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Abstract. In the first part of the paper a planar generalization of offset curves is introduced
and some properties are derived. In particular, it is seen that these curves exhibit good regularity
properties and a study on self-intersection avoidance is performed. The representation of a rational
curve as the envelope of its tangent lines, following the approach of Pottmann, is revisited to give the
explicit expression of all rational generalized offsets. Other famous shapes, such as constant width
curves, bicycle tire-tracks curves and Zindler curves are related to these generalized offsets. This
gives rise to the second part of the paper, where the particular case of rational parameterizations
by a support function is considered and explicit families of rational constant width curves, rational
bicycle tire-track curves and rational Zindler curves are generated and some examples are shown.

1. Introduction

Pythagorean-hodograph (PH) curves were introduced by Farouki and Sakkalis (1990) as polyno-
mial curves with polynomial velocity. The curves that satisfy the analogous definition for rational
functions are called rational PH curves, which were first studied by Fiorot and Gensane (1994) and
Pottmann (1995). The interested reader can see (Farouki, 2008) and (Kosinka and Lávička, 2014)
to get a wide spectrum of Pythagorean-hodograph curve theory and their applications. One of the
most important properties of rational PH curves is that their offset curves are rational, so that
they can be easily computed in an exact representation by CAD systems and no approximations
are needed.

This paper is structured in two parts. In the first part, a planar generalization of offset curves,
which we call (ω, d)-offset curves, is introduced. These curves are defined as those which are at a
distance d from an initial curve in a direction making a constant angle ω with its tangent. The
classical offset curves correspond to the particular case of ω = ±π

2 .
Another interesting particular case of (ω, d)-offset curves are the curves generated by front wheel

tire-tracks of a bicycle (case ω = 0). The usual model of a bicycle is given by an oriented segment
of constant length where the front endpoint is on the tangent direction of the rear endpoint. These
endpoints describe the wheel tire-track curves in the motion of a bicycle (see e.g. Tabachnikov
(2006) or Bor et al. (2020)).

A property that makes general (ω, d)-offset curves very interesting is what is shown in Propo-
sition 1: if the initial curve is regular, then these offsets are singularity-free. In fact, singularities
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can only happen for the classical offset curves (ω = ±π
2 ). As another property, in Theorem 1 a

formula relating the area of an (ω, d)-offset to a closed curve α with the area and the length of α
is provided. This corresponds to a generalization of Steiner’s formula for the area of offset curves.

In Section 2.2 the representation of all rational Pythagorean-hodograph curves given by Pottmann
(1995) is revisited. Thanks to this representation we provide an explicit expression of all rational
(ω, d)-offsets coming from a rational curve (Theorem 3). Of course, this result generalizes the
expression given by Pottmann for offset curves. In addition, it provides as another interesting
particular case the explicit expression of all rational front wheel bicycle curves which come from a
rational rear wheel curve (Theorem 4).

Although generalized offsets according to a non-right angle are regular, self-intersections could
still happen. Given a spine curve that does not self-intersect, we provide a bound on the offset
distance d to avoid (global and local) self-intersections on its (ω, d)-offset curve (Proposition 2 and
Theorem 5). Afterwards, the local self-intersection problem on generalized offsets is studied in
terms of the curvature function of the spine curve (Propositions 3, 4 and Theorem 6). The study
of global and local self-intersections of generalized offsets is the main contribution of the first part
of the paper.

The second part of the paper focuses on curves parameterized by their inverse Gauss map, namely
hedgehogs or any convex curve (Martinez-Maure, 1999). As seen by Š́ır et al. (2008) and Gravesen
et al. (2008), any curve or surface defined by its inverse Gauss map with a polynomial/rational
support function admits a rational parameterization. Actually, we can derive this result in the
plane as a particular case of Pottmann’s representation of rational curves (Section 3.2). The aim
here is to use this particular representation by a support function to provide an explicit family of
rational constant width curves and Zindler curves.

Constant width curves are those with the property that any pair of parallel supporting lines
to the curve are a constant distance apart (Martini et al., 2019). In Section 4, Proposition 7, we
provide a generic support function depending on some parameters which can be used to generate
rational constant width curves.

Zindler curves are considered in Section 5. Zindler curves are plane curves in which a constant
length chord is allowed to move with its endpoints over the curve such that it always divides the
perimeter (or area) of the figure in a half (Zindler, 1921). Zindler curves are also solutions to the 2D
floating body problem in equilibrium, so that they have important physical implications. Similarly
as in constant width curves, we provide an explicit family of rational Zindler curves (Proposition 8).

The main contribution of this part are Propositions 7 and 8. These results are the actual
motivation to introduce rationally parameterized curves following Pottmann’s representation and
generalized offsets. The explicit families of rational curves given in these propositions allows the
user to produce infinitely many examples of rational curves of constant width and rational Zindler
curves by changing the value of some free parameters.

2. A generalization of offset curves

A natural generalization of offset curves is given by allowing in their construction any constant
angle instead of a right one (see Figure 1). In the plane we can refer to Cooker (1999) where this kind
of curves was considered. In constant curvature surfaces we have the old works by Vidal Abascal
(1948, 1947c,a) in Spanish, and the recent article (Monterde and Rochera, 2020) in which these
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curves are seen as a particular case of a more general kind of curves (where both the angle and the
distance are arbitrary functions).

α

αd,ω

d
ω

Figure 1. The offset curve αd,ω to α at a distance d according to a constant angle
ω.

Some other works (Arrondo et al., 1997, 1999; Sendra and Sendra, 2000) also consider these
generalized offsets (even for surfaces) and they are studied with a fairly algebraic approach. Other
works such as (Chen and Lin, 2014) are also related.

2.1. Definition and some properties. The parametric definition of a generalized (or skewed)
offset in the plane is the following.

Definition 1 (Generalized offset curve). Let α : I → R2 be a regular curve, d > 0 and ω ∈ ]−π, π].
The parallel or offset curve to α at a distance d according to a constant angle ω is defined as the
curve αd,ω : I → R2 given by

αd,ω(t) = α(t) + d
(
cosω t(t) + sinω n(t)

)
,

where t and n are the tangent and normal vectors, respectively, of α. To shorten, we will say that
αd,ω is the (ω, d)-offset to α.

