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Abstract: Selection of estimators is an essential task in modeling. A general framework is that the estimators
of a distribution are obtained by minimizing a function (the estimating function) and assessed using
another function (the assessment function). A classical case is that both functions estimate an information
risk (specifically cross-entropy); this corresponds to using maximum likelihood estimators and assessing
them by Akaike information criterion (AIC). In more general cases, the assessment risk can be estimated by
leave-one-out cross-validation. Since leave-one-out cross-validation is computationally very demanding, we
propose in this paper a universal approximate cross-validation criterion under regularity conditions
(UACVR). This criterion can be adapted to different types of estimators, including penalized likelihood
and maximum a posteriori estimators, and also to different assessment risk functions, including informa-
tion risk functions and continuous rank probability score (CRPS). UACVR reduces to Takeuchi information
criterion (TIC) when cross-entropy is the risk for both estimation and assessment. We provide the asympto-
tic distributions of UACVR and of a difference of UACVR values for two estimators. We validate UACVR
using simulations and provide an illustration on real data both in the psychometric context where
estimators of the distributions of ordered categorical data derived from threshold models and models
based on continuous approximations are compared.
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1 Introduction

Selecting estimators is an essential step in modeling, and Akaike information criterion (AIC) [1] has been
widely used for this purpose. AIC allows selecting maximum likelihood estimators (MLE) based on para-
metric models that are not too badly specified. More general criteria have been developed, in particular the
Takeuchi information criterion (TIC) [2] and the general information criterion (GIC) [3]. A related criterion in
the field of neural networks is the network information criterion (NIC) [4]. Two other well-known criteria are
the Bayesian information criterion (BIC) and the deviance information criterion (DIC); both use Bayesian
arguments and are not directly related to the present paper. A good reference book for information criteria
is by Konishi and Kitagawa [5].
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Likelihood cross-validation (LCV) has also been widely used for comparing parametric models. Stone
[6] heuristically established that LCV was asymptotically identical to AIC. LCV, however, is more flexible in
that it can be applied to other estimators than MLEs, for instance, to penalized likelihood estimators: see
Golub et al. [7] and Wahba [8].

Cross-validation can also be applied to other assessment risks than Kullback–Leibler risk. The leave-
one-out cross-validation is the most natural and one of the most efficient [9, 10], but it is also the most
computationally demanding so that approximation formulas have been derived. Approximate cross-valida-
tion formulas have been developed for penalized splines [11, 12] or penalized likelihood [13, 14]. Commenges
et al. [15] derived an approximate cross-validation criterion in the context of prognosis.

In the present paper we consider the following general framework: estimators of the true density
function are defined as minimizing an estimating function; the estimating function itself can be viewed
as an estimator of a risk, that we call an “estimating risk.” Typically there is a model, that is a family of
densities for the variable Y, ðgθÞθ2Θ, Θ � <p, and the estimator is chosen as minimizing the estimating risk.
The estimators of the true density are then assessed using an “assessment risk,” which allows choosing
between different available estimators. The most conventional case is when the estimating risk is
E½� log gθðYÞ� which is estimated by the log likelihood, and the assessment risk of the obtained estimator
gθ̂ is E½� log gθ̂ðYÞ�, which can be estimated by cross-validation or in the parametric case by the normalized
AIC: AIC =2n. These information risks are very appealing but there are cases where other risks are relevant.
As an example, the MLE could be assessed by the continuous rank probability score (CRPS) [16]: this is
detailed in Section 4.4. Another example is the estimation of the distribution of ordinal data through an
approximation using models for continuous data. Models for ordinal variables that can take a large number
of values are rather cumbersome; it is convenient to treat these data as continuous, using an estimating risk
adapted to continuous data. However, if we wish to compare the obtained estimator to that obtained by a
model for ordinal data, the assessment risk must still take into account that the data are really ordinal. Such
assessment risk can be estimated by cross-validation; cross-validation has good properties but is very
computationally demanding. The main aim of this paper is to find an approximation for leave-one-out
cross-validation, valid whatever the estimating and assessment risks satisfying regularity conditions that
will be detailed. This will be applied to the ordinal data example.

Section 2 presents the framework, the cross-validation criterion and its approximation. It is universal in
the sense that it can be applied to any estimating and assessment risks satisfying regularity conditions. We
denote the approximate criterion by UACVR (U for Universal, A for approximate, CV for cross-validation and
R for regularity). In Section 2 the asymptotic distributions of UACVR and of a difference of two UACVR
values are given. Section 4 shows how UACVR specializes to particular cases: TIC appears as a special case
when cross-entropy is used for defining both estimating and assessment risks, and AIC follows if the models
are close to being well specified; other important cases where estimating and assessment risks defined in a
less symmetric way are given. Section 5 presents a simulation study. Section 6 presents an illustration of the
use of UACVR for comparing estimators derived from threshold models and estimators obtained by
continuous approximations in the case of ordered categorical data with repeated measurements; these
data are psychometric scores from a large study on cognitive aging. Section 7 concludes.

2 The universal cross-validation criterion and its approximation

2.1 The estimating risk and its estimation by an estimating function

Suppose that a sample of independently identically distributed (i.i.d.) variables On ¼ ðYi; i ¼ 1; . . . ; nÞ is

available. Based on On, an estimator gθ̂ (where θ̂ is short for θ̂n) of the probability density function f � of the
true distribution can be chosen in a model, that is a family of distributions ðgθÞθ2Θ, Θ � <p. The main rules
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for designing estimators of θ can be thought of as minimizing an estimating risk. The estimating risk ΦðθÞ is
defined as the expectation under the true distribution of a loss function fðθ;YiÞ: ΦðθÞ ¼ E�ffðθ;YiÞg. We

would like to choose gθ0 where θ0 ¼ argminθΦðθÞ. For making consistent estimation possible, it is natural
to require that whenever the model is well specified, the risk is minimized by the true distribution.
Precisely, saying that the model is well-specified amounts to say that there is a value θ�, such that

gθ� ¼ f �. Then we require that θ� ¼ argminθΦðθÞ; moreover we will require that this minimum is unique.
This is related to the concept of strictly proper scores [16]. In the scoring rule literature, the problem is
formulated in terms of reward rather than loss; it is possible to establish a correspondence between the two
theories by considering that minus a loss is a reward, and of course while one tries to minimize the
expected loss, one tries to maximize the expected reward.

