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Service Oriented Simulation using Web Ontology 
   
 
Abstract: COTS simulation packages (CSPs) have proved popular in a wider industrial setting. Reuse of 

simulation component models by collaborating organisations or divisions is restricted however by the same 

semantic issues that restrict the inter-organisation use of other software services. Semantic models, in the 

form of ontology, utilized by a web service based discovery and deployment architecture provides one 

approach to support simulation model reuse.  Semantic interoperation is achieved using domain grounded 

simulation component ontology to identify reusable components and subsequently loaded into a CSP, 

modified according to the requirements of the new model, and locally or remotely executed. The work is 

based on a health service simulation that addresses the transportation of blood.  The ontology engineering 

framework and discovery architecture provide a novel approach to inter-organisation simulation, 

uncovering domain semantics and providing a less intrusive mechanism for component reuse.  The 

resulting web of component models and simulation execution environments present a nascent approach to 

simulation grids.    

 

Keywords:  COTS Simulation, Web Services, Ontology, Model Integration, Semantic Web.  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/43093894?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

1. Introduction 

 

Modeling and experimenting with business systems is well supported by 

Commercial-off-the-shelf (COTS) simulation packages (CSPs) and offers an interactive 

and visual model development environment. Industrial simulation practitioners 

extensively use CSPs such as Simul8, Witness, AnyLogic, AutoMod and Arena to model 

their simulations. These packages allow reuse of standard simulation components like 

workstations, queues, conveyors, resources etc. and thereby provide the building blocks 

that facilitate the creation of larger models. As models grow larger and more complex the 

prospect of simulation model reuse is appealing as it has the potential to reduce the time 

and cost incurred in developing future models (benefiting from the experience embedded 

within existing models). In addition to reuse, the simulation owner is able to separate 

development and user groups, allowing models to be developed and validated by one 

group and then used to specify simulations by another group (Bortscheller & Saulnier, 

1992). In this paper we look at the discovery and import of CSP-created models across 

organizational boundaries in the context of supply chains, enabling the development and 

deployment of model components in collaborating organisations. In its current form, the 

approach does not allow model information hiding between enterprises and contrasts with 

the distributed simulation approach to model reuse which allows an organisation to hide 

model specific information and data from the other participants. A short discussion on 

supply chains and the distributed simulation approach follows with additional detail 

provided in Section 2. 
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Supply Chain Management (SCM) consists of a series of tasks – such as 

manufacturing, transport and distribution - undertaken by organisations who aim to 

deliver products to their customers. Simulation of the supply chain can identify 

manufacturing bottlenecks; resources required for timely delivery, adequate stock levels 

for distribution etc. and help improve the performance of the underlying supply chain. 

From a simulation perspective, each organisation forms part of the supply chain and 

develops models in order to simulate their part of the supply chain using CSPs (Fujimoto, 

2000). Assuming that the necessary individual simulation components are made available 

the question is how do we link them together? Distributed simulation offers one such 

solution. Distributed simulation can be defined as the distribution of the execution of a 

single run of a simulation program across multiple processors (Taylor et al., 2001). It 

allows each organisation to run its model in its own site (thereby encapsulating model 

details within the organisation itself) and participating with other sites through 

information exchange using distributed simulation middleware (Fujimoto, 1999). Boer et 

al. (2002), Mertins et al. (2000) and Mustafee & Taylor (2006) are examples of 

successful distributed simulation using CSPs. There is a growing body of research 

dedicated to creating distributed simulation with CSPs and the High Level Architecture 

(HLA), the IEEE 1516 standard for distributed simulation. In an attempt to unify this 

research COTS Simulation Package Interoperability Product Development Group (CSPI-

PDG), a Simulation Interoperability Standards Organisation (SISO) standardization 

group began operating in October 2004 (http://www.sisostds.org/), producing reference 

models in 2010.  

 

http://www.sisostds.org/
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Figure 1 - Simulation Vision 

 

Our vision is a web of simulation component (SC) models and execution 

environments that are accessible to the practitioner (Figure 1). New models are selected 

from best-practice components and deployed on CSP hosting hardware.  In order to 

realise such a vision the user must first be able to identify suitable components. Current 

representations of web components are predominantly syntactic in nature lacking the 

fundamental semantic underpinning required to support discovery on the emerging 

semantic web (Bell et al., 2005). Semantic models, in the form of ontology, utilized by 

web service discovery and deployment architectures provide one approach to support 

simulation model reuse. Improved component reuse through ontological model use has 

already been proposed in simulation (Miller et al., 2006). Importantly however, this has 

focused on the simulation type and not the domain being modelled.  A further concern 

when considering COTS Simulation packages is that intrusive activities are not possible. 

