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Abstract. This paper is framed within the problem of analyzing the rationality of the components
of two classical geometric constructions, namely the offset and the conchoid to an algebraic plane
curve and, in the affirmative case, the actual computation of parametrizations. We recall some of
the basic definitions and main properties on offsets (see [18]), and conchoids (see [20]) as well as the
algorithms for parametrizing their rational components (see [1] and [21], respectively). Moreover, we
implement the basic ideas creating two package in the computer algebra system Maple to analyze
the rationality of conchoids and offset curves, as well as the corresponding help pages. In addition,
we present a brief atlas where the offset and conchoids of several algebraic plane curves are obtained,
its rationality analyzed, and parametrizations are provided using the created packages.
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Introduction

The main geometric objects that we deal with in this paper are the offsets and the conchoids to
an algebraic plane curve. Whereas the offset operation is well known and implemented in most
CAD-software systems, the conchoid operation is less known, although already mentioned by
the ancient Greeks, and recently studied by some authors. These two operations are algebraic
and create new objects from the given input objects. There is a surprisingly simple relation
between the offset and the conchoid operation. There exists a rational bijective quadratic map
which transforms a given curve F and its offset curve Fd to a curve G and its conchoidal curve
Gd, and vice versa (see [15]).
Essentially, the intuitive idea of these geometric constructions are the following. Let K be an
algebraically closed field of characteristic zero (say K = C), and C an irreducible curve in K2. The
offset curve (or parallel curve) to C at distance d, denoted by Od(C), is essentially the envelope
of the system of circles centered at the points of C with fixed radius d (see Fig.1, left and, for
a formal definition, see [1]). In particular, if C is parametrized by P(t) ∈ K(t)2, the offset to C
corresponds to the Zariski closure of the set in K2 generated by the formula

P(t)± d
N (t)
‖N (t)‖
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where N (t) is the normal vector to C associated with P(t).
The term “parallel” was apparently introduced by Leibniz in [8] for the case of plane curves.

Also, in elementary texts on differential geometry or in some books on algebraic geometry (see
[17]) some elementary aspects of parallel curves are studied. Nevertheless, in the 1980s, cagd
(Computer Aided Geometric Design) community started to be interested on the topic, and they
began to address problems related to offsets to curves and surfaces, due to the important role that
offsets play in practical applications as tolerance analysis, geometric control, robot path-planning
and numerical-control machining problems, etc. [6]. As a consequence of this applicability, many
interesting questions directly related to algebraic geometry have been addressed (see, e.g. [1], [2],
[4], [5], [9], [16], [18], [19] ) and, currently, the study of offsets continue being an active research
area.

The conchoid of a plane curve arise in a big variety of practical applications, namely the
design of the construction of buildings, in astronomy [7], in electromagnetism research [24], optics
[3], physics [23], mechanical engineering and biological engineering [10], [11], in fluid mechanics
[22], etc. The conchoid concept is rather intuitive. More precisely, given a plane curve C (base
curve) and a fixed point A (focus), consider the line L joining A to a point P of C. Consider
now the points Q of intersection of L with a circle of radius d centered at P . The geometric
locus of Q as P moves along C is called the conchoid of C from focus A at a distance d and
denoted by CA

d (C) (see Fig.1 right, for the geometric construction of the conchoid and, for a
formal definition, see [20]). The Conchoid of Nicomedes and the Limacon of Pascal are the two
classic examples of conchoids, and the best known. They appear when the base curve is a line
or a circle, respectively.