Of course, offsets according to the angles π
2 and −π

2 correspond to the two sides of classical
parametric offset curves.

The following result is on the regularity of these generalized offsets. From it we conclude that
all offsets to a regular curve according to a non-right angle are regular.

Proposition 1. Let α : I → R2 be a regular curve, d > 0 and ω ∈ ]−π, π]. Any offset curve to
α at a distance d according to the angle ω is always regular except for orthogonal (inner) offsets,
where a sufficient condition for its regularity is to have

d <
1

κmax
,

with κmax = sups∈I
∣∣κ(s)∣∣.

Proof. We can suppose that α is parameterized by arc length. Thus, since

α′
d,ω(s) =

(
1− d κ(s) sinω

)
t(s) + d κ(s) cosω n(s),

it follows that ∥∥α′
d,ω(s)

∥∥2 = (1− d κ(s) sinω
)2

+ d2 κ2(s) cos2 ω

= 1− 2 d κ(s) sinω + d2 κ2(s) = cos2 ω +
(
sinω − d κ(s)

)2
.
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Therefore, if ω ̸= ±π/2, then cosω ̸= 0, so that∥∥α′
d,ω(s)

∥∥ ̸= 0

and αd,ω is regular. The second part of the statement for orthogonal offsets (ω = ±π/2) is well
known (see for instance Farouki and Neff (1990b) or Patrikalakis and Maekawa (2002)). □

We must remark that we can avoid singularities by Proposition 1 but self-intersections may still
happen. Let us consider now the classical example of the parabola to construct some of these
generalized offsets.

Example 1. Let α : R → R2 be defined by α(t) =
(
t, t2

)
. The offset curve to α at a distance d

according to an angle ω can be easily computed:

αd,ω(t) =

(
t+ d

cosω − 2 t sinω√
1 + 4 t2

, t2 + d
2 t cosω + sinω√

1 + 4 t2

)
.

As seen in Proposition 1, singularities can only happen for αd,ω if ω = π
2 , where a sufficient condition

to avoid them is to take a distance

d <
1

κmax
=

1

2
.

To illustrate the regularity property of generalized offsets see Figure 2, where we consider a distance
d = 1 and some generalized offsets according to different angles.

ω = —
2
π

ω = — – —
2
π 1

10
ω = — – —

2
π 4

10

Figure 2. Some (ω, 1)-offsets to a parabola for different angles ω.

As a remark, note that the definition of a generalized offset is not equivalent to the smooth 2D
version of a canal surface, which are rationally parameterizable if the spine curve and the radius
function are rational (Peternell and Pottmann, 1997). Clearly, the generalized offset of Figure 2-
right, cannot be generated as an envelope of a family of circles centered at the parabola and with
a smooth radius function.

For classical offset curves αd at a distance d to a closed curve α, there are simple formulas relating
their areas and lengths, namely,

A(αd) = A(α)± L(α) d+ π d2,

L(αd) = L(α)± 2π d,
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where the sign ± is negative for inner offsets and positive for outer offsets. These formulas, due to
Steiner (1840), are known as Steiner’s formulae for the offset to a curve (see Chapters 1 and 10 of
Gray (2004) for a more recent reference).

In the following result we give the corresponding formula for the area of generalized offsets.
This formula is known for constant curvature surfaces (Vidal Abascal, 1948, 1947b; Monterde and
Rochera, 2020), however, we will state its planar version here and give its proof using elemen-
tary differential geometry. We will not assume convexity (as Steiner did) but we will take some
assumptions instead.

Theorem 1 (Steiner’s formula for the area of generalized offsets). Let d > 0, ω ∈ ]−π, π] and let α
be a positively oriented regular closed planar curve. Let αd,ω be the offset curve to α at a distance
d according to the angle ω. Then

(1) A(αd) = A(α)− L(α) d sinω + π n d2,

where n is the number of chord revolutions in the generation of αd,ω.

Proof. Let α : I → R2, α(s) =
(
x(s), y(s)

)
be arc-length parameterized. Thus, I = [0,L(α)]. The

(ω, d)-offset curve to α is

αd,ω = α+ d (cosω t+ sinω n).

In terms of coordinates x = x(s) and y = y(s) we can write

αd,ω =
(
x+ d (cosω x′ − sinω y′), y + d (cosω y′ + sinω x′)

)
.

Therefore, the area of αd,ω is

A(αd,ω) =

∫
I

(
x+ d (cosω x′ − sinω y′)

) (
y′ + d (cosω y′′ + sinω x′′)

)
ds

=

∫
I
x y′ ds+ d

∫
I

(
cosω (y′x′ + xy′′) + sinω

(
xx′′ − y′2

))
ds

+ d2
∫
I

(
−x′′y′ + cos2 ω (x′y′′ + x′′y′) + sinω cosω (x′x′′ − y′y′′)

)
ds.(2)

Now, since x and y define a closed curve, we have that∫
I
(y′x′ + x y′′) ds =

∫
I
(x y′)′ ds = 0

and ∫
I
(x′y′′ + x′′y′) ds =

∫
I
(x′y′)′ ds = 0.

Moreover, since x′2 + y′2 = 1, we deduce x′x′′ + y′y′′ = 0, so that∫
I
(x′x′′ − y′y′′) ds =

∫
I
2x′x′′ ds =

∫
I

(
x′2
)′
ds = 0.

In addition, notice that

−
∫
I
x′′y′ ds =

∫
I
x′y′′ ds = π n,
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because it is the area of the tangent indicatrix of α, which is a n-traced unit circle. Therefore, the
expression (2) above turns into

A(αd,ω) = A(α) + d sinω

∫
I

(
xx′′ − y′2

)
ds+ π n d2.

Finally, notice that∫
I
(xx′′ − y′2) ds =

∫
I

(
−1 + x′2 + xx′′

)
ds =

∫
I

(
−1 + (xx′)′

)
ds = −L(α).

Thus, the expression of the statement is found. □

Remark 1. If the curves of Theorem 1 are not simple (they present self-intersections), then the
areas must be counted by sign and multiplicity as it is pointed out in (Rochera, 2022c), where
notice that the previous result can be seen as a particular case of Lemma 4.1 stated in the same
paper. In order to have pairs of simple curves, the self-intersection avoidance of generalized offsets
will be studied in Section 2.4.

