10 research outputs found

    Genus formula for generalized offset curves

    Get PDF
    In this paper, we present a formula for computing the genus of irreducible generalized offset curves to projective irreducible plane curves with only affine ordinary singularities over an algebraically closed field. The formula expresses the genus of the offset by means of the degree and the genus of the original curve

    Design and Implementation of Conchoid and Offset Processing Maple Packages

    Get PDF
    Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning

    Partial Degree Formulae for Plane Offset Curves

    Get PDF
    In this paper we present several formulae for computing the partial degrees of the defining polynomial of the offset curve to an irreducible affine plane curve given implicitly, and we see how these formulae particularize to the case of rational curves. In addition, we present a formula for computing the degree w.r.t the distance variable.Comment: 24 pages, no figure

    New algebraic and geometric characterizations of planar quintic Pythagorean-hodograph curves

    Get PDF
    The aim of this work is to provide new characterizations of planar quintic Pythagorean-hodograph curves. The first two are algebraic and consist of two and three equations, respectively, in terms of the edges of the Bézier control polygon as complex numbers. These equations are symmetric with respect to the edge indices and cover curves with generic as well as degenerate control polygons. The last two characterizations are geometric and rely both on just two auxiliary points outside the control polygon. One requires two (possibly degenerate) quadrilaterals to be similar, and the other highlights two families of three similar triangles. All characterizations are a step forward with respect to the state of the art, and they can be linked to the well-established counterparts for planar cubic Pythagorean-hodograph curves. The key ingredient for proving the aforementioned results is a novel general expression for the hodograph of the curve

    Generalized plane offsets and rational parameterizations

    Get PDF
    In the first part of the paper a planar generalization of offset curves is introduced and some properties are derived. In particular, it is seen that these curves exhibit good regularity properties and a study on self-intersection avoidance is performed. The representation of a rational curve as the envelope of its tangent lines, following the approach of Pottmann, is revisited to give the explicit expression of all rational generalized offsets. Other famous shapes, such as constant width curves, bicycle tire-tracks curves and Zindler curves are related to these generalized offsets. This gives rise to the second part of the paper, where the particular case of rational parameterizations by a support function is considered and explicit families of rational constant width curves, rational bicycle tire-track curves and rational Zindler curves are generated and some examples are shown

    Total Degree Formula for the Generic Offset to a Parametric Surface

    Full text link
    We provide a resultant-based formula for the total degree w.r.t. the spatial variables of the generic offset to a parametric surface. The parametrization of the surface is not assumed to be proper.Comment: Preprint of an article to be published at the International Journal of Algebra and Computation, World Scientific Publishing, DOI:10.1142/S021819671100680

    Effective algorithms for the study of the degree of algebraic varieties in offsetting processes

    Get PDF
    El trabajo que se presenta en esta tesis pertenece al Área del Cálculo Simbólico, y en particular, al subárea de la Geometría Algebraica (Simbólica) Efectiva para curvas y superficies. Concretamente, en esta tesis se estudia la estructura de grados del polinomio multivariable que define el objeto geométrico que resulta al aplicar procesos de offsetting. Es decir, estudiamos su grado total y sus grados parciales con respecto a cada una de las variables, incluyendo la variable distancia. Para llevar a cabo este objetivo, la tesis se compone de cuatro capítulos y dos apéndices, cuya estructura se detalla a continuación: En el Capítulo 1, titulado Preliminaries and Statement of the Problem, se introducen las nociones de offset genérica y de polinomio de la offset genérica, junto con sus propiedades básicas. En este capítulo se sientan las bases teóricas de nuestro objeto de estudio. En particular, se prueba la propiedad fundamental del polinomio de la offset genérica,que afirma que dicho polinomio especializa bien; es decir, para casi todo valor que se asigne a la variable distancia la especialización del polinomio ,de la offset genérica, es el polinomio que define a la offset para ese valor concreto tomado como distancia. Una vez establecida dicha conexión con la teoría clásica, se define el problema central de esta tesis, que es el problema del grado de la offset genérica. Además se presenta la notación y terminología asociadas a ese problema. Se incluyen también en este capítulo algunos lemas técnicos, que tratan sobre la aplicación de la resultante para el análisis de problemas de intersección de curvas. El Capítulo 2, titulado Total Degree Formulae for Plane Curves, trata del problema del grado total para la offset genérica de una curva plana. Nuestro estudio incluye el caso general en el que la curva viene dada por su ecuación implícita, y también, para curvas racionales, el caso de curvas dadas paramétricamente. En ambos casos obtenemos fórmulas eficientes para el grado total de la offset genérica. Además se presentan otras fórmulas que pueden utilizarse para el estudio teórico del grado total de la offset. En este capítulo se introducen las nociones de sistema offset-recta, curva auxiliar y puntos intrusos. Estas tres nociones juegan un papel esencial en nuestro tratamiento del problema del grado. Estas nociones se utilizan para establecer un marco común para el desarrollo de fórmulas para el grado basadas en resultantes. En el siguiente capítulo ese marco común se aplica para obtener diversas fórmulas de grado. El Capítulo 3, titulado Partial Degree Formulae for Plane Curves, es una continuación natural del capítulo precedente. Aplicando la estrategia, métodos y lenguaje del Capítulo 2, en este capítulo se completa el análisis de la estructura de grados de la offset genérica para curvas planas. En concreto, obtenemos fórmulas para calcular cualquier grado parcial de la offset genérica, y también el grado con respecto a la variable distancia. Estas fórmulas cubren tanto el caso implícito como el caso paramétrico. Además se muestran otras fórmulas que pueden utilizarse para el análisis teórico del problema del grado. El Capítulo 4, titulado Degree Formulae for Rational Surfaces, trata el problema del grado para superficies. La mayor parte del capítulo se dedica a la demostración de una fórmula de grado total para superficies racionales, dadas paramétricamente. Esta fórmula puede aplicarse siempre que la superficie generadora satisfaga cierta condición muy general. En concreto, tenemos que asumir que existe a lo sumo una cantidad finita de valores de la distancia para los que la offset de la superficie pasa por el origen. La fórmula requiere el cálculo de una resultante generalizada univariada, y del máximo común divisor de polinomios con coeficientes simbólicos. La sección final de este capítulo contiene un enfoque alternativo para el estudio de la estructura de grados de una superficie de revolución, independiente de los resultados previos de este capítulo. Con este enfoque se obtiene una solución completa y efectiva para el problema del grado en este caso. La tesis se completa con dos apéndices, que contienen, respectivamente, un resumen de las fórmulas de grado obtenidas en esta tesis y los resultados de algunos cálculos, correspondientes a demostraciones o ejemplos, que, por su longitud, resulta más conveniente incluir aquí

