578 research outputs found

    Interactive Visual Analytics for Large-scale Particle Simulations

    Get PDF
    Particle based model simulations are widely used in scientific visualization. In cosmology, particles are used to simulate the evolution of dark matter in the universe. Clusters of particles (that have special statistical properties) are called halos. From a visualization point of view, halos are clusters of particles, each having a position, mass and velocity in three dimensional space, and they can be represented as point clouds that contain various structures of geometric interest such as filaments, membranes, satellite of points, clusters, and cluster of clusters. The thesis investigates methods for interacting with large scale data-sets represented as point clouds. The work mostly aims at the interactive visualization of cosmological simulation based on large particle systems. The study consists of three components: a) two human factors experiments into the perceptual factors that make it possible to see features in point clouds; b) the design and implementation of a user interface making it possible to rapidly navigate through and visualize features in the point cloud, c) software development and integration to support visualization

    A Discrete Radiosity Method

    Get PDF
    International audienceWe present a completely new principle of computation of radiosity values in a 3D scene. The method is based on a voxel approximation of the objects, and all occlusion calculations involve only integer arithmetics operation. The method is proved to converge. Some experimental results are presented

    BUILDING A BETTER TRAINING IMAGE WITH DIGITAL OUTCROP MODELS: THESE GO TO ELEVEN

    Get PDF
    Current standard geostatistical approaches to subsurface heterogeneity studies may not capture realistic facies geometries and fluid flow paths. Multiple-point statistics (MPS) has shown promise in portraying complex geometries realistically; however, realizations are limited by the reliability of the model of heterogeneity upon which MPS relies, that is the Training Image (TI). Attempting to increase realism captured in TIs, a quantitative outcrop analog-based approach utilizing terrestrial lidar and high-resolution, calibrated digital photography is combined with lithofacies analysis to produce TIs. Terrestrial lidar scans and high-resolution digital imagery were acquired of a Westwater Canyon Member, Morrison Formation outcrop in Ojito Wilderness, New Mexico, USA. The resulting point cloud was used to develop a cm scale mesh. Digital images of the outcrop were processed through a series of photogrammetric techniques to delineate different facies and sedimentary structures. The classified images were projected onto the high-resolution mesh creating a physically plausible Digital Outcrop Model (DOM), portions of which were used to build MPS TIs. The resulting MPS realization appears to capture realistic geometries of the deposit and empirically honors facies distributions

    Intelligent multi-sensor integrations

    Get PDF
    Growth in the intelligence of space systems requires the use and integration of data from multiple sensors. Generic tools are being developed for extracting and integrating information obtained from multiple sources. The full spectrum is addressed for issues ranging from data acquisition, to characterization of sensor data, to adaptive systems for utilizing the data. In particular, there are three major aspects to the project, multisensor processing, an adaptive approach to object recognition, and distributed sensor system integration

    View-dependent Exploration of Massive Volumetric Models on Large Scale Light Field Displays

    Get PDF
    We report on a light-field display based virtual environment enabling multiple naked-eye users to perceive detailed multi-gigavoxel volumetric models as floating in space, responsive to their actions, and delivering different information in different areas of the workspace. Our contributions include a set of specialized interactive illustrative techniques able to provide different contextual information in different areas of the display, as well as an out-of-core CUDA based raycasting engine with a number of improvements over current GPU volume raycasters. The possibilities of the system are demonstrated by the multi-user interactive exploration of 64GVoxels datasets on a 35MPixel light field display driven by a cluster of PCs.1037-1047Pubblicat

    Robot environment expert system

    Get PDF
    The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects

    A semi-automatic 2D/3D annotation framework for the geometric analysis of heritage artefacts

    Get PDF
    International audienceDocumentation and monitoring of heritage objects involve many actors on multidisciplinary aspects. The progress made over the years in the field of digital technologies has enabled many tools for analysis, management and dissemination of information gathered around an object. These tools must allow users to semantically describe the object while allowing them to grasp its morphological complexity and the heterogeneity of the available analysis supports. This article introduces an approach for the semantic annotation of heritage objects by using the bijective relationship that can be established between a 3D representation of an object and the set of oriented images towards it, while maintaining a continuum of information between all phases of observation and description, from acquisition to visualization of semantically enriched representations. The main idea is to offer a versatile environment to help extraction of relevant information from images using geometric descriptors and semi-automatic point cloud processing methods

    PUTTING ROMAN DAMS IN CONTEXT: A VIRTUAL APPROACH

    Get PDF
    • …
    corecore