
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2005

Speedes: A Case Study Of Space Operations Speedes: A Case Study Of Space Operations

Amith Paruchuri
University of Central Florida

 Part of the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for

inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Paruchuri, Amith, "Speedes: A Case Study Of Space Operations" (2005). Electronic Theses and
Dissertations, 2004-2019. 370.
https://stars.library.ucf.edu/etd/370

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236256172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/370?utm_source=stars.library.ucf.edu%2Fetd%2F370&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

SPEEDES: A CASE STUDY OF SPACE OPERATIONS

by

Amith Paruchuri
B.S., Jawaharlal Nehru Technological University, India 2001

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Modeling and Simulation

in the College of Engineering & Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2005

ABSTRACT

This thesis describes the application of parallel simulation techniques to represent

the structured functional parallelism present within the Space Shuttle Operations Flow

using the Synchronous Parallel Environment for Emulation and Discrete-Event

Simulation (SPEEDES), an object-oriented multi-computing architecture. SPEEDES is a

unified parallel simulation environment, which allocates events over multiple processors

to get simulation speed up. Its optimistic processing capability minimizes simulation lag

time behind wall clock time, or multiples of real-time. SPEEDES accommodates an

increase in process complexity with additional parallel computing nodes to allow sharing

of processing loads.

This thesis focuses on the process of translating a model of Space Shuttle

Operations from a procedural oriented and single processor approach to one represented

in a process-driven, object-oriented, and distributed processor approach. The processes

are depicted by several classes created to represent the operations at the space center. The

reference model used is the existing Space Shuttle Model created in ARENA by NASA

and UCF in the year 2001. A systematic approach was used for this translation. A

reduced version of the ARENA model was created, and then used as the SPEEDES

prototype using C++. The prototype was systematically augmented to reflect the entire

Space Shuttle Operations Flow. It was then verified, validated, and implemented.

ii

ACKNOWLEDGMENTS

Special thanks to those in the VTB program at UCF who made this effort possible for

without their guidance and support, this effort would not have been possible.

iii

TABLE OF CONTENTS

LIST OF FIGURES .. vii

LIST OF TABLES... ix

LIST OF ABBREVIATIONS... x

CHAPTER 1: INTRODUCTION... 1

1.1 Preface... 1

1.2 Distributed Simulation .. 1

1.3 Virtual Test Bed Project.. 2

1.4 SPEEDES Engine ... 3

1.5 Summary ... 6

CHAPTER 2: LITERATURE REVIEW.. 7

2.1 What is Discrete Event Simulation ... 7

2.2 What is Distributed Discrete-Event Simulation.. 9

2.2.1 Comparison between PDES and SDES ... 9

2.2.2 Time Warp Algorithm and Breathing Time Buckets....................................... 11

2.2.3 Breathing Time Warp Algorithm... 11

2.2.4 Past implementations of Distributed Simulation and Time Warp Algorithms 12

2.3 What is SPEEDES .. 14

2.3.1 Features of SPEEDES.. 14

2.3.2 Simulation Object Decomposition... 16

iv

2.3.3 Rollback Feature of SPEEDES.. 18

CHAPTER 3: METHODOLOGY .. 20

3.1 Introduction... 20

3.2 Using UML during development .. 21

3.2.1 Class Diagrams .. 22

3.2.2 Activity Diagram ... 23

3.2.3 Sequence Diagram ... 24

3.3 Stage I ... 25

3.4 Stage II .. 28

3.5 Stage III... 30

3.6 Stage IV .. 32

3.7 Stage V.. 34

3.8 Stage VI .. 35

3.9 Stage VII ... 37

3.10 Summary ... 39

CHAPTER 4: VALIDATION AND TESTING OF SHUTTLE MODEL....................... 40

4.1 Introduction... 40

4.2 Verification and Validation... 40

4.3 Tools Used for Testing and Validation... 41

4.3.1 Using Parameter Files .. 42

4.3.2 Using Perl Scripts for Automating the Modal Execution 43

4.4 Final Verification and Validation ... 44

v

4.5 Testing Different Feature of SPEEDES.. 47

4.5.1 Testing the Block and Scatter Algorithms... 48

4.5.2 Testing the Load balancing with File Driven Algorithm................................. 49

4.5.3 Testing the Roll backing Feature ... 49

4.6 Running Different Scenarios with SPEEDES Model ... 50

4.6.1 Running SPEEDES Shuttle Model on a Single Computer and Multiple

Computers ... 51

4.6.2 Testing with NASA AMES ... 51

4.7 Summary ... 53

CHAPTER 5: CONCLUSION AND FUTURE RESEARCH ... 54

5.1 Conclusion .. 54

5.2 Contributions... 54

5.3 Future Research .. 55

5.3.1 Developing Predefined Components ... 55

5.3.2 Developing the Visualization Architecture.. 55

5.3.3 Integrating the Spaceport Models .. 57

5.3.4 Developing Java Graphical Interface... 57

LIST OF REFERENCES.. 59

vi

LIST OF FIGURES

Figure 1: Discrete Event Simulation Event Ordering ... 8

Figure 2: Software Architecture from DPAT, shown as SPEEDES diagram................... 13

Figure 3: SPEEDES External Module .. 15

Figure 4: High Level Architecture.. 16

Figure 5: Synchronization by rollback in PDES (From SPEEDES Manual) 19

Figure 6: From Procedural to Object Oriented… ... 20

Figure 7: Example Class Diagram .. 22

Figure 8: Example Activity Diagram.. 23

Figure 9: Example of Sequence Diagram ... 24

Figure 10: Hierarchy of classes... 26

Figure 11: Activity diagram for Stage 1 ... 27

Figure 12: Stage 2 Class Diagram .. 29

Figure 13: Activity Diagram for Stage 2 .. 29

Figure 14: JAVA 3D Environment and VRML Object .. 33

Figure 15: Parameter file to set configuration of server ... 42

Figure 16: Perl Script for Automating the Model execution .. 43

Figure 17: Comparison Chart 1... 45

Figure 18: Comparison Chart 2... 47

Figure 19: Implementing Scatter and Block Algorithms.. 48

vii

Figure 20: File Driven Object Placement .. 49

Figure 21: Parallel/Distributed Simulation at NASA ARC .. 52

Figure 22: DES Visualization Architecture .. 56

Figure 23: Java Graphical Interface.. 58

viii

LIST OF TABLES

Table 1: List of Classes:.. 5

Table 2: Block Decomposition ... 17

Table 3: Scatter Decomposition.. 17

Table 4: Classes Added in Stage 1.. 26

Table 5: Logics Added in Stage 2... 31

Table 6: Logics Added in Stage 4... 34

Table 7: List of available Distributions and new Distributions in SPEEDES. 38

Table 8: Validation results in different stages .. 41

Table 9: Validation result of final SPEEDES model (10 years)....................................... 45

Table 10: Validation result of final SPEEDES model (5 years)....................................... 46

Table 11: Running SPEEDES model with 2 and 3 shuttles.. 51

ix

LIST OF ABBREVIATIONS

1 DES Discrete Event Simulation

2 DFRC Dryden Flight Research Center

3 ET External Tank

4 KSC Kennedy Space Center

5 NASA National Aeronautics and Space Administration

6 OPF Orbiter Processing Facility

7 PDES Parallel Discrete Event Simulation

8 SDES Sequential Discrete Event Simulation

9 SRB Solid Rocket Boosters

10 UCF University of Central Florida

11 UML Unified Modeling Language

12 VAB Vehicle Assembly Building

13 VTB Virtual Test Bed

x

CHAPTER 1: INTRODUCTION

1.1 Preface

This thesis focuses on translating an Arena shuttle model into SPEEDES (Synchronous

Parallel Environment for Emulation and Discrete Event Simulation) and running the

SPEEDES model on multiple computers. The model created in this thesis also proves that

SPEEDES can be used for large NASA simulations, to run with distributed technology.

