for FO1(A,S).

Completely additive fragment of FOE1

5.2.26. Theorem. A formula of FOE1(A,S) is completely additive in A′ ⊆ A
iff it is equivalent to a sentence generated by the following grammar:

ϕ ::= ψ | a(x) | ∃x:s.ϕ | ϕ ∨ ϕ | ϕ ∧ ψ

where a ∈ A′, s ∈ S and ψ ∈ FOE1(A \ A′,S). Observe that the equality is
included in ψ. We denote this fragment as FOE1ADDA′(A,S).

The theorem will follow from the next two lemmas.

5.2.27. Lemma. Every ϕ ∈ FOE1ADDA′(A,S) is completely additive in A′.

Proof. First observe that ϕ is monotone in every a ∈ A′ by Theorem 5.2.22. We
show, by induction, that any one-step formula ϕ in the fragment (which may not
be a sentence) satisfies, for every one-step model (D, V), assignment g : iVar→ D,

if (D, V), g |= ϕ then (D, V [A′ 7→ Q]), g |= ϕ for some quasi-atom Q of V (A′).

Most cases are proved exactly as in the single-sorted version of this lemma
(cf. Lemma 5.1.46). We focus on the sorted existential quantifier. Consider
ϕ = ∃x:s.ϕ′ and assume (D, V), g |= ϕ. By definition there is d ∈ Ds such that
(D, V), g[x 7→ d] |= ϕ′. By induction hypothesis (D, V [A′ 7→ Q]), g[x 7→ d] |= ϕ′

for some Q. Therefore we can conclude that (D, V [A′ 7→ Q]), g |= ∃x:s.ϕ′. �

5.2.28. Lemma. There is an effective translation (−)⊕ : FOE1MONA′(A,S) →
FOE1ADDA′(A,S) such that ϕ ∈ FOE1MONA′(A,S) is completely additive in A′
if and only if ϕ ≡ ϕ⊕.

5.2. Selected multi-sorted first-order languages 135

Proof. We assume that ϕ is in basic form, i.e., ϕ =
∨∧

S∇A′
FOE(T,Π)S with

Π ⊆ T. First, we intuitively consider some conditions on subformulas of ϕ that
would force the existence of at least two elements colored with A′. Clearly, any
formula that forces this, goes against the spirit of complete additivity:

(i) Some
∧

S∇A′
FOE(T,Π)S has TS1 and TS2 with a ∈ TS1 and b ∈ TS2 for

a, b ∈ A′, S1 6= S2.

(ii) For any ∇A′
FOE(T,Π)S there are a, b ∈ Ti∩Tj for distinct a, b ∈ A′ or distinct

i, j.

(iii) For any ∇A′
FOE(T,Π)S we have S ∩ A′ 6= ∅ for some S ∈ Π.

Now, we give a translation which eliminates (replaces with ⊥) the subformulas
forcing the above cases. We first take care of case (i) with the following definition

(
∨∧

S

∇A′

FOE(T,Π)S)
⊕ :=

∨
{
∧
S

∇A′

FOE(T,Π)⊕S | (i) is not the case}

and we take care of the remaining cases as follows

∇A′

FOE(T,Π)⊕S :=

{
⊥ if (ii) holds,
∇A′

FOE(T,Π×A′)S otherwise,

where Π×A′ := {S ∈ Π | A′ ∩ S = ∅}.
First we prove the right-to-left direction of the lemma. Inspecting the syn-

tactic form of ϕ⊕ it is not difficult to see that ϕ⊕ ∈ FOE1ADDA′(A,S). Using
Lemma 5.2.27 we can conclude that ϕ⊕ (and therefore ϕ as well) is completely
additive in A′. For the left-to-right direction of the lemma we assume ϕ to be
completely additive in A′ and have to prove ϕ ≡ ϕ⊕.

⇐ Let (D, V) |= ϕ⊕. It is enough to show that (D, V) |= ∇A′
FOE(T,Π×A′)S implies

(D, V) |= ∇A′
FOE(T,Π)S for every conjunct. The key observation is that Π×A′ ⊆ Π.

⇒ Let (D, V) |= ϕ. By complete additivity in A′ we have that (D, V [A′ 7→
Q]) |= ϕ for some quasi-atom Q of V (A′). To improve readability we define
V ′ := V [A′ 7→ Q]. We now work with (D, V ′) because (by monotonicity, which
is implied by complete additivity) it will be enough to prove that (D, V ′) |= ϕ⊕.

As (D, V ′) |= ϕ, we know there is some disjunct
∧

S∇A′
FOE(T,Π)S of ϕ wit-

nessing the satisfaction. First, we prove that this disjunct is preserved by the
translation.

Claim 1. The disjunct
∧

S∇A′
FOE(T,Π)S does not satisfy case (i).

Proof of Claim. Suppose that, for this disjunct, there are two conjuncts
corresponding to sorts S1 and S2 such that a ∈ TS1 and b ∈ TS2 for a, b ∈ A′.
As the sorts are disjoint, this implies that there should be two distinct elements
colored by elements of A′. As V ′π(A′) is a quasi-atom, this cannot be the case. J

136 Chapter 5. One-step model theory

From the above claim it follows that, for the previously fixed disjunct, there is
at most one sort (i.e, one conjunct) which can possibly use A′ in the existential
part (that is, in T). Hence, the disjunct is (so far) preserved by the translation.
We still have to check that every conjunct is preserved, that is, we now focus
on cases (ii) and (iii). We fix an arbitrary conjunct ∇A′

FOE(T,Π)S and state the
following claims, which are proved exactly as in Lemma 5.1.47.

Claim 2. For every b, b′ ∈ A′, if b ∈ Ti and b′ ∈ Tj then b = b′ and i = j.

Claim 3. If (D, V ′) |= ∇A′
FOE(T,Π)S then (D, V ′) |= ∇A′

FOE(T,Π×A′)S.

The combination of these claims yields the desired result. �

Putting together the above lemmas we obtain Theorem 5.2.26. Moreover,
a careful analysis of the translation gives us the following corollary, providing
normal forms for the completely additive fragment of FOE1.

5.2.29. Corollary. Let ϕ ∈ FOE1(A), the following hold:

(i) The formula ϕ is completely additive in A′ ⊆ A iff it is equivalent to a
formula in the basic form

∨∧
S∇A′

FOE(T,Π)S where T ∈ ℘(A)k, Π ⊆ T and
for every disjunct

∧
S∇A′

FOE(T,Π)S,

1. At most one sort S ∈ S may use elements from A′ in ∇A′
FOE(T,Π)S,

2. For ∇A′
FOE(T,Π)S we have that Π is A′-free and there is at most one

element of A′ in the concatenation of the lists T1·T2· · ·Tk.

(ii) If ϕ is monotone in A (i.e., ϕ ∈ FOE+
1 (A)) then ϕ is completely additive in

A′ ⊆ A iff it is equivalent to a formula in the basic form
∨∧

S∇+
FOE(T,Π)S

where T ∈ ℘(A)k, Π ⊆ T and for every disjunct
∧

S∇+
FOE(T,Π)S,

1. At most one sort S ∈ S may use elements from A′ in ∇+
FOE(T,Π)S,

2. For ∇+
FOE(T,Π)S we have that Π is A′-free and there is at most one

element of A′ in the concatenation of the lists T1·T2· · ·Tk.

(iii) Over strict one-step models the normal forms hold with S replaced by s.

Completely additive fragment of FO1

5.2.30. Theorem. A formula of FO1(A,S) is completely additive in A′ ⊆ A iff
it is equivalent to a sentence generated by the following grammar:

ϕ ::= ψ | a(x) | ∃x:s.ϕ | ϕ ∨ ϕ | ϕ ∧ ψ

where a ∈ A′, s ∈ S and ψ ∈ FO1(A \ A′,S). We denote this fragment as
FO1ADDA′(A,S).

5.2. Selected multi-sorted first-order languages 137

The theorem will follow from the next two lemmas.

5.2.31. Lemma. Every ϕ ∈ FO1ADDA′(A,S) is completely additive in A′.

Proof. As FO1ADDA′(A,S) is included in FOE1ADDA′(A,S) we can simply use
Lemma 5.2.27 for FOE1ADDA′(A,S) and conclude what we want. �

As we did in the single-sorted case, we will obtain a characterization for
FO1(A,S) using the characterization for FOE1(A,S).

5.2.32. Definition. The translation (−)• : FOE1(A,S) ⇀ FO1(A,S) on for-
mulas of FOE1(A,S) which are in strict normal form, is defined as follows:

(∇FOE(T,Π)s)
• := ∇FO(T,Π)s

and for α =
∨∧

s αs we define (α)• :=
∨∧

s(αs)
•. We extend this transla-

tion to the monotone and positive fragments as expected, that is, we define
(∇A′

FOE(T,Π))•s := ∇A′
FO(T,Π)s and (∇+

FOE(T,Π))•s := ∇+
FO(T,Π)s.

Observe that on the right hand side of the above definition, T is seen as a set.
The key property of this translation is the following.

5.2.33. Proposition. For every strict one-step model (D1, . . . , Dn, V) and ev-
ery formula α ∈ FOE1(A) in strict normal form we have:

(D1, . . . , Dn, V) |= α• iff (D1 × ω, . . . , Dn × ω, Vπ) |= α,

where the valuation Vπ is given by V \
π ((d, k)) := V \(d).

We call these (strict) one-step models D and Dω respectively. Observe that
the model Dω has ω-many copies of each element of D.

Proof. Formulas of FOE1(A) which are in strict normal form are of the shape∨∧
s∇FOE(T,Π)s. Therefore it will be enough to prove that D |= ∇FO(T,Π)s

iff Dω |= ∇FOE(T,Π)s. This is done exactly as in the single-sorted version of this
proposition, that is, Proposition 5.1.52. �

We are now ready to state the lemma which provides a translation for FO1(A,S).

5.2.34. Lemma. There is an effective translation (−)⊕ : FO1MONA′(A,S) →
FO1ADDA′(A,S) such that ϕ ∈ FO1MONA′(A) is completely additive in A′ if and
only if ϕ ≡ ϕ⊕.

138 Chapter 5. One-step model theory

Proof. To define the translation (−)⊕ : FO1MONA′(A,S) → FO1ADDA′(A,S)
we will use the translation for FOE1 given in Lemma 5.2.28. To avoid confusion,
we call it (−)⊕FOE : FOE1MONA′(A,S)→ FOE1ADDA′(A,S). We define, for every
formula ϕ ∈ FO1MONA′(A,S):

ϕ⊕ := (ϕ⊕FOE)•.

⇐ A short argument reveals that indeed ϕ⊕ ∈ FO1ADDA′(A,S), and therefore
by Lemma 5.2.31 the formula ϕ⊕ is completely additive in A′. As ϕ is equivalent
to ϕ⊕, it is also completely additive in A′.

⇒ For this direction we assume that ϕ ∈ FO1MONA′(A,S) is completely addi-
tive in A′ and we prove that for every one-step model we have D |= ϕ iff D |= ϕ⊕.

D |= ϕ iff (Dn)ω |= ϕ (Properties of FO1 and Remark 5.2.4)
iff (Dn)ω |= ϕ⊕FOE (Lemma 5.2.28)
iff Dn |= (ϕ⊕FOE)• (Proposition 5.2.33)
iff Dn |= ϕ⊕ (Definition of ϕ⊕)
iff D |= ϕ⊕. (Properties of FO1 and Remark 5.2.4)

Observe that, because Proposition 5.2.33 requires a strict one-step model, we
make a slight detour through Dn (as defined in Remark 5.2.4). �

Putting together the above lemmas we obtain Theorem 5.2.30. Moreover,
a careful analysis of the translation gives us normal forms for the completely
additive fragment of FO1.

5.2.35. Corollary. Let ϕ ∈ FO1(A,S), given Σ ⊆ ℘(A), let LΣ ∈ A∗ be the
list with repetitions of elements of A in Σ. The following hold:

(i) The formula ϕ is completely additive in A′ ⊆ A iff it is equivalent to a
formula in the basic form

∨∧
s∇A′

FO(Σ,Π)s where Σ,Π ⊆ ℘(A) and for
every disjunct

∧
s∇A′

FO(Σ,Π)s,

1. At most one sort s ∈ S may use elements from A′ in ∇A′
FO(Σ,Π)s,

2. For ∇A′
FO(Σ,Π)s we have that Π is A′-free and there is at most one element

of A′ in LΣ.

(ii) If ϕ is monotone in A (i.e., ϕ ∈ FO+
1 (A,S)) then ϕ is completely additive

in A′ ⊆ A iff it is equivalent to a formula of the form
∨∧

s∇+
FO(Σ,Π)s

where Σ,Π ⊆ ℘(A) and for every disjunct
∧

s∇+
FO(Σ,Π)s,

1. At most one sort s ∈ S may use elements from A′ in ∇+
FO(Σ,Π)s,

2. For ∇+
FO(Σ,Π)s we have that Π is A′-free and there is at most one element

of A′ in LΣ.

5.3. Selected modal languages 139

5.2.4 One-step multiplicativity

Most of the discussion on dual fragments of Section 5.1.5 was done for an arbitrary
one step language L(A) and it is simple to show that it also applies for sorted
languages L(A,S). Therefore, we can define the following fragments and prove
that they characterize complete multiplicativity.

5.2.36. Definition. The fragment FOE1MULA′(A,S) is given by the sentences
generated by:

ϕ ::= ψ | a(x) | ∀x:s.ϕ | ϕ ∧ ϕ | ϕ ∨ ψ
where a ∈ A′, s ∈ S and ψ ∈ FOE1(A \ A′,S). Observe that the equality is
included in ψ. The fragment FO1MULA′(A,S) is defined as FOE1MULA′(A,S)
but with ψ ∈ FO1(A \ A′,S).

The following proposition states that the above fragments are actually the
duals of the fragments defined earlier in this chapter.

5.2.37. Proposition. The following hold:

FO1MULA′(A,S) = {ϕ | ϕδ ∈ FO1ADDA′(A,S)}
FOE1MULA′(A,S) = {ϕ | ϕδ ∈ FOE1ADDA′(A,S)}.

As a corollary, we get a characterization for complete multiplicativity.

5.2.38. Proposition. A formula ϕ ∈ FOE1(A,S) is completely multiplicative
in A′ ⊆ A if and only if it is equivalent to some ϕ′ ∈ FOE1MULA′(A,S).

Proof. Consequence of Proposition 5.2.37 and a multi-sorted analogue of Propo-
sition 5.1.57. �

5.3 Selected modal languages
In this section we define the one-step modal language ML1(A,P,D) and give a
normal form and characterizations for its continuous, completely additive and
dual fragments. Most of the results will be obtained using the results for FO1,
via establishing a connection between FO1 and ML1.

5.3.1. Definition. The set ML1(A,P,D) of one-step modal formulas is given
by the following clauses:

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ ∨ ϕ | 〈`〉α
α ::= a | ¬α | α ∨ α

where p ∈ P, a ∈ A and ` ∈ D. In general we will assume that D is given by
context and only write ML1(A,P).

140 Chapter 5. One-step model theory

The formulas of ML1(A,P,D) are interpreted over labeled transition systems,
together with an additional valuation V : A→ ℘(S) which gives meaning to the
names in A. A key observation is that, as the formulas of ML1(A,P,D) have at
most one level of modalities, then we can restrict the valuation V to the successors
of sI , in the following sense:

5.3.2. Proposition. For every formula ϕ ∈ ML1(A,P) such that S, V ϕ with
V : A→ ℘(S) there is V ′ : A→ ℘(R[sI]) such that S, V ′ ϕ.

In Section 4.5 we already observed that the formulas

∃x.(b(x) ∧ c(x)) ∨ ∀y.d(y) and 3(b ∧ c) ∨2d

basically describe the same requirements over the set R[s]. In the following propo-
sition we make this intuition precise. Before doing it, we introduce a notation
which will be useful later. Given c ∈ ℘P and Q ⊆ P, we define

$c :=
∧
p∈c

p ∧
∧
p∈P\c

¬p $Q
c :=

∧
p∈c

p ∧
∧

p∈P\c,p/∈Q
¬p $+

c :=
∧
p∈c

p

5.3.3. Proposition. There are translations (−)t : ML1(A,∅,D) → FO1(A,D)
and (−)t : FO1(A,D) → ML1(A,∅,D) such that for every labeled transition
system S, valuation V : A → ℘(R[sI]), and formulas ϕ ∈ ML1(A,∅,D) and
ψ ∈ FO1(A,D) we have:

S, V ϕ iff (R[sI], V) |= ϕt (5.2)
S, V ψt iff (R[sI], V) |= ψ. (5.3)

Proof. For (−)t : ML1(A,∅,D)→ FO1(A,D) we define at := a(x) for the names,
(〈`〉α)t := ∃x:`.αt for the modalities, and the Boolean connectives as expected.

The other translation is slightly more complicated, and we use the normal
form for FO1. Assume, by Proposition 5.2.5 that ψ =

∨∧
s∇FO(Σ)s and recall

that ∇FO(Σ)s =
∧
S∈Σ ∃x:s.τS(x) ∧ ∀x:s.

∨
S∈Σ τS(x). We define the translation

(−)t : FO1(A,D)→ ML1(A,∅,D) homomorphically on Boolean operators and

(∇FO(Σ)s)t :=
∧
S∈Σ

〈s〉$c ∧ [s]
∨
S∈Σ

$c.

It is not difficult to see that these translations satisfy the above equations. �

5.3.1 Normal forms

5.3.4. Definition. We say that a formula ϕ ∈ ML1(A,P,D) is in basic form if
ϕ =

∨
c∈℘P($c ∧

∨∧
`∈D∇ML(Σ)`) where in each conjunct

∇ML(Σ)` :=
∧
S∈Σ

〈`〉$c ∧ [`]
∨
S∈Σ

$c.

for some set of types Σ ⊆ ℘(A).

5.3. Selected modal languages 141

The following proposition states that every formula of ML1(A,P,D) can be
separated in (disjuncts containing) two parts: one which specifies the proposi-
tions that should hold, and a part which contains modalities, but does not use
propositions at all.

5.3.5. Proposition. Every ϕ ∈ ML1(A,P,D) is equivalent to
∨
c∈℘P$c ∧ ϕc

where ϕc ∈ ML1(A,∅,D).

Proof. Define the formula ϕ′ :=
∨
c∈℘P($c ∧ ϕ[p 7→ belongs(p, c) | p ∈ P]) where

belongs(p, c) :=

{
> if p ∈ c,
⊥ otherwise.

It is easy to see that ϕ′ is of the right shape, and that ϕ ≡ ϕ′. �

This proposition will be crucial, since it allows us to first focus on getting a
normal form for formulas of ML1(A,∅,D) and then work on top of it to get a
normal form for the full ML1(A,P,D).

5.3.6. Theorem. Every ϕ ∈ ML1(A,P,D) is equivalent to a formula in basic
form.

Proof. By Proposition 5.3.5 it will be enough to give a normal form for for-
mulas ϕ ∈ ML1(A,∅,D). To do it, we take such a formula ϕ and translate
it to FO1(A,D) using the translation (−)t of Proposition 5.3.3. Using Proposi-
tion 5.2.5 we will now assume that ϕt is in basic form (or otherwise convert it).
We now apply the translation in the other direction and obtain the formula
(ϕt)t ∈ ML1(A,∅,D). An inspection of the translation (−)t, as defined in Propo-
sition 5.3.3, reveals that (ϕt)t is in the basic form

∨∧
d∈D∇ML(Σ)`. We prove

that these formulas are equivalent using Proposition 5.3.3, as follows:

S, V ϕ iff (R[sI], V) |= ϕt (5.2)
iff S, V (ϕt)t (5.3)

This finishes the proof. �

5.3.2 One-step monotonicity

5.3.7. Theorem. A formula of ML1(A,P,D) is monotone in A′ ⊆ A iff it is
equivalent to a formula ϕ, given by the following grammar:

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈`〉α | [`]α
α ::= a | α ∧ α | α ∨ α

where ψ ∈ ML1(A \A′,P,D), p ∈ P, a ∈ A′ and ` ∈ D. Observe that the proposi-
tions are considered in the clause ψ. We call this fragment ML1MONA′(A,P,D).

142 Chapter 5. One-step model theory

The theorem will follow from the next two lemmas.

5.3.8. Lemma. Every ϕ ∈ ML1MONA′(A,P,D) is monotone in A′.

Proof. This can be easily proved by induction. �

Before going on we need to introduce a bit of new notation.

5.3.9. Definition. Let A′ ⊆ A be a finite set of names. The monotone and
positive variants of ∇ML(Σ)` are given as follows:

∇A′

ML(Σ)` :=
∧
S∈Σ

〈`〉πA′S ∧ [`]
∨
S∈Σ

πA
′

S ∇+
ML(Σ)` :=

∧
S∈Σ

〈`〉π+
S ∧ [`]

∨
S∈Σ

π+
S .

We also introduce the following generalized forms of the above notation:

∇A′

ML(Σ,Π)` :=
∧
S∈Σ

〈`〉πA′S ∧ [`]
∨
S∈Π

πA
′

S ∇+
ML(Σ,Π)` :=

∧
S∈Σ

〈`〉π+
S ∧ [`]

∨
S∈Π

π+
S .

When the set A′ is a singleton {a} we will write a instead of A′.

5.3.10. Lemma. A formula ϕ ∈ ML1(A,P,D) is monotone in A′ ⊆ A iff it is
equivalent to a formula in the basic form∨

c∈℘P
($c ∧

∨∧
`

∇A′

ML(Σ)`)

for some types Σ ⊆ ℘A.

Proof. The right-to-left direction is trivial by observing that every formula in
the above basic form belongs to ML1MONA′(A,P,D) and using Lemma 5.3.8. For
the left-to-right direction we do as we did in Section 5.3.1: we can easily prove
this via FO1 using the translations (−)t and (−)t. �

5.3.11. Corollary. A formula ϕ ∈ ML1(A,P,D) is monotone in all a ∈ A
(i.e., ϕ ∈ ML+

1 (A,P,D)) iff ϕ is equivalent to a formula in the basic form∨
c∈℘P($c ∧

∨∧
`∇+

ML(Σ)`) for some types Σ ⊆ ℘A.

5.3.3 One-step continuity

5.3.12. Theorem. A formula of ML1(A,P,D) is continuous in A′ ⊆ A iff it is
equivalent to a formula given by the following grammar:

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈`〉α
α ::= a | α ∧ α | α ∨ α

where ψ ∈ ML1(A \A′,P,D), p ∈ P, a ∈ A′ and ` ∈ D. Observe that the proposi-
tions are considered in the clause ψ. We call this fragment ML1CONA′(A,P,D).

5.3. Selected modal languages 143

The theorem will follow from the next two lemmas.

5.3.13. Lemma. Every ϕ ∈ ML1CONA′(A,P,D) is continuous in A′.

Proof. This can be easily proved by induction. �

5.3.14. Lemma. A formula ϕ ∈ ML1(A,P,D) is continuous in A′ ⊆ A iff it is
equivalent to a formula in the basic form∨

c∈℘P
($c ∧

∨∧
`

∇A′

ML(Σ,Π)`)

for some types Σ,Π ⊆ ℘A such that A′ ∩⋃Π = ∅.

Proof. The right-to-left direction is trivial by observing that every formula in the
above basic form belongs to ML1CONA′(A,P,D) and using Lemma 5.3.13. For
the left-to-right direction we do as we did in Section 5.3.1: we can easily prove
this via FO1 using the translations (−)t and (−)t. �

5.3.15. Corollary. A formula ϕ ∈ ML1(A,P,D) which is monotone in all
a ∈ A (i.e., ϕ ∈ ML+

1 (A,P,D)) is continuous in A′ iff ϕ is equivalent to a formula
in the basic form

∨
c∈℘P($c ∧

∨∧
`∇+

ML(Σ,Π)`) for some types Σ,Π ⊆ ℘A such
that A′ ∩⋃Π = ∅.

5.3.4 One-step additivity

5.3.16. Theorem. A formula of ML1(A,P,D) is completely additive in A′ ⊆ A
iff it is equivalent to a formula given by the following grammar:

ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ψ | 〈`〉α
α ::= a | α ∧ α′ | α ∨ α

where ψ ∈ ML1(A \ A′,P,D), α′ is A′-free, p ∈ P, a ∈ A′ and ` ∈ D. Observe
that the propositions are considered in the clause ψ. We denote this fragment as
ML1ADDA′(A,P,D).

The theorem will follow from the next two lemmas.

5.3.17. Lemma. Every ϕ ∈ ML1ADDA′(A,P,D) is completely additive in A′.

Proof. This can be easily proved by induction. �

5.3.18. Lemma. A formula ϕ ∈ ML1(A,P,D) is completely additive in A′ ⊆ A
iff it is equivalent to a formula in the basic form∨

c∈℘P
($c ∧

∨∧
`

∇A′

ML(Σ,Π)`)

where Σ,Π ⊆ ℘(A) and for every disjunct
∧
`∇A′

ML(Σ,Π)`,

144 Chapter 5. One-step model theory

1. At most one action ` ∈ D may use elements from A′ in ∇A′
ML(Σ,Π)`,

2. For ∇A′
ML(Σ,Π)` we have that Π is A′-free and there is at most one element of

A′ in LΣ.

Proof. The right-to-left direction is trivial by observing that every formula in the
above basic form belongs to ML1ADDA′(A,P,D) and using Lemma 5.3.17. For
the left-to-right direction we do as we did in Section 5.3.1: we can easily prove
this via FO1 using the translations (−)t and (−)t. �

5.3.19. Corollary. A formula ϕ ∈ ML1(A,P,D) which is monotone in all
a ∈ A (i.e., ϕ ∈ ML+

1 (A,P,D)) is completely additive in A′ ⊆ A iff it is equivalent
to a formula in the basic form∨

c∈℘P
($c ∧

∨∧
`

∇+
ML(Σ,Π)`)

where Σ,Π ⊆ ℘(A) and for every disjunct
∧
`∇+

ML(Σ,Π)`,

1. At most one action ` ∈ D may use elements from A′ in ∇+
ML(Σ,Π)`,

2. For ∇+
ML(Σ,Π)` we have that Π is A′-free and there is at most one element of

A′ in LΣ.

5.3.5 Dual fragments

In this section we give syntactic characterizations of the co-continuous and com-
pletely multiplicative fragments of ML1. We first define the notion of Boolean
dual for one-step formulas interpreted over transition systems.

5.3.20. Definition. Two formulas ϕ, ψ ∈ ML1(A,P,D) are each other’s Boolean
dual (w.r.t. A) if for every labeled transition system S and V : A→ ℘(S) we have:

S, V ϕ iff S, V c 6 ψ,
where V c is the valuation given by V c(a) := S \ V (a), for all a.

To define syntactic fragments for the dual notions we first give a concrete
definition of the dualization operator of Definition 5.3.20 and then show that the
one-step language ML1 is closed under Boolean duals.

5.3.21. Definition. The dual ϕδ ∈ ML1(A,P) of ϕ ∈ ML1(A,P) is given by:

(a)δ := a (¬a)δ := ¬a
(>)δ := ⊥ (⊥)δ := >
(p)δ := p (¬p)δ := ¬p

(ϕ ∧ ψ)δ := ϕδ ∨ ψδ (ϕ ∨ ψ)δ := ϕδ ∧ ψδ

(〈`〉ψ)δ := [`]ψδ ([`]ψ)δ := 〈`〉ψδ

5.3. Selected modal languages 145

The proof of the following Proposition is a routine check.

5.3.22. Proposition. For every ϕ ∈ ML1(A,P,D), ϕ and ϕδ are Boolean duals.

We are now ready to give the syntactic definition of the dual fragments.

5.3.23. Definition. The fragment ML1CONA′(A,P,D) is given by the formulas
ϕ of the following grammar:

ϕ ::= ψ | ϕ ∧ ϕ | ϕ ∨ ϕ | [`]α
α ::= a | α ∨ α | α ∧ α

where ψ ∈ ML1(A \ A′,P,D), p ∈ P, a ∈ A′ and ` ∈ D. Observe that the
propositions are considered in the clause ψ.

The fragment ML1MULA′(A,P,D) is given by the formulas ϕ of the following
grammar:

ϕ ::= ψ | ϕ ∧ ϕ | ϕ ∨ ψ | [`]α
α ::= a | α ∨ α′ | α ∧ α

where ψ ∈ ML1(A\A′,P,D), α′ is A′-free, p ∈ P, a ∈ A′ and ` ∈ D. Observe that
the propositions are considered in the clause ψ.

The following proposition states that the above fragments are actually the
duals of the fragments defined earlier in this chapter.

5.3.24. Proposition. The following hold:

ML1CONA′(A,P,D) = {ϕ | ϕδ ∈ ML1CONA′(A,P,D)}
ML1MULA′(A,P,D) = {ϕ | ϕδ ∈ ML1ADDA′(A,P,D)}

As a corollary, we get a characterization for co-continuity and multiplicativity.

5.3.25. Corollary.

(i) A formula ϕ ∈ ML1(A,P,D) is co-continuous in A′ ⊆ A if and only if it is
equivalent to some ϕ′ ∈ ML1CONA′(A,P,D).

(ii) A formula ϕ ∈ ML1(A,P,D) is completely multiplicative in A′ ⊆ A if and
only if it is equivalent to some ϕ′ ∈ ML1MULA′(A,P,D).

146 Chapter 5. One-step model theory

5.4 Effectiveness of the normal forms
In this section we briefly discuss the computability of the normal forms of this
chapter. This includes the monotone, completely additive, completely multiplica-
tive and continuous normal forms.

5.4.1. Proposition. The normal forms given in Table 5.1 are effective.

The ingredients needed to calculate the normal forms for FO1, FOE1 and FOE∞1
basically boil down to the following:

(1) Decidability of the satisfiability problem for FO1, FOE1 and FOE∞1 ,

(2) Bound on the size of the normal forms.

The first item is proved in [Beh22, Löw15] for FO1 and FOE1; in [Mos57,
Theorem 10] for FOE∞1 ; and, among others, in [BRV01, Chapter 6] for ML1

(actually, for the full language ML). For the second item, the existence of such a
bound can be induced from each normal form theorem.

As an example, we show how to calculate the normal form of arbitrary multi-
sorted formulas of FOE1 and, as well, the normal form for monotone formulas of
multi-sorted FOE1. The other cases are similar left to the reader.

According to Theorem 5.2.17, every ϕ ∈ FOE1(A,S) is equivalent to a formula
of the form

∨∧
S∇FOE(T,Π)S where for each conjunct T ∈ ℘(A)k for some k and

Π ⊆ T. We non-deterministically guess the number of disjuncts and parameters
k, Π and T for each conjunct and repeatedly check whether the formulas ϕ
and

∨∧
S∇FOE(T,Π)S are equivalent. This check can be done because FOE1 is

decidable: in [Beh22, Löw15] it is proved that unsorted FOE1 is decidable. Multi-
sorted FOE1 can be reduced to unsorted FOE1 by introducing new predicates for
the sorts (a standard trick).

Next, suppose that we have some ϕ ∈ FOE1(A,S) and we want to obtain an
equivalent formula in the corresponding monotone normal form given by Corol-
lary 5.2.25; that is, belonging to FOE1MONA′(A,S). First, we calculate the
normal form for ϕ, as we did in the last paragraph. After that, to calculate
the monotone normal form, we want to take the biggest possible set A′ ⊆ A.
Observe that the number of such sets is bounded (since A is finite) so we can
non-deterministically guess A′. For each potential A′, we apply the translation
(−)�A′ of Lemma 5.2.24 to ϕ, and keep ϕ�A′ only if ϕ�A′ ≡ ϕ�.

5.4.2. Remark. It is worth observing that the application of the translation
(−)�A′ is clearly effective, because of the simplicity of its definition; this is also the
case for all the other translations that we use, i.e., for additivity, continuity, etc.
Hence, the crucial point (regarding effectiveness) is the use of the satisfiability
procedure to check the equivalence ϕ�A′ ≡ ϕ�.

5.5. Conclusions and open problems 147

5.5 Conclusions and open problems
In this chapter we defined and studied several first-order and modal one-step
languages. We gave normal forms and characterized their monotone, continuous,
completely additive and dual fragments. A detailed summary of the results is
given in Table 5.1.

Open problems.

1. “Fill in the gaps”: an obvious open problem for this chapter is to give the
characterizations that are missing in Table 5.1. In particular, we have not
characterized the continuous fragment of FOE1 nor the completely additive
fragment of FOE∞1 . Knowing these one-step languages better would be the
first step to later studying automata that use them. For example, in this
dissertation we study Autwc(FOE∞1) in connection with WMSO but we do not
know how these formalisms relate to Autwc(FOE1).

Chapter 6

Concrete modal automata

The main objective of this chapter is to give automata characterizations for µcML,
test-free PDL and full PDL. We do it by showing that these languages precisely
correspond to the classes Autwc(ML1), Aut−wa(ML1) and Autwa(ML1), respec-
tively. These results are obtained via effective transformations from formulas to
automata and vice-versa.

All the aforementioned classes of automata are based on the one-step language
ML1(A), which allows Boolean combinations of elements from a to be under the
modalities (cf. Definition 5.3.1) As a byproduct, we will also prove that such
Boolean combinations under the modalities are not needed, and that it suffices
to have ♥a for a ∈ A.

6.0.1. Definition. The set ML[1(A,P,D) of flat one-step modal formulas is
given by the following clauses:

ϕ ::= > | ⊥ | p | ¬p | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈`〉a | [`]a

where p ∈ P, a ∈ A and ` ∈ D. As ML[1(A,P) ⊆ ML1(A,P) we assume the
positive, continuous, completely additive and dual fragments defined as expected.

It is known that, for µML, we have µML ≡ Aut(ML1) ≡ Aut(ML[1), see for
example [KV09, Section 5.3] and [Ven11]. In this chapter, we will prove that the
same relationship holds for the subclasses of automata under consideration.

The final section of this chapter regards the connection between automata
based on ML1 and automata based on FO1. As we observed in Chapter 4, we
would like to use both kinds of automata interchangeably, depending on the task.
It is folklore that Aut(FO1) ≡ Aut(ML1), since it can be recovered from various
results present in the literature. We start by giving a self-contained proof of this
fact and discuss how to transfer this result to subclasses of parity automata.

149

150 Chapter 6. Concrete modal automata

6.1 Automata for test-free PDL

In this section we will give a class of automata corresponding to test-free PDL.
This logic will not play a role further in this dissertation but, as it is a simpler
version of PDL, it will be useful to introduce the main ingredients and proof
methods.

We saw in Section 3.1.2 that PDL is strongly related to the notion of com-
plete additivity. Later in this chapter we will prove that the concrete automata
Autwa(ML1) correspond to PDL. In order to give automata for the test-free frag-
ment of PDL, we will consider a more constrained version of Autwa(ML1), which
we promptly introduce.

