
Clemson University
TigerPrints

All Theses Theses

12-2008

Application of Web Services to a Simulation
Framework
Matthew Bennink
Clemson University, mbennin@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized
administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Bennink, Matthew, "Application of Web Services to a Simulation Framework" (2008). All Theses. 500.
https://tigerprints.clemson.edu/all_theses/500

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_theses%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses?utm_source=tigerprints.clemson.edu%2Fall_theses%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_theses%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_theses/500?utm_source=tigerprints.clemson.edu%2Fall_theses%2F500&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Application of Web Services to a Simulation Environment

A Thesis
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science
Computer Engineering

by
Matthew Scott Bennink

December 2008

Accepted by:
Dr. Richard Brooks, Committee Chair

Dr. Adam Hoover
Dr. Christopher Griffin

Abstract

The Joint Semi-Automated Forces (JSAF) simulator is an excellent tool for military training

and a great testbed for new SAF behaviors. However, it has the drawback that behaviors must be

ported into its own Finite State Machine (FSM) language. Web Services is a growing technology

that seamlessly connects service providers to service consumers. This work attempts to merge these

two technologies by modeling SAF behaviors as web services. The JSAF simulator is then modeled

as a web service consumer.

This approach allows new Semi-Automated Forces (SAF) behaviors to be developed inde-

pendently of the simulator, which provides the developer with greater flexibility when choosing a

programming language, development environment, and development platform. In addition to new

SAF behaviors, this approach also supports any external component that can be modeled as a web

service. Furthermore, these services are often run over a network, which distributes the computa-

tional load across several computers. Finally, hosting copies of a single service on several machines,

a concept similar to file-sharing mirrors, offers an environment for load-balancing. This means if

several entities are running the same behavior, a single server does not perform the computation for

every entity. Instead, each entity is assigned to a specific server, increasing the quality of service

seen by the system.

A Web Services framework linking JSAF with several services is designed and implemented.

Suppression of Enemy Air Defense (SEAD) behaviors written in MATLAB and a behavior recogni-

tion system are integrated with JSAF. These behaviors and the recognition tool were developed by

other researchers, independent of this work. Results show that offloading computation to other ma-

chines is beneficial, especially when the simulation system is under heavy load. Preliminary results

also indicate that load-balancing performs much better than using a single server.

ii

Dedication

I dedicate this work to my loving wife and my family. Without them, I would not be where

I am. I am very grateful.

iii

Acknowledgments

I would like to acknowledge my advisor, Dr. Richard Brooks, for his continuing help and

constant support of my work. I further acknowledgement thank Dr. Adam Hoover and Dr. Christo-

pher Griffin for being a part of my committee.

This material is based upon work supported by, or in part by, the Office of Naval Research

Code 311 contract/grant number N00014-06-C-0022. The authors gratefully acknowledge this sup-

port and take responsibility for the contents of this report.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vii

List of Figures . viii

Acronym Table . ix

1 Introduction . 1
1.1 Motivation . 1
1.2 Research Objectives . 3
1.3 Overview . 3

2 Distributed Computing . 5
2.1 Client/Server Paradigm . 6
2.2 Peer-to-Peer Paradigm . 8
2.3 Remote Procedure Call Paradigm . 10
2.4 Distributed Object Paradigm . 12
2.5 Web Services and CORBA . 15
2.6 Distributed Computing in the Military Domain . 16

3 Distributed Simulation . 18
3.1 Standards . 18
3.2 Semi-Automated Forces . 25

4 Design and Methodology . 28
4.1 Design . 28
4.2 Methodology . 30

5 Implementation . 33
5.1 Web Services Development . 33
5.2 Support for Web Services in JSAF . 37
5.3 Integration of SEAD Behavior . 38
5.4 Integration of Behavior Analysis and Prediction System 39
5.5 Load Balancing . 40

v

6 Behavior Analysis . 42
6.1 Introduction . 42
6.2 Background . 42
6.3 Testing . 44

7 Performance Analysis . 47
7.1 Introduction . 47
7.2 Setup . 47
7.3 CPU Performance Analysis . 48
7.4 Network Load Analysis . 51

8 Load Balancing Analysis . 56
8.1 Introduction . 56
8.2 Benefits of Load-Balancing . 57
8.3 Drawbacks of Load-Balancing . 58

9 Conclusions . 61
9.1 Summary . 61
9.2 Discussion . 62
9.3 Future Work . 63

Appendix . 64

Bibliography . 77

vi

List of Tables

2.1 HTTP Request Methods . 7

3.1 DIS Protocol Data Units . 19

6.1 Normal flanking behavior . 45
6.2 Wide flanking behavior . 45
6.3 Non-flanking behavior . 45
6.4 Behavior coverage . 46

vii

List of Figures

1.1 Two simulations systems connected via HLA . 2
1.2 Web Services extending current system . 2

3.1 JSAF Screenshot . 26

4.1 System Design . 31
4.2 QoS Broker API . 32
4.3 Behavior Model API . 32

7.1 Performance Analysis Setup . 48
7.2 Response Times for WORKSTATION . 50
7.3 Response Times for LAPTOP . 50
7.4 Response Times for CLUSTER . 51
7.5 Response Times for LAPTOP with Slow Network . 53
7.6 Response Times for CLUSTER with Slow Network 55
7.7 Response Times for Slow LAPTOP . 55

8.1 Load Balancing Experiment Setup . 57
8.2 Benefits of Load-Balancing . 58
8.3 Heavily-Loaded Broker Service vs No Broker Service 59

viii

Acronym Table

ALSP Aggregate Level Simulation Protocol

CORBA Common Object Request Broker Architecture

DCOM Distributed Component Object Model

DIS Distributed Interactive Simulation

HLA High Level Architecture

JSAF Joint Semi-Automated Forces

QoS Quality-of-Service

RPC Remote Procedure Call

RTI Run-Time Infrastructure

SAF Semi-Automated Forces

SEAD Suppression of Enemy Air Defense

SIMNET Simulator Networking

SOAP Simple Object Access Protocol

W3C World Wide Web Consortium

WSDL Web Service Description Language

ix

Chapter 1

Introduction

1.1 Motivation

Military forces require extensive training to remain at a strong level of preparedness. How-

ever, complete training is not possible, especially in preparation for a war-time setting. Real combat

experience requires risking lives and consuming large amounts of resources. Human life should never

be available for trade, nor is it logical to spend millions of dollars in maintenance, fuel, and ammu-

nition costs. Modeling and simulation deliver a cost-effective solution for training a country’s armed

forces. One specific area of military simulation research is Semi-Automated Forces (SAF). SAF are

forces which behave according to some artificial intelligence (AI) behavior model. These behavior

models are commonly finite state machines. A SAF system simulates physical entities which follow

these behaviors. SAF systems are vital tools for battle commanders, often allowing them to explore

many different scenarios using digital maps and clickable units.

Earlier SAF systems commonly operated on a single supercomputer. Now, several SAF sys-

tems can be linked together to build one large SAF system over a network. For example, suppose the

US Marine Corps was running a SAF simulation in California and the US Navy was running a SAF

simulation in Maryland. Using the High Level Architecture (HLA) distributed simulation protocol

[1], these two simulation systems could interact with each other via HLA’s Run-time Infrastructure

(RTI), which means the entities inside each simulation system could interact with each other even

though they are not originally part of the same SAF system. See Figure 1.1.

This scenario may arise if the Marines were testing out new behaviors and needed an op-

1

Figure 1.1: Two simulations systems connected via HLA

ponent not involved with the behavior model development. One approach the Marines could take

is to build in all of the behavior models they plan to test before starting up their SAF system and

connecting to the Navy’s SAF system via HLA. However, what would happen if the Marines needed

to adjust their behavior model? They would need to completely shut their system down, rebuild

the executable, and start up the SAF system again. Then, they would need to reload the scenario.

Meanwhile, the Navy SAF system and its users are left to themselves.

Figure 1.2: Web Services extending current system

We propose to use Web Services to dynamically link behavior models to a SAF system.

Figure 1.2 gives an illustration of how we extend the current system. This approach would allow

behavior models to be modified on-the-fly without any need to shutdown and restart the system.

Furthermore, Web Services offers more flexibility for behavior development, by not restricting the

behavior to the language of the SAF system. Finally, these behavior models can be deployed to

several web servers. The extra deployment offers the advantage of balancing the load across several

2

servers, and also the possibility of choosing the faster server, similar to the concept of file-sharing

mirrors.

1.2 Research Objectives

The overall intent of this research is to develop a methodology based on Web Services for

integrating components, such as behavior models, with SAF systems. The components only interact

with one SAF system, and therefore it is unnecessary to include them as a separate federate in the

HLA design, which requires that the components interact through the RTI.

Included in this research are the following:

• Research and development of a design methodology for incorporating Web Services into a

distributed simulation environment.

• Implementation of a Web Services framework.

• Integration of components with JSAF, to include:

– two SEAD behavior models developed in MATLAB, and

– a behavior recognition application developed in Java

• Implementation of a load-balancing mechanism to improve system performance.

• Analysis of system performance under CPU loads and network delays with and without load-

balancing.

1.3 Overview

Chapter 2 covers important concepts and technologies related to distributed computing. An

overview of several distributed computing paradigms is included, as well as discussions of several

standards.

Chapter 3 provides an overview of distributed simulation, including a discussion of DIS and

HLA. An introduction to the Joint Semi-Automated Forces (JSAF) simulator is also given.

Chapters 4 and 5 provide a discussion of the design and implementation of a framework

combining JSAF with Java Web Services. This implementation allows JSAF to interface with

3

multiple applications, including behavior models. JSAF will be used to analyze these behavior

models and provide feedback for improvement.

Chapter 6 discusses the behavior recognition system as a proof of concept. The chapter

includes results from several experiments run with the behavior recognition system while it was

attached to JSAF.

Chapter 7 discusses results from the system performance analysis based on simulated CPU

loads and network delays.

Chapter 8 examines load-balancing and its tradeoffs.

Chapter 9 gives a summary of the work. It also provides a small discussion and suggests

future work.

4

Chapter 2

Distributed Computing

Distributed computing is computing over several networked computers, each having its own

processors and resources. Advantages of using distributed computing include resource sharing, scal-

ability, fault tolerance, and affordability. By sharing resources, a larger number of resources are

available for a particular process. Scalability is the ability to add or remove resources as neces-

sary. Fault tolerance is available since the process does not necessarily rely on a single computer.

Therefore, if one computer fails, the other computers can still function. Lastly, personal computers

are less expensive than ever before, and the World Wide Web infrastructure is a good, stable, and

affordable solution for connecting computers world-wide.

Several paradigms exist for distributed computing. Top among these are client-server, peer-

to-peer, remote procedure call (RPC), and distributed object paradigms. The client-server paradigm

is perhaps the most well-known and often used paradigm. Recently, peer-to-peer and RPC paradigms

have become popular. Peer-to-peer networks rapidly emerged due to their ability to share media

between several PCs without using a central repository. The RPC paradigm is the basis for Web

Services. The distributed object paradigm is the natural extension of the RPC paradigm to an

object-oriented architecture. Instead of calling a remote procedure, distributed object code invokes

a method on a distributed object. These paradigms vary by their level of abstraction. For example,

the client-server paradigm has a lower abstraction level compared to the distributed object paradigm.

The trade-off to a higher level of abstraction is lower run-time efficiency, which is due to the inclusion

of unnecessary features. Therefore, choosing the appropriate paradigm for a given task is important.

The following sections will explain the various distributed computing paradigms in more de-

5

tail. A survey of different standards will be provided for each paradigm. These standards will reflect

past and current work in the field. The Common Object Request Broker Architecture (CORBA)

and Web Services are most relevant to this work. CORBA is a distributed object standard, whereas

Web Services is more closely associated with the RPC paradigm. Although these two standards

arise from different paradigms, they can often be used interchangeably with minimal changes in the

system architecture. Therefore, a section will discuss the pros and cons of these two standards.

Finally, an overview of distributed computing in the military domain will be provided.

2.1 Client/Server Paradigm

The client/server paradigm is perhaps the most well-known paradigm for networked com-

puting. The architecture is very simple. There are two processes, a client and a server. The server

listens to and accepts requests, and the client issues requests and listens for responses. Many of the

more complex paradigms follow from the client/server paradigm. Several standards are available for

communicating between a client and a server. HTTP, FTP, and SMTP are well-known standards.

Structured Query Language (SQL) also operates within the client/server paradigm. A user may

send an SQL request to a database, and receive a response in the form of the requested data.

Hyper Text Transfer Protocol (HTTP)

The Hyper Text Transfer Protocol (HTTP) is a request/response standard between a client

and a server. Its use for transferring hypertext documents led to the establishment of the World

Wide Web. Development was coordinated by the World Wide Web Consortium (W3C) and the

Internet Engineering Task Force (IETF). The most used version is HTTP/1.1, which was published

in June 1999 as Request For Comment (RFC) 2616.

HTTP defines message formats for a request and a response. A request message is formatted

as follows:

• Request Line

• Headers

• Empty Line

• Option Message Body

6

HEAD Asks for the response returned by the GET method, but without the
message body. This is useful for obtaining meta-data without down-
loading the entire resource.

GET Requests a representation of the specified resource.
POST Submits data to the specified resource for processing. This may result

in the creation of a new resource or updating of an existing resource.
PUT Sends a representation of a resource.
DELETE Deletes the specified resource.
TRACE Echoes back the received request.
OPTIONS Returns the HTTP methods that a server supports. Servers do not

necessarily have to support all 8 methods.
CONNECT Converts the request connection to a transparent TCP/IP tunnel.

Table 2.1: HTTP Request Methods

All but the HOST header is optional. The request line is formed using one of eight request

methods. The request methods are available in Table 2.1. These request methods are sometimes

thought of as “verbs” that act upon resources. For example, one might GET a webpage document

or DELETE a music file. Web servers are required to support the GET and HEAD methods, but

OPTIONS is heavily recommended as well.

HTTP is a stateless protocol, meaning the server does not need to retain information about

users between requests. However, this forces developers to use alternative methods for storing a

user’s state. Several solutions exist including cookies, server-side sessions, hidden variables (used

with forms), and URI encoded parameters. Also, there are 2 methods for secure HTTP. The first

method is a URI scheme which signifies the browser to use SSL/TLS to protect traffic. The user

simply uses https: instead of http: in the URI. The second method uses a header field called

UPGRADE in the response message. If this message is received from a server, the client’s browser

then knows to use SSL/TLS.