We cannot compute the estimating risk but a natural estimator of the estimating risk is the estimating
function ΦOnðθÞ ¼ n�1 Pn

i¼1 fðθ;YiÞ. The estimator θ̂ defined as minimizing ΦOnðθÞ is called an M-estimator.
By the law of large numbers, ΦOn converges in probability toward ΦðθÞ ¼ E�ffðθ;YiÞg. Under some
conditions given in Van der Vaart [17] (see, e.g. Theorem 5.7), θ̂ converges in probability toward θ0. A
simple set of sufficient conditions is that Θ is compact, ΦðθÞ is continuous and has a unique minimizer,
fðθ; yÞ is continuous for every y.

Example 1: If we take as loss function fðθ;YiÞ ¼ ½Yi � EgθðYiÞ�2, the estimating risk isΦðθÞ ¼ E�½Yi � EgθðYiÞ�2;
the estimating function is ΦOnðθÞ ¼ n�1 Pn

i¼1 ½Yi � EgθðYiÞ�2 and θ̂ is the least-square estimator.

Example 2: If we take as loss function fðθ;YiÞ ¼ � log gθðYiÞ, the estimating risk is ΦðθÞ ¼ E�½� log gθðYiÞ�
which is the cross-entropy of gθ with respect to f �; the estimating function is ΦOnðθÞ ¼ �n�1 Pn

i¼1 log g
θðYiÞ

and θ̂ is the MLE.

2.2 The assessment risk and its estimation by cross-validation

When several estimators are available, we wish to assess their performance by estimating an assessment
risk. Estimators with small assessment risks will be preferred. For constructing the risk of an estimator gθ̂ we
may use a loss function ψðgθ̂;YÞ. The assessment risk is the expectation under f � of ψðgθ̂;YÞ, where both
Y and gθ̂ are random:

Ψðgθ̂Þ ¼ E�fψðgθ̂;YÞg: ð1Þ
The problem is to estimate the assessment risk (without knowing the true density f �). A natural, albeit
naive, estimator is

ΨOnðgθ̂Þ ¼ n�1
Xn
i¼1

ψðgθ̂;YiÞ: ð2Þ

However ΨOnðgθ̂Þ is not completely satisfying because it does not take into account that gθ̂ depends on the
observations; as a result ΨOnðgθ̂Þ underestimates Ψðgθ̂Þ (the well-known overoptimism bias).

If another sample O0
n ¼ ðY 0

i ; i ¼ 1; . . . ; nÞ i.i.d. with respect to On were available, a natural estimator of

the assessment risk would be ΨO0
n
ðgθ̂Þ ¼ n�1 Pn

i¼1 ψðgθ̂;Y 0
i Þ. We call ΨO0

n
ðgθ̂Þ the “oracle estimator.” This is

an unbiased estimator of the assessment risk but cannot be computed based on On. Its variance is

var�ΨO0
n
ðgθ̂Þ ¼ n�1var�fψðgθ̂;Y 0

i Þjθ̂g, which tends toward n�1κ2�, where κ2� is the variance of ψðgθ0 ;Y 0
i Þ.

A pseudo-oracle estimator of the assessment risk is often used by practitioners who split their original
sample in a training and a validation sample. However, this practice leads to a loss of efficiency since only
half of the data is used for computing the estimator gθ̂ and half of the data also for estimating its
assessment risk. Cross-validation estimators of the assessment risk make a more efficient use of the
information. In particular the leave-one-out cross-validation criterion is
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CVðgθ̂Þ ¼ n�1
Xn
i¼1

ψðgθ̂�i ;YiÞ;

where θ̂�i ¼ argmin ΦOnji and ΦOnji ¼ 1
n�1

Pn
j�i fðθ;YjÞ. CVðgθ̂Þ does nearly as well as if another sample O0

n

were available, in terms of both bias and variance. Indeed it can immediately be seen that

EfCVðgθ̂Þg ¼ Ψðgθ̂n�1Þ. We shall see in Section 3 that the asymptotic variance of the approximate cross-

validation criterion UACVRðgθ̂Þ is precisely n�1κ2�, the same as that of the oracle estimator.
For comparing two estimators, the difference of assessment risks is relevant. This can be estimated by

the difference of cross-validation estimates of the assessment risks.

2.3 The universal approximate cross-validation criterion

The leave-one-out cross-validation criterion may be computationally demanding since it is necessary to run
the maximization algorithm n times for finding the θ̂�i; i ¼ 1; . . . ; n. For this reason an approximate formula
is very useful. In this section we propose a universal approximation of the cross-validation (UACVR)
criterion for regular loss functions f and ψ.

Definition 1 (Universal approximation of the cross-validation)

UACVRðgθ̂Þ ¼ ΨOnðgθ̂Þ þ TraceðH�1
ΦOn

KÞ; ð3Þ

where HΦOn
¼ @2ΦOn

@θ2
jθ̂ and K ¼ n�1 Pn

i¼1 v̂id̂
T
i , with

v̂i ¼ @ψðgθ;YiÞ
@θ

jθ̂
and

d̂i ¼ 1
n� 1

@fðθ;YiÞ
@θ

jθ̂:

The leading term in eq. (3) is the naive estimator of Ψðgθ̂Þ defined in eq. (2) while the second term is a
correction accounting for parameter estimation. This correction term involves HΦOn

, the Hessian of the
estimating function, and v̂i and d̂i which are the gradients of the assessment and estimating functions (up to
the multiplicative constant 1=ðn� 1Þ for the latter).

Under regularity assumptions on fð:; :Þ and ψð:; :Þ, we have that the leave-one-out cross-validation
criterion differs from UACVR by an asymptotically negligible term in opðn�1Þ, which makes UACVR a good
approximation for n relatively large, when leave-one-out cross-validation becomes computationally too
demanding. The regularity conditions are detailed in the Appendix and are essentially: A1: ΦðθÞ has a
unique maximizer; A2: thrice differentiability of fðθ; yÞ; A3: twice differentiability of ψðθ; yÞ.

