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Abstract

Approximate Bayesian computation (ABC) methods make use of comparisons between
simulated and observed summary statistics to overcome the problem of computation-
ally intractable likelihood functions. As the practical implementation of ABC requires
computations based on vectors of summary statistics, rather than full datasets, a cen-
tral question is how to derive low dimensional summary statistics from the observed
data with minimal loss of information. In this article we provide a comprehensive
review and comparison of the performance of the principal methods of dimension re-
duction proposed in the ABC literature. The methods are split into three non-mutually
exclusive classes consisting of best subset selection methods, projection techniques and
regularisation. In addition, we introduce two new methods of dimension reduction.
The first is a best subset selection method based on Akaike and Bayesian information
criteria, and the second uses ridge regression as a regularisation procedure. We illus-
trate the performance of these dimension reduction techniques through the analysis of
three challenging models and datasets.
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1 Introduction

Bayesian inference is typically focused on the posterior distribution p(θ|yobs) ∝ p(yobs|θ)p(θ)

of a parameter vector θ ∈ Θ ⊆ Rq, q ≥ 1, representing the updating of one’s prior beliefs,

p(θ), through the likelihood (model) function, p(yobs|θ), having observed data yobs ∈ Y . The

term approximate Bayesian computation (ABC) refers to a family of models and algorithms

that aim to draw samples from an approximate posterior distribution when the likelihood,

p(yobs|θ), is unavailable or computationally intractable, but where it feasible to quickly gener-

ate data from the model, y ∼ p(·|θ). ABC is rapidly becoming a popular tool for the analysis

of complex statistical models in an increasing number and breadth of research areas. See

e.g. Lopes and Beaumont (2009), Bertorelle et al. (2010), Beaumont (2010), Csilléry et al.

(2010) and Sisson and Fan (2011) for a partial overview of the application of ABC methods.

ABC introduces two principal approximations to the posterior distribution. Firstly,

the posterior distribution of the full dataset, p(θ|yobs), is approximated by p(θ|sobs) ∝

p(sobs|θ)p(θ), where sobs = S(yobs) is a vector of summary statistics of lower dimension

than the data yobs. In this manner, p(θ|sobs) ≈ p(θ|yobs) is a good approximation if sobs is

highly informative for the model parameters, and p(θ|sobs) = p(θ|yobs) if sobs is sufficient.

As p(sobs|θ) is also likely to be computationally intractable if p(yobs|θ) is computationally

intractable, a second approximation is constructed as pABC(θ|sobs) =
∫
p(θ, s|sobs)ds, with

p(θ, s|sobs) ∝ Kε(‖s− sobs‖)p(s|θ)p(θ), (1)

where Kε(‖u‖) = K(‖u‖/ε)/ε is a standard smoothing kernel with scale parameter ε > 0.

As a result of (1), approximating the target p(θ|sobs) by pABC(θ|sobs) can be shown to be

a good approximation if the kernel scale parameter, ε, is small enough, following standard

kernel density estimation arguments (e.g. Blum 2010a).

In combination, both approximations allow for practical methods of sampling from pABC(θ|sobs)
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that avoid explicit evaluation of the intractable likelihood function, p(yobs|θ). A simple

rejection-sampling algorithm to achieve this was proposed by Pritchard et al. (1999) (see

also Marjoram et al. 2003), which produces draws from p(θ, s|sobs). In general terms, an

importance-sampling version of this algorithm proceeds as follows:

1. Draw a candidate parameter vector from the prior, θ′ ∼ p(θ);

2. Draw summary statistics from the model s′ ∼ p(s|θ′);

3. Assign to (θ′, s′) a weight, w′, that is proportional to Kε(‖s′ − sobs‖).

Here, the sampling distribution for (θ′, s′) is the prior predictive distribution, p(s|θ)p(θ),

and the target distribution is p(θ, s|sobs). Using equation (1), it is then straightforward

to compute the importance weight for the pair (θ′, s′). The weight is proportional to

p(θ′, s′|sobs)/[p(s′|θ′)p(θ′)] = Kε(‖s′ − sobs‖), which is free of intractable likelihood terms,

p(s′|θ′). The manner by which the intractable likelihoods cancel between sampling and

target distributions forms the basis for the majority of ABC algorithms.

Clearly, both ABC approximations to the posterior distribution help to avoid the com-

putational intractability of the original problem. The first approximation allows the kernel

weighting of the second approximation, Kε(‖s−sobs‖), to be performed on a lower dimension

than that of the original data, yobs. Kernel smoothing is known to suffer from the curse of

dimensionality (e.g. Blum 2010a), and so keeping dim(s) ≤ dim(y) as small as possible helps

to improve algorithmic efficiency. The second approximation (1) allows the sampler weights

(or acceptance probabilities, if one considers rejection-based samplers, such as Markov chain

Monte Carlo) to be free of intractable likelihood terms.

In practice, however, there is typically a tradeoff between the two approximations: If

the dimension of s is large so that the first approximation, p(θ|sobs) ≈ p(θ|yobs) is good, the

second approximation may then be poor due to the inefficiency of kernel smoothing in large

dimensions. Conversely, if the dimension of s is small, while the second approximation (1)
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will be good (with a small kernel scale parameter, ε), any loss of information in the mapping

sobs = S(yobs) means that the first approximation may be poor. Naturally, a low-dimensional

and near-sufficient statistic, s, would provide a near-optimal and balanced choice.

For a given set of summary statistics, much work has been done on deriving more ef-

ficient sampling algorithms to reduce the effect of the second approximation by allowing a

smaller value for the kernel scale parameter, ε, which in turn improves the approximation

pABC(θ|sobs) ≈ p(θ|sobs). The greater the algorithmic efficiency, the smaller the scale pa-

rameter that can be achieved for a given computational burden. These algorithms include

Markov chain Monte Carlo (Marjoram et al. 2003; Bortot et al. 2007) and sequential Monte

Carlo techniques (Sisson et al. 2007; Toni et al. 2009; Beaumont et al. 2009; Drovandi and

Pettitt 2011; Peters et al. 2012; Del Moral et al. 2012). By contrast, the regression-based

methods described in Section 2.1 do not aim at reducing the scale parameter ε but rather ex-

plicitly account for the imperfect match between observed and simulated summary statistics

(Beaumont et al. 2002; Blum and François 2010),

Achieving a good tradeoff between the two approximations revolves around the identifica-

tion of a set of summary statistics, s, which are both low-dimensional and highly informative

for θ. A number of methods, primarily based on dimension reduction ideas, have been pro-

posed to achieve this (Joyce and Marjoram 2008; Wegmann et al. 2009; Nunes and Balding

2010; Blum and François 2010; Blum 2010b; Fearnhead and Prangle 2012). The choice of

summary statistics is one of the most important aspects of a statistical analysis using ABC

methods (along with the choice of algorithm). Poor specification of s can have a large and

detrimental impact on both ABC model approximations.

In this article we provide the first detailed review and comparison of the performance of

the current methods of dimension reduction for summary statistics within the ABC frame-

work. We characterise these methods into three non-mutually exclusive classes: (i) best

subset selection, (ii) projection techniques and (iii) regularisation approaches. As part of
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this analysis, we introduce two additional novel techniques for dimension reduction within

ABC. The first adopts the ideas of Akaike and Bayesian information criteria to the ABC

framework, whereas the second makes use of ridge regression as a regularisation procedure

for ABC. The dimension reduction methods are compared through the analysis of three

challenging models and datasets. These involve the analysis of a coalescent model with

recombination (Joyce and Marjoram 2008), an evaluation of the evolutionary fitness cost

of mutation in drug-resistant tuberculosis (Luciani et al. 2009), and an assessment of the

number and size-distribution of particle inclusions in the production of clean steels (Bortot

et al. 2007).

The layout of this article is as follows: In Section 2 we classify and review the existing

methods of summary statistic dimension reduction in ABC, and in Section 3, we outline our

two additional novel methods. A comparative analysis of the performance of each of these

methods is provided in Section 4. We conclude with a discussion.

2 Classification of ABC dimension reduction methods

In a typical ABC analysis, an initial collection of statistics s> = (s1, . . . , sp) is chosen by

the modeller, the elements of which have the potential to be informative for the model

parameters, θ> = (θ1, . . . , θq). Choice of these initial statistics is highly problem specific,

and the number of candidate statistics, p, often considerably outnumbers the number of

model parameters, q i.e. p >> q (e.g. Bortot et al. 2007; Allingham et al. 2009; Luciani

et al. 2009). For example, Bortot et al. (2007) and Allingham et al. (2009) use the ordered

observations S(y) = (s(1), . . . , s(p)) so that there is no loss of information at this stage. The

analysis then proceeds by either using all p statistics in full, or by attempting to reduce their

dimension while minimising information loss. Note that the most suitable set of summary

statistics for an analysis may be dataset dependent, as the information content of summary
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statistics may vary within the parameter space, Θ (an exception is when sufficient statistics

are known). As such, any analysis should also consider establishing potentially different

summary statistics when re-implementing any model with a different dataset.