Remark 2. The classical Steiner formula for the area of an offset curve is deduced simply by taking
an angle ω = ±π

2 in Equation (1).
As seen in the proof of Proposition 1, for an arc-length parameterized curve α, we have∥∥α′

d,ω(s)
∥∥2 = cos2 ω +

(
sinω − d κ(s)

)2
.

In general it is not possible to write the right-hand side as a perfect square, so that an easy analogous
formula for the length of an (ω, d)-offset curve may in general not be possible except for the case
ω = ±π

2 .

2.2. Representation of a curve as the envelope of its tangent lines. Pottmann (1995) found
an explicit expression of all rational curves whose offsets are rational. Actually, his method, based
on the representation of a curve as the envelope of its tangent lines, is interesting by itself. We will
reproduce this representation here, as we will use it later in Section 3.2 to give explicit rational
expressions for generalized offsets and to rationally parameterized curves by a support function.

The main observation of Pottmann’s method is that the usual stereographic projection map from
the point (0, 1) onto the OX axis induces a correspondence between rational parameterizations of
R and rational parameterizations of the unit circle S1. This produces the following representation
of a normal vector:

N(t) =
(
n1(t), n2(t)

)
=

(
2 a(t) b(t)

a2(t) + b2(t)
,
a2(t)− b2(t)

a2(t) + b2(t)

)
,

where a = a(t) and b = b(t) are polynomials.
A curve α can be represented as the envelope of its tangents lines:

(3) n1(t)X + n2(t)Y = h(t),

where h(t) =
〈
α(t), N(t)

〉
is called the support function of α, which we assume to be rational.

Notice that N is actually an orthogonal vector defining the tangent lines (which may be coincident
or opposite to the normal vector of α depending on t). The envelope of these tangent lines can be
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computed as usual, solving for X and Y the linear system formed by Equation (3) and its derivative
with respect t:

n′
1(t)X + n′

2(t)Y = h′(t).

This produces the following parameterization of α:

(4) α = h

(
2 a b

a2 + b2
,
a2 − b2

a2 + b2

)
+

(a2 + b2)h′

2 (b a′ − a b′)

(
−a2 − b2

a2 + b2
,

2 a b

a2 + b2

)
.

The simplified version of this equation,

(5) α = h

(
2 a b

a2 + b2
,
a2 − b2

a2 + b2

)
+ h′

(
− a2 − b2

2 (b a′ − a b′)
,

a b

b a′ − a b′

)
,

is Equation (2.4) given in (Pottmann, 1995). However, we prefer to write it as in (4) to emphasize
that h can be realized as a support function of α, as we will detail in Section 3.

Although Pottmann looked for rational curves with rational offsets, his method yields a way to
describe all curves which are PH. In fact, the resulting expression is in the form of the well-known
characterization of Pythagorean triples of polynomials (see Theorem 17.1 of Farouki (2008)). Thus,
the result can be stated as follows.

Theorem 2 (Pottmann). All rational curves α(t) which are Pythagorean-hodograph can be written
in the form (5), where a(t) and b(t) are relatively prime polynomials and h(t) is a rational function.

From now on, a parameterization of a rational Pythagorean-hodograph curve α as in Theorem 2
will be called a standard parameterization of α.

It must be remarked that, as noted by Lü, having a Pythagorean hodograph is a sufficient but not
necessary condition for a curve to possess rational offsets. This is because rational offsets can also
be found by appropriate rational reparameterizations (see Lü (1995) and Farouki and Sederberg
(1995)).

2.3. Rational curves with rational (ω, d)-offsets. From the procedure above it is easy to find
the explicit expression of all continuous (ω, d)-offsets to a rational curve by its standard parameter-
ization. Notice that we understand a continuous offset here as parameterized by a support function
(Rochera, 2022a).

Theorem 3. Let α be a rational Pythagorean-hodograph curve parameterized in the standard form
(5). Then the (ω, d)-offset to α is rational and has the form

αd,ω = (h+ d sinω)

(
2 a b

a2 + b2
,
a2 − b2

a2 + b2

)
+

(
d cosω +

(a2 + b2)h′

2 (b a′ − a b′)

)(
−a2 − b2

a2 + b2
,

2 a b

a2 + b2

)
.(6)

Of course, the representation of rational offsets given by Pottmann (1995) is a particular case of
Theorem 3 when ω = π

2 . Another interesting particular case is the case of bicycle tire-track curves
(ω = 0):
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Theorem 4. Let α be a rational Pythagorean-hodograph parameterized in the standard form (5).
If α represents the rear wheel tire-track curve of a bicycle of length d, then the front wheel curve is
rational and has the form

αd,ω = h

(
2 a b

a2 + b2
,
a2 − b2

a2 + b2

)
+

(
d

a2 + b2
+

h′

2 (b a′ − a b′)

)(
b2 − a2, 2 a b

)
.

In particular, Zindler curves generated from a rational middle hedgehog will also be rational.
We will see this in detail in Section 5.

2.4. Global and local self-intersections of generalized offsets. We have seen that generalized
offsets according to a non-right angle are always regular (Proposition 1). However, self-intersections
could happen, which motivates us to study how to control or avoid them. The study of self-
intersections can be done algebraically if the algebraic equation that describes the generalized offset
is known. Elimination methods to find algebraic equations of classical double-offsets to polynomial
and rational curves were studied by Farouki and Neff (1990a). Analogous methods are possible
for generalized offsets. Nevertheless, the complexity of the algebraic equation is high and, in the
rational case, the handling of extraneous factors in the algebraic equation can be tedious.

There are methods to detect self-intersections for classical offsets based on tangents or on distance
maps (see e.g. Elber (2003) or Seong et al. (2006)). However, the obvious extension of these methods
to generalized offsets does not seem feasible.

Next we will provide a different method to detect and avoid global and local self-intersections in
the generalized offsets based on a bound on the offset distance. Of course, in particular the same
results are also applicable to classical offsets.

Proposition 2. Let α : I → R2 be a regular simple curve. Let ω ∈ ]−π, π] and d > 0 be such that

d ̸=
∥∥α(t)− α(u)

∥∥∥∥t(t)− t(u)
∥∥ ,

for all t, u ∈ I such that t(t) ̸= t(u). Then the (ω, d)-offset to α is simple.