Packaged software of this type allows only import or export capabilities. The tools of the 

semantic web provide a means to construct external description of the CSP models.  This 
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external description, or ontology, can then be used to support the reuse of simulation 

components. Consider a scenario where a large multinational organisation uses CSPs to 

model many of its business activities.  Two human processes (interactions) are 

undertaken when a simulation is required – the creation of the model from parts and its 

subsequent execution.  In order to fully utilise the capabilities within the organisation we 

propose that model parts can be reused more effectively, better utilising the codified 

expertise within distinct models.  In order to support the reuse, methods for describing the 

models and semantic discovery are proposed.  The system supports the discovery of 

specific model components and their loading into a local or remote COTS simulation 

package.   Semantic interoperation is achieved through the use of a simulation component 

ontology to identify required components at varying levels of granularity (including both 

abstract and specialized components).  The ontology is derived from existing CSP 

Simulation Components and is contrasted to current simulation ontology. 

 

Evolutionary construction of domain grounded SC ontology, a central theme of this 

paper, improves semantic discovery of SCs.  In addition, when combined with hard 

simulation semantics (such as state etc.), concepts from both vocabularies provide 

improved matching precision.  The paper is organised as follows.  Section 2 presents a 

summary of pertinent literature including a summary of semantic web and ontologies. 

Section 3 describes the DESC ontology, including the process undertaken to engineer it.  

Section 4 covers the software tools that use the DESC ontology – the semantic search and 

component integration software.  Evaluation of research artifacts is carried out in Section 
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5 and the paper concludes with a summary of the work presented and ideas for future 

development. 

 

2. Related Literature 

The reuse of software artifacts has been a frequent topic around software 

engineering; with the people, process and technology implications (and modeling 

support) highlighted by Jacobson et al. (1997) and more recently with standardization of 

components within software product lines (Bosch 2002).   Designing for reuse, although 

a good idea is not directly relevant to this research where a heterogeneous world of 

existing models is already assumed – requiring a technical focus on existing artifacts.  

Business process model reuse (including specific model fragments) has similarities to this 

research however.  Markovic et al. (2008) present an approach that makes use of business 

process ontology (containing business process language including process goals and 

roles). The key differentiator with regard to this research is the ontology being utilized 

and its development (i.e. a focus on the language of the simulation, business and 

technical domains as opposed to specific modeling languages).  Consequently, this 

research focuses on the semantic web approach and its applicability to the description and 

discovery of simulation components.  Therefore, two communities of research are 

relevant to the work being undertaken and presented here are: (1) Semantic web services 

and (2) the current approaches to description and reuse of components in simulation.  

Both provide an insight into the decoupling of component models from their execution 

environment and are used for both discovery and synthesis. Semantic search has been 

applied with a common reliance on knowledge – referred to as service ontology. 

Ontology itself is a specification of a representational vocabulary for a shared domain of 
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discourse – with definitions of classes, relations, functions, and other objects (Gruber, 

1993). It is an explicit specification of a conceptualization. The term is borrowed from 

philosophy, where an Ontology is a systematic account of existence (Gruber, 1993). In 

borrowing the term ontology and placing it into an engineering discipline, two distinct 

usage types emerge in the creation of these specifications:  The theoretic (deductive) 

approach and the pragmatic (inductive approach) (Geerts & McCarthy, 1999). It is the 

pragmatic approach that is adopted in this paper – focusing on the engineering of 

knowledge from existing CSP models.  

 

The semantic web provides structured knowledge and reasoning about a web of 

models and the grid promises a vision of CSPs that are able to execute newly discovered 

models. The semantic web (Berners-Lee et al., 2001) aims to uncover knowledge about 

domains so as to better support discovery, integration and understanding of resident 

objects.  Semantic web services (SWS) refine this vision (McIllraith et al. 2001) making 

web services “computer-interpretable, use apparent, and agent-ready” (p.46).  With a web 

of services comes the need to describe explicitly and in a form able to be read by 

computer.  