Methods of summary statistics dimension reduction for ABC can be broadly classified

into three non-mutually exclusive classes. The first class of methods follows a best subset

selection approach. Here, candidate subsets are evaluated and ranked according to various

information-based criteria, such as measures of sufficiency (Joyce and Marjoram 2008) or the

entropy of the posterior distribution (Nunes and Balding 2010). In this article we contribute

additional criteria for this process derived from Akaike and Bayesian information criteria

arguments. From these criteria, the highest ranking subset (or alternatively, a subset con-

sisting of those summary statistics which demonstrate clear importance) is then chosen for

the final analysis.

The second class of methods can be considered as projection techniques. Here, the di-

mension of (s1, . . . , sp) is reduced by considering linear or non-linear combinations of the

summary statistics. These methods make use of a regression layer within the ABC frame-

work, whereby the response variable, θ, is regressed by the (possibly transformed) predictor

variables, s, (Beaumont et al. 2002; Blum and François 2010). These projection methods

include partial least squares regression (Wegmann et al. 2009), feed-forward neural net-

works (Blum and François 2010) and regression guided by minimum expected posterior loss

considerations (Fearnhead and Prangle 2012).

In this article we introduce a third class of methods for dimension reduction in ABC,

based on regularisation techniques. Using ridge regression, we also make use of the regression

layer between the parameter θ and the summary statistics, s. However, rather than explic-

itly considering selection of summary statistics, we propose to approach this implicitly, by

shrinking the regression coefficients towards zero so that uninformative summary statistics

have the weakest contribution in the regression equation.
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In the remainder of this Section we discuss each of these methods in more detail. We

first describe the ideas behind ABC regression adjustment strategies (Beaumont et al. 2002;

Blum and François 2010), as many of the dimension reduction techniques build on this

framework.

2.1 Regression adjustment in ABC

Standard ABC methods suffer from the curse of dimensionality in that the rate of conver-

gence of posterior expectations with respect to pABC(θ|sobs) (such as the Nadaraya-Watson

estimator of the posterior mean) decreases dramatically as the dimension of the summary

statistics, p, increases (Blum 2010a). ABC regression adjustment (Beaumont et al. 2002)

aims to avoid this by explicitly modelling the discrepancy between s and sobs. When describ-

ing regression adjustment methods, for notational simplicity and clarity of exposition, we

assume that the parameter of interest, θ, is univariate (i.e. q = 1). Regression adjustment

methods may be readily applied to multivariate θ, by using a different regression equation

for each parameter, θ1, . . . , θq, separately.

The simplest model for this is a homoscedastic regression in the region of sobs, so that

θi = m(si) + ei,

where (θi, si) ∼ p(s|θ)p(θ) are i = 1, . . . , n draws from the prior predictive distribution,

m(si) = E[θ|s = si] is the mean function, and the ei are zero-mean random variates with

common variance. To estimate the conditional mean m(·), Beaumont et al. (2002) assumed

a linear model

m(si) = α + β>si (2)

in the neighborhood of sobs. An estimate of the mean function, m̂(·), is obtained by mini-

mizing the weighted least squares criterion
∑n

i=1 w
i‖m(si)−θi‖2 where wi = Kε(‖si−sobs‖).
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A weighted sample from the posterior distribution, pABC(θ|sobs) is then obtained by the

adjustment

θ∗i = m̂(sobs) + (θi − m̂(si)) (3)

for i = 1, . . . , n. In the above, the kernel scale parameter ε controls the bias-variance tradeoff:

Increasing ε reduces variance by increasing the effective sample size—the number of accepted

simulations when using a uniform kernel K—but increases bias arising from departures from

a linear mean function m(·) and homoscedastic error structure (Blum 2010a).

Blum and François (2010) proposed the more flexible, heteroscedastic model

θi = m(si) + σ(si)ei, (4)

where σ2(si) = V[θ|s = si] denotes the conditional variance. This variance is estimated

using a second regression model for the log of the squared residuals i.e. log(θi − m̂(si))2 =

log σ2(si)+ηi, where the ηi are independent, zero-mean variates with common variance. The

equivalent adjustment to (3) is then given by

θ∗i = m̂(sobs) +
[
θi − m̂(si)

] σ̂(sobs)

σ̂(si)
, (5)

where σ̂(s) denotes the estimate of σ(s). The kernel scale parameter, ε, plays the same role

as for the homoscedastic model, except with more flexibility on deviations from homoscedas-

ticity. Nott et al. (2011) have demonstrated that regression adjustment ABC algorithms

produce samples, {θ∗i}, for which first- and second-order moment summaries approximate

adjusted expectation and variance for a Bayes linear analysis. We do not describe here an al-

ternative regression adjustment method where the summary statistics are rather considered

as the dependent variables and the parameters as the independent variables of the regression

(Leuenberger and Wegmann 2010).
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2.2 Best subset selection methods

Best subset selection methods are conceptually simple, but are cumbersome to manage for

large numbers of potential summary statistics, s = (s1, . . . , sp). Exhaustive enumeration

of the 2p − 1 possible combinations of summary statistics is practically infeasible beyond

a moderate value of p. This is especially true of Markov chain Monte Carlo or sequential

Monte Carlo based analyses, which require one sampler implementation per combination. As

a result, stochastic or deterministic (greedy) search procedures, such as forward or backward

selection, are required to implement them.

2.2.1 A sufficiency criterion

The first principled approach to dimension reduction in ABC was the ε-sufficiency concept

proposed by Joyce and Marjoram (2008), which was used to determine whether to include an

additional summary statistic, sk, to a model already containing statistics s1, . . . , sk−1. Here,

noting that the difference between the log likelihoods of p(s1, . . . , sk|θ) and p(s1, . . . , sk−1|θ)

is log p(sk|s1, . . . , sk−1, θ), Joyce and Marjoram (2008) defined the set of statistics s1, . . . , sk−1

to be ε-sufficient relative to sk if

δk = sup
θ

log p(sk|s1, . . . , sk−1, θ)− inf
θ

log p(sk|s1, . . . , sk−1, θ) ≤ ε. (6)

Accordingly, if an estimate of δk (i.e. the “score” of sk relative to s1, . . . , sk−1) is greater

than ε, then there is enough additional information content in sk to justify including it in

the model. In practice, Joyce and Marjoram (2008) implement a conceptually equivalent

assessment, whereby sk is added to the model if the ratio of posteriors

Rk(θ) =
pABC(θ|s1, . . . , sk−1, sk)

pABC(θ|s1, . . . , sk−1)
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differs from one by more than some threshold value T (θ) for any value of θ. As such, a

statistic sk will be added to the model if the resulting posterior changes sufficiently at any

point. The threshold, T (θ), is user-specified, with one particular choice described in Section

5 of Joyce and Marjoram (2008).

This procedure can be implemented within any stepwise search algorithm, each of which

have various pros and cons. Following the definition (6), the resulting optimal subset of sum-

mary statistics is then ε-sufficient relative to each one of the remaining summary statistics.

Here ε intuitively represents an acceptable error in determining whether sk contains further

useful information in addition to s1, . . . , sk. This quantity is also user-specified, and so the

final optimal choice of summary statistics will depend on the chosen value.

Sensitivity to the choice of ε aside, this approach may be criticised in that it assumes that

every change to the posterior obtained by adding a statistic, sk, is beneficial. It is conceivable

that attempting to include a completely non-informative statistic where the observed statistic

is unlikely to have been generated under the model, will result in a sufficiently modified

posterior as measured by ε, but one which is more biased away from the true posterior

p(θ|yobs) than without including sk. A toy example illustrating this was given by Sisson and

Fan (2011).

A further criticism is that the amount of computation required to evaluate Rk(θ) for

all θ, and on multiple occasions, is considerable, especially for large q. In practice, Joyce

and Marjoram (2008) considered θ to be univariate, and approximated continuous θ over a

discrete grid in order to keep computational overheads to acceptable levels. As such, this

method appears largely restricted to dimension reduction for univariate parameters (q = 1).