Proof. Let αd,ω be an (ω, d)-offset to α. If αd,ω is not simple, then there exist t, u ∈ I, t ̸= u, such
that αd,ω(t) = αd,ω(u). This implies that

α(t)− α(u) = d
(
cosω

(
t(u)− t(t)

)
+ sinω

(
n(u)− n(t)

))
.

Therefore,

(7)
∥∥α(t)− α(u)

∥∥ = d
∥∥∥cosω (t(u)− t(t)

)
+ sinω

(
n(u)− n(t)

)∥∥∥.
Now, notice that∥∥∥cosω (t(u)− t(t)

)
+ sinω

(
n(u)− n(t)

)∥∥∥2
= cos2 ω

∥∥t(u)− t(t)
∥∥2 + sin2 ω

∥∥n(u)− n(t)
∥∥2 + 2 sinω cosω

〈
t(u)− t(t), n(u)− n(t)

〉
.

Since the application J : R2 → R2, J(a, b) = (−b, a) is linear,〈
t(u)− t(t), n(u)− n(t)

〉
= 0.
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It also satisfies that ∥Jv∥ = ∥v∥, for any v ∈ R2. Hence, we deduce∥∥∥cosω (t(u)− t(t)
)
+ sinω

(
n(u)− n(t)

)∥∥∥ =
∥∥t(u)− t(t)

∥∥,
and thus Equation (7) can be written as∥∥α(t)− α(u)

∥∥ = d
∥∥t(t)− t(u)

∥∥.
Since α is simple, we have that α(t) ̸= α(u), which implies that

∥∥t(t)−t(u)
∥∥ ̸= 0, so that t(t) ̸= t(u).

From this we get

d =

∥∥α(t)− α(u)
∥∥∥∥t(t)− t(u)
∥∥ . □

Given a regular simple curve α : I → R2, define

Dα :=

{∥∥α(t)− α(u)
∥∥∥∥t(t)− t(u)
∥∥ : t, u ∈ I, t(t) ̸= t(u)

}
.

By Proposition 2, global and local self-intersections in (ω, d)-offsets to α are avoided if d ̸∈ Dα. In
general, the set Dα is disconnected and is a union of real intervals. Thus, a sufficient condition to
avoid self-intersections can be written as follows.

Theorem 5. Let α : I → R2 be a regular simple curve. If d > 0 is such that

d < infDα = inf

{∥∥α(t)− α(u)
∥∥∥∥t(t)− t(u)
∥∥ : t, u ∈ I, t(t) ̸= t(u)

}
,

then any (ω, d)-offset to α is simple, where ω ∈ ]−π, π].

In general, the analytic computation of the infimum of Theorem 5 is very difficult even for
simple examples like the parabola. Therefore, numerical methods are needed for its computation.
We should not forget that this method prevents global self-intersections as well. Sometimes there
are no such global issues and a local analysis, that is easier, can be sufficient (as for the parabola).
The aim of the following results is to relate the bound of Theorem 5 to a local self-intersection
avoidance.

Proposition 3. Let α : I → R2 be a regular simple curve. If d > 0 is such that d < infDα (so
self-intersections are avoided in any (ω, d)-offset curve to α), then

d <
1

κmax
,

where κmax = sups∈I
∣∣κ(s)∣∣.

Proof. First, let us show that

lim
u→t

∥∥α(t)− α(u)
∥∥∥∥t(t)− t(u)
∥∥ =

1∣∣κ(t)∣∣ .
By L’Hôpital’s rule, we have

lim
u→t

∥∥α(t)− α(u)
∥∥2∥∥t(t)− t(u)
∥∥2 lim

u→t

〈
t(u), α(t)− α(u)

〉
κ(u)

〈
n(u), t(t)

〉 .
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Since κ is a continuous function, it is only left to compute the limit

lim
u→t

〈
t(u), α(t)− α(u)

〉〈
n(u), t(t)

〉 ,

for which we can apply L’Hôpital’s rule again to find that

lim
u→t

κ(u)
〈
n(u), α(t)− α(u)

〉
− 1

−κ(u)
〈
t(u), t(t)

〉 =
1

κ(t)
.

Therefore, we can conclude that

lim
u→t

∥∥α(t)− α(u)
∥∥2∥∥t(t)− t(u)
∥∥2 =

1

κ2(t)
,

which implies what we wanted to show.
Now, let d > 0 such that d < infDα. In particular,

d < lim
u→t

∥∥α(t)− α(u)
∥∥∥∥t(t)− t(u)
∥∥ =

1∣∣κ(t)∣∣ ,
for all t ∈ I. □

The bound of Proposition 3 is not by chance, as it actually tells us that we also perform a local
self-intersection avoidance. We know that such a bound constitutes the local bound for classical
offsets. We will see that it is also the local bound for generalized offsets in the following results.
Notice that the usual proof for classical offsets (which actually studies offset singularities) cannot
be repeated in this setting because generalized offsets according to a non-right angle are always
regular. Let

f(t, u) =

∥∥α(t)− α(u)
∥∥2∥∥t(t)− t(u)
∥∥2

and consider now the function

f̃(t, u) =

{
f(t, u), if t ̸= u,

1
κ2(t)

, if t = u,

where it can be defined.

Proposition 4. The function f̃ is continuous in its domain.

Proof. If we prove that given t0 ∈ I such that κ(t0) ̸= 0, we have

lim
(t,u)→(t0,t0)

f̃(t, u) =
1

κ2(t0)
,

then we will have that f̃ is continuous at (t0, t0), if κ(t0) ̸= 0. Iterated limits are easy to compute
(with the same idea as in the proof of Proposition 3), but their value do not ensure the existence
of the double limit.
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If t ̸= u, the idea is to simplify the expression of f(t, u) to avoid an indeterminate limit form.
This can be done using the local canonical form of α in a neighborhood of u (assume α is arc-length
parameterized):

α(t)− α(u) =

(
(t− u)− (t− u)3

6
κ2(u)− (t− u)4

8
κ(u)κ′(u) + · · ·

)
t(u)

+

(
(t− u)2

2
κ(u) +

(t− u)3

6
κ′(u) +

(t− u)4

24

(
κ′′(u)− κ3(u)

)
+ · · ·

)
n(u),

and the same for t:

t(t)− t(u) =

(
−1

2
(t− u)2 κ2(u)− 1

2
(t− u)3 κ(u)κ′(u) + · · ·

)
t(u)

+

(
κ(u) (t− u) +

1

2
κ′(u) (t− u)2 +

1

6

(
κ′′(u)− κ3(u)

)
(t− u)3 + · · ·

)
n(u).

