
A Discrete Radiosity Method

Rémy Malgouyres

To cite this version:

Rémy Malgouyres. A Discrete Radiosity Method. Discrete Geometry for Computer Imagery,
10th International Conference, DGCI’02, Apr 2002, Bordeaux, France. Springer, 2301, pp.428-
438, 2002, Lecture Notes in Computer Science. <10.1007/3-540-45986-3 38>. <hal-01183723>

HAL Id: hal-01183723

https://hal.archives-ouvertes.fr/hal-01183723

Submitted on 10 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49274762?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01183723

A Discrete Radiosity Method

Rémy Malgouyres

LLAIC, Université Clermont 1, IUT departement Informatique, B.P. 86, 63172
AUBIERE cedex, France. e-mail: Remy.Malgouyres@llaic.u-clermont1.fr

Abstract. We present a completely new principle of computation of
radiosity values in a 3D scene. The method is based on a voxel approxi-
mation of the objects, and all occlusion calculations involve only integer
arithmetics operation. The method is proved to converge. Some experi-
mental results are presented.

Key words: Discrete Graphical Models, Voxel, Global Illumination, Ra-
diosity.

Introduction

Radiosity ([SP94]) is a technique which has proved being efficient (in
spite of its large complexity) and accurate to simulate several physical
processes involving exchange of energy. Its fields of application include
weather forecast, heat transfer simulation and light propagation, and in
particular 3D rendering in computer graphics.

However, radiosity remains so expensive that it cannot yet be exten-
sively used in the movie industry and similar applications. Moreover, the
basic radiosity algorithms rely on the so-called ideal diffuse hypothesis,
which represents a limitation of the range of applications, and often im-
plies a complicated combination of radiosity with other techniques (such
as ray-tracing) in order to obtain a correct simulation.

On the other hand, integer only geometric computations are every-
day improved and several techniques have been introduced for the use
of discrete geometric models in the field of modeling or computer graph-
ics ([YCK92], [SC95], [ANF97], [BM00]). Though discrete ray-tracing has
not become very widely used, it remains an interesting discrete geometric
modelisation and a good first attempt to use discrete geometric models
for 3D rendering.

The purpose of this paper is to introduce a completely new radiosity
method, which is based on a voxel representation of objects, and whose
occlusion calculations involve only integer arithmetical operations. The

objects of the scene are first approximated by a set of voxels, which are
stored in an octree data structure. Then the radiosity computations are
performed in the discrete voxel space. Finally, some classical techniques
such as z−buffer or ray-tracing are used for display of the results.

The paper is organized as follows: first we remind the reader the re-
quired notions about classical radiosity, then we set the basics of dis-
cretization. Afterwards, we explain how we can approximate the so-called
diffuse illumination equation by a discrete equation, and propose a numer-
ical solution which is proved to converge towards a solution of our discrete
equation. Then comes a section about implementation and complexity of
the method, and finally we present some experimental results.

1 Basic Notions for Radiosity

In this section we recall the basics of the radiosity method. We refer to
[SP94] for more details on classical radiosity methods.

1.1 The data of a 3D scene

We assume that we are given a 3D scene, which consists of a set of poly-
hedra (also called objects), or surfaces approximated by polyhedra, each
polyhedron P of the scene being provided with a reflectance coefficient

ρP ∈ [0, 1[. The physical definition of this reflectance coefficient is intu-
itively that ρP is the ratio of the total power of the outgoing light at a
given point of the polyhedron and of the power of the incoming light at
the same point. Note that the hypothesis that ρP < 1 means that no
energy is created while light is reflected by the object. For convenience,
given a point x of the object P , we denote ρ(x) = ρP .

In this paper, we adopt the simplifying hypothesis that the reflectance
ρP does not depend on the point on the polyhedron P , which means
that the objects are made of a uniform material: they are not textured.
This is not an intrinsic limitation of the presented method, but rather a
hypothesis that we made for the first investigations.

There is also another hypothesis, which is that the reflectance does not
depend on the incoming and outgoing direction of the light. This hypoth-
esis is known as the ideal diffuse reflectors hypothesis, and is classically
the basic hypothesis in radiosity methods. Intuitively, an ideal reflector
is an object such that the light emitted from a point x of this object has
the same properties in all the directions of the half-space limited by the
tangent plane at point x and which contains the outgoing normal vector
at x.

A light source is a particular object P which is provided with a positive
real number EP called the exitance of P . Intuitively, the exitance is the
total power of light leaving the object per unit of area. As the reflectance,
the exitance is assumed to depend neither on the point of the object, nor
on the direction of emission. Given a point x of the object P , we denote
E(x) = EP .