2.2.2 An entropy criterion

Nunes and Balding (2010) propose the entropy of a distribution as a heuristic to measure the

informativeness of candidate combinations of summary statistics. Since entropy measures
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information and a lack of randomness (Shannon and Weaver 1948), the authors propose min-

imising the entropy of the approximate posterior, pABC(θ|sobs), over subsets of the summary

statistics, s, as a proxy for determining maximal information about a parameter of interest.

High entropy results from a diffuse posterior sample, whereas low entropy is obtained from

a posterior which is more precise in nature.

Nunes and Balding (2010) estimate entropy using the unbiased k-th nearest neighbour

estimator of Singh et al. (2003). For a weighted posterior sample, (w1, θ1), . . . , (wn, θn),

where
∑

iw
i = 1, this estimator can be written as

Ê = log

[
πq/2

Γ(q/2+1)

]
− ψ(k) + log n+ q

n∑
i=1

wi log Ĉ−1
i (k/(n− 1)), (7)

where q = dim(θ), ψ(x) = Γ′(x)/Γ(x) denotes the digamma function, and where Ĉi(·)

denotes the empirical distribution function of the Euclidean distance from θi to the remainder

of the weighted posterior sample i.e. of the weighted samples {(w̃j, ‖θi − θj‖)}j 6=i, where

w̃j = wj/
∑

j 6=iw
j. Following Singh et al. (2003), the original work of Nunes and Balding

(2010) used k = 4, and was based on an equally weighted posterior sample (i.e. with

wi = 1/n, i = 1, . . . , n), so that Ĉ−1
i (k/(n − 1)) denotes the Euclidean distance from θi to

its k-th closest neighbour in the posterior sample {θ1, . . . , θi−1, θi+1, . . . , θn}.

While minimum entropy could in itself be used to evaluate the informativeness of a vector

of summary statistics for θ (although see the criticism of entropy below), Nunes and Balding

(2010) propose a second stage to their analysis, which aims to assess the performance of a

candidate set of summary statistics using a measure of posterior error. For example, when

the true parameter vector, θtrue, is known, the authors suggest the root sum of squared errors

(RSSE), given by

RSSE =

(
n∑
i=1

wi‖θi − θtrue‖2

)1/2

, (8)
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where the measure ‖θi − θtrue‖ compares the components of θ on a suitable scale (and so

some component-wise standardisation may be required). Naturally, the true parameter value,

θtrue, is unknown in practice. However, if the simulated summary statistics from the samples

(θi, si) are treated as observed data, it is clear that θtrue = θi for the posterior pABC(θ|si).

As such, the RSSE can be easily computed with a leave-one-out technique.

As the subset of summary statistics that minimises (8) will likely vary over observed

datasets, si, Nunes and Balding (2010) propose minimising the average RSSE over some

number of simulated datasets which are close to the observed, sobs. To avoid circularity,

Nunes and Balding (2010) define these “close” datasets to be the j = 1, . . . , n∗ simulated

datasets, {sj}, that minimise ‖sjME−sME‖, where sjME and sME are the vectors of minimum

entropy summary statistics computed via (7) from sj and the observed summary statistics,

sobs, respectively. That is, the quantity

RSSE =
1

n∗

n∗∑
j=1

RSSEj, (9)

is minimised (over subsets of summary statistics), where RSSEj corresponds to (8) using the

simulated dataset sj.

This approach is intuitive, and is attractive because the second stage directly measures

error in the posterior with respect to a known truth, θtrue, which is not typically considered in

other ABC dimension reduction approaches, albeit at the extra computational expense of a

two-stage procedure. A weakness of the first stage however, is the assumption that addition

of an informative statistic will reduce the entropy of the resulting posterior distribution.

An example of when this does not occur is when the posterior distribution is diffuse with

respect to the prior – for instance, if an overly precise prior is located in the distributional

tails of the posterior (e.g. Jeremiah et al. 2011). In this case, attempting to include an

informative additional statistic, sk, can result in a distribution that is more diffuse than
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with sk excluded. As such, the entropic approach is therefore mostly suited to models

with relatively diffuse prior distributions. Another potential criticism of the first stage is

that minimising the entropy does not necessarily provide the minimal subset of sufficient

statistics. This provides an argument for considering the mutual information between θ and

s, rather than the entropy (Barnes et al. 2012; see also Filippi et al. 2012). However, it is

clear that the overall approach of Nunes and Balding (2010) could easily be implemented

with alternative first-stage selection criteria.

2.2.3 AIC and BIC criteria

Information criteria based on Akaike and Bayesian information are natural best subset selec-

tion techniques for summary statistic dimension reduction in ABC analyses. We introduce

and develop these criteria in Section 3.1.

2.3 Projection techniques

Selecting a best subset of summary statistics from s = (s1, . . . , sp) suffers from the problem

that it may require several statistics to provide the same information content as a single,

highly informative statistic that was not specified in the initial set, s. To avoid this, projec-

tion techniques aim to combine the elements of s through linear or non-linear transforma-

tions, in order to construct a potentially much lower dimensional set of highly informative

statistics.

One of the main advantages of projection techniques is that, unlike best subset selection

methods, they scale well with increasing numbers of summary statistics. They can handle

large numbers of possibly uninformative summary statistics, in addition to accounting for

high levels of inter-dependence and multicollinearity. A minor disadvantage of projection

techniques is that the final sets of projected summary statistics typically (but not universally)

lack interpretability. In addition, most projection methods require the specification of a

13



hyperparameter that governs the number of projections to perform.

2.3.1 Partial least squares regression

Partial least squares regression seeks the orthogonal linear combinations of the explanatory

variables which have high variance and high correlation with the response variable (e.g.

Boulesteix and Strimmer 2007; Vinzi et al. 2010; Abdi and Williams 2010). Wegmann

et al. (2009) proposed the use of partial least squares regression for dimension reduction in

ABC, where the explanatory variables are the suitably (e.g. Box-Cox) transformed summary

statistics, s, and the response variables is the parameter vector, θ.

The output of a partial least squares analysis is the set of k orthogonal components of

the regression design matrix

X =


1 s1

1 · · · s1
p

...
...

. . .
...

1 sn1 · · · snp

 (10)

that are optimally correlated (in a specific sense) with θ. Here, sij denotes the jth component

of the ith simulated summary statistic, si. To choose the appropriate number of orthogonal

components, Wegmann et al. (2009) examine the root mean square error of θ for each

value of k, as estimated by a leave-one-out cross validation strategy. For a fixed number of

components, k, this corresponds to

RMSEk =

(
1

n

n∑
i=1

‖m̂−ik (si)− θi‖2

)1/2

, (11)

where m̂−ik (s) denotes the mean response of the partial least squares regression, estimated

without the i-th simulated summary statistic, si (e.g. Mevik and Cederkvist 2004). The

optimal number of components is then chosen by inspection of the RMSEk values, based on

minimum gradient change arguments (e.g. Mevik and Wehrens 2007).
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A potential disadvantage of partial least squares regression, as performed by Wegmann

et al. (2009), is that it aims to infer a global linear relationship between θ and s based on

draws from the prior predictive distribution, p(s|θ)p(θ). This may differ from the relationship

observed in the region around s = sobs, and as such may produce unsuitable orthogonal

components as a result. A workaround for this would be to follow Fearnhead and Prangle

(2012) (see Section 2.3.3) and elicit the relationship between θ and s based on samples from

a truncated prior (θi, si) ∼ p(s|θ)p(θ)I(θ ∈ ΘR), where ΘR ⊂ Θ restricts the samples, θi, to

regions of significant posterior density. One simple way to identify such a region is through

a pilot ABC analysis (Fearnhead and Prangle 2012).

2.3.2 Neural networks

In the regression setting, feed-forward neural networks can be considered as a non-linear

generalisation of the partial least squares regression technique described above. Blum and

François (2010) proposed the neural network as a machine learning approach to dimension

reduction by estimating the conditional mean and variance functions, m(·) and σ2(·) in the

non-linear, heteroscedastic regression adjustment model (4) – see Section 2.1.

The neural network reduces the dimension of the summary statistics to H < p, using H

hidden units in the network, z1, . . . , zH , defined as

zj = h

(
p∑

k=1

ω
(1)
jk sk + ω

(1)
j0

)
, (12)

for j = 1, . . . , H. The ω
(1)
jk terms are the weights of the first layer of the neural network, and

h(·) is a non-linear function, typically the logistic function. The reduced and non-linearly

transformed summary statistics of the hidden units, zj, are then combined through the
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regression function of the neural network

m(s) = g

(
H∑
j=1

ω
(2)
j zj + ω

(2)
0

)
, (13)

where ω
(2)
j denotes the weights of the second layer of the neural network and g(·) is a

link function. A similar neural network is used to model log σ2(s) (e.g. Nix and Weigend

1995), with the possibility of allowing for a different number of hidden units to estimate

heteroscedasticity in the regression adjustment compared to that in the mean function m(s).

