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Abstract 
 

COTS simulation packages (CSPs) have proved 
popular in an industrial setting with a number of 
software vendors. In contrast, options for re-using 
existing models seem more limited.  Re-use of 
simulation component models by collaborating 
organizations is restricted by the same semantic issues 
however that restrict the inter-organization use of web 
services. The current representations of web 
components are predominantly syntactic in nature 
lacking the fundamental semantic underpinning 
required to support discovery on the emerging 
semantic web. Semantic models, in the form of 
ontology, utilized by web service discovery and 
deployment architecture provide one approach to 
support simulation model reuse.  Semantic 
interoperation is achieved through the use of 
simulation component ontology to identify required 
components at varying levels of granularity (including 
both abstract and specialized components).  Selected 
simulation components are loaded into a CSP, 
modified according to the requirements of the new 
model and executed. The paper presents the 
development of ontology, connector software and web 
service discovery architecture in order to understand 
how such ontology are created, maintained and 
subsequently used for simulation model reuse.  The 
ontology is extracted from health service simulation – 
comprising hospitals and the National Blood Service.  
The ontology engineering framework and discovery 
architecture provide a novel approach to inter-
organization simulation, uncovering domain semantics 
and adopting a less intrusive interface between 
participants.  Although specific to CSPs the work has 
wider implications for the simulation community. 
 
1. Introduction 
 

 Commercial-off-the-shelf (COTS) simulation 
packages (CSPs) offer an interactive and visual model 
development environment – modeling and 

experimenting with existing and proposed systems. 
Industrial simulation practitioners extensively use 
CSPs such as Simul8, Witness, AnyLogic, AutoMod 
and Arena to model their simulations. These packages 
allow reuse of standard simulation components like 
workstations, queues, conveyors, resources etc. and 
thereby provide the building blocks that facilitate the 
creation of larger models. As these models grow larger 
and more complex the prospect of simulation model 
reuse is appealing as it has the potential to reduce the 
time and cost incurred in developing future models 
(benefiting from the experience embedded with 
existing models). An extension of model reusability is 
the concept of separate development and user groups, 
whereby models are developed and validated by one 
group and then used to specify simulations by another 
group [1]. In this paper we look at the discovery and 
import of CSP-created models across organizational 
boundaries in the context of supply chains, thus 
enabling the development and deployment of model 
components in collaborating organizations. The 
approach does not allow model information hiding 
between enterprises and contrasts with the distributed 
simulation approach to model reuse which allows an 
organization to hide model specific information and 
data from the other participants. A short discussion on 
supply chains and the distributed simulation approach 
follows. 

Supply Chain Management (SCM) consists of a 
series of tasks - manufacturing, transport and 
distribution - undertaken by organizations who aim to 
deliver products to their customers. Simulation of the 
supply chain can identify manufacturing bottlenecks; 
resources required for timely delivery, adequate stock 
levels for distribution etc. and help improve the 
performance of the underlying supply chain. 
Organizational parts of the supply chain would 
normally develop models that simulate their own 
responsibility. Assuming that all necessary individual 
simulation components are now available the question 
is how do we link them together? Distributed 
simulation offers one such solution. Distributed 
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simulation can be defined as the distribution of the 
execution of a single run of a simulation program 
across multiple processors [2]. It allows each 
organization to run its model in its own site (thereby 
encapsulating model details within the organization 
itself) and participating with other sites through 
information exchange using distributed simulation 
middleware [3]. [4,5,6,7] are examples of successful 
distributed simulation using CSPs. There is a growing 
body of research dedicated to creating distributed 
simulation with CSPs and the High Level Architecture 
(HLA), the IEEE 1516 standard for distributed 
simulation. In an attempt to unify this research COTS 
Simulation Package Interoperability Product 
Development Group (CSPI-PDG), a Simulation 
Interoperability Standards Organization (SISO) 
standardization group began operating in October 2004 
(http://www.cspi-pdg.org/).  