1.2 The Diffuse Illumination Equation

Here we describe a continuous equation which expresses the power of light
leaving a point x (radiosity at point x) of an object P as a function of the
power of light of all other points in the scene. Let us denote by B(x) the
radiosity at point x. Given a point y in the scene, we denote by V (x, y)
the number equal to 1 if y is visible form x in the scene (i.e. if no object
of the scene intersects the straight line segment [x, y]), and equal to 0
otherwise. The function V thus defined is called the visibility function.
We denote by θ(x, y) the angle between the vector −→xy and the normal
vector −→n at point x if this angle is less than π

2 , and equal to π
2 otherwise

(so that cos θ(x, y) = 0 if y is not in the half space limited by the tangent
plane at x and containing the outgoing normal vector).

The diffuse illumination equation at point x, which corresponds to
the physical ideal diffuse reflection model, is the following (see [SP94]):

B(x) = E(x) + ρ(x)

∫

y∈scene
B(y)

cos θ(x, y) cos θ(y, x)

π r2
V (x, y) dy (1)

where r denotes the distance between x and y.
The problem of simulating light propagation and reflections in the

scene, which consists in computing the radiosity B(x) at each point x of
the scene, reduces to solving the diffuse illumination equation. However,
this integral equation cannot be solved analytically except in some very
particular cases which are of no use in the field of computer graphics.
Therefore, we have to find an approximate numerical solution.

A classical way to do this, called the radiosity method, is do break
down the objects of the scene into a finite number of patches, and solving
a discrete version of the diffuse illumination equation, the solution of
this discrete version of the equation consisting in solving a (huge) matrix
equation. However, in this solution, the coefficients of the involved matrix
depend on the so-called form factors, which are double integrals over
the surface of couples of patches. The computation of these form factors
constitute the main part of the runtime of radiosity programs, and is
either very slow, or quite rough.

The idea of this paper is to discretize the scene to obtain voxels, and,
roughly speaking, to consider each voxel as a single point in order to
replace the computation of integrals by computation of sums.

2 Discretization of a 3D scene

2.1 Basic Notions of Discrete Geometry

A voxel v = (i, j, k) is a point of Z3, i.e. a point with integer coordinates.
Classically, such a voxel v = (i, j, k) can be seen as a unit cube centered
at the point (i, j, k), and whose edges are parallel to coordinates axis.

Given two voxels v = (i, j, k) and v′ = (i′, j′, k′), we say that v and
v′ are 26−adjacent if max(|i − i′|, |j − j′|, |k − k′|) = 1. We say that v

and v′ are 18−adjacent if they are 26−adjacent and have at least one
coordinate in common. Finally, v and v′ are said to be 6−adjacent if they
are 26−adjacent and differ only by one of their coordinates. Given v a
voxel and n ∈ {6, 18, 26}, we call n−neighborhood of v, and we denote
by Nn(v) the set of all voxels which are n−adjacent to v.

Let n ∈ {6, 18, 26}. Using the notion of n−adjacency, we can define
n−connectivity as follows. Let X ⊂ Z

3 be a set of voxels. An n−path in
X form v0 to vp is a finite sequence (v0, . . . , vp) of elements of X such
that for i = 1, . . . , p the voxels vi is n−adjacent to vi−1. Now let v and v′

be two elements of x. We say that v and v′ are n−connected in X if there
exists an n−path in X from v to v′. The relation “to be n−connected in
X” is an equivalence relation, and we call n−connected components of X

the equivalence classes of this equivalence relation. The set X is called
n−connected if it has exactly one n−connected component.

Given X ⊂ Z
3, we denote by X the complement Z

3\X of X in Z
3.

The set X is said to be n−separating if X has exactly two n−connected
components.

2.2 Discretizing a polyhedron

The main problem is the following: given a closed polyhedron P , with
an interior and an exterior, how to generate a list of voxels which ap-
proximate the polyhedron P (in the sense for instance that the Hausdorf
distance between the obtained set of voxels and P is less than 1) , and
such that the obtained set of voxels is 6−separating. There is no solution
to this problem if P is an arbitrary polyhedron (just think of pinched,
thin or highly curved polyhedra), but, as we shall see from experimen-
tal results, we can find practically acceptable solutions for thick enough

polyhedra. We use a discretization scheme similar to the one described
in [BM02]: for each face of the polyhedron, we use a polygon filling algo-
rithm ([FVD96]) to go over the pixels of the projection of the face onto
(say) the z = 0 plane, and for each of these pixels we sample the height
z of the face over this pixel.

2.3 Our Discrete Data-Structure

In order to represent the discrete scene obtained after discretization, we
have chosen an octree data structure, for the following reasons. First it
is much less memory consuming than a boolean matrix representation of
discrete objects, and second it is compatible with a hierachical version of
the method, i.e. a version of the method in which some parts of the scene
are discretized more roughly than others. As we shall see in the conclusion,
such a hierachical method is the only way to obtain a technique which
can seriously be compared to the most recent and advanced versions of
classical radiosity methods.

