
INVESTIGATING DISTRIBUTED SIMULATION WITH COTS SIMULATION
PACKAGES: EXPERIENCES WITH SIMUL8 AND THE HLA

Navonil Mustafee

Dr. Simon J E Taylor
Centre for Applied Simulation Modelling

School of Information Systems, Computing and Mathematics
Brunel University

Uxbridge, Middlesex, UB8 3PH, UK.
navonil.mustafee@brunel.ac.uk, simon.taylor.brunel.ac.uk

ABSTRACT:
Commercial-off-the-shelf simulation packages
(CSPs) are used widely in industry. Several
research groups are currently working towards
the creation of distributed simulation with these
CSPs. The motivations to do this are various and
are largely unproven as there are very few good
examples of this kind of distributed simulation in
practice. Our goal is therefore to create a
distributed simulation environment using CSPs
that will allow end users to make their own
decisions as to whether this technology will be
useful. This paper presents continuing research
in creating such an environment using the CSP
Simul8 and the High Level Architecture, the
IEEE 1516 standard for distributed simulation.
The scope of this paper is limited to the CSPI-
PDG Type I Interoperability Reference Model.

Keywords: Distributed Simulation,
Interoperability Reference Models, HLA, Simul8

1. INTRODUCTION

In this paper, and in the standardisation effort
currently in progress [1], we use the term
Commercial-off-the-shelf (COTS) discrete-event
simulation packages (CSPs) to describe
commercially available software tools that have
been developed to facilitate the practice of
discrete-event simulation. Examples of CSPs
include: Arena, AutoMod, Flexsim, ProModel,
Simul8 and Witness. Distributed simulation can
be defined as the distribution of the execution of
a single run of a simulation program across
multiple processors [2]. The current standard to
support this is the IEEE 1516 High Level
Architecture (HLA).

There are various possible motivations to use
distributed simulation with CSPs, or CSP-based
distributed simulation [3].

• the creation of large models that a single

CSP cannot support;
• the speed up of large models;

• integration of discrete-event simulations
across virtual organizations, extended
enterprises and supply chains;

• the reduction of the cost of model
development by enabling the reuse of
distributed model components;

• a building block for groupware for
simulation; and

• the protection of intellectual property
(information hiding in distributed models).

Although there are excellent examples of
successful distributed simulations with CSPs [4,
5, 6], a general solution to this problem of
heterogeneous integration is illusive. This paper
describes progress towards the standardisation of
CSP-based distributed simulation by presenting
some experiences of linking the CSP Simul8 with
the HLA. A case study of how this was used to
create a distributed simulation of the UK
National Blood Transfusion Service is described
in a separate paper in these proceedings [7].

The paper is structured as follows. Distributed
simulation and the IEEE 1516 High Level
Architecture are briefly introduced in section 2.
Problems involved in combining distributed
simulation and CSP-based simulation to create
CSP-based distributed simulation, are discussed
in section 3. The emerging standards-based
solution to these problems and the COTS
Simulation Package Interoperability Product
Development Group (CSPI-PDG) Type I
Interoperability Reference Model (IRM) are
presented in sections 4 and 5. Section 6 presents
our experiences with the implementation of the
Type I IRM with the HLA and Simul8. Section 7
concludes the paper with a short discussion of the
implications of this approach.

2. THE HIGH LEVEL ARCHITECTURE

The IEEE 1516 standard The High Level
Architecture (HLA) [8] is a general standard for
distributed simulation. This came from the need
of the US Department of Defense (DoD) to
reduce the cost of training military personnel by

Proceedings of the 2006 OR Society Simulation Workshop
S. Robinson, S. Taylor, S. Brailsford and J.Garnett, eds.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/8029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

reusing computer simulations linked via a
network In the HLA, a distributed simulation is
called a federation, and each individual simulator
(in our case the combination of a CSP and its
model) is referred to as a federate. A HLA
Runtime Infrastructure (RTI) provides facilities
to enable federates to interact with one another,
as well as to control and manage the simulation.
The HLA is composed of four parts: a set of
rules, the Object Model Template (OMT), the
Federate Interface Specification (FIS), and the
Federate Development Process (FEDEP). The
rules are a set of ten basic conventions that define
the responsibilities of federates and their
relationship with the RTI. The FIS is an
application interface standard comprising of six
groups of services for distributed simulation
middleware which defines how federates interact
within the federation, and is implemented by an
RTI. The OMT provides a common presentation
format for HLA federates and consists of a
minimum of 14 tables. Each federate defines, in
its Simulation Object Model (SOM), the data that
it is willing to share (publish) with other federates
and the data it requires from other federates
(subscribe). The Federation Object Model
(FOM) combines the federate SOMs into a single
object model for the federation and therefore
defines the overall data to be exchanged
(published and subscribed) between federates
during a simulation execution. The FEDEP
defines the recommended practice processes and
procedures that should be followed by users of
the High Level Architecture (HLA) to develop
and execute their federations.

