50,231 research outputs found

    Some new results on the self-dual [120,60,24] code

    Full text link
    The existence of an extremal self-dual binary linear code of length 120 is a long-standing open problem. We continue the investigation of its automorphism group, proving that automorphisms of order 30 and 57 cannot occur. Supposing the involutions acting fixed point freely, we show that also automorphisms of order 8 cannot occur and the automorphism group is of order at most 120, with further restrictions. Finally, we present some necessary conditions for the existence of the code, based on shadow and design theory.Comment: 23 pages, 6 tables, to appear in Finite Fields and Their Application

    Self-Dual Codes

    Get PDF
    Self-dual codes are important because many of the best codes known are of this type and they have a rich mathematical theory. Topics covered in this survey include codes over F_2, F_3, F_4, F_q, Z_4, Z_m, shadow codes, weight enumerators, Gleason-Pierce theorem, invariant theory, Gleason theorems, bounds, mass formulae, enumeration, extremal codes, open problems. There is a comprehensive bibliography.Comment: 136 page

    Construction of isodual codes from polycirculant matrices

    Full text link
    Double polycirculant codes are introduced here as a generalization of double circulant codes. When the matrix of the polyshift is a companion matrix of a trinomial, we show that such a code is isodual, hence formally self-dual. Numerical examples show that the codes constructed have optimal or quasi-optimal parameters amongst formally self-dual codes. Self-duality, the trivial case of isoduality, can only occur over \F_2 in the double circulant case. Building on an explicit infinite sequence of irreducible trinomials over \F_2, we show that binary double polycirculant codes are asymptotically good

    Commutative association schemes

    Full text link
    Association schemes were originally introduced by Bose and his co-workers in the design of statistical experiments. Since that point of inception, the concept has proved useful in the study of group actions, in algebraic graph theory, in algebraic coding theory, and in areas as far afield as knot theory and numerical integration. This branch of the theory, viewed in this collection of surveys as the "commutative case," has seen significant activity in the last few decades. The goal of the present survey is to discuss the most important new developments in several directions, including Gelfand pairs, cometric association schemes, Delsarte Theory, spin models and the semidefinite programming technique. The narrative follows a thread through this list of topics, this being the contrast between combinatorial symmetry and group-theoretic symmetry, culminating in Schrijver's SDP bound for binary codes (based on group actions) and its connection to the Terwilliger algebra (based on combinatorial symmetry). We propose this new role of the Terwilliger algebra in Delsarte Theory as a central topic for future work.Comment: 36 page

    On relative tt-designs in polynomial association schemes

    Full text link
    Motivated by the similarities between the theory of spherical tt-designs and that of tt-designs in QQ-polynomial association schemes, we study two versions of relative tt-designs, the counterparts of Euclidean tt-designs for PP- and/or QQ-polynomial association schemes. We develop the theory based on the Terwilliger algebra, which is a noncommutative associative semisimple C\mathbb{C}-algebra associated with each vertex of an association scheme. We compute explicitly the Fisher type lower bounds on the sizes of relative tt-designs, assuming that certain irreducible modules behave nicely. The two versions of relative tt-designs turn out to be equivalent in the case of the Hamming schemes. From this point of view, we establish a new algebraic characterization of the Hamming schemes.Comment: 17 page
    • …
    corecore