From this we can write

f(t, u) =

∥∥α(t)− α(u)
∥∥2∥∥t(t)− t(u)
∥∥2 =

(t− u)2 g(t, u)

(t− u)2 h(t, u)
=

g(t, u)

h(t, u)
,

where

g(t, u) = 1 + (t− u)2 ḡ(t, u),

h(t, u) = κ2(u) + (t− u) h̄(t, u),

with ḡ and h̄ being the following continuous functions:

ḡ(t, u) = − 1

12
κ2(u)− 1

12
κ(u)κ′(u) (t− u) + · · ·

h̄(t, u) = κ(u)κ′(u) +
1

12

(
4κ(u)κ′′(u) + 3κ′2(u)− κ4(u)

)
(t− u) + · · ·

Notice that h(t, u) ̸= 0 (it can only be zero if κ(u) = 0 and t = u, which is not the case). Therefore,

lim
(t,u)→(t0,t0)

f(t, u) = lim
(t,u)→(t0,t0)

g(t, u)

h(t, u)
=

g(t0, t0)

h(t0, t0)
=

1

κ2(t0)
. □

Theorem 6. The function f̃ is differentiable in its domain. Moreover, given t0 such that κ(t0) ̸= 0

and κ′′(t0) ̸= 0, the function f̃ attains a local minimum at a point (t0, t0) if and only if κ attains a
local maximum at t0.

Proof. For points (t, u) of the domain with t ̸= u, the function f̃ is trivially differentiable. Let us
see now that it is also differentiable at a point (t0, t0) such that κ(t0) ̸= 0.

With the same idea as in the proof of Proposition 4 (using the local form of α and t), we can
compute the partial derivatives of f(t, u) locally (for t in a neighborhood of u). Since

h̄(t, t) = κ(t)κ′(t),
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with a straightforward computation we get

ft(t0, t0) = − h̄(t0, t0)

κ4(t0)
= − κ′(t0)

κ3(t0)
,

fu(t0, t0) = −2κ(t0)κ
′(t0)− h̄(t0, t0)

κ4(t0)
= − κ′(t0)

κ3(t0)
.

As these partial derivatives exist in an open neighborhood of (t0, t0) and are continuous, we can

conclude that f̃ is differentiable at (t0, t0). Thus, f̃ is differentiable in its domain.
Given t0 ∈ I such that κ(t0) ̸= 0, notice that ft(t0, t0) = fu(t0, t0) = 0 if and only if κ′(t0) = 0

so that, we have that (t0, t0) is a critical point of f̃ if and only if t0 is a critical point of κ2.

Now, if f̃ has a local minimum at (t0, t0), then there exists r > 0 such that f(t0, t0) ≤ f(t, u) for
all (t, u) ∈ B

(
(t0, t0), r

)
. In particular,

1

κ2(t0)
= f(t0, t0) ≤ f(t, t) =

1

κ2(t)
,

for any t ∈ I such that |t− t0| < r√
2
. This proves that κ2(t) ≤ κ2(t0) locally, which means that κ2

attains a local maximum at t0.
The other implication can be proved with the second partial derivative test. Since ḡ(t, t) =

− 1
12 κ

2(t) and

h̄t(t, t) =
1

12

(
4κ(t)κ′′(t) + 3κ′2(t)− κ4(t)

)
,

h̄u(t, t) =
1

12

(
8κ(t)κ′′(t) + 9κ′2(t) + κ4(t)

)
,

we can also compute analogously

ftt(t0, t0) =
9κ′2(t0)− 4κ(t0)κ

′′(t0)

6κ4(t0)
,

ftu(t0, t0) = fut(t0, t0) =
9κ′2(t0)− 2κ(t0)κ

′′(t0)

6κ4(t0)
,

fuu(t0, t0) =
9κ′2(t0)− 4κ(t0)κ

′′(t0)

6κ4(t0)
,

and conclude that, in fact, f̃ is of class C2 in its domain.
Suppose that t0 ∈ I is a critical point of κ2. Since κ(t0) ̸= 0, this means that κ′(t0) = 0. Under

the assumption κ′′(t0) ̸= 0, we have

ftt(t0, t0) fuu(t0, t0)− ftu(t0, t0)
2 =

κ′′(t0)
2

3κ(t0)6
> 0

and the sign of

ftt(t0, t0) = −2κ′′(t0)

3κ3(t0)

is the opposite of the sign of κ(t0)κ
′′(t0). From this, we can deduce that the function f̃ attains a

local minimum at (t0, t0) if and only if the function κ2 attains a local maximum at t0. □
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Example 2. Consider again the parabola from Example 1. In this case, we have

f(t, u) =

∥∥α(t)− α(u)
∥∥2∥∥t(t)− t(u)
∥∥2 =

√
1 + 4 t2

√
1 + 4u2 (t− u)2

(
1 + (t+ u)2

)
2
√
1 + 4 t2

√
1 + 4u2 − 8 t u− 2

.

The function is not defined in the diagonal t = u.
To avoid self-intersections in the generalized offset αd,ω we must compute the infimum of this

function. It can be done numerically (we have used built-in functions of Mathematica to approxi-
mate such a value). The approximation we get of its infimum is 0.25 (see Figure 3), which means
that infDα ≈ 0.5.

α

αd,ω

Figure 3. On the left, the graph of the function f(t, u) extended continuously with
the (red) curve

(
t, t, 1/κ2(t)

)
, where κ is the curvature function of the parabola α,

and a plot of the plane z = 0.25. On the right, some (ω, 0.5)-offsets to α for different
values of ω ∈

[
0, π2

]
. These do not present self-intersections.

In this case, a local analysis using Theorem 6 is helpful. In fact, we can also compute the
value of the infimum analytically by computing the local minimum of the function 1

κ2(t)
, which is

indeed 1
κ2
max

= 1
4 . The corresponding value 1

2 for the offset distance is the bound to avoid local

self-intersections.