6.1.1. Definition. The fragment ML1ADD
−
A′(A,P,D) of ML1(A,P,D) is given

by the following grammar:

ϕ ::= ψ | ϕ ∨ ϕ | 〈`〉α α ::= a | α ∨ α,

where ψ ∈ ML1(A \ A′,P,D), p ∈ P, a ∈ A′ and ` ∈ D. Observe that the propo-
sitions are considered in the clause ψ. The dual fragment ML1MUL−A′(A,P,D) is
defined as expected. The positive counterpart of these fragments are given by
ML+

1 ADD
−
A′ := ML+

1 ∩ML1ADD
−
A′ and ML+

1 MUL−A′ := ML+
1 ∩ML+

1 MUL−A′ .

In other words, the fragment ML1ADD
−
A′ is obtained from ML1ADDA′ by dis-

allowing the use of conjunction (outside ψ). On the PDL side, this will mean
precisely that we cannot use tests. The leading intuition is obtained from the
equivalence 〈α?〉ψ ≡ α ∧ ψ.

6.1.2. Definition. The class Aut−wa(L) is given by the parity automata A from
Aut(L) such that for every maximal strongly connected component C ⊆ A and
states a, b ∈ C the following conditions hold:

(weakness) Ω(a) = Ω(b),

(tf-additivity)
If Ω(a) is odd then ∆(a) ∈ L+ADD−C(A,P,D).
If Ω(a) is even then ∆(a) ∈ L+MUL−C(A,P,D).

A PDLtf -automaton is an automaton from Aut−wa(ML1).

The main theorem of this section states that PDLtf -automata characterize
PDLtf . It will be proved in the two following subsections.

6.1.3. Theorem. The following formalisms are effectively equivalent:

(i) PDLtf ,

(ii) Aut−wa(ML[1),

6.1. Automata for test-free PDL 151

(iii) Aut−wa(ML1).

The implication from (i) to (ii) will be proved in Lemma 6.1.4 and the impli-
cation from (iii) to (i) will be proved in Lemma 6.1.9. The remaining implication
from (ii) to (iii) is trivial since ML[1 ⊆ ML1.

6.1.1 From formulas to automata

In this section we will transform formulas of PDLtf into equivalent automata.

6.1.4. Lemma. Given a formula ϕ ∈ PDLtf we can effectively construct an equiv-
alent automaton Aϕ ∈ Aut−wa(ML[1).

To begin, we shall consider the case of formulas of the form ϕ = 〈π〉α and,
for the moment, assume that we already have an automaton Aα ≡ α. It is in our
interest to understand how the operation 〈π〉 changes A to get an automaton for
ϕ itself. First, we analyze how to represent π itself as a PDLtf -automaton and
then we will see how to combine it with Aα.

In this subsection we will briefly use non-deterministic finite-state automata
(NFA). Recall that an NFA is a tuple A = 〈A, δ, F, aI〉 where δ : A × D → ℘A
is the transition map, F ⊆ A are the final states and aI ∈ A is the initial state.
Given a model S, an NFA denotes a set of paths through S. We formalize the
acceptance of a path with the following game.

6.1.5. Definition. Given a transition system S and an NFA A = 〈A, δ, F, aI〉
we define the rules for the acceptance game A(A,S) having as basic positions
pairs (a, s) ∈ A× S.

Position Pl’r Admissible moves
(a, s) ∈ (A \ F)× S ∃ {(b, t) | b ∈ δ(a, `) and R`(s, t) for some ` ∈ D}
(f, s) ∈ F × S ∃ {end} ∪ {(b, t) | b ∈ δ(f, `) and R`(f, t) for some ` ∈ D}
end ∀ ∅

Finite matches are lost by the player who gets stuck. Infinite matches are won
by ∀. A path s ∈ S+ is accepted by A iff ∃ has a winning strategy f for the
initialized game A(A,S)@(aI , s) such that every f -guided match visits precisely
(and in order) the states of s.

6.1.6. Lemma. For every π ∈ PDLtf there is an automaton Pπ ∈ Aut−wa(ML[1)
and a set of states F ⊆ Pπ such that for all transitions systems S and s, t ∈ S the
following are equivalent:

(i) Rπ(s, t),

(ii) ∃ has a surviving strategy in the game A(Pπ,S)@(aπ, s) taking her to position
(f, t) for some state f ∈ F .

152 Chapter 6. Concrete modal automata

Proof. A program π ∈ PDLtf is nothing but a regular expression over D. Regular
expressions over D can be given semantics over labeled transition systems such
that they denote a set of paths. Using this approach, we know that there is a non-
deterministic finite-state automaton (NFA) which recognizes the same language
as π. Let Aπ = 〈A, δ, F, aI〉 be such an automaton.

Claim 1. Aπ accepts the path s, . . . , t iff Rπ(s, t).

Proof of Claim. This is straightforward from Aπ accepting the language
denoted by the regular expression π. J

Next we define Pπ = 〈Pπ,∆,Ω, aπ〉 where for all a ∈ Pπ the transition map is
given by:

∆(a) :=
∨

`∈D,b∈δ(a,`)
〈`〉b ,

and the parity map is Ω(a) := 1 for every element.

Claim 2. Pπ is a well-defined PDLtf -automaton.

Proof of Claim. Note that every state appears under a diamond and there
are only disjunctions in the transition map. Clearly, this satisfies the additivity
restrictions for cycles in Pπ. The weakness condition is trivially satisfied. J

Claim 3. Let (a, s) ∈ A× S. The following are equivalent:

1. (b, t) is an admissible move for ∃ in A(Aπ,S)@(a, s),

2. {(b, t)} is an admissible move for ∃ in A(Pπ, S)@(a, s).

Proof of Claim. The claim is clear from the definition of Pπ. J

Consider now the tuple (Pπ, F) consisting of the automaton Pπ and the set of
final states F . Combining the claims we get that Rπ(s, t) iff ∃ has a surviving
strategy in A(Pπ,S)@(aπ, s) taking her to (f, t) for some f ∈ F . This finishes the
proof of the lemma. �

The above lemma gives us a tuple (Pπ, F) = 〈Pπ,∆π,Ωπ, aπ, F 〉 which works as
a representation of π. We now combine this automaton with the representation of
α given by Aα = 〈Aα,∆α,Ωα, aα〉, finally yielding an automaton Aϕ for ϕ = 〈π〉α.
Define Aϕ := 〈Aα] Pπ,∆,Ω, aϕ〉 where aϕ := aπ, Ω := Ωα∪Ωπ, and the transition
map is defined as

∆(e) :=

∆α(e) if e ∈ Aα
∆π(e) if e ∈ Pπ \ F
∆π(e) ∨∆(aα) if e ∈ F .

6.1. Automata for test-free PDL 153

6.1.7. Remark. Observe that the construction has the following properties

(i) Aϕ is a well-defined automaton belonging to Aut−wa(ML[1),

(ii) You can only go from the Pπ part to the A part from a state in F ⊆ P ,

(iii) Once you leave the Pπ part you cannot come back.

Now we prove that Aϕ is actually an automaton representation of ϕ = 〈π〉α.
6.1.8. Proposition. S 〈π〉α iff ∃ has a winning strategy in A(Aϕ,S)@(aϕ, sI).

Proof. ⇒ Suppose S, sI 〈π〉α. By definition there is t ∈ S such that Rπ(sI , t)
and S, t α. Using Lemma 6.1.6 we know that therefore ∃ has a surviving
strategy in A(Pπ, S)@(aπ, sI) taking her to (f, t) for some f ∈ F . Now ∃ can use
that strategy to play a match in A(Aϕ,S)@(aϕ, sI) and get to the same position
(f, t). By inductive hypothesis (as S, t α) we know that ∃ has a winning
strategy in A(A,S)@(aα, t). Because of the way the transition map ∆ is defined,
she can use that same strategy to win A(Aϕ, S)@(f, t).

⇐ Suppose that ∃ has a winning strategy in A(Aϕ,S)@(aϕ, sI). As the parity
of Pπ is 1 for every element this means that ∃ plays finitely many moves in Pπ
which get her to some position (f, t) and then makes a move which takes her to
the A part of the automaton. Observe that this can only happen if f ∈ F . Using
Lemma 6.1.6 we get that Rπ(sI , t). As ∃ has a winning strategy inA(Aϕ,S)@(f, t)
and because of how ∆ is defined, she can use that same strategy to win the
game A(A,S)@(f, t) and thus by inductive hypothesis we get that S, t α. By
definition, this means that S, sI 〈π〉α. �

This finishes the proof of Lemma 6.1.4 for the particular case of ϕ = 〈π〉α
when we already have an automaton for α. We now turn to the general case.
We shall prove that for every ϕ ∈ PDLtf we can give an equivalent automaton
Aϕ ∈ Aut−wa(ML[1), by induction on ϕ. If ϕ is a propositional variable (or its nega-
tion) then we can easily give a trivial one-state automaton Aϕ := 〈{aϕ},∆,Ω, aϕ〉
with ∆(aϕ) := ϕ and any Ω. If ϕ = α∧β let Aα and Aβ be automata for α and β.
It is straightforward to check that the obvious automaton Aϕ := Aα]Aβ] {aϕ}
with initial state aϕ and ∆(aϕ) := ∆α(aα) ∧∆β(aβ) is a well-defined automaton
for α∧β. The case for the disjunction is analogous. If ϕ = 〈π〉α, Proposition 6.1.8
gives us the required automaton. If ϕ = [π]α the construction and proofs are dual
to the diamond case.

6.1.2 From automata to formulas

In this section we will transform PDLtf -automata into equivalent formulas.

6.1.9. Lemma. Given an automaton A ∈ Aut−wa(ML1) we can effectively con-
struct an equivalent formula ϕA ∈ PDLtf .

154 Chapter 6. Concrete modal automata

The key objects of this proof will be the maximal strongly connected compo-
nents of A. As we previously observed, these components (or more specifically
the cycles) naturally encode the concept of repetition which, in the case of PDL,
corresponds to the iteration of programs. This will be the most difficult (and
interesting) case when converting automata to formulas.

We start as follows: for every MSCC C and state b ∈ C we will show how
to get an equivalent formula ϕC,b ∈ PDLtf (P] O,D) where the propositional
variables O := A \ C correspond to the states outside C.

We do this by encoding the MCC as a set of equations of extended PDLtf -
formulas and showing that this set can be “solved inside PDLtf ” through a process
reminiscent of Gaussian elemination.

6.1.10. Definition. A set of B-incomplete σ-equations is a tuple E = (E, ξ, σ)
where E is a non-empty, finite set of equations specified by the map ξ : E →
PDLtf (P] B] E,D) and σ is the type of the equations, which can be either
µ (corresponding to a least fixpoint interpretation) or ν (corresponding to a great-
est fixpoint interpretation). We sometimes specify a set of equations using the
notation E := {e1 ≈ ψ1, . . . , en ≈ ψn}σ.

6.1.11. Definition. Given a transition system S and a set of B-incomplete σ-
equations E = (E, ξ, σ) we define the rules for the solution game S(E,S) having
as basic positions pairs (x, s) ∈ (E ∪B)× S.

Position Player Admissible moves
(e, s) ∈ E × S ∃ {V : (E ∪B)→ ℘S | S, V, s ξ(e)}
V : (E ∪B)→ ℘S ∀ {(x, s) | x ∈ E ∪B, s ∈ V (x)}

Whenever a position of the form (b, s) ∈ B × S is reached, the match is declared
a tie; finite matches not ending in a tie are lost by the player that got stuck and
infinite matches are won by ∃ if σ = ν, and by ∀ if σ = µ.

6.1.12. Remark. In general, parity automata and systems of equations can be
seen as two presentations of the same information. However, we consider it of
conceptual help to use sets of equations for this specific part.

Let C be an MSCC of A; first we consider the case where the parity of C is 1.
We turn the information of C into a set of O-incomplete µ-equationsC = (C, ξ, µ)
given by ξ(c) := ∆(c) for all c ∈ C.

6.1.13. Proposition. The set of equations C can be assumed to be of the form

ξ(c) = α ∨
∨
u∈U
〈πu〉u for U ⊆ C and α, πu ∈ PDLtf (P]O,D). (∗)

6.1. Automata for test-free PDL 155

Proof. First observe that formulas in ∆(c) originally belong to ML1ADD
−
C(O∪C).

These formulas allow disjunctions of elements of C under the diamonds; however,
using the equivalence 〈`〉(a∨ b) ≡ 〈`〉a∨〈`〉b we can pull the disjunctions outside,
and using 〈π1〉u ∨ 〈π2〉u ≡ 〈π1 ⊕ π2〉u we can merge the programs and finally get
the required form. �

This set of equations is equivalent to C in the following sense:

6.1.14. Proposition. Let b ∈ C be a state in the component, o ∈ O be a state
outside the component, and s, t ∈ S. The following are equivalent:

(i) ∃ has a surviving strategy in A(A,S)@(b, s) taking her to (o, t),

(ii) ∃ has a surviving strategy in S(C,S)@(b, s) taking her to (o, t).

Proof. Straightforward from the definition of the games. �

For a moment, we forget about MSCCs and focus on sets of equations. Next,
we show that if a set of equations satisfies (∗) we can solve it inside PDLtf . The
proof is basically a game-theoretic version of the one found in [BI08], which is also
reminiscent of the transformation of linear grammars into regular expressions.

6.1.15. Lemma. Let E = (E, ξ, µ) be a set of B-incomplete µ-equations satisfy-
ing (∗). For all e ∈ E there exists ϕE,e ∈ PDLtf (P]B,D) such that for all b ∈ B
and s, t ∈ S the following are equivalent:

(i) ∃ has a surviving strategy in S(E,S)@(e, s) taking her to (b, t),

(ii) S, V, s ϕE,e where V : B → ℘S is such that V = {(b, t)}.

Proof. By induction on |E|, we show that we can solve this set of equations
while preserving (∗) and finally getting a formula in PDLtf (P]B,D).

For the base case let E = {e}. We have to consider two cases: if e /∈ ξ(e) then
ξ(e) = α with α ∈ PDLtf (P] B,D) and we are done. Otherwise, the equation
should be of the form ξ(e) = α ∨ 〈π〉e. Let ϕE,e := 〈π∗〉α, it is easy to see that
the formula belongs to the right fragment. We now prove that ϕE,e ≡ E.

Claim 1. The following are equivalent:

• ∃ has a surviving strategy in S({e ≈ α ∨ 〈π〉e}µ,S)@(e, s) taking her to (b, t).

• S, V, s 〈π∗〉α where V : B → ℘S is such that V = {(b, t)}.

Proof of Claim. ⇒ As the set of equations is of type µ this means that
∃ plays only a finite number of moves, otherwise she would lose. Because of the
shape of the set of equations she has to play valuations V1, . . . , Vk such that in
each turn ∀ chooses (e, si) for some si ∈ Vi(e). After that ∃ plays a marking V

156 Chapter 6. Concrete modal automata

such that t ∈ V (e) and ∀ must choose (b, t). It is clear to observe that the first k
rounds induce a π∗-path s, s1, . . . , sk and the last round implies that S, V, sk α.
It only remains to observe that as ∃ can force ∀ to choose (b, t) then it must be
the case that V = {(b, t)}.
⇐ Assume S, V, s 〈π∗〉α, then by definition there is an sk such that

R∗π(s, sk) and S,m, sk α. Moreover this means that there are s1, . . . , sk such
that Rπ(si, si+1). We can give a surviving strategy for ∃ as follows: first she
plays, in order, valuations V1, . . . , Vk such that Vi = {(e, si)}. These valuations
constitute legitimate moves for ∃ and constrain ∀ to follow the path s, s1, . . . , sk.
Finally, she plays the valuation V which by hypothesis makes α true at sk and
leaves ∀ only one choice, namely (b, t). J

For the inductive case let E = {e, e1, . . . , en} with n > 0. If e /∈ ξ(e) we
skip to the next step, otherwise we need to treat this equation first. Let ξ(e) =
α ∨ 〈π〉e ∨∨u∈U〈πu〉u be such that e /∈ U . In order to eliminate e from ξ(e) we
create a slightly modified version of E.

Claim 2. Let E′ := (E, ξ′, µ) with ξ′(e) := 〈π∗〉α ∨∨u∈U〈π∗;πu〉u and ξ′(ei) :=
ξ(ei) for all i. For all s, t ∈ S and b ∈ B, the following are equivalent,

(i) ∃ has a surviving strategy in S(E,S)@(e, s) taking her to (b, t),

(ii) ∃ has a surviving strategy in S(E′,S)@(e, s) taking her to (b, t).

Proof of Claim. As the two sets only differ on e, it will be enough to show
that, given a strategy for ∃, we can simulate the moves made by ∃ (when standing
at e) in one set of equations using the other set of equations.
⇒ The type of E is µ, therefore ∃ will only play a finite amount of moves.

Assume ∃ plays, in order, valuations V1, . . . , Vk such that ∀ chooses (e, si) on each
round and finally plays a valuation V such that ∀ chooses (x, s′) with x 6= e. It
is straightforward to check that in E′ she can play V and will also get to (x, s′).
⇐ Suppose ∃ plays a valuation V such that it actually makes 〈π∗〉α true (the

case for 〈π∗;πu〉u is analogous) and ∀ chooses (x, s′). This means that there is
an Rπ∗ path s, s1, . . . , sk and a valuation Vα with S, Vα, sk α. She can simulate
this play in E by playing as follows: first she plays, in order, valuations Vi such
that Vi = {(e, si)}; after that she plays Vα. J

Having removed e from ξ(e), we still have a formula where other elements of
E may occur. We first substitute ξ′(e) into the other equations, setting ξ′(ei) :=
ξ(ei)[e 7→ ξ′(e)] for all i. It is easy to see that this substitution preserves the
behaviour of E′. Using the distribution laws of the diamond and PDLtf identities,
the new formulas can be taken to the normal form in (∗). To illustrate the process
suppose ξ(ei) = α ∨ 〈πe〉e ∨

∨
u∈U〈πu〉u with e /∈ U and ξ′(e) = α′ ∨∨u∈U〈π′u〉u.1

1To simplify the presentation we assume that U is the same in ξ(ei) and ξ(e). This need not
be this way but the process can be easily adjusted to work for the general case.

6.1. Automata for test-free PDL 157

The formula ξ′(ei) is then obtained as follows:

α ∨ 〈πe〉e ∨
∨
u∈U
〈πu〉u (before replacement)

α ∨ 〈πe〉
(
α′ ∨

∨
u∈U
〈π′u〉u

)
∨
∨
u∈U
〈πu〉u (after replacement)

(
α ∨ 〈πe〉α′

)
∨
∨
u∈U
〈πe〉〈π′u〉u ∨ 〈πu〉u (distribution of diamonds, regrouping)

(
α ∨ 〈πe〉α′

)
∨
∨
u∈U
〈πe;π′u ⊕ πu〉u (program identities)

We inductively solve the smaller set of equations E′′ := (E \ {e}, ξ′, µ) and get
formulas ψu for every u ∈ E \ {e}. Finally we give a solution for e setting
ϕE,e := ξ′(e)[u 7→ ψu | u ∈ E \ {e}]. Observe that ϕE,e ∈ PDLtf (P] B,D)
because it is of the form α∨∨u∈U〈πu〉ψu where (by induction and hypothesis) we
have α, ψu ∈ PDLtf (P]B,D). �

It only remains to apply the above results to C to get the required formula.

6.1.16. Corollary. For every MSCC C and b ∈ C there is a formula ϕC,b ∈
PDLtf (P]O,D) such that for all o ∈ O and s, t ∈ S the following are equivalent:

(i) ∃ has a surviving strategy in A(A,S)@(b, s) taking her to (o, t),

(ii) S, V, s ϕC,b where V : O → ℘S is such that V = {(o, t)}.

Proof. Direct from the combination of Proposition 6.1.14 and Lemma 6.1.15
applied to C. �

The above Corollary gives us a formula when the connected component has
parity 1. The case where the parity of C is 0 is solved in a similar way. First
we create a set of ν-equations C = (C, ξ, ν) with formulas of the form ξ(c) =
α∧∧u∈U [πu]u with U ⊆ C and α, πu ∈ PDLtf (P]O,D). The key identity in this
case is that a system with only equation b ≈ α ∧ [π]b is equivalent to b ≈ [π∗]α.

Now that we can get a formula for every point of an MSCC we turn to the
general case. In order to create a formula from an initialized automaton we
introduce the following concept.

6.1.17. Definition. Given a parity automaton A, the DAG of connected com-
ponents of A is the pair DCC(A) = (G,E) where G is the set of maximal strongly
connected �-components of A and (C1, C2) ∈ E iff there are a ∈ C1, b ∈ C2 such
that a; b and C1 6= C2.

158 Chapter 6. Concrete modal automata

6.1.18. Remark. Observe that this definition considers the connected compo-
nents given by � and not by ≺. This will result in a DAG where each node is
either a ≺-connected component or a single element a ∈ A which does not belong
to any ≺-cycle. Another way to see this DAG is as the quotient of A by the
equivalence relation induced by �.

Another observation is that, even though DCC(A) may not be a tree, it cer-
tainly contains no loops. Therefore E is well-founded and, given C ∈ G, we can
associate a notion of height to the subgraph generated by C.

We are now ready to prove the main theorem of this section.

Proof of Lemma 6.1.9. For every initialized automaton A ∈ Aut−wa(ML1) we
give an equivalent formula ϕA ∈ PDLtf . The proof will be done by induction on
the height of the subgraph of DCC(A) generated by aI .

If the height of the subgraph is 1, then it is composed of a single MSCC C
and aI ∈ C. By Corollary 6.1.16 we get a formula ϕC,aI ∈ PDLtf (P] O,D). We
only have to observe that, because C is not connected to any other MSCC then
O = ∅. Hence, we have a formula ϕC,aI ∈ PDLtf (P,D) which is equivalent to A.

Suppose the height of the subgraph is n > 1 and aI ∈ C for some MSCC
C. Again by Corollary 6.1.16 we get a formula ϕC,aI ∈ PDLtf (P] O,D) where
O = {o1, . . . , ok} and oi ∈ Ci for some MSCCs Ci. By inductive hypothesis we
get formulas ϕA,oi ∈ PDLtf (P,D). It is straightforward to check that the formula
ϕA,aI := ϕC,aI [oi 7→ ϕA,oi | i ≤ k] is equivalent to A. �

6.2 Automata for PDL

In this section we give automata corresponding to full PDL.

6.2.1. Definition. A PDL-automaton is an automaton from Autwa(ML1).

The main theorem of this section states that PDL-automata characterize PDL
and, additionally, that these automata can be assumed to be based on a flat modal
language, without loss of generality.

6.2.2. Theorem. The following formalisms are effectively equivalent:

(i) PDL,

(ii) Autwa(ML[1),

(iii) Autwa(ML1).

This theorem will be proved in the two following subsections. The implication
from (i) to (ii) will be proved in Lemma 6.2.3 and the implication from (iii) to (i)
will be proved in Lemma 6.2.9. The remaining implication is trivial.

6.2. Automata for PDL 159

6.2.1 From formulas to automata

In this section we transform PDL-formulas to equivalent automata.

6.2.3. Lemma. Given a formula ϕ ∈ PDL we can effectively construct an equiv-
alent automaton Aϕ ∈ Autwa(ML[1).

We give a proof by induction on ϕ. If ϕ is a test-free formula (i.e., ϕ ∈ PDLtf)
we can get the corresponding automaton using Theorem 6.1.3 and observing
that every Aut−wa(ML[1) ⊆ Autwa(ML[1). It is also easy to check that the class
Autwa(ML[1) is closed by the Boolean operators.

The interesting case, therefore, is ϕ = 〈π〉α where α ≡ Aα ∈ Autwa(ML[1) and
π makes use of tests. To prove this case we use the following strategy: first we
will consider tests as additional atomic actions and get an NFA for π, similar to
what we did in Section 6.1.1; after that, we merge it with the automata for the
tested formulas to get an automaton Pπ for π. To finish, we combine Pπ and Aα

to get an automaton for ϕ.
In the process of creating an automaton for π we encounter new complexities

because of the presence of tests. To be able to properly define a merging operation
we need to introduce the following concepts.

6.2.4. Definition. Let B be a finite set of names such that A ∩ B = ∅ and
P ∩B = ∅. A B-incomplete automaton is an automaton based on the set of
propositions P ∪ B such that the elements of B occur only positively in the
transition map of A.

The acceptance games of Definition 2.3.3 are extended for B-incomplete au-
tomata with the intention to interpret the elements of B as names (as opposed
to propositions). Basic positions are then taken from (A∪B)×S and valuations
are of the type V : (A ∪ B)→ ℘S. Whenever a position from B × S is reached,
the match is declared a tie.

6.2.5. Definition. The completion of a B-incomplete automaton A with an
automaton A′ = 〈A′,∆′,Ω′〉 is defined as (A o A′) = 〈C,∆C ,ΩC , aI〉 where
C := A ∪ A′, ΩC := Ω ∪ Ω′ and the transition map is given by:

∆C(c) :=

{
∆′(c) if c ∈ A′,
∆(c)[b 7→ ∆′(b) | b ∈ B ∩ A′] if c ∈ A.

Note that the completion can be partial if B 6⊆ A′, in this case the outcome will
be (B \ A′)-incomplete. If B ⊆ A′, the outcome will be a complete automaton.
Also observe that a completion cannot generate new cycles.

160 Chapter 6. Concrete modal automata

6.2.6. Definition. Given π ∈ PDL(P,D) we use π[∈ PDLtf (P,D∪T) to denote
the version of π where its top-level tests T are considered as atomic actions.
The T-extension of a labeled transition system S = 〈S,R`∈D, κ, sI〉 is defined as
ST := 〈S,R`∈D, Rχ∈T, κ, sI〉 where Rχ := {(s, s) ∈ S × S | S, s χ}.

6.2.7. Lemma. For every π ∈ PDL there is an x-incomplete Pπ ∈ Autwa(ML[1)
such that for all transition systems S and s, t ∈ S the following are equivalent

(i) RS
π(s, t),

(ii) ∃ has a surviving strategy in A(Pπ, S)@(aπ, s) taking her to (x, t).

Proof. Let T be the top-level tests appearing in π. The following claim is easy
to check.

Claim 1. For every LTS S and s, t ∈ S we have RS
π(s, t) iff RST

π[
(s, t).

As in Section 6.1.1, we can construct an NFA Aπ = 〈A, δ, F, aI〉 which recognizes
π[. By definition of Aπ recognizing π[we have the following claim.

Claim 2. For every transition system S and s, t ∈ S, the automaton Aπ accepts
some path s, . . . , t in ST if and only if RST

π[
(s, t).

Claim 3. Without loss of generality we can assume the following on Aπ:

1. Every state has either exiting action transitions or test transitions, but not
both. A state is called an action state or a test state in those circumstances,
respectively.

2. Every cycle contains at least one action state.

3. The initial state has no incoming transitions (in particular it does not belong
to a cycle).

4. Test transitions always arrive into an action state.

Proof of Claim. We prove the items as follows:

1. Suppose that there is a (mixed) state a with both test and action transitions.
Take an action transition d from a to some state c. We can get an equivalent
automaton (from the point of view of the initial state) by creating an inter-
mediate action state c′ such that c′ has exactly one transition d to c and then
transforming the action transition d of a into a dummy test transition >? from
a to c′. Repeating this process on a transforms it into a pure test state.

6.2. Automata for PDL 161

2. It is not difficult to show that cycles without action states can only be gen-
erated by a program of the form π′ = π∗, where π is built up from tests only
(that is, π contains no atomic actions outside the scope of a top-level test).
Therefore, to avoid such cycles, we will show that we can assume that our
PDL-formulas do not contain such programs. Note that if π contains no atomic
actions then Rπ ⊆ S×S can be expressed as the union and composition of re-
lations Rψi? corresponding to the rests in π. As Rψi? ⊆ IdS = {(s, s) | s ∈ S}
it is easy to see that Rπ ⊆ IdS. From this last observation we get that
Rπ∗ = R∗π = IdS = R>? and hence we can conclude that π′ is equivalent to
the program >?. Therefore, we can replace any such program π′ with >? and
avoid cycles without action states.

3. This item is easily proved by creating a new state a′I which has the same
transitions as aI and set it as the new initial state.

4. Assume (1–3) and suppose that there is a test state a which has a ϕ-transition
into another test state b with transitions ψ1, . . . , ψn to states c1, . . . , cn. We
can get an equivalent automaton (from the point of view of the initial state)
by replacing the ϕ-transition of a with n new transitions to c1, . . . , cn labeled
by ϕ∧ ψi respectively. Repeating this step (and using item 2) ensures item 4.

This finishes the proof of Claim 3. J

Let T = {aχ | χ ∈ T} ∪ {x} be a finite set of names. From Aπ we define an
automaton Aπ ∈ Autwa(ML[1) as Aπ := 〈Aπ,∆π, aπ〉 by setting Aπ := A, the
parity map is Ω(a) := 1 for all a ∈ A, and the transition map is given by:

∆π(a) :=

∨{〈`〉b | ` ∈ D, b ∈ δ(a, d)} if a ∈ A \ F is an action state,
x ∨∨{〈`〉b | ` ∈ D, b ∈ δ(a, d)} if a ∈ A ∩ F is an action state,∨{aχ ∧∆π(b) | χ ∈ T, b ∈ δ(a, χ)} if a ∈ A \ F is a test state,
x ∨∨{aχ ∧∆π(b) | χ ∈ T, b ∈ δ(a, χ)} if a ∈ A ∩ F is a test state.

Observe that, although the last two cases use ∆π recursively in their own defini-
tion, they are well-defined because test states only have transitions into actions
states (see Claim 3 item 4) and the transition map has already been defined for
action states (in the first two cases).

Claim 4. Aπ ∈ Autwa(ML[1) is a well-defined T -incomplete automaton.

Proof of Claim. By inspecting ∆π it is simple to see that the transition map
lands in the right fragments. J

Let (Aχ, aχ)χ∈T be the family of automata for T = {χ1, . . . , χk}, provided by the
inductive hypothesis. To finish the construction let Pπ := Aπ o Aχ1 o · · ·o Aχk ,
where o was defined in Definition 6.2.5.

162 Chapter 6. Concrete modal automata

Claim 5. For every transition system S and s, t ∈ S, the following are equivalent.

(i) ∃ has a surviving strategy in A(Aπ,ST)@(aπ, s) taking her to (f, t) with
f ∈ F .

(ii) ∃ has a surviving strategy in A(Pπ, S)@(aπ, s) taking her to (x, t).

Proof of Claim. To prove this claim, we will show that every move made by
∃ in one of the acceptance games can be simulated by one or more moves in the
other game.

⇒ Dividing by cases, it is enough to prove that for all a, b ∈ A, s, t ∈ S,

(a) If a is a final state then ∃ has a surviving strategy in A(Pπ,S)@(a, s) taking
her to (x, s),

(b) If a is an action state and (b, t) is an admissible move for ∃ inA(Aπ,ST)@(a, s)
then ∃ has a surviving strategy in A(Pπ,S)@(a, s) taking her to (b, t),

(c) If a is a test state and (b, s) is an admissible move for ∃ in A(Aπ,ST)@(a, s)
then ∃ has a surviving strategy inAs(Pπ,S)@(a, s) leading to (∆π(b), s), which
is equivalent to (b, s).

Item (a) is clear from the definition of ∆π for final states. That is, ∃ can always
choose {(x, s)} as a move. In the same way, for item (b), it is also clear that
{(b, t)} is an admissible move for ∃.

For item (c) we will consider a symmetric definition of the acceptance game
(cf. Definition 2.3.3) to reason about strategies [Ven11], for the special case of
parity automata based on the one-step language ML1. We denote this parity
game by As(A,S) and define it as follows2:

Position Player Admissible moves Parity
(a, s) ∈ A× S – {(∆(a, κ(s)), s)} Ω(a)
(
∧

Φ, s) ∀ {(ϕi, s) | ϕ ∈ Φ} max(Ω[A])
(
∨

Φ, s) ∃ {(ϕi, s) | ϕ ∈ Φ} max(Ω[A])
([`]b, s) ∀ {(b, t) | R`(s, t)} max(Ω[A])
(〈`〉b, s) ∃ {(b, t) | R`(s, t)} max(Ω[A])
(p, s) with s ∈ V (p) ∀ ∅ max(Ω[A])
(p, s) with s /∈ V (p) ∃ ∅ max(Ω[A])
(¬p, s) with s /∈ V (p) ∀ ∅ max(Ω[A])
(¬p, s) with s ∈ V (p) ∃ ∅ max(Ω[A])

Suppose a is a test state and (b, s) is an admissible move for ∃ in A(Aπ,ST)@(a, s)
going through test χ. In particular, this means that S, s χ and hence S, s Aχ.

2As defined in Section 2.3.3, we only care about the minimum parity occurring in a match.
Therefore, max(Ω[A]) is used as a “dummy” parity when we want the parity of a particular
round to have no effect in the overall match.

6.2. Automata for PDL 163

Observe that in As(Pπ,S)@(a, s) it is ∃’s turn to move and she can always choose
the disjunct that corresponds to χ. After that it is ∀’s choice and he is forced to
choose ∆π(b) because if he chose the conjunct corresponding to χ he would lose.
Therefore we arrive at position (∆π(b), s) which is what we wanted.

⇐ It is enough to prove that for all a, b ∈ A, s, t ∈ S,
(a) If {(x, s)} is admissible for ∃ in A(Pπ,S)@(a, s) then a is a final state in Aπ,

(b) If a is an action state and {(b, t)} is an admissible move for ∃ inA(Pπ,S)@(a, s)
then (b, t) is an admissible move for ∃ in A(Aπ,ST)@(a, s),

(c) If a is a test state and ∃ has a surviving strategy in As(Pπ,S)@(a, s) leading
her to (∆π(b), s) then (b, s) is an admissible move for ∃ in A(Aπ,ST)@(a, s).

We only prove item (c). Suppose that at position (a, s) player ∃ chose a disjunct
which (sloppily formulated) corresponds to aχ ∧ ∆π(b) for some χ ∈ T. If her
strategy leads ∃ to (∆π(b), s) it means that ∀ did not choose aχ. From this we
can conclude that S, s χ since otherwise ∀ would have chosen that conjunct and
won. Therefore Rχ(s, s) holds in ST. Moreover, as aχ∧∆π(b) occurs in ∆π(a), by
definition of ∆π (see “test” cases) we know that in Aπ there is a χ-transition to b.
Putting these observations together, we can conclude that (b, s) is an admissible
move for ∃ in A(Aπ,ST)@(a, s). J

The lemma is then a corollary of the claims, chained as follows

RS
π(s, t) ⇐⇒ RST

π[(s, t) (Claim 1)
⇐⇒ Aπ accepts the path s, . . . , t in ST (Claim 2)
⇐⇒ ∃ has a surviving strategy in

A(Pπ,S)@(aπ, s) leading to (x, t) (Claim 5)

Done. �

To finish, we give an automaton for ϕ = 〈π〉α. Let Aα be the automaton
for α, given by the inductive hypothesis, and assume its initial state is called x.
Define Aϕ := Pπ oAα. We prove that Aϕ is an automaton representation of ϕ.