Simple Mail Transfer Protocol (SMTP)

The Simple Mail Transfer Protocol is another protocol which defines several message for-

mats. The messages for SMTP are all clear-text. They are used to send information to a mail server,

which will route the mail to the proper recipients. As its name implies, SMTP is very simple. A

user can emulate an e-mail client by simply opening up a telnet session to port 25 of a SMTP server

and typing in clear-text commands. RFC 5321 defines the message formats for SMTP. There are

several other RFCs which extend SMTP to provide authentication, enhanced status codes, secure

7

SMTP, and transmission of large and binary Multi-purpose Internet Mail Extensions (MIME).

Structured Query Language (SQL)

Structured Query Language (SQL) is a database programming language. It mainly supports

the retrieval and management of data in relational database management systems. It also supports

creation and modification of database schema, as well as database object access control management.

SQL also includes a Call Level Interface (CLI) which accesses and manages data and databases

remotely. A common criticism of SQL is its lack of standardization. While there are defined

standards, they are not necessarily implemented the same across all vendors; this leads to ambiguous

commands from one vendor to the next. With regard to the client/server paradigm, the database is

analagous to the server. SQL in some respects defines message formats for accessing the database,

similar to HTTP’s message formats for accessing resources.

2.2 Peer-to-Peer Paradigm

The peer-to-peer paradigm is an extension to the client/server paradigm. Where the

client/server paradigm has a dedicated server and client, the peer-to-peer paradigm consists of

processes that act as both clients and servers. Now, instead of clients going through a server to

interact with other clients, they can interact with each other directly. Peer-to-peer networks are

ideal for instant-messaging, file-sharing, and video-conferencing. Napster.com is perhaps one of the

best-known developers of a peer-to-peer network. Other projects include Juxtapose (JXTA) and

Jabber. JXTA is a set of open-source peer-to-peer protocols produced by Sun Microsystems for

connecting network components. Jabber is a technology which uses an XML-based, open-source

protocol for instant-messaging called eXtensible Messaging and Presence Protocol (XMPP). An-

other peer-to-peer protocol is the Blocks Extensible Exchange Protocol (BEEP). These protocols

are described in the following sections.

Juxtapose (JXTA)

Juxtapose (JXTA) defines a set of XML messages which allow any device connected to

a network to communicate with any other device on the network, independent of the underlying

network topology. JXTA implementations are available for Java, C/C++/C#, and J2ME. JXTA

8

defines two groups of peers: edge peers and super-peers. Super-peers are split into rendezvous peers

and relay peers. Edge peers are generally on the outer edge of the Internet, such as home users or

users behind a corporate firewall. These peers usually operate over a low bandwidth connection.

A rendezvous peer coordinates interaction between several other peers. A relay peer allows users

behind firewalls or Network Address Translation (NAT) systems to take part in any interactions.

Resources are discovered in the network via advertisements. Advertisements are XML documents

which describe resources in the network. Communication in JXTA may be thought of as an exchange

of one or more advertisements between peers.

eXtensible Messaging and Presence Protocol (XMPP)

The original purpose of XMPP was for near-real-time instant messaging and presence in-

formation. However, due to its extensible nature, XMPP has also been applied to Voice over IP

(VoIP) and file transfer signaling, among other things. In 2002, the Internet Engineering Task Force

created a Working Group to formalize the core protocols. Four RFCs were approved as Proposed

Standards in 2004, including RFC 3920 which defines the current XMPP protocol. These standards

are still undergoing revisions, and it may be a while longer before they become true standards.

There are several advantages to using XMPP. First, anyone can run an XMPP server. In

fact, there are thousands of servers running XMPP software. Second, XMPP has been used for

approximately 10 years, a long time in the computing world. Third, XMPP is flexible, allowing

custom functionality to be built on top of it. Finally, security has been built into the core XMPP

specifications, and the XMPP Standards Foundation runs an intermediate certification authority at

xmpp.net under the auspices of the StartCom Certification Authority.

There are also disadvantages to XMPP. Typically, 70% of XMPP traffic is presence data,

with approximately 60% of this data being retransmitted. New research is being conducted to

alleviate this overhead. Also, there is currently no encoding for binary data in XMPP messages.

Instead, binary data is often sent through an external protocol such as HTTP.

Block Extensible Exchange Protocol (BEEP)

The Block Extensible Exchange Protocol is a framework for creating network application

protocols. Unlike a client/server approach, it allows either side to send messages at any time. BEEP

9

is defined in RFC 3080. BEEP uses MIME encodings to transmit arbitrary file types which relieves

the programmer from dealing with any specifics. BEEP also supports encryption, authentication,

reporting of errors, and multiple asynchronous requests. While BEEP is not a true network protocol

in itself, the ease it provides in creating a new custom protocol is very good for a developer.

2.3 Remote Procedure Call Paradigm

The Remote Procedure Call (RPC) paradigm also extends the client/server paradigm. Re-

mote procedure calls are developed to look and feel like local procedure calls. The purpose of the

RPC paradigm is to simplify development. By treating remote calls like local calls, the programmer

does not have to think about where the function is executing. For example, suppose there are two

processes, A and B. Process A may call a function of Process B, and pass B some parameters. Pro-

cess B will execute the function, and return a value back to Process A. However, from a developer’s

point of view, it doesn’t matter whether the function is executed locally or remotely, so long as the

value returned is correct. There are two APIs commonly used for RPC, ONC RPC and DCE/RPC.

Another RPC standard, XML-RPC, is the basis for Web Services. A brief introduction to the first

two APIs is given, followed by a discussion of Web Services. As Web Services is the technology used

in this work, more detail is provided.

ONC RPC

Open Network Computing Remote Procedure Call (ONC RPC) is a remote procedure call

system. It was originally developed by Sun Microsystems as part of their Network File System

project. It is defined under RFC 1831. ONC RPC is based on calling conventions used in UNIX and

the C programming language. Data is serialized using the eXternal Data Representation (XDR).

XDR is an IETF Standard, most recently described in RFC 4506. It wraps data in an architecture-

independent format for use over a network. ONC RPC delivers the XDR paylaod via UDP or

TCP. Access to a machine’s RPC services are provided through a portmap service. This service

usually runs on port 111 and listens for RPC requests. For each request, it determines which

service is being accessed and the port on which the service is running. It then redirects the caller

to the appropriate port. ONC RPC is a powerful system, but is generally not used for large-scale

applications. DCE/RPC, CORBA and Web Services are generally used instead.

10

DCE/RPC

Distributed Computing Environment / Remote Procedure Call (DCE/RPC) is a subset

of the Distributed Computing Environment (DCE). DCE is a distributed system that provides a

framework for client/server interaction with an RPC mechanism, a naming service, a time service, an

authentication service, and a distributed file system. While DCE was used much in the early 1990s,

it is not used heavily today. However, Microsoft’s DCOM, described later, uses DCE technology for

its network transport layer. Although DCE/RPC could be used independently of the rest, it is more

likely that the entire DCE system is used.

Web Services

Web Services is a set of standards adopted and maintained by the World Wide Web Con-

sortium (W3C). According to W3C, a web service is “a software system designed to support inter-

operable machine-to-machine interaction over a network. It has an interface described in a machine-

processable format (specifically WSDL). Other systems interact with the Web service in a manner

prescribed by its description using SOAP-messages, typically conveyed using HTTP with an XML

serialization in conjunction with other Web-related standards.”

A Web Services framework is minimally implemented with two components, a service

provider and a service requestor. An optional component is a service registry. The provider and

requestor are analagous to a server and client. The service registry is used to locate services on a

network.

The provider publishes a service interface document written in Web Service Description

Language (WSDL). A client retrieves the service interface document and uses a parser to generate

stub code, which makes available a set of function calls for accessing the web service. The stub code

is usually in the form of source files.

A service registry is an intermediate component. If the client does not know which service

it will use, it may query a service registry. The service registry will return a list of services from

which the requestor can choose a specific service to consume.

Communication between the different components is done through messages. Typically,

these are XML messages encapsulated in a Simple Object Access Protocol (SOAP) envelope and

transmitted across HTTP. SOAP is a mature Web Service standard maintained by W3C. The most

11

up-to-date version, SOAP 1.2, was published as an official recommendation in June 2003. The reason

for using HTTP is its wide-spread use and its ability to traverse firewalls through port 80. However,

any transmission protocol may be used. If security is important, WS-I recommends HTTPS. Other

protocols include Simple Mail Transfer Protocol (SMTP) and Blocks Extensible Exchange Protocol

(BEEP). All of these protocols implement the client/server paradigm mentioned previously.

While Web Services has been heralded as a major revolution, there are several areas for

concern. First, the reliability and security of Web Services are incompatible with current industry

needs [4]. Web Services must guarantee Quality of Service (QoS) and high levels of security before

they can be used for sensitive projects, such as those for the military [7].

From an efficiency point of view, SOAP is not the best solution for modeling and simulation

[10]. For the moment, it is an acceptable solution because the high level of interoperability outweighs

the need for an efficient transport mechanism. Several binary SOAP formats have been proposed

including Fast Infoset [2], EXI [31], and CBXML [17]. Also, many SOAP implementations limit

the packet size. Solving this problem simply requires developing a SOAP implementation that

allows for larger packet sizes. Likewise, HTTP is a good solution, but is not always the best

solution. Simple Mail Transfer Protocol (SMTP) and Blocks Extensible Exchange Protocol (BEEP),

mentioned earlier, provide better support for large packet sizes. Pingali and Stodghill [20] implement

a new SOAP protocol which addresses many of these concerns.

Finally, Web Services are inherently stateless. They are meant to perform an action on some

data, then return a result. The service is not expected to save data between separate sessions, even

if it is the same client. One solution proposed is a WS-Resource standard [11]. Another solution

in wide use today is cookies. Cookies store state information on the client. The state data is then

passed back and forth as necessary. Although this requires more network usage, it saves memory on

the server, which is very important when serving several clients.

2.4 Distributed Object Paradigm

The distributed object paradigm is an object-oriented extension of the previous paradigms.

The calling process executes a method on a distributed object. For instance, suppose a Car object

existed on the network. The calling process might invoke the getMileage() method, which would

return the mileage of the Car object. Similarly, the calling process may change the mileage. Even

12

though the object is not local to the process, the process may still modify it.

There are two possible methods for accessing objects distributed over the network. The

first method requires that the calling process specify a distributed object. The calling process

then invokes methods on that object. Java’s Remote Method Invocation (RMI) uses this method.

The second method requires the use of an Object Request Broker (ORB). The ORB finds a suitable

object that has the required services that the calling process needs. For example, suppose the calling

process wanted to know the stock value of Microsoft. The process may not know of a specific object

that can determine the stock value. However, the process can query an ORB, which will locate a

suitable object. The ORB will return a reference to the calling process. The process may then access

the object as if it is a local entity. The Common Object Request Broker Architecture (CORBA)

is the leading standard for the Object Request Broker model. DCOM, Microsoft’s standard for

the distributed object paradigm, is a strong competitor. A brief overview of Java’s RMI, CORBA,

DCOM, and .NET are provided below.

Java Remote Method Invocation

Java RMI is an API for the distributed object paradigm. There are two common implemen-

tations of the Java RMI. The first implementation is between two Java Virtual Machines (JVMs).

Client stub code and server skeleton code is developed to communicate between each other. The

client and server interact through the stub/skeleton code. This implementation requires that the

client and server be implemented in Java unless they are implemented through Java’s native interface

(JNI) which provides a method for other languages to run in the JVM. The second implementation

interacts with CORBA. Instead of the stub/skeleton code communicating directly, they interact with

an ORB. This implementation allows the client/server to be implemented in many other languages,

which offers greater flexibility. However, there is a much higher level of complexity.

Common Object Request Broker Architecture

The Common Object Request Broker Architecture (CORBA) is a distributed object archi-

tecture which attempts to maximize interoperability between different platforms and programming

languages. CORBA was designed by the Object Management Group (OMG) in the early 1990s. It

is a set of protocols which describe the implementation of a distributed objects environment, and it

13

offers a good solution for interoperability between platforms and languages. CORBA has been used

for many business and scientific applications, but interest has waned in favor of Web Services.

CORBA connects a client with a server. Logically, the client invokes a method on a dis-

tributed object located on the server. The client interfaces with a proxy, called a “stub”. The server

interfaces with a proxy of its own, called a “skeleton”. The client and server proxies interface with

an Object Request Broker (ORB) which communicates with the network and operating system of

its respective host. By using a common protocol, the ORBs on either side can effectively resolve

differences between programming languages, as well as between different platforms. CORBA also

provides a naming service to assist the client in locating distributed objects, which operates similar

to a Web Services registry.

The “stub” and “skeleton” are created from an interface file. This file is written in CORBA’s

Interface Definition Language (IDL) with a syntax similar to C/C++ and Java. For several pro-

gramming languages, including C/C++ and Java, OMG has created a standardized mapping from

IDL to the language. This allows a compiler to be used to generate the proxy code for a particular

language.

ORBs, although written in various languages, can interoperate due to their common pro-

tocol. General Inter-ORB Protocol (GIOP) is a specification that provides a general framework for

interoperable protocols to be built on top of a specific transport layer. One special case of the GIOP

is the Internet Inter-ORB Protocol (IIOP), which is GIOP applied to the TCP/IP transport layer.

The naming service provided by CORBA is an optional component used to locate distributed

objects. A client queries a naming service to find a distributed object fitting a specific description.

The naming service supplies the client with a set of objects matching the description. The client

then notifies the naming service of the object it wishes to access. Finally, the naming service sends

the client a specific endpoint used to reference the object. From this moment onward, the client and

the server hosting the distributed object communicate independently of the naming service.

Distributed Component Object Model (DCOM)

DCOM is a Microsoft solution for the distributed object paradigm. It is an extension of

COM to network applications, offering two new contributions to COM. First, DCOM contains a

solution for marshalling data. Second, garbage collection over the network is addressed. DCOM

was a strong competitor of CORBA. However, DCOM had some drawbacks. First, it worked well

14

for Microsoft systems, but was not completely supported by other systems. Second, the transport

protocol was a binary format. While this format is quicker, it requires an interpreter,which would

need to be developed for every architecture to marshal and unmarshal data. DCOM is still in

wide-use today, but is listed as deprecated in favor of Microsoft’s .NET framework.

.NET Framework

Microsoft’s .NET provides a virtual machine for running applications, similar to Java’s

virtual machine. Therefore, .NET’s methods for distributed computing are fairly similar to that of

Java’s RMI. The use of one over the other would then depend only on what platform one is using.

If the process will run under a Microsoft operating system, .NET would certainly be the correct

software to use. However, if the process is meant to run under other operating systems, Java’s RMI

might be the better solution since Java clearly supports more platforms and operating systems.