Theorem 1 Under assumptions A1, A2, A3, we have

CVðgθ̂Þ ¼ ΨOnðgθ̂Þ þ TraceðH�1
ΦOn

KÞ þ opðn�1Þ; ð4Þ

UACVR applies only to regular parametric problems. Thus it does not apply to non- or semi-parametric
estimators and more generally to singular problems as treated by Watanabe [18]. Also, some assessment
functions do not satisfy the regularity assumptions: for instance, a non-parametric estimator of the area
under the ROC curve can be used for assessing the discriminating ability of an estimator, and this is not
continuous in the parameter θ. Nevertheless, UACVR may be useful in various important contexts as
detailed in Section 4, including penalized likelihood estimators approximated on a spline basis, which is
a way to avoid strong parametric assumptions.
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3 Asymptotic distribution and tracking interval

3.1 Asymptotic distribution of UACVR

Commenges et al. [19] using results of Vuong [20] studied the asymptotic distribution of a difference of
normalized AIC’s as an estimator of a difference of Kullback–Leibler risks: the normalized AIC is defined as
1
2nAIC. Here similar arguments are applied to study the asymptotic distribution of UACVR and a difference of
two UACVR values. By the continuous mapping theorem, the asymptotic distribution of UACVRðgθ̂Þ is the
same as that of Ψðgθ0Þ. Since the latter quantity is a mean, it immediately follows by the central limit
theorem that

n1=2fUACVRðgθ̂Þ �Ψðgθ0Þg !D Nð0; κ2�Þ; ð5Þ
where κ2� ¼ var�ψðgθ0 ;YÞ and var� stands for the variance under the true distribution. We can also write:

n1=2fUACVRðgθ̂Þ �Ψðgθ̂Þg !D Nð0; κ2�Þ; ð6Þ
and κ2� can be estimated by the empirical variance of ψðgθ̂;YiÞ, i ¼ 1; . . . ; n.

3.2 Asymptotic distribution of a difference between UACVR values
of two estimators

If two estimators gθ̂ and hγ̂ are available, we would like to know which is the best according to the
chosen assessment risk. Thus, we have to estimate the difference of their assessment risks:
Δψðgθ̂; hγ̂Þ ¼ Ψðgθ̂Þ �Ψðhγ̂Þ. The obvious estimator is: DUACVRðgθ̂; hγ̂Þ ¼ UACVRðgθ̂Þ � UACVRðhγ̂Þ: We focus
on the case where gθ0�hγ0 . We obtain in that case using the same arguments as above:

n1=2fDUACVRðgθ̂n ; hγ̂nÞ � Δðgθ̂n ; hγ̂nÞg !D Nð0;ω2
�Þ; ð7Þ

where ω2
� ¼ var� ψðgθ0 ;YÞ � ψðhγ0 ;YÞ� �

, and this can be estimated by the empirical variance of

ψðgθ̂;YiÞ � ψðhγ̂;YiÞ
n o

:

Based on the same type of results, Commenges et al. [19] proposed to construct a “tracking interval” for a
difference of normalized AIC values. The tracking interval is a kind of confidence interval for the difference of
risks. Because the variability of estimators of difference of risks is rather large in general, it is useful to have
an interval estimate rather than just a point estimate. However, in the conventional theory of point and
interval estimation, the target parameter is fixed; here, it changes with n. Thus, we have a moving target:
hence the name of tracking interval. Some simulations in Commenges et al. [19] showed that the variance of
the difference of AIC was correctly estimated and the corresponding tracking interval had good coverage
properties. The same idea can be applied in the more general case treated here. The tracking interval is given
by ðAn;BnÞ, where An ¼ DUACVRðgθ̂n ; hγ̂nÞ � zα=2n�1=2ω̂n and Bn ¼ DUACVRðgθ̂n ; hγ̂nÞ þ zα=2n�1=2ω̂n, where zu is
the uth quantile of the standard normal variable.

Note that ω� is in general much lower than κ�. This has been shown by Commenges et al. [13] for the
expected cross-entropy assessment risk and comes from the fact that ψðgθ̂;YiÞ and ψðhγ̂;YiÞ are often
positively correlated.

4 Particular cases of UACVR

In this section we give seven frameworks in which UACVR applies (a non-exhaustive list).
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4.1 MLEs and information assessment risk: TIC and AIC

Suppose we take: fðθ;YiÞ ¼ ψðgθ;YiÞ ¼ � log gθðYiÞ. Then, the estimating function is minus the log-

likelihood. It estimates the estimating risk, here the cross-entropy [21] of gθ with respect to the true density

f �: E�f� log gθðYÞg ¼ Hðf �Þ þ KLðgθ; f �Þ, where Hðf �Þ ¼ �E�flog f �ðYÞg is the entropy of f � and

KLðgθ; f �Þ ¼ E� log f �ðYÞ
gθðYÞ

n o
the Kullback–Leibler divergence of gθ relative to f �. The assessment risk is here

the expected cross-entropy:

ECEðgθ̂Þ ¼ E�½E�f� log gθ̂ðYÞjOng� ¼ Hðf �Þ þ EKLðgθ̂; f �Þ; ð8Þ

where EKLðgθ̂; f �Þ ¼ E� log f �ðYÞ
gθ̂ðYÞ

n o
is the expected Kullback–Leibler risk. It differs from the conventional

Kullback–Leibler risk defined for a fixed density because it is applied here to an estimator: it was
mentioned by Hall [22] under the name of “expected Kullback–Leibler loss.” So, although the loss functions
for estimating and assessment are the same, there is a dissymmetry in that the estimating risk is a cross-

entropy while, because gθ̂ is random, the assessment risk is an expected cross-entropy.
In that case the leading term of eq. (3) is minus the maximized (normalized) log-likelihood. We have also

that v̂i is the individual score and d̂i ¼ 1
n�1 v̂i so that UACVR is identical to a normalized version of TIC [5]. If the

model is well specified K tends in probability toward Iðθ0Þ. The Hessian HΦOn
also tends toward Iðθ0Þ so that

the correction term tends toward p, the number of parameters. Thus, if the model is not too badly specified, TIC

is approximately equal to AIC. We have UACVR ¼ 1
2n TIC � 1

2nAIC, and this estimates the expected cross-

entropy of the estimator, ECEðgθ̂Þ. In practice, Burnham and Anderson [23] do not recommend the use of
TIC if n is small because of the variability of the correction term. On the other hand, Konishi and Kitagawa [5]
show (see their Table 3.3) that the correction terms can be rather different when the models are misspecified.

4.2 M-estimators and information assessment risk: GIC

Konishi and Kitagawa [3] have generalized TIC and AIC to cases where gθ̂ was an M-estimator. The criterion
they proposed, obtained by correcting the bias of the log-likelihood, is the GIC. GIC is also a special case of
UACVR, obtained when the assessment risk is the expected cross-entropy. They apply GIC in particular to
penalized likelihood estimators. Thus UACVR, as GIC, can be applied to maximum a posteriori, maximum
penalized likelihood and hierarchical likelihood estimators.