6.2.8. Proposition. S 〈π〉α iff ∃ has a winning strategy in A(Aϕ, S)@(aϕ, sI).

Proof. The proof is the same as in Proposition 6.1.8 but using Lemma 6.2.7. �

6.2.2 From automata to formulas

In this section we will transform PDL-automata into equivalent formulas.

6.2.9. Lemma. Given an automaton A ∈ Autwa(ML1) we can effectively con-
struct an equivalent formula ϕA ∈ PDL.

164 Chapter 6. Concrete modal automata

The proof is basically the same as for PDLtf . The crucial difference lies in
showing that when we want to solve the system of equations (i.e., an analogue of
Lemma 6.1.15) we can still provide a normal form like (∗) in Proposition 6.1.13.

6.2.10. Proposition. Every ϕ ∈ ML1ADDC(O] C) is equivalent to a formula
of the form:

γ ∨
∨
u∈U
〈πu〉u with U ⊆ C; γ, πu ∈ PDL(P ∪O,D)

Proof. We prove this by induction on the construction of the formula. In case
ϕ = ψ ∈ ML1(O) we just choose U := ∅ and γ := ψ.

Suppose ϕ = 〈`〉α with α a Boolean expression overO∪C (cf. Theorem 5.3.16).
The key observation is that, given the definition of α in this additive fragment,
it is not difficult to show that α can be expressed in the disjunctive normal form
α ≡ ∨i(ui ∧ ψi) with ψi ∈ ML1(O). Therefore, ϕ ≡ ⊥ ∨∨i〈ψi?;`〉ui.

If ϕ = ϕ1∨ϕ2 first assume (by inductive hypothesis) that ϕ1, ϕ2 are in normal
form; it is easy to see that some regrouping and joining of programs converts ϕ
to the required normal form. If ϕ = ϕ′ ∧ ψ with ψ ∈ ML1(O) we do as follows.
Let ϕ′ ≡ (γ ∨∨u∈U〈πu〉u) by inductive hypothesis.

ϕ′ ∧ ψ ≡
(
γ ∨

∨
u∈U
〈πu〉u

)
∧ ψ

≡
(
γ ∧ ψ

)
∨
(
ψ ∧

∨
u∈U
〈πu〉u

)
(distribution of ψ)

≡
(
γ ∧ ψ

)
∨
(∨
u∈U

ψ ∧ 〈πu〉u
)

(distribution of ψ)

≡
(
γ ∧ ψ

)
∨
(∨
u∈U
〈ψ?;πu〉u

)
(conjunction as test)

This finishes the proof. �

6.3 Automata for µcML
In this section we give modal parity automata corresponding to µcML.

6.3.1. Theorem. The following formalisms are effectively equivalent:

(i) µcML,
(ii) Autwc(ML[1),

(iii) Autwc(ML1).

The implication from (i) to (ii) will be proved in Lemma 6.3.2 and the impli-
cation from (iii) to (i) will be proved in Lemma 6.3.10. The remaining implication
is trivial.

6.3. Automata for µcML 165

6.3.1 From formulas to automata

In this section we show how to convert a formula ϕ ∈ µcML into a continuous-
weak automata. We will adapt a technique introduced in [Ven11, Section 6.3] for
µML and prove the following result.

6.3.2. Lemma. Given a formula ϕ ∈ µcML we can effectively construct an equiv-
alent automaton Aϕ ∈ Autwc(ML[1).

While formulas of basic modal logic can be seen as trees, a formula of µML
can be seen as tree with back-edges (cf. Definition 4.4.1). These back edges go
from each bound variable p to its binding definition σpp.δp. The main idea is
to start by defining a new kind of automaton based on the tree structure of ϕ
and then massage its structure and transition map to obtain an automaton in
Autwc(ML[1).

When translating formulas of the µ-calculus to automata it will be useful to
assume a special form. Without loss of generality, we will assume that they are in
negation normal form and clean. Additionally, we assume that they are guarded,
and proceed to show that this can be done without loss of generality.

6.3.3. Definition. An occurrence of a bound variable is called guarded if there
is a modal operator between its binding definition and the variable itself. An
occurrence is weakly guarded if there is another fixpoint quantifier between its
binding definition and the variable itself. A formula ϕ ∈ µML is called guarded
if every occurrence of every bound variable is guarded.

For instance, consider the following formula (example adapted from [BFL15]):
µp.a ∨ (µq.(a ∧ p) ∨ (¬a ∧ q) ∨ 〈`〉q). In this formula, the variable q has both a
guarded and an unguarded occurrence, while the only occurrence of p is not
guarded but it is weakly guarded.

It is possible to convert any formula of µML into an equivalent formula which
is guarded. Although this may induce an exponential blowup in size, this is
not a problem for our expressiveness concerns in this section. For an extensive
historical overview of guarding methods and a proof of the exponential blowup
we refer to [BFL15].

The procedure given by Kupferman et. al [KVW00] uses the following facts
to bring the formulas into guarded form. The first is the fixpoint unfolding rule.

6.3.4. Fact. For every formula σpp.ϕ ∈ µML we have σpp.ϕ ≡ ϕ[p 7→ σpp.ϕ].

The second rule helps to eliminate spurious unguarded variables under fix-
points. For example, consider the formula µp.p ∨ γ. It is easy to see that in
the evaluation game, it will never be useful for ∃ to choose the left disjunct and
therefore we have the equivalences µp.p ∨ γ ≡ µp.⊥ ∨ γ ≡ µp.γ.

166 Chapter 6. Concrete modal automata

6.3.5. Fact ([KVW00, Mat02]). For every formula σpp.ϕ ∈ µML we have that
σpp.ϕ ≡ σpp.ϕ[p 7→ σ̂p | p is not weakly guarded] where σ̂p := > if σp = ν and
σ̂p := ⊥ if σp = µ.

The following is obtained by repeatedly applying the above facts starting from
the innermost fixpoint.

6.3.6. Theorem ([KVW00, Theorem 2.1]). For every ϕ ∈ µML we can ef-
fectively construct a guarded formula ϕ] ∈ µML such that ϕ ≡ ϕ].

Additionally, it should be observed that this transformation preserves the
continuous fragment of the µ-calculus.

6.3.7. Proposition. If ϕ ∈ µcML then ϕ] ∈ µcML. Hence for every ϕ ∈ µcML
we can effectively construct a guarded formula ϕ] ∈ µcML such that ϕ ≡ ϕ].

Proof. If ϕ belongs to µcML, a syntactic inspection reveals that the application
of any of the above transformations results in a formula which again belongs to
µcML. In the case of Theorem 6.3.6 it is possible that the transformation requires
part of the formula to be in conjunctive normal form, but this can also be done
inside µcML, since this fragment allows all Boolean connectives. �

Now that we have preprocessed our formula ϕ ∈ µcML to make it guarded,
we will start the transformation into automata, which will be done in two stages:
first we create a continuous-weak automaton A having as states the subformulas
of ϕ. That is, for every subformula ϕ E α we will have a state α̂ in A. In order
to give an easy and direct construction of such an automaton, we will first allow
formulas of the transition map to be in the language ML[1(A,P∪A,D). The idea
is to allow states to occur at the level of propositions (i.e., not necessarily under
a modality).3

6.3.8. Proposition. For every ϕ ∈ µcML we can effectively construct an equiv-
alent automaton Aϕ ∈ Autwc(ML[1(A,P ∪ A,D)).

Proof. Define the automaton as Aϕ := 〈A,∆,Ω, aI〉 where

A := {α̂ | α is a subformula of ϕ}.

The initial state is aI := ϕ̂, and the transition map is given by:

∆(α̂ ∨ β) := α̂ ∨ β̂ ∆(α̂ ∧ β) := α̂ ∧ β̂
∆(♥̂α) := ♥α̂ ∆(σ̂pp.α) := α̂

3However, states will always be required to have positive polarity.

6.3. Automata for µcML 167

∆(χ̂) := χ for χ ∈ {>,⊥, p,¬p} with unbound p,

∆(p̂) := δ̂p for bound p.

Observe that this definitions is not inductive nor recursive and that there are no
Boolean operators under modalities.

In order to define the parity map, we introduce the following definition: we
say that a subformula α of ϕ is a µ-subformula (resp. ν-subformula) if there is a
subformula µp.α′ E α (resp. νp.α′ E α) of ϕ and p is free in α. Example: consider
the formula ψ ∧ µp.(〈`〉p∨ νq.[`]q); in this case 〈`〉p and p are µ-subformulas, [`]q
and q are ν-subformulas, and ψ and νq.[`]q are neither µ- nor ν-formulas.

Claim 1. Every subformula α of ϕ belongs to exactly one of the following
categories: (a) no free variable of α is bound in ϕ; or (b) α is a µ-subformula; or
(c) α is a ν-subformula.

Proof of Claim. The claim follows from ϕ being an alternation-free formula
(cf. Definition 2.4.4), since it belongs to µcML. J

For the parity we set Ω(α̂) := 0 if α is a ν-subformula of ϕ and 1 otherwise. The
following claim will be useful in proving that the automaton is weak. To state
the claim, recall that a �A b in an automaton A if b can be reached from a in the
graph structure induced by the transition map of A (cf. Definition 2.3.4).

Claim 2. If α̂ � β̂ � α̂ we can assume, modulo switching the order of the states,
that one of the following cases holds (see Fig. 6.1):

(a) σpp.δp E α E β E p (b) σpp.δp E α E p (c) σqq.δq E σpp.δp E α E q

E β E p E β E p,

where p ∈ FV(α)∩FV(β) in cases (a) and (b); and q ∈ FV(α), p ∈ FV(β) in (c).
In particular, both α and β are σ-subformulas of ϕ of the same type σ.

Proof of Claim. Observe that because ϕ is alternation-free then we must
have σp = σq in (c). J

We prove that the automaton is weak.

Claim 3. Aϕ is a weak automaton.

Proof of Claim. Let α̂ and β̂ belong to some maximal connected component,
we have to show that Ω(α̂) = Ω(β̂). Using Claim 2 we can see that both α and
β will be σ-subformulas of the same type and hence have the same parity. J

We prove that the automaton satisfies the continuity condition.

168 Chapter 6. Concrete modal automata

�

↵

p

�↵

p p

�↵

p q

Figure 6.1: Relative positioning of α and β if α̂ � β̂ � α̂.

Claim 4. Aϕ satisfies the continuity condition.

Proof of Claim. We only prove the continuity condition for the case of a
maximal connected component with parity 1 (corresponding to a least fixpoint).
The case of parity 0 (corresponding to a greatest fixpoint) is dual. Let α̂ and β̂
belong to some maximal connected component C with parity 1, we have to show
that ∆(α̂) is continuous in C. For continuity, this is equivalent to proving that
∆(α̂) is continuous in all β̂ ∈ C.

We consider the relative positioning of α and β in light of Claim 2, assuming
that σp = σq = µ. In cases (b) and (c) it is obvious that ∆(α̂) is continuous
in β̂, since β̂ does not occur in ∆(α̂). For case (a) we do as follows: note that
δp ∈ µMLCONp by definition of µcML. This implies that in the formula tree of ϕ,
if we go from p to δp we will never go through a box operator. As a consequence,
it is not difficult to see but rather cumbersome to prove, that ∆(α̂) is continuous
in β̂. J

Finally, a straightforward argument shows that ϕ ≡ Aϕ. �

We have now built an automaton which is equivalent to ϕ, but we still have
to massage it further to get the current one-step language ML1(A,P ∪ A,D) to
the right form, i.e, ML1(A,P,D). The crucial difference between these languages,
is the unguarded occurrence of states in the former. Automata with unguarded
occurrences are called “silent-step” automata in [Ven11], because there can be
rounds in the acceptance game where the state in the automaton changes, but
the current element in the transition system does not. While there are many
applications where silent-step automata are not a problem, it is usually useful
to have this coordination in the moves. Moreover, none of the automata in
this dissertation are silent. In the following proposition, we show how to con-
vert the silent-step automaton Aϕ, that we just obtained, to an automaton in
Autwc(ML1(A,P,D)).

6.3. Automata for µcML 169

6.3.9. Proposition. We can effectively transform Aϕ ∈ Autwc(ML1(A,P ∪ A))
into an equivalent automaton A′ϕ ∈ Autwc(ML1).

Proof. We first define, for every α̂ ∈ A, a new term ∆(α̂). To begin with, we set
∆(α̂) := ∆(α̂). Next, we replace every non-guarded occurrence of every β̂ ∈ A in
∆(α̂) by ∆(β̂). We repeat this process until every occurrence of every β̂ ∈ A is
of the form ♥β̂. It is crucial to observe that this process will eventually converge
because ϕ was originally guarded. This means that while running this process, for
every branch of ∆(α̂) we will always go through some modality before unfolding
some state that was already unfolded.

Observe that ∆(α̂) belongs to ML1(A,P,D). Guardedness is clear by con-
struction, and a short argument reveals that given the form of ∆, we do not go
beyond modal depth one.

We define the new automaton as A′ϕ := 〈A,∆,Ω, ϕ̂〉. From the following claim
it is easy to see that A′ϕ is weak and continuous and therefore A′ϕ ∈ Autwc(ML[1).

Claim 1. If a �A′ϕ b then a �Aϕ b.

To prove that A′ϕ is equivalent to Aϕ first observe that the acceptance games
of these two automata are pretty much the same. The main difference is that A′ϕ
could process many rounds (or steps) of the silent-step automata Aϕ at the same
time. The only possible issue would be if A′ϕ processes in one round with a parity
k what Aϕ processes in many rounds with distinct parities k, k′1, . . . , k′n. This is
not a problem in our setting of weak automata since, in the relevant cases (i.e.
cycles), all those parities would be the same because of the weakness condition.
Using these observations, it is not difficult to prove that A′ϕ is equivalent to Aϕ

and therefore A′ϕ ≡ ϕ. �

6.3.2 From automata to formulas

In this section we show how to convert an automaton A ∈ Autwc(ML1) into a
formula ϕA ∈ µcML. We have already developed the necessary tools to make this
conversion quite straightforward. First, we turn the shape of A into a tree with
back-edges. After that, the final formula is obtained, intuitively, by (1) composing
the transition maps of the nodes in the tree and (2) adding fixpoint quantifiers
at the target of the back-edges.

6.3.10. Lemma. For every automaton A ∈ Autwc(ML1) we can effectively con-
struct an equivalent formula ϕA ∈ µcML.

Proof. Because of Lemma 4.4.4 we assume that A can be decomposed as a tree
with back edges (A,E,B). We define auxiliary formulas χa∈A by induction on

170 Chapter 6. Concrete modal automata

the tree (A,E).

χa :=

{
µa.∆(a)[a′ 7→ χa′ | (a, a′) ∈ E] if Ω(a) is odd
νa.∆(a)[a′ 7→ χa′ | (a, a′) ∈ E] if Ω(a) is even.

Observe that if a is a leaf then {(a, a′) ∈ E} is empty; therefore the induction is
well-defined. Finally, we set ϕA := χaI . The proof of the equivalence of A and
ϕA is given in [Jan06, Lemma 3.2.3.2–3]. However, we still have to prove that ϕA
lands in the appropriate fragment, i.e., that ϕA ∈ µcML.

Claim 1. ϕA ∈ µcML.

Proof of Claim. It is not difficult to show, inductively, that if a ∈ A belongs
to a maximal strongly connected component C ⊆ A of parity 1 (resp. 0) then βa
will be continuous (resp. co-continuous) in C ⊆ A: if Ω(a) = 1 and a is a leaf then
χa := µa.∆(a). First observe that ∆(a) is continuous on C by hypothesis (by the
continuity constraint on A); second, the fixpoint does not bind any variable in this
case. Therefore χa ∈ µMLCONC(A). For the inductive case the key observation
is that if both ∆(a) and χa′ belong to µMLCONC(A) then ∆(a)[b 7→ χa′] belongs
to µMLCONC(A) for b ∈ C. J

This finishes the proof. �

6.3.11. Remark. The proof of Lemma 6.3.10 adds fixpoint quantifiers, not only
at the target of back-edges, but at every node of the tree. From these quantifiers,
the only ones that actually bind a variable are those added at the target of back-
edges. The other fixpoints are spurious but harmless, and could have been avoided
by giving a more complex formulation of χa.

6.4 Modal automata versus first-order automata
In this section we briefly discuss why the classes Aut(ML1) and Aut(FO1) are
equivalent, and why this relationship also holds for all the subclasses defined
in Chapter 4. In other words, for all classes of automata that we have been
considering, we can equivalently use the achromatic modal automata model or
the chromatic first-order automata model.

6.4.1. Proposition. Let C ∈ {Aut ,Autwc,Autwa,Aut−wa} be a class of parity
automata, then C(ML1) ≡ C(FO1).

Proof. We prove this proposition by giving automata translations in both di-
rections. These translations will be completely determined at the one-step level.
That is, the automata structure will stay the same, and we will apply transla-
tions on the transition map. The main tool for this task was already developed

6.5. Conclusions and open problems 171

in Proposition 5.3.3, which gives translations (−)t : ML1(A,∅,D) → FO1(A,D)
and (−)t : FO1(A,D) → ML1(A,∅,D) such that for every transition system S,
valuation V : A→ ℘(R[sI]) we have:

S, V ϕ iff (R[sI], V) |= ϕt

S, V ψt iff (R[sI], V) |= ψ.

⇒ Let A = 〈A,∆,Ω, aI〉 with ∆ : A → ML1(A,P,D) belong to C(ML1), we
define A′ = 〈A,∆′,Ω, aI〉 with ∆′ : A × ℘P → FO1(A,D) as follows: using
Theorem 5.3.6 we assume that ∆(a) is in the normal form

∨
c∈℘P($c∧

∨
i ϕi). We

then define, for every c ∈ ℘P the new transition map as ∆′(a, c) :=
∨
ϕti. The

equivalence A ≡ A′ is easily proved by a routine argument, using Proposition 5.3.3
and the acceptance games of both automata. Also, it is not difficult to see that
the weakness, continuity and additivity conditions are preserved, since there are
no structural changes and (−)t preserves the required fragments.

⇐ Let A = 〈A,∆,Ω, aI〉 with ∆ : A × ℘P → FO1(A,D) belong to C(FO1), we
define A′ = 〈A,∆′,Ω, aI〉 with ∆′ : A → ML1(A,P,D). The new transition map
is given by ∆′(a) :=

∨
c∈℘P$c ∧∆(a, c)t. Once more, the equivalence A ≡ A′ and

the preservation of the subclass conditions is easily proved. �

Given the above proposition, from now on we will use these two kinds of
automata interchangeably and without explicit mention.

6.5 Conclusions and open problems
In this chapter we gave automata characterizations for PDL, test-free PDL and
µcML. For the first two, we used an approach involving finite-state automata
and solving of equations, while for µcML we used silent-step automata and an
unraveling technique. The reader may remark that, for (test-free) PDL we could
have used the equivalence PDL ≡ µaML of Theorem 3.1.27 and then develop
automata for µaML just as we did for µcML. We acknowledge that this is another
option, however, we think that treating PDL in its own right, and particularly
PDL-programs, gives more insight on their automata-theoretic nature.

Open problems.

1. Automata for CPDL: Even though we now know that PDL corresponds to
Autwa(ML1), it is not clear which conditions should be relaxed, in order to get
automata for CPDL. It is clear that the additivity condition should be change
to something closer to the continuity condition, since the ⊗ operator of CPDL
translates to a more general conjunction. On the other hand, it is not clear how
to mimic the separation of variables condition of µcML∨ (cf. Definition 3.2.26)
on the automata side.

172 Chapter 6. Concrete modal automata

2. Automata for GL: These automata should be naturally more complex than
the ones considered in this dissertation. For example, since GL goes through
all the fixpoint alternation hierarchy of µML, the weakness condition should
not be imposed. We think that the starting point for these automata should be
Aut(ML1), and the key objective would be to understand what the separation
of variables means for automata.

3. More natural automata: The classes of automata defined in this chapter have
at least three nice features (1) they are subclasses of Aut(ML1), and therefore
give a clear picture on how the logics that they represent fit inside the µ-
calculus; (2) they are logical automata (i.e., the transition map contains logical
formulas), which will allow us to obtain results focusing on a one-step analysis;
(3) they are precise characterizations. However, these automata have a clear
downside: they are complex. For example, NFA are a nice representation of
regular expressions because they are simple. It would be nice to have automata,
for the logics of this chapter, which still satisfy (2) and (3), but with a simpler
definition.

4. Bisimulation quantifiers : It is known that µML is equivalent to PDL+∃̃ where
∃̃q.ϕ is a bisimulation quantifier [DH00, Fre06]. The meaning of this quantifier
is the following

S ∃̃q.ϕ iff S′ ϕ and S↔q S′,

where S↔q S′ means that the models are bisimilar, if we disregard the exten-
sion of the propositional variable q. Actually, a closer look at the proof of this
result in [DH00] reveals that µML is already equivalent to ML +2∗+ ∃̃ where
2∗ := [(d1 ⊕ . . .⊕ dn)∗].

We conjecture that a similar characterization can be given for PDL. Namely,
we think that PDL is equivalent to ML + 2∗ + ∃̃wc where the bisimulation
quantifier ∃̃wcq.ϕ holds when ϕ is true in a ↔q-bisimilar model S′ such that
the extension of q in S′ is a finite chain. To show this, the difficult step would
be to prove the closure of Autwa(FO1) under finite chain projection.

This new perspective can help to obtain new results for PDL and, for example,
give another way to look at (non-uniform) interpolation for PDL.

Chapter 7
Concrete first-order automata

The main objective of this chapter is to give automata characterizations for
WMSO and WCL, on the class of tree models. We do it by showing that these
languages precisely correspond to the classes Autwc(FOE∞1) and Autwa(FOE1),
respectively. These results are obtained via effective transformations from for-
mulas to automata and vice-versa. As a byproduct of these transformations we
will also obtain characterizations for the mentioned automata (and second-order
logics) as fixpoint logics (like µFOE).

In the first section, as an introduction, we review and discuss the necessary
techniques to prove the equivalence Aut(FOE1) ≡ MSO (due to Walukiewicz).
In the following sections we prove the results for WMSO and WCL and in the
final section we discuss the (open) question of parity automata for FO(TC1).

7.1 Automata for MSO

In this section we review the automata characterization for monadic second-order
logic (MSO) given by Walukiewicz [Wal96, Wal02] and also studied by Janin and
Walukiewicz in [JW96]. The objective of this section is to introduce the basic
techniques to give logical characterizations for parity automata. Most of the
results of this section are not original, unless otherwise stated. In general, we
follow the main ideas used in the aforementioned papers, but give a presentation
which is rephrased in the terms and notation used in this dissertation.

Originally, Walukiewicz introduced parity automata for MSO in the arti-
cle [Wal96]. These automata are shown to be equivalent to MSO on trees. How-
ever, the transition map of these automata is not explicitly based on formulas,
but on functions. On the other hand, the functions in consideration are those
‘induced’ by formulas of MSO. The explicit formulation of these automata with a
logical transition map is given in [JW96]. In our terminology, automata for MSO
are defined as follows.

7.1.1. Definition. A MSO-automaton is a parity automaton from Aut(FOE1).

173

174 Chapter 7. Concrete first-order automata

In order to show the equivalence between MSO and Aut(FOE1), we can divide
the process in two obvious parts: (1) from formulas to automata and (2) from
automata to formulas.

For the first part, it is customary to give a proof by induction on the complex-
ity of the formula. That is, for every formula of MSO, we construct an equivalent
automaton in Aut(FOE1). The most interesting cases are the negation and the
existential quantifier ∃p.ϕ. Negation is paralleled on the automata side by closure
under complementation (cf. Proposition 2.3.7). In general automata theory this
is quite an interesting and difficult topic. In our case, it is fortunately easy to
prove the closure under complementation, since we work with alternating par-
ity automata whose one-step language is closed under Boolean duals. The main
challenge for us will be the existential quantifier. We will discuss how this con-
struction is paralleled by the closure under projection of Aut(FOE1) and how to
prove it.

In a more general context, in the direction from automata to formulas, there
are a handful of techniques which can be used. One possibility is to express, in
the target logic, the existence of a winning strategy in the acceptance game for
a given automaton (as done, e.g., in [Wal96, Lemma 44]). Another possibility,
is to pre-process the original automaton into a tree with back-edges (as done
in Section 4.4) and then write an equivalent formula (as done in Section 6.3).
When translating parity automata, it is sometimes more straightforward to give
a translation when the target logic is a fixpoint logic (as opposed to a second-
order logic). For the case of MSO-automata, this means that the translation from
Aut(FOE1) to MSO can be done in two steps: an automaton from Aut(FOE1) is
translated to µFOE and then this formula is translated to MSO.

After proving these two directions we obtain that on trees, the formalisms
Aut(FOE1), µFOE and MSO are effectively equivalent. As a byproduct we get a
characterization of MSO and Aut(FOE1) as a fixpoint logic.

7.1.1 From MSO to Aut(FOE1)

In this subsection we discuss the transformation of formulas of MSO into au-
tomata. More precisely, we discuss the proof of the following theorem.

7.1.2. Theorem ([Wal96, Wal02]). For every formula ϕ ∈ MSO(P) with free
variables F ⊆ P we can effectively construct an automaton Aϕ ∈ Aut(FOE1,F)
such that for every F-tree T we have T |= ϕ iff T |= Aϕ.

This proposition is proved inductively, on the complexity of the formula. We
start by giving automata for the atomic formulas and after that we discuss the
closure under Boolean operations and existential quantification (projection).

7.1. Automata for MSO 175

Atomic formulas. For the atomic formulas p v q and R(p, q) we give the
following MSO-automata from Aut(FOE1, {p, q}).

Apvq := 〈{a0},∆,Ω, a0〉 where Ω(a0) = 0 and

∆(a0, c) :=

{
∀x.a0(x) if q ∈ c or p /∈ c,
⊥ otherwise

AR(p,q) := 〈{a0, a1},∆,Ω, a0〉 where Ω(a0) = Ω(a1) = 0 and

∆(a0, c) :=

{
∃x.a1(x) ∧ ∀y.a0(y) if p ∈ c,
∀x.a0(x) otherwise.

∆(a1, c) :=

{
> if q ∈ c,
⊥ if q /∈ c.

7.1.3. Remark. A nice observation is that, modally, these automata correspond
to the formulas 2∗(p → q) and 2∗(p → 3q) respectively. Also, none of the
following automata constructions (i.e., Booleans and projection) creat cycles on
the automata. This shows that all the “iterative power” of these automata boils
down to the 2∗ construction.

Boolean operations. To prove the inductive steps of the Boolean operators
and the negation it will be enough to prove that the class of automata is closed
under complementation and union.

7.1.4. Definition. Given an automaton A, we define the tree language recog-
nized by A as the class of P-labeled trees T (A) given by:

T (A) := {T | A accepts T}.
Starting with the closure under union, we just mention the following result,

without providing the (completely routine) proof.

7.1.5. Proposition. Let A and A′ belong to Aut(FOE1). There is an automaton
U ∈ Aut(FOE1) such that T (U) = T (A) ∪ T (A′).

Proof. The automaton U is defined as the disjoint union of A and A′ plus a
new initial state uI . The transition map of uI is then given, for every c, as
∆U(uI , c) := ∆(aI , c) ∨∆(a′I , c). �

In order to prove closure under complementation, we crucially use that the
one-step language FOE1 is closed under Boolean duals (cf. Proposition 5.1.57).

7.1.6. Proposition. If A ∈ Aut(FOE1) then the automaton Aδ defined in Def-
inition 2.3.6 recognizes the complement of T (A).

Proof. The automaton is well-defined by Proposition 5.1.57, and accepts exactly
the transition systems that are rejected by A, by Proposition 2.3.7. �

176 Chapter 7. Concrete first-order automata

Projection. To prove the inductive step of the existential quantification we
want to show that for every automaton A ∈ Aut(FOE1,P

′] {p}) we can give
an automaton ∃p.A ∈ Aut(FOE1,P

′) which works as follows: for every P′-tree
T we should have that T |= ∃p.A iff there is some set of Xp ⊆ T such that
T[p 7→ Xp] |= A. That is, there is a way to colour the nodes of T with p to make
A accept this newly colored tree. This property can be rephrased as closure under
projection of the class of languages recognized by Aut(FOE1).

7.1.7. Definition. Let p /∈ P′ and L be a tree language of (P′] {p})-labeled
trees. The projection of L over p is the language of P′-labeled trees defined as

∃p.L := {T | T[p 7→ Xp] ∈ L for some Xp ⊆ T}.

In the following definition we give a concrete definition for the projection of
an automaton. Shortly after, we analyze the objective of this construction and
why it is still not sufficient.

7.1.8. Definition. Let A belong to Aut(FOE1,P
′]{p}). We define the projec-

tion of A over p as the automaton ∃p.A := 〈A,∆∃,Ω, aI〉 ∈ Aut(FOE1,P
′) given

as follows, for every c ∈ ℘(P′):

∆∃(a, c) := ∆(a, c) ∨∆(a, c ∪ {p})

The intuition behind this construction is the following: suppose that we are
playing a fixed match π∃ of the acceptance game A(∃p.A,T) and we are at a
basic position (a, s) ∈ A×T . At this point, ∃ will play a valuation Va,s such that
(R[s], Va,s) |= ∆∃(a, c). The key observation is that this play gives us a hint on how
to color (or not) the node s, and build up the set Xp. If (R[s], Va,s) |= ∆(a, c), we
can safely decide that s /∈ Xp. On the other hand, if (R[s], Va,s) |= ∆(a, c ∪ {p}),
we have to set s ∈ Xp.

From the local perspective of the match π∃, this procedure gives us a coloring
of T. If we would play a match π of A(A,T) going through the same basic
positions as π∃, it is easy to see that we can give a winning strategy for ∃.
However, the problem that we must face, is that the acceptance game A(∃p.A,T)
comprises many concurrent matches, depending on the choices of ∀, and each
match may suggest a different set Xp. More precisely, one of the matches could
suggest that s ∈ Xp and other that s /∈ Xp and we could have a situation where
both conditions are crucial to win each given match. Luckily, there is a way to
pre-process A to ensure that this situation can be avoided. The key notion is that
of non-determinism.

Non-determinism and the Simulation Theorem. One of the main tech-
nical results for parity automata is the so-called “Simulation Theorem”. In a

7.1. Automata for MSO 177

nutshell, it says that every automaton A can be converted to an equivalent au-
tomaton Ag for which we can always avoid the situation described in the last
paragraph. Specifically, what we want is that every winning strategy for ∃ in
A(A,T) can be assumed to be functional. A strategy f for ∃ is called functional,
if whenever ∀ can choose to play both (a, s) and (b, s) at a given moment, then
a = b. That is, ∀’s power boils down to being a pathfinder in T. He chooses the
elements of T whereas the state of A is ‘fixed’ by the valuation played by ∃, for
every given s.

To get a better picture of what a functional strategy means, it is good to do
the following: first observe that if we fix a strategy f for ∃ for the game A(A,T)
then the whole game can be represented by a tree, whose nodes are the different
admissible moves for ∀. We assume that the automaton is clear from context
and denote such a tree by Tf . Fig. 7.1 shows the move-tree for ∀ for some fixed
strategy f for ∃. Each branch of Tf represents a possible f -guided match.

sI

s0

s00 s01

s1

s10 s11

(aI , sI)

(a3, s0)

(a5, s00) (a1, s00)

(a7, s0) (a1, s1)

(a1, s10) (a3, s10) (a1, s11)

Figure 7.1: A tree T and Tf for a fixed strategy for ∃.

Observe that in this figure the chosen strategy for ∃ is not functional. The
admissible moves which violate this condition are underlined. On trees, the notion
of functional strategy can be rephrased as “every element s ∈ T occurs at most
once as an admissible move for ∀.” The main property of functional strategies is
that for every element s ∈ T occurring in Tf we can assign a unique state as ∈ A
such that (as, s) ∈ Tf .

The automata for which we can assume that every winning strategy for ∃ is
functional are called non-deterministic.

7.1.9. Theorem ([Wal96, Wal02]). Every A ∈ Aut(FOE1) is effectively equiv-
alent (over all models) to a non-deterministic automaton Ag ∈ Aut(FOE1).

7.1.10. Remark. The terminology “non-deterministic” may seem confusing at
first, given that A′ is certainly more “deterministic” than A (from the point of
view of ∀). However, the terminology is sensible when seen from the following
perspective: we say that a finite state automaton (on words) is deterministic when
the next state is uniquely determined by the current state (and the input); on the
other hand, they are called non-deterministic when ∃ can choose between different

178 Chapter 7. Concrete first-order automata

transitions, leading to the next state; finally, alternating finite state automata
are a generalization where the next state is chosen by a complex interaction of ∃
and ∀. Going back to parity automata, the above theorem then says that every
alternating parity automaton is equivalent to a non-deterministic automaton. In
light of our brief discussion, it should be clear that non-deterministic automata
are “more deterministic” than alternating automata.

We will not go into the details of the definition of the construction of non-
deterministic automata. We only observe that the construction is a variant of the
usual powerset construction, and refer the reader to [Zan12, Chapter 2] for a nice
exposition of the details.

Now that we have non-deterministic automata at our disposal we can properly
define an automata construction which works for the existential quantification.
The construction is a straightforward combination of the non-deterministic trans-
formation and the projection.

7.1.11. Lemma. For each A ∈ Aut(FOE1,P
′]{p}) we have T (∃p.Ag) = ∃p.T (A).

Proof. For the difficult direction we have to prove that if T |= ∃p.Ag then there
is some set Xp ⊆ T such that T[p 7→ Xp] |= A. We only sketch how to properly
define the set Xp. The first observation is the following.

Claim 1. ∃p.Ag is non-deterministic.

Suppose that T |= ∃p.Ag. As the automaton is non-deterministic, we can assume
that the given winning strategy f∃ for ∃ in A(∃p.Ag,T)@(aI , sI) is functional. We
now want to isolate the nodes that f∃ treats “as if they were labeled with p.” For
this purpose, let Vs be the valuation suggested by f∃ at a position (as, s) ∈ A×T .
As f∃ is winning, the suggested valuation is admissible. In other words, we have
(R[s], Vs) |= ∆∃(as, c) = ∆(as, c) ∨∆(as, c ∪ {p}) for c = κ(s). We define:

Xp := {s ∈ T | as is defined and (R[s], Vs) |= ∆(as, c ∪ {p})}.

The fact that f∃ is functional guarantees that Xp is well-defined, because for every
s ∈ T there is a unique as ∈ A.