2.5 Web Services and CORBA

There is debate as to whether Web Services or CORBA is the better solution. Many

researchers have been wary of Web Services and believe it is a reinvention of CORBA. Other re-

searchers believe Web Services is useful and has its place. For a while, Web Services was still inferior

to CORBA, but with several advances in the past few years, Web Services has definitely made its

place in distributed computing.

Web Services and CORBA both provide solutions for interoperability between components.

The biggest difference between the two is CORBA operates on distributed objects while Web Services

is more of an RPC implementation. This means that Web Services is inherently state-less. State-

less is fine as long as multiple instances of the web service are not needed. Otherwise, it will be

necessary to modify the web service to make it stateful, which will increase the code complexity.

Another difference is the messaging protocol. Web Services commonly uses SOAP over HTTP,

whereas CORBA uses its own protocol. SOAP is known to be very inefficient in terms of bandwidth,

memory, and CPU usage. However, SOAP also enables a high level of interoperability. As such,

although CORBA will almost always be faster than Web Services, Web Services can usually provide

a higher level of interoperability. A benefit to using HTTP port 80 is that most firewalls enable

network traffic by default. However, with CORBA, firewalls may be an issue.

15

Whereas CORBA is stateful and runs efficiently, Web Services provides a high level of

interoperability and uses the existing Internet infrastructure to its advantage. Both technologies

have their place and should be used for their appropriate domains. For example, Web Services

should be avoided when state is important and efficiency is a must. However, for stateless services

that require a high level of interoperability between components, Web Services is generally better.

2.6 Distributed Computing in the Military Domain

Web Services are considered a part of a larger Web movement called Web 2.0 [19]. [26]

suggests that the prominent ideas of Web 2.0 can be used for other military tasks, not just simulation.

For example, wikis could allow planners to collaborate and work on a single document together.

Services like Twitter could be used to view status updates for a computer network, and online

worlds similar to Ragnarok Online and Warhammer Online can be used for meetings using Voice

over IP (VoIP).

Also, the military has started to hold a special interest in the gaming industry [25]. In par-

ticular, the gaming industry has a much higher demand and, thus, much larger operating budgets.

Many games simulate military operations and training, such as the Civilization series, Rise of Na-

tions, HALO, and Call of Duty, to name a few. A game currently used by 9,442,212 registered players

is America’s Army [3], which is role-playing game used by the US Army to for recruiting purposes.

These games use powerful gaming engines which can operate on the user’s local computer. Other

games interact using a distributed computing paradigm, such as World of Warcraft, Everquest, and

EVE Online. These games provide a virtual world accessed by millions of users world-wide. Much

of the computation is done locally, while powerful servers mediate between several clients. The idea

of creating a virtual training world for soldiers is an exciting prospect for the future. A soldier

could travel through portals to different training areas where he or she can practice individual skills,

team skills and command skills. Other portals may lead to foreign lanugage training where soldiers

can speak with foreign AI characters or live language instructors. For example, the US government

uses games developed by Tactical Language Training, LLC [27] which provides language practice for

soldiers in real situations.

Some military personnel are hesitant to use gaming technology for serious problems such as

war. Others realize that the gaming industry has developed very strong protocols for handling a large

16

number of clients in a virtual world. The data is passed quickly and efficiently, which is necessary

for the game to be successful. In effect, the military would be getting the benefit of gaming’s market

forces while only spending the money necessary to use technology that has already been developed.

One such project that uses commercial gaming software is UTSAF [21], which bridges the Unreal

gaming engine with the OneSAF Test Bed (OTB). OneSAF’s GUI only displays a 2D view of the

battlespace. By integrating the Unreal gaming engine with OTB, the user is provided with a 3D

view of the battlespace, which could provide more realistic views of the simulation.

In fact, the use of Commercial Off-The-Shelf (COTS) software is becoming increasingly

common in the military [24]. With constrained budgets and the need to supply forces with armor,

equipment, medical services, and much more, it is paramount that the military find outside sources

for their technology. However, verifying this technology is acceptable for military purposes is a heavy

requirement. The military requires high levels of security and reliability that currently do not exist

in the many new standards.

17

Chapter 3

Distributed Simulation

Distributed simulation applies principles and models from distributed computing to sim-

ulation. Distributed simulation has been a dominant area of research within the military for its

affordability and effectiveness. In the late 1980s, the Defense Advanced Research Project Agency

(DARPA) developed SIMNET, which connected several manned tank simulators. Distributed In-

teractive Simulation (DIS), not to be confused with the field of distributed interactive simulation,

was developed in the early 1990s, building on the success of SIMNET. Development of the High

Level Architecture (HLA) was begun in the mid 90s. HLA became an IEEE standard in 2000, and

is widely-used today. With regard to the military, HLA is primarily used within SAF simulations.

The DIS, ALSP, and HLA standards will be explained in further detail over the next few sections. A

final section will focus on SAF systems and provide some information on two popular SAF systems,

JSAF and OneSAF.

3.1 Standards

3.1.1 Distributed Interactive Simulation

Distributed Interactive Simulation (DIS) is an open standard for distributed real-time sim-

ulation over multiple host computers. It is defined under IEEE Standard 1278. Although primarily

used by military organizations, it has also been applied to space exploration, medicine, and business.

DIS borrows on SIMNET’s concept of dead reckoning. Dead reckoning is the process of estimating

18

Entity Information / In-
teraction

Entity State, Collision, Collision-Elastic, Entity State Update

Warfare Fire, Detonation
Logistics Service Request, Resupply Offer, Resupply Received, Resupply Can-

cel, Repair Complete, Repair Response
Simulation Management Start/Resume, Stop/Freeze, Acknowledge, Action Request, Action

Response, Data Query, Set Data, Data, Event Report, Comment,
Create Entity, Remove Entity

Distributed Emission
Regeneration

Electromagnetic Emission, Designator, UA, IFF/ATC/NAVAIDS,
SEES

Radio Communications Transmitter, Signal, Receiver, Intercom Signal, Intercom Control
Entity Management Aggregate State, IsGroupOf, Transfer Control Request, IsPartOf
Minefield Minefield State, Minefield Query, Minefield Data, Minefield Response

NACK
Synthetic Environment Environmental Process, Gridded Data, Point Object State, Linear

Object State, Areal Object State
Simulation Management
with Reliability

Start/Resume-R, Stop/Freeze-R, Acknowledge-R, Action Request-R,
Action Response-R, Data Query-R, Set Data-R, Event Report-R,
Comment-R, Create Entity-R, Remove Entity-R, Record Query-R,
Set Record-R, Record-R

Live Entity TSPI, Appearance, Articulated Parts, LE Fire, LE Detonation

Table 3.1: DIS Protocol Data Units

remote entity attributes, such as position and orientation, based on previous values. Through dead

reckoning, it is possible to efficiently transmit the state of battle field entities. As such, general

purpose computers may be used in place of supercomputers, allowing hundreds of online players to

participate.

DIS is based on a message-passing paradigm. Specifically, simulation state information

is encoded in formatted messages, known as Protocol Data Units (PDUs). These messages are

transmitted across the network using existing transport layer protocols. Broadcast User Datagram

Protocol (UDP) is most commonly used. DIS has defined a set of 66 PDUs, separated into 11

families. A list of these families and their PDUs is displayed in Table 3.1.

3.1.2 Aggregate Level Simulation Protocol

Aggregate Level Simulation Protocol (ALSP) is a protocol and supporting software that

enables interoperability between simulations. In 1990, DARPA employed the MITRE Corporation to

study the application of distributed interactive simulation principles used in SIMNET to aggregate-

level constructive training. Aggregate-level training is training at the staff level. Therefore, the

entities are commonly modeled using Lanchester’s Laws [15], which apply to large forces. This is

19

in contrast to entities modeled as physical weapons and individual soldiers. By 1995, the project

had transitioned from DARPA and MITRE Corp. to the US Army’s Program Executive Office

for Simulation, Training and Instrumentation (PEO STRI). Further, ALSP had successfully linked

seven existing simulations from several military services. These seven simulations are:

• US Army - Corps Battle Simulation (CBS)

• US Air Force - Air Warfare Simulation (ASWIM)

• US Navy - Research, Evaluation, and Systems Analysis (RESA)

• US Marine Corps - Marine Air Ground Task Force (MAGTF) Tactical Warfare Simulation

(MTWS)

• Electronic Warfare - Joint Electronic Combat Electronic Warfare Simulation (JECEWSI)

• Logistics - Combat Service Support Training Simulation System (CSSTSS)

• Intelligence - Tactical Simulation (TACSIM)

ALSP borrowed several things from SIMNET. These include dynamic configurability, geo-

graphic distribution, autonomous entities, and an implementation of a message-passing paradigm.

Dynamic configurability is the ability to add and remove simulations during runtime. Geographic

distribution is hosting simulations without regard to location. Autonomous entities are responsible

for keeping track of their own resources, firing their own weapons, and performing damage assessment

locally. Finally, message-passing is used to route messages among the simulations.

ALSP also had new design objectives not available in SIMNET. ALSP was to provide

simulation time management, data management, and be able to operate independent of the system

architectures that hosted the simulations. The time management must manage time across all of

the simulations, keeping them in sync with each other. The data management required a common

representation that could be used by all simulations.

ALSP consists of three things: (1) ALSP Infrastructure Software (AIS), (2) a reusable ALSP

interface, and (3) simulations adapted for use with ALSP. The AIS provides distributed simulation

support and management at runtime. It consists of the ALSP Common Module (ACM) and the

ALSP Broadcast Emulator (ABE). The ACM provides a common interface for all simulations. Each

simulation runs an instance of the ACM. The ACM handles incoming messages, and administers

20

the attribute database and message filter information. In many ways, the ACM is similar to client

stub code in distributed computing paradigms. ABE facilitates broadcasting messages. It routes

messages to the other simulations, similar to a network router.

The reusable ALSP interface is a set of generic data exchange message protocols. There are

4 types of messages: update, interaction, refresh request, and deletion. Update messages create or

modify an object; Interaction messages indicate that one object is interacting with another; Refresh

request messages request an update of attribute values; and deletion messages remove an object.

ALSP was an improvement from SIMNET, but still was not enough. High Level Architecture

(HLA), described in the next section, was started to replace both DIS and ALSP. While, HLA did

replace ALSP, DIS is still used today in many systems. However, it is usually coupled with HLA.

3.1.3 High Level Architecture

High Level Architecture (HLA) defines a standard framework for supporting simulations

composed of different components. These components may be simulation models, human user inter-

faces, monitors, data analysis tools, and others. With HLA, several different simulation components

work together to form one large simulation. HLA uses the term “federate” to mean a simulation

component, and the term “federation” to mean a group of these components working together.

Structure

The HLA standard consists of three parts. These parts are Federation/Federate Rules, an

Interface Specification, and an Object Model Template. The federation/federate rules govern the

behavior of a federation and its federates. The interface specification describes how federates will

interact with the federation. Finally, the object model template provides a common framework for

object model documentation across all simulation components.

There are 10 rules that govern the behavior of a federation and its federates. These rules

must be obeyed for a federation or federate to be considered HLA-compliant. These rules are split

into two groups of five rules each; the first group defines rules for a federation, while the second

group defines rules for a federate. The rules are:

1. Federations shall have a Federation Object Model (FOM), documented in accordance with the

OMT.

21

2. All representation of objects in the FOM shall be in the federates, not in the Run-Time

Infrastructure (RTI).

3. During a federation execution, all exchange of FOM data among federates shall occur via the

RTI.

4. During a federation execution, federates shall interact with the RTI in accordance with the

HLA interface specification.

5. During a federation execution, an attribute of an instance of an object shall be owned by only

one federate at any given time.

6. Federates shall have a Simulation Object Model (SOM), documented in accordancec with the

OMT.

7. Federates shall be able to update and/or reflect any attributes of objects in their SOM, and

send and/or receive SOM interactions externally, as specified in their SOM.

8. Federates shall be able to transfer and/or accept ownership of attributes dynamically during

a federation execution, as specified in their SOM.

9. Federates shall be able to vary the conditions under which they provide updates of attributes

of objects, as specified in their SOM.

10. Federates shall be able to manage local time in a way which will allow them to coordinate data

exchange with other members of a federation.

The first five rules establish a common ground for federations, including documentation

requirements (Rule 1), object representation (Rule 2), data interchange (Rule 3), interfacing re-

quirements (Rule 4), and attribute ownership (Rule 5). The second five rules are for individual

federates and include documentation requirements (Rule 6), control and transfer of relevant object

attributes (Rules 7, 8, and 9), and time management (Rule 10).

The interface specification describes how federates will interact with the federation and, ulti-

mately, with each other. The interface specification defines a standard for a Run-Time Infrastructure

(RTI). Several RTIs have been developed. A list of available RTIs may be found in [33].

22

The RTI provides several management services. For example, it separates communication

from actual simulation, facilitates construction and destruction of federations, supports object dec-

laration and management between federates, provides efficient communication to logical groups of

federates, and provides assistance with time management. The services are split into several groups,

called management areas. The groups are:

• Federation Management

• Declaration Management

• Object Management

• Ownership Management

• Data Distribution Management

• Time Management

The Object Model Template (OMT) provides a common framework for object model docu-

mentation across all simulation components, which promotes reuse and interoperability. The OMT

requires an object class structure table, object interaction table, attribute/parameter table, and

FOM/SOM lexicon. Optional information includes a component structure table, associations table,

and object model metadata. By properly documenting all object models, researchers can more eas-

ily integrate components using HLA. Furthermore, if the documentation were machine-processable,

much of the work could be automated.

Current work in HLA

HLA continues to be the technology of choice for connecting separate simulations. One

current push in research is to “web-enable” HLA. eXtensible Modeling and Simulation Framework

(XMSF) [6] aims to integrate HLA with a Web Services framework. The over-arching concept is to

access the Run-Time Infrastructure (RTI) via Web Services allowing the federation to be constructed

quickly from several geographically-independent federates. The approach will also introduce a higher

level of interoperability between federates and the RTI. SISO is currently working to modify the

current HLA standard, possibly as a result of the power of XMSF. Currently, the RTI interacts

with the federates through ambassadors, very similar to how Web Services operate using stub code.

23

The new “HLA-Evolved” RTI will have a Web Services API written in the Web Service Description

Language (WSDL).

Some researchers [7] proposed the idea of federates as web services. This work would parallel

that of HLA. A similar idea is to develop models as web services, proposed by Zhang et al [36]. These

models would then interact through federates in a HLA federation. This approach is very similar

to our work. Our work differs from Zhang’s work in that we have developed a load-balancing

mechanism to explore the possibility of running multiple identical models on the same network.

Also, the models referred to in Zhang’s paper are physical models running on another machine.