Rather than dynamically determining the number of hidden units H, Blum and François

(2010) propose to specify a fixed value, such as H = q where q = dim(θ) is the number of

parameters to infer. The weights of the neural network are then obtained by minimising the

regularised least-squares criterion

n∑
i=1

wi‖m(si)− θi‖2 + λ‖ω‖2,

where ω is the vector of all weights in the neural network model for m(s), wi = Kε(‖si−sobs‖)

is the weight of the sample (θi, si) ∼ p(s|θ)p(θ), and λ > 0 denotes the regularisation param-

eter (termed the weight-decay parameter for neural networks). The idea of regularisation is

to shrink the weights towards zero so that only informative summary statistics contribute in

the model (12) and (13) for m(s). Following the estimation of m(s), a similar regularisation

criterion is used to estimate log σ2(s). Both mean and variance functions can then be used

in the regression adjustment of equation (5).

2.3.3 Minimum expected posterior loss

Fearnhead and Prangle (2012) proposed a decision-theoretic dimension reduction method

with a slightly different aim to previous dimension reduction approaches. Here, rather than
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constructing appropriate summary statistics to ensure that pABC(θ|sobs) ≈ p(θ|yobs) is a good

approximation, pABC(θ|sobs) is alternatively required to be a good approximation in terms of

the accuracy of specified functions of the model parameters. In particular, assuming that in-

terest is in point estimates of the model parameters, if θtrue denotes the true parameter value

and θ̂ an estimate, then Fearnhead and Prangle (2012) propose to choose those summary

statistics that minimise the quadratic loss

L(θtrue, θ̂) = (θtrue − θ̂)>A(θtrue − θ̂),

for some p× p positive-definite matrix A. This loss is minimised for sobs = Ep(θ|yobs)(θ), the

true posterior mean.

To estimate Ep(θ|y)(θ), Fearnhead and Prangle (2012) propose least-squares regression

models for the k = 1, . . . , q model parameters, (θ1, . . . , θq), given by

θik = Ep(θ|y)(θk) + ηik = αk + β>k f(si) + ηik (14)

where (θi, si) ∼ p(s|θ)p(θ) are draws from the prior predictive distribution, αk and βk are

unknown regression parameters to be estimated, and ηik denotes a zero-mean noise process.

Here f(s) is a vector of potentially non-linear transformations of the data (i.e. of the original

summary statistics). For example, in one application, Fearnhead and Prangle (2012) use

the polynomial basis functions f(s) = (s, s2, s3, s4); that is, a vector of length 4p, where

p = dim(s) is the number of elements in s, consisting of the first four powers of each element

of s. The choice of f(s) can be based on standard diagnostics of regression fit, such as BIC.

If the prior π(θ) is diffuse with respect to the posterior, then one may estimate the regression

model (14) based on samples from a truncated prior (θi, si) ∼ p(s|θ)p(θ)I(θ ∈ ΘR), where

ΘR ⊂ Θ restricts the samples, θi, to regions of significant posterior density (e.g. via a pilot

ABC analysis). Clearly, more sophisticated alternatives to least-squares regression may be
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used.

After fitting equation (14), the new, single summary statistic for the parameter θk is

β̂>k f(s), where β̂k denotes the least squares estimate of βk. The resulting q-dimensional

vector of new summary statistics is then used in a standard ABC analysis. Fearnhead

and Prangle (2012) show that these new statistics can lead to posterior inferences that

considerably outperform inferences based on the original statistics, s. Nott et al. (2012)

demonstrate that these summary statistics can be viewed as Bayes linear estimates of the

posterior mean.

2.4 Regularisation approaches

Regularisation approaches aim to reduce overfitting in a model by penalising model com-

plexity. A simple example where overfitting can occur in ABC is the standard regression

adjustment (Beaumont et al. 2002; Section 2.1), where there is a risk of over adjusting the

parameters, θi, in the direction of uninformative summary statistics via (3). Regularisation

is used as part of the estimation of the neural network weights in the projection technique

proposed by Blum and François (2010) (see Section 2.3.2). As such, the regression adjust-

ment of Beaumont et al. (2002) is a procedure that could greatly benefit from the inclusion of

regularisation techniques. We introduce the ridge regression adjustment to ABC in Section

3.2.

2.5 Other methods

There are a number of alternative approaches to dimension reduction for ABC, including

methods that aim to circumvent the dimensionality issue, that we do not include in our

comparative analysis (Section 4). Drovandi et al. (2011) proposed to adopt ideas from

indirect inference (e.g. Heggland and Frigessi 2004) as a means to identify summary statistics
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for an ABC analysis. This involves specification of a model p̃(·|θ̃) which is similar to p(·|θ),

but which is computationally tractable. The idea is that estimates of θ̃ under p̃(·|θ̃), such

as maximum likelihood estimates or posterior means, are likely to be informative about θ if

p(·|θ) and p̃(·|θ̃) are sufficiently similar. This approach can be considered similar in spirit to

that of Fearnhead and Prangle (2012) which uses estimated posterior means under a pilot

ABC analysis (see Section 2.3.3). Blum (2010b) proposed a Bayesian criterion related to

the BIC (see Section 3.1) as a best subset selection procedure. The idea is to implement a

Bayesian analysis of the standard regression adjustment model (3). The criterion, called the

evidence approximation, seeks the best subset of summary statistics to regress the parameter

θ. In comparison to the BIC, the evidence criterion is attractive because it contains no

approximation in its derivation. However, the downside is that its computation requires the

tuning of the Bayesian linear regression hyperparameters. Additionally, Jung and Marjoram

(2011) developed a genetic algorithm that weights the summary statistics so that individual

statistics do not contribute equally to the comparisons between observations and simulations.

The aim is that the uninformative summary statistics should ideally have negligible weights.

Finally, a number of recent ABC modelling approaches have attempted to find ways of

accurately handling the full vector of initial statistics, s, (or the full dataset, s = S(y) = y)

thereby avoiding the need to perform dimension reduction. Bonassi et al. (2011) propose

fitting a (p + q)-dimensional mixture of Gaussian distributions to the sample (θi, si) ∼

p(s|θ)p(θ), i = 1, . . . , n, and then find the distribution of θ|sobs by conditioning on observing

s = sobs. This approach potentially requires a large number of mixture components to

accurately model the joint density when (p+ q) is large. Fan et al. (2012) suggest using an

approximation to p(s|θ) by approximating each marginal likelihood function, p(si|θ), using a

mixtures of experts model, where the weights, mean, and variance of each mixture component

is allowed to depend on θ, and then inducing dependence between these marginals using a

mixture of multivariate Gaussian distributions. This approach requires continuous summary
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statistics for the mixture regression, and is practically useful for moderate p (i.e. hundreds

of summary statistics). Writing y = (y1, . . . , yp), Barthelmé and Chopin (2011) propose to

factorise the likelihood as p(y|θ) =
∏

i p(yi|y1:i−1, θ) and construct an ABC approximation

of each component in turn (i.e. pABC(yi|y1:i−1) =
∫
Kε(‖yi − yobs,i‖)p(yi|y1:i−1, θ)dyi) with

computation performed using an expectation-propagation algorithm (Minka 2001). This

approach, while potentially fast and accurate, assumes that conditional simulation of yi ∼

p(yi|y1:i−1, θ) is available for i = 1, . . . , n, and so is not suitable for all models and analyses.

Last, Jasra et al. (2012) exploit the structure of hidden Markov models to perform an

iterative sequence of ABC analyses, each using only a single data point in each analysis,

and Nakagome et al. (2012) propose a novel approach to post-processing ABC importance

sampling output whose convergence rate is claimed to avoid the curse of dimensionality.

3 New dimension reduction methods

In this Section, we introduce two new dimension reduction criteria for ABC methods. The

first is a best subset selection procedure deriving from AIC and BIC criteria, constructed

under implementation of the local linear model of equation (2) (Beaumont et al. 2002).

A similar idea was proposed and tested for a Gaussian model by Sedki and Pudlo (2012).

The second is a modification to the fitting of (2) by considering ridge regression instead of

least-squares regression. Both of these methods are now implemented in the freely available

R package abc (Csilléry et al. 2012).