 

Current intersections between web services and the semantic web have delivered a 

diverse body of research.  The agent community (Gibbins et al., 2003; Martin et al.,1999; 

McIllraith et al., 2001) has recognized the benefit of ontology if computer-to-computer 

web architectures are to be achieved.  Combining service and domain ontology is seen as 

a key to achieving service synthesis (Chen et al., 2003).  Work on service ontology is 



8 

 

currently around OWL-S and WSMO groups (with service annotation being carried out 

by WSDL-S and USDL groups) (Verma & Sheth, 2007). Recognizing the original work 

and subsequent progress by the DAML Consortium and others, attention has moved from 

the ontology languages to specific application to services.  A discussion of semantic web 

services would not be complete without coverage of the OWL-S upper ontology model 

(WSMO is similar in a number of areas). The OWL-S high level model describes the 

relationship between the differing service decompositions (see Figure 2) (Ankolekar et 

al., 2001; Chen et al., 2003). A resource provides a service that is represented by the 

ServiceProfile, described by the ServiceModel and supported by the ServiceGrounding.  

Generally, the profile describes the service in a high level way (enough to discover the 

service), the model describes the detail of how it works and can be used to: (1) perform 

more in-depth analysis of whether the service meets a need, (2) to compose service 

descriptions from multiple services to perform a specific task, (3) during enactment, to 

co-ordinate activities from participants and (4) to monitor execution (Ankolekar et al., 

2001).  The service grounding details practical access and has converged with WSDL. 
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Figure 2 - OWL-S Upper Ontology 

 

  

OWL-S (and WSMO) (Lara et al., 2004) provide generalized models for describing 

services.  Others have identified the need for specialized common concepts within a web 

service context (Cardoso & Sheth, 2003; Dahmann & Morse, 1998; Lara et al., 2004; 

Paolucci et al., 2002), one example being quality of service.  These concepts represent 

glue homogenizing a wealth of asymmetrically described web resources. New issues 

become pertinent in a semantic web of “great number of small ontological components 

consisting largely of pointers to each other” (Hendler, 2001, p.31).  This semantic web 

service environment, with recognition of the need to combine service and domain 

ontology, warrants research that identifies practical approaches for practitioners to 

combine the service ontology with existing or new domain ontology.  The foremost 

question in semantic service orientation is how best this should be undertaken in the 

context of simulation. 
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Transporting this vision to a simulation environment with a web of simulation 

components has several challenges.  Combining distributed SCs models into a new model 

requires that they are first discovered. Consequently, explicit, computer readable 

knowledge is required for such search tasks.  Knowledge in the form of ontologies has 

already been applied to simulation (Fishwick & Miller, 2004) with work by the 

University of Florida on simulation translation and University of Georgia on a taxonomy 

of simulation objects called DeMO.  DeMO provides a precise description of simulation 

models with hard semantics. In order to realize a vision for SCs similar to that of SWS 

requires that the domain being simulated is represented explicitly (an OWL ontology – 

W3C, 2005). The DeMO ontology (Fishwick & Miller, 2004) is an upper ontology that 

details events, activities and processes.  Hard semantics work perfectly if all stakeholders 

adopt the single model. If this is not the case, and with only the CSP SCs, a 

transformation directly to such a model will likely miss tacit domain concepts that may 

help any subsequent SC search activity.  

 

The eXtensible Modeling and Simulation Framework (XMSF) is defined as a set of 

composable standards, profiles and recommended practices for web-based modeling and 

simulation. XMSF prescribes the use of ontologies for the definition, approval and 

interoperability of complimentary taxonomies that may be applied across multiple 

simulation domains (Bhatt et al, 2004). In military modeling and simulation, the study of 

ontology is recognized as important in developing techniques that would allow semantic 

interoperability between simulation systems and to this effect ontology of C2IEDM 
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(Command and Control Information Exchange Data Model) has been created to further 

studies on enabling interchange of data between two or more systems (Tolk and Turnitsa, 

2004). Work is also underway that creates an ontology for physics which would represent 

physics-based model semantics in modeling and simulation. The intension is to capture 

the concepts of physical theories in a formal language so as to support various forms of 

automated processing that are currently not supported (Collins, 2004). Ontology for the 

representation of synthetic environment have also been proposed (Bhatt et al., 2004) - 

sedOnto (Synthetic Environment Data Representation Ontology).  Finally, ongoing work 

is looking into establishing an ontology for the Battle Management Language (BML), an 

unambiguous language to command and control forces and equipment (Tolk & Blais, 

2005). 