Our work is geared towards behavior models. The physical model will exist in the SAF system

and behave based on the response from the behavior model web service. There are several benefits

to these approaches. For one, models are developed by several different researchers in hundreds of

locations world-wide. These models are written in several languages on several different platforms.

By deploying the model as a Web Service, a simulation can access the model’s latest version (or

earlier versions) using a standard interface, regardless of its underlying structure. The model can be

developed and deployed by a single research group without the necessity of porting the code to any

single platform or computer language. It also provides a method for dynamically loading models as

needed. Web Service registries allow for discovery of these models. However, if registries are to be

used, it is of extreme importance that a formal description of these models be available.

In general, formalization is necessary in several other areas of modeling and simulation.

Several formalization efforts are underway, such as SISO’s Base Object Model (BOM) [12] and the

Federate Architecture Metamodel (FAMM) [28]. A BOM will give a precise definition to each piece

of a simulation to enable rapid composability of a networked simulation. FAMM formalizes the

HLA interface specification. This formalization is machine-processable and will allow the use of

code-generation tools.

Bridging multiple federations is another ongoing area of research. Federates are commonly

developed to interact with a specific RTI implementation. Several implementations exist, some com-

mercial and others not [33]. These implementations often implement additional features not found

within the IEEE 1516 standard. Therefore, not all federations are interoperable with each other.

One approach is to develop a federate whose sole purpose is to bridge two seperate federations [9].

The federate would join both federations and route information between the two, mediating between

data as necessary. Several issues arise with this approach and it has been shown that deadlocks can

24

occur unless modifications are made to the HLA standard for RTIs. Some researchers extended HLA

using CORBA [8]. This allowed for inter-RTI communication, but further complicated the system.

The researchers noted that it is only a short-term solution until a proper inter-RTI standard (similar

to the IIOP standard in CORBA) is introduced. The use of CORBA also provides an easier method

for linking federates not written in a language supported by the HLA standard. At the moment,

HLA only supports Java, C/C++ and Ada95. A similar project was done using Web Services [32].

3.2 Semi-Automated Forces

Semi-Automated Forces (SAF), or Computer-Generated Forces (CGF), are forces which

behave according to some AI behavior model. SAF are a unique solution for simulating opposition

forces (OPFOR), as well as friendly forces which do not necessarily need a human operator. SAF

offer a significant cost reduction in terms of time and money by emulating basic human behavior.

More advanced behaviors are also applied to SAF, gathering scarce human expertise and making

it readily available. A good overview of SAF is found in [22]. Modular SAF (ModSAF) was the

first major SAF system to be used. Several newer SAF systems were built from ModSAF’s code

base, including OneSAF [18] and Joint SAF (JSAF) [29]. ModSAF retired in January of 2001 [30].

However, OneSAF and JSAF are still being developed and used by the US Armed Forces. An

overview of JSAF and OneSAF is provided in the next two sections.

3.2.1 Joint SAF and OneSAF

Joint Semi-Automated Forces (JSAF) is an entity-level military simulation system used

by many U.S. military groups. Simulations employing up to 100,000 entities are routinely run by

USJFCOM (United States Joint Forces Command). Also, the U.S. Navy’s Maritime Battle Center

uses JSAF as a primary simulation tool for fleet exercises as well as a part of the Joint National

Training Center. See Figure 3.1 for a screenshot of JSAF.

JSAF is sponsored by the Joint Concept Development and Experimentation Directorate

(J9) of USJFCOM. It evolved from DARPA’s Synthetic Theater of War (STOW) Advanced Con-

cept Technology Demonstration (ACTD), whose aim was to demonstrate and evaluate distributed

simulation standards to support mission rehearsals and joint command and staff training.

JSAF is an open-architecture, “open-source” endeavor. More precisely, JSAF is “government

25

Figure 3.1: JSAF Screenshot

source available”. The open-architecture “allows easy internal replacement of both high and low

fidelity models” [13]. JSAF simulations can be run locally or distributed on a network. Multiple

HLA federations are supported by JSAF.

Entities include infantry, tanks, ships, aircraft, munitions, sensors, and buildings. They

can be controlled individually or commanded in a unit, such as a company or battalion. Entity

behaviors are affected by line of sight, time of day, currents, tides, slope, smoke, soil conditions,

water depth, and cloud cover. Civilian behavior is also simulated in JSAF, critical when representing

urban environments. Missions can be developed to explore possible scenarios. JSAF’s synthetic

environment represents real-world terrains, oceans, and weather conditions, which all affect the

execution of the simulation. In particular, the real-world terrains are drawn from a large-scale

database, which includes both rural and urban areas.

OneSAF is almost identical to JSAF. The only real difference is the development team.

Whereas JSAF is used more by the US Navy, OneSAF is used primarily by the US Army. OneSAF’s

26

mission is to create one SAF system for everyone. A single SAF system would mean developing one

model and sharing it with several applications. The model may be a new missile, aircraft, or civilian

behavior. OneSAF appears to be the better SAF system, but only a thorough comparison of the

two systems could determine if this statement is true. However, it is expected that the US Army’s

expert knowledge would be superior to most other military services in the area of urban combat,

which is where war seems to be heading.

27

Chapter 4

Design and Methodology

The problem presented in this thesis is how to connect software components to an HLA-

compliant simulator, specifically a SAF simulator such as JSAF or OneSAF. These software compo-

nents may be analysis tools, monitoring programs, or behavior models. The fundamental difficulty

associated with this work is developing a solution independent of any one specific simulator. Sim-

ilarly, the software components should not be restricted to a single language or platform. Finally,

the solution should support load balancing between several identical models. For instance, suppose

several SAF systems wanted to use the same model. There is a potential bottleneck in the system

if all of the SAF systems accessed the same model. However, if multiple, identical models were

available, an intelligent solution could assign each SAF system to a specific model.

4.1 Design

The components will be connected over a network. Therefore, it is logical to let the network

be the interface between the components. The network protocol should be understood by both sides.

Furthermore, the data passed between sides should be understood and language-independent. To

be language independent, the data must be interpreted to and from a network format. This format

should be abstract enough to encompass all languages. Ideally, only primitive types common to all

languages would be available, such as integers and floats. However, to make the programming logic

easier, higher-level data structures should be available. These data structures would need to be

well-described, possibly using XML or some other description language. HLA, CORBA, and Web

28

Services are all technologies which use the network as the primary interface. These technologies were

discussed in Chapters 2 and 3. They are briefly mentioned here with advantages and disadvantages

as a solution to the problem. Afterwards, the reasons for using Web Services are explained, then

the system design is explained.

High Level Architecture

The first possible solution is HLA. Components can be developed to interface via the RTI.

This solution is good because it guarantees interoperability between the components and the sim-

ulator. It also uses the existing standard. However, there are three good reasons for not using

this approach. First, a large amount of development time is required to transform a legacy compo-

nent into an HLA-compliant component. In the worst-case scenario, the component may need to

be completely rewritten. Second, in our design, the component is only required to interact with a

single HLA federate, independent of any other federates. Therefore, it is not necessary to involve

the RTI. The RTI will only add overhead and delay to the system. Third, the RTI lacks support for

load-balancing, which is a key component of the final solution.

CORBA

CORBA is a distributed computing technology that could also solve the problem. CORBA

handles objects and object references, making it very scalable. For example, multiple vehicles may

execute the same behavior model by requesting a new instance of the behavior model. However,

CORBA’s API is difficult to use and burdened with unnecessary complexity. The cost to develop and

maintain a CORBA implementation is not viable. Furthermore, CORBA’s ORBs are propietary, so

this solution would require choosing a specific ORB.

Web Services

A third solution to the problem is Web Services. While Web Services is not the perfect

solution, it is a simple solution. The interface between component and simulator would be SOAP,

a standard recommended by W3C. SOAP is much simpler than HLA’s RTI and CORBA’s ORBs.

Furthermore, rapid development is possible due to the simplicity of Web Services and the large

amount of effort put into IDEs. One pitfall with Web Services is the fact that it is a “stateless”

29

technology, meaning there is only one instance of an object on the server. Therefore, the creation

and deletion of objects is up to the programmer. In a positive light, this provides the programmer

with more control over the development of the web service. This will be good when the web service

for the SEAD behavior model is developed in the next chapter, since it would be detrimental to

performance to create a new MATLAB runtime instance for every client. Finally, Web Services

offers the possibility of load-balancing. If each model is run under several web servers, another web

service can determine which web server is currently performing the best, and assign a SAF system

to that particular web server.

4.2 Methodology

Figure 4.1 shows the top level of the system design. There are two major components

of the design: the simulator and the web services. The components are developed independently.

The only connection between the two components is the bridge provided by SOAP over HTTP.

Independent development offers many advantages with the main advantage being that the projects

can be developed by geographically-separated groups with no knowledge of one another. Also, a

rebuild of one component does not require a rebuild of the other component. Finally, in the case of

Web Services, the web service may be redeployed while the simulator is executing. The simulator

will only notice a short loss of connectivity. In the case of a behavior model, the model can be

modified on-the-fly and the new behavior will be immediately available in the SAF system. All of

these advantages are nullified if the service interface is modified. Therefore, the interface should be

decided upon as soon as possible, and changes should be made very seldom.

One web service, known as a Quality-of-Service (QoS) Broker, is designed as a load balancing

agent. The Qos Broker web service is similar to a service registry, but chooses a service based on

a Quality-of-Service measure. This web service stores information for each web server that hosts

services available to the simulator. Some information stored includes the number of users, the

number of running processes, the percentage of free swap memory, and the ping delay between

the web server and simulator. The web service receives requests from the simulator and returns a

server IP address. The server is chosen based on a metric computed from the server information.

For instance, a server with a small number of users and running processes is preferred to a server

with several users logged in, each running multiple processes. The QoS Broker maintains a list of

30

Figure 4.1: System Design

available servers, as does the simulator. If the QoS Broker is unavailable, the simulator can use the

last known good server or randomly select a server from its internal list. In a worst-case scenario,

the simulator will use a web server local to the machine.

The QoS Broker service will have a set API through which clients may access it. To un-

derstand this API, it is necessary to explain the process through which a client interacts with the

QoS Broker. Initially, a client registers with the QoS Broker. Upon registering, the client recieves

a unique ID. Whenever the client needs to reaccess the QoS Broker, it identifies itself through this

ID. Should a client discontinue using the QoS Broker, it must unregister itself. By unregistering,

the QoS Broker will know that the client is no longer accessing its assigned server. Once registered,

a client can query the QoS Broker for the optimal server. The QoS Broker will then assign the

client to a server. These three methods (register, unregister, and connect) are the primary base for

communicating with the QoS Broker. A fourth method will also be available to monitor the QoS

Broker’s internal values. For instance, one might like to monitor server activity over time. It would

also be helpful for tuning the weights applied to the QoS metric. See Figure 4.2 for a Java interface

of the QoS Broker.

The rest of the web services are developed as software components to be attached to the

simulator. In our work, we developed two SEAD behavior models and a behavior recognition service.

The SEAD behavior models are functions which accept the current state and return a new state.

31

interface QoSBroker {

int register ();

void unregister (int id);

String connect (int id);

QoSInfo monitor ();

}

Figure 4.2: QoS Broker API

The functions are deployed as web services, which allow them to execute on a remote machine,

thereby offloading computation. The behavior recognition service acts as a central storage device

for the behavior recognition system and the simulator. The behavior recognition system will be

described in more detail in Chapter 6.

interface BehaviorModel {

State simulate_cycle (State oldState);

State simulate_n_cycles (State oldState, int n);

}

Figure 4.3: Behavior Model API

Whereas the QoS Broker has a set API, the other services are not required to conform to

a set API. Instead, the API is determined by the service developer. The purpose of the WSDL file

is to document this API in a machine-processable language. For instance, a behavior model will

have a different API than a monitor. However, since behavior models will be a large portion of the

services, a recommended API will be provided. Figure 4.3 gives this recommended API. For most

behavior models, only one method is necessary. This method implements a single step in time. It

receives the system state as input, then outputs the new state. The developer may also include a

second method which determines a new state after multiple time steps. In this case, the number of

time steps will also be input into the method. Any other methods should not be publicly accessible.

Fewer methods to the client provides more control to the service, which will likely result in fewer

errors.

32

Chapter 5

Implementation

The system design was implemented over several stages. First, the web services were de-

veloped within the Netbeans IDE. Second, the web service stub code was generated using gSOAP,

and was inserted into the simulator source code. The stub code provides functions for invoking the

web services. Third, behavior models within JSAF were modified. The behavior models accessed

the web services for functionality, rather than executing local procedure calls. Finally, the behavior

models within JSAF were further modified to use a load-balancing web service. The load-balancing

web service attempts to distribute the load across several servers, which should increase the system’s

quality of service.

5.1 Web Services Development

Web service development was done within the Netbeans IDE [Netbeans 6.1]. Netbeans is

an open-source IDE sponsored by Sun Microsystems. Although primarily built for Java, Netbeans

supports several other programming languages. The Web and Java EE version of Netbeans provides

built-in support for constructing web services. For example, Netbeans provides automatic code

generation for client-side applications. Also, functionality exists to automatically create an interface

file from a Java class, commonly known as a WSDL file. These extensions are invaluable when quickly

developing a system prototype. However, it is almost always recommended that programmers write

their own WSDL file in the later stages of development, especially for complex systems. Self-written

WSDL files are generally cleaner and more accurate representations of the interface.

33

When preparing to integrate a component with the SAF simulator, three approaches may

be taken. The approach taken depends on the programming language of the component. For a Java

component, the code may be wrapped as a Java web service and deployed on a Java application

server, such as Glassfish, JBoss, WebSphere, or Oracle. If the component was written in C# or

Visual Basic, then it would make sense to use Microsoft’s .NET framework. The third approach is

necessary if a component is written in a language that does not lend itself to any available application

servers. A component written in MATLAB is one example. This approach is much more complex

when compared to the first two approaches. However, it is also the approach taken in this work since

the SEAD behavior was written in MATLAB. Therefore, the next section will discuss this approach

by going through the implementation of the SEAD behavior models as web services.

5.1.1 SEAD Behavior Model

The SEAD behaviors used in this work are implemented as MATLAB functions. Here, an

example web service which provides a method for calling MATLAB functions is presented. The web

service will be implemented in Java, so the following code will be provided as Java code.

MATLAB is similar to Java in that it runs under a virtual machine. As Java requires a

virtual machine to be running for code execution, an instance of the MATLAB runtime environment

must be started to execute the SEAD functions. Then, the input, output, and error streams of the

runtime environment are accessed. The Java code to start a MATLAB process and access its input,

output, and error streams is provided below.