The model translated to SPEEDES (Object-Oriented environment) was verified and

validated against the original implementation in Arena (procedural-oriented). Different

testing sessions were run to demonstrate the distributed simulation. With the generated

model, different scenarios can be run to test the feasibility of the changes.

1.2 Distributed Simulation

As mentioned, SPEEDES can run in distributed environments. This means that the

processing load can be divided on multiple nodes. This feature is very useful to run large

simulation models. Different processors called nodes can maintain their own set of events

and communicate with each other during simulation. Using this capability a large

simulation model can be run over the Internet, having processors at different physical

locations.

1

To demonstrate this feature the SPEEDES shuttle model was run on 4 different

computers simultaneously. Different objects were distributed automatically among

available nodes and simulation results were obtained. These results are also documented

in the Findings Section.

1.3 Virtual Test Bed Project

The objective of the NASA/UCF Virtual Test Bed (VTB) Project is to provide a

collaborative computing environment to support simulation scenarios, reuse, and

integration of multidisciplinary models to represent elements of operations, range, and

spaceports. The VTB project aims to create a common platform for testing and validating

future NASA Space Shuttle Simulation Models [13].

The central goal of the VTB is to provide a virtual environment of the launch and

range at KSC. VTB will be integrating and adapting some of the existing simulation

models and complementing some of the gaps present, to create a unique mission

environment for the Intelligent Launch & Range Operations (ILRO) program. This

realistic NASA mission environment will provide scientists within the Intelligent

Systems (IS) project with a computing environment where they can implement schemes

for high-performance human-automation systems. This integration will require the

development of a computer architecture that allows the integration of the different models

and simulation environments [1].

2

1.4 SPEEDES Engine

SPEEDES has been chosen as the simulation engine to be used as it is based on NASA-

patented algorithms and has a good set of documentation. SPEEDES is built and

supported by a software company (Metron, Solana Beach, California), and it runs in

Linux environments, ensuring high security of the NASA simulation models. This

simulation engine will allow spaceport managers and decision makers to access and

manage data and processes. It is a software framework/toolbox for building parallel C++

simulation models. SPEEDES allocates events over multiple processors to get simulation

speed-up, (a feature which enhances runtime, especially when exploiting the very large

number of processors) and the high-speed internal communications found in high

performance computing platforms. The allocation of different processes on different

processors can be controlled by the user.

The source of the operation process flow model was the NASA Shuttle

Simulation Model. It is a simulation model for the operational lifecycle of the Space

Shuttle flight hardware elements through their respective ground facilities at KSC

developed by NASA and the University of Central Florida [2]. This Space Shuttle model

was built using windows based discrete-event simulation software Arena 3.0. Arena is

built and supported by the company Rockwell.

This shuttle model simulated the hardware flow and processing at different

facilities at a macro level. Different distributions available in Arena were used to model

the flow as accurately as possible. This NASA Space shuttle model also has the feature of

3

animating the flow to visualize the process.

As the hardware parts of the Shuttle, this model included the following parts:

• Orbiter

• Main Engines

• Left and Right Maneuvering System Pods

• Left and Right Orbiter Maneuvering System Pods

• Forward Reaction Control System

• The Solid Rocket Boosters

• External Tank

As the ground facilities, this model included the following systems:

• Orbiter Processing Facility

• Vehicle Assembly Building

• KSC Landing Facility

• KSC Landing Pads

• Engine Shop

• DFRC Landing Facility

• Palmdale Facility

A stepwise approach was used to transfer the process flows from ARENA to SPEEDES.

In this approach the shuttle model was broken into different small modules. These

modules were representing the shuttle flow up to some logical point, which was enhanced

in each module. These modules were transferred creating different versions in SPEEDES.

4

It took 7 versions to transfer all the modules into one complete model in SPEEDES. The

Unified Modeling Language (UML) was utilized to develop the hierarchy of objects and

for the generation of the C++ code whenever required. UML facilitates better

understanding of the process.

While transferring this model to SPEEDES, the following classes were created to

represent the shuttle hardware and different facilities:

Table 1: List of Classes

S_Choosing_OPF_Logic S_Crawler S_DFRC

S_Engine_Shop S_External_Tank S_Flow_Type_Logic

S_Global S_HMF_Logic S_Hyster

S_KSC S_Launch S_MDM

S_MLP S_OPF S_OPF_2_Assembly

S_OPF_3_Assembly S_OPF_Assembly S_OPF_Final_Assembly

S_OPF_Logic S_Orbitor S_PADA

S_PADB S_Palmdale S_Post_Palmdale_OPF_Operations

S_Retrivel_Vessel S_Route S_Pre_Palmdale_Logic

S_RPSF S_Shuttle S_SRB

S_Tow S_Train S_SRB_Stacking_Logic

S_VAB S_Vessel

5

The generated SPEEDES shuttle model was tested and validated against the Arena

NASA Space Shuttle Model. This validation included running the model for different

scenarios using different simulation time and multiple replications. These testing results

are documented in Findings section.

1.5 Summary

This thesis work is a classic example of using SPEEDES for NASA simulations. The

Procedural code in Arena was successfully translated into object oriented C++ using

SPEEDES. Complete translation was achieved through many steps described in further

chapters. Major success was achieved by running this model on multiple computers

demonstrating distributed simulation feature of SPEEDES. Finally, the deliverable of this

thesis work is a simulation model in SPEEDES.

6

CHAPTER 2: LITERATURE REVIEW

2.1 What is Discrete Event Simulation

Discrete-event simulation is a tool for modeling and simulating complicated systems. A

system can consist of subsystems which interact in a coordinated fashion to represent the

physical system. Events and objects are the primary building blocks of a discrete-event

simulation. An event provides functions that can modify the state of the system and

schedule other events in future or at current simulation time. Object represents a system

or a set of subsystems in a simulation.

A discrete event simulation differs from a time based simulation. In a time based

simulation the whole system which is being simulated needs to be updated at regular

intervals. But in a discrete-event simulation updates are done only when needed. This

difference or capability of discrete-event simulation can be used to optimize the run-time

performance.

7

Increasing Timestamp

8

Figure 1: Discrete Event Simulation Event Ordering

Discrete-event simulation is one way of building up models to observe the time based (or

dynamic) behavior of a system [3]. In discrete-event simulation, the event is the basic

module of simulation. An event is any stored procedure changing the state of the system.

One can also schedule another event to forward the execution. A central list of all the

events in maintained in an event queue. The event queue contains all the events sorted by

the priorities and time in most of the cases. These events execute one after another as the

simulation clock forwards. Unlike a continuous simulation, the simulation clock jumps

from one event time to another, which makes discrete event simulation faster.

Another basic module of DES is an Entity. An Entity is passed between events

Simulation Objects

Event Queue

Process Generate New Event

Earliest And Insert in Queue

 Event

and each entity maintains its own state. Entities are physical elements found in the real

world like a car, shuttle, machine etc. The most important component of a simulation is

the Simulation Execution Engine. This engine controls the simulation clock, advances the

event list and provides the basic functionality for a discrete-event simulation.

Another significant component in a discrete-event simulation is random number

generation. Random numbers are used to bring dynamic behavior in the system and are

used for server and transportation delays. Finally the simulation is run to analyze the

system behavior which in turn will be achieved by result collection. These results are

generally displayed in graphical manner or a structured format.

2.2 What is Distributed Discrete-Event Simulation

Distributing events of the simulation run on different nodes to execute in parallel is called

as distributed discrete-event simulation. Each node (processor) maintains its own list of

events and its own event clock. These clocks may run ahead or behind of each other. As a

result, synchronization of events is the most important issue when considering distributed

simulation.