    Effective algorithms for the study of the degree of algebraic varieties in offsetting processes

    Get PDF
    El trabajo que se presenta en esta tesis pertenece al Área del Cálculo Simbólico, y en particular, al subárea de la Geometría Algebraica (Simbólica) Efectiva para curvas y superficies. Concretamente, en esta tesis se estudia la estructura de grados del polinomio multivariable que define el objeto geométrico que resulta al aplicar procesos de offsetting. Es decir, estudiamos su grado total y sus grados parciales con respecto a cada una de las variables, incluyendo la variable distancia. Para llevar a cabo este objetivo, la tesis se compone de cuatro capítulos y dos apéndices, cuya estructura se detalla a continuación: En el Capítulo 1, titulado Preliminaries and Statement of the Problem, se introducen las nociones de offset genérica y de polinomio de la offset genérica, junto con sus propiedades básicas. En este capítulo se sientan las bases teóricas de nuestro objeto de estudio. En particular, se prueba la propiedad fundamental del polinomio de la offset genérica,que afirma que dicho polinomio especializa bien; es decir, para casi todo valor que se asigne a la variable distancia la especialización del polinomio ,de la offset genérica, es el polinomio que define a la offset para ese valor concreto tomado como distancia. Una vez establecida dicha conexión con la teoría clásica, se define el problema central de esta tesis, que es el problema del grado de la offset genérica. Además se presenta la notación y terminología asociadas a ese problema. Se incluyen también en este capítulo algunos lemas técnicos, que tratan sobre la aplicación de la resultante para el análisis de problemas de intersección de curvas. El Capítulo 2, titulado Total Degree Formulae for Plane Curves, trata del problema del grado total para la offset genérica de una curva plana. Nuestro estudio incluye el caso general en el que la curva viene dada por su ecuación implícita, y también, para curvas racionales, el caso de curvas dadas paramétricamente. En ambos casos obtenemos fórmulas eficientes para el grado total de la offset genérica. Además se presentan otras fórmulas que pueden utilizarse para el estudio teórico del grado total de la offset. En este capítulo se introducen las nociones de sistema offset-recta, curva auxiliar y puntos intrusos. Estas tres nociones juegan un papel esencial en nuestro tratamiento del problema del grado. Estas nociones se utilizan para establecer un marco común para el desarrollo de fórmulas para el grado basadas en resultantes. En el siguiente capítulo ese marco común se aplica para obtener diversas fórmulas de grado. El Capítulo 3, titulado Partial Degree Formulae for Plane Curves, es una continuación natural del capítulo precedente. Aplicando la estrategia, métodos y lenguaje del Capítulo 2, en este capítulo se completa el análisis de la estructura de grados de la offset genérica para curvas planas. En concreto, obtenemos fórmulas para calcular cualquier grado parcial de la offset genérica, y también el grado con respecto a la variable distancia. Estas fórmulas cubren tanto el caso implícito como el caso paramétrico. Además se muestran otras fórmulas que pueden utilizarse para el análisis teórico del problema del grado. El Capítulo 4, titulado Degree Formulae for Rational Surfaces, trata el problema del grado para superficies. La mayor parte del capítulo se dedica a la demostración de una fórmula de grado total para superficies racionales, dadas paramétricamente. Esta fórmula puede aplicarse siempre que la superficie generadora satisfaga cierta condición muy general. En concreto, tenemos que asumir que existe a lo sumo una cantidad finita de valores de la distancia para los que la offset de la superficie pasa por el origen. La fórmula requiere el cálculo de una resultante generalizada univariada, y del máximo común divisor de polinomios con coeficientes simbólicos. La sección final de este capítulo contiene un enfoque alternativo para el estudio de la estructura de grados de una superficie de revolución, independiente de los resultados previos de este capítulo. Con este enfoque se obtiene una solución completa y efectiva para el problema del grado en este caso. La tesis se completa con dos apéndices, que contienen, respectivamente, un resumen de las fórmulas de grado obtenidas en esta tesis y los resultados de algunos cálculos, correspondientes a demostraciones o ejemplos, que, por su longitud, resulta más conveniente incluir aquí