Process p = Runtime.getRuntime ().exec (

cmd,null,new File (‘‘/usr/local/matlab2006a/bin/’’));

BufferedReader MatlabOutput =

new BufferedReader (new InputStreamReader (p.getInputStream ()));

BufferedReader MatlabError =

new BufferedReader (new InputStreamReader (p.getErrorStream ()));

PrintWriter MatlabInput = new PrintWriter (

new BufferedWriter (new OutputStreamWriter (p.getOutputStream ())));

Now, the Java program can write characters to the MATLAB console through the MatlabIn-

34

put writer and retrieve responses via the MatlabOutput reader. In the case of the SEAD behavior

model, the input will be a function call formatted as a string. The output will be any information

printed to the MATLAB console. Generally, MATLAB functions store return values as a set of

variables. Querying these variables after calling the function would be inefficient because it would

be necessary to send multiple calls to the MATLAB runtime. Instead, print statements are placed

at the end of a MATLAB function to print the return values before the function returns. These

statements can be parsed in order to retrieve the return values. Sample code to call a function and

retrieve the return values is provided below.

String cmd = "sead(" + xPosition + "," +

yPosition + "," +

heading + "," +

speed + "," +

targetHeading + ");\n";

MatlabInput.println(cmd);

MatlabInput.flush();

String results = MatlabOutput.readLine();

The code above assumes that the results are all written on a single line. More code is

necessary if the results are split across several lines. Also, the results are still in a String format.

This string must be parsed to obtain the individual values. In the case of the SEAD behavior models,

the results included information such as predicted position, speed, and heading.

5.1.2 Behavior Recognition System

The Behavior Recognition system is a component written in Java. As stated before, the

recommended method for interfacing this system to a SAF simulator is to wrap it as a web service,

and deploy it on a Java application server. However, a different approach was taken due to time

constraints and the need for a buffer between the two components. A web service was developed to

serve as an intermediary between the component and the SAF simulator. Using this approach, Web

Services is effectively connecting two separate components with neither component acting as a web

35

service.

The web service was developed to act as a buffer of information between the two components.

The SAF simulator would upload symbols to the web service. Then, the behavior recognition

component would retrieve these symbols, operate on them, and then upload the results to the web

service. The SAF simulator could then retrieve the results from the web service. After an initial

startup period, the components would poll the service at regular intervals to both push and retrieve

data.

The code for this web service is long, but not complex. Appendix A contains a thorough

walkthrough of the web services implemented for this work. It contains the code for the SEAD

behavior model web service and the web service used with the Behavior Recognition system.

5.1.3 Deployment

Once a web service is constructed, it is deployed in a run-time environment on an application

server. The Netbeans IDE supports several application servers, including Tomcat, Glassfish, JBoss,

and WebSphere. Glassfish (Version 2 Update Release 2) is the application server used in this work.

Deploying a web service can be as simple as uploading the WAR file to an application server via a

web browser. There are also command-line tools and GUI frontends available. In particular, scripts

can be written to use command-line tools to automatically redeploy a number of web services after

a development milestone. Once a web service is deployed, it may be consumed by any application.

The application only needs to download the corresponding WSDL file to determine the message

format for SOAP messages.

5.1.4 Testing

The web service code was tested by developing simple clients within Netbeans. The auto-

matic code-generation aided in quick development of these test clients. A test client was developed

for each web service. The web service methods were called, passing in realistic input, and the output

was analyzed to determine if the web services were operating correctly. Iterative testing ensured

that most bugs were fixed.

36

5.1.5 Additional Features

When implementing these web services, several features were not considered. For example,

Web Services standards exist for Security and Quality of Service. These features were not included

due to unnecessary overhead and complexity. However, it would be worthwhile to explore the effects

of adding security and encryption to the web services. These features could have a large impact on

the simulation performance. On the other hand, if the simulation data is not sensitive, it would be

acceptable for a non-participant to intercept the data.

5.2 Support for Web Services in JSAF

JSAF is written in C. Therefore, a tool must be used for parsing the WSDL file to produce

client stub code in C. The tool used for this work is gSOAP. gSOAP contains two binaries for

creating client stub code from a WSDL file, wsdl2h and soapcpp2. wsdl2h transforms the WSDL

file into a C header file. This header file defines several different data types and contains several

function prototypes. soapcpp2 compiles this single header file into a set of header and source files.

These files implement the functions contained in the first header file produced by wsdl2h. A brief

description of each file is below.

soapH.h Header file associated with soapC.cpp

soapStub.h Header file associated with SoapClient.cpp

PortBinding.h Namespace mapping file

soapC.cpp Contains routines for serializing/deserializing data

SoapClient.cpp Contains routines for accessing remote procedures

The following commands will create stub files for JSAF, which will allow it to operate as a

web service client. See the gSOAP documentation on-line for an explanation of the command-line

options.

37

> wsdl2h -s -t ˜/gsoap-linux-2.7/bin/typemap.dat -o tmp.h

http://localhost:8081/JSAFTracking/JSAFTrackingService?wsdl

http://localhost:8081/seadRealtime/seadRealtimeService?wsdl

> soapcpp2 -C -p soap -x -w -L -I:˜/gsoap-linux-2.7/import tmp.h

JSAF is built up of hundreds of different libraries. There is a library for the GUI, a library

for sensors, a library for time management, libraries for each behavior within JSAF, and several

others. A Web Services library was developed to include the client stub functionality in JSAF. The

library primarily consists of the files listed above. Two other files, stdsoap2.h and stdsoap2.c, were

also included as dependencies of the above files. The Web Services library was appended to the list of

JSAF’s libraries which includes it in any future rebuilds of the simulator. As such, the functionality

is available to any other libraries within JSAF. Thus, JSAF’s internal SEAD behavior and the new

Vehicle Tracking behavior will have access to all of the web service function calls. These behaviors

will be discussed later.

The other method for integrating the web service client code into JSAF was to include client

code in each library. For instance, the SEAD behavior would contain client stub code specific to the

SEAD behavior model web services. Similarly, the Vehicle Tracking behavior would contain client

stub code specific to the web service used with the Behavior Recognition system. This method is more

logical, and was used at first, but resulted in a large number of files spread out through the simulator

source directories. By combining all of the web service functionality into one place, maintaining the

code was much easier. Further work could be done to automate the code maintenance. In this case,

the client code could be distributed only to the libraries which depend on it, which would keep other

libraries from incorrectly calling other web service methods.

5.3 Integration of SEAD Behavior

JSAF’s internal SEAD behavior was extended to include the custom SEAD behaviors avail-

able through Web Services. When configuring a vehicle’s behavior during run-time, the user selects

which SEAD behavior will be executed. The custom behavior operates by sending the current po-

sition, speed, and heading of the aircraft to the SEAD web service. The web service then returns a

38

suggested position, speed, and heading. The aircraft is instructed to fly to the new position using

the new speed and heading.

One complication that still arises with Web Services is the interface between JSAF and the

web service. Although the the WSDL file contains the API, the programmer must still use the web

service correctly. For example, the position coordinates must match, as well as speed and heading

units. Furthermore, the MATLAB simulation is formed using discrete time steps of about 5 seconds

each. In JSAF, the aircraft must fly to the new location using much smaller time increments, on the

order of several milliseconds. Therefore, JSAF must interpolate between the old position and the

new position as best as possible. Also, in the MATLAB simulation, the aircraft fires when within

range. In JSAF, firing is controlled by another software library and is somewhat unpredictable.

Thus, the API must be very clear as to what the expected parameters are and what will be

returned. The MATLAB simulation may be improved without any need to change the simulator.

Likewise, if any changes are necessary within the simulator’s source, it is not necessary to modify

the web service. This modular development is a key advantage to using Web Services.

5.4 Integration of Behavior Analysis and Prediction System

The Vehicle Tracking behavior is a new behavior inserted into JSAF. The behavior tracks

a single vehicle and uploads tracking information to a Vehicle Tracking web service. The tracking

information includes position, speed, and heading. The data is obtained directly from the tracked

vehicle and not from a sensor onboard the tracking vehicle. Obtaining the data directly from the

tracked vehicle is good for evaluating the Behavior Recognition system, but it will be important to

obtain data from the tracking vehicle’s sensors at the later testing stages for more realistic data. In

particular, the behavior recognition system would need to deal with any noise in the system.

Inserting new behaviors into JSAF was not a simple task. The documentation is outdated,

requiring reverse-engineering to determine how behaviors exist in the system. However, the addition

of a new behavior is now documented for future reference. It requires using a template to develop a

behavior library, and modification of several files under JSAF’s main source directory. Then, there

are other more obscurely located files that must also be edited. However, once the framework is

in place, editing the behavior is relatively easy. JSAF does provide documentation for its more

common libraries. In particular, the Vehicle Tracking behavior uses the libentity library’s API for

39

most of its functionality, directly accessing entity attributes such as position and speed. It also uses

the newly added Web Services library to send this attribute data to the intermediate web service

which interacts with the Behavior Recognition system. Besides sending attribute data, the Vehicle

Tracking behavior also polls for the last recognized behavior.

On the other end, the Behavior Recognition system polls the web service to obtain the

uploaded tracking information. This information is then processed and a predicted behavior is

returned to the web service. The details of the data processing may be found in Chapter 6 under

the Background section.

5.5 Load Balancing

Load balancing is the process of distributing the load across several nodes. There are several

methods for load balancing. Tao et al [35] describe two efficient algorithms for selecting web services

with Quality of Service (QoS) constraints. Kuipers et al [14] provide a second overview of constraint-

based selection algorithms. These algorithms are used to determine the optimal path through several

services. In this work, the SAF system is choosing between several servers, and not a path through

several services. This simplifies the work needed considerably.

Menascé [16] describes QoS issues in Web Services. Four qualities that every service has

is availability, security, response time, and throughput. For this work, we are not as interested in

security. However, availability, response time, and throughput are all very important. Availability

is simple to determine. A plausible solution for determining response times would be to periodically

poll the web service to determine an average response time. However, an average response time

would require polling the service several times. In effect, the system would contribute to slowing

down the service. Similarlly, throughput is not an easy measure to obtain. Instead, our work predicts

the QoS based on the current computer load as determined by the measured CPU load, number of

users, number of running processes, etc. Using these values, a broker system can indirectly estimate

the QoS of each server, and the total QoS available.

The load-balancing mechanism in this work is a web service acting as a broker, similar to

the work done in [34]. The web service periodically gathers load data from a pre-determined list of

web servers. This load data includes the CPU load, number of users, number of running processes,

percentage of free swap memory, and the ping time between the server and the workstation running

40

JSAF. The data is obtained using Nagios. Nagios is a software system which monitors computers and

stores various statistics. An add-on for Nagios, NDOUtils, dumps the various statistical measures

to a MySQL database. The web service accesses this database to get the load data. The data is

then used to compute a QoS measure.

This measure is computed as a weighted sum of the load values. The weights provide a

method for normalizing the load values, such that one value is not necessarily more important than

another. The weights may also be biased to prioritize some load values over others. For example,

one may choose to weight the CPU load higher than the amount of free swap memory available.

The equation below is a very simple expression for the QoS measure.

QoS =
n∑

i=0

wiloadi

After computing the QoS measures for each server, the servers are sorted from best perfor-

mance to worst performance. A total QoS measure is then computed as the sum of the individual

QoS measures. Dividing the individual QoS measure by the total measure produces a discrete prob-

ability distribution. This distribution is used when choosing a web server for the client. This method

ensures that the top server does not necessarily receive every client. Also, as clients are assigned

to servers, the distribution will change to properly reflect the quality-of-service provided by each

server.

41

Chapter 6

Behavior Analysis

6.1 Introduction

A Behavior Recognition system was developed to recognize a behavior given some history

of the vehicle or entity executing the behavior. In Chapter 5, the implementation of a Vehicle

Tracking behavior was described. This behavior interacts with the Behavior Recognition system via

a web service, also described in Chapter 5. To provide proof of concept, several simple tests were

performed using the Vehicle Tracking behavior with the Behavior Recognition system. The next

section provides background on the Behavior Recognition system. The background is taken from

an earlier unpublished paper [23], and should provide enough information to understand the general

operation of the Behavior Recognition system. The remaining sections will describe the simple tests

and the results obtained.

6.2 Background

The Behavior Recognition system uses Markov models to represent behaviors. The system

attempts to match input data streams to behaviors in a dictionary. A dictionary is a set of behaviors.

If the behavior does not match a known behavior, a Markov behavior model is dynamically generated

and may be added to the dictionary.

The system has three phases: (i) transform the input data streams into symbol streams;

(ii) determine if the symbolized stream matches any of the a priori generated behavioral models;

42

and (iii) return the matched behavior to the SAF simulator. The system requires an alphabet to

transform the data stream into a symbol stream. For example, suppose the system is tracking a

vehicle based solely on distance. Values of 0-10m may be assigned to a value of A. Distances from

11-20m may receive a value of B, and so on. The alphabet defines this transformation. The choice

of the optimal alphabet to symbolize the input data streams is an open problem. An alphabet with

a logical meaning for the behavior being investigated was chosen. For example, patrol behaviors are

generated using an alphabet that recognizes the difference in x and y from an initial position, while

follow behaviors recognize changes in distance and the difference in vehicle headings.

To determine if the symbolized stream matches any behavior models, a bootstrapping pro-

cess and confidence interval approach is used. The details of the bootstrapping process and confi-

dence interval are not important to this work. However, if the reader is interested, an explanation

is available in [5]. The following algorithm is used to test the data streams against the dictionary of

behaviors.

1. Retrieve a set of 15 data items from the web service

2. Symbolize the input data items

3. For each individual symbolized data item

a. Place the item into the active data window

b. Set a maximum of 30 items

c. If the set of behaviors that recognized the previous window is empty

i. Use the bootstrap process described above to find behaviors that

potentially match the current window

ii. If none are returned, continue to the next individual symbolized

data item

d. For each behavior in the set returned from step 3c

i. Use a confidence interval approach to find the percent of

transitions falling within their respective confidence interval

ii. If the percentage is greater than the threshold needed for the

behavior, then accept the model as a match for the window

iii. Else, remove the model from consideration

e. Return the behavior with the highest percent of transitions falling

43

within their respective confidence intervals to the web service

Note that this process returns the model with the highest percentage of transitions falling

within their respective confidence intervals. There may be multiple models that match the data

window. The key to handling this occurrence is to note the class of the models matching the data

window. For example, if three different flanking behaviors match the window, we may reasonably

assume that the data under analysis represents a flanking behavior. If two flanking behaviors match

and one orbit behavior matches, we cannot conclude with 100% accuracy that the behavior is not an

orbiting behavior, but must wait for further input data that either drops the flanking behaviors or

drops the orbit behavior from consideration. For the following tests, it is sufficient to only consider

the behavior with the highest percentage of transitions. The above method is extensible and can be

made to consider all possible interpretations of the input data stream, instead of only the behavior

with the highest percentage of transitions.