2.2.1 Comparison between PDES and SDES

The events in a Sequential Discrete-Event Simulation (SDES) are executed sequentially

on a single processor whereas in a Parallel discrete-event simulation (PDES), the events

are processed in parallel on more than one processor. In SDES all the events are managed

9

in a single event queue, the event with the earliest time stamp is removed for execution.

In PDES each processor/node maintains its own event queue and various time

synchronizing techniques take care of processing the events concurrently.

The advantages of PDES over SDES are computational speed-up, larger address

spaces, more disciplined object-oriented approach and interoperability with other

simulation systems. The greatest advantage of parallel simulation is that, the physical

process can be matched with the logical process, i.e. when there are 2 servers performing

the same job, they can independently execute on different processors. Parallel simulation

is especially helpful when there is a large amount of dataset, or network because of large

amount of events that are executed [15].

On the other hand, in a SDES, events can access or modify any of the system’s

state variables, but it cannot be done in PDES as the simulation is distributed on various

processors. Another drawback of PDES is in that DES events are stored in a priority

queue, based on time, which is a sequential process. So events executed by one process

may affect or cancel other events. So it is necessary to maintain good communication

between the processes in PDES. SPEEDES addresses this issue by providing a rollback

feature.

PDES may not be a solution for every discrete-event simulation, sometimes SDES

are much simpler to execute and can achieve more speed-up then PDES. PDES is mainly

applicable to large military simulations, games or space simulations as examples.

10

2.2.2 Time Warp Algorithm and Breathing Time Buckets

To obtain minimum overheads in optimistic approach, various algorithms were generated

[16]. Early methods of optimistic approach with anti-messages, with cascading rollbacks,

are known as time warp method. But these methods showed signs of instability due to

excessive overheads and bad workload overbalances. In the algorithm of Breathing Time

Bucket, an event horizon in maintained and off node messages are released only when it

is safe. While each node processes its pending events, the newly generated events are

collected in an auxiliary queue. When the next event to be executed is in auxiliary queue,

this queue is merged with main queue starting a new cycle. The benefit there is a no

deadlock situation as processing events are defined by event horizon. Each node

maintains its own local horizon and global horizon is the minimum of all local horizons.

Once a node crosses the local horizon it broadcasts its local horizon to other nodes.

Breathing time Bucket algorithm may suffer from lot of synchronization and possibility

of not enough events getting processed in a cycle [12].

2.2.3 Breathing Time Warp Algorithm

The time warp algorithm and the breathing time bucket algorithm suffer from exactly

opposite drawbacks. The time warp algorithm woks with high risk by anti-message

cascading system and on other hand the breathing time algorithm suffers much in terms

of synchronization by holding back the messages. The breathing time warp combines

these two algorithms and tries to overcome these drawbacks.

11

In this algorithm at the start of the cycle, events are sent out by a time warp algorithm

taking risk and hence anti-message may be required if rollback takes place. A ‘Nrisk
’

factor is defined in ‘speedes.par’ to the specify number of events to be allowed with risk.

After that the logic is switched to a breathing warp bucket algorithm, where new events

are stored in an auxiliary queue and messages are held back. Now events which are rolled

back do not need to send anti-messages as the messages were never released. At some

time, the Global virtual time is updated to commit all the events and send the messages.

2.2.4 Past implementations of Distributed Simulation and Time Warp Algorithms

Frederick Wieland, Eric Blair, and Tony Zukas have presented a case study to implement

parallel distributed simulation using SPEEDES. This paper concentrates on building a

simulation model for National Airspace System (NAS) to study the average delay

experience by aircraft from the beginning airport to the destination airport. NAS can be

defined as a collection of airports, airfields, airspaces, the network of air routes

connecting them and the system of navigation aids, radar sensors, and air traffic control

that support flight through the Unites States.

This model is called as DPAT. The Simulation model was designed and

developed explicitly to explore speed-up through parallel execution. It contains airport

and sectors as data objects, solely to store the data and rest of the objects as event objects

to execute the logic.

12

Figure 2: Software Architecture from DPAT, shown as SPEEDES diagram

This model was validated against NASPAC and other similar models of NAS. It was run

on 3 SUN SPARC stations 2 of them consisting of 4 processors each and the other one

having 1 processor. Despite the low granularity, use of networked workstations and

relative lack of look-ahead, SPEEDES managed to extract speedup from the model. It

was also observed that significant speedup was achieved by the Breathing Time Warp

(BTW) protocol, which is a mixture of the fully optimistic Time Warp (TW) protocol and

the risk-free Breathing Time Bucket (BTB) protocol [4].

13

2.3 What is SPEEDES

SPEEDES stands for Synchronous Parallel Environment for Emulation and Discrete-

Event Simulation. It is an Object Oriented distributed discrete-event simulation

framework developed in C++. SPEEDES executes discrete-event simulations in parallel

by distributing the objects on the participating nodes/processors in the simulation. This

feature is called as parallel simulation. SPEEDES can also implement High Level

Architecture (HLA) federations of simulation.

2.3.1 Features of SPEEDES

SPEEDES provides a rich Object-oriented approach for developers to model and simulate

various systems. As SPEEDES is a distributed discrete event simulation framework that

allows distribution of various objects over multiple processors and co-ordinates the

simulation activities among various objects that are distributed, it allows a simulation to

perform optimistic parallel processing on high performance computers or network of

different nodes [17].

SPEEDES provides interfaces for developing external modules. These modules

provide functionalities that allow interoperability between various simulation systems

and tools that will make sure the globally distributed simulation executes efficiently.

External modules connected to a SPEEDES simulation control time advance of the

simulation, receive information about simulation state and invoke events in the

simulation. External modules can also be used to display the simulation status and

14

provide inputs through hardware to control the simulation.

15

SPEEDES Server

Figure 3: SPEEDES External Module

SPEEDES is HLA compliant. HLA stands for high level architecture, which was

developed by the defense industry for supporting reuse and interoperability across large

number of simulation models. HLA is the general purpose architecture for simulation

reuse and interoperability which provides a gateway for communication between a

federation of simulator’s/federates [20]. Federation is a set of simulations, a common

federation object .model and supporting infrastructure, which are used together to form a

larger simulation model. Federate is the member of federation, used as one point

attachment to the infrastructure [14].

16

Federate
Simulation

Federate
Simulation

Federate
Simulation

Runtime Infrastructure (RTI)

Federate
Simulation

Federate
Simulation

Federate
Simulation

Runtime Infrastructure (RTI)

Figure 4: High Level Architecture

2.3.2 Simulation Object Decomposition

SPEEDES provides an advanced feature called Load balancing. This feature enables the

user to balance the objects that require more processing on a faster processor, leading to

increase in run time performance.

The distribution of objects in a SPEEDES simulation can be done in two ways;

Automatic Object Placement and Manual Object Placement. Automatic Object Placement

is done by two in-built algorithms called SCATTER and BLOCK. The SCATTER

algorithm distributes objects like distributing cards in a card game. BLOCK distributes

the objects evenly across the processors.

SPEEDES uses kind id for allocating the objects to different nodes. Kind ID is a

unique ID starting at 0 for each kind of object. For the block algorithm, it calculates the

total number of simulation objects, which can be placed on each node evenly. For

example if we have 10 simulation objects with 3 nodes, then each node will receive 3

objects and last object will be allocated to the node next to the node where last simulation

object was allocated.

Table 2: Block Decomposition

Kind ID 0 1 2 3 4 5 6 7 8 9

Node 0 0 0 0 1 1 1 1 1 1

The Scatter algorithm uses the card deal method for object distribution. The distribution

starts at the node after the node where last object was allocated. So in the same above

example each node will be allocated an object one after other.

Table 3: Scatter Decomposition

Kind ID 0 1 2 3 4 5 6 7 8 9

Node 0 1 2 0 1 2 0 1 2 0

There is a third decomposition method called File Driven Decomposition. In this

decomposition, the user can specify in a file the allocation for each object on each node,

17

giving more control to the user.