The distributed simulation approach to model 
reusability in the context of CSPs faces the following 
challenges. Firstly, a lack of widespread demand for 
distributed simulation in industry has meant that the 
CSP vendors have not currently incorporated 
distributed simulation support into their products. 
Consequently, the organizations that want to use this 
approach do not have readymade solutions. Secondly, 
research projects that aim to create CSP based 
distributed simulation do not have access to its source 
code are thus limited by the functionality offered by 
the vendor. Thirdly, execution of a distributed 
simulation tends to be much slower than traditional 
standalone simulation. For example, the 
straightforward use of the conservative HLA time 
advance mechanisms results in a simulation that runs 
extremely slowly, at an order of magnitude slower than 
its corresponding sequential runs [6]. In order to 
progress, these issues have to be resolved before 
industry can fully benefit from the application of CSP 
based distributed simulation. In the meantime it is 
worth investigating alternative approaches that enable 
tactical supply chain simulation across organizational 
boundaries. Our discovery and import approach to 
model reuse, in the context of CSPs, offers such an 
alternative to existing distributed simulation 
approaches. By discovery we mean that individual 
simulation models, which are created by organizations 
to model their activity in the supply chain, are 
discovered from using an inter-organizational 
repository (or Web) of models spread across 
organizations. The selected models are then loaded into 
a CSP, modified according to the requirements of the 
new model and executed. We believe that our approach 
at enabling CSP based supply chain simulation has a 
lighter touch with much fewer technical barriers. It also 

requires minimal CSP vendor intervention when 
compared to the distributed approach.  

Our vision is a web of SC models that are 
accessible to the practitioner. The current 
representations of web components are predominantly 
syntactic in nature lacking the fundamental semantic 
underpinning required to support discovery on the 
emerging semantic web [7]. Semantic models, in the 
form of ontology, utilized by web service discovery 
and deployment architectures provide one approach to 
support simulation model reuse. Improved component 
reuse through ontological model use has been proposed 
in simulation [8] - focusing on the simulation type and 
not the domain being modelled.  When considering 
COTS Simulation packages, intrusive activities are not 
possible when dealing with packaged software as only 
import or export capabilities are achievable. The tools 
of the semantic web provide a means to construct 
external description of the CSP models.  This external 
description, or ontology, can then be used to support 
the reuse of simulation components (SCs). Consider a 
scenario where a large multinational organisation uses 
CSPs to model many of its business activities.  Two 
human process are undertaken when a simulation is 
required – the creation of the model and its execution.  
In order to fully utilise the capabilities within the 
organisation we propose that model parts can be reused 
more effectively, better utilising the expertise within 
distinct models.  In order to support the reuse, methods 
for describing the models and enable semantic 
discovery are proposed.  The system supports the 
discovery of specific model components and their 
loading into the COTS simulation package.   Semantic 
interoperation is achieved through the use of a 
simulation component ontology to identify required 
components at varying levels of granularity (including 
both abstract and specialized components).  The 
ontology is derived from existing CSP Simulation 
Components (SCs) and is contrasted to current 
simulation ontology. 

The paper proposes that evolutionary construction 
of domain grounded SC ontology improves semantic 
discovery of SCs.  In addition, when combined with 
hard simulation semantics (such as state etc.), concepts 
from both vocabularies provide improved matching 
precision.  The paper is organized as follows.  Section 
2 presents a summary of pertinent literature including a 
summary of semantic web and ontologies. Section 3 
describes the DESC ontology, including the process 
undertaken to engineer it.  Section 4 covers the 
software tools that use the DESC ontology – the 
semantic search and component integration software.  
The paper concludes with a summary of the work 
presented and ideas for future development. 
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2. Related Literature 
 

Two communities of research are relevant to the 
work presented here: (1) Semantic web services and 
(2) the grid resource discovery.  Both provide an 
insight into the decoupling of component models from 
their execution environment and are used for both 
discovery and synthesis. Semantic search has been 
applied to both topics with a common reliance on 
knowledge – referred to as service ontology. Ontology 
itself is a specification of a representational vocabulary 
for a shared domain of discourse – with definitions of 
classes, relations, functions, and other objects [9]. It is 
an explicit specification of a conceptualization. The 
term is borrowed from philosophy, where an Ontology 
is a systematic account of existence [9]. In borrowing 
the term ontology and placing it into an engineering 
discipline, two distinct usage types emerge in the 
creation of these specifications:  The theoretic 
(deductive) approach and the pragmatic (inductive 
approach) [10]. It is the pragmatic approach that is 
adopted in this paper – focusing on the engineering of 
knowledge from CSP models.  Ontology has been 
introduced into simulation model re-use already, 
supporting model re-use/discovery [11-13], although 
methods for selecting or building appropriate ontology 
are still unclear, especially when consider a less 
organized Web of ontology. 