6.3 Testing

Several scenarios were developed in JSAF to test the behavior recognition system. Due to

its detailed implementation in JSAF, the M1 tank model is used for the majority of the experiments.

The scenarios generally include two tanks, a tank doing the tracking (represented by blue) and the

tank being tracked (represented by red). In the case of air scenarios, the tracked vehicle is the

F-18EF Superhornet fighter jet.

Scenarios were developed for all of the behaviors modeled in the dictionary, and additional

scenarios were generated to perform a statistical analysis of the flanking behaviors. The statistical

analysis provides a quantitative (and in many ways, qualitative) determination of the effectiveness

of the behavior recognition system. The results of the analysis of the flanking behaviors are provided

below along with a description of the tests that were run.

6.3.1 Distance Tests

Normal and wide flanking behaviors were run ten times each with small variations in the

tracked (red) vehicle’s driving path introduced for each test-run. red started at a range of 1km

and flanked blue on the right side. At ranges of 800m, 600m and 400m, the predicted behavior was

noted as “flanking” or “not flanking”. Tables 6.1 and 6.2 display the results of each test. A plus sign

44

(+) indicates the behavior was identified as a flanking behavior, while a minus sign (-) indicates the

behavior was identified as a “non-flanking” behavior. The results show that the behavior is usually

predicted at the beginning of a test run, but is not always predicted as the run progresses. These

results are due to red beginning its turn toward blue. At this moment, red no longer exhibits

a flanking behavior, but instead exhibits an assault behavior. An assault behavior is characterized

by red heading directly at blue. Since red’s path is longer than the wide flanking behavior, the

behavior was noted at the 900m mark as well. The 900m mark is roughly equivalent to the 800m

mark in the normal flanking behavior.

1 2 3 4 5 6 7 8 9 10
800m + + + + + + + + + +
600m - - - + + + - + - +
400m + + - - - - - - - -

Table 6.1: Normal flanking behavior

1 2 3 4 5 6 7 8 9 10
900m + + + + + + + + + +
800m - - + + - + + - + +
600m - + - + - - - - - +
400m - - - - - - - - - -

Table 6.2: Wide flanking behavior

A second set of distance tests was carried out using a “non-flanking” behavior. red ap-

proaches as if he will flank blue, but instead of turning toward blue, red continues on a straight

path, passing by blue at a range of approximately 300m. Since the path does not curl in, the

behavior recognition system continues to predict a flanking behavior until red is in a position where

he can no longer flank blue. A series of 10 tests were used to determine the average range at which

the behavior recognition system stopped predicting a flanking behavior (i.e. red has safely passed

by). A confidence interval was computed to provide bounds. Table 6.3 shows the results of the tests.

The average range is 814m with a confidence interval of 32m.

1 2 3 4 5 6 7 8 9 10
Range 792 795 798 818 783 760 828 787 913 867

Table 6.3: Non-flanking behavior

45

6.3.2 Behavior Coverage Test

Tests were also run to determine how much of the symbol stream did not match a flanking

behavior. The normal and wide flanking scenarios were used. Results from twelve tested paths

indicate that approximately 40% of a given flanking path does not match the flanking behavior.

We provide the percentage of the path that did not match the flanking behavior in Table 6.4. The

inability to capture 40% of the path may be due to the granularity of the alphabet used to symbolize

the data. The flanking behaviors in the dictionary were designed to be flexible enough to handle

small variations in the test path. If the variations in the test paths exceed the limits of the models,

then the granularity chosen for the alphabet is probably too high.

1 2 3 4 5 6 7 8 9 10
Normal 37.0% 31.3% 37.3% 33.9% 34.8% 36.5% 43.2% 33.8% 43.5% 44.5%
Wide 41.0% 40.4% 36.5% 55.3% 42.5% 37.5% 30.4% 27.8% 33.5% 55.6%

Table 6.4: Behavior coverage

Normal Average (w/ confidence interval): 37.5 ± 3.26%

Wide Average (w/ confidence interval): 40.0 ± 6.69%

46

Chapter 7

Performance Analysis

7.1 Introduction

In theory, the simulation environment and all external components can run on a single com-

puter. However, the true power of the Web Services approach is executing the external components

on remote servers. This would allow a powerful server to handle the CPU-intensive operations, while

a local workstation running the simulation environment only needs to be concerned with sending

and receiving network packets.

To evaluate the performance of using remote servers, tools were used to (1) scale the CPU

frequency of the workstation and the remote servers, and (2) delay network traffic to and from these

computers. Of most concern is the CPU frequency scaling of the workstation, which effectively

emulates various CPU loads. As the simulation environment loses the CPU to other processes, it is

more necessary to offload the computation elsewhere. Similarly, if network traffic delays are large

enough, a single computer setup may perform better.

7.2 Setup

Performance analysis was done using three different computers. The three computers are

referred to as Workstation, laptop, and cluster for ease of discussion. workstation runs

the JSAF simulation environment. laptop and cluster are remote servers. Each server runs

a web server which hosts two web services, seadRealtime and behaviorAnalysis. These services are

47

discussed in Chapter 5. See Figure 7.1 for an illustration of the setup. The single measure compared

in all scenarios is the mean response time (computed from 250 iterations) for a specific SOAP call

or series of SOAP calls. For seadRealtime, the tick() call was used, whereas for the behaviorAnalysis

web service, an average of several SOAP calls was used.

Figure 7.1: Performance Analysis Setup

7.3 CPU Performance Analysis

Usually, the term “CPU performance analysis” means profiling code to determine bottle-

necks, and developing methods for speeding up processes. In this context, CPU performance analysis

is used to answer the question: how well does the system perform under various CPU loads? In the

case of all processes executing on a single computer, the system performance is expected to decrease

as the CPU load increases. However, when linking to a remote server, the system performance is

expected to remain steady as CPU load increases. The only CPU usage should be in the form of

network calls, and network calls are generally not CPU-intensive. The next section discusses the

tools and methods used in analyzing the system performance with respect to increasing CPU loads.

After, a quantitative analysis over several scenarios is provided to test the above hypotheses.

7.3.1 Tools / Methods

Analyzing system performance based on the CPU load requires a method for emulating

different CPU loads. CPU frequency scaling was found to be an effective solution. By increasing

48

or decreasing the CPU clock speed, the execution time is directly altered. Two Linux command-

line tools for frequency scaling are cpufreq-info and cpufreq-set, both found in the cpufreq-utils

package. cpufreq-info lists the current CPU frequency scaling info and policy governor. cpufreq-

set allows the user to configure the current CPU frequency scaling settings. The syntax for these

commands as used to analyze performance is as follows:

> sudo cpufreq-set -c 0 -f freq

> sudo cpufreq-set -c 1 -f freq

> sudo cpufreq-info | grep “current CPU frequency”,

where the frequency freq is varied to emulate different CPU loads. The first and second lines set the

CPU frequency for each CPU. The third line verifies the set frequency for all CPUs with a call to

hardware.

There are two prerequisites for using these tools. First, the CPU(s) must support frequency

scaling. Second, the frequency scaling kernel module specific to the CPU model must be loaded.

Most Intel processors use either the “p4-clockmod” module or the “speedstep-centrino” module.

AMD processors usually use the “powernow” kernel module.

7.3.2 Test Scenarios

Web Server on WORKSTATION

The web server is run on workstation. JSAF runs the seadRealtime custom scenario,

which transmits a SOAP call every 5 seconds. The CPU frequency on workstation is set to

700Mhz and response times are collected for the SOAP calls. This process is repeated for CPU

frequencies of 1.40Ghz, 2.10Ghz, and 2.80Ghz. The results are given in Figure 7.2. As the CPU

frequency increases, the response times decrease.

Web Server on LAPTOP

The web server is run on laptop. JSAF again runs the seadRealtime custom scenario.

The CPU frequency on workstation is again scaled between 700Mhz and 2.80Ghz in increments

of 700Mhz, while the CPU frequency on laptop is constant at 2.0Ghz. The response times are

collected. The results are given in Figure 7.3. The results indicate that the mean response time

49

Figure 7.2: Response Times for WORKSTATION

Figure 7.3: Response Times for LAPTOP

50

Figure 7.4: Response Times for CLUSTER

is effectively independent of workstation’s cpu frequency. Furthermore, the mean response times

for all 4 frequency steps are less than the best response time in the previous setup. This suggests

that a remote server can be very effective.

Web Server on CLUSTER

The web server is run on cluster. The steps are identical to the previous setup. The

results are shown in Figure 7.4. The results provide further proof that the mean response time is

effectively independent of cpu frequency.

7.4 Network Load Analysis

Several advances in network technology have provided almost unlimited bandwidth in to-

day’s networks, but traffic delays can still occur. From JSAF’s point of view, network delay (or load)

may result from an excessive amount of packets on the network, or it may result from a slow server.

It may even result from a noisy line (ie. dropped packets, scrambled packets, etc). Whatever the

case, it is imperative that the system not rely completely on the network. It was predicted that an

51

increase in network delay will show an increase in response times, simply because they are directly

related. These tests are trivial, but they are important for a complete understanding of how the

system reacts to loads on the network. Below, the tools and methods used in emulating network

delay are discussed. Then, a quantitative analysis is provided to test the above hypothesis.

7.4.1 Tools / Methods

Analyzing the system from a network standpoint requires a method for emulating a slow

network since actually slowing down the network would be difficult to control for testing purposes.

The method chosen was to use the traffic control tool, tc, written by Alexey N. Kuznetsov and added

in Linux 2.2. tc provides control over several queues and classes which filter incoming packets. The

commands used in this project are below.

> sudo tc qdisc add dev eth0 root handle 1:0

netem delay mean bound distribution normal

> sudo tc qdisc del dev eth0 root

The first command adds a queue to the ethernet port under the root node. Adding a

queue to the root node forces all IP traffic over eth0 to pass through this queue. The queue adds

a time delay to each packet using a normal distribution. The mean time value is the average delay

added to each packet. The bound time value provides an upper and lower limit for the time delay.

For example, “netem delay 50ms 5ms distribution normal” adds a 50ms ± 5ms delay. The second

command removes the queue, allowing the ethernet port to function normally again.

tc also allows the user to emulate packet loss, packet duplication, packet corruption, and

packet re-ordering. For simplicity, these cases were not taken into consideration when analyzing the

system performance with various network delays. However, a complete study would certainly test

all possible scenarios.

52

7.4.2 Test Scenarios

Web Services on LAPTOP with Slow Network

The web server is run on laptop. JSAF runs the seadRealtime custom scenario. The

CPU frequency on workstation is set to 2.80Ghz. The network delay between workstation and

laptop is set to be a normal distribution with a mean of 50, 100, 200, and 500ms. The response

times are collected. The results are displayed in Figure 7.5. As is expected, the response times

increase for each increment in network delay.

Figure 7.5: Response Times for LAPTOP with Slow Network

Web Services on CLUSTER with Slow Network

The web server is run on cluster. JSAF runs the seadRealtime custom scenario. The

CPU frequency on workstation is set to 2.80Ghz. The network delay between workstation and

cluster is set to be a normal distribution with a mean of 50, 100, 200, and 500ms. The response

times are collected. The results are displayed in Figure 7.6. As is expected, the response times

increase for each increment in network delay.

53

Web Server on Slow LAPTOP

The web server is run on laptop. JSAF again runs the seadRealtime custom scenario. The

CPU frequency on workstation is constant at 2.80Ghz, while the CPU frequency on laptop is

scaled between 1.00Ghz and 2.00Ghz in increments of 333Mhz. The response times are collected.

The results are displayed in Figure 7.7. As expected, the response times increase.

54

Figure 7.6: Response Times for CLUSTER with Slow Network

Figure 7.7: Response Times for Slow LAPTOP

55

Chapter 8

Load Balancing Analysis

8.1 Introduction

In the previous chapter, experiments showed that using network machines can improve

system performance. The experiments also showed that a slow network could be detrimental to

performance, making it worse than it would have been otherwise. The load-balancing mechanism

was designed to choose the optimal server, whether it be a local or network machine. Here, the

performance of the load-balancing mechanism will be examined by comparing it to a scenario where

load-balancing is not used.

While the load-balancing should have a good effect on the overall system performance, it

does add extra overhead into the system. Therefore, it is necessary to quantify the amount of

overhead to understand when load-balancing is not good. One scenario in particular is when there

is only one server available. Another scenario is the case when the web server running the broker

service is congested or heavily loaded. Both scenarios will be examined to determine the cost of

using load-balancing versus not using it.

56

8.2 Benefits of Load-Balancing

Setup

A new machine configuration was used to determine the benefits of using a load-balancing

mechanism. While using physical machines, such as in the last set of experiments is acceptable for

the previous tests, it was decided that more machines would more accurately determine how well

the load-balancing mechanism worked. The approach used was to build 5 virtual machines using

VMWare. VMWare is an application which emulates full machines, but in reality, these machines

are just processes on a host machine. Figure 8.1 shows the setup of the virtual machines. The first

machine hosts the broker web service, Nagios, and the MySQL database used with Nagios. The other

4 machines all host the SEAD behavior model web service. The host machine is the workstation

from the last round of experiments, and it runs JSAF and its own web server which hosts the SEAD

behavior model service. Therefore, we have 5 machines with the SEAD service and one machine

with the broker service. The 4 VMs hosting the SEAD service were set to varying process priorities,

effectively changing the quality-of-service seen from each server. A lower priority will be a slower

machine and vice versa.

Figure 8.1: Load Balancing Experiment Setup

Once the machine setup was complete, the experiments were run. First, The broker service

was configured to choose the server based on the probability distribution discussed earlier in the

thesis. JSAF was started with 10 aircraft running SEAD behaviors. One thousand response times

were gathered, approximately 100 response times per aircraft. The average response time was

determined over all 1000 response times, as well as the 95% confidence interval. Then, the broker

service was configured to choose the server from a uniform distribution, and the experiment was run

again.

57

Results

Running these two scenarios, the configuration which intelligently chooses the server is ex-

pected to perform better. The results are available in Figure 8.2. Indeed, the intelligent configuration

does perform better, and by a seemingly large amount. However, more tests under various different

scenarios are needed to completely determine if these results are accurate or not.