Example 3. Consider the curve α : [0, 1] → R2 given by

α(t) =

(
1

2

(
−405 t7 + 1092 t6 − 2079 t5 + 3150 t4 − 2555 t3 + 882 t2 − 91 t+ 6

)
,

− 22 t7 + 385 t6 − 945 t5 + 910 t4 − 420 t3 + 84 t2 + 7 t+ 1

)
.

Let us control first local self-intersections. In this case, we have five critical points of κ. From
these we can compute 1/κmax ≈ 0.398923. However, this bound on the offset distance does not
prevent global self-intersections (see Figure 4).
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α

αd,ω

d = 0.7987

d = – 1.2017

Figure 4. The curve α and its critical points. On the left, its (0.3989, 3π/8)-offset,
which self-intersects globally. On the right, two classical offsets to α at local bound
distances given by two critical points.

Thus, in this case it is necessary to compute the infimum of the function f(t, u). An approxima-
tion of this infimum is 0.0997674, so that its square root provides the bound d < 0.31586 on the
offset distance to prevent global self-intersections as well (see Figure 5). Graphically, it corresponds
to a local minimum of f that is attained outside the diagonal t = u.

α

αd,ω

Figure 5. On the left, the graph of the function f(t, u) extended continuously with
the (red) curve

(
t, t, 1/κ2(t)

)
, where κ is the curvature function of α, and a plot of

the plane z = 0.0997674. On the right, some (ω, 0.31586)-offsets to α for different
values of ω ∈

[
0, π2

]
. These do not present self-intersections.
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2.5. A remark on a related problem. Curves of constant width can also be defined as self-
parallel curves, in the sense that its (classical) offset at a distance equal to the constant width
describes the same curve.

Once generalized offsets have been defined, there is a natural extension of constant width curves
by measuring a kind of skewed width according to a non-right angle. That is, closed curves in which
the endpoints of a constant length chord can travel along maintaining a constant angle with the
tangent to the curve at the first endpoint.

In the papers (Santaló, 1944; Vidal Abascal, 1947a), some results involving this kind of curves
are given both in the plane and in constant curvature surfaces. The same results can be deduced
from the setting presented by Combes (1944). Nevertheless, no example of such curves is found in
the literature but the circle. In a spring seminar of 1977, Norman F. Lindquist from the Western
Washington University raised the question, which can be found in (Broman, 1979), about if the
circle is the only curve of constant skewed width (according to a non-right angle).

Related questions were already asked by Lyusternik (1946). Finally, Kovalev (1980) provided an
answer to the planar problem (in Russian, an English version is available: Kovalev (1982)) making
reference to Lyusternik but not to the other authors. The conclusion is that the circle is the only
convex curve that satisfies this notion of constant skewed width, so that the concept becomes trivial
except for the case of a right angle, where we have the classical constant width curves.

3. Parameterization of curves by a support function

3.1. Trigonometric classical approach. In plane differential geometry, the most common way
to parameterize a unit circle c is using a trigonometric parameterization, for instance,

c(θ) = (sin θ, − cos θ), θ ∈ [−π, π].

If we consider that this parameterization describes a normal vector defining a set of tangent lines
to a closed curve α, then a parameterization for α appears naturally by means of what is called a
support function.

Given a smooth function p : [−π, π] → R, consider the family of lines defined by

(8) sin(θ)X − cos(θ)Y = p(θ).

The function p(θ) is the signed distance from the origin to the tangent line given by the direction
(cos θ, sin θ). But note that p(θ) is not necessarily trigonometric.

Consider the envelope α of the family of lines (8). This produces the following parameterization
of the envelope:

(9) α(θ) = p(θ) (sin θ, − cos θ) + p′(θ) (cos θ, sin θ).

Notice that for each θ ∈ [−π, π], we have one and only one normal direction to α. If α is closed,
then α is called the hedgehog defined by the support function p (Martinez-Maure, 1999).

We have that ∥∥α′(θ)
∥∥ = p(θ) + p′′(θ).

Notice that the curvature κ of α satisfies
∥∥α′(θ)

∥∥κ(θ) = 1. Thus, if

(10) p(θ) + p′′(θ) > 0,
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then α is a convex curve parameterized as the envelope of its family of tangent lines. Thus, convex
curves are singularity-free hedgehogs.

3.2. Rational parameterizations by a support function. As the reader can easily notice,
Pottmann’s method described in Section 2.2 is analogous to the trigonometric classical approach
of Section 3.1 but for rational functions. Therefore, it provides a way to find a rational parameter-
ization of a hedgehog α by a rational support function h : R → R.

If we take a(t) = t and b(t) = 1 in (4), we get

(11) α(t) = h(t)

(
2 t

t2 + 1
,
t2 − 1

t2 + 1

)
+

1

2
(t2 + 1)h′(t)

(
− t2 − 1

t2 + 1
,

2 t

t2 + 1

)
.

Any curve α that can be written as in (11) will be said to be rationally parameterized by a (rational)
support function h.

The expression (11) can also be obtained by “translating” the trigonometric form (9) by the
corresponding rational expressions. The “translation” from trigonometric to rational expressions
is achieved by

cos(θ) =
1− t2

1 + t2
and sin(θ) =

2 t

1 + t2
.

The relation between these two parameters is

t = tan
θ

2
which is the well-known parameter change to transform trigonometric expressions into rational
forms when solving integrals. The resulting curve will be rational as long as the support function
was trigonometric.

Therefore, the following parameter change allows us to “translate” trigonometric expressions into
the corresponding rational forms:

θ(t) = 2 arctan(t).

In such a case, notice that

p′
(
θ(t)

)
=

(p ◦ θ)′(t)
θ′(t)

=
1

2
(1 + t2)h′(t)

is the factor that appears together with the tangent vector in (11). As in the trigonometric case,
this quantity also represents a signed distance (see Figure 6).

Remark 3. In Figure 6 and in the rest of figures of the paper, the rational closed curves which
are plotted have a gap just because the plot range parameter is, of course, not the entire real line,
but a finite domain [−a, a] for some a ∈ R.