We can prove that T[p 7→ Xp] |= A by providing a winning strategy for ∃ in the
game A(A,T[p 7→ Xp])@(aI , sI). This strategy is built based on the (functional)
strategy f∃ that ∃ has for A(∃p.Ag,T)@(aI , sI). The reader is referred to [Zan12,
Proposition 2.29] for details. �

7.1.2 From Aut(FOE1) to FO(LFP1)

In this section we discuss how to translate automata from Aut(FOE1) to the
fixpoint logic µFOE. To translate the automata we will use a technique similar

7.1. Automata for MSO 179

to that of Section 6.3.2: given an automaton we will first unravel it and obtain a
tree with back-edges, then we translate this automaton to a fixpoint formula.

We also want to use this section to discuss the peculiarities of the target
language of the translation. We will see that if we allow the target formula to
have a free variable x, then we can fall inside a very particular fragment µFOE»

of µFOE which we call the forward-looking fragment of µFOE. This fragment
can be seen as a kind of ‘modal’ fragment of µFOE, whose formulas are invariant
under generated submodels, and guarded (in a sense that will be made precise).
Our first translation will then transform an automaton A ∈ Aut(FOE1) into a
formula ϕ»

A(x) ∈ µFOE» such that

∃ wins A(A,T)@(aI , s) iff T |= ϕ»
A(s),

for every tree T and s ∈ T . Observe that in this equivalence, the interpretation
of x should be the element where the automaton starts running. As a corollary
of this translation, we can construct a sentence ϕA ∈ µFOE such that

T |= A iff T |= ϕA,

by setting ϕA := ∃x.isroot(x) ∧ ϕ»
A(x). While the predicate isroot(x) can be

easily defined in µFOE (on trees) as isroot(x) := ∀y.¬R(y, x) it will be worth
observing that it cannot be defined in µFOE», since we anticipated that this logic
is invariant under generated submodels.

The technique that we use here is an adaptation of the transformations given
in [Jan06] for modal automata. The detailed development of this technique for
first-order automata and the focus on the forward-looking fragment are original,
as far as we know.

Forward-looking fragment. It is easy to see that parity automata ‘restrict
to descendants.’ That is, whenever the game A(A,T) is at some basic position
(a, s), the match can only continue to positions of the form (b, t) where t ∈ R∗[s].
Moreover, the game can never go back towards the root of the tree. Therefore, it
is to be expected that formulas that correspond to parity automata also ‘restrict
to descendants.’ This concept is formalized as follows.

7.1.12. Definition. The forward-looking fragment µFOE» of µFOE is defined
as the smallest collection of formulas such that:

• It contains the atomic formulas p(x), x ≈ y for all p ∈ P and x, y ∈ iVar,
• It is closed under Boolean connectives,
• If x = (x1, . . . , xm) are individual variables and ϕ(x, y) is a µFOE»-formula

whose free variables are among {x, y} then the formulas

∃y.(R(xj, y) ∧ ϕ(x, y)) and ∀y.(R(xj, y)→ ϕ(x, y))

are in µFOE» for all 1 ≤ j ≤ m.

180 Chapter 7. Concrete first-order automata

• If ϕ(q, y) is a µFOE»-formula which is positive in q and whose only free
individual variable is y then [LFPq:y.ϕ(q, y)](x) is in µFOE» for all q ∈ P.

Observe that binary relation R only occurs as guard, and that the fixpoints
of µFOE» are parameter-free.

7.1.13. Definition. Let ϕ ∈ µFOE» be such that FV (ϕ) ⊆ {z}. We say that
ϕ restricts to descendants if for every model M, assignment g and p ∈ P the
following holds:

M, g |= ϕ iff M[p�R∗[z]], g |= ϕ

where R∗[z] :=
⋃
iR
∗[g(zi)].

7.1.14. Remark. The reader may have expected an alternative definition which
requires that M, g |= ϕ iff M[P�R∗[z]], g |= ϕ or even that M, g |= ϕ if and only
if M[P�R∗[FV (ϕ)]], g |= ϕ.1 All these definitions can be proved to be equivalent,
and we keep the above version because it will simplify our inductive proofs.

7.1.15. Remark. Restriction to descendants is a weak kind of invariance under
generated submodels. Suppose that for formulas ϕ ∈ µFOE whose free variables
are among x we say that ϕ is invariant under generated submodels if for every
model M and assignment g we have:

M, g |= ϕ iff M↓x, g |= ϕ

where M↓x is the submodel of M generated by g(x1), . . . , g(xm). As an example,
the formula ϕ(x) := ∃y.¬R(x, y) is not invariant under generated submodels but,
as no p occurs in it, it trivially restricts to descendants of x. The fragment µFOE»

can be proved to be invariant under generated submodels, but we don’t do it in
this dissertation because we will not need it.

In order to prove that every formula of µFOE» restricts to descendants we will
first define an analogous notion for maps, and study the fixpoints of such maps.
This analysis will be instrumental to prove that if ψ(q, y) restricts to descendants
then [LFPq:y.ψ(q, y)](z) restricts to descendants as well.

7.1.16. Definition. A map G : ℘(M)n → ℘(M) on a modelM is said to restrict
to descendants if for every s ∈M and X ∈ ℘(M)n we have that

s ∈ G(X) iff s ∈ G(X ∩R∗[s]).

7.1.17. Theorem. If G(X,Y) is monotone and restricts to descendants then
the map H(Y) := LFPX .G(X,Y) also restricts to descendants.

1Recall that M[P�X] is defined as M[p 7→ κ\(p) ∩X | p ∈ P].

7.1. Automata for MSO 181

Proof. Define the abbreviations F (X) := G(X,Y) and Fs(X) := G(X,Y ∩
R∗[s]) ∩R∗[s]. We first prove the following claim linking F and Fs.

Claim 1. For every t ∈ R∗[s] we have that t ∈ F (X) iff t ∈ Fs(X).

Proof of Claim. Direct using restriction to descendants and monotonicity,
together with the observation that R∗[t] ⊆ R∗[s]. J

This connection also lifts to the approximants of the least fixpoints of F and Fs.

Claim 2. For every t ∈ R∗[s] we have that t ∈ Fα(∅) iff t ∈ Fα
s (∅).

Proof of Claim. We prove it by transfinite induction. For the base case it
is clear that F 0(∅) = ∅ = F 0

s (∅). For the inductive case of a successor ordinal
α + 1 let t belong to R∗[s]. we have:

t ∈ Fα+1(∅) iff t ∈ F (Fα(∅)) (by definition)
iff t ∈ Fs(Fα(∅)) (by Claim 1)
iff t ∈ Fs(Fα

s (∅)) (by IH)
iff t ∈ Fα+1

s (∅). (by definition)

The case of limit ordinals is left to the reader. J

The following claim is direct by the definition of Fs as G(X,Y ∩R∗[s]) ∩R∗[s].

Claim 3. LFPX .Fs(X) ⊆ LFPX .G(X,Y ∩R∗[s]).

Finally, we use the claims and prove that s ∈ LFPX .G(X,Y) if and only if
s ∈ LFPX .G(X,Y ∩R∗[s]) which means that H(Y) restricts to descendants.

⇐ The key observation for this direction is that G(X,Y∩R∗[s]) ⊆ G(X,Y) by
monotonicity of G. Therefore LFPX .G(X,Y ∩R∗[s]) ⊆ LFPX .G(X,Y).

⇒ If s ∈ LFPX .G(X,Y) then there is an ordinal β such that s ∈ F β(∅). By
Claim 2, we then have that s ∈ F β

s (∅) and hence s ∈ LFPX(Fs(X)). Using
Claim 3 we can conclude that s ∈ LFPX .G(X,Y ∩R∗[s]). �

The connection between the notions of restriction to descendants for formulas
and maps is given in the following proposition.

7.1.18. Proposition. Let ϕ ∈ µFOE restrict to descendants and be such that
FV (ϕ) ⊆ {x}. For every model M, assignment g and predicates Q ⊆ P the map
Gx : ℘(M)n → ℘(M) given by:

Gx(Z) := {t ∈M |M[Q 7→ Z], g[x 7→ t] |= ϕ}

restricts to descendants.

182 Chapter 7. Concrete first-order automata

Proof. An element t belongs to Gx(Z) iff M[Q 7→ Z], g[x 7→ t] |= ϕ. As ϕ
restricts to descendants, this occurs iff M[Q 7→ Z ∩ R∗[t]], g[x 7→ t] |= ϕ. By
definition of Gx, this is equivalent to saying that t ∈ Gx(Z ∩ R∗[t]). That is, the
map Gx restricts to descendants. �

We are now ready to prove the main lemma about µFOE».

7.1.19. Lemma. Every ϕ ∈ µFOE» restricts to descendants.

Proof. Fix p ∈ P, we prove the statement (of Definition 7.1.13) by induction.

• If ϕ does not include p or ϕ = p(x) the statement is clear.

• Let ϕ(p,x,y) = ψ1(p,x) ∨ ψ2(p,y); and consider z such that {x,y} ⊆ {z}.
⇒ Without loss of generality supposeM, g |= ψ1, then by inductive hypothesis
we know that M[p�R∗[z]], g |= ψ1. From this we conclude M[p�R∗[z]], g |= ϕ.

⇐ Without loss of generality suppose M[p�R∗[z]], g |= ψ1. By inductive hy-
pothesis we get M, g |= ψ1 which clearly implies M, g |= ϕ.

• Negation is handled by the inductive hypothesis.

• Let ϕ(p,x) = ∃y.(R(xj, y) ∧ ψ(x, y)); and consider z such that {x} ⊆ {z}.
⇒ Suppose M, g |= ϕ. Then there is sy ∈ R[g(xj)] such that M, g[y 7→ sy] |=
ψ(x, y). By inductive hypothesis we get M[p�R∗[z, y]], g[y 7→ sy] |= ψ(x, y) and
as sy ∈ R[g(xj)] and xj ∈ z we get that M[p�R∗[z]], g[y 7→ sy] |= ψ(x, y). From
this, we can conclude that M[p�R∗[z]], g |= ∃y.(R(xj, y) ∧ ψ(x, y)).

⇐ Suppose M[p�R∗[z]], g |= ϕ. Then there exists an element sy ∈ R[g(xj)]
such that M[p�R∗[z]], g[y 7→ sy] |= ψ(x, y). As sy ∈ R[g(xj)] and xj ∈ z we
know that R∗[z] = R∗[z, y]. Therefore we also have that M[p�R∗[z, y]], g[y 7→
sy] |= ψ(x, y). By inductive hypothesis we get M, g[y 7→ sy] |= ψ(x, y). From
this, we can conclude M, g |= ∃y.(R(xj, y) ∧ ψ(x, y)).

• Let ϕ = [LFPq:x.ψ(q, x)](z). Observe that by definition of the fragment, we
have FV (ϕ) = {z}, q is positive in ψ and FV (ψ) ⊆ {x}. Consider z such that
z ∈ {z}, we have to prove that

M, g |= ϕ iff M[p�R∗[z]], g |= ϕ.

By the semantics of the fixpoint operator M, g |= ϕ iff g(z) ∈ LFP(FM
q:x) where

FM
q:x(Q) := {t ∈M |M[q 7→ Q], g[x 7→ t] |= ψ}.

It will be useful to take a slightly more general definition: consider the map

Gψ
q:x(Q,P) := {t ∈M |M[q 7→ Q; p 7→ P], g[x 7→ t] |= ψ}

7.1. Automata for MSO 183

and observe that FM
q:x(Q) = Gψ

q:x(Q, κ
\(p)) and therefore their least fixpoints

will be the same. By inductive hypothesis and Proposition 7.1.18, we know
that Gψ

q:x(Q,P) restricts to descendants. Using Theorem 7.1.17 we get that
LFPQ.G

ψ
q:x(Q, κ

\(p)) restricts to descendants as well. That is,

g(z) ∈ LFPQ.G
ψ
q:x(Q, κ

\(p)) iff g(z) ∈ LFPQ.G
ψ
q:x(Q, κ

\(p) ∩R∗[g(z)]).

Because z ∈ {z} and the monotonicity of Gψ
q:x, we also get that

g(z) ∈ LFPQ.G
ψ
q:x(Q, κ

\(p)∩R∗[g(z)]) iff g(z) ∈ LFPQ.G
ψ
q:x(Q, κ

\(p)∩R∗[z]).

Using the definition of FM
q:x and the above equations we can conclude that

g(z) ∈ LFP(FM
q:x) iff g(z) ∈ LFP(FM[p�R∗[z]]

q:x).

From this, we finally get M, g |= ϕ iff M[p�R∗[z]], g |= ϕ.

This finishes the proof of the lemma. �

The translations. First we show that for every A ∈ Aut(FOE1) it is possible
to give a formula ϕ»

A(x) ∈ µFOE» which is equivalent on all transition systems.

7.1.20. Proposition. For every automaton A ∈ Aut(FOE1,P) we can effec-
tively construct a formula ϕ»

A(x) ∈ µFOE»(P) with exactly one free variable x,
such that for every transition system S, and s ∈ S

∃ wins A(A,S)@(aI , s) iff S |= ϕA(s).

Proof. Because of Lemma 4.4.4 we may assume that A can be decomposed as a
tree with back edges (A,E,B). First we need the following definitions:

$c(x) :=
∧
p∈c

p(x) ∧
∧
p∈P\c

¬p(x) βa(x) :=
∨
c∈C

(
$c(x) ∧∆g

a,c(x)
)

where ∆g
a,c is a guarded version of ∆(a, c), defined as

∆g
a,c(x) := ∆(a, c)[∃y.α 7→ ∃y.(R(x, y) ∧ α);∀y.α 7→ ∀y.(R(x, y)→ α)].

Now we define auxiliary formulas {χa(x)}a∈A by induction, on the tree (A,E).

χa(x) :=

{
[LFPa:z.βa(z)[a′(y) 7→ χa′(y) | (a, a′) ∈ E]](x) if Ω(a) is odd
[GFPa:z.βa(z)[a′(y) 7→ χa′(y) | (a, a′) ∈ E]](x) if Ω(a) is even.

Observe that if a is a leaf then {(a, a′) ∈ E} is empty; therefore the induction is
well-defined. Finally, we set ϕ»

A(x) := χaI (x). For an arbitrary a ∈ A, the formula

184 Chapter 7. Concrete first-order automata

χa(x) may have unbound (free) predicates from A. However, in the formula ϕ»
A(x)

every such predicate is bound by a fixpoint operator.
The equivalence of A and ϕ»

A(x) is a corollary of the following claim. First we
introduce the following definition: for every a ∈ A, the automaton ANa is obtained
by A by restricting the domain of A to the states that are below (of equal) to a
in the tree (A,E). That is, the subtree generated by a. This does not include
any predecessor of a even if there is a back-edge to it.

Claim 1. Fix a ∈ A and let V : FV(χa) → ℘(S) be a valuation for the free
names of A in χa. For every transition system S we have:

SV |= χa(s) iff ∃ wins A(ANa ,SV)@(a, s),

where SV := S[b 7→ V (b) | b ∈ FV(χa)].

Proof of Claim. This proof is very similar in spirit to what it is done in [Ven11,
Theorem 3.14 and 3.27]; we only give a sketch of the case where Ω(a) is odd.

⇒ Suppose that a is a leaf, then χa(x) = [LFPa:z.βa(z)](x) and ANa is an automa-
ton of one state a, possibly with a back edge to itself. Suppose that SV |= χa(s)
and let X ⊆ S be the least fixpoint of the map F βa

a . By definition we have that
s ∈ X and that for all t ∈ X we have SV |= βa(t). Now we give a strategy for ∃ in
the acceptance game A(ANa ,SV)@(a, s): whenever ∃ is at a basic position (a, t′)
she plays the valuation V ′ := V [a 7→ X]�R[t′]. That is, V ′ is the extension of V
with V (a) := X and afterwards restricted to the successors of t′. It is not difficult
to see that, as X is a least fixpoint, this strategy is winning for ∃ in finitely many
steps. The case where a is not a leaf is proved in a similar way, composing the
strategies obtained by inductive hypothesis.

⇐ Suppose that a is a leaf. We prove the contrapositive: if s /∈ LFP(F βa
a) then

∀ wins A(ANa ,SV)@(a, s). We give a winning strategy for ∀. Suppose that ∃
plays an admissible valuation U ; a brief inspection reveals that SV , U |= βa(s)
or, in other words, s ∈ F βa

a (U(a)). Now, the key observation is that U(a) 6⊆
LFP(F βa

a) because otherwise s ∈ F βa
a (U(a)) ⊆ F (LFP(F βa

a)) ⊆ LFP(F βa
a) which

would contradict that s /∈ LFP(F βa
a). Therefore, ∀ can choose some position

(a, t′) ∈ ZU such that t′ /∈ LFP(F βa
a). In this position, we are again where

we started. Consequently, either ∃ loses the match because she gets stuck, or
the match continues indefinitely, going through state a infinitely many times.
The parity of a is odd and it is the lowest parity in the (sub)automaton, by
construction of the unraveling (cf. Definition 4.4.2(5)). This means that ∃ loses
one way or another. The inductive case is left to the reader. J

Claim 2. ϕ»
A(x) ∈ µFOE».

7.1. Automata for MSO 185

Proof of Claim. The formula ϕ»
A(x) can be seen to belong to µFOE» by a

simple inspection of the construction: more specifically, the definition of ∆g
a,c(x)

guards every quantifier, and the fixpoint operators introduced in every χa(x) are
exactly of the form required by the fragment µFOE». J

It is worth observing that, as a consequence of the last claim, the fixpoints oper-
ators of ϕ»

A(x) do not use parameters. �

As a corollary, we get the following translation on trees.

7.1.21. Corollary. For every automaton A ∈ Aut(FOE1,P) we can effectively
construct a sentence ϕA ∈ µFOE(P) such that for every tree T,

T |= A iff T |= ϕA.

Proof. Simply set ϕA := ∃x.isroot(x) ∧ ϕ»
A(x). �

Historical remarks and related results. The fragment µFOE» defined here
is similar in spirit to the bounded and guarded fragments defined in [ABM99,
GW99, ANB98]. The most natural perspective is to see µFOE» as an extension
of the bounded fragment of first-order logic given in [ABM99] to first-order logic
with fixpoints. In [GW99] the authors introduce a guarded fragment of µFOE,
however, they aim to make it as big as possible. For example, their formalism
can define the mu-calculus with backward-looking modalities, and therefore is not
invariant under generated submodels.

7.1.3 From FO(LFP1) to MSO

This section contains a discussion about the translation of formulas of µFOE to
MSO. The first observation to be made is that, as µFOE contains individual
variables, it will be easier to use the two-sorted 2MSO as a target language.

7.1.22. Proposition. There exists an effective translation ST : µFOE(P) →
2MSO(P) such that for every model M, assignment g and formula ϕ ∈ µFOE(P)
we have M, g |= ϕ iff M, g |= ST(ϕ).

Proof. Most of the translation is just given homomorphically as expected:

• ST(p(x)) := p(x),

• ST(R(x, y)) := R(x, y)

• ST(x ≈ y) := x ≈ y

• ST(ϕ ∨ ψ) := ST(ϕ) ∨ ST(ψ),

• ST(¬ϕ) := ¬ST(ϕ),

186 Chapter 7. Concrete first-order automata

• ST(∃x.ϕ) := ∃x.ST(ϕ),

and the translation of the fixpoint [LFPp:y.ψ(p, y, z)](x) is given by:

∀W.
(
W ∈ PRE(Fψ

p:y)→ x ∈ W
)

where the predicate W ∈ PRE(Fψ
p:y) expresses that W is a prefixpoint of Fψ

p:y.
Namely, that Fψ

p:y(W) ⊆ W . This predicate can be defined in first-order logic as

W ∈ PRE(Fψ
p:y) := ∀x.(ψ(p, x, z)→ x ∈ W).

This translation is justified by the following fact about monotone maps:

s ∈ LFP(Fψ
p:y) iff s ∈

⋂
{W ⊆M | W ∈ PRE(Fψ

p:y)}.

That is, an element belongs to the least fixpoint of a monotone map if and only
if it belongs to every prefixpoint of that map. �

Observe that the crucial element of this proof is that MSO can easily encode
the least fixpoint of a map using second-order quantification. We will see in the
following sections that this becomes increasingly more difficult when we restrict
the quantification to finite sets (i.e., WMSO) and finite chains (i.e., WCL).

7.1.4 Subtleties of the obtained translations

In the previous sections we have given translations between many formalisms.
Namely, we can write the translations as the following chain:

MSO→ Aut(FOE1)→ µFOE» ↪→ µFOE→ 2MSO→ MSO

As the chain starts and ends with MSO, can we say that all of the above for-
malisms are equivalent? Well, not exactly; it depends on what we mean by
‘equivalent’. This apparent equivalence hides some subtleties which are explicit
in the precise statement of each translation.

For example, Proposition 7.1.20 tells us that we can go from Aut(FOE1) to
µFOE» but the target formula crucially has a free variable x which must be
evaluated at the root of the tree. Corollary 7.1.21 tells us, however, that we can
go from Aut(FOE1) to µFOE and obtain an equivalent sentence. It therefore
makes more sense to say that Aut(FOE1) ⊆ µFOE instead of the same statement
with µFOE». Moreover, we already observed that in µFOE we can give a formula
isroot(x) expressing that x is the root, while we cannot do that in µFOE».

Suppose now that we consider µFOE and MSO. Proposition 7.1.22 translates
µFOE(P) to 2MSO(P) in a very direct way; if the original formula was a sentence,
the target formula will also be a sentence. We would now be tempted to use the
translation of Proposition 2.8.3 from 2MSO to MSO to get that µFOE(P) is

7.2. Automata for WMSO 187

at most as expressive as MSO(P). Here, again, there is a subtle point to be
taken into account: the mentioned translation adds extra propositional variables
PiVar := {px | x ∈ iVar} for each individual (first-order) variable. Hence, the
relationship we get is then µFOE(P) ⊆ MSO(P ∪ PiVar).

These observations are consistent with the following: suppose that we start
with a formula ϕ(z) ∈ µFOE with free variables z. If we go through the above
diagram to MSO, and then from MSO to µFOE again, we obtain a sentence
ϕ′ ∈ µFOE. It would be strange to have such an equivalence, if we did not
change the set of propositional variables.

7.2 Automata for WMSO

In this section we give an automata characterization for WMSO, on trees. Namely,

7.2.1. Theorem. WMSO and Autwc(FOE∞1) are effectively equivalent on trees.

We start by defining what a WMSO-automaton is.

7.2.2. Definition. A WMSO-automaton is an automaton from Autwc(FOE∞1).

The main result of this section is that the formalisms Autwc(FOE∞1), µcFOE∞

and WMSO are effectively equivalent on trees. Before going into details, it is
worth discussing the rationale behind choosing Autwc(FOE∞1) as the automata
for WMSO, and why the more standard automata Autwc(FOE1) based on the
one-step language FOE1 do not work.

Why Autwc(FOE∞1) and not Autwc(FOE1)? In Section 4.2 we discussed extra
constraints on parity automata driven by the will to characterize WMSO, and we
defined continuous-weak automata for an arbitrary one-step language. However,
if we turn to concrete automata (as we do in this chapter) then only adding
constraints will not suffice to characterize WMSO, at least not if we start from
the class of automata Aut(FOE1).

Since we know that Aut(FOE1) characterizes MSO on trees, then every con-
straint on Aut(FOE1) will give a logic which is at most as expressive as MSO.
However, even on trees of arbitrary branching degree, the logics MSO and WMSO
are incomparable. Therefore, we cannot get WMSO from simply constraining
Aut(FOE1), even if the continuity condition sounds reasonable.

As a starting motivation towards using FOE∞1 as a one-step language, we can
consider the contents of Theorem 3.2.28. This theorem states that, on one-step
models, WMSO and FOE∞1 are equivalent. This is a good sign since, if we want
our automata to be equivalent to WMSO on trees, in particular we want the
formalisms to be equivalent on one-step models.

188 Chapter 7. Concrete first-order automata

To prove the equivalence of Autwc(FOE∞1) and WMSO we proceed similarly
to the case of MSO (i.e., Section 7.1). We first prove a simulation theorem in
full detail, which will shortly after be used to prove closure of Autwc(FOE∞1)
under projection. However, it is crucial to observe that Autwc(FOE∞1) will not
be closed under arbitrary set projection (i.e., MSO quantification) but it will be
closed under finite set projection (i.e., WMSO quantification).

7.2.1 Simulation theorem

In Section 7.1.1 we saw that every MSO-automaton is equivalent to a non-
deterministic automaton. Unfortunately, the transformation performed by The-
orem 7.1.9 does not preserve the weakness and continuity conditions (see [Zan12,
Remark 3.5]), and therefore it does not provide non-deterministic automata for
the class Autwc(FOE∞1).

Before developing an alternative solution for Autwc(FOE∞1), we would like to
make a point about the alphabet of the automata in this section. As shown in
the case of MSO, the goal of this section is to introduce the necessary tools (in
particular a simulation theorem) to obtain a projection lemma (e.g., Lemma 7.1.11
for MSO). Until now we have used a fixed context set of propositions P for our
automata. However, when stating and proving projection theorems it is natural
to divert from this set of propositions: given an automaton A based on some set of
propositions P′]{p}, its projection ∃p.A should be based on the set P′. Therefore,
in this section we will generally work with an arbitrary set of propositions P′ ⊆ P.

In this section we provide, for every automaton A ∈ Autwc(FOE∞1 ,P
′) and

p ∈ P′, an automaton A÷p ∈ Autwc(FOE∞1 ,P
′) which, although not being fully

non-deterministic, is specially tailored to prove the closure of Autwc(FOE∞1) under
finite set projection. The key property of A÷p is that it is equivalent to A for a
certain class of trees. Namely, the class of P′-trees T such that κ\(p) is finite.

For all T with κ\(p) finite we have: T |= A÷p iff T |= A.

Recall that κ\ : P′ → ℘(T) is the valuation associated to T.

7.2.3. Convention. To reduce the amount of parentheses in the notation, we
sometimes use A℘ to denote the set ℘(A).

The state space of A÷p will be the disjoint union of two parts:

• A non-deterministic part based on A℘; and

• An alternating part based on A.

The non-deterministic part will basically be a powerset construction of A, and
contain the initial state of the automaton. It will have very nice properties en-
forced by construction:

7.2. Automata for WMSO 189

• It will behave non-deterministically,

• The parity of every state will be 1 (trivially satisfying the weakness condi-
tion); and

• The transition map of every state will be continuous in A℘.

The alternating part is a copy of A modified such that it cannot be used to read
nodes colored with the propositional variable p. The automaton A÷p is therefore
based both on states from A and on “macro-states” from A℘. Moreover, the tran-
sition map of A÷p is defined such that if a match goes from the non-deterministic
part to the alternating part, then it cannot come back. Successful runs of A÷p
will have the property of processing only a finite amount of the input being in
a macro-state and all the rest behaving exactly as A (but without reading any
node colored with p).

Fig. 7.2 shows an schematic view of the two-part construction: on the right
side it shows a copy of the original automaton, now as the alternating part of
the construction. On the left side it shows the non-deterministic part of the
construction, where macro-states consist of many former states of the original
automaton. Besides the internal transitions of each part, there are also transitions
from the non-deterministic to the alternating part.

Figure 7.2: Two-part construction illustration, initial state marked as a diamond.

The next definition introduces some notions of strategies that are closely re-
lated to our desiderata on the two-part construct.

7.2.4. Definition. Given an automaton A ∈ Aut(L), a subset B ⊆ A of the
states of A, and a tree T; a strategy f for ∃ in A(A,T) is called:

• Functional in B if for each node s ∈ T there is at most one b ∈ B such that
(b, s) belongs to Tf .

190 Chapter 7. Concrete first-order automata

• Finitely branching in B if every node of Tf with a state from B only has
finitely many successors with a state from B.
• Well-founded in B if the set of nodes of Tf with a state from B are all

contained in a well-founded subtree of Tf .

We will construct A÷p such that it satisfies the properties of the above definition
(for every tree and strategy) for the set of states A℘. That is, for the non-
deterministic part.

In order to define the non-deterministic part of A÷p we need to do two things:
(1) first, lift the state space A of A to A℘ and adapt the formulas in the transition
map ∆ of A accordingly; (2) ensure that the formulas of the non-deterministic
part are continuous in A℘.

The first step is standard: for Q ∈ A℘ and c ∈ ℘(P) one first considers the
formula ΦQ,c =

∧
a∈Q ∆(a, c). Since the macro-state Q is supposed to encode

concurrent matches πa∈Q of the acceptance game, it is natural that the transition
map of Q should contain the moves for every state in Q. The next step is to lift
ΦQ,c to use the set of names A℘ instead of A. For this matter, we assume that it
is in the normal form

∨∇+
FOE∞(T,Π,Σ) and define a lifting for the disjuncts. For

example, suppose that ΦQ,c contains a disjunct α = ∇+
FOE∞({a, b}·{a}, {a}, {a})

belonging to FOE∞1
+(A). That is, in this case T contains the two sets T1 := {a, b}

and T2 := {a}; while Π and Σ only contain the set {a}. The usual approach is to
define the lifted version of α as α′ := ∇+

FOE∞({{a, b}}·{{a}}, {{a}}, {{a}}) which
now belongs to FOE∞1

+(A℘). The problem with this formula, is that it is not
continuous in A℘. The reason is that {{a}} ⊆ A℘ belongs to the third argument
of ∇+

FOE∞ , and this is not allowed for formulas continuous in A℘ –see the normal
forms in Corollary 5.1.44.

To overcome this problem, we will only perform a partial lifting on α. That
is, we lift α in such a way that we obtain a formula which is continuous in A℘.
For α, there are eight ways to do this (changes are underlined):

α′1 := ∇+
FOE∞({a, b}·{a}, {a}, {a}) α′2 := ∇+

FOE∞({a, b}·{a}, {{a}}, {a})
α′3 := ∇+

FOE∞({{a, b}}·{a}, {a}, {a}) α′4 := ∇+
FOE∞({{a, b}}·{a}, {{a}}, {a})

α′5 := ∇+
FOE∞({a, b}·{{a}}, {a}, {a}) α′6 := ∇+

FOE∞({a, b}·{{a}}, {{a}}, {a})
α′7 := ∇+

FOE∞({{a, b}}·{{a}}, {a}, {a}) α′8 := ∇+
FOE∞({{a, b}}·{{a}}, {{a}}, {a})

We call these liftings ‘continuous liftings’ of α and then define α′ :=
∨
i α
′
i.

7.2.5. Remark. We can define the following order among these liftings: we say
that α′i ≤℘ α′j if every element which is lifted in α′i is also lifted in α′j. Observe
that for our example, α′1 is a minimal element (and a minimum) of this order
and α′8 is a maximal element (and a maximum). Later, it will become evident in
Lemma 7.2.10 that it would have been enough to take α′ := α′8 or, more generally,
define α′ as the disjunction of the maximal elements of ≤℘. The maximal elements
will play a more important role in the definition of liftings for WCL.

7.2. Automata for WMSO 191

The main intuition behind this definition is the ‘finitely branching’ condition
of Definition 7.2.4. Recall that the branching of Tf is given by the choices of ∀ to
continue the current match. What we want, is that at any given point of a match
of the acceptance game, at most finitely many of the choices of ∀ can stay in the
non-deterministic part, and the rest of the branching matches should go to the
alternating part. That is, ∃ should never be required to colour more than finitely
many elements with a state of A℘. We obtain this through the continuity of α′.

This construction can be done effectively for every α, and by extension for
every ΦQ,c by considering it in normal form and processing each part. We will
denote the resulting formula as ΨQ,c ∈ FOE∞1

+(A℘∪A). This finishes the intuitive
explanations and we now turn to the necessary definitions to prove the results.

7.2.6. Definition. Let α ∈ FOE∞1
+(A) be of the shape ∇+

FOE∞(T,Π,Σ) for
some T ∈ ℘(A)k and Σ ⊆ Π ⊆ A℘. We say that α′ ∈ FOE∞1

+(A℘ ∪ A) is a
continuous lifting of α if

(i) α′ = ∇+
FOE∞(R,Π′,Σ) for some R ∈ ℘(A℘ ∪ A)k and Π′ ∈ ℘(A℘),

(ii) For every i, either: (a) Ri = Ti, or (b) Ti 6= ∅ and Ri = {Ti}.
(iii) For every S ∈ Π, either: (a) S ∈ Π′, or (b) S 6= ∅ and {S} ∈ Π′.

(iv) For every S ′ ∈ Π′, either: (a) S ′ ∈ Π, or (b) S ′ = {S} for some ∅ 6= S ∈ Π.

Observe that every such α′ is continuous in A℘ since A℘ ∩⋃Σ = ∅, as required
by Corollary 5.1.44(ii).

7.2.7. Definition. Let A = 〈A,∆,Ω, aI〉 ∈ Autwc(FOE∞1). Let c ∈ ℘(P′) be a
color and Q ∈ A℘ be a macro-state. First consider the formula

∧
a∈Q ∆(a, c). By

Corollary 5.1.35 there is ΦQ,c ∈ FOE∞1
+(A) such that ΦQ,c ≡

∧
a∈Q ∆(a, c) and

ΦQ,c is in the basic form
∨
j ϕj where each ϕj = ∇+

FOE∞(T,Π,Σ) for some T and
Σ ⊆ Π. We define:

ΨQ,c :=
∨
j

∨
{ψ | ψ is a continuous lifting of ϕj}.

Observe that ΨQ,c belongs to FOE∞1
+(A℘ ∪ A) and is continuous in A℘. The

latter is because the continuous liftings have this property, which is preserved by
disjunction.

We are finally ready to define the two-part construct.

7.2.8. Definition. Let A = 〈A,∆,Ω, aI〉 belong to Autwc(FOE∞1 ,P
′) and let p

be a propositional variable. We define the two-part construct of A with respect to

192 Chapter 7. Concrete first-order automata

p as the automaton A÷p = 〈AF ,∆F ,ΩF , aFI 〉 ∈ Autwc(FOE∞1 ,P
′) given by:

AF := A ∪ A℘
aFI := {aI}

ΩF (Q) := 1
ΩF (a) := Ω(a)

∆F (Q, c) := ΨQ,c

∆F (a, c) :=

{
⊥ if p ∈ c,
∆(a, c) otherwise.

Before proving that the two-part construct satisfies nice properties we need
a few propositions. The following two lemmas show how to go from admissible
moves in the two-part construct to the original automaton and vice-versa.

7.2.9. Lemma (nd to alt). Given an automaton A from Autwc(FOE∞1 ,P
′), a

macro-state Q ∈ A℘ and a color c ∈ ℘(P′) such that (D, VQ,c) |= ΨQ,c for some
valuation VQ,c : A℘ ∪ A→ ℘(D); there is a valuation U : A→ ℘(D) such that

(i) (D,U) |= ∆(a, c) for all a ∈ Q,
(ii) If d ∈ U(b) then either

(a) d ∈ VQ,c(b), or
(b) d ∈ VQ,c(Q′) for some Q′ ∈ A℘ such that b ∈ Q′.