The semantic web provides structured knowledge 
and reasoning about a web of models and the grid 
promises a vision of CSPs that are able to execute 
discovered models. The semantic web [14] aims to 
uncover knowledge about domains so as to better 
support discovery, integration and understanding of 
resident objects.  Semantic web services SWS refine 
this vision [15] making web services “computer-
interpretable, use apparent, and agent-ready” (p.46).  
With a web of services comes the need to describe 
explicitly and in a form able to be read by computer. 
Medjahed and Bouguettaya [16] propose a 
comprehensive composability model that includes 
categorized semantics. Adoption may prove difficult 
when interpreting existing CSPs, where differing 
perspectives and abstractions are exposed. 

Current intersections between web services and the 
semantic web have delivered a diverse body of 
research.  The agent community [15,17,18] has 
recognized the benefit of ontology if computer-to-
computer web architectures are to be achieved.  
Combining service and domain ontology is seen as a 
key to achieving service synthesis [19].  Work on 
service ontology is currently centered around OWL-S 
and WSMO groups. Recognizing the progress, by the 
DAML Consortium and others, attention has moved 

from the ontology languages to specific application to 
services.  A discussion of semantic web services would 
not be complete without coverage of the OWL-S upper 
ontology model (WSMO is less mature at this time 
although similar in nature). The OWL-S high level 
model describes the relationship between the differing 
service decompositions (see Figure 1) [19,20]. A 
resource provides a service that is represented by the 
ServiceProfile, described by the ServiceModel and 
supported by the ServiceGrounding.  Generally, the 
profile describes the service in a high level way 
(enough to discover the service), the model describes 
the detail of how it works and can be used to: (1) 
perform more in-depth analysis of whether the service 
meets a need, (2) to compose service descriptions from 
multiple services to perform a specific task, (3) during 
enactment, to co-ordinate activities from participants 
and (4) to monitor execution [20].  The service 
grounding details practical access and has converged 
with WSDL. 
 

 
Figure 1: OWL-S Upper Ontology 

 
 OWL-S (and WSMO) [21] provide generalized 
models for describing services.  Others have identified 
the need for specialized common concepts within a 
web service context [21-25], an example being quality 
of service.  These concepts represent glue 
homogenizing a wealth of asymmetrically described 
web resources. New issues become pertinent in a 
semantic web of “great number of small ontological 
components consisting largely of pointers to each 
other” [26].  This semantic web service environment, 
with recognition of the need to combine service and 
domain ontology, warrants research that identifies 
practical approaches for practitioners to combine the 
service ontology with existing or new domain 
ontology.  The foremost question in semantic service 
orientation is how best this should be undertaken in the 
context of simulation. 
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Transporting this vision to a simulation 
environment with a web of simulation components has 
several challenges.  Combining distributed SCs models 
into a new model requires that they are discovered. 
Consequently, explicit, computer readable knowledge 
is required for such search tasks.  Knowledge in the 
form of ontologies has already been applied to 
simulation [27] with work by the University of Florida 
on simulation translation and University of Georgia on 
a taxonomy of simulation objects called DeMO.  
DeMO provides a precise description of simulation 
models with hard semantics. In order to realize a vision 
for SCs similar to that of SWS requires that the domain 
being simulated is represented explicitly (an OWL 
ontology [28]). The DeMO ontology [27] is an upper 
ontology that details events, activities and processes.  
Hard semantics work perfectly if all stakeholders adopt 
the single model. If this is not the case, and with only 
the CSP SCs, a transformation directly to such a model 
will likely miss tacit domain concepts that may help 
any subsequent SC search activity.    