The main observation of all this when
considering application development is the
flexibility of the HLA. There is no single fixed
development path. This is further complicated by
the several different RTIs that exist. Each
behaves slightly differently and have themselves
features that can be beneficially exploited. In the
next section we consider what has been done to
use the HLA to support distributed simulation of
CSPs.

3. CSP-BASED DISTRIBUTED
SIMULATION

Although initial work on the use of the HLA to
integrate heterogeneous distributed CSPs can
be traced back to pioneering work done by
Straßburger in the late 1990s [9], this area is still
emerging [10].

Research has mainly focussed on technological
challenges using combinations of various CSPs
and HLA-based and non-HLA based approaches.
The use of the HLA and the associated adapter
technologies of the MISSION project to support
the distributed simulation of manufacturing
systems are discussed in [11, 12, 13, 14, 15, 16].
[17, 18] also discuss strategies for HLA use in the
same domains. All of these approaches are
largely incompatible due to the format of the data
exchanged between federates and the protocol
used to perform the exchange, and the type of
simulation information exchanged.

Why is this so complex? Consider figure 3.1. A
distributed simulation (federation) is composed of
CSPs and their models (federates) that exchange
data (interactions and/or attributes) via an RTI in
a time synchronized manner. In this example,
two models (federates) of factories, F1 and F2,
interact in various ways as denoted by the black
double-headed arrow. Each model consists of
typical model elements: an arrival source Soi, a
queue Qi, a workstation Wi, a resource Ri, and an
exit sink Sii (where i is the factory identifier).
There are various types of model information that
we might share. For example, entities might be
passed between models (i.e. the two factories are
linked together – entities leave F1 at Si1 and
arrive in F2 at So2) and the resources R1 and R2
might be shared to reflect a shared set of
operators that can operate workstations W1 and
W2. If this was the case, factory F1 must publish
and send information to the RTI in an agreed
format and time synchronized manner and factory

Figure 3.1: The CSP-based Distributed Simulation Problem

F2 must subscribe to and receive that information
in the same agreed certain format and time
synchronized manner, i.e. both federates must
agree on a common representation of data and
both must use the RTI in a similar way. Further,
the “passing” of entities and the sharing of
resources require different distributed simulation
protocols. In entity passing, the departure of an
entity at a sink and the arrival of an entity at a
source is effectively the same scheduled event in
the two models – most distributed simulations
represent this as a timestamped event message
sent from one federate to another, with the
timestamp typically equal to the time that the
entity finished processing in the last workstation
(W1 in our example). The sharing of resources
cannot be handled in the same way. For example,
when resource (R1) is released or an entity
arrives in queue Q1, a CSP executing the
simulation of F1 will determine if workstation
W1 can start processing an entity. If resources
are shared, each time R1 or R2 changes state a
timestamped communication protocol is required
to inform and update the changes of the shared
resource state.

Our problems are therefore these. What are the
synchronization demands of data exchanged
between federates, how should these be
implemented through the RTI, what format
should the data take and what relationship should
this have to the CSPs and their models? The
citations in the previous work section go some
way to solving these problems. However, as
already noted, these are incompatible. In an
attempt to solve this, we now present an
emerging standards-based approach.

4. EMERGING STANDARDS AND THE

CSPI-PDG

Following on from the observations made in
section 3, three comments can be made: not all
distributed simulations need all integration
approaches; some integration approaches are
relatively straightforward and some are extremely
complex; and not all integration requirements are
known. For example, some distributed
simulations only require that entities are passed
between models. The problem of entity passing
is somewhat simpler than the problem of, for
example, synchronous shared state in the case of
resource sharing.