    Effective algorithms for the study of the degree of algebraic varieties in offsetting processes

    Get PDF
    El trabajo que se presenta en esta tesis pertenece al Área del Cálculo Simbólico, y en particular, al subárea de la Geometría Algebraica (Simbólica) Efectiva para curvas y superficies. Concretamente, en esta tesis se estudia la estructura de grados del polinomio multivariable que define el objeto geométrico que resulta al aplicar procesos de offsetting. Es decir, estudiamos su grado total y sus grados parciales con respecto a cada una de las variables, incluyendo la variable distancia. Para llevar a cabo este objetivo, la tesis se compone de cuatro capítulos y dos apéndices, cuya estructura se detalla a continuación: En el Capítulo 1, titulado Preliminaries and Statement of the Problem, se introducen las nociones de offset genérica y de polinomio de la offset genérica, junto con sus propiedades básicas. En este capítulo se sientan las bases teóricas de nuestro objeto de estudio. En particular, se prueba la propiedad fundamental del polinomio de la offset genérica,que afirma que dicho polinomio especializa bien; es decir, para casi todo valor que se asigne a la variable distancia la especialización del polinomio ,de la offset genérica, es el polinomio que define a la offset para ese valor concreto tomado como distancia. Una vez establecida dicha conexión con la teoría clásica, se define el problema central de esta tesis, que es el problema del grado de la offset genérica. Además se presenta la notación y terminología asociadas a ese problema. Se incluyen también en este capítulo algunos lemas técnicos, que tratan sobre la aplicación de la resultante para el análisis de problemas de intersección de curvas. El Capítulo 2, titulado Total Degree Formulae for Plane Curves, trata del problema del grado total para la offset genérica de una curva plana. Nuestro estudio incluye el caso general en el que la curva viene dada por su ecuación implícita, y también, para curvas racionales, el caso de curvas dadas paramétricamente. En ambos casos obtenemos fórmulas eficientes para el grado total de la offset genérica. Además se presentan otras fórmulas que pueden utilizarse para el estudio teórico del grado total de la offset. En este capítulo se introducen las nociones de sistema offset-recta, curva auxiliar y puntos intrusos. Estas tres nociones juegan un papel esencial en nuestro tratamiento del problema del grado. Estas nociones se utilizan para establecer un marco común para el desarrollo de fórmulas para el grado basadas en resultantes. En el siguiente capítulo ese marco común se aplica para obtener diversas fórmulas de grado. El Capítulo 3, titulado Partial Degree Formulae for Plane Curves, es una continuación natural del capítulo precedente. Aplicando la estrategia, métodos y lenguaje del Capítulo 2, en este capítulo se completa el análisis de la estructura de grados de la offset genérica para curvas planas. En concreto, obtenemos fórmulas para calcular cualquier grado parcial de la offset genérica, y también el grado con respecto a la variable distancia. Estas fórmulas cubren tanto el caso implícito como el caso paramétrico. Además se muestran otras fórmulas que pueden utilizarse para el análisis teórico del problema del grado. El Capítulo 4, titulado Degree Formulae for Rational Surfaces, trata el problema del grado para superficies. La mayor parte del capítulo se dedica a la demostración de una fórmula de grado total para superficies racionales, dadas paramétricamente. Esta fórmula puede aplicarse siempre que la superficie generadora satisfaga cierta condición muy general. En concreto, tenemos que asumir que existe a lo sumo una cantidad finita de valores de la distancia para los que la offset de la superficie pasa por el origen. La fórmula requiere el cálculo de una resultante generalizada univariada, y del máximo común divisor de polinomios con coeficientes simbólicos. La sección final de este capítulo contiene un enfoque alternativo para el estudio de la estructura de grados de una superficie de revolución, independiente de los resultados previos de este capítulo. Con este enfoque se obtiene una solución completa y efectiva para el problema del grado en este caso. La tesis se completa con dos apéndices, que contienen, respectivamente, un resumen de las fórmulas de grado obtenidas en esta tesis y los resultados de algunos cálculos, correspondientes a demostraciones o ejemplos, que, por su longitud, resulta más conveniente incluir aquí

