Approximate Bayesian computation (ABC) methods make use of comparisons
between simulated and observed summary statistics to overcome the problem of
computationally intractable likelihood functions. As the practical
implementation of ABC requires computations based on vectors of summary
statistics, rather than full data sets, a central question is how to derive
low-dimensional summary statistics from the observed data with minimal loss of
information. In this article we provide a comprehensive review and comparison
of the performance of the principal methods of dimension reduction proposed in
the ABC literature. The methods are split into three nonmutually exclusive
classes consisting of best subset selection methods, projection techniques and
regularization. In addition, we introduce two new methods of dimension
reduction. The first is a best subset selection method based on Akaike and
Bayesian information criteria, and the second uses ridge regression as a
regularization procedure. We illustrate the performance of these dimension
reduction techniques through the analysis of three challenging models and data
sets.Comment: Published in at http://dx.doi.org/10.1214/12-STS406 the Statistical
Science (http://www.imstat.org/sts/) by the Institute of Mathematical
Statistics (http://www.imstat.org