As presented in setion 2, the HLA well supports
the needs of general distributed simulation.
However, the specific needs of CSP-based
distributed simulation require that the HLA is
augmented by additional complementary
standards that define how this domain uses the

HLA. These standards are the suite of CSP
Interoperability (CSPI) standards being
developed under the Simulation Interoperability
Standards Organization (SISO) by the CSPI
Product Development Group (CSPI-PDG). The
suite consists of several Interoperability
Reference Models (IRMs) that outline different
integration needs of CSPI, Interoperability
Frameworks (IFs) that define the HLA-based
solution to each IRM and appropriate data
exchange representations to specify the data
exchanged in an IF [19, 20]. The different
interoperability requirements have been
encapsulated into (currently) six Interoperability
Reference Models (IRMs). These are:

• Type I: Asynchronous Entity Passing
• Type II: Synchronous Entity Passing

(Bounded Buffer)
• Type III: Shared Resources
• Type IV: Shared Events
• Type V: Shared Data Structures
• Type VI: Shared Conveyor

Briefly, the Type I IRM Asynchronous Entity
Passing deals with the common requirement of
transferring entities between simulation models.
The Type II IRM Synchronous Entity Passing
deals with the case where a receiving queue is
bounded, i.e. in the above example queue Q2 has
limited capacity. In this case, the requirement
means that the federate containing the sending
workstation W1 must, when the processing of an
entity is complete, check to determine that there
is space in Q2. If there is space available then the
entity may be transferred. If there is none the
federate must ensure that W1 is blocked until
space becomes available. The Type III IRM
Shared Resources deals with the sharing of
resources across simulation models. For
example, a resource R might be common between
two models and represents a pool of workers. In
this scenario, when a machine in a model
attempts to process an entity waiting in its queue
it must also have a worker. If a worker is
available in R then processing can take place. If
not then work must be suspended until one is
available. The Type IV IRM Shared Events deals
with the sharing of events across simulation
models. For example, when a variable within a
model reaches a given threshold value (a quantity
of production, an average machine utilization,
etc.) it should be able to signal this fact to all
models that have an interest in this fact (to
throttle down throughput, route materials via a
different path, etc.) The Type V IRM Shared
Data Structures deals with the sharing of
variables and data structures across simulation
models that are semantically different to
resources (for example a bill of materials or a

Figure 5.1: The Type I Interoperability Reference Model

shared inventory). Finally, the Type VI IRM
Shared Conveyors deals with the problem of
sharing transportation systems such as conveyor
or barges across simulation models (as distinct to
the representation of these in Type I IRMs).

We now present the Type I IRM and our
approach to its implementation with Simul8.

5. THE TYPE I INTEROPERABILITY

REFERENCE MODEL

Figure 5.1 shows the Type I Interoperability
Reference Model (Asynchronous Entity Passing).
This IRM represents models that interact on the
basis of entities; models are linked together so
that one model may “pass” an entity to another at
a given timestamp. The reason why this is
termed “asynchronous” is that there is no
immediate or direct feedback when an entity is
passed. The model elements that have been
placed in each model are there to indicate in a
simple manner the relationships between models,
i.e. the internal structure of a model can be far
more complex. Also, it is possible that models
could have more than one set of links and that
there could be more than two models connected
in arbitrary topologies. Again, this IRM is
intended to show the simplest relationship
between models, one that can be extrapolated to
many different scenarios.

In terms of minimum technological support of the
logical link between the two models, all that is
required is the transmission of timestamped entity
information between model Mo1 and model Mo2
in such a way that model Mo2 receives the
timestamped entity information in correct order
with its own events. An IF solution to this Type I
IRM must therefore be able to

• transfer timestamped entity information from

one model to another via a timestamped
message or such,

• allow a model to correctly receive
timestamped entity messages from one or
more models, and

• correctly coordinate this information with the
receiving model events being processed by
the COTS simulation package.

We now present our experience with the CSP
Simul8 and the HLA.

6. CASE STUDY: SIMUL8 AND THE HLA

Simul8 is a CSP that enables users to rapidly
construct accurate, flexible and robust
simulations using an easy-to-use visual modelling
interface [21]. It includes an internal
programming language called “Visual Logic”
and provides a Windows
COM interface that can be used from within any
COM-compliant language to “drive” Simul8 [22].