 

Current approaches to distributed simulation rely on tightly coupled SCs.  The 

proposed looser approach to reuse warrants a basic understanding of current distributed 

simulation approaches.  Distributed simulation has been defined as the distribution of the 

execution of a single run of a simulation program across multiple processors (Fujimoto, 

1999, 2003).  In 2000, the IEEE published a standard approach to distributed simulation 

called the IEEE 1516 standard The High Level Architecture (HLA) (IEEE, 2000, 2003) 

(updated in 2006 – see Figure 3).  In the HLA, a distributed simulation is called a 

federation, and each individual simulator is referred to as a federate.  HLA Runtime 

Infrastructure (RTI) software provides services to federates in a manner which is 

comparable to the way a distributed operating system provides services to applications 

(US DOD, 1999). These RTI services enable federates to communicate with one another, 
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as well as to control and manage the simulation.  The HLA is composed of four parts: a 

set of compliance rules (IEEE 1516, 2000), the Object Model Template (OMT) (IEEE 

1516.2, 2000), the Federate Interface Specification (FIS) (IEEE 1516.1, 2000), and the 

Federate Development Process (FEDEP) (IEEE 1516.3, 2003).   

 

Figure 3 - Functional view of an HLA federation (from Dahmann & Morse, 1998) 

 

The rules are a set of ten basic conventions that define the responsibilities of federates 

and their relationship with the RTI.  Of these, five rules relate to the federation and five 

to the federate. These rules relate to HLA OMT representation of federation and federate 

objects, transfer of object ownership among federates, federates’ management of local 

time, among others. 

The FIS is an application interface standard for HLA distributed simulation 

middleware which defines how federates interact within the federation, and is 

implemented by an RTI (i.e. federates communicate with one another via an RTI).  FIS 

organises the communication between federates and the RTI into six different service 

groups (US DOD, 1999). 
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 Federation Management: RTI Calls for creation and deletion of federation; joining 

and resigning of federates from the federation; and creation and realization of 

synchronization points. 

 Declaration Management: Calls pertaining to publication and subscription of 

interaction class (interaction classes describe events and comprise of parameters) 

and object class (object classes describe persistent objects and comprise of 

attributes).  

 Object Management: Calls that relate to sending and receiving interactions, 

updating object class attributes. Also services that relate to instance registration 

and instance updates on the object producers’ side, and instance discovery and 

instance reflection on the object consumers’ side. 

 Ownership management: RTI calls for divesting or acquiring ownership of object 

and / or individual object attributes. It also supports ownership queries. 

 Time Management: RTI calls required to implement time management 

mechanisms and to advance the federate simulation clock. 

 Data Distribution Management: RTI calls for advance RTI routing of data. 

 

A distributed simulation approach to model reusability faces a number of 

challenges. Firstly, a lack of widespread demand for distributed simulation in industry 

has meant that the CSP vendors have not currently incorporated distributed simulation 

support into their products. Consequently, the organisations that want to use this 

approach do not have readymade solutions. Secondly, research projects that aim to create 

CSP based distributed simulation do not have access to product source code and are 

limited to using the functionality offered by the specific vendor. Thirdly, execution time 
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of a distributed simulation can sometimes be slower than standalone simulation, typically 

because of overly granular parallelization and associated network overheads (Gan et al., 

2005). In order to progress, these issues have to be resolved before industry can fully 

benefit from the application of CSP based distributed simulation. In the meantime it is 

worth investigating alternative approaches that enable tactical supply chain simulation 

across organisational boundaries. Our discovery and import approach to model reuse, in 

the context of CSPs, offers one such alternative to existing distributed simulation. By 

discovery we mean that individual simulation models (or model parts), which are created 

by organisations to model their activity in the supply chain, are identified from within an 

inter-organisational repository (or Web) of models. The selected models are then loaded 

into a CSP, modified according to the requirements of the new model and executed. We 

believe that our approach at enabling CSP based supply chain simulation has a lighter 

touch with fewer technical barriers. It also requires minimal CSP vendor intervention 

when compared to the distributed approach.   