2.3.3 Rollback Feature of SPEEDES

SPEEDES can execute the DES model in parallel by distributing the objects on various

nodes. Each node processes the events assigned to it, which may change the state of

object, and/or schedule an event in past on some other node. To accommodate this

change the already executed event on that node must be rolled back to bring the object in

the past state. This can happen when one of the CPUs on which the simulation is

distributed is relatively slower that other. In this case when the slower node schedules an

event on a faster node, this event can be in the past time in since for faster node. This

necessitates the faster node to roll back to that time state. The basic rule that can be

followed is “If the value of variable in the simulation object changes as the result of

processing an event, then that variable needs to be rollback able” [5].

18

Last Processed Event

Unprocessed Events

19

Figure 5: Synchronization by rollback in PDES (From SPEEDES Manual)

To support the rollback feature SPEEDES provides built in rollback able data types.

These data types are similar to data types in C++. By adding word “RB_” to the primitive

data type in C++, SPEEDES rollback able data types are built. For example “int” in C++

is “RB_int” in SPEEDES, “double” in C++ is “RB_double” in SPEEDES. During

simulation execution if a simulation object is rolled back then these variables on

simulation objects are returned to their old values. SPEEDES provides rollback able

integers, doubles, strings, void pointers, Booleans, Streams, binary tree, hash tree, lists,

priority trees, and dynamic pointer arrays.

Last Processed Event

Node 0

New Scheduled

Event

Node 1

Unprocessed Events Erroneous Events

CHAPTER 3: METHODOLOGY

3.1 Introduction

The main objective of this thesis is to convert a procedural Arena Space Shuttle model

into an Object Oriented SPEEDES environment. The created model was required to be

tested for distributed technology in SPEEDES. In the initial preparation stage the

requirements of the new model were formulated from the Arena model. The model in

Arena was challenging as it was built in the currently outdated Arena 3.0 version. This

model had to be studied and understood thoroughly before start of development.

SPEEDES

Software Agent

NASA Shuttle Flow Model

Decision-Maker
User Interface

VTB Host

1

5

Figure 6: From Procedural to Object Oriented…

20

 A stepwise approach was followed to convert the complete model into SPEEDES. The

Arena model was broken down into smaller modules to better understand the behavior of

the various entities and processing objects. Breaking the Arena model into smaller

modules helped in classifying the objects required to form an infrastructure for

developing the entire “NASA Space Shuttle Model” into SPEEDES. It took 7

versions/stages to convert the complete model from Arena to SPEEDES. In each stage

some new modules were added and enhancements were done to the existing modules. At

the end of each stage, we validated the SPEEDES model against the Arena model and

documented the results. So finally we had complete models in SPEEDES and Arena 5.0.

In this chapter different stages of development of the SPEEDES model are

discussed in detail. Each stage talks about the new modules and enhancements done to

the existing modules. Unified Modeling Language package Rational Rose had been used

to draw UML diagrams during the development.

3.2 Using UML during development

UML stands for Unified Modeling language. The UML is a modeling language for

specifying, visualizing, constructing, and documenting the artifacts of a system intensive

process [6]. It is the industry-standard modeling language for specifying and

documenting both data and processes in software systems, created by OMG (Object

Management Group).

 UML provides different aspects of the systems under study. In this thesis UML is

21

been used from formulating the requirements of desired model. Following are the

important types of UML diagram from UML aspect:

3.2.1 Class Diagrams

Class diagrams are widely used to describe the types of objects in a system and their

relationships. Class diagrams model class structure and contents using design elements

such as classes, packages and objects. Class diagrams also display relationships such as

containment, inheritance, associations and others [8].

Figure 7: Example Class Diagram

Class diagrams were used to model the interaction between the classes. Class diagrams

22

can explain which classes are inherited included in side the class under study.

3.2.2 Activity Diagram

An activity diagram is another way to describe use case behavior, focusing on how the

behavior can be broken down in functions, internal to the system or system part. The

activity diagram describes in what order different functions should be carried out and, if

they are optional, under what circumstances the functions should be invoked [9].

Figure 8: Example Activity Diagram

23

Similar to the class diagrams, activity diagrams were especially very helpful in

understanding the logic of events and activities involved with the event. Activity

diagrams depict classes involved and scope of that stage. So it is a measure of how much

transfer to SPEEDES has been completed.

3.2.3 Sequence Diagram

Sequence diagram is one of the possible diagrams to choose from in UML for simulation.

Sequence diagram focus on describing the sequences of message interactions between

communicating entities. In this thesis Sequence diagrams were used extensively to model

sequence of event execution on respective objects.

Figure 9: Example of Sequence Diagram

24

As SPEEDES model was to be run in distributed environment, component diagrams were

also drawn to understand the architecture of the system to run the model on multiple

computers. As mentioned before, this is a very detailed model. Hence each component

cannot be shown in one diagram. Hence, in each stage newly added components are

concentrated in the diagrams. In the next sections development in each stage is described

and newly added modules are listed.

3.3 Stage I

The entire model developed in Stage I was named as “Version 1.” It was proof of concept

for SPEEDES. Previously SPEEDES had been used for military simulation and this was

the first time SPEEDES was used for industrial purposes like shuttle hardware flow. This

version consisted of only one hardware element - the orbiter, which would only go

through the major processes that take place on a shuttle as it completes a flight. Each

processing object contains many processes/servers. Executing version 1 on a single

processor and multiple processors were major accomplishments in this model. The results

were identical with that of the Arena model. This proved that SPEEDES models provided

consistent results whether running on one or more than one processor.

25

SPSimObj

26

Figure 10: Hierarchy of classes

In this version there is one entity (shuttle) and eight processing objects, which were

reviewed and implemented. These modules are:

Table 4: Classes Added in Stage 1

Orbiter Processing Facility (OPF) Launch pad (launch) On orbit (orbit)

Kennedy Space Center (KSC) Mate de-mate (MDM) Global

Route Palmdale Shuttle

Shuttle On OrbitLaunch KSC

Global Palmdale

OPF

Base class

MDM

Entity Process

Resources &

variables

Landing &

process
Scrub logic

Mate de-

mate logic

Route

Op f_P rocess ing

Pad process ing

Launch

Orbiting

Landing Palm dale_Proc
ess ing

IF FLigh t> 8

Figure 11: Activity diagram for Stage 1

Version 1 modeled the basic shuttle routing. 1 shuttle was created and routed to OPF,

Launch Pad, On Orbit, and back to KSC. The flights made by the shuttle are counted and

when the shuttle completes 8 flights, it is sent to Palmdale for service. This version

demonstrated the capability of SPEEDES to implement basic components of industrial

simulation like server, entity, routes, and stations. So this model served as the base

needed to develop the platform for the future complexity and sub processes that needed to

be modeled.

27

3.4 Stage II

It is focused on the sub-processes involved in each processing object that was modeled in

Stage I and scaling the model with more hardware elements/entities and processing

objects. The classes created in stage 1 were refined, and more attributes and methods

were added to model the detailed functionality. In each stage SPEEDES was more and

more explored to model the complex logic. More objects were then classified by

distinguishing the entities and the processing objects.

In this version the model was created and run with 4 shuttles. Although the new

entities were never modeled as a separate class, there were instances of the same class

“shuttle”; for every entity/instance there was a separate set of state variables assigned.

For example, the engine of orbiter was assigned a primary variable called “engine’. If a

new entity was to be created, a new instance of the class shuttle was declared with

different sets of state variables.