For our Simul8-HLA case study we have
developed a CSP Controller Middleware that
interacts with both Simul8 Professional Edition
and the DMSO RTI 1.3-NG to realize a Simul8-
based distributed simulation. The CSP Controller
Middleware utilizes the COM interface to access
the Simul8 simulation engine and is described in
section 6.1. Interaction between the middleware
and the RTI is through the services defined in the
HLA interface specification as presented in
section 6.2. The CSP Controller Middleware
comprises of Simul8 Adapter and RTI adapter
and the communication between them takes place
through well-defined Application Programming
Interfaces (APIs) as defined in section 6.3. The
differences between this and a previous approach
that developed the COTS Simulation Package
Handler APIs, introduced in [20], is explained in
section 6.4. Our approach is then illustrated in
section 6.5 by using three Simul8 federates and
one manager federate to form a Simul8
federation.
.
6.1 Simul8 COM interface

Component Object Model (COM) is a Microsoft
technology that allows different software
components to communicate with each other by
means of interfaces [23]. Simul8 has different
levels of COM support for its Standard and
Professional Editions. The COM interface in its

Standard Edition allows an application to perform
basic operations on Simul8, like opening and
closing the model, running the simulation,
collecting results, etc. The Professional Edition
COM interface, on the other hand, allows more
complex operations like creating simulation
objects and executing Visual Logic. This more
extensive COM interface is required for our
research.

6.2 HLA Services

The HLA interface specification organises the
communication between federates and the RTI
into six different service groups [24]. For our
Type I IRM solution with Simul8 and the RTI we
require HLA-defined services defined under the
groups:

• Federation Management: RTI Calls for
creation and deletion of federation;
joining and resigning of federates from
the federation; and creation and
realization of synchronization points.

• Declaration Management: Calls
pertaining to publication and
subscription of interactions.

• Object Management: Calls that relate to
sending and receiving interactions.

• Time Management: RTI calls required to
enable time constraint and time
regulation and also to advance the
federate simulation clock.

The specific RTI calls used in our Simul8-HLA
federation can be found in section 6.3, under the
discussion on RTI adapter.

6.3 CSP Controller Middleware:

Adapters, APIs and protocol

From the preceding discussion it is clear that CSP
controller middleware performs two specific
tasks; communicates with Simul8 through its
COM interface and interacts with RTI using the
HLA interface specification. Each of these two
tasks is performed by two distinct components of
the CSP controller middleware: the Simul8
adapter and the RTI adapter. The communication
between these adapters is via Java Native
Interface and Jacob technologies [25, 26].

We hope that our adapter based approach will
enable us to reuse existing adapters in some
cases. For example, if we needed to integrate
Simul8 with a conservative simulation
middleware like CMB [19, 20] we would then
need to develop a CMB adapter but might be able
to reuse the existing Simul8 adapter. Similarly, if
we wanted to experiment with Witness CSP and

RTI then a Witness adapter will be needed but
the existing RTI adapter might be reused.
However, our experience suggests that the
development of general purpose adapters may be
more difficult than it logically seems.

The CSP controller middleware defines a set of
eight APIs that are implemented by either Simul8
adapter or RTI adapter. The APIs defined by
Simul8 adapter and invoked by RTI adapter are
as follows:

OpenSim(modelName, federateName) : Starts
Simul8 application in federate federateName and
loads model modelName.

GetNextEventTime(arg) : This method returns
the time of the next event scheduled in Simul8
future event list. The argument arg is not
currently used.

RunSim(time) : Instructs Simul8 to advance
simulation until time. Also probes Simul8 future
event list for external messages to be sent to other
federates.

RunSimNoInteraction(time) : Instructs Simul8 to
advance simulation until time. Does not probe
Simul8 future event list for external messages to
be sent to other federates. For our producer-
consumer topology with no feedback (section
6.5), Simul8 federates A and B use RunSim(time)
to advance simulation. Federate C uses
RunSimNoInteraction(time) as there is no loop-
back in the model.

Input(time, entity): Introduces entity into Simul8
at current simulation time + time (as required by
the CSP).

CloseSim() : The invocation of this method
closes the model and exits the Simul8
application.

The APIs defined by RTI adapter and invoked by
Simul8 adapter are treated as callbacks (denoted
by †). The two call back routines are:

 Output(time, entity)† : Notifies the RTI adapter of
an external message to be sent to another
federate. Argument time represents the time when
the Simul8 work station completes processing an
entity. This method works for our simple
producer-consumer topology with no feedbacks.
However, if our model were to have a feedback
then we would need an additional argument
which would specify the federate to which the
entity should be passed.

TellSimulationEnd(time)† : Informs the RTI
adapter that Simul8 has completed simulation till
time.

The architecture of CSP Controller Middleware is
shown in Figure 6.1. The functions performed by
the adapters are elaborated below. Please note
that CSP Controller Middleware APIs and HLA
service calls are enclosed in square brackets []
and curly braces {} respectively.