 

3. Simulation Component Ontology 

 

3.1 Requirement for Semantic Search 
 

The globalisation of many organisations and industries often result in a 

fragmentation of the heterogeneous knowledge produced by resident domain experts.  In 

order to synthesize the most appropriate knowledge in a model, the best available model 

parts must first be found.  Typically, these will come from a number of domain experts or 

ad-hoc selection from a local model repository.  Syntactic or taxonomic approaches, e.g. 

list of concepts or components, limit the precision at which SCs can be related to the 

domain (e.g. relating to physical entities or recognizable processes), due in part to a 
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tendency to generalize.  For example, components that may not fit neatly into their 

prescribed category or overly general synonyms may be used to describe components. 

 

3.2 DESC Ontology 
 

The Discrete Event Simulation Component (DESC) ontology resulted from two 

distinct research activities: (1) The transformation of CSP models into OWL and 

Resource Description Framework (RDF) ontology files and (2) semantic search scenarios 

being carried out against the OWL files.  Snapshots of DeMO and DESC ontologies are 

presented in figures 4 and 5.  The differences are apparent with DeMO focusing on the 

component properties and DESC on the component in relation to the domain (including 

the components technical and contextual specification).  Links between the two models 

are achieved through referencing the DeMO Model, Component, Concept or Mechanism 

from a DESC:SimulationConcept when it relates to a specific model component.  

Practically, the DeMO ontology is imported into Protégé in order to use its classes as 

properties of the DESC ontology (for example, when describing a business concept that is 

a specific state or activity in the simulation) and also imported into the component 

descriptions themselves.  The DESC components are described using Turtle as RDF 

triples (see http://www.w3.org/TeamSubmission/turtle/) as this provides an end-user 

means to add and amend description. For example, the vocabulary for component 

description is detailed in the DESC OWL ontology with each simulation component (e.g. 

exampleComponent1 in Figure 4) described using this (and DeMO) language in RDF.  

RDF triples can be seen in the description of two example components 1 and 2 – one 

focusing on the business domain and the other on the technical.  In this example, two 

triples state that, exampleComponent1 uses blood of type A+. 

http://www.w3.org/TeamSubmission/turtle/
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Figure 4 - DESC-Blood Service Domain and DESC-Blood Service Component Ontology 

 

 
 

Figure 5 - DeMO Ontology Structure 

 

@prefix DESC:       <http://site/ontology/DESC_Blood.owl#> . 
@prefix DeMO:       <http://site/ontology/DeMO.owl#> . 

 
:exampleComponent1 
DESC:SimulationConcept DeMO:p1:EventOrientedModel . 
DESC:SimulationConcept DESC:NHS . 

DeMO:ModelConcept “UseBlood” . 
DESC:Blood “A+” ; 
. 

. 
:exampleComponent2 
DESC:ComponentName “TransportBlood” . 
DESC:RegionalTransport “Area1” . 

DESC:ComponentLocation “URI of Model fragment” . 
DESC:ComponentSource “Simul8” . 
DESC:ComponentVersion “1.5” . 
DESC:ComponentSourceModel  “Model1:v1.4:12/01/2008” . 

DESC:ComponentContext DESC:BloodTransport ; 
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The ontology was created using the Protégé tool from Stamford University (with 

OWL plugins) (http://protege.stanford.edu/).  A decision was made to ground the 

ontology in existing SCs as opposed to using particular service ontology such as OWL-S 

or WSMO.  Approaching the modeling in this way allows evolution and integration of 

underlying concepts described in a number of existing models.  It should be noted that the 

SCs are modeled within the DESC ontology and reference external ontology (e.g. DeMO 

for simulation specifics and others).  The DESC ontology is focused on the domain, both 

business and technology specific domain concepts. DeMO and DESC provide a robust 

means to describe simulation components using simulation, domain and technology 

specific language in a relatively unconstrained manner.  This relative freedom in 

description (subclassing DESC:SimulationConcept in the most part) enables greater 

flexibility when searching. 

 

3.3 Ontology Engineering 
 

A number of activities were carried out in order to transform CSP models into 

ontological form – namely OWL and RDF files.  The process included the decoupling of 

the SCs from the model by placing discrete component models into a web based 

component library (URI accessible).  The activities carried out, in framework form, are 

detailed in Table 1.  The framework evolved as each CSP model was deconstructed and 

transformed into ontology classes (including relations to dependent or related classes). 