4.3 Restricted AIC

Liquet and Commenges [24] have proposed a modification of AIC and LCV when estimators are based on the
full information while they are assessed on a smaller (more targeted) information. More specifically, the
estimator is based on the sample On ¼ ðYi; i ¼ 1; . . . ; nÞ but the assessment risk is based on a random variable
Z which is a coarsened version of Y. For instance Z is a dichotomization of Y: Z¼ 1Y > l. For this case, the
restricted AIC (RAIC) was derived by both direct approximation of the risk and by approximation of the LCV.
RAIC is a particular case of UACVR for the case: fðθ;YiÞ ¼ � log gθðYiÞ and ψðgθðYiÞÞ ¼ � log gθðZiÞ.

4.4 Estimators assessment by CRPS

Gneiting and Raftery [16] studied scoring rules and particularly the CRPS. Its inverse that can be used as a
loss function is defined as
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CRPS�ðGð:; θÞ;YÞ ¼
ðþ1

�1
fGðu; θÞ � 1u�Yg2du;

where Gð:; θÞ is the cumulative distribution function (c.d.f.) of a distribution in the model. The risk is a

Cramer–von Mises-type distance: dðG;G�Þ ¼ Ð fGðuÞ � G�ðuÞg2du. In some cases, it may be interesting to
assess MLE’s using this assessment risk rather than the logarithmic loss which may be too sensitive to low
values of the density. UACVR can be used for estimating this risk. In that case, the leading term of UACVR is

n�1 Pn
i¼1 CRPS

�ðGð:; θ̂Þ;YiÞ; for the correcting term, HΦOn
is the Hessian of the log-likelihood (since θ̂ is the

MLE) and K must be computed with v̂i ¼ @ψ
@θ jθ̂ ¼ 2

Ðþ1
�1 fGðu; θ̂Þ � 1u�Yig @Gðu;θÞ

@θ jθ̂du; d̂i is the individual score

(gradient of the individual log-likelihood) divided by n� 1. Thus the computation of v̂i, for each i, involves
the computation of p simple integrals, which can be done numerically.

4.5 Estimators assessment by Brier score

Brier score [25] can be used to assess estimators of the distribution of categorical variables, say Y, taking

values 1; . . . ;m. Consider a model for this distribution: we write gθðjÞ ¼ PðY ¼ jÞ. Brier score is defined asPm
j¼1 ðδY;j � gθðjÞÞ2, where δ is the Kronecker symbol (δY ;j ¼ 1 if Y ¼ j, zero otherwise). Assume that we

estimate θ by maximum likelihood and use the Brier score for assessment. In this case, the leading term of

UACVR is n�1 Pn
i¼1

Pm
j¼1 ðδYi;j � gθðjÞÞ2; for the correcting term, HΦOn

is the Hessian of the log-likelihood

(since θ̂ is the MLE) and K must be computed with v̂i ¼ @ψ
@θ jθ̂ ¼ �2 @gθ

@θ jθ̂ðYiÞ þ 2
Pm

j¼1 g
θ̂ðjÞ @gθ@θ jθ̂ðjÞ; d̂i is the

individual score (gradient of the individual log-likelihood) divided by n� 1.

4.6 Conditional AIC

A referee suggested that UACVR might be useful for selecting random effect models based on conditional
assessment functions, that is when the target is the density conditional on random effects. Conditional
Akaike criterion was proposed by Vaida and Blanchard [26]; Greven and Kneib [27] proposed a correction
taking into account uncertainty on the covariance matrix of the random effects; Braun et al. [28] proposed a
predictive cross-validation criterion. UACVR could directly apply to this case by considering that the
assessment loss is � log gθðY jb̂Þ, where b is the random effect and b̂ its estimator. Since b̂ is a function
of θ and Y, the assessment loss can indeed be written ψðθ; yÞ. For computing UACVR, the main task would
be here to compute the gradient @ψðθ;YiÞ

@θ , not forgetting the dependence of b̂ on θ. This could be easily done
by numerical differentiation.

4.7 Estimators based on continuous approximation of categorical data

Assume Y is an ordered categorical variable taking values l ¼ 0; 1; . . . ; L. Here for simplicity we consider
that Y is univariate. Several models are available for this type of variables. Cumulative probit models,
further called “threshold link models,” assume that Yi ¼ l if a latent variable Λi takes values in the interval
ðcl; clþ1Þ for l ¼ 0; . . . ; L, with c0 ¼ �1 and cLþ1 ¼ þ1:

Yi ¼
XL
l¼0

1fΛi2ðcl;clþ1Þgl: ð9Þ

Λi itself can be modeled as a noisy linear form of explanatory variables Λi ¼ βxi þ "i, where "i has a normal
distribution of mean zero and variance σ2, and where xi are explanatory variables. The parameters are
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θ ¼ ðc1; . . . ; cL; β; σÞ. For identifiability one must add some constraints, for instance σ ¼ 1 and null intercept
in the linear model for Λi. An estimator of the distribution can be obtained by maximum likelihood leading
to define gθ̂. The assessment risk can be ECEðgθ̂Þ. Note that since Y is discrete, the densities are defined with
respect to a counting measure that is, gθ̂ðlÞ defines the probability that Y ¼ l.