Proof. Define U : A→ ℘(D) as

U(b) := VQ,c(b) ∪
⋃
b∈Q′

VQ,c(Q
′).

Recall that ΨQ,c :=
∨
j

∨{ψ | ψ is a continuous lifting of ϕj}. As a first step, let
(D, VQ,c) |= ψ where ψ is a continuous lifting of some ϕj. Recall that by definition
of continuous lifting (cf. Definition 7.2.6) the difference between ψ and ϕj is that
for every Q′(x) in ψ there is

∧{b(x) | b ∈ Q′} in ϕj at the same position. Given
a subformula β of ψ, we use β⇓ := β[Q′(x) 7→ ∧{b(x) | b ∈ Q′} | Q′ ∈ A℘] to
denote the lowering of β.

Claim 1. For every β D ψ we have (D, VQ,c), g |= β iff (D,U), g |= β⇓.

Proof of Claim. This claim is proved by induction on β. If β = a(x) for some
a ∈ A then the lowering does not change β, and the equivalence is clear because
d ∈ U(a) iff d ∈ VQ,c(a) by definition of U .

If β = Q′(x) then β⇓ =
∧{b(x) | b ∈ Q′}. From left to right suppose that

g(x) ∈ VQ,c(Q′). By definition of U we have g(x) ∈ U(b) for all b ∈ Q′. Therefore
we conclude that (D,U), g |= β⇓.

All the other cases are direct by induction hypothesis, since the lowering
operation works homomorphically on them; for example (γ1 ∨ γ2)⇓ = γ⇓1 ∨ γ⇓2 . J

7.2. Automata for WMSO 193

As (D, VQ,c) |= ψ, it is direct from this claim that (D,U) |= ψ⇓ = ϕj. Hence,
as
∨
j ϕj ≡

∧
a∈Q ∆(a, c), we get that (D,U) |= ∆(a, c) for all a ∈ Q. �

7.2.10. Lemma (alt to nd). Let A belong to Autwc(FOE∞1 ,P
′), Q ∈ A℘ be a

macro-state, and c ∈ ℘(P′) be a color. Let {Va,c : A→ ℘(D) | a ∈ Q} be a family
of valuations such that (D, Va,c) |= ∆(a, c) for each a ∈ Q. Then, for every finite
set P ⊆ω D there is a valuation VQ,c : A ∪ A℘ → ℘(D) such that

(i) (D, VQ,c) |= ΨQ,c,

(ii) If d ∈ VQ,c(b) for b ∈ A, then d ∈ Va,c(b) for some a ∈ Q.
(iii) If d ∈ VQ,c(Q′) for Q′ ∈ A℘, then d ∈ Va,c(b) for some a ∈ Q, b ∈ Q′.
(iv) If d ∈ P ∩ VQ,c(q) then q ∈ A℘.

Proof. We first define an auxiliary valuation Vt : A → ℘(D) which gathers all
the valuations from the hypothesis, that is Vt(b) :=

⋃
a∈Q Va,c(b).

Claim 1. (D, Vt) |=
∧
a∈Q ∆(a, c).

Proof of Claim. Observe that for every a ∈ Q, b ∈ A we have Va,c(b) ⊆ Vt(b);
then by monotonicity we get that (D, Vt) |= ∆(a, c) for every a ∈ Q. J

Recall that
∧
a∈Q ∆(a, c) ≡ ∨j∇+

FOE∞(T,Π,Σ)j and

ΨQ,c :=
∨
j

∨
{ψ | ψ is a continuous lifting of ∇+

FOE∞(T,Π,Σ)j}.

Assume that (D, Vt) |= ∇+
FOE∞(T,Π,Σ)j. Observe that this formula gives a full

description of the elements of D (see Fig. 7.3). Namely,

1. There are distinct d1, . . . , dk ∈ D such that di has type Ti,

2. Every d′ ∈ D which is not among d1, . . . , dk satisfies some type in Π ∪ Σ,

3. There are infinitely many elements of each type S ∈ Σ,

4. Only finitely many elements do not witness a type in Σ, therefore, there are
finitely many elements witnessing Π \ Σ.

Let W := {d1, . . . , dk} ∪ {d ∈ D | d witnesses some S ∈ Π \ Σ} be the elements
in the white part of Fig. 7.3. It is important to observe that W will always be
finite (see point (4) above). Also note that the set P need not be included in W ,
since there could be some element d′ ∈ P which realizes a type from Σ.

We will now define a valuation VQ,c : A∪A℘ → ℘(D) which lifts the types of the
elements of W and P . We define it using the alternative marking representation
V \
Q,c : D → ℘(A ∪ A℘), as follows:

V \
Q,c(d) :=

{
{V \

t (d)} if d ∈ W ∪ P
V \
t (d) otherwise.

194 Chapter 7. Concrete first-order automata

1 · · · k k+1 · · · n n+1 · · · ∞

T ∈ ℘(A)k Π Σ

Figure 7.3: Partitioning of D.

We still need to show that (D, VQ,c) |= ψ where ψ is some continuous lifting
of ∇+

FOE∞(T,Π,Σ)j. We will prove that (D, VQ,c) |= ∇+
FOE∞(T

⇑
,Π⇑,Σ) where

T ⇑i := {Ti} and Π⇑ := {{S} | S ∈ Π, S 6= ∅} ∪ {∅ | ∅ ∈ Π}.

• It is easy to see that every di realizes the type T ⇑i by definition of VQ,c.

• The difficult part is to prove that every d ∈ D \ {d1, . . . , dk} realizes some
type in Π⇑ ∪ Σ. We divide in cases again.

(i) Suppose that d was originally a witness for some S ∈ Π \Σ in (D, Vt).
In this case, it is clear that d will realize {S} ∈ Π⇑ in (D, VQ,c).

(ii) Other possible case is that d was originally a witness for some S ∈ Σ
(therefore standing in the gray area of Fig. 7.3). We have two more
subcases: if d ∈ P we crucially use that Σ ⊆ Π and therefore S ∈ Π.
From this we can conclude that d now realizes {S} ∈ Π⇑. If on the
other hand d /∈ P then V \

t (d) = V \
Q,c(d). It is then clear that d realizes

in (D, VQ,c) the same type S which it realized in (D, Vt). By our
assumption, this type belongs to Σ (and hence to Π⇑ ∪ Σ).

• Finally, we have to prove that (i) there are infinitely many elements satis-
fying each S ∈ Σ, and (ii) only finitely many elements do not satisfy a type
from Σ. This is easy to prove recalling that W ∪ P is finite.

We finish the proof by observing that ∇+
FOE∞(T

⇑
,Π⇑,Σ) is indeed a continuous

lifting of ∇+
FOE∞(T,Π,Σ)j. �

7.2.11. Remark. Observe that, without loss of generality, ∃ can always choose
to playminimal valuations. That is, in a basic position (a, s) she plays a valuation
V : A → ℘(R[s]) such that for every t ∈ R[s] and a ∈ A, the element t belongs
to V (b) only if it is strictly needed to make ∆(a, κ(s)) true. That is, she plays
valuations V such that

If (D, V) |= ∆(a, κ(s)) then (D, V [b 7→ V (b) \ {t}]) 6|= ∆(a, κ(s))

for all a, b ∈ A and t ∈ V (b). In what follows we assume that ∃ plays minimal
valuations and we call such strategies minimal. For more detail we refer the reader
to [Zan12, Proposition 2.13].

Finally we can state and prove the properties of the two-part construct.

7.2. Automata for WMSO 195

7.2.12. Theorem. Let A ∈ Autwc(FOE∞1 ,P
′), and let p ∈ P′ be a propositional

variable, and T be a P′-tree. The following holds:

1. A÷p ∈ Autwc(FOE∞1 ,P
′).

2. If ∃ wins A(A÷p ,T)@(aFI , sI) then she has a winning strategy which is func-
tional, continuous and well-founded in A℘.

3. If κ\(p) is finite then: A÷p accepts T iff A accepts T.

Proof. (1) The key observation is that ΨQ,c is continuous in A℘.
(2) We treat the properties separately:

• Functional in A℘: Suppose that (a, s) is a position of an f -guided match where
the proposed valuation V : A → ℘(R[s]) is such that t ∈ V (Q) and t ∈ V (Q′)
for distinct Q,Q′ ∈ A℘ and some t ∈ R[s]. Let ψ be a disjunct of ΨQ,c

witnessing (R[s], V) |= ΨQ,c. As ψ is a continuous lifting, the element t has to
be witness for exactly one type Ti = {Q′′} with Q′′ ∈ A℘. As we assume that ∃
plays minimal strategies then we can assume that t ∈ V (Q′′) only, among A℘.
Therefore, t cannot be required to be a witness for both Q and Q′ at the same
time.

• Finitely branching in A℘: This is direct from the syntactical form of ΨQ,c; that
is, ΨQ,c is continuous in A℘. Assuming that ∃ plays minimal strategies then
she always proposes a valuation V where V (A℘) is finite.

• Well-founded in A℘: The game starts in A℘ and, as the parity of A℘ is 1, it
can only stay there for finitely many rounds. This means that, as f is winning,
every branch of Tf has to leave A℘ at some finite stage.

(3) ⇐ Given a winning strategy f for ∃ in G = A(A,T)@(aI , sI) we construct
a winning strategy fF for ∃ in GF = A(A÷p ,T)@(aFI , sI). We define it inductively
for a match πF of GF . While playing πF we maintain a bundle (set) B of f -guided
shadow matches. We use Bi to denote the bundle at round i. We maintain the
following condition (‡) for every round along the play:

‡1. If the current basic position in πF is of the form (Q, s) ∈ A℘ × T , then for
every a ∈ Q there is an f -guided shadow match πa ∈ B such that the current
basic position is (a, s) ∈ A× T ;

‡2. Otherwise, (a) B = {π} for some π, and the position in both πF and π is of
the form (a, s) ∈ A× T ; and moreover, (b) T.s is p-free.

Intuitively, in order to simulate A with A÷p we have to keep two things in mind:
(1) A÷p can only read p while it is in the non-deterministic part; and (2) every
choice of ∀ in G corresponds to a match that has to be won by ∃; these parallel
matches are kept track of in B and represented as a macro state in A÷p . Therefore,
we want the simulation to stay in the non-deterministic part as long as we could

196 Chapter 7. Concrete first-order automata

potentially read some p (condition ‡1). Whenever there are no more p’s to be
read, we can relax and behave exactly as A (condition ‡2).

At round 0 we initialize the bundle B = {πaI} with the f -guided match πaI
at basic position (aI , sI). It is clear that (‡1) holds. For the inductive step we
divide in cases:

• If (‡2) holds we are given a bundle Bi = {π} such that both πF and π are in
position (a, s) ∈ A × T . We define fF as f for this position. To see that this
gives an admissible move in πF observe that as T.s is p-free then p /∈ κ(s) and
hence ∆F (a, κ(s)) = ∆(a, κ(s)). Now it is ∀’s turn to make a move in πF . By
definition of ∆F , the formula ∆F (a, κ(s)) belongs to FOE∞1

+(A) and hence the
next position in πF will be of the form (a′, s′) ∈ A × T with T.s p-free. We
replicate the move in the shadow match π and hence (‡2) is preserved.

• If (‡1) holds we are given f -guided matches Bi = {πa1 , . . . , πak} such that for
the current position (Q, s) ∈ A℘ × T and for each a ∈ Q we have πa ∈ Bi. For
every match πa, the strategy f provides a valuation Va which is an admissible
move in this match. Define P := {t ∈ R[s] | T.t is not p-free} and observe
that, as κ\(p) is finite, P will be finite as well. Using Lemma 7.2.10 with P and
{Va}a∈Q we can combine these valuations into an admissible move V F in πF .

To prove that (‡) is preserved we distinguish cases as to ∀’s move: first suppose
that ∀ chooses a position of the form (b, t) ∈ A×T . Because of Lemma 7.2.10(ii)
we know that t ∈ Vaj(b) for some aj ∈ Q. That is, we can replicate this move
in one of the shadow matches πaj . We do that and set Bi+1 := {πaj} hence val-
idating (‡2a). To see that (‡2b) is also satisfied observe that Lemma 7.2.10(iv)
ensures that T.t is p-free.
For the other case, suppose that ∀ chooses a position (Q′, t) ∈ A℘×T . Similar to
the previous case, this time using Lemma 7.2.10(iii), we can trace every b ∈ Q′
back to some match πb ∈ Bi. We define πb·(b, t) as the match πb extended with
∀’s move (b, t). Finally we let Bi+1 := {πb·(b, t) | b ∈ Q′}, which validates (‡1).

Now we prove that fF is actually winning. It is clear that ∃ wins every finite
full fF -guided match (because the moves are admissible). Now suppose that an
fF -guided match is infinite. By hypothesis κ\(p) is a finite set, so after a finite
amount of rounds we arrive to an element s such that T.s is p-free. This means
–because of (‡)– that the automaton stays in A℘ only for a finite amount of steps
and then moves to A, at a position (a, s) which is winning for ∃. From there on
the match πF and π are exactly the same and, as ∃ wins π (which is f -guided for
a winning strategy f), she also wins πF .

⇒ Given a winning strategy fF for ∃ in GF = A(A÷p ,T)@(aFI , sI) we construct
a winning strategy f for ∃ in G = A(A,T)@(aI , sI). We define the strategy
inductively for a match π of G. While playing π we maintain an fF -guided

7.2. Automata for WMSO 197

shadow match πF . We maintain the following condition (‡) for every round along
the play: let (a, s) ∈ A×T be the current position in π, then one of the following
conditions holds:

‡1. The current basic position in πF is of the form (Q, s) ∈ A℘ × T with a ∈ Q,

‡2. The current basic position in πF is also (a, s) ∈ A× T .

At round 0 the matches π and πF are in position (aI , sI) and ({aI}, sI) respec-
tively, therefore (‡1) holds. For the inductive step we divide in cases:

• If (‡2) holds, the match π is in position (a, s). For this position, we let f be
defined as fF . Observe that it must be the case that p /∈ κ(s), otherwise ∃
wouldn’t have an admissible move V F in πF . Given this, and assuming that ∃
plays minimal strategies, ∃ can use the same V F in π. It is easy to see that we
can replicate ∀’s next move in the shadow match.

• If (‡1) holds, the matches π and πF are respectively in position (a, s) and (Q, s)
with a ∈ Q. The strategy fF provides a valuation V F which is admissible in πF ;
that is (R[s], Vs) |= ∆F (Q, κ(s)). Using Lemma 7.2.9 we can get a valuation U
which is admissible in π –see item (i); that is, (R[s], U) |= ∆(a, κ(s)). Suppose
now that ∀ chooses (b, t) as a next position in π. Using Lemma 7.2.9(ii) we
know that either (a) t ∈ V F (b) or, (b) there is some Q′ ∈ A℘ with b ∈ Q′

and t ∈ V F (Q′). In both cases we have a way to replicate ∀’s move in πF and
preserve (‡).

To see that f is winning we proceed similar to the other direction. �

Historical remarks and related results. The idea of a Simulation Theorem
goes back to (at least) Safra [Saf88] and Muller and Schupp [MS95]. In the first
case, Safra used an augmented state space to convert non-deterministic Büchi au-
tomata into deterministic automata. In the latter, Muller and Schupp also use an
augmented state space to convert alternating tree automata to non-deterministic
tree automata.

The idea to use a two-part automata to preserve the weakness condition was
introduced in [Zan12, FVZ13], although the authors claim that some concepts
were already present in [MSS92]. In [Zan12, FVZ13] the authors use an automaton
based on ℘(A×A) and A with a non-parity acceptance condition. This automaton
is then converted to a parity automaton with a standard trick. Using ℘(A × A)
as the state space instead of A℘ is necessary to correctly keep track of infinite
runs of the automata. The first explicit use of ℘(A × A) as the state space of
such automata seems to be in [AN01, Section 9.6.2].

Observe, however, that in the non-deterministic part of our constructions the
parity is uniformly 1 and therefore therefore any infinite run which stays in that
part will be a rejecting run. Using this observation, we give a slightly simpler

198 Chapter 7. Concrete first-order automata

construction based on A℘ and A. In this respect, the proofs are cleaner and we
avoid a non-parity acceptance condition.

7.2.2 From WMSO to Autwc(FOE∞1)

In this section we give an effective transformation from formulas of WMSO to
automata of Autwc(FOE∞1). As we observed, this class is not closed under the ex-
istential quantification of MSO (that is, under ‘projection.’) We start by proving
that this class is closed under a ‘finite set projection’.

Finite set projection.

7.2.13. Definition. Let p /∈ P′ and L be a tree language of (P′] {p})-labeled
trees. The finite set projection of L over p is the language ∃finp.L of P′-labeled
trees defined as

∃finp.L := {T | T[p 7→ Xp] ∈ L for some finite set Xp ⊆ T}.

In the following definition we give, for every A ∈ Autwc(FOE∞1 ,P
′] {p}), the

finite set projection over p, denoted ∃finp.A ∈ Autwc(FOE∞1 ,P
′). The domain and

transition function of the automaton ∃finp.A will be based on A÷p .

7.2.14. Definition. Let A belong to Autwc(FOE∞1 ,P
′] {p}). We define the fi-

nite set projection of A over p as the automaton ∃finp.A := 〈A ∪ A℘,∆∃,Ω∃, {aI}〉
from Autwc(FOE∞1 ,P

′) given as follows, for every c ∈ ℘(P′):

Ω∃(a) := Ω(a)
Ω∃(Q) := 1

∆∃(a, c) := ∆(a, c)
∆∃(Q, c) := ΨQ,c ∨ΨQ,c∪{p}

where ΨQ,c is as in Definition 7.2.7.

The key observation to be made about the above definition is that ∃finp.A
is actually defined based on the two-part construction A÷p (see Definition 7.2.8).
The main change is that the non-deterministic part (A℘) has been projected with
respect to p. This can be observed in the definition of ∆∃(Q, c).

7.2.15. Lemma. For each automaton A ∈ Autwc(FOE∞1 ,P
′] {p}) we have that

T (∃finp.A) = ∃finp.T (A).

Proof. What we need to show is that for any P′-tree T:

∃finp.A accepts T iff there is a finite set Xp ⊆ T

such that A accepts T[p 7→ Xp].

7.2. Automata for WMSO 199

However, we will show that the following statement holds:

∃finp.A accepts T iff there is a finite set Xp ⊆ T

such that A÷p accepts T[p 7→ Xp].

Since Xp is finite, Theorem 7.2.12(3) tells us that that A÷p accepts T[p 7→ Xp] iff
A accepts T[p 7→ Xp]. Therefore, the two statements above are equivalent.

⇒ It is not difficult to prove that properties (1,2) in Theorem 7.2.12 hold for
∃finp.A as well, since the latter is defined in terms of A÷p . Therefore we can
assume that the given winning strategy f∃ for ∃ in G∃ = A(∃finp.A,T)@(aFI , sI)
is functional, finitely branching and well-founded in A℘. Functionality allows us
to associate with each node s either none or a unique state Qs ∈ A℘ (cf. [Zan12,
Prop. 3.12]). We now want to isolate the nodes that f∃ treats “as if they were
labeled with p”. For this purpose, let Vs be the valuation suggested by f∃ at a
position (Qs, s) ∈ A℘ × T . As f∃ is winning, the one-step model (R[s], Vs) makes
the formula ∆∃(Qs, κ(s)) = ΨQ,κ(s) ∨ΨQ,κ(s)∪{p} true. We define

Xp := {s ∈ T | Qs is defined and (R[s], Vs) |= ΨQ,κ(s)∪{p}}.

The fact that f∃ is functional in A℘ guarantees that Xp is well-defined; as the
strategy is finitely branching and well-founded in A℘ we get that Xp is finite. Let
T′ := T[p 7→ Xp], we show that we can give a winning strategy f÷ for ∃ in the
game G÷ = A(A÷p ,T′)@(aFI , sI). Actually, we show that f÷ := f∃ works. We do it
by induction for a match π÷ of G÷. We keep a shadow match π∃ in G∃ such that
the following condition holds at each round:

Both matches π÷ and π∃ are in the same position (q, s) ∈ A ∪ A℘ × T . (‡)

This condition obviously holds at the beginning of the games. For the inductive
step let κ′ = κ[p 7→ Xp] be an abbreviation for the coloring of T′ and consider
the following cases:

• If the current basic position in π÷ is of the form (a, s) ∈ A × T , then by
definition of Xp we know that s /∈ Xp, so p /∈ κ′(s) and hence κ′(s) = κ(s). As
f∃ is winning in G∃ we know that the suggested valuation Va,s is admissible in
π∃, that is, (R[s], Va,s) |= ∆(a, κ(s)). As κ′(s) = κ(s), we can conclude that
(R[s], Va,s) |= ∆(a, κ′(s)) and thus is also an admissible move in π÷.

• If the current basic position in π÷ is of the form (Q, s) ∈ A℘×T we let VQ,s be
the valuation suggested by f∃ and consider the following cases:

1. If p ∈ κ′(s): then by definition of Xp we have that (R[s], VQ,s) |= ΨQ,κ(s)∪{p}.
As κ′(s) = κ(s)] {p} we have that (R[s], VQ,s) |= ΨQ,κ′(s). This is, by
definition of A÷, equivalent to (R[s], VQ,s) |= ∆F (Q, κ′(s)) and therefore
VQ,s is admissible in π÷.

200 Chapter 7. Concrete first-order automata

2. If p /∈ κ′(s): then (R[s], VQ,s) |= ΨQ,κ(s) ∨ ΨQ,κ(s)∪{p} but (R[s], VQ,s) 6|=
ΨQ,κ(s)∪{p} hence it must be the case that (R[s], VQ,s) |= ΨQ,κ(s). As κ′(s) =
κ(s), then (R[s], VQ,s) |= ΨQ,κ′(s) = ∆F (Q, κ′(s)) and therefore VQ,s is ad-
missible in π÷.

As the move by ∃ is the same in both matches it is clear that we can mimic in
the shadow match π∃ the choice of ∀ in π÷, therefore preserving (‡).

It is only left to show that this strategy is winning for ∃. It is enough to
observe that π÷ and π∃ go through the same basic positions and, as ∃ wins π∃,
she also wins π÷.

⇐ Given a winning strategy f÷ for ∃ in G÷ := A(A÷p ,T′)@(aFI , sI) it is not diffi-
cult to see that the same strategy is winning for ∃ in G∃ := A(∃finp.A,T)@(aFI , sI).
As before, we can maintain the following invariant between a match π∃ of G∃ and
a shadow match π÷ of G÷:

The matches π÷ and π∃ are in the same position (q, s) ∈ A ∪ A℘ × T .
The key observation in this case is that whenever the match π÷ is in a position
(a, s) then p /∈ κ′(s). This is because ∆F (a, c) = ⊥ if p ∈ c and that would
contradict that f÷ is winning. As a consequence, ∆∃(a, κ(s)) = ∆F (a, κ′(s)) and
therefore the move suggested by f÷ in G÷ will also be admissible in G∃. �

The translation. We are now ready to prove the main result of this section.

7.2.16. Proposition. For every formula ϕ ∈ WMSO(P) with free variables
F ⊆ P we can effectively construct an automaton Aϕ ∈ Autwc(FOE∞1 ,F) such that
for every F-tree T we have T |= ϕ iff T |= Aϕ.

Proof. The proof is by induction on ϕ.

• For the base cases p v q and R`(p, q) we use the same automata as in Sec-
tion 7.1.1. It is easy to syntactically check that these automata are continuous-
weak.

• For the Boolean cases we only discuss the closure under complementation. In
order to prove closure under complementation, we crucially use that the one-
step language FOE∞1 is closed under Boolean duals (cf. Proposition 5.1.57).

Claim 1. For every A ∈ Autwc(FOE∞1) the automaton Aδ defined in Defini-
tion 2.3.6 belongs to Autwc(FOE∞1) and recognizes the complement of T (A).

Proof of Claim. Since we already know that Aδ accepts exactly the
transition systems that are rejected by A, we only need to check that Aδ

indeed belongs to Autwc(FOE∞1). But this is straightforward: for instance,
the (co-)continuity constraint can be checked by observing the dual nature of
continuity and co-continuity. J

7.2. Automata for WMSO 201

• For the case ϕ = ∃finp.ψ let F be the set of free variables of ϕ. We only consider
the case where p is free in ψ as otherwise ϕ ≡ ψ and by induction hypothesis
we already have an automaton Aψ which we can use as Aϕ.

Let Aψ ∈ Autwc(FOE∞1 ,F] {p}) be given by the inductive hypothesis. We
define Aϕ := ∃finp.Aψ using the construction given in Definition 7.2.14. Observe
that Aϕ is an automaton over ℘(F) and that:

T |= ∃finp.Aψ iff T[p 7→ Xp] |= Aψ for a finite set Xp ⊆ T (Lem. 7.2.15)
iff T[p 7→ Xp] |= ψ for a finite set Xp ⊆ T (IH)
iff T |= ∃finp.ψ (semantics of WMSO)

This finishes the proof of the proposition. �

7.2.3 From Autwc(FOE1) to FO(LFP1)

From Section 7.1.2 we know that we can translate parity automata to the forward-
looking fragment µFOE» of µFOE. In this section we show that we can translate
an automaton A ∈ Autwc(FOE∞1) to a formula ϕ»

A(x) of the fragment µcFOE∞»

which is defined as follows.

7.2.17. Definition. The forward-looking fragment µFOE∞» of µFOE∞ is de-
fined like µFOE» (cf. Definition 7.1.12) with the additional restriction that the
generalized quantifier ∃∞x.ϕ is also guarded. The forward-looking fragment
µcFOE∞» of µcFOE∞ is defined as µcFOE∞» := µcFOE∞ ∩ µFOE∞».

We are now ready to prove the main result of this section.

7.2.18. Proposition. For every automaton A ∈ Autwc(FOE∞1 ,P) we can effec-
tively construct a formula ϕ»

A(x) ∈ µcFOE∞»(P) with exactly one free variable x,
such that for every transition system S, and s ∈ S

∃ wins A(A,S)@(aI , s) iff S |= ϕA(s).

Proof. The same proof as Proposition 7.1.20 works almost unchanged. It is easy
to see that the procedure gives us a formula ϕA(x) ∈ µFOE∞». Additionally, we
also have to check that the resulting formula belongs to the right fragment.

Claim 1. ϕA(x) ∈ µcFOE∞.

Proof of Claim. It is not difficult to show, inductively, that if a ∈ A belongs
to a maximal strongly connected component C ⊆ A of odd (resp. even) parity
then β†a(z) will be continuous (resp. co-continuous) in C ⊆ A. This is enough,
because then the fixpoint operators bind formulas of the right kind. J

202 Chapter 7. Concrete first-order automata

Hence we can conclude that ϕA(x) ∈ µcFOE∞». �

As before, we get the following corollary on trees.

7.2.19. Corollary. For every automaton A ∈ Autwc(FOE∞1 ,P) we can effec-
tively construct a sentence ϕA ∈ µcFOE∞(P) such that for every tree T,

T |= A iff T |= ϕA.

Proof. Simply set ϕA := ∃x.isroot(x) ∧ ϕ»
A(x). �

7.2.4 From µcFOE∞ to WMSO

In Proposition 3.2.37 of Chapter 3 we already proved that there is an effective
translation (−)t from µcFOE∞ to 2WMSO such that for every model M, assign-
ment g and ϕ ∈ µcFOE∞ we have: M, g |= ϕ if and only if M, g |= ϕt.

In order to prove that proposition it was crucial to characterize the least
fixpoints of continuous maps. That is, we proved that for every continuous map
F : ℘(M) → ℘(M), we have s ∈ LFP(F) iff s ∈ LFP(F�Y) for some finite set
Y ⊆M . Using this characterization, we were able to encode the fixpoint operator
of µcFOE∞ using the finite set quantification of 2WMSO.

7.3 Automata for WCL

In this section we give an automata characterization for WCL, on trees. Namely,

7.3.1. Theorem. WCL and Autwa(FOE1) are effectively equivalent on trees.

We start by defining what a WCL-automaton is.

7.3.2. Definition. A WCL-automaton is an automaton from Autwa(FOE1).

The main result of this section is that the formalisms Autwa(FOE1) and WCL
are effectively equivalent on trees. As we did for MSO and WMSO we will go
through a fixpoint logic to prove this result. If we look at our previous results, it
would seem like µaFOE is a good candidate for such a fixpoint logic. However,
this will not be the case. We defer a discussion on this to Section 7.3.4 and 7.4.

7.3. Automata for WCL 203

7.3.1 Simulation theorem

In this section we provide, for every automaton A ∈ Autwa(FOE1,P
′) and propo-

sition p ∈ P′, an automaton A÷p ∈ Autwa(FOE1,P
′) which, although not being

fully non-deterministic, is specially tailored to prove the closure of Autwa(FOE1)
under finite chain projection. The key property of A÷p is that it is equivalent to
A for a certain class of trees.

For all T where κ\(p) is a finite chain we have: T |= A÷p iff T |= A.

Recall that κ\ : P→ ℘(T) is the valuation associated to T. The construction will
be similar to what we did in Section 7.2.1, when we gave a simulation theorem
for WMSO. However, in this case we will care that the transition map of the
non-deterministic part of the automaton is completely additive in A℘.

7.3.3. Definition. Given an automaton A ∈ Aut(L), a subset B ⊆ A of the
states of A, and a tree T; a strategy f for ∃ in A(A,T) is called non-branching in
B if all the nodes of Tf with a state from B belong to the same branch of Tf .

We will construct A÷p such that it satisfies the properties of the above definition
(for every tree and strategy) for the set of states A℘. That is, for the non-
deterministic part.

In order to define the non-deterministic part of A÷p we need to adapt the
formulas in the transition map ∆ of A accordingly, and ensure that the formulas
of the non-deterministic part are completely additive in A℘.

For example, consider the formula α = ∇+
FOE({a, b}·{a}, {a})S belonging to

FOE+
1 (A). The usual approach is to define the lifted version of α as the for-

mula α′ := ∇+
FOE({{a, b}}·{{a}}, {{a}})S which now belongs to FOE+

1 (A℘). The
problem with this formula, is that it is not completely additive in A℘.

To overcome this problem, we will only perform a partial lifting on α. That
is, we lift α in such a way that we obtain a formula which is completely additive
in A℘. For α, there are three ways to do this (changes are underlined):

• α′1 := ∇+
FOE({a, b}·{a}, {a})S

• α′2 := ∇+
FOE({{a, b}}·{a}, {a})S

• α′3 := ∇+
FOE({a, b}·{{a}}, {a})S

We call these liftings ‘additive liftings’ of α and then define α′ :=
∨
i α
′
i. The main

intuition behind this definition is the ‘non-branching’ condition of Definition 7.3.3.
What we want, is that at any given point of a match of the acceptance game, at
most one of the choices of ∀ can stay in the non-deterministic part, and the rest
of the branching matches should go to the alternating part. That is, ∃ should
never be required to colour more than one element with a state of A℘. We obtain
this through the complete additivity of α′.

204 Chapter 7. Concrete first-order automata

This finishes the intuitive explanations and we now turn to the necessary
definitions to prove the results.

7.3.4. Definition. Let α ∈ FOE+
1 (A,S) be of the shape ∇+

FOE(T,Π)S for some
T ∈ ℘(A)k and Π ⊆ T. We say that α′ ∈ FOE+

1 (A℘ ∪ A,S) is an additive lifting
of α if the following conditions are satisfied:

(i) α′ = ∇+
FOE(R,Π)S for some R ∈ ℘(A℘ ∪ A)k,

(ii) For every i, either: (a) Ri = Ti, or (b) Ti 6= ∅ and Ri = {Ti}.
(iii) Case (ii.b) occurs at most once.

Consider now ψ ∈ FOE+
1 (A,S) of the shape

∧
S αS. We say that a formula

ψ′ ∈ FOE+
1 (A℘ ∪ A,S) is a additive lifting of ψ if ψ′ =

∧
S α
′
S and

(i) For every S ⊆ S, either:

(a) α′S = αS, or
(b) α′S is a additive lifting of αS.

(ii) Case (i.b) occurs at most once.

Observe that every such α′ is completely additive in A℘.

7.3.5. Definition. Let A = 〈A,∆,Ω, aI〉 ∈ Autwa(FOE1,P
′). Let c ∈ ℘(P′) be

a color and Q ∈ A℘ be a macro-state. First consider the formula
∧
a∈Q ∆(a, c). By

Corollary 5.2.25 there is a formula ΦQ,c ∈ FOE+
1 (A) such that ΦQ,c ≡

∧
a∈Q ∆(a, c)

and ΦQ,c is in the basic form
∨
j ϕj where ϕj =

∧
S∇+

FOE(T,Π)S. We define

ΨQ,c :=
∨
j

∨
{ψ | ψ is an additive lifting of ϕj}.

Observe that ΨQ,c ∈ FOE+
1 (A℘ ∪ A) and ΨQ,c is completely additive in A℘. The

latter is because the additive liftings have this property, which is preserved by
disjunction.

We are finally ready to define the two-part construct.

7.3.6. Definition. Let A = 〈A,∆,Ω, aI〉 belong to Autwa(FOE1,P
′) and let p

be a propositional variable. We define the two-part construct of A with respect to
p as the automaton A÷p = 〈AF ,∆F ,ΩF , aFI 〉 ∈ Autwa(FOE1,P

′) given by:

AF := A ∪ A℘
aFI := {aI}

ΩF (Q) := 1
ΩF (a) := Ω(a)

∆F (Q, c) := ΨQ,c

∆F (a, c) :=

{
⊥ if p ∈ c,
∆(a, c) otherwise.

7.3. Automata for WCL 205

Before proving that the two-part construct satisfies nice properties we need
a few propositions. The following two lemmas show how to go from admissible
moves in the two-part construct to the original automaton and vice-versa.

7.3.7. Lemma (nd to alt). Given an automaton A from Autwa(FOE1,P
′), a

macro-state Q ∈ A℘ and a color c ∈ ℘(P′) such that (D, VQ,c) |= ΨQ,c for some
valuation VQ,c : A℘ ∪ A→ ℘(D); there is a valuation U : A→ ℘(D) such that

(i) (D,U) |= ∆(a, c) for all a ∈ Q,
(ii) If d ∈ U(b) then either

(a) d ∈ VQ,c(b), or
(b) d ∈ VQ,c(Q′) for some Q′ ∈ A℘ such that b ∈ Q′.

Proof. This lemma is proved exactly as Lemma 7.2.9 but using the notion of
additive lifting instead of continuous lifting. �

7.3.8. Lemma (alt to nd). Let A belong to Autwa(FOE1,P
′), Q ∈ A℘ be a

macro-state, and c ∈ ℘(P′) be a color. Let {Va,c : A→ ℘(D) | a ∈ Q} be a family
of valuations such that (D, Va,c) |= ∆(a, c) for each a ∈ Q. Then, for every P ⊆ D
with |P | ≤ 1 there is a valuation VQ,c : A ∪ A℘ → ℘(D) such that

(i) (D, VQ,c) |= ΨQ,c,

(ii) If d ∈ VQ,c(b) then d ∈ Va,c(b) for some a ∈ Q.
(iii) If d ∈ VQ,c(Q′) then d ∈ Va,c(b) for some a ∈ Q, b ∈ Q′.
(iv) If d ∈ P ∩ VQ,c(q) then q ∈ A℘.