In [18], and [20] the authors analyze theoretically offsets and conchoids and the most im-
portant properties of them, from the point of view of Algebraic Geometry. For this, incidence
diagrams are used to give a formal definition of these concepts of an algebraic curve. Certain
aspects as the rationality of the new curve and the possible inheritance of this property from
the base curve have been treated by the authors. Furthermore, the study of the conchoids has
been extended to surfaces (see [12], [13], [14]), and the relation between offset and conhcoid is
an active problem (see [15]).
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Fig. 1. Left: Construction of the offset to the parabola, Right: Geometric construction of the conchoid.
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The paper is structured as follows. In Section 1, we recall some of the basic definitions and
main properties on offsets and conchoids of algebraic plane curves (see [18], [20]). We provide
algorithms to analyze the rationality of the components of these new objects (see [1], [21]), and
in the affirmative case, rational parametrizations are given. In Section 2 we present the creation
of two packages in the computer algebra system Maple to analyze the rationality of offset and
conchoids curves respectively, whose procedures are based on the above algorithms, as well as the
corresponding help pages. In Section 3, we illustrate the package running presenting a brief atlas
where the offset and conchoids of several algebraic plane curves are obtained, and its rationality
analyzed. Furthermore, in case of genus zero, a rational parametrization is computed.

1 Parametrization Algorithms

In this Section we summarize the results on the rationality of the offsets and conchoids of curves,
presented in [1], [21] respectively, by deriving an algorithm for parametrizing them.

The Offset Rationality Problem

The rationality of the components of the offsets is characterized by means of the existence
of parametrizations of the curve whose normal vector has rational norm, and alternatively by
means of the rationality of the components of an associated curve, that is usually simpler than
the offset. As a consequence, one deduces that offsets to rational curves behave as follows: they
are either reducible with two rational components (double rationality), or rational, or irreducible
and not rational.

For this purpose, we first introduce two concepts: Rational Pythagorean Hodographs and curve
of reparametrization of the offset. Let P(t) = (P1(t), P2(t)) ∈ K(t)2 be a rational parametrization
of C. Then, P(t) is rph (Rational Pythagorean Hodograph) if its normal vector N (t) =
(N1(t), N2(t)) satisfies that

N1(t)2 + N2(t)2 = m(t)2,

with m(t) ∈ K(t). For short we will express this fact writing ‖N (t)‖ ∈ K(t). On the other hand,
we define the reparametrizing curve of Od(C) associated with P(t) as the curve generated
by the primitive part with respect to x2 of the numerator of

x2
2 P

′
1(x1)− P

′
1(x1) + 2x2 P

′
2(x1),

where P
′
i denotes the derivative of Pi. In the following, we denote by GOP (C) the reparametrizing

curve of Od(C) associated with P(t).
Summarizing the results in [1], one can outline the following algorithm for offsets.

Algorithm: offset parametrization

– Given: a proper rational parametrization P(t) of a plane curve C in K2 and d ∈ K.
– Decide: whether the components of Od(C) are rational.
– Determine: (in the affirmative case) a rational parametrization of each component ofOd(C).

1. Compute the normal vector N (t) of P(t). If ||N (t)|| ∈ K(t̄) then return Od(C) has two
rational components parametrized by P(t)± d

||N (t)||N (t).
2. Determine GOP (C), and decide whether GOP (C) is rational.
3. If GOP (C) is not rational then return no component of Od(C) is rational.
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4. Else compute a proper parametrization R(t) = (R̃(t), R(t)) of GOP (C) and return that Od(C)
is rational and that Q(t) = P(R̃(t)) + 2 d R(t)

N2(R̃(t))(R(t)2+1)
N (R̃(t)) where N = (N1, N2), para-

metrizes Od(C).

The Conchoid Rationality Problem

In [21], it is proved that conchoids having all their components rational can only be generated
by rational curves. Moreover, it is shown that reducible conchoids to rational curves have always
their two components rational (double rationality). From these results, one deduces that the ra-
tionality of the conchoid component, to a rational curve, does depend on the base curve and on
the focus but not on the distance. To approach the problem we use similar ideas to those for off-
sets introducing the notion of reparametrization curve as well as the notion of rdf parametrization.
The rdf concept allows us to detect the double rationality while the reparametrization curve is a
much simpler curve than the conchoid, directly computed from the input rational curve and the
focus, and that behaves equivalently as the conchoid in terms of rationality. As a consequence of
these theoretical results [21] provides an algorithm to solve the problem. The algorithm analyzes
the rationality of all the components of the conchoid and, in the affirmative case, parametrizes
them. The problem of detecting the focuses from where the conchoid is rational or with two
rational components is, in general, open.
We say that a rational parametrization P(t) = (P1(t), P2(t)) ∈ K(t)2 of C is at rational distance
to the focus A = (a, b) if