    Effective algorithms for the study of the degree of algebraic varieties in offsetting processes

    Get PDF
    El trabajo que se presenta en esta tesis pertenece al Área del Cálculo Simbólico, y en particular, al subárea de la Geometría Algebraica (Simbólica) Efectiva para curvas y superficies. Concretamente, en esta tesis se estudia la estructura de grados del polinomio multivariable que define el objeto geométrico que resulta al aplicar procesos de offsetting. Es decir, estudiamos su grado total y sus grados parciales con respecto a cada una de las variables, incluyendo la variable distancia. Para llevar a cabo este objetivo, la tesis se compone de cuatro capítulos y dos apéndices, cuya estructura se detalla a continuación: En el Capítulo 1, titulado Preliminaries and Statement of the Problem, se introducen las nociones de offset genérica y de polinomio de la offset genérica, junto con sus propiedades básicas. En este capítulo se sientan las bases teóricas de nuestro objeto de estudio. En particular, se prueba la propiedad fundamental del polinomio de la offset genérica,que afirma que dicho polinomio especializa bien; es decir, para casi todo valor que se asigne a la variable distancia la especialización del polinomio ,de la offset genérica, es el polinomio que define a la offset para ese valor concreto tomado como distancia. Una vez establecida dicha conexión con la teoría clásica, se define el problema central de esta tesis, que es el problema del grado de la offset genérica. Además se presenta la notación y terminología asociadas a ese problema. Se incluyen también en este capítulo algunos lemas técnicos, que tratan sobre la aplicación de la resultante para el análisis de problemas de intersección de curvas. El Capítulo 2, titulado Total Degree Formulae for Plane Curves, trata del problema del grado total para la offset genérica de una curva plana. Nuestro estudio incluye el caso general en el que la curva viene dada por su ecuación implícita, y también, para curvas racionales, el caso de curvas dadas paramétricamente. En ambos casos obtenemos fórmulas eficientes para el grado total de la offset genérica. Además se presentan otras fórmulas que pueden utilizarse para el estudio teórico del grado total de la offset. En este capítulo se introducen las nociones de sistema offset-recta, curva auxiliar y puntos intrusos. Estas tres nociones juegan un papel esencial en nuestro tratamiento del problema del grado. Estas nociones se utilizan para establecer un marco común para el desarrollo de fórmulas para el grado basadas en resultantes. En el siguiente capítulo ese marco común se aplica para obtener diversas fórmulas de grado. El Capítulo 3, titulado Partial Degree Formulae for Plane Curves, es una continuación natural del capítulo precedente. Aplicando la estrategia, métodos y lenguaje del Capítulo 2, en este capítulo se completa el análisis de la estructura de grados de la offset genérica para curvas planas. En concreto, obtenemos fórmulas para calcular cualquier grado parcial de la offset genérica, y también el grado con respecto a la variable distancia. Estas fórmulas cubren tanto el caso implícito como el caso paramétrico. Además se muestran otras fórmulas que pueden utilizarse para el análisis teórico del problema del grado. El Capítulo 4, titulado Degree Formulae for Rational Surfaces, trata el problema del grado para superficies. La mayor parte del capítulo se dedica a la demostración de una fórmula de grado total para superficies racionales, dadas paramétricamente. Esta fórmula puede aplicarse siempre que la superficie generadora satisfaga cierta condición muy general. En concreto, tenemos que asumir que existe a lo sumo una cantidad finita de valores de la distancia para los que la offset de la superficie pasa por el origen. La fórmula requiere el cálculo de una resultante generalizada univariada, y del máximo común divisor de polinomios con coeficientes simbólicos. La sección final de este capítulo contiene un enfoque alternativo para el estudio de la estructura de grados de una superficie de revolución, independiente de los resultados previos de este capítulo. Con este enfoque se obtiene una solución completa y efectiva para el problema del grado en este caso. La tesis se completa con dos apéndices, que contienen, respectivamente, un resumen de las fórmulas de grado obtenidas en esta tesis y los resultados de algunos cálculos, correspondientes a demostraciones o ejemplos, que, por su longitud, resulta más conveniente incluir aquí
    corecore