Realization of the need for a DESC ontology resulted from this process – which included 

the adoption of DeMO for hard component semantics.  

 

 

Activities Description Impact 

http://protege.stanford.edu/
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Component 

Extraction 

Specific components are extracted to form distinct 

models. These are stored in the DESC library (a 

standard web server). 

CSP models 

SC Models  

Component  

Typing 

A new class is added to the OWL ontology to 

represent the SC.  Similar classes are grouped under 

a type.  

OWL Classes 

Component 

Dependency 

Models 

Extended DeMO properties are used to define 

dependencies between services. E.g. 

StateDependency. 

 

Reference DeMO concepts when describing business 

properties (e.g. Matching of blood has a DeMO state 

property defining the result). New classes and 

properties are created for previously implied 

activities etc. (e.g. BloodTransport is created from an 

analysis of the various transportation activities ).   

 

The RDF description is driven in part from the 

component library – using the derived OWL 

concepts in DeMO and DESC. 

OWL Properties 

 

New OWL Classes 

and properties implied 

from the model (both 

process and physical 

entity) 

 

 

 

New RDF component 

ontology  

Ontology 

Testing 

The finalized ontology is loaded into the SEDI4G 

server and several search tasks are undertaken. 

DESC-BloodService 

OWL & RDF 

Ontology files 

Table 1 - Process for deriving semantic content from CSP Models  

 

The ontology engineering process resulted in DESC-BloodService OWL and RDF 

files (seen in Figure 2).  Searching the ontology resulted in more components being 

returned as concept inferencing was able to traverse the concept tree and return additional 

suitable candidates (e.g. various blood transportation alternatives).  The process 

undertaken to engineer the domain simulation ontology provides the basis for subsequent 

modelers to reference and extend the domain ontology; thus achieving richer search 

results and evolving large component ontology.  The ontology engineering process 

systematically analyses the CSP model, of which Figure 6 is an example. 
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Figure 6 –Simul8 Health Service Model 

 

 

4. Discovery and Import of Simulation Components 
 

Our discovery and import approach aimed at CSP model reuse enables us to (1) 

semantically search for the desired simulation models and (2) parse and import the 

identified models into a simulation package. For our demo application we have used the 

CSP Simul8.  Simul8 enables users to rapidly construct accurate, flexible and robust 

simulations using an easy-to-use visual modeling interface (Bell et al., 2007). However, 

our discovery and import architecture has the potential to support any CSP that allows an 

external program to perform basic operations such as opening the CSP and loading a 

model through its Component Object Model (COM) or XML import interface. COM is a 

Microsoft technology that allows different software components to communicate with 

each other by means of interfaces (Gray et al., 1998). The discovery component of our 

architecture (described in section 4.1) can be used with very little change to support other 
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CSPs. The parse and import component, however, would require implementation of a 

CSP specific parser (described in section 4.2). 

 

4.1 Design of Component Discovery System  
 

The component discovery system is an extension of the SEDI4G architecture (Bell 

& Ludwig, 2005).  Extending the application to support SC descriptions as well as grid 

services required only minor configuration changes to support the new OWL DESC 

ontology.  The semantic discovery system shown is Figure 7 comprises a set of web 

services. 

 

 
 

Figure 7 – Component Discovery Architecture 

 

The discovery process begins by identifying the web services and ontology required 

to carry out semantic search. The choices are directed by the ontology size and service 

placement on the network (represented by the grey flexible services and data in Figure 7). 
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Thus, Step 1 involves the selection of which discovery control service (SDCS), 

knowledge base and matching service best fit the user requirement – specified as text 

strings. This information is sent to SDCS together with the search parameters (2). SDCS 

then calls the knowledge base (KB) using the matching service (SMAS) (itself based on 

OWLJessKB (http://edge.cs.drexel.edu/assemblies/software/owljesskb/ )) (3) that in turn 

loads the KB and rules (5). The matching is carried out and returned to SDCS for use in 

one of the client components (4). The SDCS service can optionally provide the resource 

properties, the dynamic state of each service, alongside the service choices (6).  Finally 

the returned components are displayed in a web start client (SCSV holding the 

component options on the server side) allowing selected components to be deployed into 

the CSP.  The deployment is simple in nature, loading server side XML into the CSP.  A 

more robust solution would provide transformation capabilities similar to those 

undertaken at the University of Florida (Fishwick & Miller, 2004). 