The eXtensible Modeling and Simulation 
Framework (XMSF) is defined as a set of composable 
standards, profiles and recommended practices for 
web-based modeling and simulation. XMSF prescribes 
the use of ontologies for the definition, approval and 
interoperability of complimentary taxonomies that may 
be applied across multiple simulation domains [29]. In 
military modeling and simulation, the study of 
ontology is recognized as important in developing 
techniques that would allow semantic interoperability 
between simulation systems and to this effect ontology 
of C2IEDM (Command and Control Information 
Exchange Data Model) has been created to further 
studies on enabling interchange of data between two or 
more systems [30]. Work is also underway creating 
physics-based model semantics in modeling and 
simulation. Its intension is to capture the concepts of 
physical theories in a formal language so as to support 
various forms of automated processing that are 
currently not supported [31]. Ontology for the 
representation of synthetic environment have been 
proposed [29] - sedOnto (Synthetic Environment Data 
Representation Ontology). Finally, ongoing work is 
looking into establishing an ontology for BML, an 
unambiguous language to command and control forces 
and equipment [32].  
3. Simulation Component Ontology 

 
3.1 Requirement for Semantic Search 

The globalization of many organisations and 
industries often result in a fragmentation and 
heterogeneity of knowledge produced by its domain 
experts.  In order to synthesize the most appropriate 

knowledge in a model, the best available model parts 
must first be found.  Syntactic or taxonomic 
approaches limit the precision in which SCs can be 
related to the domain (e.g. relating to physical entities 
or recognizable processes), due in part to a tendency to 
generalize.  Typical issues are that a component may 
not fit neatly into a prescribed category or simple use 
of synonyms to describe the component. 

 
3.2 DESC Ontology 

The Discrete Event Simulation Component (DESC) 
ontology resulted from two distinct research activities: 
(1) The transformation of CSP models into OWL 
ontology files and (2) semantic search scenarios being 
carried out against the OWL files.  Snapshots of 
DeMO and DESC ontologies are presented in figure 2.  
The differences are apparent with DeMO focusing on 
the component properties and DESC on the component 
in relation to the domain.  Links between the two 
models are achieved through referencing the 
DeMO:ModelComponent from the 
DESC:SimulationConcept when it relates to an 
available component model.  The DeMO ontology is 
imported into Protégé for access in the DESC ontology 
(for example, when describing a business concept that 
is a specific state or activity in the simulation). 

 

 

 

Figure 2. DeMO & DESC-Blood Service 
Ontology Structure 

The ontology was created using the Protégé tool 
from Stanford University (with Owl plugins) 
(http://protege.stanford.edu/).  A decision was made to 
ground the ontology in existing SCs as opposed to 
using particular service ontology such as OWL-S or 
WSMO.  Approaching the modeling in this way allows 
evolution and integration of underlying concepts 
described in a number of models.  It should be noted 
that the SCs are modeled within the DESC ontology 
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and reference external ontology (e.g. DeMO for 
simulation specifics and others). 
 
3.3 Ontology Engineering 

A number of activities were carried out in order to 
transform CSP models into ontological form – namely 
OWL files.  The process included the decoupling of the 
SCs from the model by placing discrete component 
models into a web based component library (URI 
accessible).  The activities carried out, in framework 
form, are detailed in Table 1.  The framework evolved 
as each CSP model was deconstructed and transformed 
into ontology classes (including relations to dependent 
or related classes). Realization of the need for a DESC 
ontology resulted from this process – which included 
the adoption of DeMO for hard component semantics.  

 
Activities Description Impact 

Component 
Extraction 

Specific components are 
extracted to form distinct 
models. These are stored 
in the DESC library (a 
standard web server). 

 CSP 
models 

 SC 
Models  

Component  
Typing 

New SC Classes added.  
Classes are grouped 
under a type and external 
references are made 
domain ontology. 