Proof. We first define an auxiliary valuation Vt : A → ℘(D) which gathers all
the valuations from the hypothesis, that is Vt(b) :=

⋃
a∈Q Va,c(b).

Claim 1. (D, Vt) |=
∧
a∈Q ∆(a, c).

Proof of Claim. Observe that for every a ∈ Q, b ∈ A we have Va,c(b) ⊆ Vt(b);
then by monotonicity we get that (D, Vt) |= ∆(a, c) for every a ∈ Q. J

Define the valuation VQ,c : A ∪ A℘ → ℘(D), using the alternative marking repre-
sentation V \

Q,c : D → ℘(A ∪ A℘), as follows:

V \
Q,c(d) :=

{
V \
t (d) if d /∈ P ,
{V \

t (d)} if d ∈ P .

and recall that
∧
a∈Q ∆(a, c) ≡ ∨i ϕi and

ΨQ,c :=
∨
j

∨
{ψ | ψ is an additive lifting of ϕj}.

206 Chapter 7. Concrete first-order automata

Assume that (D, Vt) |= ϕj. We show that (D, VQ,c) |= ψ for some additive lifting
of ϕj. If P is empty then VQ,c = Vt and as ϕj is itself a additive lifting of ϕj and
(D, Vt) |= ϕj, we can conclude that (D, VQ,c) |= ϕj and we are done.

If P = {d} we proceed as follows: first recall that the shape of ϕj is ϕj =∧
S∇+

FOE(T,Π)S. Let Sd ⊆ S be the set of sorts to which d belongs. We show
that (D, VQ,c) |= ψSd for some additive lifting ψSd of ∇+

FOE(T,Π)Sd . This will be
enough, since it is easy to show that in that case ψ := ψSd ∧

∧
S6=Sd
∇+

FOE(T,Π)S
is a additive lifting of ϕj (by Definition 7.3.4) and (D, VQ,c) |= ψ.

Our hypothesis is that (D, Vt) |= ∇+
FOE(T,Π)Sd . Also, observe that the for-

mula ∇+
FOE(T,Π)Sd gives a full description of the elements of D with sorts Sd.

Namely, if we restrict to the elements of sorts Sd, then:

• There are distinct d1, . . . , dk ∈ D such that di has type Ti,

• Every d′ ∈ D which is not among d1, . . . , dk satisfies some type in Π.

We consider the following two cases:

(1) Suppose that d = di for some i; without loss of generality assume that i = 1.
In this case it is easy to see that (D, VQ,c) |= ∇+

FOE({T1}·T2 · · ·Tk,Π)Sd , which
is an additive lifting of ∇+

FOE(T,Π)Sd .

(2) Suppose that d 6= di for all i. Then, d must have some type Sd ∈ Π. The
key observation is that Π ⊆ T. Hence, there is some Ti such that Ti = Sd.
Observe now that if we ‘switch’ the elements d and di we end up in case (1).

This finishes the proof of the lemma. �

Finally we can state and prove the properties of the two-part construct.

7.3.9. Theorem. Let A ∈ Autwa(FOE1,P
′), p ∈ P′ be a propositional variable,

and T be a P′-tree. The following holds:

1. A÷p ∈ Autwa(FOE1,P
′).

2. If ∃ wins A(A÷p ,T)@(aFI , sI) then she has a winning strategy which is func-
tional, non-branching and well-founded in A℘.

3. If κ\(p) is a finite chain then: A÷p accepts T iff A accepts T.

Proof. (1) The key observation is that ΨQ,c is completely additive in A℘.

(2) The functional and well-founded parts are shown exactly as in Theorem 7.2.12.
For the non-branching property we do as follows: This is direct from the syntac-
tical form of ΨQ,c. Observe that in each disjunct, at most one element of A℘
can occur. Assuming that ∃ plays minimal strategies then she always proposes a
valuation V where V (A℘) is a quasi-atom.

(3) This point is proved as Theorem 7.2.12(3) but using Lemma 7.3.7 and 7.3.8
to perform the transformation between alternating and functional strategies. �

7.3. Automata for WCL 207

7.3.2 From WCL to Autwa(FOE1)

In this section we give an effective transformation from formulas of WCL to
automata of Autwa(FOE1). As we observed, this class is not closed under the ex-
istential quantification of MSO (that is, under ‘projection.’) We start by proving
that this class is closed under a ‘finite chain projection’.

Finite chain projection.

7.3.10. Definition. Let p /∈ P′ and let L be a tree language of (P′]{p})-labeled
trees. The finite chain projection of L over p is the language ∃fchp.L of P′-labeled
trees defined as

∃fchp.L := {T | T[p 7→ Xp] ∈ L for some finite chain Xp ⊆ T}.

In the following definition we give, for every A ∈ Autwa(FOE1,P
′] {p}), the

finite chain projection over p, denoted ∃fchp.A ∈ Autwa(FOE1,P
′). The domain

and transition function of the automaton ∃fchp.A will be based on A÷p .

7.3.11. Definition. Let A belong to Autwa(FOE1,P
′]{p}). We define the finite

chain projection of A over p as the automaton ∃fchp.A := 〈A ∪ A℘,∆∃,Ω∃, {aI}〉
from Autwa(FOE1,P

′) given as follows, for every c ∈ ℘(P′):

Ω∃(a) := Ω(a)
Ω∃(Q) := 1

∆∃(a, c) := ∆(a, c)
∆∃(Q, c) := ΨQ,c ∨ΨQ,c∪{p}

where ΨQ,c is as in Definition 7.3.5.

The key observation to be made about the above definition is that ∃fchp.A is
actually based on the two-part construction A÷p (see Definition 7.3.6). The main
change is that the non-deterministic part (A℘) has been projected with respect
to p. This can be observed in the definition of ∆∃(Q, c).

7.3.12. Lemma. For each automaton A ∈ Autwa(FOE1,P
′] {p}) we have that

T (∃fchp.A) = ∃fchp.T (A).

Proof. Same as Lemma 7.2.15 but using the simulation theorem for WCL-
automata, i.e, Theorem 7.3.9. �

The translation. We are now ready to prove the main result of this section.

7.3.13. Proposition. For every formula ϕ ∈WCL(P) with free variables F ⊆ P
we can effectively construct an automaton Aϕ ∈ Autwa(FOE1,F) such that for
every F-tree T we have T |= ϕ iff T |= Aϕ.

208 Chapter 7. Concrete first-order automata

Proof. The proof is by induction on ϕ.

• For the base cases p v q and R`(p, q) we give the following automata, which
are a generalization of the ones given before, to the context of many relations:
Apvq := 〈{a0},∆,Ω, a0〉 where Ω(a0) = 0 and

∆(a0, c) :=

{∧
s ∀x:s.a0(x) if q ∈ c or p /∈ c,
⊥ otherwise

AR`(p,q) := 〈{a0, a1},∆,Ω, a0〉 where Ω(a0) = Ω(a1) = 0 and

∆(a0, c) :=

{
∃x:`.a1(x) ∧∧s(∀y:s.a0(y)) if p ∈ c,∧

s ∀x:s.a0(x) otherwise.

∆(a1, c) :=

{
> if q ∈ c,
⊥ if q /∈ c.

It is easy to syntactically check that these automata are additive-weak and also
it is not too difficult to see that they do what they should.

• For the Boolean cases we only discuss the closure under complementation. In
order to prove closure under complementation, we crucially use that the one-
step language FOE1 is closed under Boolean duals (cf. Proposition 5.1.57).

Claim 1. For every A ∈ Autwa(FOE1) the automaton Aδ defined in Defini-
tion 2.3.6 belongs to Autwa(FOE1) and recognizes the complement of T (A).

Proof of Claim. Since we already know that Aδ accepts exactly the tran-
sition systems that are rejected by A, we only need to check that Aδ indeed
belongs to Autwa(FOE1). But this is straightforward: for instance, the addi-
tivity and multiplicativity constraints can be checked by observing the dual
nature of these properties. J

• For the case ϕ = ∃fchp.ψ let F be the set of free variables of ϕ. We only consider
the case where p is free in ψ as otherwise ϕ ≡ ψ and by induction hypothesis
we already have an automaton Aψ which we can use as Aϕ.
Let Aψ ∈ Autwa(FOE1,F]{p}) be given by the inductive hypothesis. We define
Aϕ := ∃fchp.Aψ using the construction given in Definition 7.3.11. Observe that
Aϕ is an automaton over ℘(F) and that:

T |= ∃fchp.Aψ iff T[p 7→ Xp] |= Aψ for a finite chain Xp ⊆ T (Lem. 7.3.12)
iff T[p 7→ Xp] |= ψ for a finite chain Xp ⊆ T (IH)
iff T |= ∃fchp.ψ (semantics of WCL)

This finishes the proof of the proposition. �

7.3. Automata for WCL 209

7.3.3 From Autwa(FOE1) to FO(LFP1)

From Section 7.1.2 we know that we can translate parity automata to the forward-
looking fragment µFOE» of µFOE. In this section we show that if the automaton
is additive-weak then we can translate A ∈ Autwa(FOE1) to a formula ϕ»

A(x) of
the fragment µaFOE» which is defined as follows.

7.3.14. Definition. The forward-looking fragment µaFOE» of µaFOE is defined
as µaFOE» := µaFOE ∩ µFOE».

We are now ready to prove the main result of this section.

7.3.15. Proposition. For every automaton A ∈ Autwa(FOE1,P) we can effec-
tively construct a formula ϕ»

A(x) ∈ µaFOE»(P) with exactly one free variable x,
such that for every transition system S, and s ∈ S

∃ wins A(A, S)@(aI , s) iff S |= ϕA(s).

Proof. The same proof as Proposition 7.1.20 works almost unchanged. We need
to modify the definition of the guarding formula to deal with the sorts, as follows:

∆g
a,c(x) := ∆(a, c)[∃y:s.α 7→ ∃y.Rs(x, y) ∧ α;∀y:s.α 7→ ∀y.Rs(x, y)→ α].

Additionally, we also have to check that the resulting formula belongs to the right
fragment. We already know that ϕA(x) ∈ µFOE», we need to check the following.

Claim 1. ϕA(x) ∈ µaFOE.

Proof of Claim. It is not difficult to show, inductively, that if a ∈ A belongs
to a maximal strongly connected component C ⊆ A of odd parity (resp. even)
then β†a(z) will be completely additive (resp. multiplicative) in C ⊆ A. This is
enough, because then the fixpoint operators bind formulas of the right kind. J

Hence we can conclude that ϕA(x) ∈ µaFOE». �

As before, we get the following corollary on trees.

7.3.16. Corollary. For every automaton A ∈ Autwa(FOE1,P) we can effec-
tively construct a sentence ϕA ∈ µaFOE(P) such that for every tree T,

T |= A iff T |= ϕA.

Proof. Simply set ϕA := ∃x.isroot(x) ∧ ϕ»
A(x). �

210 Chapter 7. Concrete first-order automata

7.3.4 From µaFOE» to WCL

In this case we will make use of the correspondence between single-sorted WCL
and the two-sorted version 2WCL given in Section 2.8 and give a translation from
µaFOE» to 2WCL. It is important to observe that our source logic is µaFOE» and
not µaFOE. The reasoning behind this restriction will be discussed in Section 7.4,
after the necessary elements are introduced in the current section.

The translation will be given inductively, but before giving the translation, we
focus for a moment on the fixpoint case. Let ϕ = [LFPp:y.ψ(p, y)](x) ∈ µaFOE»

be such that FV (ψ) ⊆ {y}. Observe that, because of the definition of µFOE»,
this formula does not have parameters in the fixpoint. In consequence, the only
variable free in ϕ is x.

7.3.17. Proposition. The formula ψ(p, y) restricts to descendants and is com-
pletely additive in p.

Proof. Both claims are almost direct from the definition of the fragment µaFOE».
As ψ(p, y) ∈ µaFOE»ADDp we know that it is completely additive in p, and by
Lemma 7.1.19 we know that formulas of µFOE» restrict to descendants. �

We can now use Proposition 7.1.18 and obtain that the functional Fψ induced
by ψ is completely additive and restricts to descendants as well. The following
theorem, which will be critical for our translation, combines the content of The-
orem 3.1.10 and Theorem 7.1.17 and gives a characterization of the fixpoint of
maps that, at the same time, are completely additive and restrict to descendants.

7.3.18. Theorem. Let F : ℘(M) → ℘(M) be completely additive and restrict
to descendants. For every s ∈ M we have that s ∈ LFP(F) iff s ∈ LFP(F�Y) for
some finite chain Y .

Proof. This theorem follows from a minor modification of Lemma 3.1.11 for
completely additive maps, which provides elements t1, . . . , tk = s such that ti ∈
F i(∅). The key observation is that, because F restricts to descendants, we can
choose the elements in a way that tiR∗ti+1 for all i.

The main change to the proof of Lemma 3.1.11 is when we want to define
ui in terms of ui+1 ∈ F i+1(∅). By definition we have that ui+1 ∈ G(F i(∅),Y).
Now we can use that G restricts to descendants and get that ui+1 ∈ G(F i(∅) ∩
R∗[ui+1],Y∩R∗[ui+1]). By complete additivity of G there is a quasi-atom (T,Q

′
)

of (F i(∅) ∩ R∗[ui+1],Y ∩ R∗[ui+1]) such that ui+1 ∈ G(T,Q
′
). This means that

the element chosen from T will be a descendant of ui+1 and therefore we will get
a (finite) chain. �

We are now ready to give the translation.

7.3. Automata for WCL 211

7.3.19. Proposition. There is an effective translation ST : µaFOE»(P) →
2WCL(P) such that for every model M and assignment g we have M, g |= ϕ
if and only if M, g |= ST(ϕ).

Proof. Clearly the interesing case is that of the fixpoint operator. Let ϕ =
[LFPp:y.ψ(p, y)](x) ∈ µaFOE» be such that FV (ψ) ⊆ {y}. By induction hypoth-
esis we know that there is a formula ψ′(p, y) ∈ 2WCL, which is equivalent to
ψ(p, y). We define the translation of the fixpoint as follows:

ST([LFPp:y.ψ(p, y)](x)) := ∃fchY.
(
∀fchW ⊆ Y.W ∈ PRE(Fψ

�Y)→ x ∈ W
)

W ∈ PRE(Fψ
�Y) := ∀v.ψ′(W, v) ∧ v ∈ Y → v ∈ W.

Observe that we use ψ′ in the translation, since Fψ
�Y = Fψ′

�Y . To justify the
translation first recall from Section 7.1.3 that the translation of [LFPp:y.ψ(p, y)](x)
into MSO is given by:

∀W.
(
W ∈ PRE(Fψ)→ x ∈ W

)
where W ∈ PRE(Fψ) expresses that W is a prefixpoint of Fψ : ℘(M) → ℘(M).
This translation is based on the following fact about fixpoints of monotone maps:

s ∈ LFP(Fψ) iff s ∈
⋂
{W ⊆M | W ∈ PRE(Fψ)}. (PRE)

In our translation, however, we cannot make use of the arbitrary set quantifier
∃W , since we are dealing with WCL. The crucial observation is that, as Fψ is
completely additive and restricts to descendants, then we can restrict ourselves
to finite chains, in the following sense:

s ∈ LFP(Fψ) iff s ∈ LFP(Fψ
�Y) for some f.c. Y (Theorem 7.3.18)

iff s ∈
⋂
{W ⊆ Y | W ∈ PRE(Fψ

�Y)} for some f.c. Y . (PRE)

The crucial observation in the last step is that W ⊆ Y because the domain and
range of Fψ

�Y is Y , and notM as in the original map Fψ. Therefore, the translation
basically expresses the same as the MSO case, but relativized to a finite chain Y .
The correctness of the translation is then justified by the above equations. �

As a corollary, we get that we can express the sentences of µaFOE correspond-
ing to Autwa(FOE1), in 2WCL.

7.3.20. Corollary. For every A ∈ Autwa(FOE1), the formula ϕA ∈ µaFOE of
Corollary 7.3.16 is (effectively) expressible in 2WCL.

Proof. The formula ϕA is defined as ∃x.isroot(x)∧ϕ»
A(x) where ϕ»

A(x) ∈ µaFOE».
As the predicate isroot(x) can be expressed in first-order logic, the formula
∃x.isroot(x) ∧ ST(ϕ»

A)(x) belongs to 2WCL and is equivalent to ϕA. �

212 Chapter 7. Concrete first-order automata

7.4 The question of automata for FO(TC1)

In this chapter we analyzed several concrete first-order automata, and we gave
logical characterizations for them, both as a second-order logic and as a fixpoint
logic. The results of this chapter are summarized in the following table, where
each row represents equivalent formalisms. We use Lroot to denote the language
L extended with ∃x.isroot(x).

Automata Second-order Fixpoint Forward-looking
Aut(FOE1) MSO µFOE µFOE»

root

Autwc(FOE∞1) WMSO µcFOE∞ µcFOE∞»
root

Autwa(FOE1) WCL – µaFOE»
root

If we look at the first two cases, a pattern seems to emerge: the correspond-
ing fixpoint logic for Aut(FOE1) is FOE extended with a fixpoint operator, i.e.,
µFOE. For Autwc(FOE∞1) we have FOE∞1 as the one-step language and an extra
continuity condition on cycles. Therefore, we get µcFOE∞, that extends FOE∞

with a fixpoint operator which is restricted to continuous formulas. Following this
pattern, a natural candidate for the third row is µaFOE, since it is the natural
extension of FOE with completely additive fixpoints. Using Theorem 3.1.44, this
would give us automata for FO(TC1).

However, in Section 7.3.4 we saw that when translating a completely additive
least fixpoint [LFPp:y.ψ(p, y)](x) to WCL, we crucially used that ψ restricts to
descendants. This condition was necessary to ensure that the least fixpoint of
such a formula forms (on trees) a finite chain, which is the kind of quantification
that we have available in WCL.2 Unfortunately, the least fixpoint of an arbitrary
completely additive formula of µaFOE need not be a chain. Therefore, there does
not seem to be a clear way to express these fixpoints with WCL. That is, unless
µaFOE is equivalent to µaFOE»

root, or equivalently, to WCL. We think this is not
the case.

7.4.1. Conjecture. µaFOE 6⊆WCL, even on trees.

The failure of such an equivalence can also be looked at under the light of the
following intuitions, which attempt to explain the connection among the men-
tioned formalisms: the projection theorem for Aut(FOE1) basically runs the au-
tomaton ∃p.A in such a way that it is possible to extract a coloring X for p. This
set X does not have any particular form, and this is paralleled by the arbitrary
quantification of MSO. On the fixpoint side, we have µFOE, whose fixpoints are
also arbitrary sets, which can be emulated with the quantification of MSO.

2Actually, the fixpoint of maps that are completely additive and restrict to descendants is
not necessarily a chain, but we can restrict to such a chain, as stated in Theorem 7.3.18. For
this section, when we say that a fixpoint is a chain or finite set we mean that we can restrict to
such a set.

7.5. Conclusions and open problems 213

For Autwc(FOE∞1) things start to change. The restrictions on the cycles have
a direct impact on the projection theorem. The weakness condition makes the
extracted coloring to be included in a well-founded tree. The continuity condition
makes this coloring to be finitely branching. Incidentally, on trees the notion of
finite set and “set embeded in a finitely branching and well-founded tree” coincide.
This is the key reason why these automata correspond to WMSO. On the fixpoint
side, we have µcFOE∞, whose fixpoints are finite sets, which can be simulated
with WMSO.

The case of Autwa(FOE1) turns out to be quite different, because of the strong
restriction entailed by the additivity constraint. The weakness condition, again,
makes the extracted coloring well-founded. The additivity condition, makes this
coloring a chain. Therefore, we get finite chain projection. As we saw, this
projection coincides with the quantification of WCL. However, contrary to the
other cases, WCL imposes a clear connectivity condition on the quantified set.
Namely, it has to be a chain; in other words, every element has to belong to the
same branch. This brings immediate problems when looking at the associated
fixpoint logics. If we look at the least fixpoint of a formula ϕ ∈ µaFOE» we
know that s ∈ F i+1

ϕ (∅) only depends on (at most) one element of F i
ϕ(∅) by

complete additivity and, moreover, that such an element can be taken among the
descendants of s, by restriction to descendants. This means that all the elements
can be taken to be in a chain. However, if we look at a formula ψ ∈ µaFOE, we
only have the additivity condition. Pictorially, this means that, even though we
can express the least fixpoint as a set of elements s1, . . . , sk, these elements may
belong to completely different branches. This suggests that we cannot express
such a fixpoint with WCL.

In some sense, we can say that parity automata as considered in this disserta-
tion (i.e., with one-step formulas on the transition map) are inherently modal, in
the sense that they always travel downwards on the trees, and always do it from
a node to its successors. Taking into account their iterating capability (cycles) it
is quite natural that they correspond to a fixpoint logic which restricts to descen-
dants. This is the most fundamental connection. The fact that they correspond
to a second-order logic or to a non-forward-looking fixpoint logic can be seen as
a secondary byproduct. In the case of WMSO this last correspondence holds
thanks to finite sets coinciding with “well-founded and finitely branching sets.”
In the case of MSO the correspondence is trivial. For Autwa(FOE1), however, an
analogous correspondence does not seem to hold.

7.5 Conclusions and open problems

In this chapter we gave automata characterizations for WMSO and WCL, as the
classes Autwc(FOE∞1) and Autwa(FOE1) respectively. We also proved that each of
these formalisms corresponds, as well, to some extension of first-order logic with

214 Chapter 7. Concrete first-order automata

fixpoint operators. In order to prove these results, we also developed new simu-
lation theorems for continuous-weak and additive-weak automata respectively.

Open problems.

1. Automata for FO(TC1): As extensively discussed in Section 7.4, the question
of parity automata for FO(TC1) –or equivalently, for µaFOE– is still open.
We have stated Conjecture 7.4.1 which says that WCL 6⊆ µaFOE on trees. If
this conjecture is true, then the corresponding automata for FO(TC1) would
have to be essentially different from Autwa(FOE1); on the other hand, if the
conjecture is false, we would be able to use Autwa(FOE1) for FO(TC1).

2. Logical characterization without projection: Among the key technical tools of
this chapter are the simulation and projection constructions. With them, we
can mimic the second-order quantification on the automata side. Moreover, in
each case we then use the second-order quantification to simulate the fixpoint
operator of the associated fixpoint logic. In some cases it may be interesting to
go directly from a fixpoint logic to its corresponding automata (for example,
for µaFOE) without going through any second-order logic (like WCL). For
this purpose, it would be interesting to study an “inverse” operation of the
transformation given in Section 7.1.2, which transforms parity automata into
formulas of µFOE using partial unraveling of automata. It is possible that
the technique used in [Jan06, Theorem 3.2.2.1] for modal automata could be
adapted to the setting of first-order automata.

Chapter 8

Expressiveness modulo bisimilarity

In this chapter we use the tools developed in the previous chapters to prove novel
bisimulation-invariance results. Namely, our main results are:

µcML ≡WMSO/↔ and PDL ≡WCL/↔.

Moreover, we show that the equivalences are effective. That is, we give effective
translations in both directions.

When proving results of the form L ≡ L′/↔, the inclusion L ⊆ L′/↔ is usually
given by a more or less straightforward translation from L to L′. The inclusion
L ⊇ L′/↔, however, requires much more work. In the context of fixpoint logics,
the use of automata is a powerful technique to prove this direction.

In the original work of Janin and Walukiewicz [JW96], the authors prove that
µML is the bisimulation-invariant fragment of MSO. An important step of the
proof is to define a construction (−)• that transforms automata from Aut(FOE1)
to automata of Aut(FO1), in such a way that

A• accepts S iff A accepts Sω,

for every transition system S, where Sω is the ω-unraveling of S. With this result
at hand, it is not difficult to prove that Aut(FO1) ≡ Aut(FOE1)/↔. Using
the fact that the automata of Aut(FOE1) correspond to MSO (on trees) and the
automata of Aut(FO1) correspond to µML, it is now simple to get the final result.

A key observation made by Venema in [Ven14] is that the construction (−)•

is completely determined at the one-step level, by a translation (−)•1 : FOE1 →
FO1 satisfying certain properties. In this chapter we show also that this tech-
nique provides a nice modular way of approaching (automata-based) bisimulation-
invariance proofs and, moreover, it works for subclasses of parity automata.

Finally, we discuss the relative expressive power of PDL, WCL and FO(TC1)
and the quest for the bisimulation-invariant fragment of FO(TC1).

215

216 Chapter 8. Expressiveness modulo bisimilarity

8.1 Continuous-weak automata
In this section characterize the bisimulation-invariant fragment of WMSO.

8.1.1. Theorem. µcML is effectively equivalent to WMSO/↔.

In this section we work with the logics µcML and WMSO and with the class of
continuous-weak automata Autwc(L). In particular, this means that we consider
a signature of a single relation R and single-sorted one-step languages.

We start by defining a construction (−)• : Autwc(FOE∞1)→ Autwc(FO1) such
that for every automaton A and transition system S we have:

A• accepts S iff A accepts Sω.

As we shall see, the map (−)• is completely determined at the one-step level, that
is, by some model-theoretic connection between FOE∞1 and FO1.

8.1.2. Definition. Using Corollary 5.1.35 any formula in FOE∞1
+(A) is equiv-

alent to a disjunction of formulas of the form ∇+
FOE∞(T,Π,Σ). We define the

one-step translation (−)•1 : FOE∞1
+(A)→ FO+

1 (A) as follows:

(∇+
FOE∞(T,Π,Σ))•1 :=

∧
i

∃xi.τ+
Ti

(xi) ∧ ∀x.
∨
S∈Σ

τ+
S (x)

and for α =
∨
i αi we define (α)•1 :=

∨
i(αi)

•
1.

Observe that, as computing the normal form of a formula in FOE∞1
+(A) is

effective, then this one-step translation is also clearly effective. The key property
of this translation is the following.

8.1.3. Proposition. For every α ∈ FOE∞1
+(A) the following holds:

(1) If (D, V) |= α•1 then there is a valuation Vπ such that

(i) (D × ω, Vπ) |= α, and
(ii) If (d, i) ∈ Vπ(a) then d ∈ V (a).

(2) If (D × ω, V) |= α then there is a valuation V• such that

(i) (D, V•) |= α•1, and
(ii) If d ∈ V•(a) then (d, i) ∈ V (a) for some i.

Proof. As every formula of FOE∞1
+(A) is equivalent to a disjunction of formulas

of the form ∇+
FOE∞(T,Π,Σ) it will be enough to prove the statement for formulas

of the form α = ∇+
FOE∞(T,Π,Σ).

8.1. Continuous-weak automata 217

(1): Suppose (D, V) |= α•1 and define V \
π ((d, k)) := V \(d). We will show that

(D × ω, Vπ) |= ∇+
FOE∞(T,Π,Σ). Let di be such that τ+

Ti
(di) in (D, V). It is clear

that the (di, i) provide distinct elements satisfying τ+
Ti

((di, i)) in (D × ω, Vπ) and
therefore the first-order existential part of α is satisfied. With a similar but easier
argument it is straightforward that the existential generalized quantifier part of α
is also satisfied. For the universal parts of ∇+

FOE∞(T,Π,Σ) it is enough to observe
that, because of the universal part of α•, every d ∈ D realizes a positive type
in Σ. By construction, the same applies to (D × ω, Vπ), therefore this takes care
of both universal quantifiers.

(2): Suppose that (D×ω, V) |= ∇+
FOE∞(T,Π,Σ); we first define the auxiliary

valuation U : A→ ℘(D × ω) as follows:

U(a) := {(d, i) ∈ D × ω | (d, j) ∈ V (a) for some j ∈ ω}.

This valuation has two nice properties, namely: (1) V (a) ⊆ U(a) for all a ∈ A,
and (2) U \((d, i)) = U \((d, j)) for all i, j ∈ ω. In particular, as ∇+

FOE∞(T,Π,Σ)
is monotone in A, from (1) we can conclude that (D × ω, U) |= ∇+

FOE∞(T,Π,Σ).
Finally, we define V• : A → ℘(D) as V \

• (d) := U \((d, i)) for an arbitrary i ∈ ω.
This is well defined because of (2).1 We now show that (D, V•) |= α•. The
existential part of α•1 is trivial. For the universal part we have to show that every
element of D realizes the positive part of a type in Σ. Suppose not, and let d ∈ D
be such that ¬τ+

S (d) for all S ∈ Σ. Then we have (D × ω, U) 6|= τ+
S ((d, k)) for

all k. That is, there are infinitely many elements not realizing the positive part of
any type in Σ. Hence we have (D × ω, U) 6|= ∀∞y.∨S∈Σ τ

+
S (y). Absurd, because

that is part of ∇+
FOE∞(T,Π,Σ). �

Finally, we can give the main definition of this section.

8.1.4. Definition. Let A = 〈A,∆,Ω, aI〉 be an automaton in Aut(FOE∞1). We
define A• := 〈A,∆•,Ω, aI〉 in Aut(FO1) by putting, for each (a, c) ∈ A× ℘(P):

∆•(a, c) := (∆(a, c))•1.

It remains to be checked that the construction (−)•, which has been defined
for arbitrary automata in Aut(FOE∞1), transforms continuous-weak automata of
Autwc(FOE∞1) into automata in the right class, that is, Autwc(FO1).

8.1.5. Proposition. If A ∈ Autwc(FOE∞1), then A• ∈ Autwc(FO1).

Proof. This proposition can be verified by a straightforward inspection, at
the one-step level, that if a formula α ∈ FOE∞1

+(A) belongs to the fragment
FOE∞1

+CONa(A), then its translation α•1 lands in the fragment FO+
1 CONa(A).

The same relationship holds between FOE∞1
+CONa(A) and FO+

1 CONa(A). �
1In connection to item (1), observe that we are defining V• so that (V•)π = U .

218 Chapter 8. Expressiveness modulo bisimilarity

We are now ready to prove the main lemma of this section.

8.1.6. Lemma. The construction (−)• : Aut(FOE1) → Aut(FO1) is effective,
and for every automaton A and transition system S we have:

A• accepts S iff A accepts Sω.

Proof. The proof of this lemma is based on a fairly routine comparison of the
acceptance games A(A•,S) and A(A,Sω), using Proposition 8.1.3 to transform
valuations from one game to the other. We give a proof of the left-to-right direc-
tion, and leave the other direction to the reader, since it is very similar.

We show that for every move made in a match π of A(A•,S), we can respond
in the match πω of A(A,Sω) while keeping the following relationship:

Match π is in the basic position (a, s) ∈ A×S and match πω is in the
basic position (a, t) ∈ A× Sω for some s↔ t.

In the beginning of the games both matches are in the position (a, sI) so this
relationship is clearly satisfied. Now suppose that the matches π and πω are
standing in positions (a, s) and (a, t) respectively, and let α = ∆(a, κ(t)). In
his turn, ∀ plays some valuation V in π such that (R[s], V) |= α•1. We have to
show that ∃ has an admissible move in πω, that is, she has to play a valuation
U such that (R[t]× ω, U) |= α. Now we crucially use Proposition 8.1.3(1) which
solves our one-step problem: as (R[s], V) |= α•1 and s ↔ t then we get that
(R[t]× ω, Vπ) |= α. Therefore, ∃ can play Vπ and survive.

After this, the next move is for ∀, who chooses a basic position (a′, (d, i)) such
that (d, i) ∈ R[t] × ω and (d, i) ∈ Vπ(a′). Using Proposition 8.1.3(1ii) we have
that d ∈ R[s] satisfies d ∈ V (a′) and therefore it is clear that ∃ can choose the
position (a′, d) in the shadow match π. Using that s ↔ t we also obtain that
d ↔ (d, i). This finishes the round and preserves the relationship between the
games. Since both games go through basic positions with the same state in A
then, since ∃ wins π by hypothesis, then she will also win πω. �

8.1.7. Remark. As a corollary of the previous two propositions we find that

• Aut(FO1) ≡ Aut(FOE∞1)/↔, and

• Autwc(FO1) ≡ Autwc(FOE∞1)/↔.

In fact, we are dealing here with an instantiation of a more general phenomenon
that is essentially coalgebraic in nature. In [Ven14] it is proved that if L and L′
are two one-step languages that are connected by a translation (−)•1 : L′ → L sat-
isfying a condition similar to those in Proposition 8.1.3, then we find that Aut(L)
corresponds to the bisimulation-invariant fragment of Aut(L′). This subsection
can be generalized to prove similar results relating Autw(L) to Autw(L′), and
Autwc(L) to Autwc(L′).

8.1. Continuous-weak automata 219

8.1.1 Bisimulation-invariant fragment of WMSO

In this section we prove the following equivalence:

µcML ≡WMSO/↔.

Moreover, we prove that the equivalence is effective. One of the inclusions is given
by a translation µcML→ 2WMSO.

8.1.8. Proposition. There is an effective translation (−)t : µcML → 2WMSO
such that for every ϕ ∈ µcML we have that ϕ ≡ ϕt.

Proof. Since we already proved in Proposition 3.2.37 that µcFOE∞ ⊆ 2WMSO,
it is enough to give a translation STx : µcML→ µcFOE∞ and obtain the desired
translation µcML→ 2WMSO by composition.

The only interesting case of the translation is the fixpoint operator. Let
ϕ = µp.ψ(p) where ψ is continuous in p. We define the translation as follows:

STx(µp.ψ) := [LFPp:y.STy(ψ)](x).

The correctness of this translation is straightforward. �

For the other inclusion we prove the following stronger lemma.

8.1.9. Lemma. There is an effective translation (−)H : WMSO → µcML such
that for every ϕ ∈WMSO we have that ϕ ≡ ϕH iff ϕ is bisimulation-invariant.

Proof. The translation (−)H : WMSO → µcML is defined as follows: given a
formula ϕ ∈WMSO we first construct an automaton Aϕ ∈ Autwc(FOE∞1) as done
in Proposition 7.2.16. Next, we compute the automaton A•ϕ ∈ Autwc(FO1) using
Lemma 8.1.6. To finish, we use Theorem 6.3.1 to get a formula ϕH ∈ µcML.

Claim 1. ϕ ≡ ϕH iff ϕ is invariant under bisimulation.

The left to right direction is trivial because ϕH ∈ µcML, therefore if ϕ ≡ ϕH it
also has to be invariant under bisimulation. The opposite direction is obtained
by the following chain of equivalences:

S |= ϕ iff Sω |= ϕ (ϕ bisimulation invariant)
iff Sω |= Aϕ. (Theorem 7.2.1: WMSO ≡ Autwc(FOE∞1) on trees)
iff S A•ϕ (Lemma 8.1.6)
iff S ϕH. (Theorem 6.3.1)

This finishes the proof for WMSO. �

As a corollary of this lemma we get Theorem 8.1.1.