Figure 8.2: Benefits of Load-Balancing

8.3 Drawbacks of Load-Balancing

Setup

The setup for these experiments are very similar to the previous experiments. The differences

are as follows. For the first experiment, only one server will be available. Response times will be

gathered for the SEAD service always choosing that particular server. Then, response times will be

gathered for the SEAD service querying the broker service to get the server address. The average

difference in response times should measure the overhead of using the load-balancing mechanism. For

the second experiment, the process priority of the virtual machine running the broker service will be

58

lowered significantly to emulate a heavily-loaded server. The process priorities for the other virtual

machines will remain the same. Therefore, while there was an improvement in system performance

in the last set of experiments, there is not expected to be the same improvement in this set. In fact, it

is possible that there could be a negative effect in system performance when using the load-balancing

mechanism.

Results

In the first experiment, the average overhead was determined for the broker service. This

overhead is estimated at 40% of the tick cycle time. However, the overhead is dependent on the time

required to run the behavior service. Therefore, a longer behavior service run time would decrease

this value. This result suggests that a behavior model should only be developed into a web service if

(a) the execution time is large and/or it requires a lot of resources or (b) the other benefits of using

Web Services are desired such as the dynamic-linking capabilities.

Figure 8.3: Heavily-Loaded Broker Service vs No Broker Service

In the second experiment, the system performance was examined for a heavily-loaded broker

service. The results are available in Figure 8.3. These results are a bit unexpected since the heavy

load should have negated the help of the load-balancing mechanism. Instead, these results seem to

further affirm that load-balancing can be of great help. Even though the load balancing mechanism

introduces significant overhead, the performance can still be improved over not using a load-balancing

59

approach. The key fact to note here is the different priorities set to the virtual machines, which

allow an intelligent approach to help.

60

Chapter 9

Conclusions

9.1 Summary

A method for integrating remote components into an HLA simulation environment is needed.

The solution proposed is Web Services. Web services are simple and easy to implement. Network

transfer is acheived using the SOAP protocol, which almost guarantees interoperability between

different operating systems and programming languages. The other portion of interoperability is in

the form of a well-documented API to ensure the data requested is the data returned.

In this work, several web services are developed. Two web services are behavior models.

A third interfaces with behavior recognition software. The fourth implements a QoS broker agent.

The QoS broker agent performs load balancing among all available servers to improve system per-

formance.

A Web Services library is added to JSAF. This library contains the header and source files

necessary to invoke the web services. These header and source files were created using GSoap, and

need to be recreated each time a web service interface is changed or added. The function calls

implemented in these source files are included in the JSAF behaviors modified for this thesis. The

first modified behavior is the Fixed-Wing Aircraft Ground Attack behavior, and the second is a new

Vehicle Tracking behavior.

Testing was performed to analyze this Web Services approach. System performace improved

when computation was offloaded to a faster server, perhaps in the case that the simulator machine’s

CPU was heavily loaded. Furthermore, testing was performed with the load-balancing mechanism

61

in place. Preliminary results show that intelligently choosing a service endpoint will improve system

performance more than selecting a server at random. The load-balancing mechanism is especially

important when several clients are running at once.

9.2 Discussion

JSAF and OneSAF are very good SAF systems. However, they are stand-alone systems

that must use internal behavior models and physical models. These models may be changed, but

not without trouble. It is difficult to test new models with the current software. This work provides

a method for connecting external components to the SAF simulation systems. These external com-

ponents may serve any purpose. However, we are most interested in behavior models. Encapsulating

a behavior model as a web service allows any SAF system to access this model. Furthermore, the

user may dynamically load these behavior models at runtime. Suppose there are several hundred

models available as web services. The user could choose from all the available models, rather than

just the internal models shipped with the original SAF system. These models may change from

day to day as they are improved. However, the SAF system user will not be required to perform a

system rebuild each time a model is changed.

An advantage of using Web Services is the ability to perform load-balancing. Several iden-

tical models may be deployed in different servers. These models may be consumed by several SAF

systems, executing what may be several hundred lines of code for a complex behavior model. The

offloading of this computation frees up the SAF system user’s CPU, which at the least would provide

a more enjoyable experience. At most, the user may be running a very large simulation. By offload-

ing most of the heavy computation, the simulation should run smoothly, even though thousands of

entities may be moving around the battlespace. The drawback is it would require a good ethernet

card and a very fast uplink to the network.

Web Services provides a good solution for deploying new behavior models and offloading

computation. However, it should not necessarily be used for everything. HLA and DIS are still very

good simulation protocols. HLA is designed to handle simulation management, and DIS is designed

specifically for military simulation. It would be a step backward to apply the general nature of Web

Services to the specific area of military simulation. On the other hand, merging the two technologies

may prove beneficial. Having a RTI accessible through Web Services could further increase the

62

interoperability between federates and the RTI. The same applies for federates modeled as Web

Services. If done correctly, the basic architecture of HLA would not change, but the interoperability

between components would greatly increase.

This work is only a small part of the large amount of work in service-oriented architectures

SOAs). While most SOA research is done with regard to the business world, there is no reason that

SOA principles cannot be applied to other areas, like military simulation. In a sense, SOA is very

similar to how people operate. There is not just one barber shop, but several. In the same way, there

should not be just one absolute simulation model. Not every soldier or aircraft will act exactly the

same. The differences may be enough to shed light on any vulnerabilities. For example, a simulation

may show that an attack is successful 49 out of 50 trials. One may conclude that the attack will work

with 98% certainty. However, the interesting trial is the one that didn’t succeed. It is important to

understand why it didn’t succeed and find ways to make it succeed. Therefore, as Web 2.0 stresses

the individuality of the users, and not the providers, it is important that simulations are products of

many different researchers, and not a select few. By using Web Services to expand SAF simulation

systems, the knowledge of the world can be harnessed, rather than just that of a single group.

9.3 Future Work

Future work involves the development of more behavior models to test how well the system

works. Whereas the models used in this thesis are developed in MATLAB, it might be appropriate

to have models developed using C/C++, Java, or Prolog. They could then be more easily developed

into a stand-alone web service.

Developing a Web Services library for JSAF which downloads the WSDL file during run-

time and parses it to determine message formats may provide a better method for integrating web

service calls into JSAF. It would remove the need to rebuild JSAF each time an interface is changed

or added. However, the overhead and complexity may not be worth the effort.

More work with the load-balancing mechanism will improve system performance, specifically

with respect to the weights used in the computation of the QoS metric. The weights are currently

defined as they are because they work. A more thorough analysis will provide better weights, and

thus a better metric for comparing servers.

63

Appendix

Suppression of Enemy Air Defenses (SEAD)

The SEAD behavior is a component written as a MATLAB function. There are several

possibilities for communicating between Java and MATLAB. The Java Native Interface (JNI) is

one solution, although difficult to implement. Another solution is to create a Java extension in the

MATLAB function. This extension would interface with the MATLAB variables and communicate

through some form of IPC to the Java web service. However, this solution requires a lot of extra

implementation. Furthermore, both solutions are specific to MATLAB. A general solution that

will work for components written in any computer language is desired. The chosen solution is

to execute the component within its runtime environment, then access the standard I/O of the

component. With this solution, the communication is provided using the standard I/O which makes

the communication trivial.

The SEAD web service consists of three methods. These methods are start, stop, and tick.

start and stop methods start and stop the MATLAB run-time environment. tick encapsulates the

SEAD behavior model by calling the MATLAB function and reading the results from the standard

output stream. The reader may note that this differs from the API mentioned in Chapter 4. Be-

cause the MATLAB runtime environment must be started and stopped, two extra functions are

publicly available for this purpose. First, the web service state variables will be discussed. Then, a

walkthrough of each method will be given.

State Variables

private Process p;
private BufferedReader output;
private BufferedReader error;

64

private PrintWriter input;
private boolean MatlabOpen = false;

p is the run-time process. output reads from the run-time output stream, error reads from

the run-time error stream, and input writes to the run-time input stream. MatlabOpen is true if

the run-time process is started correctly, and false otherwise.

Starting the MATLAB Run-time Environment

@WebMethod(operationName = ‘‘start’’)
public boolean start()
{
if(MatlabOpen) return true;

try {

// Start MATLAB run-time environment; wait 15 seconds for startup to complete
p = Runtime.getRuntime().exec (‘‘/home/mbennin/installs/matlab/bin/matlab’’);
Thread.sleep(15000);

// Get Matlab output stream
output = new BufferedReader (new InputStreamReader (p.getInputStream ()));

// Get Matlab input stream
input = new PrintWriter (

new BufferedWriter (new OutputStreamWriter (p.getOutputStream ())));

// Get Matlab error stream
error = new BufferedReader (new InputStreamReader (p.getErrorStream ()));

// Clear input and output streams
input.clear();
output.clear();

// Output contents of error stream, if any
if(error.ready())
while(!error.empty())
System.out.println(error.readLine());

// Change current working directory (cwd) within MATLAB
output.println(‘‘cd /home/mbennin/Desktop/seadWork’’);
output.flush ();

// MATLAB run-time environment is now running
MatlabOpen = true;

}
catch (Exception e) {

65

System.out.println (‘‘(start) error: ‘‘ + e.getMessage ());
}

return MatlabOpen;
}

An instance of the MATLAB run-time environment is called to execute. The thread sleeps

for 15 seconds to allow MATLAB to fully start. Then, the input, output, and error streams are

attached to their respective Reader and Writer objects. The input and output streams are cleared

of any data, and the error stream is read. Finally, the cwd is changed within MATLAB so that the

SEAD function may be run. Also, MatlabOpen is set to true, unless an exception was thrown.

Stopping the MATLAB Run-time Environment

@WebMethod(operationName = ‘‘stop’’)
public boolean stop()
{
if(MatlabOpen)
{
output.println(‘‘quit’’);
output.flush();

Thread.sleep(5000);
p.destroy();

MatlabOpen = false;
}

return true;
}

If the MATLAB run-time environment is open, try to close it normally. Forcefully kill the

process after 5 seconds to make sure the run-time environment is closed. Set MatlabOpen to false.

Calling the MATLAB Function

public class FlightCommands {

public FlightCommands ()
{
x = 0; y = 0; heading = 0; speed = 0; altitude = 0; targetHeading = 0;
error = false; err = ‘‘’’;

}

66

public FlightCommands(float _x, float _y, float h, float s, float a,
float targetH, boolean _error, String _err)

{
x = _x; y = _y; heading = h; speed = s; altitude = a; targetHeading = targetH;
error = _error; err = _err;

}

public float x;
public float y;
public float heading;
public float speed;
public float altitude;
public float targetHeading;
public boolean error;
public String err;

}

@WebMethod(operationName = ‘‘tick’’)
public FlightCommands tick(@WebParam (name = ‘‘xPosition’’)

int xPosition, @WebParam (name = ‘‘yPosition’’)
int yPosition, @WebParam (name = ‘‘heading’’)
float heading, @WebParam (name = ‘‘speed’’)
float speed, @WebParam (name = ‘‘targetHeading’’)
float targetHeading) {

FlightCommands result = new FlightCommands();

if(MatlabOpen) {
String in,err;
String cmd = ‘‘sead(’’ + xPosition + ‘‘,’’ + yPosition + ‘‘,’’ +

heading + ‘‘,’’ + speed + ‘‘,’’ +
targetHeading + ‘‘);’’;

output.println(cmd);
output.flush();

try {
while(error.ready())
System.out.println(‘‘(error) ’’ + error.readLine());

if(input.ready())
{
in = input.readLine();
if(in.contains(‘‘>> ‘‘))
in = in.substring(in.lastIndexOf(‘‘>> ‘‘) + 3);

System.out.println(‘‘in: ‘‘+in);
while (in.contains(‘‘ ‘‘)) {
in = input.readLine();
if(in.contains(‘‘>> ‘‘))
in = in.substring(in.lastIndexOf(‘‘>> ‘‘) + 3);

67

System.out.println(‘‘in: ‘‘+in);
}

result.x = new Float(in).floatValue();
in = input.readLine();
result.y = new Float(in).floatValue();
in = input.readLine();
result.heading = new Float(in).floatValue();
in = input.readLine();
result.speed = new Float(in).floatValue();
in = input.readLine();
result.targetHeading = new Float(in).floatValue();

} else {
System.out.println(‘‘(error) no input!’’);
result.error = true;
result.err = ‘‘error: error with params’’;

}
} catch (IOException e) {
System.out.println(‘‘(tick) error: ‘‘ + e.getMessage());
result.error = true;
result.err = ‘‘error: IOException’’;

}
} else {
System.out.println(‘‘(tick) error: MatlabNotOpen’’);
result.error = true;
result.err = ‘‘error: MatlabNotOpen’’;

}

return result;
}

Vehicle Tracking with Behavior Analysis and Prediction

The Vehicle Tracking behavior was designed from the start to be a Web service. Therefore,

inter-process communication is unnecessary. A Java class for vehicle tracking was created and

populated with several methods. The methods were either get or set methods for various values,

such as the latest tracking information, the current predicted behavior, the time delay between the

prediction and the time of the simulator, etc. The state variables and each method are described

below.