The Simul8 adapter of CSP Controller
Middleware is responsible for the following:

5. Informing RTI adapter of external events
generated by invoking call back routine
[Output(time, entity)†]. These events are to be
forwarded to other Simul8 federates.

6. Informing RTI adapter of the current
simulation time by invoking call back routine
[TellSimulationEnd(time)†].

7. Unloading the simulation model and exiting
Simul8 [CloseSim()].

The RTI adapter of CSP Controller Middleware
is responsible for the following:
1. Creating and joining the federation

{createFederationExecution(federationName,
fedfile),
joinFederationExecution(federateName,
federationName, fedamb)}.

2. Enabling time constraint and time regulation {
enableTimeConstrained(),
enableTimeRegulation(currentTime,
lookahead) }.

3. Registering publication and subscription
interests
{publishInteractionClass(interactionClassHa
ndle),
subscribeInteractionClass(interactionClassH
andle)}.

4. Giving intimation to RTI that Synchronization
points have been achieved. The
synchronization points are set by the Manager
Federate to facilitate all Simul8 federates to
start simulation at the same time
{synchronizationPointAchieved
(labelName)}.

5. Requesting time grant from the RTI {
nextEventRequest(requestedTime) }.

6. Informing Simul8 adapter to advance Simul8
time on receiving call back from RTI {
timeAdvanceGrant(newtime)†}.

7. Informing Simul8 adapter to introduce entities
on receiving call back from RTI
{receiveInteraction(interactionClass,
receivedInteractionSet, time, tag,
EventRetractionHandle)}.

8. Processing call backs received from Simul8
†

Entity
transfer

s
betwee

Model

Simul8
Federate A

Simul8 CSP

CSP Controller
Middleware

COM

Simul8
Ad

RTI
Ad

JNI
ll

Simul8
Federate B

Simul8
CS

Model B

COM interface

CSP Controller
Middleware

Simul8 Adapter

JNI
ll

RTI

Run Time
Infrastructure

Ad

Figure 6.1: CSP Controller Middleware Architecture

1. Starting Simul8 and loading the simulation

model [OpenSim(modelName,
federateName)].

2. Finding the time of the next event by iterating
through the event list of the CSP
[GetNextEventTime()].

3. Advancing simulation after receiving time
advance grant from RTI via RTI adapter
[RunSim(time), RunSimNoInteraction(time)].

4. Introducing entities into the Simul8 model [
Input(time, entity)]. These are external events
sent from other Simul8 federates.

adapter [SendInteraction(time, entity) ,
TellSimulationEnd(time)†].

9. Resigning and destroying the federation {
resignFederationExecution(resignAction),
destroyFederationExecution(federationName)
}.

Figure 6.2 shows the protocol between Simul8
adapter, RTI adapter and RTI. The specific COM
calls between Simul8 adapter and Simul8 CSP
are not shown because these calls are specific to
Simul8. The interfaces defined in CSP controller
middleware, on the other hand, can be considered
as general purpose because different adapters can
have different implementations of the same

interfaces. However, as we pointed out earlier,
this may be quite difficult to achieve.

The protocol diagram only shows the RTI calls
that relate to advancement of federate simulation
time and entity passing through interactions. The
Simul8 federates use the nextEventRequest(time)
service call to request advancement of its clock to
time. The argument time is the logical time of the
federate’s next event in its future event list. The
RTI responds to a NER event in one of the
following two ways [27].
• The RTI grants time requested by federate in

its NER call through
timeAdvanceGrant(time)† callback, or

• The RTI calls back with an external event
(receiveInteraction(params)† in our case) with
time stamp which is less than the time
requested by the federate in the NER call, and
then with timeAdvanceGrant(time)† carrying
the time stamp of the external event.

The protocol diagram shows both the responses

of RTI.

6.4 Mappings between CSP controller

middleware APIs and COTS Simulation
Package Handler (CH) APIs

Previous work in this area defined the COTS
Simulation Package Handler (CH). CH defined

six APIs for interaction between a COTS
Simulation Package Emulator (CSPE) and a
distributed simulation middleware [19, 20]. CSPE
was designed for solving Type I IRM problems.
Four of these CH APIs were for calls made from
CH to CSPE: start(), advance(time),
advance(time, entity) and terminate(). The call
backs received by CH from CSPE were
output() and output(time, entity). A detailed
discussion of these methods can be found in [20].