One may also make a continuous approximation which leads to simpler computations and may be more
parsimonious, especially if Y is multivariate as in the illustration of Section 6. For example we can consider
the model Yi ¼ βxi þ "i. Maximizing the likelihood of this model for observations of Yi leads to a probability

measure specified by the density hγ̂c. This is however a density relative to Lebesgue measure. This
probability measure gives zero probabilities to fYi ¼ lg for all l, and this yields infinite value for ECE
(meaning strong rejection of this estimator). However from hc a natural estimator of f � can be constructed

by gathering at l the mass around l: hγ̂ðlÞ ¼ Ð lþ1=2
l�1=2 h

γ̂
cðuÞdu, for l ¼ 1; . . . ; L� 1, and hγ̂ð0Þ ¼ Ð 1=2

�1 hγ̂cðuÞdu,
hγ̂ðLÞ ¼ Ðþ1

L�1=2 h
γ̂
cðuÞdu. UACVR can be computed for this estimator for estimating its ECE. The leading term of

UACVRðhγ̂Þ can be interpreted as the log-likelihood obtained by this estimator with respect to the counting

measure. For the correcting term we need the Hessian of the log-likelihood of hγ̂c and we have to compute

v̂i ¼ @ψðhγ;YiÞ
@γ jθ̂. For instance if Yi ¼ l for l ¼ 1 . . . ; L� 1 we have

v̂i ¼ �
Ð lþ1=2
l�1=2

@hγ̂c
@γ ðuÞduÐ lþ1=2

l�1=2 h
γ̂
cðuÞdu

:

Since the denominator is the probability under hγ̂c that Y 2 ðl� 1=2; lþ 1=2Þ, v̂i can be interpreted as the
conditional expectation (under hγ̂c) of the individual score. Thus if hγ̂c does not vary much on
ðl� 1=2; lþ 1=2Þ, v̂i is close to �ðn� 1Þd̂i. Using the same arguments as in Section 4.1 we obtain that
UACVR is close to correcting by the number of parameters as in AIC; such a criterion that we call AICd was
proposed by Proust-Lima et al. [29], and this is likely to be a good approximation if the number of
modalities of Y is large.

5 Simulation: choice of estimators for ordered categorical data

5.1 Design

We conducted a simulation study to illustrate the use of UACVR for comparing estimators derived from
threshold link models and estimators obtained by a linear continuous approximation in the case of ordered
categorical data (see Section 4.7). The aim was to assess the performance of UACVR as an estimator of ECE
defined in eq. (8), and to compare it to the normalized naive AIC criterion (noted AIC) and the normalized
AIC criterion computed on the counting measure (noted AICd). Performances of these criteria were studied
in the case where the number of modalities (Lþ 1) of the response variable Y is small (Section 5.2.1) and
when it is large (Section 5.2.2).

5.1.1 True distributions

For all the simulations, the data came from a cumulative probit model where the relationship between Yi

and Λi is as in eq. (9) and the linear form of Λi is specified by

Λi ¼ β1X
1
i þ β2X

2
i þ "i; i ¼ 1; . . . ; n; ð10Þ
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where "i and the two explanatory variables X1
i and X2

i were generated from independent standard normal
distributions. In order not to disadvantage the linear continuous approximation compared to the threshold
link model, the parameters c1; . . . ; cL were chosen as the solution of the following equations:

PðΛi < c1Þ ¼ PðΛi > cLÞ
PðΛi < c1Þ ¼ Pðc1 <Λi < c2Þ;
ciþ1 ¼ ci þm with m ¼ ðcL � c1Þ=ðL� 1Þ

8<
:

5.1.2 The different models

For each generated sample, we fitted the cumulative probit model as previously defined, and a linear model
assuming a linear continuous approximation of the response variable Y, Yi ¼ γ0 þ γ1X

1
i þ γ2X

2
i þ "i, with "i

being independent zero mean normal variables with variance τ2. Both models were fitted by maximum
likelihood using a Fortran program which was checked to be correct by comparing the results with those
obtained by the R package lcmm [30].

Samples of 300; 500; 3;000 subjects were generated. For all simulations, N ¼ 10,000 samples were
generated. The true assessment risk, ECE, which is available only in a simulation study, was computed by a
Monte Carlo approach: for each sample Oj

n we computed gθ̂ðjÞ; we generated a large number M ¼ 100,000
observations Yk independent of Oj

n; j ¼ 1; . . . ;N; we estimated ECE by the global mean
1

NM

PN
j¼1

PM
k¼1 � log gθ̂ðjÞðYkÞ.

5.2 Results of the simulation

5.2.1 Small number of modalities

We consider here the case where the number of modalities of Y is relatively small (Lþ 1 ¼ 5). In this
simulation, we fixed β1 ¼ �1:05, β2 ¼ �1:85. In Table 1, we present, for different sample sizes n, the results
for the different empirical criteria AIC, AICd and UACVR which can be compared with ECE. For any sample
size, the cumulative probit model provided a better ECE than the linear model (positive difference). It

Table 1: Performance of the criteria for a small number of modalities (L þ 1 ¼ 5) and different sample sizes.

ECE UACV AICd AIC Bias UACV Bias AICd Bias AIC

n ¼ 

Linear . . . . . . .
Threshold . . . . –. –. –.
Difference . . . . . . .
Agreement ECE % % %

n ¼ 

Linear . . . . –. . .
Threshold . . . . –. –. –.
Difference . . . . –. . .
Agreement ECE % % %

n ¼ ,
Linear . . . . –. . .
Threshold . . . . . . .
Difference . . . . –. . .
Agreement ECE % % %

Note: Mean over 1,000 replications of the criteria UACVR, AICd, AIC. ECE is the true risk; the biases of the criteria as estimator of ECE are
given, as well as the percentage of agreement with ECE for model choice.
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appeared that UACVR had a very small bias for all the sample sizes (of order 10�3). The two other criteria
AIC and AICd were also in favor of a threshold model. However, as expected, the naive normalized AIC did
not correctly estimate ECE due to the wrong probability measure (Lebesgue measure instead of a counting
measure). We note that the criterion AICd estimated ECE relatively well, with a small bias around 10�2 and
10�3. All the criteria were in agreement with ECE for the choice of the model.

5.2.2 Large number of modalities

We consider here the case where the number of modalities of Y is relatively large (Lþ 1 ¼ 20). In this
simulation, we fixed β1 ¼ �0:15, β2 ¼ �0:85. The results of this simulation are presented in Table 2. For any
sample size, the linear model provided a better ECE than the threshold model (negative difference). It
appeared that UACVR had a small bias for all the sample sizes (of order 10�3 and 10�4). The AICd criterion
gave similar results as the UACVR criterion while the AIC criterion failed to find the best estimator (positive
difference).

5.2.3 Coverage of tracking intervals

Finally we looked at the coverage of the tracking intervals and the percentage of cases where 0 was inside
of the tracking interval. The results are given in Table 3. The coverage rates appear to be too large. We
checked that the distributions of UACVR were approximately normal. We found however that the estimated
standard deviations were too large by a factor varying from 1.2 to 1.8 for small and large number of
modalities respectively, but we were unable to find the reason of this overestimation. Nevertheless, the
estimate gives the order of magnitude of the variability of UACVR.