3.1 AIC and BIC criteria

Akaike information criterion (AIC) and Bayesian information criterion (BIC) provide a mea-

sure of the relative goodness of fit of a statistical model. Each can be expressed as the sum

of the maximized log-likelihood that measures the fit of the model to the data, and a penalty
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for model complexity (Akaike 1974; Schwarz 1978). While evaluation of log p(yobs|θ̂mle) or

log p(sobs|θ̂mle) is unavailable in the ABC framework, and determination of the maximum

likelihood estimator, θ̂mle, is challenging, a simple and tractable likelihood function is avail-

able though the local-linear regression model of equation (2) (Section 2.1).

Specifically, we consider the local linear regression model equation (2) of Beaumont et al.

(2002) for each parameter θ1, . . . , θq, and assume independent Gaussian errors, ej ∼ N(0, σ2
j ),

for j = 1, . . . , q. Then the AIC becomes

AIC = ñ log

q∏
j=1

σ̂2
j + 2d, (15)

where d = q(p + 1) is the number of estimated regression parameters, and ñ is the effective

number of simulations used in the local-linear regression model, which we define as ñ =∑n
i=1 I(wi > 0) when the kernel Kε has compact support. Alternative definitions of the

effective number of simulations, such as c
∑n

i=1 w
i for some c > 0, can be on an arbitrary

scale, since the least-squares regression solution is insensitive to the scale of the weights.

For any fixed value of c, the value of c
∑n

i=1 w
i will decrease as p = dim(s) increases so

that it will artificially favour larger numbers of (even uninformative) summary statistics.

Our definition of ñ guarantees that the AIC scores are comparable for different subsets of

summary statistics. A downside is that this definition of ñ is only suitable for kernels, Kε,

with a compact support.

In equation (15), σ̂2
j is defined as the weighted mean of squared residuals for the regression

of θj, and is given by

σ̂2
j =

∑n
i=1w

i[θij − m̂j(s
i)]2∑n

i=1w
i

.

where θij is the jth component of θi, and m̂j(s) denotes the estimate of the mean function

mj(s) = E[θj|s]. For small sample sizes, the corrected AIC, the so-called AICc, is given by

replacing d in (15) by d(d + 1)/(ñ − d − 1) (Hurvich and Tsai 1989). In the same manner
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the BIC can be defined as

BIC = ñ log

q∏
j=1

σ̂2
j + d log ñ. (16)

Alternative penalty terms involving the hat matrix of the regression could also be used in

the above (e.g. Hurvich et al. 1998; Irizarry 2001; Konishi et al. 2004).

It is instructive to note that in using the linear regression adjustment (3), the above

information criteria may be expressed as

xIC = ñ log

q∏
j=1

Var(θ∗j ) + penalty term,

where θ∗j is the jth element of the regression adjusted vector θ∗ = (θ∗1, . . . , θ
∗
q). As such, up

to the penalty terms, both AIC and BIC seek the combination of summary statistics that

minimizes the product of the marginal variances of the adjusted posterior sample. Similarly

to the entropy criterion of Nunes and Balding (2010) (see Section 2.2.2), these information

criterion will select those summary statistics that maximise the precision of the posterior

distribution, pABC(θ|sobs). However, unlike Nunes and Balding (2010), this precision is traded

off by a penalty for model complexity.

A rationale for the construction of AIC and BIC in this manner is that the summary

statistics that should be included within an ABC analysis are those which are good predictors

of θ. However, an obvious requirement for AIC or BIC to identify an informative statistic is

that the statistic varies (with θ) within the local range of the regression model. If a statistic

is informative outside of this range, but uninformative within it, it will not be identified as

informative under these criteria.
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3.2 Regularisation via ridge regression

As described in Section 2.1, the local-linear regression adjustment of Beaumont et al. (2002)

fits the linear model

θi = α + β>si + ei

based on the prior predictive samples (θi, si) ∼ p(s|θ)p(θ), and with regression weights

given by wi = Kε(‖si − sobs‖). (As before, we describe the case where θ is univariate

for notational simplicity and clarity of exposition, but the approach outlined below can be

readily implemented for each component of a multivariate θ.) However, in fitting the model

by minimising the weighted least squares criteria,
∑n

i=1w
i‖α−β>si− θi‖2, there is a risk of

over-adjustment by adjusting the parameter values via (3) in the direction of uninformative

summary statistics.

To avoid this, implicit dimension reduction within the regression framework can be per-

formed by alternatively minimising the regularised weighted sum of squares (Hoerl and Ken-

nard 1970)
n∑
i=1

wi‖θi − (α + β>si)‖2 + λ‖β‖2, (17)

with regularisation parameter λ > 0. As with the regularisation component within the neural

network model of Blum and François (2010) (Section 2.3.2), with ridge regression the risk

of over-adjustment is reduced because the regression coefficients, β, are shrunk towards zero

by imposing a penalty on their magnitudes. Note that while we consider ridge regression

here, a number of alternative regularisation procedures could be implemented, such as the

Lasso method.

An additional advantage of ridge regression is that standard least squares estimates,

(α̂LS, β̂LS)> = (X>WX)−1X>WΘ, are not guaranteed to have a unique solution. Here X

is a n × (p + 1) design matrix given in equation (10), Θ = (θ1, . . . , θn) is the n × 1 column

vector of sampled θi, and W = diag(w1, . . . , wn) is an n×n diagonal matrix of weights. The
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lack of a unique solution can arise through multicolinearity of the summary statistics, which

can result in singularity of the matrix X>WX. In contrast, minimisation of the regularised

weighted sum of squares (17) has always a unique solution, provided that λ > 0. This

solution is given by (α̂ridge, β̂ridge)
> = (X>WX + λIp)

−1X>WΘ, where Ip denotes the p× p

identity matrix. There are several approaches for dealing with the regularisation parameter

λ, including cross-validation and generalised cross-validation to identify an optimal value of

λ (Golub et al. 1979), as well as averaging the regularised estimates (α̂ridge, β̂ridge)
> obtained

for different values of λ (Taniguchi and Tresp 1997).

4 A comparative analysis

We now provide a comparative analysis of the previously described methods of dimension

reduction within the context of three previously studied analyses in the ABC literature.

Specifically, this includes the analysis of a coalescent model with recombination (Joyce and

Marjoram 2008), an evaluation of the evolutionary fitness cost of mutation in drug-resistant

tuberculosis (Luciani et al. 2009), and an assessment of the number and size-distribution of

particle inclusions in the production of clean steels (Bortot et al. 2007).

Each analysis is based on n = 1, 000, 000 simulations where the parameter θ is drawn

from the prior distribution p(θ). The performance of each method is measured through

the RSSE criterion (9) following Nunes and Balding (2010), based on the same randomly

selected subset of n∗ = 100 samples (θi, si) = (θtrue, sobs) as ‘observed’ datasets. When

evaluating the RSSE error measure of equation (8), we give a weight wi = 1 for the accepted

simulations and a weight of 0 otherwise. As the value of the RSSE (8) depends on the

scale of each parameter, we standardise the parameters in each example by dividing the

parameter values by the standard deviation obtained from the n = 1, 000, 000 simulations

(with the exception of the first example, where the parameters are on similar scales). For
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comparative ease, and to provide a performance baseline for each example, all RSSE results

are presented as relative to the RSSE obtained when using the maximal vector of summary

statistics and no regression adjustment. In this manner, a relative RSSE of x/−x denotes

an x% worsening/improvement over the baseline score.

Within each ABC analysis, we use Euclidean distance within an Epanechnikov kernel

Kε(‖s − sobs‖). The Euclidean distances are computed after standardizing the summary

statistics with a robust estimate of the standard deviation (the mean absolute deviation).

The kernel scale parameter, ε, is determined as the value at which exactly 1% of the simu-

lations, (θi, si), have non-zero weight. This yields exactly ñ = 10, 000 simulations that form

the final sample from each posterior. To perform the method of Fearnhead and Prangle

(2012), a randomly chosen 10% of the n simulations were used to fit the regression model

that determines the choice of summary statistics, with the remaining 90% used for the

ABC analysis. The final ABC sample size ñ = 10, 000 was kept equal to the other meth-

ods by slightly adjusting the scale parameter, ε. In addition for the method of Fearnhead

and Prangle (2012), following exploratory analyses, the regression model (14) was fitted

using f(s) = (s, s2, s3, s4) for Examples 1 and 2 (as described in Section 2.3.3) and using

f(s) = (log s, [log s]2, [log s]3, [log s]4) for Example 3 resulting in always 4 × p independent

variables in the regression model of equation (14).