 OWL 
Classes 

Component 
Dependency 
Models 

Extended DeMO 
properties are used to 
define dependencies 
between services. E.g. 
StateDependency. 
Reference DeMO 
concepts when 
describing business 
properties (e.g. Matching 
of blood has a DeMO 
state property defining 
the result). New classes 
and properties are created 
for previously implied 
activities etc. (e.g. 
BloodTransport is a 
created from  transport 
activities). 

 OWL 
Properties 

 New 
OWL 
Classes 
and 
properties 
implied 
from the 
model 
(including 
processes) 

 Hardware 
and COTS 
package 
dependen-
cies are 
defined 

Ontology 
Testing 

The finalized ontology is 
loaded into the SEDI4G 
server and several search 
tasks are undertaken. 

 DESC-
Blood 
Service 
OWL 
Ontology  

 
Table 1: Process for deriving semantic content 

from CSP Models 
 
The ontology engineering process resulted in 

DESC-BloodService OWL file (Figure 2.  Searching 
the ontology provided more component returns as 

concept inferencing was able to traverse the concept 
tree and return additional suitable candidates (e.g. 
various transportation alternatives).  The process 
undertaken to engineer the domain simulation ontology 
provides the basis for subsequent modelers to reference 
and extend the domain ontology; thus achieving richer 
search results and evolving large component ontology.  
The ontology engineering process systematically 
analyses the CSP model, of which figure 3 is an 
example. 

 
 

Figure 3. Simul8 Model GUI Snippet 

 

4. Discovery and Import of Simulation 
Components 
 

Our discovery and import approach aimed at CSP 
model reuse enables us to (1) semantically search for 
the desired simulation models and (2) parse and import 
the identified models into a simulation package. For 
our demo application we have used the CSP Simul8.  
Simul8 enables users to rapidly construct accurate, 
flexible and robust simulations using an easy-to-use 
visual modeling interface [24]. However, our discovery 
and import architecture has the potential to support any 
CSP that allows an external program to perform basic 
operations such as opening the CSP and loading a 
model through its Component Object Model (COM) or 
XML import interface. COM is a Microsoft technology 
that allows different software components to 
communicate with each other by means of interfaces 
[14]. The discovery component of our architecture 
(described in section 4.1) can be used with very little 
change to support other CSPs. The parse and import 
component, however, would require implementation of 
a CSP specific parser (described in section 4.2) and 
cannot be reused. 
 
4.1 Design of Component Discovery System  

 
The component discovery system is an extension of 

the SEDI4G architecture [33].  Extending the 
application to support SC descriptions as well as grid 
services required only minor configuration changes to 
support the new OWL DESC ontology.  The semantic 
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discovery system shown is figure 4 comprises a set of 
web services (SCVD, SDCS and SMAS).  
 
 

 
 

Figure 4.Discovery Architecture 

The discovery process begins by identifying the 
web services and ontology required to carry out 
semantic search. The choices are directed by the 
ontology size and service placement on the network 
(represented by the grey flexible services and data in 
Fig. 4). Thus, Step (1) involves the selection of which 
discovery control service (SDCS), knowledge base and 
matching service best fit the user requirement – 
specified as text strings. This information is sent to 
SDCS together with the search parameters (2). SDCS 
then calls the KB based matching service SMAS 
(based on OWLJessKB 
(http://edge.cs.drexel.edu/assemblies/software/owljessk
b/ )) (3) that in turn loads the KB and rules (4). The 
maching is carried out and returned to SDCS for use in 
one of the client components (5). The SDCS service 
can optionally provide the resource properties, the 
dynamic state of each service, alongside the service 
choices (6).  Finally the returned components are 
displayed in a web start client (SCSV holding the 
component options on the server side) allowing 
selected components to be deployed into the CSP.  The 
deployment is simple in nature, loading server side 
XML into the CSP.  A more robust solution would 
provide transformation capabilities as has been done at 
Florida [27]. 

The matching algorithm is semantic and uses an 
ontology and a reasoning engine (for more information  
see [33]). The assumption in this paper is that an 

ontology is a catalogue of the types of “things”; 
derived from existing simulation models. Types in the 
ontology represent the predicates, word meanings, or 
concept and relation types of the language when used 
to discuss topics in the domain [33] – in this paper 
these are SCs.  