(P1(t)− a)2 + (P2(t)− b)2 = m(t)2,

with m(t) ∈ K(t). For short, we express this fact saying that P(t) is rdf or A-rdf if we need
to specify the focus. On the other hand, we define the reparametrization curve of the conchoid
CA

d (C) associated to P(t), denoted by GC
P(C), as the primitive part with respect to x2 of the

numerator of
−2x2(P1(x1)− a) + (x2

2 − 1)(P2(x1)− b).

Algorithm: conchoid parametrization

– Given: a proper rational parametrization P(t) of a plane curve C in K2, a focus A = (a, b),
and d ∈ K.

– Decide: whether the components of the concchoid CA
d (C) are rational.

– Determine: (in the affirmative case) a rational parametrization of each component of CA
d (C).

1. Compute the primitive part g(x1, x2) w.r.t. x2 of the numerator of
−2x2(P1(x1)− a) + (x2

2 − 1)(P2(x1)− b).
2. If g is reducible return that CA

d (C) is double rational and that
P(t) + d

±‖P(t)−A‖(P(t)−A) parametrize the two components.

3. Check whether the genus of GC
P is zero. If not return that CA

d (C) is not rational.
4. Compute a proper parametrization (φ1(t), φ2(t)) of GC

P and return that CA
d (C) is rational and

that P(φ1(t)) + d
±‖P(φ1(t))−A‖(P(φ1(t))−A) parametrizes CA

d (C).

We can note that the rationality of the both constructions are not equivalent. For instance,
if C is the parabola of equation y2 = y2

1, that can be parametrized as (t, t2), the offset at distance
d is rational. However, the rationality of the conchoid of the parabola depends on the focus.
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2 Implementation of conchoid and offset processing packages and help pages

In this section, we present the creation of two packages in the computer algebra system Maple,
that we call Conchoid and Offset. These packages compute the implicit equation, and analyze
the rationality and the reducibility of conchoids and offset curves respectively, providing rational
parametrizations in case of genus zero. In addition, it allows us to display plots. These packages
consist in several procedures that are based on the above parametrization algorithms.

In the following, we give a brief description of the procedures and we show one of the help pages
for one of the maple functions. The procedure codes and packages are available contacting with
the corresponding author.

2.1 Procedures of the Conchoid Package

getImplConch

This procedure determines the implicit equation of the conchoid of an algebraic plane curve at
a fixed focus and a fixed distance. For this purpose, we use Gröebner Basis to solve the system
of equations consisting on the circle centered at generic point of the initial curve C and radius
d, the straight line from the focus A to the generic point of the initial curve C, and the initial
curve C.
getParamConch

Firstly this procedure checks whether the conchoid of a rational curve is irreducible or it has
two rational components. For this purpose, a proper rational parametrization of the initial curve
is rdf is analized. In affirmative case, the procedure outputs a message indicating reducibility
(the conchoid has two rational components) and a rational parametrization for each component
is displayed. Otherwise, the conchoid is irreducible and the reparametrization curve is computed
in order to study its rationality. In the affirmative case, it provides a rational parametrization
by means of a rational parametrization of the reparametrizing curve and it outputs a message
indicating irreducibility and rationality.

plotImplConch

This procedure computes the conchoids curve using getImplConch procedure, and then it plots
both the initial curve and its conchoid within the coordinates axes interval [−a, a]× [−a, a].