220 Chapter 8. Expressiveness modulo bisimilarity

8.2 Additive-weak automata
In this section obtain the following results which closes the open questions of
bisimulation-invariant characterizations for PDL and WCL.

8.2.1. Theorem. PDL is effectively equivalent to WCL/↔.

In this section we work with the logics PDL and WCL and with the class
of additive-weak automata Autwa(L). In particular, we use a signature with
many relations (R`)`∈D and many-sorted one-step languages. In this context, the
difference between normal and strict trees will play a role. We refer the reader to
Section 2.1 for these definitions.

We start by defining a construction (−)• : Autwa(FOE1)→ Autwa(FO1) such
that for every automaton A and strict tree T we have:

A• accepts T iff A accepts Tω.

Again, the map (−)• is completely determined at the one-step level. This time, by
some model-theoretic connection between FOE1 and FO1. We will make use of the
one-step translation (−)•1 : FOE+

1 (A,S) ⇀ FO+
1 (A,S) given in Definition 5.2.32

for formulas of FOE+
1 (A,S) which are in strict normal form. Recall that:

(∇+
FOE(T,Π)s)

•
1 := ∇+

FO(T,Π)s

and for α =
∨∧

s αs we define (α)•1 :=
∨∧

s(αs)
•
1. In the context of this section,

the key property of this translation is the following.

8.2.2. Proposition. For every α ∈ FOE+
1 (A,S) in strict normal form and ev-

ery strict one-step model (D1, . . . , Dn, V) the following holds:

(i) If (D, V) |= α•1 then there is a valuation Vπ such that

(i) (D × ω, Vπ) |= α, and
(ii) If (d, i) ∈ Vπ(a) then d ∈ V (a).

(ii) If (D × ω, V) |= α then there is a valuation U such that

(i) (D, V•) |= α•1, and
(ii) If d ∈ V•(a) then (d, i) ∈ V (a) for some i.

Proof. Formulas of FOE+
1 (A,S) which are in strict normal form are of the

shape
∨∧

s∇+
FOE(T,Π)s; therefore it will be enough to prove the proposition for

α = ∇+
FOE(T,Π)s. We will reuse what we proved in Proposition 5.2.33, which is

almost the same as what we want. Namely, Proposition 5.2.33 states that:

(D, V) |= α•1 iff (D × ω, Vπ) |= α, (∗)

8.2. Additive-weak automata 221

where the valuation Vπ is given by V \
π ((d, k)) := V \(d).

(i): This item is direct by the left-to-right direction of (∗).
(2): Suppose that (D × ω, V) |= ∇+

FOE(T,Π)s; we define the valuation U :
A→ ℘(D) as follows:

U \(d) :=
⋃
k

V \((d, k)).

The following claim connects V and U through the construction (−)π used in (∗).

Claim 1. V (a) ⊆ Uπ(a) for all a ∈ A.

In particular, as ∇+
FOE(T,Π)s is monotone in every a ∈ A, from this claim we get

(D × ω, Uπ) |= ∇+
FOE(T,Π)s. Now we can use the right-to-left direction of (∗)

and get that (D,U) |= α•1. �

Finally, we can give the main definition of this section.

8.2.3. Definition. Let A = 〈A,∆,Ω, aI〉 be an automaton in Aut(FOE1). We
use Theorem 5.2.11 and get, for every (a, c) ∈ A×℘(P), a formula ψa,c ≡ ∆(a, c)
which is in strict normal form. We define the automaton A• := 〈A,∆•,Ω, aI〉 in
Aut(FO1) by putting, for each (a, c) ∈ A× ℘(P):

∆•(a, c) := (ψa,c)
•
1.

First, it needs to be checked that the construction (−)•, which has been defined
for arbitrary automata in Aut(FOE1), transforms the additive-weak automata of
Autwa(FOE1) into automata in the right class, that is, Autwa(FO1).

8.2.4. Proposition. If A ∈ Autwa(FOE1), then A• ∈ Autwa(FO1).

Proof. This proposition can be verified by a straightforward inspection, at
the one-step level, that if a formula α ∈ FOE+

1 (A) belongs to the fragment
FOE+

1 ADDA′(A), then its translation α•1 lands in the fragment FO+
1 ADDA′(A).

The same relationship holds for FOE+
1 MULA′(A) and FO+

1 MULA′(A). �

We are now ready to prove the main lemma of this section.

8.2.5. Lemma. The construction (−)• : Autwa(FOE1) → Autwa(FO1) is effec-
tive, and for every automaton A and strict tree T we have:

A• accepts T iff A accepts Tω.

Proof. This lemma is proved as Lemma 8.1.6, but using Proposition 8.2.2 and,
additionally, that T and Tω are strict trees. �

222 Chapter 8. Expressiveness modulo bisimilarity

8.2.1 Bisimulation-invariant fragment of WCL

In this section we prove the following equivalence:

PDL ≡WCL/↔.

Moreover, we prove that the equivalence is effective.

One of the inclusions is given by a translation from PDL to WCL. We prove
this through a detour via the modal µ-calculus. In Section 3.1.2 it is shown that
PDL is equivalent to the fragment µaML where the fixpoint operator µp.ϕ is
restricted to formulas which are completely additive in p. We will therefore give
a translation STx : µaML → 2WCL which proves that PDL ⊆ WCL. The idea
is to use basically the same translation as in Section 7.3.4 where we prove that
µaFOE» ⊆WCL.

8.2.6. Proposition. There is an effective translation STx : µaML → 2WCL
such that for every ϕ ∈ µaML we have that ϕ ≡ STx(ϕ).

Proof. The only interesting case of the translation is the fixpoint operator. Let
ϕ = µp.ψ(p) where ψ is completely additive in p. We state the following claim:

Claim 1. The formula ψ ∈ µaML restricts to descendants.

Proof of Claim. This is clear because the formula belongs to µML. These
formulas are invariant under generated submodels, in particular, they restrict to
descendants. J

To finish, define the translation of the fixpoint as follows:

STx(µp.ψ) := ∃fchY.
(
∀fchW ⊆ Y.W ∈ PRE(Fψ

Y)→ x ∈ W
)

W ∈ PRE(Fψ
Y) := ∀v.STv(ψ)[p 7→ W] ∧ v ∈ Y → v ∈ W.

The correctness of this translation is a simplified version of the proof of Proposi-
tion 7.3.19, using Claim 1 and Theorem 7.3.18. �

For the other inclusion we prove the following stronger lemma.

8.2.7. Lemma. There is an effective translation (−)H : WCL → PDL such that
for every ϕ ∈WCL we have that ϕ ≡ ϕH iff ϕ is bisimulation-invariant.

Proof. The translation (−)H : WCL → PDL is defined as follows: given a
formula ϕ ∈WCL we first construct an automaton Aϕ ∈ Autwa(FOE1) as done
in Section 7.3.2. Next, we compute the automaton A•ϕ ∈ Autwa(FO1) using
Lemma 8.2.5. To finish, we use Theorem 6.2.2 to get a formula ϕH ∈ PDL.

8.2. Additive-weak automata 223

Claim 1. ϕ ≡ ϕH iff ϕ is invariant under bisimulation.

The left to right direction is trivial because ϕH ∈ PDL, therefore if ϕ ≡ ϕH it also
has to be invariant under bisimulation. The opposite direction is obtained by the
following chain of equivalences. Recall that Ŝ is the unraveling of S.

S |= ϕ iff Ŝω |= ϕ (ϕ bisimulation invariant)

iff Ŝω |= Aϕ (Theorem 7.3.1: WCL ≡ Autwa(FOE1) on trees)

iff Ŝ A•ϕ (Lemma 8.2.5)

iff Ŝ ϕH (Theorem 6.2.2)
iff S ϕH. (ϕH bisimulation invariant)

As Lemma 8.2.5 requires a strict tree, we use a detour through the unraveling of
S, which has this property. �

As a corollary of this lemma we get Theorem 8.2.1.

8.2.2 Relative expressive power of PDL, WCL and FO(TC1)

In this section we prove a few results regarding the relative expressive power of
PDL, WCL and FO(TC1). Namely, we prove that:

• PDL cannot be translated to a naive generalization of WCL from trees to
arbitrary models. This gives insight on the relationship of PDL and chains.

• WCL and FO(TC1) are not expressively equivalent.

The letter of the law. Recall from the preliminaries (Section 2.1) that,

• A chain on S is a set X ⊆ S such that (X,R∗) is a totally ordered set.

• A generalized chain is a set X ⊆ S such that X ⊆ P , for some path P of S.

In the definition of WCL in Section 2.8 we chose to follow the spirit of the original
definition of CL in [Tho84], and we required the quantifier to range over general-
ized finite chains, instead of finite chains, in the context of arbitrary models.

There is another reason for this choice: if we had followed the letter of the
definition and had required the quantifier to range over (non-generalized) finite
chains in the context of arbitrary models, then PDL would not have been trans-
latable to the resulting logic! Suppose then that we define a variant L of MSO
with the quantifier:

S |= ∃̃p.ϕ iff there is a finite chain X ⊆ S such that S[p 7→ X] |= ϕ.

224 Chapter 8. Expressiveness modulo bisimilarity

We show that L cannot express the PDL-formula ϕ := 〈`∗〉p. That is, L cannot
express the property “I can reach an element colored with p.” Intuitively, the
problem is that chains are a lot more restricted than paths (on arbitrary models).

We will first define a class of models where the expressive power of L is reduced
to that of FOE, and then prove that FOE cannot express ϕ on this class of models.
Let Ci be defined as a model with i elements laid out on a circle (see Fig. 8.1)
and Cp

i be as Ci but with one (any) element colored with p. We define the class
of models K := {Ci] Cp

i | i ≥ 3}.

1

23

4

5 6i

1′

2′3′

4′

5′ 6′i′

Figure 8.1: Model Ci] Cp
i . The element i′ is colored with p.

8.2.8. Proposition. Over the class K, we have L ≡ FOE.

Proof. Every chain on a model of K is either a singleton or empty. �

Observe now that our formula ϕ = 〈`∗〉p is true exactly in the elements of
Cp
i , and false in Ci, for every i. Assume towards a contradiction that there is a

formula ψ ∈ L such that ϕ ≡ ψ on all models. If we focus on K, using the above
proposition, we must also have a formula γ ∈ FOE such that ψ ≡ γ (on K). We
show that such a γ ∈ FOE cannot exist.

To do it, we rely on the fact that first-order logic is “essentially local”, proved
by Gaifman [Gai82]. Recall that the n-neighbourhood of an element e is the set
of all the elements e′ such that the undirected distance dist(e, e′) is smaller or
equal than n. The following fact is a corollary of Gaifman’s theorem.

8.2.9. Fact. For every first-order formula γ(x) there is a number t ∈ N (which
depends only on the quantifier rank of γ) such that for every model M and ele-
ments a, a′ ∈ M : if the t-neighbourhoods of ai and a′i are isomorphic for every i
then M |= γ(a) iff M |= γ(a′).

Let t be the number obtained by the above fact applied to γ(x). To finish, we
prove the following fact.

Claim 1. C4t |= γ(2t) iff C4t |= γ(2t′).

This leads to a contradiction, since γ should be false at 2t and true at 2t′.

8.2. Additive-weak automata 225

Proof of Claim. The t-neighbourhoods of 2t and 2t′ are isomorphic, since no
element is colored with p with distance lower than t. Therefore by the above fact
about first-order locality the two elements satisfy the same first-order formulas.
A more detailed proof of a similar argument can be found in [LN99, Ex. 2]. J

As a consequence, we get the following proposition:

8.2.10. Proposition. PDL 6⊆ L.

Separating FO(TC1) and WCL on all models. We prove that FO(TC1) 6⊆
WCL by showing that undirected reachability is expressible in FO(TC1) but not
in WCL. First observe that in FO(TC1) the formula

ϕ(x, y) := [TCu,v.R(u, v) ∨R(v, u)](x, y)

is true if and only if (1) x = y; or (2) there is a way to get from x to y disregarding
the direction of the edges.

Consider the model shown in Fig. 8.2, which has two copies of the integers
but with an alternating successor relation. The arrows denote the binary relation
R which is not taken to be transitive.

(a, 0) (a, 1) (a, 2) (a, 3)
. . .

(a,−1)(a,−2)(a,−3)
. . .

(b, 0) (b, 1) (b, 2) (a, 3)
. . .

(b,−1)(b,−2)(b,−3)
. . .

Figure 8.2: Separating example for FO(TC1) and WCL.

It was observed by Yde Venema (private communication) that on the model
of Fig. 8.2 the expressive power of WCL collapses to that of plain first-order logic
with equality. The reason for this is that every generalized chain (finite or not)
has length at most one, and therefore the second order existential ∃fchX.ψ can be
replaced by ∃x1, x2.ψ

′ with a minor variation of ψ. Therefore, it will be enough to
show that first-order logic cannot express undirected reachability over this model.
Again, we will use Fact 8.2.9.

Assume that ϕ has an equivalent formulation ϕ′ ∈ FOE. Let t be the number
obtained by Fact 8.2.9. To finish, we prove that

Claim 1. M |= ϕ′((a, 0), (b, 0)) iff M |= ϕ′((a, 0), (a, 2t)).

Observe that this leads to a contradiction, since the first two elements are not
connected and the second ones are.

Proof of Claim. The t-neighbourhoods of (b, 0) and (a, 2t) are isomorphic,
therefore by Fact 8.2.9 the two elements satisfy the same first-order formulas. J

226 Chapter 8. Expressiveness modulo bisimilarity

Observe also that in the above model M we also have that non-weak chain
logic (CL) collapses to first-order logic, therefore the same proof gives us that
FO(TC1) 6⊆ CL. Therefore, we have proved the following proposition:

8.2.11. Proposition. FO(TC1) 6⊆WCL and FO(TC1) 6⊆ CL.

The above results can also be proved with a finite part of M, for example,
restricting it to the segments (a,±4t) and (b,±4t).

8.2.3 On the bisimulation-invariant fragment of FO(TC1)

It is thought in the modal logic community that, as FOE/↔ ≡ ML, then it would
be natural to have FO(TC1)/↔ ≡ PDL. However, we are not aware of any proof
of this result. In this dissertation we have made some progress in this direction,
giving different ways to look at FO(TC1) and PDL and a characterization result
for PDL. Namely, the following results are relevant:

• FO(TC1) ≡ µaFOE (Theorem 3.1.44)

• PDL ≡ Autwa(FO1) ≡ µaML (Theorem 6.2.2 and 3.1.27)

• WCL ≡ Autwa(FOE1) ≡ µaFOE»
root (Theorem 7.3.1 and Corollary 7.2.19)

• WCL/↔ ≡ µaFOE»
root/↔ ≡ PDL (Theorem 8.2.1).

In Section 7.4 we discussed that Autwa(FOE1) does not seem to be a suitable
class of automata for µaFOE and hence neither for FO(TC1). Whether these three
formalisms are equivalent on trees, depends on whether µaFOE and µaFOE»

root

coincide on trees. However, even if the answer is negative as we conjecture, it
could still be the case that µaFOE/↔ ≡ µaFOE»

root/↔. In fact, we conjecture
that this equivalence holds.

8.2.12. Conjecture. µaFOE/↔ ≡ µaFOE»
root/↔.

This equivalence, combined with the results of this dissertation, would im-
mediately yield the result we are looking for. That is, the following chain of
equivalences would be true: PDL ≡ µaFOE»

root/↔ ≡ µaFOE/↔ ≡ FO(TC1)/↔.

8.2.13. Conjecture. PDL ≡ FO(TC1)/↔.

8.3 Conclusions and open problems
In this chapter we used the automata-theoretic characterization of several logics
to provide bisimulation-invariance results. The crucial step was, in all cases,
to give a construction (−)• transforming automata based on some first-order

8.3. Conclusions and open problems 227

language with equality into automata based on first-order without equality. This
construction was built to satisfy the relationship

A• accepts S iff A accepts Sω.

Following the philosophy of [Ven14], we induced this construction via a one-
step translation (−)•1 which directly transformed the one-step languages, while
preserving the continuity and additivity properties.

8.3.1. Remark. It is not difficult to prove that for each automaton A it is pos-
sible to give a number k ∈ N such that

A• accepts S iff A accepts Sk,

taking k := max{n | diff(x1, . . . , xn) occurs in A} + 1. That is, the ω-unraveling
can be substituted for a k-unraveling, which has k-many copies of each node
different from the root. This means that the results of this chapter transfer to
the class of finitely branching trees and finite trees as well.

Open problems.

1. Bisimulation-invariance on finite models : It would be interesting to know if
the bisimulation-invariance results of this chapter hold in the class of finite
models. However, it is also not known whether the more fundamental equiva-
lence µML ≡ MSO/↔ holds on finite models or not.

2. The confusion conjecture: In [Boj04] Bojańczyk defines a notion of ‘confusion’
and conjectures that a regular language (i.e., MSO definable) of finite trees is
definable in Chain Logic iff it contains no confusion. A remarkable property of
the notion of confusion is that it is decidable whether a language has it or not.
As the results of this chapter transfer to finite trees (and CL ≡WCL in that
class) the conjecture implies that a language definable in the mu-calculus (on
finite trees) is definable in PDL iff it contains no confusion. It is a major open
problem whether we can decide if an arbitrary formula of µML is equivalent to
some formula in PDL. Therefore, it would be important to check the confusion
conjecture.

3. Bisimulation-invariant fragment of FO(TC1): As discussed in Section 8.2.3,
the bisimulation-invariant fragment of FO(TC1) is thought to be PDL, but it
has not been proved. The results in this dissertation should hopefully pro-
vide support to prove such a result. In particular, it is enough to prove that
µaFOE/↔ ≡ µaFOE»

root/↔ to obtain it, as explained in Section 8.2.3.

Bibliography

[ABM99] Carlos Areces, Patrick Blackburn, and Maarten Marx. Hybrid logic is the
bounded fragment of first order logic. In R. de Queiroz and W. Carnielli,
editors, Proceedings of 6th Workshop on Logic, Language, Information and
Computation, WOLLIC99, pages 33–50, Rio de Janeiro, Brazil, 1999. Cited
on page 185.

[AN92] André Arnold and Damian Niwinski. Fixed point characterization of weak
monadic logic definable sets of trees. In Tree Automata and Languages,
pages 159–188. 1992. Cited on pages 18, 20, and 87.

[AN01] André Arnold and Damian Niwiński. Rudiments of µ-calculus, volume 146
of Studies in Logic and the Foundations of Mathematics. North-Holland,
2001. Cited on page 197.

[ANB98] Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages
and bounded fragments of predicate logic. Journal of Philosophical Logic,
27(3):217–274, 1998. Cited on page 185.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
and L. J. Hwang. Symbolic model checking: 10ˆ20 states and beyond. Inf.
Comput., 98(2):142–170, 1992. Cited on page 7.

[Beh22] Heinrich Behmann. Beiträge zur Algebra der Logik, insbesondere zum
Entscheidungsproblem. Mathematische Annalen, 1922. Cited on page 146.

[Ben77] Johan van Benthem. Modal Correspondence Theory. PhD thesis, Univer-
siteit van Amsterdam, 1977. Cited on page 19.

[Ben96] Johan van Benthem. Exploring Logical Dynamics. CSLI Publications, Stan-
ford, California, 1996. Cited on pages 10, 20, 51, and 52.

[Ben98] Johan van Benthem. Program constructions that are safe for bisimulation.
Studia Logica, 60(2):311–330, 1998. Cited on pages 10 and 20.

229

230 Bibliography

[Ben06] Johan van Benthem. Modal frame correspondences and fixed-points. Studia
Logica, 83(1-3):133–155, 2006. Cited on pages 10 and 67.

[Ber03] Dietmar Berwanger. Game logic is strong enough for parity games. Studia
Logica, 75(2):205–219, 2003. Cited on pages 7 and 76.

[Ber05] Dietmar Berwanger. Games and Logical Expressiveness. Ph.D. Thesis,
Department of Computer Science, RWTH Aachen, Germany, 2005. Cited
on pages 6, 11, 31, 77, 81, and 90.

[BFL15] Florian Bruse, Oliver Friedmann, and Martin Lange. On guarded trans-
formation in the modal µ-calculus. Logic Journal of IGPL, 23(2):194–216,
2015. Cited on page 165.

[BGL05] Dietmar Berwanger, Erich Grädel, and Giacomo Lenzi. The variable hier-
archy of the µ-calculus is strict. In STACS 2005, LNCS 3404, pages 97–109.
Springer, 2005. Cited on pages 11, 31, 61, 76, and 77.

[BI08] Johan van Benthem and Daisuke Ikegami. Modal fixed-point logic and
changing models. In Arnon Avron, Nachum Dershowitz, and Alexander
Rabinovich, editors, Pillars of Computer Science, volume 4800 of Lec-
ture Notes in Computer Science, pages 146–165. Springer, 2008. Cited
on page 155.

[Boj04] Mikołaj Bojańczyk. Decidable Properties of Tree Languages. Ph.D. Thesis,
University of Warsaw, 2004. Cited on pages 9, 13, and 227.

[Bra96] Julian C. Bradfield. The modal µ-calculus alternation hierarchy is strict.
In Ugo Montanari and Vladimiro Sassone, editors, CONCUR ’96: Concur-
rency Theory, volume 1119 of Lecture Notes in Computer Science, pages
233–246. Springer Berlin / Heidelberg, 1996. Cited on pages 7 and 76.

[Bra98] Julian C. Bradfield. The modal mu-calculus alternation hierarchy is strict.
Theor. Comput. Sci., 195(2):133–153, March 1998. Cited on pages 7 and 76.

[BRV01] Patrick Blackburn, Maarten De Rijke, and Yde Venema. Modal logic. Cam-
bridge University Press, Cambridge England New York, 2001. Cited on
pages 50 and 146.

[Büc60] J. Richard Büchi. Weak second-order arithmetic and finite automata. Math-
ematical Logic Quarterly, 6(1-6):66–92, 1960. Cited on page 13.

[Büc62] J.Richard Büchi. On a decision method in restricted second order arith-
metic. In Saunders Mac Lane and Dirk Siefkes, editors, The Collected Works
of J. Richard Büchi, pages 425–435. Springer New York, 1962. Cited on
page 13.

[Car15] Facundo Carreiro. PDL is the bisimulation-invariant fragment of Weak
Chain Logic. In 30th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 341–352. IEEE,
2015. Cited on page 21.

Bibliography 231

[CF11] Balder ten Cate and Alessandro Facchini. Characterizing EF over infinite
trees and modal logic on transitive graphs. In MFCS, pages 290–302, 2011.
Cited on pages 9, 41, and 72.

[CFVZ14a] Facundo Carreiro, Alessandro Facchini, Yde Venema, and Fabio Zanasi.
Weak MSO: Automata and expressiveness modulo bisimilarity. CoRR,
abs/1401.4374, 2014. Online: http://arxiv.org/abs/1401.4374. Cited
on page 21.

[CFVZ14b] Facundo Carreiro, Alessandro Facchini, Yde Venema, and Fabio Zanasi.
Weak MSO: Automata and expressiveness modulo bisimilarity. In Joint
Meeting of CSL-LICS ’14, CSL-LICS ’14, pages 27:1–27:27. ACM, 2014.
Cited on page 21.

[CH82] Ashok Chandra and David Harel. Structure and complexity of relational
queries. Journal of Computer and System Sciences, 25(1):99–128, 1982.
Cited on pages 8 and 38.

[CV14] Facundo Carreiro and Yde Venema. PDL inside the µ-calculus: a syntactic
and an automata-theoretic characterization. In Rajeev Goré, Barteld P.
Kooi, and Agi Kurucz, editors, Advances in Modal Logic 10, invited and
contributed papers from the tenth conference on Advances in Modal Logic,
held in Groningen, The Netherlands, August 5-8, 2014, pages 74–93. College
Publications, 2014. Cited on pages 10 and 21.

[Dan84] Ryszard Danecki. Nondeterministic propositional dynamic logic with in-
tersection is decidable. In Andrzej Skowron, editor, Symposium on Com-
putation Theory, volume 208 of Lecture Notes in Computer Science, pages
34–53. Springer, 1984. Cited on page 34.

[Daw98] Anuj Dawar. A restricted second order logic for finite structures. Informa-
tion and Computation, 143(2):154–174, 1998. Cited on page 72.

[DH00] Giovanna D’Agostino and Marco Hollenberg. Logical questions concern-
ing the µ-calculus: Interpolation, Lyndon and Łoś-Tarski. The Journal of
Symbolic Logic, 65(1):310–332, 2000. Cited on pages 17, 77, and 172.

[DO09] Anuj Dawar and Martin Otto. Modal characterisation theorems over special
classes of frames. Ann. Pure Appl. Logic, 161(1):1–42, 2009. Cited on
page 19.

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Perspectives
in Mathematical Logic. Springer, 1995. Cited on pages 103 and 129.

[Egg63] Lawrence C. Eggan. Transition graphs and the star-height of regular events.
Michigan Math. J., 10(4):385–397, 12 1963. Cited on page 84.

[EJ91] Ernest Allen Emerson and Charanjit S. Jutla. Tree automata, µ-calculus
and determinacy. In FOCS, pages 368–377, 1991. Cited on pages 15, 26,
and 76.

http://arxiv.org/abs/1401.4374

232 Bibliography

[EJ99] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata
and logics of programs. SIAM J. Comput., 29(1):132–158, September 1999.
Cited on page 6.

[EL86] Ernest Allen Emerson and Chin-Laung Lei. Efficient model checking in
fragments of the propositional µ-calculus. In LICS, pages 267–278, 1986.
Cited on pages 7 and 9.

[Elg61] Calvin C. Elgot. Decision problems of finite automata design and related
arithmetics. Transactions of the American Mathematical Society, 98(1):21–
51, 1961. Cited on page 13.

[ES95] E.A. Emerson and A. P. Sistla. On model-checking for fragments of µ-
calculus. In In CAV’93, volume 697 of LNCS, pages 385–396. Springer-
Verlag, 1995. Cited on page 6.

[Fag75] Ronald Fagin. Monadic generalized spectra. Mathematical Logic Quarterly,
21(1):89–96, 1975. Cited on pages 7 and 39.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of
regular programs. J. Comput. Syst. Sci., 18(2):194–211, 1979. Cited on
pages 5, 6, and 31.

[FLV10] Gaëlle Fontaine, Raul Leal, and Yde Venema. Automata for coalgebras:
An approach using predicate liftings. In Samson Abramsky, Cyril Gavoille,
Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul Spirakis, edi-
tors, Automata, Languages and Programming, volume 6199 of Lecture Notes
in Computer Science, pages 381–392. Springer Berlin Heidelberg, 2010.
Cited on page 83.

[Fon08] Gaëlle Fontaine. Continuous fragment of the mu-calculus. In Michael
Kaminski and Simone Martini, editors, Computer Science Logic, volume
5213 of Lecture Notes in Computer Science, pages 139–153. Springer Berlin
Heidelberg, 2008. Cited on pages 60, 67, 68, and 83.

[Fon10] Gaëlle Fontaine. Modal fixpoint logic: some model-theoretic questions. PhD
thesis, ILLC, University of Amsterdam, 2010. Cited on pages 10, 52, 53,
60, 64, 67, 68, 77, and 83.

[Fre06] Tim French. Bisimulation Quantifiers for Modal Logics. Phd thesis, School
of Computer Science & Software Engineering, University of Western Aus-
tralia, December 2006. Cited on page 172.

[FV12] Gaëlle Fontaine and Yde Venema. Some model theory for the modal µ-
calculus: syntactic characterizations of semantic properties. Submitted,
2012. Cited on pages 10 and 52.

[FVZ13] Alessandro Facchini, Yde Venema, and Fabio Zanasi. A characterization
theorem for the alternation-free fragment of the modal µ-calculus. In LICS,
pages 478–487, 2013. Cited on pages 86 and 197.

Bibliography 233

[Gai82] Haim Gaifman. On local and non-local properties. Logic colloquium ’81,
Proc. Herbrand Symp., Marseille 1981, Stud. Logic Found. Math. 107, 105-
135, 1982. Cited on page 224.

[GHK+80] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S.
Scott. A Compendium of Continuous Lattices. Springer-Verlag, Berlin,
1980. Cited on page 64.

[GKL+05] Erich Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, Moshe Y.
Vardi, Y. Venema, and Scott Weinstein. Finite Model Theory and Its
Applications (Texts in Theoretical Computer Science. An EATCS Series).
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005. Cited on
page 39.

[Grä02] Erich Grädel. Model checking games. Electronic Notes in Theoretical Com-
puter Science, 67:15–34, 2002. WoLLIC 2002, 9th Workhop on Logic, Lan-
guage, Information and Computation. Cited on page 8.

[Gro96] Martin Grohe. Arity hierarchies. Annals of Pure and Applied Logic,
82(2):103–163, 1996. Cited on pages 7 and 39.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata,
Logics, and Infinite Games: A Guide to Current Research, volume 2500 of
Lecture Notes in Computer Science. Springer, 2002. Cited on page 100.

[GW99] Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In LICS,
pages 45–54, 1999. Cited on page 185.

[GW05] Dov M. Gabbay and John Woods. Logic and the Modalities in the Twentieth
Century, volume 7 of Handbook of the History of Logic. Elsevier, 2005. Cited
on page 33.

[Har83] David Harel. Recurring dominoes: Making the highly undecidable highly
understandable. In Marek Karpinski, editor, FCT, volume 158 of Lec-
ture Notes in Computer Science, pages 177–194. Springer, 1983. Cited on
page 34.

[HJJ+95] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe,
and A. Sandholm. Mona: Monadic second-order logic in practice. In Tools
and Algorithms for the Construction and Analysis of Systems, First Inter-
national Workshop, TACAS ’95, LNCS 1019, 1995. Cited on page 13.

[Hol98] Marco Hollenberg. Logic and Bisimulation. PhD thesis, University of
Utrecht, 1998. Cited on pages 10, 20, and 52.

[HTK00] David Harel, Jerzy Tiuryn, and Dexter Kozen. Dynamic Logic. MIT Press,
Cambridge, MA, USA, 2000. Cited on pages 34 and 53.

[Imm87] Neil Immerman. Languages that capture complexity classes. SIAM Journal
of Computing, 16:760–778, 1987. Cited on pages 7, 8, and 39.

234 Bibliography

[Jac13] Elisabeth Jacobi. Weak monadic second-order logic on infinitely branching
trees. Master’s thesis, Fachbereich Mathemaik, Technischen Universität
Darmstadt, Germany, 2013. Cited on pages 13, 15, and 16.

[Jan06] David Janin. Contributions to formal methods: games, logic and automata,
2006. Habilitation thesis. Cited on pages 85, 90, 91, 170, 179, 214, 247,
and 249.

[JL04] David Janin and Giacomo Lenzi. On the relationship between monadic and
weak monadic second order logic on arbitrary trees, with applications to
the µ-calculus. Fundam. Inform., 61(3-4):247–265, 2004. Cited on page 15.

[JT51] Bjarni Jónsson and Alfred Tarski. Boolean algebras with operators. Amer.
J. Math., 73:891–939, 1951. Cited on pages 45, 47, and 49.

[JW95] David Janin and Igor Walukiewicz. Automata for the modal µ-calculus and
related results. In MFCS, pages 552–562, 1995. Cited on pages 17 and 93.

[JW96] David Janin and Igor Walukiewicz. On the expressive completeness of the
propositional µ-calculus with respect to monadic second order logic. In
Proceedings of the 7th International Conference on Concurrency Theory,
CONCUR ’96, pages 263–277, London, UK, 1996. Springer-Verlag. Cited
on pages 6, 17, 19, 20, 173, and 215.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theor. Comput.
Sci., 27:333–354, 1983. Cited on page 6.

[Kri65] Saul A. Kripke. Semantical analysis of modal logic II. Non-normal modal
propositional calculi. In J. W. Addison, A. Tarski, and L. Henkin, editors,
The Theory of Models, number 1, pages 135–135. North Holland, 1965.
Cited on page 50.

[KV95] Phokion G. Kolaitis and Jouko A. Väänänen. Generalized quantifiers and
pebble games on finite structures. Annals of Pure and Applied Logic,
74(1):23–75, 1995. Cited on page 105.

[KV98] Orna Kupferman and Moshe Y. Vardi. Freedom, weakness, and determin-
ism: From linear-time to branching-time. In Thirteenth Annual IEEE Sym-
posium on Logic in Computer Science, Indianapolis, Indiana, USA, June
21-24, 1998, pages 81–92. IEEE Computer Society, 1998. Cited on pages 18
and 87.

[KV01] Orna Kupferman and Moshe Y. Vardi. Weak alternating automata are not
that weak. ACM Trans. Comput. Logic, 2(3):408–429, July 2001. Cited on
page 86.

[KV03] Orna Kupferman and Moshe Y. Vardi. Π2∩Σ2 ≡ AFMC. In ICALP, pages
697–713, 2003. Cited on page 87.

Bibliography 235

[KV05] Orna Kupferman and Moshe Y. Vardi. From linear time to branching time.
ACM Trans. Comput. Log., 6(2):273–294, 2005. Cited on page 87.

[KV09] Christian Kissig and Yde Venema. Complementation of coalgebra au-
tomata. In Alexander Kurz, Marina Lenisa, and Andrzej Tarlecki, editors,
Algebra and Coalgebra in Computer Science, Third International Confer-
ence, CALCO 2009, Udine, Italy, September 7-10, 2009. Proceedings, vol-
ume 5728 of Lecture Notes in Computer Science, pages 81–96. Springer,
2009. Cited on pages 29 and 149.

[KVW00] Orna Kupferman, Moshe Y. Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. J. ACM, 47(2):312–
360, March 2000. Cited on pages 18, 86, 165, and 166.

[Lan06] Martin Lange. Model checking propositional dynamic logic with all extras.
Journal of Applied Logic, 4(1):39–49, 2006. Cited on page 6.

[Lib04] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004. Cited on
page 38.

[LN99] Leonid Libkin and Juha Nurmonen. Counting and locality over finite struc-
tures a survey. In Jouko Väänänen, editor, Generalized Quantifiers and
Computation, volume 1754 of Lecture Notes in Computer Science, pages
18–50. Springer Berlin Heidelberg, 1999. Cited on page 225.

[Löw15] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül. Mathematische
Annalen, 76(4):447–470, 1915. Cited on page 146.

[Mat02] Radu Mateescu. Local model-checking of modal mu-calculus on acyclic
labeled transition systems. In Joost-Pieter Katoen and Perdita Stevens,
editors, Tools and Algorithms for the Construction and Analysis of Systems,
volume 2280 of Lecture Notes in Computer Science, pages 281–295. Springer
Berlin Heidelberg, 2002. Cited on page 166.