To summarize, the matching algorithm comprises 
two steps; the initialization of the knowledge base and 
the search. During the initialization phase the ontology 
is loaded, transforming ontological classes into facts 
that have rules applied using the Rete algorithm [34]. 
During the search inferences are made from the facts 
(using Jess queries) identifying semantically matched 
SCs. For example, when searching for a component to 
simulate a blood collection – several alternatives are 
returned that model different processes and relate to 
different locations etc. 
 
4.2 Design of CSP Model Parser and Importer  

 
The discovery architecture detailed in the previous 

section is used by the CSP Model Parser and Importer 
(CMPI) software to conduct a semantic search for 
existing models. The search is conducted by calling a 
web service defined in the component discovery 
architecture, which takes a search string as parameter 
and returns an enumeration of uniquely identified name 
(URN) and corresponding unique resource identifier 
(URI) for each model returned by the matching 
algorithm. CMPI then provides the user an option to 
(1) download the models into the local system for 
inspection or (2) import it directly into the new model 
being built through reuse of the discovered 
components. In case the user chooses option (1) the 
model can be loaded into the local system. The file 
downloaded is an XML representation of the Simul8 
model which was discovered. If the user chooses 
option (2) the URN is passed as a parameter to yet 
another web service which returns the XML 
representation of the model as a SOAP attachment. The 
nature of this web service is synchronous and this 
allows the CMPI to block further execution of the code 
until the XML file has been received.  

The merging of the existing model (being built 
through reuse of discovered models and model 
components) with the new model requires a CSP 
specific parsing operation. Since both the models in 
question have an XML representation we employ a 
crude text parsing mechanism which traverses through 
the XML hierarchy of these models and outputs a third 
XML file containing assimilated results from both. 
This new XML file is now loaded into the CSP and the 
user is presented with the overall model. It should be 
added that the text parsing mechanism is heavily 
dependent on the Simul8 specific knowledge and has 
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not yet be fully perfected. However, this is not a major 
problem because a model can be opened in Simul8, 
copied into the clipboard and pasted into another 
Simul8 model. This solution would alleviate the need 
for a model parser.  

Two alternative CMPI implementations were 
carried out: (1) Servlet based and (2) COM based.  The 
Servlet approach provides remote access to the CSP – 
deploying an XML file for upload into Simul8. The 
COM version of CMP software is written in Java and it 
uses the Simul8 COM interface to interact with a local 
Simul8 instantiation using Java Native Technology 
[35]. CMPI invokes web service calls to communicate 
with the component discovery system. It also includes 
a CSP specific parser component which, as has been 
discussed in the previous paragraph, can be considered 
optional. The CMPI architecture is shown in Figure 5. 
 

 
Figure 5. Deployment Architecture 

 
The alternative approaches to loading the 

discovered SC model provide a flexible execution 
environment, supporting: (a) search, deployment and 
execution locally and (b) search locally and 
discovery/execution remotely.  The remote possibilities 
provide opportunities for Grid-enabling the simulation 
environment.  The grid aspects of the execution are 
beyond the scope of this paper and forms part of 
ongoing research at Brunel. 
 
5. Conclusion 

 
The paper presents a novel approach to CSP model 

reuse using a simulation component ontology and 
semantic search architecture.  The approach to 
modeling simulation components focuses on the 
domain being modeled – explicitly describing 
simulation components in domain language.  In 
relating each component to a typed collection and each 
other enables the search process to better identify 
likely semantic matches when users search for existing 
models to reuse.  A number of Simul8 models were 
transformed into OWL ontologies and then used by a 
web service based semantic search and component 
deployment architecture.  The research has 

demonstrated: (1) a new, lighter approach to CSP 
model reuse and (2) the benefits of semantic search to 
this field of research.   More importantly, the focus on 
engineering ontology from existing models proved 
fuitful and enabled subsumpion reasoning to select a 
larger number of appropriate model parts.  It is also 
apparent that the approach is suitable for the 
interpretation of a larger number of models – providing 
greater opportunities for cross referencing and 
subsequent re-use.   
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