When using neural networks or ridge regression to estimate the conditional mean and

variance, m(s) and σ2(s), we take the pointwise median of the estimated functions obtained

with the regularisation parameters λ = 10−3, 10−2 and 10−1. These values of λ assume

that the summary statistics and the parameters have been standardized before fitting the

regression function (Ripley 1994). However, because the optimisation procedure for neural

networks (the R function nnet) only finds local optima, in this case we take the pointwise

median of ten estimated functions, with each optimisation initialised from a different random

starting point, and randomly choosing the regularisation parameter with equal probability
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from the above values (see Taniguchi and Tresp 1997).

4.1 Example 1: A coalescent analysis

This model was previously considered by Joyce and Marjoram (2008) and Nunes and Bald-

ing (2010), each while proposing their respective ABC dimension reduction strategies (see

Sections 2.2.1 and 2.2.2). The analysis focuses on joint estimation of the scaled mutation

rate, θ̃, and the scaled recombination rate, ρ, in a coalescent model with recombination

(Nordborg 2007). Under this model, 5,001 basepair DNA sequences for 50 individuals are

generated from the coalescent model, with recombination, under the infinite-sites mutation

model, using the software ms (Hudson 2002). The initial summary statistics, s = (s1, . . . , s6),

are the number of segregating sites (s1), the pairwise mean number of nucleotidic differences

(s2), the mean R2 across pairs separated by < 10% of the simulated genomic regions (s3),

the number of distinct haplotypes (s4), the frequency of the most common haplotype (s5),

and the number of singleton haplotypes (s6).

We first examine the performance of ABC without using dimension reduction techniques.

For different parameter combinations, θ̃, ρ and (θ̃, ρ), we compute the relative RSSE obtained

with a single optimal summary statistic, and the relative RSSE obtained when using all

six population genetic statistics (s1–s6) (Table 1). When estimating θ̃ only, we find that

using only the number of segregating sites (s1) provides lower relative RSSE than when

including all 6 summary statistics even when performing regression adjustment. For all

other parameter combinations, using a single statistic produce substantially worse than the

rejection algorithm with all summary statistics. For all inferences (i.e. of θ̃, ρ and (θ̃, ρ)

jointly), regression adjustments generally improve the inference when using all six summary

statistics, which is consistent with previous results (Nunes and Balding 2010). The only

exception is when jointly estimating (θ̃, ρ), where homoscedastic linear adjustment neither

decreases nor increases the error obtained with the pure rejection algorithm.
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Next, we investigate the performance of each dimension reduction technique. Table 2

and Figure 1 shows the relative RSSE obtained under each dimension reduction method

for each parameter combination and under heteroscedastic regression adjustment. For all

three examples, more complete tables that contain the results obtained with no regression

adjustment and homoscedastic adjustment can be found in the supplementary information

to this article.

The performance achieved with AIC, AICc, or BIC is comparable to (i.e. the same or

slightly better than) the result obtained when including all six population genetic statistics.

When using the ε-sufficiency criterion, we find that the performance is improved for the

inference on θ̃ only. The only best subset selection method for dimension reduction that

substantially and uniformly improves the performance of ABC posterior estimates is the

entropy-based approach. For the projection techniques, all methods (partial least squares,

neural nets, and minimum expected posterior loss) outperform the adjustment method based

on all six population genetics statistics, with a large performance advantage for partial least

squares when estimating (θ̃, ρ) jointly. By contrast, ridge regression provides no improvement

over the standard regression adjustment (the “All” column).

Based on these results, a loose performance ranking of the dimension reduction meth-

ods can be obtained by computing, for each method, the mean (relative) RSSE over all

parameter combinations θ̃, ρ, and (θ̃, ρ) using the heteroscedastic adjustment. The worst

performers were ridge regression and the ε-sufficiency criterion (with a mean relative RSSE

of −3%). These are followed by the standard regression adjustment with all summary statis-

tics (−5%) and the AIC/BIC, neural nets and the posterior loss method (−6%). The best

performing methods are partial least squares (−10%), and the two-stage entropy based pro-

cedure (−16%).
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4.2 Example 2: The fitness cost of drug resistant tuberculosis

We now consider an example of Markov processes for epidemiological modeling. If a pathogen,

such as Mycobacterium tuberculosis, mutates to gain an evolutionary advantage, such as an-

tibiotic resistance, it is biologically plausible that this mutation will come at a cost to the

pathogen’s relative fitness. Based on a stochastic model to describe the transmission and

evolutionary dynamics of Mycobacterium tuberculosis, and based on incidence and geno-

typic data of the IS6110 marker, Luciani et al. (2009) estimated the posterior distribution

of the pathogen’s transmission cost and relative fitness. The model contained q = 4 free

parameters: the transmission rate, α, the transmission cost of drug resistant strains, c, the

rate of evolution of resistance, ρ, and the mutation rate of the IS6110 marker, µ.

Luciani et al. (2009) summarised information generated from the stochastic model

through p = 11 summary statistics. These statistics were expertly elicited as quantities

that were expected to be informative for one or more model parameters, and included the

number of distinct genotypes in the sample, gene diversity for sensitive and resistant cases,

the proportion of resistant cases and measures of the degree of clustering of genotypes etc.

It is considered likely that there is dependence, and potentially replicate information within

these statistics.

As before, we examine the relative performance of the statistics without using dimension

reduction techniques. Table 1 shows that for the univariate analysis of c, ρ, or µ, performing

rejection sampling ABC with a single, well chosen summary statistic, can provide an im-

proved performance over a similar analysis using all 11 summary statistics, under any form

of regression adjustment. In particular, the proportion of isolates that are drug resistant is

the individual statistic which is most informative to estimate c (with a relative RSSE of -7%)

and ρ (-9%). For the marker mutation rate, µ, the most informative statistic is the number of

distinct genotypes, with a relative RSSE of -14%. Conversely, an analysis using all summary

statistics with a regression adjustment offers the best inferential performance for α alone,
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or for (α, c, ρ, µ). These results provide support for recent arguments in favour of “marginal

regression adjustments,” (Nott et al. 2011) whereby the univariate marginal distributions of

a full multivariate ABC analysis are replaced by separately estimated marginal distributions

using only statistics relevant for each parameter. Here, more precisely estimated margins

can improve the accuracy of the multivariate posterior sample, beyond the initial analysis.

The performance results of each dimension reduction method are shown in Table 2 and

Figure 1. In contrast with the previous example, here the use of the AIC/BIC criteria can

substantially decrease posterior errors. For example, compared to the linear adjustment of

all 11 parameters, which produces a mean relative RSSE between −3% and −8% depending

on the parameter (Table 2), using the AIC/BIC criteria results in a relative RSSE of between

-15% and -19%. The ε-sufficiency criterion produces more equivocal results, however, as the

error is sometimes increased with respect to baseline performance (e.g. +6% when estimating

α with homoscedastic adjustment) and sometimes reduced (e.g. −8% for c, ρ and θ with

heteroscedastic adjustment). As with the previous example, the entropy criterion provides

a clear improvement to the ABC posterior, and this improvement is almost comparable to

that produced by AIC/BIC. Finally, the projection and regularisation methods mostly all

provide comparable and substantive improvements compared to the baseline error, with only

partial least squares producing more equivocal results (e.g. +1% when estimating ρ).

Based on these results, the loose performance ranking of the dimension reduction methods

determines the worst performers to be the standard least-squares regression adjustment (with

a mean relative RSSE of −5%), the ε-sufficiency approach (−6%) and partial least squares

(−8%). These are followed by ridge regression (−11%), neural networks and the posterior

loss method (−12%). The best performing methods for this analysis are the two-stage

entropy-based procedure (−15%) and the AIC/BIC criteria (−17%).

In this example, it is interesting to compare the performance of the standard linear

regression adjustment of all 11 summary statistics (mean relative RSSE of -5%) with that of
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the ridge regression equivalent (mean relative RSSE of -11%). The increase in performance

with ridge regression may be attributed to its more robust handling of multicolinearity

of the summary statistics than under the standard regression adjustment. To see this,

Figure 2 illustrates the relationship between the relative RSSE (again, relative to using all

summary statistics and no regression adjustment), and the condition number of the matrix

X>WX, for both the standard regression (top panel) and ridge regression (bottom panel)

adjustments based on inference for (α, c, ρ, µ). The condition number of X>WX is given by

κ =
√
λmax/λmin, where λmax and λmin are the largest and smallest eigenvalues of X>WX.

Extremely large condition numbers are evidence for multicolinearity.