If α is wanted to be closed (as the curve of Figure 6), then the condition is that

lim
t→−∞

h(t) = lim
t→+∞

h(t)

and that these limits are finite.
As a direct consequence of Theorem 2 we have the following statement.

Proposition 5. Any rationally parameterized curve by a support function is Pythagorean-hodograph.
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h(t)
— (1 + t ) h’(t)
1

2
2

α(t)

α

Figure 6. A rationally parameterized convex curve α by a support function h.

In fact, in this case we have∥∥α′(t)
∥∥ =

∣∣4h(t) + 2 t (1 + t2)h′(t) + (1 + t2)2 h′′(t)
∣∣

2 (1 + t2)
.

From this we can also set the analogous condition to (10) for rational parameterizations:

Proposition 6. Let α be a rationally parameterized curve by a support function h. The curve α
is regular if and only if

4h(t) + 2 t (1 + t2)h′(t) + (1 + t2)2 h′′(t)

has no zero.

Remark 4. It is straightforward to check that the curvature κ of a rationally parameterized curve
α satisfies ∥∥α′(t)

∥∥κ(t) = 2

1 + t2
.

Hence, from Proposition 6, if the support function h for a rationally parameterized closed curve α
satisfies

(12) 4h(t) + 2 t (1 + t2)h′(t) + (1 + t2)2 h′′(t) > 0,

for all t ∈ R, then the curve α is convex (and regular).

Example 4. Let us give an example of a rationally parameterized curve by a support function
which is not a closed curve. Consider the support function

h(t) = a (1 + t2),

for some a ∈ R \ {0}. The parametric expression (11) reduces to

α(t) = a
(
1− 3 t2, t (3− t2)

)
,

which is Tschirnhausen’s cubic (see Figure 7). Indeed, as we expect from Proposition 5, it is a
classic example of a PH curve (that in fact is the unique PH cubic, see Farouki (2008)):∥∥α′(t)

∥∥ = 3 |a| (1 + t2).

Indeed, it is a regular curve for all t ∈ R.
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–20

–10

–5

5

10α

α(t)

n(t)

–10

Figure 7. Tschirnhausen’s cubic. Notice how it is parameterized by the inverse
Gauss map.

4. Rational curves of constant width

In the classical trigonometric case it is very easy to generate constant width curves by taking
appropriate support functions. In particular, support functions of the kind

(13) h(θ) =
d

2
+

n∑
k=0

(
a2k+1 cos

(
(2 k + 1) θ) + b2k+1 sin

(
(2 k + 1) θ

))
satisfy that h(θ) + h(θ+ π) = d and, therefore, if d is chosen such that h(θ) + h′′(θ) > 0, then they
describe convex curves of constant width d.

There are other methods to construct curves of constant width, the interested reader can see,
for instance, (Yaglom and Boltyanskĭı, 1960; Martini and Mustafaev, 2008; Ait-Haddou et al.,
2008). Removing the convexity constraint, the support functions (13) actually generate hedgehogs
of constant width whose offsets, for a sufficiently large distance, become convex curves of constant
width (Rochera, 2022a,b).

In this section, let us see what happens with closed curves rationally parameterized by a support
function.

Consider a pair of parallel supporting lines to a convex curve α, say at α(t) and α(u). It must
be satisfied that the normals are opposite at these points, i.e.(

2 t

t2 + 1
,
t2 − 1

t2 + 1

)
+

(
2u

u2 + 1
,
u2 − 1

u2 + 1

)
= (0, 0).

The unique solution of the equation above is u = −1/t. That is, the width of the figure measured
by these two supporting lines is equal to h(t) + h(−1/t).

Thus, a rationally parameterized curve α is of constant width d if and only if

h(t) + h(−1/t) = d,

for all t ∈ R \ {0}. It is known that if α is a curve of constant width, then the chord joining the
contact points of the parallel supporting lines is orthogonal to those lines (Yaglom and Boltyanskĭı,
1960). This means that the chord which measures the constant width has endpoints α(t) and
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α(−1/t): ∥∥α(t)− α(−1/t)
∥∥ = d,

for all t ∈ R \ {0}.
The most easy example of a curve of constant width is a circle. A rational circle of radius r can

be generated from a constant support function h(t) = r:

α(t) = r

(
2 t

t2 + 1
,
t2 − 1

t2 + 1

)
.

Now, let us construct the rational support functions corresponding to (13) to get rational constant
width curves. The “translation” is easy by the properties of Chebyshev polynomials. Recall that a
Chebyshev polynomial Tn of degree n can be defined recursively by

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1.

If n = 2 k + 1, these polynomials satisfy

cos
(
(2 k + 1) t

)
= T2k+1(cos t)

and
sin
(
(2 k + 1) t

)
= (−1)k T2k+1(sin t).

This gives rise to the following result, for which Chebyshev polynomials are useful to write the
explicit expression in a compact manner.

Proposition 7. Any rationally parameterized curve by a support function of the kind

(14) h(t) =
d

2
+

n∑
k=0

(
a2k+1 T2k+1

(
1− t2

1 + t2

)
+ b2k+1 T2k+1

(
2 t

1 + t2

))
is a hedgehog of constant width d. If, in addition, d is such that (12) is satisfied, then it is a convex
curve of constant width d.

Proof. The parity of Chebyshev polynomials is given by:

Tn(−x) = (−1)n Tn(x).

Hence, for n = 2 k+1, the Chebyshev polynomial T2k+1 is an odd function. This is actually enough
to conclude the result (Gravesen et al., 2008). Explicitly, we have

T2k+1

(
1− (−1/t)2

1 + (−1/t)2

)
= T2k+1

(
t2 − 1

t2 + 1

)
= −T2k+1

(
1− t2

1 + t2

)
and

T2k+1

(
2 (−1/t)

1 + (−1/t)2

)
= T2k+1

(
−2 t

t2 + 1

)
= −T2k+1

(
2 t

1 + t2

)
.

Therefore, the support functions (14) satisfy

h(t) + h(−1/t) = d,

so that the corresponding rationally parameterized curve α is of constant width d. □
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Remark 5. Notice that all the curves of constant width provided by Proposition 7 are PH as a
consequence of Proposition 5.

