348 research outputs found

    Message-Bundle Converting in Intenet Protocol Multicast-Based High Level Architecture Exercises

    Get PDF
    The Department of Defense is pushing for more wide-spread and realistic interactive training simulations which increases the demand on network capacity and resources. While network bandwidth is a measurable resource, packet bandwidth, or the number of packets-per-second (Pk/s) a host can handle, is a shifting commodity. This research analyzes host performance characteristics under varying data loads. The hosts include SGI single and multi-processor systems and Intel Pentium platforms using both Windows 95 and Linux Operating Systems. The networking media covers Ethernet, ATM and FDDI. For the ATM network, both AAL5 and IP over ATM were analyzed. With the data from this research, a system is proposed and developed that takes individual messages and bundles them into multi-message packets. This bundling process overcomes the 5,000 Pk/s limitation, reduces the CPU network handling time and introduces a flow-control mechanism at the local network level. While the idea of bundling messages to increase CPU efficiency is not new, there are no current methods of bundling within the new High Level Architecture (HLA). This proposed process is a novel approach to introduce flow control, priority message handling and increase address space while utilizing bundled data delivery. For traditional network delivery, typical CPU usage from network data varies as a function of traffic load, ranging from 5% at 500 messages-per-second to over 80% at 4,000 messages-per-second. The new bundling process requires 10% at 500 messages-per-second but only increases to 13% at 4,000 messages-per-second

    Semantic web service architecture for simulation model reuse

    Get PDF
    COTS simulation packages (CSPs) have proved popular in an industrial setting with a number of software vendors. In contrast, options for re-using existing models seem more limited. Re-use of simulation component models by collaborating organizations is restricted by the same semantic issues however that restrict the inter-organization use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontology to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of ontology, connector software and web service discovery architecture in order to understand how such ontology are created, maintained and subsequently used for simulation model reuse. The ontology is extracted from health service simulation - comprising hospitals and the National Blood Service. The ontology engineering framework and discovery architecture provide a novel approach to inter- organization simulation, uncovering domain semantics and adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Service-oriented simulation using web ontology

    Get PDF
    Copyright © 2012 Inderscience Enterprises Ltd.Commercial-off-the-Shelf (COTS) Simulation Packages (CSPs) have proved popular in a wider industrial setting. Reuse of Simulation Component (SC) models by collaborating organisations or divisions is restricted, however, by the same semantic issues that restrict the inter-organisation use of other software services. Semantic models, in the form of ontology, utilised by a web-service-based discovery and deployment architecture provide one approach to support simulation model reuse. Semantic interoperation is achieved using domain-grounded SC ontology to identify reusable components and subsequently loaded into a CSP, and locally or remotely executed. The work is based on a health service simulation that addresses the transportation of blood. The ontology-engineering framework and discovery architecture provide a novel approach to inter-organisation simulation, uncovering domain semantics and providing a less intrusive mechanism for component reuse. The resulting web of component models and simulation execution environments present a nascent approach to simulation grids

    Speedes: A Case Study Of Space Operations

    Get PDF
    This thesis describes the application of parallel simulation techniques to represent the structured functional parallelism present within the Space Shuttle Operations Flow using the Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES), an object-oriented multi-computing architecture. SPEEDES is a unified parallel simulation environment, which allocates events over multiple processors to get simulation speed up. Its optimistic processing capability minimizes simulation lag time behind wall clock time, or multiples of real-time. SPEEDES accommodates an increase in process complexity with additional parallel computing nodes to allow sharing of processing loads. This thesis focuses on the process of translating a model of Space Shuttle Operations from a procedural oriented and single processor approach to one represented in a process-driven, object-oriented, and distributed processor approach. The processes are depicted by several classes created to represent the operations at the space center. The reference model used is the existing Space Shuttle Model created in ARENA by NASA and UCF in the year 2001. A systematic approach was used for this translation. A reduced version of the ARENA model was created, and then used as the SPEEDES prototype using C++. The prototype was systematically augmented to reflect the entire Space Shuttle Operations Flow. It was then verified, validated, and implemented

    Ontology engineering for simulation component reuse

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are widely used in industry, although they have yet to operate across organizational boundaries. Reuse across organizations is restricted by the same semantic issues that restrict the inter-organizational use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architectures provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontologies to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of an ontology, connector software and web service discovery architecture. The ontology is extracted from simulation scenarios involving airport, restaurant and kitchen service suppliers. The ontology engineering framework and discovery architecture provide a novel approach to inter-organizational simulation, adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Application of Web Services to a Simulation Framework

    Get PDF
    The Joint Semi-Automated Forces (JSAF) simulator is an excellent tool for military training and a great testbed for new SAF behaviors. However, it has the drawback that behaviors must be ported into its own Finite State Machine (FSM) language. Web Services is a growing technology that seamlessly connects service providers to service consumers. This work attempts to merge these two technologies by modeling SAF behaviors as web services. The JSAF simulator is then modeled as a web service consumer. This approach allows new Semi-Automated Forces (SAF) behaviors to be developed independently of the simulator, which provides the developer with greater flexibility when choosing a programming language, development environment, and development platform. In addition to new SAF behaviors, this approach also supports any external component that can be modeled as a web service. Furthermore, these services are often run over a network, which distributes the computational load across several computers. Finally, hosting copies of a single service on several machines, a concept similar to file-sharing mirrors, offers an environment for load-balancing. This means if several entities are running the same behavior, a single server does not perform the computation for every entity. Instead, each entity is assigned to a specific server, increasing the quality of service seen by the system. A Web Services framework linking JSAF with several services is designed and implemented. Suppression of Enemy Air Defense (SEAD) behaviors written in MATLAB and a behavior recognition system are integrated with JSAF. These behaviors and the recognition tool were developed by other researchers, independent of this work. Results show that offloading computation to other machines is beneficial, especially when the simulation system is under heavy load. Preliminary results also indicate that load-balancing performs much better than using a single server
    corecore