 

The matching algorithm is semantic and uses an ontology and a reasoning engine. 

The assumption in this paper is that an ontology is a catalogue of the types of “things”; 

derived from existing simulation models and including simulation, domain and 

technology specific elements. Types in the ontology represent the predicates, word 

meanings, or concept and relation types of the language when used to discuss topics in 

the domain (Bell & Ludwig, 2005) – in this paper these are SCs.  

 

To summarize, the matching algorithm comprises two steps; the initialization of the 

knowledge base and the search. During the initialization phase the ontology is loaded, 

http://edge.cs.drexel.edu/assemblies/software/owljesskb/
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transforming ontological classes into facts that have rules applied using the Rete 

algorithm (Forgy, 1982). During the search inferences are made from the facts (using Jess 

queries) identifying semantically matched SCs. For example, when searching for a 

component to simulate a blood collection – several alternatives are returned that model 

different processes and relate to different locations etc. 

 

4.2 Design and Operation of the CSP Model Parser and Importer  
 

The discovery architecture detailed in the previous section is used by the CSP 

Model Parser and Importer (CMPI) software to conduct a semantic search for existing 

models. The search is conducted by calling a web service defined in the component 

discovery architecture, which takes a search string as a parameter and returns an 

enumeration of uniquely identified name (URN) and corresponding unique resource 

identifier (URI) for each model returned by the matching algorithm. CMPI then provides 

the user an option to (1) download the models into the local system for inspection or (2) 

import it directly into the new model being built through reuse of the discovered 

components. In case the user chooses option (1) the model can be loaded into the local 

system. The file downloaded is an XML representation of the Simul8 model which was 

discovered. If the user chooses option (2) the URN is passed as a parameter to yet another 

web service which returns the XML representation of the model as a SOAP attachment. 

The nature of this web service is synchronous and this allows the CMPI to block further 

execution of the code until the XML file has been received.  

 

The merging of the existing model parts (reusing the discovered model 

components) into new models requires a CSP specific parsing operation. For example, a 
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model fragment exported using Simul8 will need to be transformed in order import into 

another package.  Typically, both of the component models will be XML based. In this 

research we employ a crude parsing mechanism that transforms and combines a small 

sample of model formats. The result being a newly generated XML file is loaded into the 

CSP and the user is presented with a new model to work on. It should be noted that the 

text parsing mechanism is heavily dependent on Simul8 specific knowledge and has yet 

to be fully perfected. It is envisaged that (in future work) knowledge about packages 

could be described using ontology in order to automate this transformation process – 

seamlessly integrating model parts from a number of source systems. 

 

Two alternative CMPI implementations were carried out: (1) Servlet based and (2) 

COM based.  The Servlet approach provides remote access to the CSP – deploying an 

XML file for upload into Simul8 on a remote machine. The COM version of CMP 

software is written in Java and it uses the Simul8 COM interface to interact with a local 

Simul8 instantiation using Java Native Technology (Sun, 2003). CMPI invokes web 

service calls to communicate with the component discovery system. It also includes a 

CSP specific parser component which, as has been discussed in the previous paragraph, 

can be considered optional. The architecture and dependencies of CMPI is shown in 

Figure 8. 
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Figure 8 - Architecture of dependencies of CMPI 

 

 

Alternative approaches to loading the discovered SC model provide a flexible 

execution environment, supporting: (a) search, deployment and execution locally and (b) 

search locally and discovery/execution remotely.  The remote approach provides 

opportunities for Grid-enabling the simulation environment.  The grid aspects of the 

execution are beyond the scope of this paper and form part of ongoing research at Brunel. 

 

5. Evaluation of research artifacts 

 

The ontology files that resulted from the interpretation of a health related 

simulation model were deployed into the semantic discovery architecture.  All OWL files 

were placed on the same web server.  The DESC ontology now references one or more 

domain ontology.  The impact of this on the design is that the initial phase of ontology 

selection is more complex, with a larger choice of varying content.  With more OWL 

files the search has three options: (1) Load all ontologies and search them, (2) Load only 

those ontology referenced by the component ontology or (3) Load the ontology 
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references by a particular property of the a service ontology (e.g. a particular model type 

specified using DeMO ontology).  Re-tests using SEDI4G and a number of search 

scenarios identified performance decreases when moving from (1) to (2) or (2) to (3).  