28

Orbiter Initialization

OPF Logic

After Landing Logic

Mate Demate LogicDFRCPalmdale Logic

On Orbit Logic

Scrub Logic

Record

<<include>>

Server

<<include>> <<include>>

Resource

<<include>> <<inc lude>> <<include>><<include>>

<<communicate>>

Figure 12: Stage 2 Class Diagram

Initialize

entry/ create shuttle
do/ assign properties
exit/ route to OPF

OPF

do/ OPF process
exit/ route to launch

Launch

do/ PAD process
do/ launch?
do/ scrub
exit/ route to orbit

Orbit

do/ assign flight no.
do/ end of day?
do/ delay
exit/ route to KSC

Landing

do/ KSC process
do/ 8th flight?
exit/ route to OPF
exit/ route to palmdale

Palmdale

do/ palmdale process
do/ set flight no.
exit/ route to OPF

Figure 13: Activity Diagram for Stage 2

29

3.5 Stage III

SPEEDES can distribute or parallelize simulations to computers across networks such as

LAN, WAN, or even the Internet. The processing speed of these nodes can be very

different, which makes synchronization important. It could happen that a particular value

needed by a process A is generated by another process B. So it is important that process a

requests the value on or before the time process B generates it. This cannot be guaranteed

since the various nodes are computers with different configurations and hardware. In

order to accomplish this, the server uses two types of events: Rollback and Commit.

Rollback is done when the data requested by process A has already been generated by B.

So the server now asks process B to Rollback to the time where it had generated the value

needed by A. Rollback ensures that process B generates the same values from the

Rollback to the time before it did the Rollback. This makes sure that other processes

which are dependent on B are not affected. Commit is done when all the processes

dependent on B are in a state in which they do not require any value from process B, say

after a point t in time. So the server will do a Commit at point t. Once a Commit is given,

the system cannot Rollback to a point beyond t. Hence, to make a process Rollback-able,

the events must also be Rollback-able, i.e. the occurrences of say event E should have the

same distribution before and after the Rollback.

Arena has a large variety of random number generators built in, so do this model.

These random numbers servers as the backbone of any simulation model to bring a

stochastic nature. Hence to build the same kind of model in SPEEDES various kinds of

30

random number generators were required, and these random numbers needed to be

rollback able. SPEEDES has some basic random numbers like Uniform and Normal built

in. Therefore, we added several random generators Rollback-able to SPEEDES. The

algorithms for the Gamma, Lognormal,, Weibull, Triangular, Continuous, Discrete, and

Johnson were written in C++ using SPEEDES library and were validated by fitting the

output curve of these random number generators in Arena’s input analyzer tool. This was

a very important addition to enhance the SPEEDES.

Table 5: Logics Added in Stage 2

Scrub logic On Orbit logic Landing logic

Mate De-Mate logic DFRC logic Detailed Palmdale logic

In scrub logic the shuttle is checked against different probabilities for weather conditions,

shuttle technical conditions etc. And if shuttle goes through all these probabilities then it

is launched. In the On Orbit logic, the shuttle is checked against different probabilities for

failure and if the launch is successful, the shuttle routes in orbit for the generated Time in

Orbit. After landing logic decides the path of shuttle. If the shuttle has completed 8

flights, then it is sent to Mate de-mate logic and then to Palmdale for service, otherwise it

is routed to OPF to prepare for the next flight. In mate de-mate logic, the shuttle is

attached to a plane and transported to Palmdale. In Palmdale logic different shuttles and

servers are modeled to bring Palmdale processing. Finally DFRC logic was added.

31

DFRC is alternate landing location and with some probability a shuttle can choose DFRC

as landing site. When modeling in SPEEDES, all these modules were defined in separate

classes i.e. S_MDM, S_DFRC etc.

3.6 Stage IV

The addition of more classes to this environment has been planned and will include the

different visualization environments. Visualization is a very important feature of modern

simulation modeling environments. The investigation of different visualization paradigms

continues. There are many visualization tools available. However, for space operations

among the most sophisticated tools are the Real-Time Graphics Engine (RAGE) from

White Sands Missile Range, EDGE from Boeing Autometric, and customized

environments using JAVA 3D and the Virtual Reality Modeling Language (VRML) and

other extensions using the extensible Markup Language (XML), such as X3D, Web3D,

and Xj3D [19]. Figure 6 shows the development of multiple windows (one for each

Shuttle) using JAVA 3D and VRML Objects and manipulated from different computers

using SPEEDES.

32

Figure 14: JAVA 3D Environment and VRML Object

In this version the detailed OPF was modeled into modules OPF Single Queue, OPF

Logic and OPF Assembly logic. The Shuttle is sent to Flow type logic from the OPF

single queue, to determine the next destination i.e. Pre-Palmdale flow, Post Palmdale

Flow normal OPF logic. This is decided on the number of flights the shuttle completed

after the last servicing. When the shuttle is routed to OPF logic, it is dismantled into

different parts for further processing. These parts are Engine, FRCS, Left OMS, and

Right OMS. These parts were modeled as separate objects. The Engine shop and HMF

were modeled as classes for processing of these parts. In the engine shop, after server

process resource was released at a later stage. This complicated logic was implemented.

After processing of all part is complete, the shuttle is assembled back in OPF assembly.

33

In this class the shuttle object waits for matching with other parts. When a shuttle is to be

sent to Palmdale it goes through pre-Palmdale flow and after return it is routed through

post Palmdale flow. These logics were added in this version.

 Table 6: Logics Added in Stage 4

Initialization OPF Single Queue OPF Logic

OPF Assembly Logic Engine Shop HMF Logic

Pre Palmdale Logic Post Palmdale Logic VAB Logic

PAD A Logic Pad B Logic SRB Separation

ET Separation Retrieval Vessel Logic Flow Type logic

Shuttle model uses 2 launch pads Pad A and Pad B which were added in this version.

SRB and ET are separated from shuttle after launch one after another. Retrieval vessels

wait for SRB in and recover the SRB after launch. These logics were modeled by creating

separate classes. In stage 4 about 60% of Arena model was transferred into SPEEDES.

3.7 Stage V

Continuing with enhancements in version 4, new modules were added in version 5. These

new modules are VAB logic, MLP Park Site logic, Utah logic, Hanger AF logic, ARF

logic, ET logic, MLP logic, RPSF logic, and SRB stacking logic. After the VAB process ,

34

the shuttle waits in the high bay for the external tank, solid rocket boosters, and other

parts.

SRB recovered from the past flight are sent to Hanger AF (separate class) and

from Hanger AF it is transported to Utah. SRBs are serviced in Utah and brought back

for RPSF servicing in KSC. In RPSF the SRBs are further serviced and sent to the high

bay for assembly with motors. The External tank is created every 50 days and routed to

VBA port got joining the shuttle at high bay. After launch, the MLP (mobile launch pad)

is sent to the MLP site for processing and prepared for the next flight. The MLP is

delayed for various logics to occur and finally sent to the high bay for mating with the

shuttle.

Hence all these different entities i.e. SRB, ET, MLP are modeled as different

objects. These objects were created at the time of shuttle creation in a separated module

called ‘Other Element initialization’. Each of these logics is a combination of different

servers, decisions, and probabilities. While building the model in this stage, the

transporter functionality used in Arena was not developed in SPEEDES. Hence to

complete the logic, transporters were replaced by direct routing and later transporters

were added as a separate version. In this stage about 90% of final Arena model was

transferred into SPEEDES.

3.8 Stage VI

As mentioned earlier, using transporters, the distance functionality was not yet achieved

35

in SPEEDES. This version totally concentrates on modeling transporters in SPEEDES.

Transporters are used to transport an entity from one station to another. When the entity

needs to be transported from one station to another, it calls the transporter and waits on

the station. The Transporter when receives the call; starts from the beginning station and

reaches the entity station, and transports the entity to destination station of the entity. The

Transporter can travel with different speed depending upon the load it is transporting.