Our case study presents Simul8-HLA solution to
Type I IRM problem and therefore it is only
natural for us to consider the CH defined
interfaces for CSP-middleware communication.
Unfortunately our research has shown that our
middleware will not be able to use the same
interfaces as CH. Whereas some of the APIs
defined by CSP controller middleware can be
mapped to the CH APIs, the others differ in terms
of argument list and functionality. Two new
interfaces have also been introduced in CSP
controller middleware to provide additional
support required for Simul8-RTI integration. The
differences and similarities between the two sets
of APIs are outlined below.

CSP Controller Middleware

Simul8 CSP

GetNextEventTime()

nextEventRequest(nextEventTime)

OpenSim(modelName, federateName)

timeAdvanceGrant (newTime)†

RunSim(time) or RunSimNoInteration(time)

Output(time, entity)*† [note 1]
sendInteraction(..,params,time,..)* [note 1]

TellSimulationEnd(time)†

receiveInteraction(..,params,time,..,..)*
Input (time, entity)*

CloseSim()

RTI RTI Adapter Simul8 Adapter

Simul8 COM calls

Simul8 COM calls

Simul8 COM calls
[Note 1]: This method is called if RunSim(time) has been invoked by RTI Adapter and external events are present in event list..

 Figure 6.2: CSP Controller Middleware Protocol Diagram

OpenSim(modelName, federateName) : This is
similar to CH start() method but has two
additional arguments.

GetNextEventTime(arg) : This is a Simul8
specific method which returns the time of next
scheduled event in Simul8. It has no equivalent
CH method.

RunSim(time) : This method advances Simul8
simulation till time and is similar to CH
advance(time). However, it additionally reads the
future event list of Simul8 to determine whether
external events are generated during advance of
simulation time.

RunSimNoInteraction(time) : This is a Simul8
specific method. It has no equivalent CH method.

Input(time, entity) : This is a Simul8 specific
method and is equal to CH advance(time, entity).
Balisford, et. al., [7] discuses how entity
attributes are introduced into a Simul8 model.

Output(time, entity)† : This method is similar to
CH output(time, entity). The Simul8 adapter of
CSP controller middleware invokes this method
from within RunSim(time).

TellSimulationEnd(time)† : This method is
similar to CH output(time) and is invoked by
Simul8 adapter to inform its counterpart that
Simul8 has completed simulation till time.

CloseSim() : This method is similar to CH
terminate().

6.5 Example Simul8 Federation

For our Simul8-RTI case study we have used
three Simul8 federates and one Manager
Federate to form a HLA federation. Each Simul8
federate models a part of a fictitious
manufacturing assembly line consisting of a
source, variable number of queues and
workstations and a sink.

The three Simul8 federates are arranged in a
producer-consumer topology [20] with two
producers and one consumer. However to keep
our initial experiments simple we have not
modelled a feedback from federate C to federates
A and B. Figure 6.3 shows the three federate
producer-consumer topology along with the
representation of model that each federate
simulates.

The Manager federate is a special HLA federate
that coordinates the execution of the other three

Simul8 federates through registration of
synchronization points [27]. Figure 6.4 shows
the high level constitution of the Simul8
federation.

For our Simul8-RTI integration experiments we
have run the Simul8 federation to arbitrary values
in simulation time. The purpose of these
experiments was to ensure that the simulation
time of the Simul8 federates were synchronized
through

Figure 6.3: Simul8 Federates in Producer-
Consumer Topology

Figure 6.4: Constitution of Simul8 Federation

RTI calls and entity exchanges between federates
were properly executed.

RTI

Manager
Federate

Simul8
Federate A

Simul8
Federate B

Simul8
Federate C

Simul8
Federation

Entities transferred from Federate A and B (producer)
to Federate C (consumer)

Simul8 Federate A Simul8 Federate B

Simul8 Federate C

: Source : Queue : Workstation : Sink

7. DISCUSSION AND CONCLUSIONS

Our case study with Simul8 and HLA has
highlighted the risks involved in proposing
simulation standards based on experimental CSP
emulators (like CSPE) and the problems
encountered when trying to apply those standards
to CSPs, in the absence of active participation of
CSP vendors. The fact that we were able to
perform a Simul8–HLA distributed simulation at
all, is largely due to the support we received from
Simul8 Corporation. For the proposed standards
to be applied more effectively to existing CSPs
would necessitate an even closer co-operation
between the research community and the CSP
vendors.