The heuristics for filtering the search space are not part of this research, but may provide 

a useful direction for further research.  Performance is line with previous (non 

simulation) research into service discovery (Bell & Ludwig, 2005).  Topology decisions 

apply when deploying component models, as well discovery services, as opportunities for 

network optimization exist through the co-existence of service and ontology. The 

combined effectiveness of distributed semantic search and ontology engineering 

presented in this design needs discussion in terms of literature derived requirements 

(Paolucci et al., 2002; Trastour et al., 2001).  

  

 

Requirement Fulfillment 

 

High degree of flexibility and 

expressiveness  

 

Expressiveness is achieved through the 

combination of three distinct ontology types, 

covering: the overall simulation, simulation 

components and the domain.  Describing SCs 

precisely, in relation to other SCs and in relation 

to the domain improves expressiveness.  Existing 

approaches are either precise (DeMO) or as is the 

case with grid discovery – taxonomy focused.  A 

high degree of flexibility is achieved through 

distributing the discovery components , the SC 

models and the execution environments  across the 

network. 

 

 

Expression of semi-structured data  

 

The ontological approach supports semi 

structured data in that partial description of 
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component models  are allowed.  The 

interpretation process supports evolution in 

structure as new relations are exposed – adding 

structure to existing objects.  Support for this 

drove in part the design of the RDF based 

component ontology – allowing simplified end-

use description.  

 

 

Support for types and subsumption  

 

Domain analysis clearly supports typing – 

particular the sub-classification of specializations.  

The result is a rich, deep branch that is able to 

benefit for subsumption approaches to matching. 

 

 

Ability to express constraints  

 

Limited work on constraints is included in the 

framework.  The ‘object’ approach to ontology 

engineering allows constraints to be represented 

as ontological classes – and these are specialised 

as analysis progresses, e.g. HighSpeed Transport 

contains an implied constraint. 

 

False Positives and Negatives should 

be minimized  

 

Complex simulation models do not produce a 

small, compact language to describe SCs (unlike 

high performance computing where CPU Usage is 

well understood).  Precise description of SCs in 

relation to the domain and each other support the 

need for precision.  Observing the design artifacts 

and source models directed the focus on ontology 

engineering (proving more effective than a 

singular for on search algorithm optimization).  

The precision in component selection is increased 

as more terms are included in the search string, 

although reducing terms further supports SC 

browsing. 

 

The algorithm should encourage 

 

Honesty is out of the scope of this investigation.  
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honesty  The diversity of description is supported through 

clear transformation and grounding from source 

services.  Subsequent description of services 

using untruths is not restricted.  The approach 

does however support systematic analysis of the 

represented domain (in model form). 

 

 

Matching should be efficient  

 

The distributed nature of the SEDI4G system is 

more efficient than centralised discovery 

architecture.  Performance supports efficiency 

claims; especially through the use of 

heterogeneous network of ontology and search 

components.  The ability to deploy models across 

a number of execution environments provides 

run-time efficiency. 

 

Table 2 - SC Discovery Requirements 

 

Comparing the system (and ontology engineering frameworks) to current 

enterprise discovery (e.g. UDDI) the approach presented in this paper meets more of the 

requirements for matchmaking.   In contrast, a comparison to HLA is more problematic 

with the proposed approach attempting to radically shift ideas of integration and reuse to 

support on-the-fly reuse.  None the less, it is worth emphasizing that a semantic web 

service based approach to simulation model reuse has proved to be both less invasive and 

relatively easy to architect (as loosely couple infrastructural add-ons to existing 

simulation tools). 

 

6. Conclusion 

 

The paper presents a novel approach to CSP model reuse using a simulation 

component ontology and semantic search architecture – decoupling both model parts and 
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execution platforms.  Approaching the modeling of simulation components directs focus 

on the domain being modeled – allowing for the explicit description of simulation 

components in domain language.  In relating each component to a typed collection and 

each other enables the search process to better identify likely semantic matches when 

users search for existing models to reuse.  A COTS simulation package (Simul8) was 

used with models being transformed into OWL ontologies and then used by a web service 

based semantic search and component deployment architecture.  The research has 

demonstrated: (1) a new, lighter approach to CSP model reuse and (2) the benefits of 

semantic search to this field of research. 
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