The delays occurring in this process are due to the transporter moving from its beginning

station to entity station, entity loading delay, transportation delay and finally unloading

delay. If a transporter is transporting another entity when called, then the calling entity

has to wait until the transporter becomes available. Each transporter works in between

some fixed stations and the distance between those stations is fixed.

There are total 6 transporters used in the Arena model i.e. ‘Tow’, ‘Trnsp’,

‘Crwlr’, ‘Vessel’, ‘EngineHyster’, and Train. In SPEEDES each of these transporter were

modeled as a separate class, with specialized functionality. Each transporter maintains its

current station and velocity as attributes. Each transporter is linked with a set of

distances. In SPEEDES these distances were maintained as two dimensional arrays and

each station was assigned a constant number for indexing in an array. When an entity

requires transportation, it adds itself to the queue of transporter, and after the transporter

becomes available, it is transported to the desired station. The delay is calculated by

extracting the distance between stations from the distance sets array and dividing by the

velocity of transporter. With addition of transporter the SPEEDES version was modeling

Arena version as close as 90%.

36

3.9 Stage VII

Arena posses a rich variety of random numbers distributions, and so does the Arena

shuttle model. To model the Arena shuttle model in SPEEDES, all the distributions used

in the Arena shuttle model needed to be developed in SPEEDES. So, new distributions

were developed using functionality provided in SPEEDES as a separate task with model

development. The new distributions were made rollback able to comply with the

SPEEDES framework and initialization, number generation mechanism in new

distributions was also made similar to SPEEDES. Testing and validation of new

distributions was performed using Arena Input analyzer.

37

Table 7: List of available Distributions and new Distributions in SPEEDES.

Distributions Available in SPEEDES New Distributions Developed

Uniform, Uniform Int, Uniform Double Lognormal Distribution

Exponential Distribution Triangular Distribution

Laplace Distribution Weibull Distribution

Rayleigh Distribution Gamma Distribution

Triangle Up, Triangle Down Johnson Distribution

Beta Distribution Discrete Distribution

Gaussian Distribution Continuous Distribution

Density function Distribution

Cauchy Distribution

The major task in version 7 was to use these distributions in the model and generate

random numbers similar to the Arena model. By addition of new random number

generators in this version, version 7 was exactly representing the Arena shuttle model;

hence 100% conversion was achieved.

To run any model of Discrete-Event Simulation, some runtime parameter need to

be specified. To specify these parameters an input parameter file was created. In this file

simulation parameters like Simulation Time, Speed were specified as well as shuttle

model specific parameters like Number of Shuttles, Number of Pads, Number of Engines,

38

and Number of Replications were specified. By changing shuttle specific parameters,

new scenarios could be created without actually going into the code. The testing of

generated model was performed and results are documented in next chapter.

3.10 Summary

In this chapter the stages of creation of the shuttle model were explained. Developing the

shuttle model in SPEEDES was an iterative process. The next chapter describes the

validation and testing performed with created the SPEEDES shuttle model.

39

CHAPTER 4: VALIDATION AND TESTING OF SHUTTLE MODEL

4.1 Introduction

This chapter presents the validation and verification results of the SPEEDES shuttle

model against the Arena shuttle model. The validation was conducted at each stage of

development. Different scenarios were run with the validated model and the results are

presented here.

4.2 Verification and Validation

In each stage of the development, the SPEEDES shuttle model was validated with the

corresponding Arena model. This helped to debug the system from the start of

development. Due to validation of the model from the beginning, very few errors were

encountered at the end of development.

Each model was validated against the variable ‘No of flights completed’, because

the original Arena model was validated against same variable. SPEEDES does not

provide all the random number generators which Arena use. To work around this problem

a stream of 100 random numbers, of required distribution, was generated and used in the

SPEEDES model. The Generated SPEEDES model and the Arena model for each stage

were run for 10 years with 30 replications. The averages of the above mentioned variable

40

were compared for the Arena and SPEEDES models. Following table documents the

results.

Table 8: Validation results in different stages

 Run Time Base Time

Units

Replications Arena SPEEDES

Stage 2

(with 1

shuttle)

10 years Days 30 40.16 42.88

Stage 3 10 year Days 30 954.30 958.39

Stage 4 10 years Hours 30 2279.7 2285. 57

Stage 5 10 years Hours 30 1748.97 1753.45

Stage 6 10 years Hours 30 62.633 64.56

4.3 Tools Used for Testing and Validation

Different tools were created and used to conduct extensive testing of the SPEEDES

Shuttle Model. These tools included Parameters files and Perl scripts used to create and

test different scenarios. These tools made it possible to run several replications, with

changing parameters, without user interruption.

41

4.3.1 Using Parameter Files

The figure 15 shows the parameters file used for configuration setting of the SPEEDES

Shuttle Model. The file is divided into two sets of parameters. The first set called

‘SpeedesServer’ is used to specify the parameters for server configuration. It specifies the

default port number, turns the statistics ON and assigns a group name to the simulation.

Port number is used to open the channel for communication between the processors

during the distributed simulation. Group name helps to run different models at the same

time on same nodes. The second set of parameter sets general parameters required for

simulation run such as synchronization algorithm, number of nodes in the simulation, and

simulation time in seconds. These parameters help to run different scenarios of the

simulation model.

Figure 15: Parameter file to set configuration of server

42

4.3.2 Using Perl Scripts for Automating the Modal Execution

Perl script is used to automate the model execution with multiple replications. Different

Shuttle Model variables such as Number of shuttle, PADS, Engines can be specified in

this script. The script generated a random number for seed for each replication. Warm-up

period for statistics collection can also be specified in this script. The output of this script

is a par (parameter) file which is used by SPEEDES Shuttle Model. Using Perl script the

model execution could be automated. For each simulation run/replication a separate par

file is generated with new seed, by the Perl script

Figure 16: Perl Script for Automating the Model execution

.

43

4.4 Final Verification and Validation

The Model is verified to make sure that it represents the logic correctly. Generally

verification is performed with Animation if provided. Since SPEEDES does not have

animation capabilities, the created shuttle model had to be verified by walking through

the complete model step by step. The model was run in debug mode and many output

statements were place to track the execution path. The Model was verified to represent

correct logic.

Verification of any simulation model involves walking through the complete

model to make sure that it represents the correct logic.

During development of this model a library of required random numbers was created.

The library had all the required distributions for the Space Shuttle Model. This random

number library was included in final version 7 and the model was validated against the

original Arena model. For final validation, the SPEEDES and Arena model were run for

10 years and 100 replications. A confidence interval around the no. of flights variable

was built and the mean of SPEEDES model fit in that interval [10].

44

Table 9: Validation result of final SPEEDES model (10 years)

 Arena SPEEDES

No. of

replications

30 30

Run time 10 years 10 years

Mean 68.93 69.78

Std. Deviation 1.51 2.02

Conf. Intl

Upper limit

71.89 -

Conf. Intl

Lower limit

65.96 -

Chart Comparison for 10 years

60

65

70

75

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Replication#

#o
f F

lig
ht

s

Arena
Speedes

Figure 17: Comparison Chart 1

45

In the table in can be seen that for 10 years, the Arena model gives an average of 68.93

and SPEEDES model gives the average of 69.78. Also, the mean from SPEEDES is

falling within 95% confidence interval of the Arena model.

Table 10: Validation result of final SPEEDES model (5 years)

 Arena SPEEDES

No. of

replications

30 30

Run time 5 years 5 years

Mean 35.53 37.33

Std. Deviation 1.008 0.66

Conf. Intl.

Upper limit

33.55 -

Conf. Intl

Lower limit

37.50 -

46

Chart Comparison for 5 years

30

32

34

36

38

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Replications#

#o
f F

lig
ht

s
Arena
SPEEDES

Figure 18: Comparison Chart 2

Similarly in this test, the mean of no. of flights from the SPEEDES model falls in

between the upper and lower confidence interval of the Arena model. From these testing

examples it can be said that the SPEEDES model had been validated and can model the

shuttle operations. Different scenarios can be created with the verified SPEEDES model,

which will be covered in next section.