2.2 Procedures of the Offset Package

ImplicitOFF

This procedure determines the implicit equation of the offset of an algebraic plane curve at a
fixed distance. For this purpose, we use resultants to solve the system of equations consisting
on the circle centered at a generic point of the initial curve C and radius d, and the normal line
at each point of C.
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OFFparametric

This procedure analyzes the rationality of the offset of a rational plane curve. For this purpose,
first it decides whether the offset is irreducible or it has two rational components. In case of re-
ducibility, the procedure outputs a rational parametrization for each component, using the rph
concept. Otherwise, it checks whether the offset is rational or not. In the affirmative case, it pro-
vides a rational parametrization by means of a rational parametrization of the reparametrizing
curve.

OFFplot

This procedure computes the offset curve at a generic distance, d, and then replaces d with a
fixed value, dist. Finally, it plots both the initial curve and its offset at a distance dist within
the coordinates axes interval [−a, a]× [−a, a].

Once we have implemented the conchoids and offset procedures in Maple, we have created
a two packages containing them, called Conchoid and Offset, respectively. Now, if we want to
use the package, first of all we have to specify, with the command libname, the directory where
the file containing the offset procedures is located in our computer. Finally we have to use the
command with followed by the name of the package, to charge the package in memory and then
it will be ready to be used.

In addition, we have created the help pages associated to the procedures. Figure 2 shows one of
the Maple help pages created.
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Fig. 2. getParamConch help page.

3 Atlas of Conchoid and Offset Curves

In this section we illustrate the previous results applying the packages Offset and Conchoid. We
analyze the rationality of the offset and the conchoid of several classical rational curves, and in the
case of rationality we compute rational parametrizations. We give a table summarizing the main
details of the process for each geometric construction, such as the degree of the implicit equation,
rational character and rational parametrization in case of genus zero. In case of Offsets, we also
give the implicit equation of the reparametrizing curve (the oracle curve to study the rationality
of the offset curve). In case of Conchoids, the rationality depends on the focus, therefore in the
table we study the rationality for different focus position, distinguishing if the focus is on the
base curve or not. We don’t include the implicit equation of the reparametrizing curve because
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of space limitations. The implicit equations, plots and more details of the computation of these
atlas are available contacting with the corresponding author.

Offsets Curves

Base Curve Offset Degree Rationality Parametrization GP
Circle 4

Double Rational(
± (d±r)2t

t2+1
, ∓ (d±r)(t2−1)

t2+1

)
N/A

Parabola 6
Rational(

(t2−1)(−t2−1+4 dat)
4at(t2+1)

, t6−t4−t2+1+32 dt3a
16at2(t2+1)

) x2
2 − 1 + 4x2ax1

Hyperbola 8 Irreducible and non rational x2
2a

2x1 − x1a
2 − a2x2 − b2x2

1x2

Ellipse 8 Irreducible and non rational −x2
2ax1 + ax1 + x2b− x2bx

2
1

Cardioid 14
Rational(

(−9+t2)(dt6−117dt4+3456t3−1053dt2+729d)

(243t2+27t4+t6+729)(t2+9)
,

−18(dt6−16t5−21dt4+864t3−189dt2−1296t+729d)t

(243t2+27t4+t6+729)(t2+9)

)