Example 5. The rational support function (14) for n = 0 takes the form

h(t) =
d

2
+ a1

1− t2

1 + t2
+ b1

2 t

1 + t2
,

which produces a parameterization of a circle centered at (b1, −a1) with diameter the constant
width d:

α(t) = (b1, −a1) +
d

2

(
2 t

t2 + 1
,
t2 − 1

t2 + 1

)
.

Consider now a rational support function of the kind (14) for n = 1. The explicit expression is

h(t) =
d

2
+ a1

1− t2

1 + t2
+ b1

2 t

1 + t2

− a3
(t6 − 15 t4 + 15 t2 − 1)

(1 + t2)3
− b3

2 t (3 t4 − 10 t2 + 3)

(1 + t2)3
.

The corresponding rational parameterization is

α(t) = (b1,−a1) +
d

2

(
2 t

t2 + 1
,
t2 − 1

t2 + 1

)
+ a3

(
16 t (t2 − 1)3

(1 + t2)4
, − t8 + 20 t6 − 90 t4 + 20 t2 + 1

(1 + t2)4

)
+ b3

(
−3 t8 + 36 t6 − 50 t4 + 36 t2 − 3

(1 + t2)4
,
64 t3 (1− t2)

(1 + t2)4

)
,

which is of degree 8. The free parameters a1 and b1 perform just a translation. The parameters a3
and b3 change the figure shape (they also rotate and change the figure size), see in Figure 8 some
examples for different values of a3.

a  = –23 a  = –13 a  = 03 a  = 13 a  = 23

Figure 8. For fixed values d = 36, a1 = b1 = b3 = 0, the shape of α varying the
parameter a3.
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5. Tire tracks of a bicycle and rational Zindler curves

In this section we will give an explicit family of rationally parameterized Zindler curves.
Let β be the curve that is found by going a constant distance ℓ in the tangent direction from

each point of α:
β(t) = α(t) + ℓ t(t),

where t(t) is the tangent vector to α at α(t). The pair of curves (α, β) serve to parameterize the
wheel tire-tracks of a bicycle of length ℓ, where α represents its rear wheel and β its front wheel.
The two-sided front wheel curve to α is given piecewise by β and the analogous curve in the opposite
direction of t(t).

It is known that there is a “duality” between constant width curves and Zindler curves (Martini
et al., 2019; Oliveros, 1997; Rochera, 2022a,b). The relationship is given in terms of the middle
hedgehog, which is the curve generated by the midpoint of the family of constant length chords.
For a constant width curve, these chords are those that measure the constant width at each point.
For Zindler curves, these chords are those which cut in a half the perimeter of the curve (and which
are called halving chords).

A family of rational hedgehogs of “constant width 0” (projective hedgehogs) can be obtained
from (14) by taking d = 0. On the one hand, we can generate curves of constant width d from
this hedgehog by just considering continuous offset curves at the distance d

2 . This is translated to
adding this value to the support function of the middle hedgehog as done in Equation (14). On
the other hand, Zindler curves can be generated as continuous front wheel tire-track curves of a
bicycle of length d

2 having the middle hedgehog as the rear wheel.
As a direct consequence we have the following result, where we write the associated curves to

those of Proposition 7.

Proposition 8. Any parametric curve defined by

(15) p(t)

(
2 t

t2 + 1
,
t2 − 1

t2 + 1

)
+

1

2

(
d

t2 + 1
+ p′(t)

)
(1− t2, 2 t),

where

(16) p(t) =

n∑
k=0

(
a2k+1 T2k+1

(
1− t2

1 + t2

)
+ b2k+1 T2k+1

(
2 t

1 + t2

))
,

is a rational (generalized) Zindler curve that has its perimeter cut in half with a chord of length d.
For a sufficiently large d, the curve becomes a classical Zindler curve (i.e., the halving chords touch
the curve only at their endpoints).

Proof. The rationally parameterized hedgehog γ defined by the support function p is Pythagorean-
hodograph (by Proposition 5). In particular, it is written in the standard form (5) for the support
function p. Then by Theorem 4 particularized to curves rationally parameterized by a support
function, i.e. a(t) = t and b(t) = 1, we get the expression of the continuous front wheel curve of
γ for a bicycle of length d/2, which is Equation (15) of the statement. By construction, it is a
generalized Zindler curve. Taking d such that h(t) = d

2 + p(t) satisfies (12) is a sufficient condition
to ensure that the family of chords of constant length d cut the curve at precisely two points (and
not more). □
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Example 6. Consider a support function of the kind (16) for the middle hedgehog with n = 1:

h(t) = a1
1− t2

1 + t2
+ b1

2 t

1 + t2
− a3

(t6 − 15 t4 + 15 t2 − 1)

(1 + t2)3

− b3
2 t (3 t4 − 10 t2 + 3)

(1 + t2)3
.

Now, by Proposition 8, the parametric curve defined by the expression (15), namely,

β(t) = (b1, −a1) +
d

2

(
1− t2

1 + t2
,

2 t

1 + t2

)
+ a3

(
16 t (t2 − 1)3

(1 + t2)4
, − t8 + 20 t6 − 90 t4 + 20 t2 + 1

(1 + t2)4

)
+ b3

(
−3 t8 + 36 t6 − 50 t4 + 36 t2 − 3

(1 + t2)4
,
64 t3 (1− t2)

(1 + t2)4

)
,

is a rational Zindler curve (of degree 8). This Zindler curve is the one associated with the constant
width curve considered in Example 5 for n = 1. Again, the parameters a1 and b1 perform just a
translation and the values a3 and b3 change the figure shape. See in Figure 9 the resulting curve β
for different values of a3.

a  = –23 a  = –13 a  = 03 a  = 13 a  = 23

Figure 9. For fixed values d = 36, a1 = b1 = b3 = 0, the shape of β varying the
parameter a3.

Example 7. We can construct more versatile rational examples with Propositions 7 and 8 taking
higher degrees. Hedgehogs of constant width and Zindler curves which are not rotationally sym-
metric can be generated changing the parameter values, and that results in less typical examples
for these types of curves (see Figure 10). If one wants to get convex curves of constant width, it is
enough to choose a larger parameter value for the distance.
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n = 2

n = 3

Figure 10. Examples of hedgehogs of constant width and their associated Zindler
curves for n = 2 and n = 3 and for different values of ai and bi. The figures on the
right are found by taking a higher d value in the corresponding curves on the left.
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