4.5 Testing Different Feature of SPEEDES

After verification and validation of the SPEEDES Shuttle model, more observations were

done to check whether the Shuttle Model developed in SPEEDES performs better and

provide the same results when configured with advanced features. These observations are

not in the scope of this thesis, and more analysis should be done in the future work. These

47

features included load balancing, object distribution algorithms, and rollback feature

4.5.1 Testing the Block and Scatter Algorithms

In a distributed simulation environment, objects which require high CPU usage should be

distributed across available CPUs to achieve a balanced CPU load and better run-time

performance. The placement of simulation object on respective nodes can have a huge

impact on processor or node load balancing. SPEEDES provides two automatic

decomposition methods called block and scatter. Scatter algorithm decomposition

distributes the simulation objects with consecutive kind ID’s located on different

consecutive nodes. On the other hand, the block algorithm starts off by calculating the

number of simulation objects that can be placed on each node evenly [5].

The generated Shuttle Model was tested to implement the bock and scatter algorithms.

The following snippet of code shows the method of implementing the scatter and block

algorithms.

DEFINE_SIMOBJ(S_OPF, S_OPF::GetNumObjs(), SCATTER);

DEFINE_SIMOBJ(S_OPF, S_OPF::GetNumObjs(), BLOCK);

Figure 19: Implementing Scatter and Block Algorithms

The block and scatter algorithms were tested and expected results were obtained.

48

4.5.2 Testing the Load balancing with File Driven Algorithm

In a simulation that contains simulation objects which are tightly coupled and will tend to

roll each other back if they reside on different nodes, manual placement can achieve

better simulation performance results. The load balancing can be performed to a good

extent using a file driven algorithm. In this algorithm, the object placement can be

specified on each node manually. Figure above shows the parameter file used for testing

this feature using the created SPEEDES Space Shuttle Model. It shows different

simulation objects can be placed on desired nodes using their simulation managers.

Figure 20: File Driven Object Placement

4.5.3 Testing the Roll backing Feature

When processing a simulation in parallel, one or more of the CPUs on which the

49

simulation is distributed may run ahead in time relative to other nodes. An event on a

simulation object being processed on a slower node may schedule an event for a

simulation object being processed on one of the faster nodes. Events that were processed

on the faster simulation object need to be reprocessed when an event in the past occurs.

The event that was processed may have to change the state of the simulation object on the

fast node, and those changes must be undone [5].

Rollback in SPEEDES is achieved with rollback variables. But to efficiently run

the simulation with rollback, SPEEDES recommends using the rollback variables only to

store state variables. To test this feature the SPEEDES Simulation Model was run with

excessive rollback variables (used between function) and optimum rollback variables.

The result was, the optimum simulation model rollback variable took less execution time

than the other. Hence, different SPEEDES features were successfully tested with the

developed SPEEDES Shuttle Simulation Model.

4.6 Running Different Scenarios with SPEEDES Model

Different experiments were performed on the SPEEDES Space Shuttle Model. The

distributed simulation feature of SPEEDES was tested in these experiments. The

following section explains different experiments performed with single and multiple

computers on the validated model.

50

4.6.1 Running SPEEDES Shuttle Model on a Single Computer and Multiple
Computers

An experiment was performed on the SPEEDES Shuttle Model by running the model

with 2 and 3 shuttles separately. The Model was run for 10 years and 30 replications.

Following table presents the result of testing.

Table 11: Running SPEEDES model with 2 and 3 shuttles

 2 Shuttles 3 Shuttles

Mean 32.96 54.6

Std. dev 0.182 0.723

Same experiments were conducted by running the SPEEDES shuttle model on multiple

computers. These computers were connected through LAN network with one server and

multiple nodes and same results were obtained.

4.6.2 Testing with NASA AMES

In an experiment in NASA ARC, the distributed simulation capabilities of SPEEDES

were tested by running different experiments by distributing the 41 objects of the STS

Process Flow in different numbers of computers. These computers were located in

different geographical locations:

51

1. The SPEEDES server was installed at the University of Central Florida (Orlando,

Florida)

2. Two simulation nodes in two different computers at NASA ARC (Ames,

California) were set up.

Figure 21: Parallel/Distributed Simulation at NASA ARC

Server

System at this Room

Node 1 Node 2 Node 3
UCF Local Network

The simulation interactions among the different objects produced the original results

52

using a single computer. The gains are in speed and the utilization of unique resources

attached to each node. The environment proved even more useful with the future

additions to the original simulation model. These additions allowed for different

resolution levels and the study of safety and human-behavior modeling issues. This

experiment demonstrated the Distributed Simulation feature of SPEEDES to NASA.

4.7 Summary

The generated SPEEDES Shuttle Model was validated against the Arena Space Shuttle

Model. Results of the validation are presented in this chapter. After validation, different

scenarios were created to test the features of SPEEDES. The SPEEDES Shuttle Model

was run with different no. of shuttles, distributions, and run length. This validation and

testing was one of the major accomplishments in this project.

53

CHAPTER 5: CONCLUSION AND FUTURE RESEARCH

5.1 Conclusion

This thesis is the proof of concept of using SPEEDES for a large Distributed Simulation

Model. Converting the model from Arena to SPEEDES was a stepwise process with a lot

of challenges. The legacy Arena model was very detailed. This took 7 stages in

SPEEDES to convert the complete model. The model was validated against the Arena

model successfully. Different experiments were performed to test the features of the

SPEEDES. These experiments proved the capabilities of SPEEDES for distributed

simulation. Though SPEEDES was being used for defense simulations, this thesis proved

its usability for industrial simulation and space simulation opening a new horizon for

SPEEDES applications.

5.2 Contributions

This project had lot of contributions from teams in University of Central Florida and All

Points Logistics. Karthik Narayanan contributed by developing the Random number

Generation library. This library proved to be very much useful in modeling all the

random numbers available in Arena. Mario Marin initiated this project by developing a

mini-shuttle model in Arena. This model served as proof of concept SPEEDES. Amit

54

Wasadikar was consulted as an expert in Arena, and helped to further break down the

model into different stages.

5.3 Future Research

This thesis has proved that SPEEDES has potential to be a dominant Discrete-Event

Simulation Environment. Since SPEEDES support Distributed Simulation and High

Level Architecture (HLA), it can be made web enabled. Following are the possible

research topics which can help enhance SPEEDES applications.

5.3.1 Developing Predefined Components

SPEEDES can achieve wide acceptance if predefined components for simulation are

built. While developing this model, the code for common functionalities was repeated

due to unavailability of such simulation classes. Hence future research in this area can be

done by developing a Discrete-Event Simulation library with classes for modules such as

server, transporter, decision etc. Using these predefined classes, the simulation model in

SPEEDES can be generated in a shorter period.

5.3.2 Developing the Visualization Architecture

SPEEDES is a powerful Discrete-Event Simulation environment but it lacks visualization

capability. Visualization will help to understand the simulation models better. Following

diagram shows the proposed architecture for visualization, for SPEEDES.

55

Figure 22: DES Visualization Architecture

As shown in the figure, the proposed architecture is divided in three modules. The first

module will include the SPEEDES simulation engine, the second module will be the

Integrated Simulation Visualization Data Structure, and the third module will be

animation software built using advanced graphical languages. The simulation animation

could be run either On-Line or Off-Line. In On-Line approach, the SPEEDES model will

56

write the simulation output in some files, which will be connected to the Integrated

Simulation Visualization Data structure. This Data structure will be read by animation

software to show online animation. In the Off-Line approach simulation output from the

SPEEDES model will be stored on a database and then executed by the simulation

software through an Integrated Simulation Visualization Data Structure. With this

architecture, simulation and animation can be run on the same computer, different

computers in network or on remote machines through a web browser [18].