Figure 2 demonstrates that for large values of the condition number (e.g. for κ > 108),

the least-squares-based regression adjustment clearly performs very poorly. The region of

κ > 108 corresponds to almost 5% of all simulations, and for these cases the relative error

is hugely increased (w.r.t. rejection) to anywhere between 5% and 200%. In contrast, for

ridge-regression, the relative errors corresponding to κ > 108 are not larger than the errors

obtained for non-extreme condition numbers. This analysis clearly illustrates that, unlike

ridge regression, the standard least-squares regression adjustment can perform particularly

poorly when there is multicolinearity between the summary statistics.

In terms of the original analysis of Luciani et al. (2009) which used all eleven summary

statistics with no regression adjustment (although with a very low value for ε), the above

results indicate that a more efficient analysis may have been achieved by using a suitable

dimension reduction technique.

4.3 Example 3: Quality control in the production of clean steels

Our final example concerns the statistical modelling of extreme values. In the production of

clean steels, the occurrence of microscopic imperfections (termed inclusions) is unavoidable.

The strength of a clean steel block is largely dependent on the size of the largest inclusion.
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Bortot et al. (2007) considered an extreme value twist on the standard stereological problem

(e.g. Baddeley and Jensen 2004), whereby inference is required on the size and number of

3-dimensional inclusions, based on data obtained from those inclusions that intersect with

a 2-dimensional slice. The model assumes a Poisson point process of inclusion locations

with rate parameter τ > 0, and that the distribution of inclusion size exceedances above a

measurement threshold of 5µm are drawn from a generalised Pareto distribution with scale

and shape parameters σ > 0 and ξ, following standard extreme value theory arguments (e.g.

Coles 2001).

The observed data consist of 112 cross-sectional inclusion diameters measured above 5µm.

The summary statistics thereby comprise 112 equally spaced quantiles of the cross-sectional

diameters, in addition to the number of inclusions observed, yielding p = 113 summary

statistics in total. The ordering of the summary statistics creates strong dependences between

them, a fact which can be exploited by dimension reduction techniques. Bortot et al. (2007)

considered two models based on spherical or ellipsoidal shaped inclusions. Our analysis here

focuses on the ellipsoidal model.

By construction, the large number (2113) of possible combinations of summary statistics

means that best subset selection methods are strictly not practicable for this analysis, unless

the number of summary statistics is reduced further a priori. In order to facilitate at least

some comparison with the other dimension reduction approaches, for best subset selection

methods only, we consider six candidate subsets. Each subset consists of the number of

observed inclusions in addition to 5, 10, 20, 50, 75 or 112 empirical quantiles of the inclusion

size exceedances (the latter corresponds to the complete set of summary statistics). Due

to the extreme value nature of this analysis, the parameter estimates are likely to be more

sensitive to the precise values of the larger quantiles. As such, rather than using equally

spaced quantiles, we use a scheme which favours quantiles closer to the maximum inclusion

and we always include the maximum inclusion.
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The relative RSSE obtained under each dimension reduction method is shown in Table 2

and Figure 1. In comparison to an analysis using all 113 summary statistics and regression

adjustment (the “All” column), the best subset selection approaches do not in general offer

any improvement. While the entropy based method provides a slight improvement, the

relative RSSE under the ε-sufficiency criterion is substantially worse (along with partial

least squares). Of course, these results are limited to the few subsets of statistics considered,

and it is possible that alternative subsets could perform substantially better. However, it is

computationally untenable to evaluate this possibility based on exhaustive enumeration of

all subsets.

When using neural networks to perform the regression adjustment based on computing

the pointwise median of the m(s) and σ2(s) estimates, obtained using varying regularisa-

tion parameter values (see the introduction to Section 4), the relative performance is quite

poor (left hand side RSSE values in Table 2). The mean relative RSSE is −13% for neural

networks, compared to −40% for heteroscedastic least-squares regression. As an alterna-

tive approach, rather than averaging over the regularization parameter λ, we rather choose

the value of λ ∈ {10−3, 10−2, 10−1} that minimises the leave-one-out error of θ (equation

(11)). This approach considerably improves the performance of the network (right hand

side RSSE values in Table 2) with the mean relative RSSE improving to the same level as

for heteroscedastic regression. Adopting the same procedure to determine the regularisation

parameter within ridge regression, there is also a mean gain in performance from −39% to

−42%, although the joint parameter inference on (τ, σ, ξ) actually performs worse under this

alternative approach. The variability in these results highlights the importance of making

an optimal choice of the regularisation parameter for an ABC analysis.

The minimum expected posterior loss approach performs particularly well here. This

approach has also been shown to perform well in a similar analysis; that of performing

inference using quantiles of a large number of independent draws from the (intractable)
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g-and-k distribution (Fearnhead and Prangle 2012).

The loose performance ranking of each of the dimension reduction methods finds that the

worst performers are the ε-sufficiency criterion (with a mean relative RSSE of −16%) and

partial least squares (−19%). Neural networks and AIC/BIC perform just as well as standard

least squares regression (−40%), ridge regression slightly outperforms standard regression

(−42%) and the entropy based approach is a further slight improvement at −44%. The clear

winner in this example is the posterior loss approach with a mean relative RSSE of −58%.

5 Discussion

The process of dimension reduction is a critical and influential part of any ABC analysis.

In this article we have provided a comparative review of the major dimension reduction

approaches (and introduced two new ones) in order to provide some guidance to the prac-

titioner in choosing the most appropriate technique for their own analysis. A summary

of the qualitative features of each dimension reduction method is shown in Table 3, and

a comparison of the relative performances of each method for each example, is illustrated

in Figure 3. As with each individual example, we may compute an overall performance

ranking of the dimension reduction methods, by averaging the mean relative RSSE values

over the examples. Performing worse, on average, than a standard least squares regression

adjustment with no dimension reduction (with an overall mean relative RSSE of −17%),

is the ε-sufficiency technique (−8%) and partial least squares (−12%). Performing better,

on average, than standard least squares regression is ridge regression and neural networks

(−19%) and AIC/BIC (−21%). In this study, the top performers, on average, were the

entropy-based procedure and the minimum expected posterior loss approach, with an overall

mean relative RSSE of −25%. It is worth emphasising that the potential gains in performing

a regression adjustment alone (with all summary statistics and no dimension reduction) can
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be quite substantial. This suggests that regression adjustment should be an integral part

of the majority of ABC analyses. Further gains in performance can then be obtained by

combining regression adjustment with dimension reduction procedures, although in some

cases (such as with the ε-sufficiency technique and partial least squares) performance can

sometimes worsen.

While being ranked in the top three, a clear disadvantage of the entropy based procedure

and the AIC/BIC criteria is the quantity of computation required. This primarily occurs as

best subset selection procedures require evaluation of all 2p potential models. For examples

1 and 2, a greedy algorithm was able to find the optimum solution in a reasonable time. This

was not possible for example 3. Additionally in this latter case, for the subsets of summary

statistics considered, the performance obtained by implementing computationally expensive

methods of dimension reduction was barely an improvement over the computationally cheap,

least squares regression adjustment. This raises the important point, that the benefits of

performing potentially expensive forms of dimension reduction over, say, the simple linear

regression adjustment, should be evaluated prior to their full implementation. We also note

that the second stage of the entropy-based method (Section 2.2.2) targets minimisation of

(9), the same error measure used in our comparative analysis. As such, this approach is

likely to be numerically favoured in our results.

The top ranked (ex aequo) minimum expected posterior loss approach particularly out-

performs other dimension reduction methods in the final example (the production of clean

steels). In such analyses, with large numbers of summary statistics (here p = 113), non-linear

methods such as neural networks may become overparametrised, and simpler alternatives

such as least squares or ridge regression adjustment can work more effectively. This is nat-

urally explained through the usual bias-variance tradeoff: more complex regression models

such as neural networks reduce the bias of the estimate of m(s) (and optionally σ2(s)), but

in doing so the variance of the estimate is increased. This effect can be especially acute for
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high-dimensional regression (Geman et al. 1992).

Our analyses indicate that the original least squares, linear regression adjustment (Beau-

mont et al. 2002) can sometimes perform quite well, despite its simplicity. However, the

presence of multicolinearity between the summary statistics can cause severe performance

degradation, compared to not performing the regression adjustment (see Figure 2). In such

situations, regularisation procedures such as ridge regression (e.g. Example 2, and Figure 2)

and projection techniques can be beneficial.

However, an important issue with regularisation procedures, such as neural networks

and ridge regression, is the handling of the regularisation parameter, λ. The ‘averaging’

procedure that was used in the first two examples, proved quite suboptimal in the third,

where a cross-validation procedure to select a single best parameter value produced much

improved results. This problem can be particularly critical for neural networks with large

numbers of summary statistics, p, as the number of network weights is much larger than p,

and accordingly, massive shrinkage of the weights (i.e. large values of λ) is required to avoid

overfitting.

