35,587 research outputs found

    A Comparative Review of Dimension Reduction Methods in Approximate Bayesian Computation

    Get PDF
    Approximate Bayesian computation (ABC) methods make use of comparisons between simulated and observed summary statistics to overcome the problem of computationally intractable likelihood functions. As the practical implementation of ABC requires computations based on vectors of summary statistics, rather than full data sets, a central question is how to derive low-dimensional summary statistics from the observed data with minimal loss of information. In this article we provide a comprehensive review and comparison of the performance of the principal methods of dimension reduction proposed in the ABC literature. The methods are split into three nonmutually exclusive classes consisting of best subset selection methods, projection techniques and regularization. In addition, we introduce two new methods of dimension reduction. The first is a best subset selection method based on Akaike and Bayesian information criteria, and the second uses ridge regression as a regularization procedure. We illustrate the performance of these dimension reduction techniques through the analysis of three challenging models and data sets.Comment: Published in at http://dx.doi.org/10.1214/12-STS406 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A universal approximate cross-validation criterion and its asymptotic distribution

    Get PDF
    A general framework is that the estimators of a distribution are obtained by minimizing a function (the estimating function) and they are assessed through another function (the assessment function). The estimating and assessment functions generally estimate risks. A classical case is that both functions estimate an information risk (specifically cross entropy); in that case Akaike information criterion (AIC) is relevant. In more general cases, the assessment risk can be estimated by leave-one-out crossvalidation. Since leave-one-out crossvalidation is computationally very demanding, an approximation formula can be very useful. A universal approximate crossvalidation criterion (UACV) for the leave-one-out crossvalidation is given. This criterion can be adapted to different types of estimators, including penalized likelihood and maximum a posteriori estimators, and of assessment risk functions, including information risk functions and continuous rank probability score (CRPS). This formula reduces to Takeuchi information criterion (TIC) when cross entropy is the risk for both estimation and assessment. The asymptotic distribution of UACV and of a difference of UACV is given. UACV can be used for comparing estimators of the distributions of ordered categorical data derived from threshold models and models based on continuous approximations. A simulation study and an analysis of real psychometric data are presented.Comment: 23 pages, 2 figure

    Minimum Rates of Approximate Sufficient Statistics

    Full text link
    Given a sufficient statistic for a parametric family of distributions, one can estimate the parameter without access to the data. However, the memory or code size for storing the sufficient statistic may nonetheless still be prohibitive. Indeed, for nn independent samples drawn from a kk-nomial distribution with d=k−1d=k-1 degrees of freedom, the length of the code scales as dlog⁡n+O(1)d\log n+O(1). In many applications, we may not have a useful notion of sufficient statistics (e.g., when the parametric family is not an exponential family) and we also may not need to reconstruct the generating distribution exactly. By adopting a Shannon-theoretic approach in which we allow a small error in estimating the generating distribution, we construct various {\em approximate sufficient statistics} and show that the code length can be reduced to d2log⁡n+O(1)\frac{d}{2}\log n+O(1). We consider errors measured according to the relative entropy and variational distance criteria. For the code constructions, we leverage Rissanen's minimum description length principle, which yields a non-vanishing error measured according to the relative entropy. For the converse parts, we use Clarke and Barron's formula for the relative entropy of a parametrized distribution and the corresponding mixture distribution. However, this method only yields a weak converse for the variational distance. We develop new techniques to achieve vanishing errors and we also prove strong converses. The latter means that even if the code is allowed to have a non-vanishing error, its length must still be at least d2log⁡n\frac{d}{2}\log n.Comment: To appear in the IEEE Transactions on Information Theor

    Information measures and classicality in quantum mechanics

    Full text link
    We study information measures in quantu mechanics, with particular emphasis on providing a quantification of the notions of classicality and predictability. Our primary tool is the Shannon - Wehrl entropy I. We give a precise criterion for phase space classicality and argue that in view of this a) I provides a measure of the degree of deviation from classicality for closed system b) I - S (S the von Neumann entropy) plays the same role in open systems We examine particular examples in non-relativistic quantum mechanics. Finally, (this being one of our main motivations) we comment on field classicalisation on early universe cosmology.Comment: 35 pages, LATE

    Optimal Recovery of Local Truth

    Get PDF
    Probability mass curves the data space with horizons. Let f be a multivariate probability density function with continuous second order partial derivatives. Consider the problem of estimating the true value of f(z) > 0 at a single point z, from n independent observations. It is shown that, the fastest possible estimators (like the k-nearest neighbor and kernel) have minimum asymptotic mean square errors when the space of observations is thought as conformally curved. The optimal metric is shown to be generated by the Hessian of f in the regions where the Hessian is definite. Thus, the peaks and valleys of f are surrounded by singular horizons when the Hessian changes signature from Riemannian to pseudo-Riemannian. Adaptive estimators based on the optimal variable metric show considerable theoretical and practical improvements over traditional methods. The formulas simplify dramatically when the dimension of the data space is 4. The similarities with General Relativity are striking but possibly illusory at this point. However, these results suggest that nonparametric density estimation may have something new to say about current physical theory.Comment: To appear in Proceedings of Maximum Entropy and Bayesian Methods 1999. Check also: http://omega.albany.edu:8008

    Nonsubjective priors via predictive relative entropy regret

    Get PDF
    We explore the construction of nonsubjective prior distributions in Bayesian statistics via a posterior predictive relative entropy regret criterion. We carry out a minimax analysis based on a derived asymptotic predictive loss function and show that this approach to prior construction has a number of attractive features. The approach here differs from previous work that uses either prior or posterior relative entropy regret in that we consider predictive performance in relation to alternative nondegenerate prior distributions. The theory is illustrated with an analysis of some specific examples.Comment: Published at http://dx.doi.org/10.1214/009053605000000804 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • 

    corecore