For small number of modalities, 0 was always outside of the tracking interval, leading to an unequi-
vocal choice. For large number of modalities, the percentage increased with n. This may seem paradoxical
but illustrates well the difference between a tracking interval and a confidence interval. What happens is
that the misspecification risk of the linear model is rather large for small number of modalities and is very

Table 2: Performance of the criteria for a large number of modalities (L þ 1 ¼ 20) and different sample sizes.

ECE UACV AICd AIC BIAS.UACV BIAS.AICd BIAS.AIC

n ¼ 

Linear . . . . –. . .
Threshold . . . . –. –. –.
Difference –. –. –. . . . .
Agreement ECE .% .% .%

n ¼ 

Linear . . . . –. . .
Threshold . . . . –. –. –.
Difference –. –. –. . . . .
Agreement ECE .% .% %

n ¼ ,
Linear . . . . –. –. .
Threshold . . . . –. –. –.
Difference –. –. –. . . . .
Agreement ECE .% .% %

Note: Mean over 1,000 replications of the criteria UACVR, AICd, AIC. ECE is the true risk; the biases of the criteria as estimator of ECE are
given, as well as the percentage of agreement with ECE for model choice.
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small for large number of modalities. Thus the global risk is driven by the statistical risk. The latter
decreases with n, so that the difference of risks, which is the target, decreases with n, becoming very
small for n ¼ 3;000; in this case the two models are nearly equivalent and there is no point to choose one
rather than the other according to the chosen risk.

6 Illustration on the choice of estimators for psychometric tests

In epidemiological studies, cognition is measured by psychometric tests which usually consist in the sum of
items measuring one or several cognitive domains. A common example is the Mini-Mental State
Examination (MMSE) score [31], computed as the sum of 30 binary items evaluating memory, calculation,
orientation in space and time, language, and word recognition; for this reason it is called a “sumscore” and
ranges from 0 to 30. Although in essence psychometric tests are ordered categorical data, they are most
often analyzed as continuous data. Indeed, they usually have a large number of different levels and,
especially in longitudinal studies, models for categorical data are numerically complex. Recently, Proust-
Lima et al. [29] defined a latent process mixed model to analyze repeated measures of discrete outcomes
involving either a threshold link model or an approximation of it using continuous parameterized increas-
ing functions. Comparison of models assuming either categorical data (using the threshold model) or
continuous data (using continuous functions) was done with an AICd, computed with respect to the
counting measure. In this illustration, we use UACVR to compare such latent process mixed models
assuming either continuous or ordered categorical data when applied on the repeated measures of the
MMSE and its calculation subscore in a large sample from a French prospective cohort study.

6.1 Latent process mixed models

In brief, the latent process mixed model assumes that a latent process ðΛ�
i ðtÞÞt�0 underlies the repeated

measures of the observed variable Yij for subject i (i ¼ 1; :::; n) and occasion j (j ¼ 1; :::; ni). The latent process
Λ�
i ðtÞ is defined as a standard linear mixed model: Λ�

i ðtÞ ¼ XiðtÞTβ þ ZiðtÞTbi for t � 0 where XiðtÞ and ZiðtÞ
are distinct vectors of time-dependent covariates associated, respectively, with the vector of fixed effects β
and the vector of random effects bi (bi ,Nðμ;DÞ). We further assume that bi0, the first component of bi that
usually represents the random intercept, is Nð0; 1Þ for identifiability; except for the variance of bi0, D is an
unstructured variance matrix.

A measurement model links the latent process with the observed repeated measures through intermediary
variables which are noisy versions of the latent process at time tij: Λij ¼ Λ�

i ðtijÞ þ "ij, where the "ij’s are i.i.d.
normal variables with zero expectation. For ordered categorical data, a standard threshold link model as
defined in eq. (9) (Section 4.7) for the univariate case is well adapted, leading to a cumulative probit mixed
model. For continuous data, the link has been modeled as HðYij; ηÞ ¼ Λij where Hð:; ηÞ is a monotonic

Table 3: Performance of the 95% tracking interval in both situations (Lþ 1 ¼ 5 and Lþ 1 ¼ 20) and
for the different sample sizes (n ¼ 300; 500 and 3,000).

Lþ  ¼  Lþ  ¼ 

ECE 2 TI 02 TI ECE 2 TI 02 TI

n ¼  .% % .% .%
n ¼  .% % .% .%
n ¼ , .% % % .%

Note: Number of times that the tracking interval (TI) includes the true value ECE over 1,000 replications.
Percentages of tracking intervals (TI) including the value 0.
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increasing transformation. Three families of such transformations are considered: (i) Hðy; ηÞ ¼ hðy;η1;η2Þ�η3
η4

where

hð:; η1; η2Þ is the beta c.d.f. with parameters ðη1; η2Þ; (ii) Hðy; ηÞ ¼ η1 þ
Pmþ2

l¼2 ηlB
I
l ðyÞ where ðBI

l Þl¼2;mþ2 is a basis

of quadratic I-splines with m nodes; (iii) Hðy; ηÞ ¼ y�η1
η2

which gives the standard linear mixed model.
Latent process mixed models are estimated within the maximum likelihood framework using the lcmm

function of lcmm R package [30]. When assuming continuous data, the likelihood can be computed
analytically using the Jacobian of H [32]. In contrast, when assuming ordered categorical data, an integra-
tion over the random effects has to be done numerically [29].

UACVR is computed from the log-likelihood ΨOn obtained for the MLEs θ̂ with respect to the counting
measure:

ΨOnðθ̂Þ ¼ �n�1
Xn
i¼1

ðþ1

�1

Yni
j¼1

PðYijjbiÞfbðbiÞdbi

¼ �n�1
Xn
i¼1

ðþ1

�1

Yni
j¼1

YL
l¼0

PðYij ¼ ljbiÞ
� �1fYij¼lg fbðbiÞdbi

¼ �n�1
Xn
i¼1

ðþ1

�1

Yni
j¼1

YL
l¼0

Pðcl � Λij < clþ1jbiÞ
� �1fYij¼lg fbðbiÞdbi;

ð11Þ

where c0 ¼ �1, cLþ1 ¼ þ1, and either cl (l ¼ 1; :::; L) are the estimated thresholds when a threshold model
is considered, or cl ¼ Hðl� 1

2 ; η̂Þ (l ¼ 1; :::; L) when monotonic increasing families of transformations are
used. We also need to compute v̂i similarly as in Section 4.7. The integral is approximated by Gaussian
quadrature.