5.3.3 Integrating the Spaceport Models

Since SPEEDES supports High Level Architecture (HLA), the existing Spaceport models

can be integrated with SPEEDES. These Spaceport models include Model of Space

Shuttle Operations, Spaceport Safety Modeling and Optimization, Generic Simulation

Environment for Modeling the Future Launch Operations, Range Process Scheduling

Tools etc. In future, if these models are built in SPEEDES, they can be integrated with

each other using HLA [11].

5.3.4 Developing Java Graphical Interface

The SPEEDES models can be further enhanced by integrating with a Java Graphical

Interface. As shown in the figure, the SPEEDES simulation models can be coupled with

geographical animation. A SPEEDES simulation will talk to the central SPEEDES

server. The SPEEDES server integrated with a Java State Manager and Java GUI will

57

produce the animation with physical location of objects.

58

Figure 23: Java Graphical Interface

Speedes

Simulation

Speedes

Server

Java GUI

Java-to-C++

Java State Mgr

State Mgr

Simulation Current
Objects w/ Simulation

Current
Positions

Time

LIST OF REFERENCES

1. Paruchuri Amith, Wasadikar, Amit, Marin Mario F., Dr. Sepulveda Jose A., Dr. Rabelo

Luis (2004) “Parallel Discrete Event Simulation of Space Shuttle Operations Design,

Development and Performance using SPEEDES”

2. Cates, G., Mollaghasemi, M., Rabadi, G., and M. Steele (June 2002), “Simulation

Modeling and Analysis of Space Shuttle Flight Hardware Processing,” World

Automation Congress, Orlando, Florida.

3. Ball Peter (May 1996) ‘Introduction to Discrete Event Simulation,’,2nd DYCOMANS

workshop on ‘Management and Control : Tools in Action’

http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html

4. Wieland Frederick, Blair Eric, Zukas Tony (1995) “Parallel Discrete-Event Simulation

(PDES): A Case Study in Design, Development, and Performance Using SPEEDES”

MITRE Corporation 7525 Colshire Dr. McLean, VA 22102 8186-7120-3/95 $04.00 ©

IEEE

5. SPEEDES User’s Guide Prepared by Metron, Inc. (30 April 2003), Prepared for: The

Joint National Integration Center

6. Alhir Sinan Si “What is the Unified Modeling Language (UML)?” (1998)

http://home.comcast.net/~salhir/WhatIsTheUML.PDF

7. Compton Jeppie, Rabelo Luis C., Marin Mario F. (September 30, 2003) “Spaceport

Models Assesment FY03 Report”, All Points Logistics (APL) Research Report.

59

http://www.dmem.strath.ac.uk/~pball/simulation/simulate.html
http://home.comcast.net/~salhir/WhatIsTheUML.PDF

8. Braun David, Sivils Jeff, Shapiro Alex, Versteegh Jerry (Retrieved on 12/01/04) “Unified

Modeling Language (UML) Tutorial website”.

http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/class.htm

9. “Making Better Standards website” (Retrieved on 11/25/04)

http://portal.etsi.org/mbs/Languages/UML/uml_example.asp

10. Law, A.M., and Kelton, D.W., (2000), “Simulation Modeling and Analysis”, McGraw-

Hill, Inc.

11. Compton J., Rabelo L., Marin M. (2003). “Spaceport Model Assessment FY03 Report”

All Points Logistics (APL) group

12. SPEEDES API reference Manual, Prepared by, Metron Inc, Prepared for The Joint

National Test Facility

13. Rabelo Luis, Sepulveda Jose, Marin Mario, Paruchuri Amith, Wasadikar Amit,

Nayaranan Karthik (2004) “Parallel Discrete Event Simulation of Space Shuttle

operations” Proceedings of the 2004 Winter Simulation Conference.

14. Sepúlveda José, Rabelo Luis, Park Jaebok, Riddick Frank, Peaden Cary (2004)

“Implementing The High Level Architecture in the Virtual Test Bed” Proceedings of the

2004 Winter Simulation Conference.

15. Xia Zheng (2000) “Flight Simulation on Parallel Computers” Master’s thesis at

Unicersity of Central Florida

16. Berry Orna, Lomow Greg (September 1986) “Speeding up distributed simulation using

the time warp mechanism” Proceedings of the 2nd workshop on making distributed

systems work.

60

http://pigseye.kennesaw.edu/~dbraun/csis4650/A&D/UML_tutorial/class.htm
http://portal.etsi.org/mbs/Languages/UML/uml_example.asp

17. Lu Tainchi, Lee Chungan, Hsia Wenyang, Lin Mingtang (July 2000), “Supporting large-

scale distributed simulation using HLA”. ACM Transactions on modeling and computer

simulation.

18. Perumalla Kalyan S., Park Alfred, Fujimoto Richard M., Riley George F. (June 2003),

“Scalable RTI-based paralleled simulation of networks”. Proceedings of the 17th

workshop on parallel and distributed simulation.

19. Kreutzer W. (1986) Systems Simulation – “Programming Styles & Languages” Addison-

Wesley

20. Loo Boon Thau, Huebsch Ryan, Harren Matthew, “Parallel discrete event simulation in

Titanium”

http://www.cs.berkeley.edu/~boonloo/classes/cs267/final/cs267paper.pdf

61

http://www.cs.berkeley.edu/~boonloo/classes/cs267/final/cs267paper.pdf

	Speedes: A Case Study Of Space Operations
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	CHAPTER 1: INTRODUCTION
	1.1 Preface
	1.2 Distributed Simulation
	1.3 Virtual Test Bed Project
	1.4 SPEEDES Engine
	1.5 Summary

	CHAPTER 2: LITERATURE REVIEW
	2.1 What is Discrete Event Simulation
	2.2 What is Distributed Discrete-Event Simulation
	2.2.1 Comparison between PDES and SDES
	2.2.2 Time Warp Algorithm and Breathing Time Buckets
	2.2.3 Breathing Time Warp Algorithm
	2.2.4 Past implementations of Distributed Simulation and Tim

	2.3 What is SPEEDES
	2.3.1 Features of SPEEDES
	2.3.2 Simulation Object Decomposition
	2.3.3 Rollback Feature of SPEEDES

	CHAPTER 3: METHODOLOGY
	3.1 Introduction
	3.2 Using UML during development
	3.2.1 Class Diagrams
	3.2.2 Activity Diagram
	3.2.3 Sequence Diagram

	3.3 Stage I
	3.4 Stage II
	3.5 Stage III
	3.6 Stage IV
	3.7 Stage V
	3.8 Stage VI
	3.9 Stage VII
	3.10 Summary

	CHAPTER 4: VALIDATION AND TESTING OF SHUTTLE MODEL
	4.1 Introduction
	4.2 Verification and Validation
	4.3 Tools Used for Testing and Validation
	4.3.1 Using Parameter Files
	4.3.2 Using Perl Scripts for Automating the Modal Execution

	4.4 Final Verification and Validation
	4.5 Testing Different Feature of SPEEDES
	4.5.1 Testing the Block and Scatter Algorithms
	4.5.2 Testing the Load balancing with File Driven Algorithm
	4.5.3 Testing the Roll backing Feature

	4.6 Running Different Scenarios with SPEEDES Model
	4.6.1 Running SPEEDES Shuttle Model on a Single Computer and
	4.6.2 Testing with NASA AMES

	4.7 Summary

	CHAPTER 5: CONCLUSION AND FUTURE RESEARCH
	5.1 Conclusion
	5.2 Contributions
	5.3 Future Research
	5.3.1 Developing Predefined Components
	5.3.2 Developing the Visualization Architecture
	5.3.3 Integrating the Spaceport Models
	5.3.4 Developing Java Graphical Interface

	LIST OF REFERENCES