State Variables

public class TrackingInformation
{
public TrackingInformation()

68

{
x = 0; y = 0;
rangeToTarget = 0.0; angleToTarget = 0.0; targetHeading = 0.0;
timestamp = 0;
command = ‘‘’’;

}

public TrackingInformation(int _x, int _y, float _rtt, float _att, float _th,
long _t, String _c)

{
x = _x; y = _y;
rangeToTarget = _rtt; angleToTarget = _att; targetHeading = _th;
timestamp = _t;
command = _c;
}

public TrackingInformation(String _c)
{
x = 0; y = 0;
rangeToTarget = 0.0; angleToTarget = 0.0; targetHeading = 0.0;
timestamp = 0;
command = _c;

}

public int x;
public int y;
public float rangeToTarget;
public float angleToTarget;
public float targetHeading;
public long timestamp;

String command;
}

ConcurrentLinkedQueue trackingInfo;
String predictedBehavior;

long lastGrabbedTime;
long lastAddedTime;

Initialize State Variables

@WebMethod(operationName = ‘‘startTracking’’)
@Oneway
public void startTracking(@WebParam(name = ‘‘vehEnvironment’’)
String vehEnvironment)

{
trackingInfo = new ConcurrentLinkedQueue();
trackingInfo.offer(new TrackingInformation(vehEnvironment));

69

PredictedBehavior = new String(‘‘Unknown Behavior’’);

lastGrabbedTime = System.currentTimeMillis ();
lastAddedTime = System.currentTimeMillis ();

}

Upload Tracking Information

@WebMethod(operationName = ‘‘putTrackingInfo’’)
@Oneway
public void putTrackingInfo(@WebParam(name = ‘‘dx’’)
float dx, @WebParam(name = ‘‘dy’’)
float dy, @WebParam(name = ‘‘rangeToTarget’’)
float rangeToTarget, @WebParam(name = ‘‘angleToTarget’’)
float angleToTarget, @WebParam(name = ‘‘targetHeading’’)
float targetHeading)

{
lastAddedTime = System.currentTimeMillis ();
if(trackingInfo.size() < 127)
{
TrackingInformation info = new TrackingInformation(
dx, dy, rangeToTarget, angleToTarget, targetHeading, lastAddedTime, ‘‘’’);

trackingInfo.offer(info);
}

}

Retrieve Position Relative to Origin

@WebMethod(operationName = ‘‘getXYPositionRelativeToOrigin’’)
public String getXYPositionRelativeToOrigin (@WebParam(name = ‘‘length’’)
int length)

{
// Check whether ’length’ elements exist in queue
if(trackingInfo.size () < length) return new String(‘‘UNDERFLOW’’);

String result = new String (‘‘’’);
TrackingInformation info;

for (int i = 0; i < length-1; i++)
{
info = (TrackingInformation) trackingInfo.poll();
if(info.commamnd.size())
result += info.command + ‘‘ ’’;

else
result += info.x + ‘‘,’’ + info.y + ‘‘ ’’;

}
info = (TrackingInformation) trackingInfo.poll();
if(info.commamnd.size())

70

result += info.command;
else
result += info.x + ‘‘,’’ + info.y;

lastGrabbedTime = info.timestamp;

return result;
}

Retrieve Range to Target and Angle to Target

@WebMethod(operationName = ‘‘getRangeAndAngleToTarget’’)
public String getRangeAndAngleToTarget (@WebParam(name = ‘‘length’’) int length)
{
// Check whether ’length’ elements exist in queue
if(trackingInfo.size () < length) return new String(‘‘UNDERFLOW’’);

String result = new String (‘‘’’);

for(int i = 0; i < length-1; i++)
{
info = (TrackingInformation) trackingInfo.poll();
if(info.commamnd.size())
result += info.command + ‘‘ ’’;

else
result += info.rangeToTarget + ‘‘,’’ + info.angleToTarget+ ‘‘ ’’;

}
info = (TrackingInformation) trackingInfo.poll();
if(info.commamnd.size())
result += info.command;

else
result += info.rangeToTarget + ‘‘,’’ + info.angleToTarget;

lastGrabbedTime = info.timestamp;

return result;
}

Retrieve Range to Target and Target Heading

@WebMethod(operationName = ‘‘getRangeAndTargetHeading’’)
public String getRangeAndTargetHeading(@WebParam(name = ‘‘length’’) int length)
{
// Check whether ’length’ elements exist in queue
if(trackingInfo.size () < length) return new String(‘‘UNDERFLOW’’);

String result = new String (‘‘’’);

71

for(int i = 0; i < length-1; i++)
{
info = (TrackingInformation) trackingInfo.poll();
if(info.commamnd.size())
result += info.command + ‘‘ ’’;

else
result += info.rangeToTarget + ‘‘,’’ + info.targetHeading+ ‘‘ ’’;

}
info = (TrackingInformation) trackingInfo.poll();
if(info.command.size())
result += info.command;

else
result += info.rangeToTarget + ‘‘,’’ + info.targetHeading;

lastGrabbedTime = info.timestamp;

return result;
}

Upload Predicted Behavior

@WebMethod(operationName = ‘‘putPredictedBehavior’’)
@Oneway
public void putPredictedBehavior (@WebParam(name = ‘‘PredictedBehavior’’)
String _PredictedBehavior)

{
PredictedBehavior = _PredictedBehavior;

}

Retrieve Predicted Behavior

@WebMethod(operationName = ‘‘getPredictedBehavior’’)
public String getPredictedBehavior ()
{
return predictedBehavior;

}

Retrieve Time Delay

@WebMethod(operationName = ‘‘getTimeDelay’’)
public long getTimeDelay ()
{
return (lastAddedTime - lastGrabbedTime);

}

72

Upload Command

@WebMethod(operationName = ‘‘putCmd’’)
@Oneway
public void putCmd (@WebParam(name = ‘‘command’’) String command)

{
trackingInfo.add (new TrackingInformation(command));

}

QoS Broker Web Service

The QoS Broker web service keeps track of the several servers available to JSAF. QoS

measures are kept for each server to form a probability distribution. Clients can register to use any

of the servers. The QoS Broker then returns a server address to each client when requested. In this

way, the client can be assured it is using the optimal server.

State Variables

private Vector<BrokerClient> clients;
private volatile BrokerServer[] servers;
private int numClients;

private BrokerSqlParser parser;

private boolean initialized = false;

@Resource
WebServiceContext wsCtxt;

Initialization

@WebMethod(operationName = "init")
public void init () {

servers = new BrokerServer[5];

servers[0] = new BrokerServer("http://172.16.178.1:8081/");
servers[1] = new BrokerServer("http://172.16.178.129:8080/");
servers[2] = new BrokerServer("http://172.16.178.130:8080/");
servers[3] = new BrokerServer("http://172.16.178.131:8080/");
servers[4] = new BrokerServer("http://172.16.178.132:8080/");

parser = new BrokerSqlParser(servers);
parser.start();

73

clients = new Vector();
numClients = 0;

initialized = true;
}

Stop Web Service Nicely

@WebMethod(operationName = "destroy")
public void destroy () {
if(initialized)
parser.quit();

}

Register a Client

@WebMethod(operationName = "register")
public int register () {

if(!initialized) init();

MessageContext msgCtxt = wsCtxt.getMessageContext();
HttpServletRequest req =
(HttpServletRequest)msgCtxt.get(MessageContext.SERVLET_REQUEST);

String clientIP = req.getRemoteAddr().trim();
int id = numClients++;

clients.add(new BrokerClient(clientIP,id));

return id;
}

Unregister a Client

@WebMethod(operationName = "unregister")
public synchronized void unregister (@WebParam(name = "id") int id) {

if(!initialized) init();

// invalid id
if(id < 0 || id >= numClients) return;

// invalid id
int index = clients.indexOf(new BrokerClient("",id));
if(index < 0) return;

74

BrokerClient client = clients.elementAt(index);

if(client.server != null)
client.server.clients.remove(client);

clients.remove(id);
numClients--;

}

Connect Client to a Server

@WebMethod(operationName = "connect")
public synchronized String connect (@WebParam(name = "id") int id) {

if(!initialized) init();

// invalid id
if(id < 0 || id >= numClients) return null;

// invalid id
int index = clients.indexOf(new BrokerClient("",id));
if(index < 0) return null;

BrokerClient client = clients.get(index);

if(client.server != null)
client.server.clients.remove(client);

// Find server with best performance
double maxValue = 0.0;
int maxIndex = 0;
for(int i = 0; i < 5; i++)
{
servers[i].computeQoSMetric();
if(servers[i].getQoSMetric() > maxValue)
{
maxValue = servers[i].getQoSMetric();
maxIndex = i;

}
}

client.server = servers[maxIndex];
servers[maxIndex].clients.add(client);

return servers[maxIndex].getUrl();
}

75

Provide QoS Information

@WebMethod(operationName = "getQoSInfo")
public synchronized QoSInfo getQoSInfo () {
if(!initialized) init();

for(int i = 0; i < servers.length; i++)
servers[i].computeQoSMetric();

return new QoSInfo (servers,clients);
}

76

Bibliography

[1] Ieee std. 1516 – standard for modeling and simulation high level architecture.

[2] Asn.1 - xml - fast infoset. http://asn1.elibel.tm.fr/xml/finf.htm, 2006.

[3] US Army. America’s army: Special forces. http://www.americasarmy.com, 2008.

[4] K. Birman. The untrustworthy web services revolution. Computer, pages 98–100, February
2006.

[5] R. Brooks, J. Schwier, and C. Griffin. Behavior detection using confidence intervals of hidden
markov models. 2008.

[6] D. Brutzman, M. Zyda, M. Pullen, and K. Morse. extensible modeling and simulation frame-
work (xmsf): Challenges for web-based modeling and simulation. In XMSF Workshop and
Symposium, 2002.

[7] S. Chandrasekaran, G. Silver, J. Miller, J. Cardoso, and A. Sheth. Web service technologies
and their synergy with simulation. In Proceedings of the 2002 Winter Simulation Conference,
pages 606–615, 2002.

[8] A. D’Ambrogio and D. Gianni. Using corba to enhance hla interoperability in distributed and
web-based simulation. In Proceedings of the 19th International Symposium on Computer and
Information Sciences (ISCIS’04), pages 696–705, 2004.

[9] J. Dingel, D. Garlan, and C. Damon. Bridging the hla: Problems and solutions. In Proceedings
of the 6th International Workshop on Distributed Simulation and Real-Time Applications (DS-
RT’02), 2002.

[10] R. Elfwing, U. Paulsson, and L. Lundberg. Performance of SOAP in web service environment
compared to CORBA. In Proceedings of the Ninth Asia-Pacific Software Engineering Confer-
ence (APSEC’02), 2002.

[11] I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Leymann, M. Nally,
I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and S. Weerawarana. Modeling stateful
resources with web services. http://www.ibm.com/developerworks/webservices/library/
specification/ws-resource/ws-wsrfpaper.html, 2004.

[12] P. Gustavson and T. Chase. Using xml and boms to rapidly compose simulations and simulation
environments. In Proceedings of the 2004 Winter Simulation Conference, pages 1467–1475, 2004.

[13] F. Hassaine, N. Abdellaoui, A. Yavas, P. Hubbard, and A. Vallerand. Effectiveness of jsaf
as an open architecture, open source synthetic environment in defense experimentation. In
Transforming Training and Experimentation through Modeling and Simulation, pages 11–1–11–
6, 2006.

77

http://asn1.elibel.tm.fr/xml/finf.htm
http://www.americasarmy.com
http://www.ibm.com/developerworks/webservices/library/specification/ws-resource/ws-wsrfpaper.html
http://www.ibm.com/developerworks/webservices/library/specification/ws-resource/ws-wsrfpaper.html

[14] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz. An overview of constraint-based
path selection algorithms for qos routing. IEEE Communications Magazine, 2002.

[15] F. Lanchester. Aircraft in Warfare: The Dawn of the Fourth Arm. D. Appleton and Co., New
York, 1916.

[16] D. Menascé. Qos issues in web services. IEEE Internet Computing, 2002.

[17] Microsoft. .net binary format: Xml data structure. http://msdn.microsoft.com/en-us/
library/cc219210.aspx, 2008.

[18] OneSAF. Onesaf public site. http://www.onesaf.net, 2008.

[19] T. O’Reilly. What is web 2.0: Design patterns and business models for the next gen-
eration of software. http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html, 2005.

[20] K. Pingali and P. Stodghill. A distributed system based on web services for computational sci-
ence simulations. In Proceedings of the 20th ACM International Conference on Supercomputing
(ICS’06), pages 297–306, 2006.

[21] P. Prasithsangaree, J. Manojlovich, J. Chen, and M. Lewis. Utsaf: A simulation bridge between
onesaf and the unreal game engine. pages 1333–1338, 2003.

[22] R. Reddy and R. Garrett. Future technology challenges in distributed interactive simulation.
In Proceedings of the IEEE, volume 83, pages 1188–1195, 1995.

[23] J. Schwier and M. Bennink. Verification of behavior recognition using java web services. 2008.

[24] R. Smith. Next generation technology for simulation and training. NATO Nations and Partners
for Peace: Special Issue on Simulation and Training, 2007.

[25] R. Smith. The long history of gaming in military training. Simulation and Gaming, 40th
anniversary issue, 2008.

[26] R. Smith. Web 2.0 and warfighter training. In European Simulation Interoperability Workshop,
pages 1–8, 2008.

[27] LLC Tactical Language Training. Tactical language and culture training systems. http://www.
tacticallanguage.com/, 2008.

[28] O. Topçu, M. Adak, and H. Oǧuztüzün. A metamodel for federation architectures. ACM
Transactions on Modeling and Computer Simulation, 18(3):10:1–10:29, 2008.

[29] USJFCOM. Joint semi-automated forces. http://www.jfcom.mil/about/fact_jsaf.html,
2008.

[30] D. Vaden and G. Miller. Modsaf fades away. http://www.sisostds.org/webletter/siso/
iss_75/art_367.htm, 2001.

[31] W3C. Efficient xml interchange. http://www.w3.org/XML/EXI/, 2008.

[32] H. Wang and H. Zhang. Collaborative simulation environment based on hla and web service.
In Proceedings of the 10th International Conference on Computer Supported Cooperative Work
in Design (CSCWD’06), 2006.

[33] Wikipedia. Run-time infrastructure. http://en.wikipedia.org/wiki/Runtime infrastructure,
2008.

78

http://msdn.microsoft.com/en-us/library/cc219210.aspx
http://msdn.microsoft.com/en-us/library/cc219210.aspx
http://www.onesaf.net
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.tacticallanguage.com/
http://www.tacticallanguage.com/
http://www.jfcom.mil/about/fact_jsaf.html
http://www.sisostds.org/webletter/siso/iss_75/art_367.htm
http://www.sisostds.org/webletter/siso/iss_75/art_367.htm
http://www.w3.org/XML/EXI/

[34] T. Yu and K. Lin. A broker-based framework for qos-aware web service composition.

[35] T. Yu, Y. Zhang, and K. Lin. Efficient algorithms for web services selection with end-to-end
qos constraints. In ACM Transactions on the Web, 2007.

[36] H. Zhang, H. Wang, and D. Chen. Integrating web services technology to hla-based multidisci-
plinary collaborative simulation system for complex product development. In Proceedings of the
12th International Conference on Computer Supported Cooperative Work in Computer Design
(CSCWD’08), pages 420–426, 2008.

79

	Clemson University
	TigerPrints
	12-2008

	Application of Web Services to a Simulation Framework
	Matthew Bennink
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Acronym Table
	Introduction
	Motivation
	Research Objectives
	Overview

	Distributed Computing
	Client/Server Paradigm
	Peer-to-Peer Paradigm
	Remote Procedure Call Paradigm
	Distributed Object Paradigm
	Web Services and CORBA
	Distributed Computing in the Military Domain

	Distributed Simulation
	Standards
	Semi-Automated Forces

	Design and Methodology
	Design
	Methodology

	Implementation
	Web Services Development
	Support for Web Services in JSAF
	Integration of SEAD Behavior
	Integration of Behavior Analysis and Prediction System
	Load Balancing

	Behavior Analysis
	Introduction
	Background
	Testing

	Performance Analysis
	Introduction
	Setup
	CPU Performance Analysis
	Network Load Analysis

	Load Balancing Analysis
	Introduction
	Benefits of Load-Balancing
	Drawbacks of Load-Balancing

	Conclusions
	Summary
	Discussion
	Future Work

	Appendix
	Bibliography