6.2 Application: categorical psychometric tests

Data come from the French prospective cohort study PAQUID initiated in 1988 to study normal and
pathological aging [33]. Subjects included in the cohort were 65 and older at initial visit and were followed
up to 10 times with a visit at 1, 3, 5, 8, 10, 13, 15, 17 and 20 years after the initial visit. At each visit, a battery
of psychometric tests including the MMSE was completed. In the present analysis, all the subjects free of
dementia at the 1-year visit and who had at least one MMSE measure during the whole follow-up were
included: this resulted in a sample size of 2,914 subjects. Data from baseline were removed to avoid
modeling the first-passing effect. The observed distributions of the MMSE sumscore and of its calculation
subscore are displayed in Figure 1.
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Figure 1: Distributions of MMSE sumscore and MMSE calculation subscore in the PAQUID sample (n ¼ 2,914). Data were pooled
from all available visits for a total of 10,846 observations.
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The trajectory of the latent process was modeled as an individual quadratic function of age with
correlated random effects for intercept, slope and quadratic slope (ZiðtÞT ¼ ð1; ageiðtÞ; age2i ðtÞÞ), and an
adjustment for binary covariates educational level (EL ¼ 1 if the subject graduated from primary school)
and gender (SEX ¼ 1 if the subject is a man) plus their interactions with age and quadratic age (so that
XiðtÞT ¼ ZiðtÞT#ð1;ELi; SEXiÞ). For MMSE sumscore, in addition to the threshold link, the linear, beta c.d.f.
and I-splines (with five equidistant nodes) continuous link functions were considered. For calculation
subscore, in addition to the threshold link, only the linear link was considered.

6.3 Results

Table 4 gives the assessment criteria for estimators based on the different models, and Table 5 provides the
differences in UACVR or AICd and their 95% tracking interval. For the MMSE sumscore, the mixed model
assuming the standard linear transformation yielded a clearly worse UACVR than other models accounting
for nonlinear relationships with the underlying latent process. The model involving a beta c.d.f. gave a
similar risk as the one involving the less parsimonious I-splines transformation (DUACVR ¼ �0:0070 and 0 in
the 95% tracking interval). Finally, the mixed model considering a threshold link model, which is numeri-
cally demanding (because of a three-dimensional integral in the likelihood), gave the best assessment risk
but remained relatively close to the simpler ones assuming a beta c.d.f. (DUACVR ¼ 0:0200) or a I-splines

Table 4: Number of parameters (p), naive normalized AIC (AIC), AICd, and UACVR for latent process mixed models
involving different transformations H and applied on either the MMSE sumscore or its calculation subscore.

Transformation H p AIC AICd UACVR

MMSE
Linear  . . .
Beta c.d.f.y  . . .
I-splines z  . . .
Thresholds  . . .
Calculation
Linear  . . .
Thresholds  . . .

Note: y c.d.f. for cumulative distribution function.
z Quadratic I-splines with five equidistant nodes located at 0, 7.5, 15, 22.5 and 30.

Table 5: Difference of AICd (DAICd ), difference of two UACVR values(DUACVR) and its 95% tracking interval between
latent process mixed models involving different transformations H1 and H2, and applied on either the MMSE
sumscore or its calculation subscore.

Transformations H1/H2 DAICd DUACVR % tracking interval

MMSE
Linear/Beta c.d.f.y . . [.; .]
Linear/I-splines z . . [.; .]
Beta c.d.f.y/I-splines z –. –. [–.; .]
I-splines z/thresholds . . [.; .]
Beta c.d.f.y/thresholds . . [.; .]
Linear/thresholds . . [.; .]
Calculation
Linear/thresholds . . [.; .]

Note: y c.d.f. for cumulative distribution function.
z Quadratic I-splines with five equidistant nodes located at 0, 7.5, 15, 22.5 and 30.
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transformation (DUACVR ¼ 0:0270). For the interpretation of these values Commenges et al. [19] suggested to
qualify values of order 10�1, 10�2 and 10�3 as “large,” “moderate” and “small,” respectively; moreover for
multivariate observations, it was suggested to divide by the total number of observations rather by the
number of independent observations. With this correction (which amounts to divide the current values by a
factor of 3:7 ¼ 10; 846=2; 914) the differences between the linear model and the other models can be
qualified as “large,” and the differences between the threshold model and both beta c.d.f. and I-splines
are between “moderate” and “small.” Of course, this gives only an idea of the difference of risks between
estimators; a more intuitive and reliable interpretation scale is still to be found. Figure 2 displays the
estimated link functions in (A) and the predicted mean trajectories of the latent process according to
educational level in (B) from the models involving either a linear, a beta c.d.f., I-splines or a threshold link
function. The estimated link functions as well as the predicted trajectories of the latent process are very
close when assuming either beta c.d.f., I-splines or a threshold link function but they greatly differ when
assuming a linear link.

For the calculation subscore also, the standard linear mixed model again gave a clearly higher risk than the
mixed model assuming a threshold link model (DUACVRðlinear; thresholdsÞ ¼ 0:452, 95% tracking interval:
½0:413;0:492�).

7 Conclusion

We have proposed a universal approximate formula for leave-one-out cross-validation under regularity
conditions: it is universal in the sense that it applies to any couple of estimating and assessment risks
which can be correctly estimated from the observations. UACVR is often a very good approximation of
leave-one-out cross-validation which itself does nearly as well as an “oracle estimator” of the assessment
risk which would be computable if we assessed the estimator on an independent replica of the sample.
Another asset is that UACVR does not need the assumption that the models are well specified, and non-
nested models can be compared. The result is in principle restricted to parametric models but extends to
smooth semi- or non-parametric ones through spline representation of penalized likelihood estimators. The
approximate formula not only allows fast computation, because the model is fitted only once, but also
allows deriving the asymptotic distribution.
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Figure 2: (A) Estimated inverse link functions between MMSE sumscores and the underlying latent process and (B) predicted
trajectories of the latent process of a woman according to educational level (with ELþ and EL– for, respectively, validated or
non-validated primary school diploma) in latent process mixed models assuming either linear, beta c.d.f., I-splines or threshold
link functions (PAQUID sample, n ¼ 2,914); the trajectories for the latter three transformations are indistinguishable.
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Estimating this distribution is important since the variability of UACVR, as that of any criterion used for
estimator choice, may be large. Hopefully, as noted in Section 3, the variability of a difference of UACVR
values between two estimators is smaller, but still remains non-negligible. A simple formula allows to
estimate these variances and to construct so-called tracking intervals; our simulation study however shows
that the coverage of these tracking intervals is too large, due to an overestimation of the variances. This is
an open question to find why this happened here while in other contexts [15, 19] the coverage rates were
correct, and possibly to find a correction to this overestimation; nevertheless, the estimates get the correct
order of magnitude and the tracking intervals may be useful.