[Mos57] Andrzej Mostowski. On a generalization of quantifiers. Fundamenta Math-
ematicae, 44(1):12–36, 1957. Cited on pages 37 and 146.

[Mos74] Yiannis N. Moschovakis. Elementary induction on abstract structures.
North-Holland, 1974. Cited on pages 8 and 38.

[Mos85] A.W. Mostowski. Regular expressions for infinite trees and a standard form
of automata. In Andrzej Skowron, editor, Computation Theory, volume
208 of Lecture Notes in Computer Science, pages 157–168. Springer Berlin
Heidelberg, 1985. Cited on page 15.

[Mos91] Andrzej Mostowski. Games with forbidden positions. Technical Report 78,
University of Gdansk, 1991. Cited on page 26.

[Mos08] Yiannis N. Moschovakis. Elementary induction on abstract structures.
Dover Publications, 2008. Cited on pages 8 and 38.

236 Bibliography

[MS85] David Muller and PaulE. Schupp. Alternating automata on infinite objects,
determinacy and rabin’s theorem. In M. Nivat and D. Perrin, editors,
Automata on Infinite Words, volume 192 of Lecture Notes in Computer
Science, pages 99–107. Springer Berlin Heidelberg, 1985. Cited on page 15.

[MS87] David E. Muller and Paul E. Schupp. Alternating automata on infinite
trees. Theoretical Computer Science, 54(2-3):267–276, 1987. Cited on
page 29.

[MS95] David E. Muller and Paul E. Schupp. Simulating alternating tree automata
by nondeterministic automata. Theor. Comput. Sci., 141(1-2):69–107, 1995.
Cited on page 197.

[MSS88] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Weak alternating
automata give a simple explanation of why most temporal and dynamic
logics are decidable in exponential time. In Proceedings of the Third Annual
IEEE Symposium on Logic in Computer Science (LICS 1988), pages 422–
427. IEEE Computer Society Press, July 1988. Cited on page 18.

[MSS92] David E. Muller, Ahmed Saoudi, and Paul E. Schupp. Alternating au-
tomata, the weak monadic theory of trees and its complexity. Theor. Com-
put. Sci., 97(2):233–244, 1992. Cited on pages 14, 18, 86, and 197.

[Mul63] David E. Muller. Infinite sequences and finite machines. In 4th Annual
Symposium on Switching Circuit Theory and Logical Design, Chicago, Illi-
nois, USA, October 28-30, 1963, pages 3–16. IEEE Computer Society, 1963.
Cited on page 13.

[Niw86] Damian Niwiński. On fixed-point clones (extended abstract). In ICALP,
pages 464–473, 1986. Cited on pages 7, 15, 17, and 31.

[NSW02] Jakub Neumann, Andrzej Szepietowski, and Igor Walukiewicz. Complex-
ity of weak acceptance conditions in tree automata. Inf. Process. Lett.,
84(4):181–187, 2002. Cited on page 86.

[Ott99] Martin Otto. Eliminating recursion in the µ-calculus. In Christoph Meinel
and Sophie Tison, editors, STACS 99, volume 1563 of Lecture Notes in
Computer Science, pages 531–540. Springer Berlin Heidelberg, 1999. Cited
on page 84.

[Par76] David Park. Finiteness is mu-ineffable. Theoretical Computer Science,
3(2):173–181, 1976. Cited on pages 44, 68, and 72.

[Par80] David Park. On the semantics of fair parallelism. In Proceedings of the
Abstract Software Specifications, 1979 Copenhagen Winter School, pages
504–526, London, UK, UK, 1980. Springer-Verlag. Cited on pages 7 and 31.

[Par85] Rohit Parikh. The logic of games and its applications. In Selected Papers
of the International Conference on "Foundations of Computation Theory"

Bibliography 237

on Topics in the Theory of Computation, pages 111–139, New York, NY,
USA, 1985. Elsevier North-Holland, Inc. Cited on pages 6 and 34.

[Pau01] Marc Pauly. Logic for Social Software. PhD thesis, Institute for Logic
Language and Computation, University of Amsterdam, The Netherlands,
2001. Cited on pages 34 and 35.

[Pel85] David Peleg. Concurrent dynamic logic. In Proceedings of the Seventeenth
Annual ACM Symposium on Theory of Computing, STOC ’85, pages 232–
239, New York, NY, USA, 1985. ACM. Cited on pages 6, 11, 33, 34, 68,
and 84.

[Pra80] Vaughan R. Pratt. A near-optimal method for reasoning about action.
Journal of Computer and System Sciences, 20(2):231–254, 1980. Cited on
page 6.

[PSZng] Alessandra Palmigiano, Sumit Sourabh, and Zhiguang Zhao. Sahlvist The-
ory for Impossible Worlds. Journal of Logic and Computation, forthcoming.
Cited on page 50.

[Rab69] Michael O. Rabin. Decidability of second-order theories and automata on
infinite trees. Transactions of the American Mathematical Society, 141:1–
35, jul 1969. Cited on pages 13 and 14.

[Rab70] Michael O. Rabin. Weakly definable relations and special automata. In
Yehoshua Bar-Hillel, editor, Proceedings of the Symposium on Mathematical
Logic and Foundations of Set Theory (SMLFST’70), pages 1–23. North-
Holland, 1970. Cited on pages 14, 18, and 86.

[Ros97] Eric Rosen. Modal logic over finite structures. Journal of Logic, Language
and Information, 6:427–439, 1997. Cited on page 19.

[Saf88] Shmuel Safra. On the complexity of ω-automata. In Proceedings of the 29th
Annual Symposium on Foundations of Computer Science, SFCS ’88, pages
319–327, Washington, DC, USA, 1988. IEEE Computer Society. Cited on
page 197.

[Sch06] Nicole Schweikardt. On the expressive power of monadic least fixed point
logic. Theoretical Computer Science, 350(2-3):325–344, 2006. Automata,
Languages and Programming: Logic and Semantics (ICALP-B 2004) Au-
tomata, Languages and Programming: Logic and Semantics 2004. Cited
on page 72.

[Sto74] Larry J. Stockmeyer. The complexity of decision problems in automata
theory and logic. PhD thesis, 1974. Cited on page 8.

[Str81] Robert S. Streett. Propositional dynamic logic of looping and converse. In
STOC, pages 375–383. ACM, 1981. Cited on page 18.

238 Bibliography

[Str82] Robert S. Streett. Propositional dynamic logic of looping and converse is
elementarily decidable. Information and Control, 54(1-2):121–141, 1982.
Cited on page 18.

[SV10] Luigi Santocanale and Yde Venema. Completeness for flat modal fixpoint
logics. Ann. Pure Appl. Logic, 162(1):55–82, 2010. Cited on pages 10, 68,
and 84.

[Tho75] Steven K. Thomason. Categories of frames for modal logic. J. Symb. Log.,
40(3):439–442, 1975. Cited on page 50.

[Tho84] Wolfgang Thomas. Logical aspects in the study of tree languages. In Proc.
Of the Conference on Ninth Colloquium on Trees in Algebra and Program-
ming, pages 31–49, New York, NY, USA, 1984. Cambridge University Press.
Cited on pages 9 and 223.

[Tho96] Wolfgang Thomas. Languages, automata, and logic. In Handbook of Formal
Languages, pages 389–455. Springer, 1996. Cited on pages 9, 13, and 42.

[TK09] Hans-Jörg Tiede and Stephan Kepser. Monadic second-order logic and
transitive closure logics over trees. Research on Language and Computation,
7(1):41–54, 2009. Cited on pages 8 and 39.

[Tra61] Boris A. Trakthenbrot. Finite automata and the logic of monadic second
order predicates. Doklady Academii Nauk SSSR, 140:326–329, 1961. In
Russian. Cited on page 13.

[Vää77] Jouko Väänänen. Remarks on generalized quantifiers and second-order log-
ics. In Set theory and hierarchy theory, pages 117–123. Prace Naukowe
Instytutu Matematyki Politechniki Wroclawskiej, Wroclaw, 1977. Cited on
pages 12, 16, and 72.

[Var82] Moshe Y. Vardi. The complexity of relational query languages. In Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Computing,
STOC ’82, pages 137–146, New York, NY, USA, 1982. ACM. Cited on
page 8.

[Ven08] Yde Venema. PDL as a fragment of the modal µ-calculus. Unpublished,
2008. Cited on page 10.

[Ven11] Yde Venema. Lecture Notes on the Modal µ-calculus. 2011. Cited on
pages 13, 41, 93, 149, 162, 165, 168, and 184.

[Ven14] Yde Venema. Expressiveness modulo bisimilarity: A coalgebraic perspec-
tive. In Alexandru Baltag and Sonja Smets, editors, Johan van Benthem on
Logic and Information Dynamics, volume 5 of Outstanding Contributions
to Logic, pages 33–65. Springer International Publishing, 2014. Cited on
pages 20, 100, 215, 218, and 227.

Bibliography 239

[VW86] Moshe Y. Vardi and Pierre Wolper. Automata-theoretic techniques for
modal logics of programs. Journal of Computer and System Sciences,
32(2):183–221, 1986. Cited on page 18.

[Wal96] Igor Walukiewicz. Monadic second order logic on tree-like structures. In
STACS, pages 401–413, 1996. Cited on pages 9, 14, 41, 93, 173, 174,
and 177.

[Wal02] Igor Walukiewicz. Monadic second-order logic on tree-like structures.
Theor. Comput. Sci., 275(1-2):311–346, 2002. Cited on pages 173, 174,
and 177.

[Wil01] Thomas Wilke. Alternating tree automata, parity games, and modal µ-
calculus. Bull. Soc. Math. Belg, 8, 2001. Cited on page 87.

[Zan12] Fabio Zanasi. Expressiveness of monadic second order logics on infinite
trees of arbitrary branching degree. Master’s thesis, ILLC, Universiteit van
Amsterdam, the Netherlands, 2012. Cited on pages 15, 86, 178, 188, 194,
197, and 199.

Index

Symbols
2MSO 40
2WCL 42
2WMSO 41
Fα . 31
F� . 50
F�Y . 47
Qp . 23
R[x], R∗, R+ 23
R� . 50
ZV . 28
[LFPp:x.ϕ(p, x)] 38
[TCx,y.ϕ(x,y)](u,v) 39
Aut(L) 28
Autw(L) 86
Autwa(L) 88
Autwc(L) 87
Aut−wa(L) 150
FV 30, 37, 38
GL . 34
AFMC 31
A(A,S) 28, 93
A(A,S) 151
A . 28
Ag . 177
Au . 90
o . 159
FO(TC1) 39
↔ . 36

⊕ . 32
CPDL 33
∇∞(Σ) 103
∇FOE∞(T,Π,Σ) 103
∇FOE(T,Π) 101
∇FOE(T,Π)S 131
∇FOE(T,Π)s 127
∇FO(Σ) 100
∇FO(Σ)s 126, 132
∇ML(Σ)` 140
δp . 30
∀∞ . 37
Aδ . 29
πδ . 34
ϕδ 28, 78
∃p.L 176
∃p.A 176
∃finp.L 198
∃finp.A 198
∃fin, ∀fin 41
∃fchp.L 207
∃fchp.A 207
∃fch, ∀fch 42
JϕKS . 30
Fψ
p . 30
Fϕ
Q:x . 38

FO . 36
FOE 36

241

242 INDEX

FOE∞ 37
≈ . 36
FO(TC) 39
iVar . 36
A÷p . 204
A÷p . 191
G . 26
⇓ . 40
v . 40
; . 28
L . 27
L+ . 27
µML∨ 77
µcML∨ 71
µncML∨ 68
 28, 30, 32, 33
S[p 7→ Xp], S[p�Xp] 24
|= 28, 37–40, 125
∇A′
∞(Σ) 112
∇A′

FOE∞(T,Π,Σ) 112
∇A′

FOE(T,Π) 110
∇A′

FOE(T,Π)S 133
∇A′

FO(Σ) 109
∇A′

ML(Σ)` 142
∇A′

FO(Σ,Π) 109
∇A′

FO(Σ,Π)s 132
∇A′

ML(Σ,Π)` 142
MSO 40
µML 29

ADDQ 58
CONQ 67
MON∨Q 77
nCON∨Q 68, 71
nADDQ 52
nADD−Q 54

µML[k] 31
µcML 68
µcML[. 68
µaML 58
µaFOE» 209
µaFOE 63

µcFOE∞ 75
µFOE» 179
µFOE∞» 201
µFOE 38

ADDQ 61
µFOE∞

CONQ 73
⊗ . 33
µnaML 53
M . 37
FO1 . 99

ADDA′ 121
CONA′ 124
CONA′ 114
MONA′ 108
MULA′ 124

FO1 (multi-sorted)
ADDA′ 136
MONA′ 132
MULA′ 139

FOE1 99
ADDA′ 119
MONA′ 110

FOE1 (multi-sorted) 125
ADDA′ 134
MONA′ 133
MULA′ 139

FOE∞1 99
CONA′ 124
CONA′ 116
MONA′ 111
MULA′ 124

ML1 139
ADDA′ 143
CONA′ 145
CONA′ 142
MONA′ 141
MULA′ 145
ADD−A′ 150

ML[1 149
�, ≺ 28
D . 27

INDEX 243

PDL 32
PDLtf 32
R�
π 34, 35

Ω . 26
∇+

FOE∞(T,Π,Σ) 112
∇+

FOE(T,Π) 110
∇+

FOE(T,Π)S 133
∇+

FO(Σ)s 132
∇+

ML(Σ)` 142
∇+

FO(Σ,Π)s 132
∇+

ML(Σ,Π)` 142
π;π . 32
π∗ . 32
π◦ . 35
π[. 159
∃∞ . 37
RS
π . 32

µ−naML 54
S(E,S) 154
A℘ . 188
σp . 30
♥ . 30
E . 30
Ms

1 . 27
τA
′

S . 108
τS . 98
τ+
S . 98

∆ . 28
T, T.s 24
$c, $Q

c , $+
c 140

T (A) 175
κ . 23
κ\ . 23
κ\(p) 24
M1 . 27
FO(LFP1) 38
Ŝ, Sω 24
V . 28
V \ . 28
V c . 28
ϕ? . 32
ϕδ . 144

T, x . 23
WCL 42
Win . 26
WinΩ 26
WMSO 41
Wx.(ϕ, ψ) 73
f : d 7→ d′ 100, 126

A
additivity

complete 44
complete, in the

jth-coordinate 45, 46
complete, in the product 45, 46

approximant 31
atom 46

quasi- 46
automaton

B-incomplete 159
completion 159

MSO- 173
PDL- 158
PDLtf - 150
WCL- 202
WMSO- 187
non-deterministic 177
parity 28
achromatic 94
additive-weak 88
chromatic 93
continuous-weak 87
modal 93
weak 86

unraveling 90

B
bisimulation 36
board 26

C
calculus, µ- 29
chain 24

finite 25
generalized 25

244 INDEX

closure
reflexive-transitive 39

coloring 23, 28
component

maximal strongly connected 28
strongly connected 28

condition
additivity 88
continuity 87
weakness 86
winning 26

continuity 64
in the jth-coordinate 64
in the product 64

D
definition, binding 30
depth

alternation 30
dual

FOE∞1 124
ML1 144
Boolean 28, 78

E
equation

σ-, µ-, ν- 154
set of B-incomplete σ- . . . 154

F
fixpoint

least 30
form, basic

FO1 100
FOE1 101
FOE1 (multi-sorted) 131
FOE∞1 103
ML1 140
strict

FO1 (multi-sorted) 126
FOE1 (multi-sorted) . . . 127

formula
bisimulation-invariant 36
clean 30

completely additive . . . 51, 61
continuous 67, 73
guarded 165
one-step 27
co-continuous 87
completely additive 88
completely multiplicative 88
continuous 87
monotone 108

restrict to descendants . . . 180
fragment

alternation-free 31
co-continuous

FO1 124
FOE∞1 124
ML1 145

completely additive . 52, 58, 61
FO1 121
FO1 (multi-sorted) 136
FOE1 119
FOE1 (multi-sorted) . . . 134
ML1 143
normal and 52

completely multiplicative
FO1 124
FO1 (multi-sorted) 139
FOE1 (multi-sorted) . . . 139
FOE∞1 124
ML1 145

continuous 67, 73
FO1 114
FOE∞1 116
ML1 142

forward-looking 179, 201
monotone 77

FO1 108
FO1 (multi-sorted) 132
FOE1 110
FOE1 (multi-sorted) . . . 133
FOE∞1 111
ML1 141

positive 27
function, parity 26

INDEX 245

G
game

acceptance 28
modal 93
NFA 151

board 26
determined 26
initialized board 26
parity 26
solution 154

graph
induced 28

H
hierarchy

arity 39
variable 31

I
isomorphism, partial 100, 126

L
language

one-step 27
multi-sorted 27

lifting
additive 204
continuous 191

logic
chain 42
first-order 36
with generalized quantifiers 37
with reflexive-transitive
closure 39

with unary fixpoints 38
Game 34
monadic second-order 40
Propositional Dynamic . . . 32
Concurrent 33
test-free 32

weak chain 42
weak monadic second-order 41

M
map

completely additive 44–46
in the jth-coordinate . 45, 46
in the product 45, 46
normal and 45

constructive 47
continuous 64
in the jth-coordinate 64
in the product 64

normal 45
parity 26, 28
restrict to descendants . . . 180
transition 28

marking 23, 28
match 26

f -guided 26
partial 26
total 26

model 37
bisimilar 36
one-step 27
strict 27

move, admissible 26

N
name 27
normal form

dual 35
normality 45

P
parameter 38, 39
path . 24
projection

finite chain 207
finite set 198
of A over p 176

Q
quantifier, generalized 37
quasi-atom 46

R
rank, quantifier 99

246 INDEX

restriction
additivity 88
continuity 87
weakness 86

restriction, to descendants . . . 180
root . 24

S
set of B-incomplete σ-equations 154
strategy 26

finitely branching 189
functional 177, 189
non-branching 203
positional 26
surviving 26
well-founded 189
winning 26

T
transition system

bisimilar 36
labeled 23

tree . 24
class of 24

language 24
strict 24
unraveling 24
with back-edges 90

type . 98
A- 98
A′-positive 108
positive 98

U
unraveling 24

ω- 24
finite 90
partial 90
tree 24

V
valuation 23, 28
variable

bound 30
guarded 165
weakly 165

individual 37
separation of 54

Samenvatting

Dit proefschrift, met de titel Fragmenten van Dekpuntlogica’s: Automaten en
Expressiviteit, bestudeert de relatieve uitdrukkingskracht en de eigenschappen
van een aantal dekpunt- en tweede orde-logica’s. De term dekpuntlogica wordt in
dit manuscript in de brede zin gebruikt; er wordt mee gerefereerd aan iedere logica
waarmee recursie, iteratie of repetitie kan worden uitgedrukt. Ons belangrijkste
doel is om op systematische wijze verschillende belangrijke logica’s als precieze
fragmenten van andere bekende logica’s te identificeren. Om deze taak te kunnen
bewerkstelligen hebben we automaten-theoretische middelen ontwikkeld om deze
fragmenten te kunnen analyseren. De resultaten van dit proefschrift geven nieuw
inzicht in de relatie tussen dekpunt- en tweede-orde-logica en leveren verder bewijs
voor de succesvolle samenhang van logica en automaten.

In Hoofdstuk 3 definiëren en analyseren we fragmenten van zowel modale
als eerste-orde-dekpuntlogica’s. Om deze fragmenten te definiëren gebruiken we
hoofdzakelijk de methode van restrictie van de toepassing van de dekpuntop-
erator µp.ϕ (en zijn eerste-orde equivalent) op formules ϕ met een specifieke
eigenschap. De voornaamste eigenschappen die we beschouwen zijn volledige ad-
ditiviteit en continuïteit, maar ook andere syntactische restricties en hun effecten
worden bestudeerd. Aan de modale kant geven we precieze en semantische karak-
teriseringen van PDL, Concurrent PDL en GL binnen de µ-calculus. Voor de
kant van de eerste-orde geven we een analoge karakterisering van FO(TC1) bin-
nen FO(LFP1).

In Hoofdstuk 4 introduceren we verschillende subklassen van pariteitsauto-
maten en bespreken we de intuïties en motivaties voor deze definities. De sub-
klassen zijn geïnspireerd op de fragmenten van Hoofdstuk 3 en proberen een
parallel te vinden –aan de kant van de automaat– voor de beperkingen van addi-
tiviteit en continuïteit van de syntactische fragmenten. In het laatste deel van dit
hoofdstuk introduceren we een algemene techniek (te danken aan Janin [Jan06])
om pariteitsautomaten in een boomvorm te verkrijgen. Deze structuur heeft het
voordeel dat zij een “bijna (dekpunt) formule” is en daardoor makkelijker te ver-

247

248 Samenvatting

talen is naar een passende dekpuntlogica. Als afsluiting introduceren we andere
mogelijke equivalente definities van pariteitsautomaten (d.w.z. modale, eerste-
orde, chromatische en achromatische) en bespreken we de voor- en nadelen van
elk van deze perspectieven.

Een van de voordelen van de automaten-aanpak voor dekpuntlogica’s is dat
hun complexiteit onderverdeeld kan worden in twee simpelere en duidelijk gede-
finieerde delen: een graafstructuur die de repetities (d.w.z. de toestanden van
de automaat) representeert en een afbeelding van de transitie met een simpele
één-stap-logica. In Hoofdstuk 5 zal de nadruk liggen op dit laatste deel. We
introduceren de één-stap-logica’s die in dit proefschrift gebruikt zullen worden en
vervolgen met uitdieping van deze logica’s. Ons streven is om normale vormen te
kunnen geven en om een aantal fragmenten van deze logica’s (continu, volledig
additief, etc.) te kunnen karakteriseren. De resultaten van deze analyse zullen
cruciaal zijn voor de volgende hoofdstukken, waarin we gebaseerd op deze talen
de eigenschappen van automaten bewijzen.

In Hoofdstuk 6 geven we automaten-karakteriseringen voor een aantal modale
logica’s. De resultaten van dit hoofdstuk worden verkregen door het gebruik
van pariteitsautomaten gebaseerd op modale één-stap-logica’s. We laten zien
dat (1) test-free PDL en volledig PDL corresponderen met concrete klassen van
additief-zwakke pariteitsautomaten; en (2) de continue restrictie van µ-calculus
correspondeert met een concrete klasse van continu-zwakke pariteitsautomaten.
Deze resultaten worden verkregen door effectieve transformaties van formules naar
automaten en vice-versa.

In Hoofdstuk 7 geven we een automaten-karakterisering voor WMSO (zwakke
monadische tweede-orde-logica) en WCL (zwakke kettinglogica), voor de klasse
van boommodellen. In dit geval gebruiken we pariteitsautomaten gebaseerd op
(uitbreidingen van) eerste-orde-logica (met identiteit). De belangrijkste uitdaging
van dit hoofdstuk is om simulatie- en projectiestellingen te geven voor de klassen
van continu-zwakke en additief-zwakke pariteitsautomaten. Een bijproduct hier-
van is dat we karakteriseringen voor de genoemde automaten (en tweede-orde-
logica’s) als fragmenten van dekpuntlogica’s verkrijgen.

In Hoofdstuk 8 gebruiken we de middelen die in de voorgaande hoofdstukken
ontwikkeld zijn om nieuwe bisimulatie-invariantie resultaten te bewijzen. We
bewijzen namelijk dat het bisimulatie-invariante fragment van WCL PDL is, en
dat het bisimulatie-invariante fragment van WMSO equivalent is aan de continue
restrictie van de µ-calculus.

Abstract

This dissertation, entitled Fragments of Fixpoint Logics: Automata and Expres-
siveness, studies the relative expressive power and properties of several fixpoint
and second-order logics. We use the term fixpoint logic in a broad sense, refer-
ring to any logic which can encode some type of recursion, iteration or repetition.
Our main objective is to systematically identify several important logics as pre-
cise fragments of other well-known logics. In order to accomplish this task, we
develop automata-theoretic tools to analyze these fragments. The results of this
dissertation provide new insight on the relationship of fixpoint and second-order
logic and provides further evidence of the successful logic-automata connection.

In Chapter 3 we define and analyze fragments of both modal and first-order
fixpoint logics. The main method that we use to define these fragments is the
restriction of the application of the fixpoint operator µp.ϕ (and the first-order
equivalent) to formulas ϕ having a special property. The main properties that
we consider are complete additivity and continuity, but we also consider other
syntactic restrictions and their effects. On the modal side, we give precise syn-
tactic and semantic characterizations of PDL, Concurrent PDL and GL inside
the µ-calculus. On the first-order side, we give an analogous characterization of
FO(TC1) inside FO(LFP1).

In Chapter 4 we introduce several subclasses of parity automata and discuss
the intuitions and motivations behind these definitions. The subclasses are in-
spired by the fragments of Chapter 3 and try to parallel, on the automata side,
the additivity and continuity constraints of the syntactic fragments. In the last
part of this chapter we introduce a general technique (due to Janin [Jan06]) to
bring parity automata into a tree-like shape. This structure has the advantage of
being ‘almost a (fixpoint) formula’ and therefore it is easy to translate it to an
appropriate fixpoint language. To finish, we introduce other possible equivalent
definitions of parity automata (i.e., modal, first-order, chromatic and achromatic)
and discuss the (dis)advantages of each perspective.

One of the advantages of taking an automata approach to fixpoint logics is

249

250 Abstract

that their complexity can be divided in two simpler and clearly defined parts:
a graph structure representing the repetitions (i.e., the states of the automata)
and a transition map with a simple one-step logic. In Chapter 5 we focus on the
latter part. We introduce the one-step logics that we use in this dissertation and
carry on an in-depth study of them. Our objective is to provide normal forms
and characterize several fragments of this logics (continuous, completely additive,
etc.) The results of this analysis will be crucial in later chapters, when we prove
properties of automata based on these languages.

In Chapter 6 we give automata characterizations for a number of modal logics.
The results of this chapter are obtained using parity automata based on modal
one-step languages. We show that (1) test-free PDL and full PDL correspond
to concrete classes of additive-weak parity automata; and (2) the continuous
restriction of the µ-calculus corresponds to a concrete class of continuous-weak
parity automata. These results are obtained via effective transformations from
formulas to automata and vice-versa.

In Chapter 7 we give automata characterizations for WMSO (weak monadic
second-order logic) and WCL (weak chain logic), on the class of tree models. In
this case, we use parity automata based on (extensions of) first-order logic (with
equality). The main challenge of this chapter is to give simulation and projection
theorems for the classes of continuous-weak and additive-weak parity automata.
As a byproduct, we also obtain characterizations for the mentioned automata
(and second-order logics) as fragments fixpoint logics.

In Chapter 8 we use the tools developed in the previous chapters to prove
novel bisimulation-invariance results. Namely, we prove that the bisimulation
invariant fragment of WCL is PDL, and that the bisimulation-invariant fragment
of WMSO is equivalent to the continuous restriction of the µ-calculus.

Titles in the ILLC Dissertation Series:

ILLC DS-2010-01: Reut Tsarfaty
Relational-Realizational Parsing

ILLC DS-2010-02: Jonathan Zvesper
Playing with Information

ILLC DS-2010-03: Cédric Dégremont
The Temporal Mind. Observations on the logic of belief change in interactive
systems

ILLC DS-2010-04: Daisuke Ikegami
Games in Set Theory and Logic

ILLC DS-2010-05: Jarmo Kontinen
Coherence and Complexity in Fragments of Dependence Logic

ILLC DS-2010-06: Yanjing Wang
Epistemic Modelling and Protocol Dynamics

ILLC DS-2010-07: Marc Staudacher
Use theories of meaning between conventions and social norms

ILLC DS-2010-08: Amélie Gheerbrant
Fixed-Point Logics on Trees

ILLC DS-2010-09: Gaëlle Fontaine
Modal Fixpoint Logic: Some Model Theoretic Questions

ILLC DS-2010-10: Jacob Vosmaer
Logic, Algebra and Topology. Investigations into canonical extensions, duality
theory and point-free topology.

ILLC DS-2010-11: Nina Gierasimczuk
Knowing One’s Limits. Logical Analysis of Inductive Inference

ILLC DS-2010-12: Martin Mose Bentzen
Stit, Iit, and Deontic Logic for Action Types

ILLC DS-2011-01: Wouter M. Koolen
Combining Strategies Efficiently: High-Quality Decisions from Conflicting
Advice

ILLC DS-2011-02: Fernando Raymundo Velazquez-Quesada
Small steps in dynamics of information

ILLC DS-2011-03: Marijn Koolen
The Meaning of Structure: the Value of Link Evidence for Information Re-
trieval

ILLC DS-2011-04: Junte Zhang
System Evaluation of Archival Description and Access

ILLC DS-2011-05: Lauri Keskinen
Characterizing All Models in Infinite Cardinalities

ILLC DS-2011-06: Rianne Kaptein
Effective Focused Retrieval by Exploiting Query Context and Document Struc-
ture

ILLC DS-2011-07: Jop Briët
Grothendieck Inequalities, Nonlocal Games and Optimization

ILLC DS-2011-08: Stefan Minica
Dynamic Logic of Questions

ILLC DS-2011-09: Raul Andres Leal
Modalities Through the Looking Glass: A study on coalgebraic modal logic and
their applications

ILLC DS-2011-10: Lena Kurzen
Complexity in Interaction

ILLC DS-2011-11: Gideon Borensztajn
The neural basis of structure in language

ILLC DS-2012-01: Federico Sangati
Decomposing and Regenerating Syntactic Trees

ILLC DS-2012-02: Markos Mylonakis
Learning the Latent Structure of Translation

ILLC DS-2012-03: Edgar José Andrade Lotero
Models of Language: Towards a practice-based account of information in nat-
ural language

ILLC DS-2012-04: Yurii Khomskii
Regularity Properties and Definability in the Real Number Continuum: ide-
alized forcing, polarized partitions, Hausdorff gaps and mad families in the
projective hierarchy.

ILLC DS-2012-05: David García Soriano
Query-Efficient Computation in Property Testing and Learning Theory

ILLC DS-2012-06: Dimitris Gakis
Contextual Metaphilosophy - The Case of Wittgenstein

ILLC DS-2012-07: Pietro Galliani
The Dynamics of Imperfect Information

ILLC DS-2012-08: Umberto Grandi
Binary Aggregation with Integrity Constraints

ILLC DS-2012-09: Wesley Halcrow Holliday
Knowing What Follows: Epistemic Closure and Epistemic Logic

ILLC DS-2012-10: Jeremy Meyers
Locations, Bodies, and Sets: A model theoretic investigation into nominalistic
mereologies

ILLC DS-2012-11: Floor Sietsma
Logics of Communication and Knowledge

ILLC DS-2012-12: Joris Dormans
Engineering emergence: applied theory for game design

ILLC DS-2013-01: Simon Pauw
Size Matters: Grounding Quantifiers in Spatial Perception

ILLC DS-2013-02: Virginie Fiutek
Playing with Knowledge and Belief

ILLC DS-2013-03: Giannicola Scarpa
Quantum entanglement in non-local games, graph parameters and zero-error
information theory

ILLC DS-2014-01: Machiel Keestra
Sculpting the Space of Actions. Explaining Human Action by Integrating In-
tentions and Mechanisms

ILLC DS-2014-02: Thomas Icard
The Algorithmic Mind: A Study of Inference in Action

ILLC DS-2014-03: Harald A. Bastiaanse
Very, Many, Small, Penguins

ILLC DS-2014-04: Ben Rodenhäuser
A Matter of Trust: Dynamic Attitudes in Epistemic Logic

ILLC DS-2015-01: María Inés Crespo
Affecting Meaning. Subjectivity and evaluativity in gradable adjectives.

ILLC DS-2015-02: Mathias Winther Madsen
The Kid, the Clerk, and the Gambler - Critical Studies in Statistics and Cog-
nitive Science

ILLC DS-2015-03: Shengyang Zhong
Orthogonality and Quantum Geometry: Towards a Relational Reconstruction
of Quantum Theory

ILLC DS-2015-04: Sumit Sourabh
Correspondence and Canonicity in Non-Classical Logic

	Acknowledgments
	Introduction
	Featuring logics
	Fragments of fixpoint logics
	Logic and automata
	Expressiveness modulo bisimilarity
	Source of the material

	Preliminaries
	Terminology, transition systems and trees
	Games
	Parity automata
	The modal -calculus
	Logics of programs and games
	Propositional Dynamic Logic
	Concurrent PDL
	Game Logic

	Bisimulation
	First-order logic and extensions
	First-order logic with generalized quantifiers
	Fixpoint extension of first-order logic
	First-order logic with transitive closure

	Second-order logics
	Notational convention

	Fragments of fixpoint logics
	Completely additive fragments
	Fixpoint theory of completely additive maps
	Characterization of PDL inside ML
	Characterization of FO(TC1) inside FO(LFP1)

	Continuous fragments
	Fixpoint theory of continuous maps
	Characterization of CPDL inside ML
	Finiteness, cFOE and WMSO

	The question of Game Logic
	Conclusions and open problems

	Subclasses of parity automata
	Weak parity automata
	Continuous-weak parity automata
	Additive-weak parity automata
	Partial unraveling of parity automata
	Variants of parity automata
	Conclusions and open problems

	One-step model theory
	Single-sorted first-order languages
	Normal forms
	One-step monotonicity
	One-step continuity
	One-step additivity
	Dual fragments

	Selected multi-sorted first-order languages
	Normal forms
	One-step monotonicity
	One-step additivity
	One-step multiplicativity

	Selected modal languages
	Normal forms
	One-step monotonicity
	One-step continuity
	One-step additivity
	Dual fragments

	Effectiveness of the normal forms
	Conclusions and open problems

	Concrete modal automata
	Automata for test-free PDL
	From formulas to automata
	From automata to formulas

	Automata for PDL
	From formulas to automata
	From automata to formulas

	Automata for cML
	From formulas to automata
	From automata to formulas

	Modal automata versus first-order automata
	Conclusions and open problems

	Concrete first-order automata
	Automata for MSO
	From MSO to Aut(FOE 1)
	From Aut(FOE 1) to FO(LFP1)
	From FO(LFP1) to MSO
	Subtleties of the obtained translations

	Automata for WMSO
	Simulation theorem
	From WMSO to Autwc(FOE 1)
	From Autwc(FOE 1) to FO(LFP1)
	From cFOE to WMSO

	Automata for WCL
	Simulation theorem
	From WCL to Autwa(FOE 1)
	From Autwa(FOE 1) to FO(LFP1)
	From aFOE » to WCL

	The question of automata for FO(TC1)
	Conclusions and open problems

	Expressiveness modulo bisimilarity
	Continuous-weak automata
	Bisimulation-invariant fragment of WMSO

	Additive-weak automata
	Bisimulation-invariant fragment of WCL
	Relative expressive power of PDL, WCL and FO(TC1)
	On the bisimulation-invariant fragment of FO(TC1)

	Conclusions and open problems

	Bibliography
	Index
	Samenvatting
	Abstract