32 x2
2 x3

1 −
6 x2

2 x1 − 32 x3
1 +

6 x1 − 48 x2 x2
1 +

x2

Three-leafed
Rose

14 Irreducible and non rational

−5 x2
2 x1 + 3 x2

2 x3
1 +

5 x1 − 3 x3
1 − 12 x2 x2

1 +

3 x2 x4
1 + x2

Trisectrix of
Maclaurin

10 Irreducible and non rational

4x1x
2
2 − 4x1 +

6x2x
2
1 + x2x

4
1 −

3x2

Folium of
Descartes

14 Irreducible and non rational

x2
2−2 x2

2 x3
1−1+

2 x3
1 + 4 x2 x1 −

2 x2 x4
1

Tacnode 20
Irreducible

and non

rational

486x2
2x6

1 + 2304x2
2x5

1 + 3882x2
2x4

1 +

3144x2
2x3

1 + 1303x2
2x2

1 + 256x2
2x1 + 17x2

2 −
486x6

1 − 2304x5
1 − 3882x4

1 − 3144x3
1 −

1303x2
1 − 256x1 − 17 + 432x2x6

1 +

3960x2x5
1 + 9360x2x4

1 + 10080x2x3
1 +

5640x2x2
1 + 1604x2x1 + 184x2

Epitrochoid 10 Irreducible and non rational

32 x2
2 x3

1 − 256 x2
2 x1 − 32 x3

1 +

256 x1 − 5 x2 x4
1 + 288 x2 x2

1 −
256 x2

Ramphoid
Cusp

20 Irreducible and non rational

9 x2
2 x5

1−9 x5
1+12 x2 x5

1−16 x2 x4
1+9 x2

2 x4
1−

9 x4
1+4 x2 x3

1−6 x3
1+6 x2

2 x3
1−4 x2 x2

1−6 x2
1+

6 x2
2 x2

1 + x2
2 x1 − x1 + 4 x2 + x2

2 − 1

Lemniscata
of
Bernoulli

16 Irreducible and non rational

x2
2−3x2

2x4
1+3x2

2x2
1−x6

1x2
2−1+3x4

1−
3x2

1 + x6
1 + 2x2 − 6x2x4

1 − 6x2x2
1 +

2x6
1x2

N/A Not available.
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Fig. 3. Parabola (red curve) and the offset at d = 2. Hyperbola (red curve) and the offset at d = 1.5.

Fig. 4. Left: Ellipse (red curve) and the offset at d = 1. Right: Cardioid (red curve) and the offset at d = 1.

Fig. 5. Three-leafed Rose (red curve) and the offset at d = 1. Trisectrix of Maclaurin (red curve) and the offset
at d = 1.
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Conchoids Curves

Base Curve (C) Focus of Curve (O)

& Focus of Conchoid (A)
Rationality Conchoid (C) Parametrization

Circle

x2
2 + x2

1 − 4

A=O=(0,0)

A ∈ C, A=(-2,0)

A 6= O, A /∈ C, A=(-4,0)

Double Rational

Irr. rational

Irr. not rational

(−2(−1+t2)±(1−t2)
1+t2

, 4t±2t
1+t2

)
(

3t4−12t2+1
1+2t2+t4

, 2t(−3+5t2)
1+2t2+t4

)

N/A

Parabola

x2 − x2
1

A=O=(0,1/4)

A ∈ C, A=(0,0)

A 6= O, A /∈ C, A=(0,-2)

Double Rational

Irr. rational

Irr. not rational

(
t± 4t

1+4t2
, t2 ± 4t2−1

1+4t2

)
(

2t+2t3+1−2t2+t4

(−1+t2)(1+t2)
, 2t(2t+2t3+1−2t2+t4)

(−1+t)2(1+t)2(1+t2)

)

N/A

Hyperbola
x2
1

16
− x2

2
9
− 1

A=O=(5,0)

A ∈ C, A=(-4,0)

A 6= O, A /∈ C, A=(0,0)

Double Rational

Irr. rational

Irr. not rational

(−2(9+t2)
3t ± 2(−t−6)(2t+3)

45+24t+5t2
, t2−9

2t ± 3(t2−9)
45+24t+5t2

)
(

(45t6+129t4+311t2+27)
(1+t2)(−9+t2)(9t2−1)

, 2(−63+81t4−82t2)t
(1+t2)(−9+t2)(9t2−1)

)

N/A

Ellipse
x2
1

25
+

x2
2

16
− 1

A=O=(3,0)

A ∈ C, A=(0,4)

A 6= O, A /∈ C, A=(0,0)

Double Rational

Irr. rational

Irr. not rational

(
5(t2−1)

t2+1
± t2−4

t2+4
, 8t

t2+1
± 4t

t2+4

)