In this paper, UACVR has been applied to the issue of choice between estimators of the distribution of
longitudinal categorical data based on cumulative probit mixed models or on mixed models based on a
continuous approximation. It has been shown that the naive AIC can be misleading while a procedure
called AICd (which had not been validated yet) yields results very close to UACVR, even if the latter is
slightly better. Both quantities can be computed in the lcmm R package.

Appendix: Proof of Theorem 1

Under Assumptions A1–A3 below, we have formula (4).
In the proof, we apply the Op concept to vectors and matrices. Saying that a matrix H is Opð1Þ means

that all its elements are Opð1Þ. The proof is partly heuristic in that we need at the end an assumption for
obtaining that a mean of n Opðn�2Þ remainder terms is itself an Opðn�2Þ or at least an opðn�1Þ term.

We assume:
A1 θ0 is the unique minimizer of ΦðθÞ and the M-estimator θ̂ is consistent for θ0.
A2 fðθ; yÞ is thrice differentiable for every y and the third derivative is dominated by a fixed function in a

neighborhood of θ0.
A3 ψðθ; yÞ is twice differentiable for every y and the second derivative is dominated by a fixed function in a

neighborhood of θ0.

The proof is as follows. Assumption A2 is the essential assumption in the so-called classical conditions [17]

for obtaining that
ffiffiffi
n

p ðθ̂ � θ0Þ has an asymptotic normal distribution. It implies that θ̂�i � θ̂ ¼ Opðn�1=2Þ. A
Taylor expansion of

@ΦOnji
@θ jθ̂�i

around θ̂ yields

0 ¼ @ΦOnji

@θ
jθ̂ þ HΦOnji

ðθ̂�i � θ̂Þ þ R1
n;

where HΦOnji
¼ @2ΦOnji

@θ2
jθ̂ and R1

n is a quadratic form of θ̂�i � θ̂ involving third derivatives of ΦOnji taken in ~θ so

that jj~θn � θ̂jj � jjθ̂�i � θ̂jj. Thus jj~θn � θ̂jj is also an Opðn�1=2Þ. Under Assumption A2 and using Lemma 2.12

of Van der Vaart [17], R1
n is an Opðn�1Þ. Assumptions A1 and A2 imply that IðθÞ ¼ @2Φ

@θ2
jθ exists and is

invertible in a neighborhood of θ0. By the strong law of large numbers, HΦOn
¼ @2ΦOn

@θ2
jθ̂ and HΦOnji

¼ @2ΦOnji
@θ2

jθ̂
converge toward Iðθ0Þ and thus are invertible for sufficiently large n. It also follows that both these matrices
and their inverses are Opð1Þ. Thus, from the above development we obtain

θ̂�i � θ̂ ¼ �H�1
ΦOnji

@ΦOnji

@θ
jθ̂ þ Rn;

where Rn ¼ �H�1
ΦOnji

R1
n is an Opðn�1Þ.

By definition of ΦOnðθÞ we have the relation

nΦOnðθÞ ¼ ðn� 1ÞΦOnjiðθÞ þ fðθ;YiÞ: ð12Þ
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Taking derivatives of the terms of this equation and taking the values at θ̂ we find

0 ¼ ðn� 1Þ @ΦOnji
@θ jθ̂ þ @fðθ;YiÞ

@θ jθ̂ and we obtain that
@ΦOnji
@θ jθ̂ ¼ �d̂i

Hence we have

θ̂�i � θ̂ ¼ H�1
ΦOnji

d̂i þ Rn; ð13Þ

Note that this implies that θ̂�i � θ̂ ¼ Opðn�1Þ because HΦOnji
¼ Opð1Þ and both d̂i and Rn are Opðn�1Þ. But this

in turn implies that Rn is in fact an Opðn�2Þ (as a quadratic form of Opðn�1Þ terms). Now we show that HΦOnji

can be replaced by HΦOn
¼ @2ΦOn

@θ2
jθ̂ in eq. (13). By twice derivating eq. (12) we obtain HΦOn

¼ n�1
n HΦOnji

þ 1
n Hfi

where Hfi
¼ @2fðθ;YiÞ

@θ2
jθ̂; since the last term is an Opðn�1Þ, we can write HΦOnji

¼ HΦOn
þ Opðn�1Þ. Equation (13)

can be written HΦOnji
ðθ̂�i � θ̂Þ ¼ d̂i þ Opðn�2Þ or replacing HΦOnji

by HΦOn
þ Opðn�1Þ,

HΦOn
ðθ̂�i � θ̂Þ ¼ d̂i þ Opðn�1Þðθ̂�i � θ̂Þ þ Opðn�2Þ. Using the fact that θ̂�i � θ̂ ¼ Opðn�1Þ we obtain

θ̂�i � θ̂ ¼ H�1
ΦOn

d̂i þ Opðn�2Þ: ð14Þ

Developing now the assessment loss function for θ̂�i around θ̂ yields (using Assumption A3):

ψðgθ̂�i ;YiÞ ¼ ψðgθ̂;YiÞ þ ðθ̂�i � θ̂ÞT v̂i þ Opðn�2Þ:
Replacing in this equation θ̂�i � θ̂ by its approximation in eq. (14) we obtain ψðgθ̂�i ;YiÞ ¼
ψðgθ̂;YiÞ þ d̂

T
i H

�1
ΦOn

v̂i þ Opðn�2Þ. Taking the mean of the left-hand terms of these equations yields CVðgθ̂Þ.
Taking the mean of the terms on the right-hand side gives us a development with an error term which is the
mean of n error terms in Opðn�2Þ. Because the number of error terms to consider increases with n, it is not
true in general that such a mean preserves the order of the error terms. This is true assuming some
boundedness conditions of the expectations of these terms. At this stage the proof is heuristic: we assume
conditions such that the mean of these Opðn�2Þ terms is also an Opðn�2Þ, or at least opðn�1Þ. When this
holds, we obtain the announced result given in formula (4).
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