The posterior loss approach produced the superior performance in the third example. In

general, a strong performance of this method can be primarily attributed to two factors.

Firstly, in the presence of large numbers of highly dependent summary statistics, the ex-

tra analysis stage in determining the most appropriate regression model (14) by choosing

f(s) through e.g. BIC diagnostics, affords the opportunity to reduce the complexity of the

regression in a simple and relatively low-parameterised manner. This was not a primary

contributor in example 3, however, as the regression (equation (14)) was directly performed

on the full set of 113 statistics. Given the benefits of using regularisation methods in this

setting, it is possible that a ridge regression model would allow a more robust estimate of

the posterior mean (as a summary statistic) as part of this process. Secondly, the posterior

loss approach determines the number of summary statistics to be equal to the number of
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posterior quantities of interest – in this case, q = 3 posterior parameter means. This small

number of derived summary statistics naturally allows more precise posterior statements to

be made, compared to dimension reduction methods that produce a much larger number of

equally informative statistics. Of course, the dimension advantage here is strongly related

to the number of parameters (q = 3) and summary statistics (p = 113) in this example.

However, it is not fully clear how any current methods of dimension reduction for ABC

would perform for substantially more challenging analyses with considerably higher numbers

of parameters and summary statistics. This is because the curse of dimensionality in ABC

(Blum 2010a) has tended to restrict existing applications of ABC methods to problems of

moderate parameter dimension, although this may change in the future.

What is very apparent from this study, is that there is no single ‘best’ method of dimen-

sion reduction for ABC. For example, while the posterior loss and entropy based methods

were the best performers for example 3, AIC and BIC were ranked first in the analysis of

example 2, and partial least squares outperformed the posterior loss approach in example 1.

A number of factors can affect the most suitable choice for any given analysis. As discussed

above, these can include the number of initial summary statistics, the amount of dependence

and multicolinearity within the statistics, the computational overheads of the dimension re-

duction method, the requirement to suitably determine hyperparameters, and sensitivity to

potentially large numbers of uninformative statistics.

One important point to understand is that all of the ABC analyses of this review were

performed using the rejection algorithm optionally followed by some form of regression ad-

justment. While alternative, potentially more efficient and accurate methods of ABC pos-

terior simulation exist, such as Markov chain Monte Carlo or sequential Monte Carlo based

samplers, the computational cost of separately implementing such an algorithm 2p times (in

the case of best subset selection methods) means that such dimension reduction methods

can become rapidly untenable, even for small p. The price of the benefit of using the more
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computationally practical, fixed large number of samples, is that decisions on the dimension

reduction of the summary statistics will be made on potentially worse estimates of the pos-

terior than those available under superior sampling algorithms. As such, the final derived

summary statistics may in fact not be those which are most appropriate for subsequent use

in e.g. Markov chain Monte Carlo or sequential Monte Carlo based algorithms.

However, this price is arguably a necessity. It is practically important to evaluate the

performance of any dimension reduction procedure in a given analysis. Here we used a

criterion (the RSSE of equation (9)) that is based on a leave-one-out procedure. When using

a fixed, large number of samples, evaluation of such a performance diagnostic is entirely

practicable, as no further model simulations are required. This idea is also relevant to

methods of dimension reduction for model selection (Barnes et al. 2012; Estoup et al. 2012)

where a misclassification rate based on a leave-one-out procedure can serve as a comparative

criterion.
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One optimal statistic All summary statistics
(no adj.) no adj. homo adj. hetero adj.

θ̃ -7 (s1) 0 -3 -3
Example 1 ρ 9 (s5) 0 -5 -4

(θ̃, ρ) 7 (s1) 0 0 -7
α 6 0 -3 -3
c -7 0 -5 -5

Example 2 ρ -9 0 -8 -8
µ -14 0 -5 -6

(α, c, ρ, µ) 5 0 -4 -4

Table 1: Relative RSSE for Examples 1 and 2. The leftmost column shows the minimal RSSE when
considering only one summary statistic (with no regression adjustment). Rightmost columns show
relative RSSE using all summary statistics under no, homoscedastic and heteroscedastic regression
adjustment. All RSSE are relative to the RSSE obtained when using no regression adjustment
with all summary statistics. The score of the best method in each analysis (row) is emphasised in
boldface.
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Best subset selection Projection techniques Regularisation

All BIC AIC AICc ε-suff Ent PLS NNet1 Loss Ridge1

θ̃ -3 -5 -5 -5 -6 -11 -6 -4 -7 1
ρ -4 -6 -6 -6 0 -12 -7 -8 -7 -3

(θ̃, ρ) -7 -7 -7 -7 – -24 -16 -7 -6 -6
α -3 -15 -15 -15 0 -17 -13 -15 -17 -15
c -5 -15 -15 -15 -8 -15 -8 -12 -9 -9
ρ -8 -16 -16 -16 -8 -16 1 -12 -9 -10
µ -6 -18 -18 -18 -8 -13 -10 -13 -12 -12

(α, c, ρ, µ) -4 -19 -19 -19 – -13 -10 -9 -12 -11
τ -49 -47 -47 -48 -19 -52 -22 -20/-42 -75 -48/-48
σ -45 -46 -47 -46 -15 -50 -15 -21/-37 -56 -43/-43
ξ -27 -29 -29 -28 -13 -32 -28 -7/-41 -41 -26/-44

(τ ,σ,ξ) -39 -39 -40 -39 – -42 -11 -4/-38 -60 -39/-32
1 For the third Example, the first value is found by integrating out the regularisation pa-

rameter whereas the second one is found by choosing an optimal regularisation parameter
with cross-validation. In Examples 1 and 2, integration over the regularisation parameter
is performed.

Table 2: Relative RSSE for Examples 1-3 for different parameter combinations using each method
of dimension reduction, and under heteroscedastic regression adjustment. Columns denote no di-
mension reduction (All), BIC, AIC, AICc, the ε-sufficiency criterion (ε-suff), the two-stage entropy
procedure (Ent), partial least squares (PLS), neural networks (NNet), minimum expected posterior
loss (Loss) and ridge regression (Ridge). All RSSE are relative to the RSSE obtained when using no
regression adjustment with all summary statistics. The score of the best method in each analysis
(row) is emphasised in boldface.

Class Method Hyper-parameter Choice of hyper-parameter Computational burden

Best subset selection AIC/BIC None – Substantial/greedy alg.
ε-suff T (θ) User choice Substantial/greedy alg.
Ent None – Substantial/greedy alg.

Projection techniques PLS Number of PLS components, k Cross-validation Weak
NNet Regularisation parameter, λ Integration or cross-validation Moderate (optimization algorithm)
Loss Choice of basis functions BIC Weak (closed-form solution)

Regularisation Ridge Regularisation parameter, λ Integration or cross-validation Weak (closed-form solution)

Table 3: Summary of the main features of the different methods of dimension reduction for ABC.
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Figure 1: Relative RSSE for the different methods of dimension reduction in the three Examples.
All RSSE are relative to the RSSE obtained when using no regression adjustment with all summary
statistics. Methods of dimension reduction include no dimension reduction (All), AIC/BIC, the
ε-sufficiency criterion (ε-suff), the two-stage entropy procedure (Ent), partial least squares (PLS),
neural networks (NNet), minimum expected posterior loss (Loss) and ridge regression (Ridge). The
crosses correspond to situations for which there is no result available.
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Figure 2: Scatterplots of relative RSSE versus the condition number of the matrix X>WX for
linear least-squares (top) and ridge (bottom) regression adjustments. Points are based on joint
inference for (α, c, ρ, µ) in Example 2 using 1,000 randomly selected vectors of summary statistics,
si, as “observed” data. When the minimum eigenvalue, λmin, is zero, the (infinite) condition number
is arbitrarily set to be 1025 for visual clarity (open circles on the scatterplot).
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Figure 3: Mean relative RSSE values using each method of dimension reduction and for each
example. Methods of dimension reduction include no dimension reduction (All), AIC/BIC, the
ε-sufficiency criterion (ε-suff), the two-stage entropy procedure (Ent), partial least squares (PLS),
neural networks (NNet), minimum expected posterior loss (Loss) and ridge regression (Ridge). For
Examples 1 and 2, the results for ridge regression and neural networks estimate m(s) and σ2(s)
have been obtained by taking the pointwise median curve over varying values of the regularisation
parameter; λ = 10−3, 10−2 and 10−1 (see introduction to Section 4). For Example 3, an optimal
value of λ was chosen based on a cross-validation procedure (see Section 4.3).
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