This research follows from our earlier work on
Type I IRM problems for CSP based distributed
simulation. CH introduced in this work defined
six APIs for managing communications between
CSPE and a distributed simulation middleware.
CSPE was designed to solving Type I IRM
problems. The CH APIs were loosely based on
the Entity Transfer Specification v1.0
(www.cspif.com)

We believed that these CH defined interfaces
would accommodate all the communication
requirements for distributed simulation between
any middleware and CSP for Type I IRM
problems. Of course, the implementation of these
interfaces would be specific to the CSP and the
middleware under consideration. We had an early
success when we used RTI and CMB specific
implementations of CH API to drive CSPE [20].

In this case study we put the CH APIs to test with
a real CSP. Some of the APIs defined by CSP
controller middleware were successfully mapped
to the CH APIs. And there were some differences
also. These differences had arisen because we
had no control over Simul8 source code and
therefore had to implement the solution with
whatever functionality Simul8 exposed. Ideally
we would have liked our CSP controller
middleware APIs to be identical to CH APIs. But
in order to realize this we will need to work in
close co-cooperation with Simul8.

Our experience has shown the critical role CSP
vendors play in distributed simulation research
and adoption of standards.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Mark Elder
(founder and CEO of SIMUL8 Corporation) and
the Simul8 technical support team for their help
in the development of the Simul8 adapter.

REFERENCES

[1] S.J.E. Taylor, S.J. Turner and M.Y.H. Low

(2005). The COTS Simulation
Interoperability Product Development
Group. In Proceedings of the 2005 European
Simulation Interoperability Workshop.
Simulation Interoperability Standards
Organization, Institute for Simulation and
Training, Florida, 05E-SIW-056.

[2] R.M. Fujimoto (2000). Parallel and
Distributed Simulation Systems, New York,
NY: John Wiley & Sons.

[3] S.J.E. Taylor, X. Wang, S.J. Turner and
M.Y.H. Low (2006). Integrating
Heterogeneous Distributed COTS Discrete-
Event Simulation Packages: An Emerging
Standards-based Approach. IEEE
Transactions on Systems, Man and
Cybernetics: Part A, 36(1), pp.109-122.

[4] C.A. Boer, A. Verbraeck and H.P.M. Veeke
(2002). Distributed simulation of complex
systems: Application in container handling.
In Proc. EUROSIW, 02E-SIW-034.

[5] K. Mertins, M. Rabe and F.W. Jäkel (2000).
Neutral Template Libraries for Efficient
Distributed Simulation within a
Manufacturing System Engineering
Platform. In Proc. Winter Simulation
Conference, pp. 1549-1557.

[6] B.P. Gan, M.Y.H. Low, X. Wang, S.J.
Turner (2005). Using Manufacturing
Process Flow for Time Synchronization in
HLA-Based Simulation. In Proc. Ninth
IEEE International Symposium on
Distributed Simulation and Real-Time
Applications. IEEE Computer Society. 148-
160.

[7] S. Brailsford, K. Katsaliaki, N. Mustafee and
S.J. E Taylor. Modelling Very Large
complex Systems using Distributed
Simulation: A Pilot Study in a Healthcare
Settings, paper submitted to this conference.

[8] IEEE 1516 (2000). IEEE Standard for
Modeling and Simulation (M&S) High
Level Architecture (HLA). New York, NY:
Institute of Electrical and Electronics
Engineers.

[9] S. Straßburger (2001). Distributed
Simulation Based on the High Level
Architecture in Civilian Application
Domains. Ghent, Belgium: Society for
Computer Simulation International, 2001.

[10] S.J.E. Taylor, B.P. Gan, S. Strassburger and
A. Verbraeck (2003). HLA-CSPIF
Technical Panel on Distributed Simulation.
In Proc. Winter Simulation Conference, pp.
881-887.

[11] K. Mertins, M. Rabe and F.W. Jäkel (2000).
Neutral Template Libraries for Efficient

http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ds-rt/&toc=comp/proceedings/ds-rt/2005/2462/00/2462toc.xml&DOI=10.1109/DISTRA.2005.42
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ds-rt/&toc=comp/proceedings/ds-rt/2005/2462/00/2462toc.xml&DOI=10.1109/DISTRA.2005.42
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/ds-rt/&toc=comp/proceedings/ds-rt/2005/2462/00/2462toc.xml&DOI=10.1109/DISTRA.2005.42

Distributed Simulation within a
Manufacturing System Engineering
Platform. In Proc. Winter Simulation
Conference, pp. 1549-1557.