( (1−t2)(100t+100t3+4t4+17t2+4)
(4t4+17t2+4)(1+t2)

,
2(−58t4+8t6−58t2+8−4t5−17t3−4t)

(4t4+17t2+4)(1+t2)
)

N/A
Cardioid

(x2
1 + 4x2 +

x2
2)

2 − 16(x2
1 +

x2
2)

A ∈ C, A=(0,0)

A /∈ C, A=(-9,0)

Double Rational

Irr. not rational

(
−1024t3

(16t2+1)2
± −8t

16t2+1
, −128t2(16t2−1)

(16t2+1)2
± 1−16t2

16t2+1

)

N/A

Three-leafed

Rose

(x2
1 + x2

2)
2 +

x1(3x2
2 − x2

1)

A ∈ C, A=(0,0)

A /∈ C, A=(-2,0)

Irr. rational

Irr. not rational

(
2(t4−6t2+9)t2(t−1)(t+1)

(t4+2t2+1)2
, 4t3(t4−6t2+9)

(t4+2t2+1)2

)

N/A

Trisectrix of

Maclaurin

x1(x
2
1 + x2

2) −
(x2

2 − 3x2
1)

A ∈ C, A=(0,0)

A /∈ C, A=(-4,0)

Irr. rational

Irr. not rational

(−2(−5t2+2t4+1)
(t4+2t2+1)

, −4t(−5t2+2t4+1)
(t4+2t2+1)(t2−1)

)

N/A

Folium of

Descartes

x3
1 +x3

2− 3x1x2

A ∈ C, A=(0,0)

A /∈ C, A=(-1,-1)

Irr. rational

Irr. not rational

( (−6t+6t5+t6−3t4+3t2−1+8t3)(t−1)(t+1)
(t2+1)(t6−3t4+3t2−1+8t3)

,
2(−6t+6t5+t6−3t4+3t2−1+8t3)t

(t2+1)(t6−3t4+3t2−1+8t3)
)

N/A
Tacnode

2x4
1 − 3x2

1x2 +

x2
2 − 2x3

2 + x4
2

A ∈ C, A=(0,0)

A ∈ C, A=(0,1)

Irr. not rational

Irr. not rational

N/A

N/A

Epitrochoid

x4
2 + 2x2

1x
2
2 −

34x2
2 + x4

1 −
34x2

1+96x1−63

A ∈ C, A=(3,0)

A /∈ C, A=(0,0)

Double Rational

Irr. rational

(−7t4+288t2+256
(t2+16)2

± 16−t2

t2+16
,

−16t(5t2−16)
(t2+16)2

± (−8t)
t2+16

)
N/A

Ramphoid

Cusp

x4
1 + x2

1x
2
2 −

2x2
1x2−x1x

2
2+x2

2

A ∈ C, A=(0,0)

A /∈ C, A=(-1,-1)

Irr. not rational

Irr. not rational

N/A

N/A

Lemniscata

of Bernoulli

(x2
1 + x2

2)
2 −

4(x2
1 − x2

2)

A ∈ C, A=(0,0)

A ∈ C, A=(-2,0)

Irr. not rational

Irr. not rational

N/A

N/A

N/A Not available.
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Fig. 6. Left: Circle (red curve) and the conchoid (blue curve) at A = (−2, 0) and d = 1 (Limaçon of Pascal).
Right: Straight line (red line) and the conchoid (blue curve) at A = (0, 0) and d = 2 (Conchoid of Nicomedes).

Fig. 7. Left: Conchoid of Sluze (red curve) and the conchoid (blue curve) at A = (−2, 0) and d = 1. Right: Folium
of Descartes (red curve) and the conchoid (blue curve) at A = (0, 0) and d = 2.

Fig. 8. Left: Lemniscata of Bernoulli (red curve) and the conchoid (blue curve) at A = (−2, 0) and d = 1. Right:
Parabola (red curve) and the conchoid (blue curve) at A = (0, 1/4) and d = 1.
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