[12] M. Rabe and F.W. Jäkel (2001). Non
military use of HLA within distributed
manufacturing scenarios. In Proc.
Simulation und Visualisierung, pp. 141-150.

[13] M. Rabe and F.W. Jäkel (2003). On
standardization requirements for distributed
simulation in Production and Logistics.
Building the Knowledge Economy, Twente,
The Netherlands: IOS Press, pp. 399-406.

[14] H. Hibino, Y. Fukuda, Y. Yura, K.
Mitsuyuki and K. Kaneda (2002).
Manufacturing adapter of distributed
simulation systems using HLA. In Proc.
Winter Simulation Conference, pp. 1099-
1107.

[15] C. McLean and F. Riddick (2000). The IMS
MISSION architecture for distributed
manufacturing simulation. In Proc. Winter
Simulation Conference, pp. 1539-1548.

[16] R.J. Linn, C.S. Chen, and J.A. Lozan
(2002). Development of Distributed
Simulation Model for the Transporter Entity
in a Supply Chain Process. In Proc. Winter
Simulation Conference, pp. 1319-1326.

[17] P. Lendermann, B.P. Gan and L.F.
McGinnis (2001). Distributed simulation
with incorporated APS procedures for high-
fidelity supply chain optimization. In Proc.
Winter Simulation Conference, pp. 1138-
1145.

[18] S. Straßburger, G. Schmidgall and S. Haasis
(2003). Distributed manufacturing
simulation as an enabling technology for
the digital factory. Journal of Advanced
Manufacturing Systems, vol. 2, no. 1, pp
111-126.

[19] N. Mustafee (2003). Performance
Evaluation of Interoperability Methods for
Distributed Simulation. Masters Thesis.
Department of Information Systems and
Computing, Brunel University, UK.

[20] S.J.E. Taylor, S.J. Turner, N. Mustafee, H.
Ahlander and R. Ayani (2005). COTS
Distributed Simulation: A Comparison of
CMB and HLA Interoperability Approaches
to Type I Interoperability Reference Model
Problems. SIMULATION. 81, 1, pp. 33-43.

[21] K.H. Concannon, K.I. Hunter and J.
Tremble (2003). Dynamic scheduling II:
SIMUL8-planner simulation-based
planning and scheduling. In Proceedings of
the 35th Conference on Winter Simulation:
Driving innovation, pp. 1488-93.

[22] Simul8 Corporation. (2003). Simul8:
Manual and Simulation Guide.

[23] N.D. Gray, J. Hotchkiss, S. LaForge, A.
Shalit and T. Weinberg (1998). Modern
languages and Microsoft's component
object model, Communications of the
ACM, 41(5), pp.55-65.

[24] US Department of Defense (1999). High
Level Architecture Run-Time Infrastructure
RTI 1.3-Next Generation Programmer’s
Guide.

[25] Sun Microsystems Limited. (2003). Java
Native Interface. Last viewed on 31st
October’ 2005.

[26] D. Alder (2004). The Jacob Project: A
Java–COM Bridge.
http://danadler.com/jacob/. Last viewed on
31st October’ 2005.

[27] F. Kuhl, R. Weatherly and J. Dahmann
(1999). Creating Computer Simulation
Systems, An Introduction to the High Level
Architecture. Prentice Hall PTR.

AUTHOR BIOGRAPHIES

NAVONIL MUSTAFEE is a research student at
the Centre for Applied Simulation Modelling
(CASM) in the School of Information Systems,
Computing and Mathematics, Brunel University,
Uxbridge, United Kingdom. His research
interests are in grid computing, desktop grids and
parallel and distributed simulation modelling.

SIMON J E TAYLOR is the co-founding
Editor-in-Chief of the UK Operational Research
Society’s (ORS) Journal of Simulation and this
workshop series. He has served as the Chair of
the ORS Simulation Study Group since 1996 and
was appointed Chair of ACM’s Special Interest
Group on Simulation (SIGSIM) in 2005. He is
also the Founder and Chair of the COTS
Simulation Package Interoperability Product
Development Group (CSPI-PDG) under the
Simulation Interoperability Standards
Organization. He is a Senior Lecturer in the
Centre for Applied Simulation Modelling in the
School of Information Systems, Computing and
Mathematics at Brunel University and a visiting
Associate Professor at Nanyang Technological
University. His recent work has focused on the
development of standards for distributed
simulation in industry.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