Since octrees have been very widely used in computer graphics, and
more generally in computer imagery since long ago (see [S85] and [W95]
among many others), we do not describe them here into many details. We
just mention that an octree is a tree structure in which each node has less
than 9 children, each child of a node representing an eighth portion of the
space represented by the node. The root of the tree thus represents the
whole matrix. A node is a leaf of the tree either if the portion of space it
represents is only composed of 1’s (object leaf case), or if this portion of
space is only composed of 0’s (complement leaf case). Thus, it is possible
to represent an n× n× n boolean matrix by a tree with depth (at most)
log n. Then, determining if a given element of the matrix is 1 can be done
in O(logn).

In our case, since 1’s correspond to voxels approximating surfaces, we
are likely to find many wide portions of space composed only of 0’s, and
thus many low depth complement leaves. This is another argument for
the use of the octree data structure. Indeed, as was previously pointed out
by authors using octrees for ray-tracing or discrete ray-tracing ([SC95],
[YCK92]), and as we shall see below, the existence of low depth comple-
ment leaves enables us to speed up the computation of the intersection
between a ray (i.e. a half-line) and the objects of the scene.

3 Discretizing and Solving the Diffuse Illumination

Equation

3.1 Transforming the Integral Equation

Now we are going to explain how, by transforming a bit the diffuse il-
lumination equation (Equation 1), and by using sums to approximate
integrals, we can obtain a discrete equation which can be numerically
solved. The first term on the right side of the diffuse illumination equa-
tion, due to emitance, can easily be handled, henceforth we concentrate
on the second term, which is an integral representing the light leaving the
point x which is due to reflection of light arriving from other points y of
the scene. We denote by SR(x) the sphere centered at the point x with
radius R, with R ∈ R

+. Moreover, given σ ∈ SR(x), we denote by y(x, σ)
the first point of the scene met when going over the ray (i.e. half line)
having x as extremity and containing σ.

∫

y∈sceneB(y) cos θ(x,y) cos θ(y,x)
π r2

V (x, y) dy

=
∫

σ∈SR
B(y(x, σ)) cos θ(x, y)

(

cos θ(y, x) d(y(x,σ))
π||x−y(x,σ)||2

)

=
∫

σ∈SR
B(y(x, σ)) cos θ(x, σ)

(

dσ
πR2

)

Note that we can identify the terms cos θ(y, x) d(y(x,σ))
π||x−y(x,σ)||2

and dσ
πR2 be-

cause both can be recognized as an element of solid angle viewed from
the point x.

3.2 The Discrete Sphere Method

Now we explain how we approximate the latter integral over a sphere
with radius R by a sum over the voxels of a discrete sphere. The idea
is simply that the integral of a function can be approximated by sum
over small patches of the area of the patch multiplied by the value of the
function at some point of the patch. We use a similar idea to the so-called
Hemicube method (see [SP94] for instance) in order to discretize the set
of directions in space.

We consider a discrete sphere ΣR with radius R, with R ∈ R, centered
at a voxel x = (a, b, c), i.e. the set of all voxels at distance less than or
equal to R from x and having a 6−neighbor at distance more than R from
x. In our method, we shall construct as an initialization the voxels of such
a discrete sphere. We can use a straightforward construction algorithm,
since the time for constructing the sphere will anyway be very small as
compared to the overall radiosity method runtime.

Then we consider, for each voxel v ∈ ΣR, the set F (v) of all the faces
of the voxel v which are shared by a voxel with distance greater than
R from x. All these faces constitute the frontier of the discrete ball with
radius R. For each face f ∈ F (v), we consider the solid angle A(f) formed
by f viewed from x. The solid angle A(f) can be approximated as follows:
assume for instance that f is a face shared by v = (a+ i, b+ j, c+ k) and
the voxel v′ = (a+ i, b+ j, c+ k + 1). Then

A(f) ≃
k + 0.5

π ∗ (i2 + j2 + (k + 0.5)2)
3

2

.

Now, consider SR the continuous sphere centered at x with radius R
over which we want to compute the integral as above. Consider, for each
v ∈ ΣR and each f ∈ F (v), the patch p(f) which is the central projection
(with center x) of f on the sphere SR. We have:

∫

σ∈SR
B(y(x, σ)) cos θ(x, σ)

(

dσ
πR2

)

=
∑

v∈ΣR,f∈F (v)

∫

σ∈p(f)B(y(x, σ)) cos θ(x, σ)
(

dσ
πR2

)

≃
∑

v∈ΣR,f∈F (v)B(y(x, v)) cos θ(x, v)A(f)

The latter approximation is obtained by considering the integrand
B(y(x, σ)) cos θ as constant on the patch p(f); the obtained integral is
B(y(x, v)) cos θ multiplied by the solid angle of p(f) viewed from x, this
solid angle being equal to A(f). Now, y(x, v) can be approximated by
the first voxel I(x, v) encountered by going over a discrete line from the
voxel x through the voxel v. Finally, the diffuse illumination equation of
Section 1.2 is approximated by the following discrete linear equation for
each voxel x of the discrete scene:

B(x) = E(x) + ρ(x)
∑

v∈ΣR,f∈F (v)

B(I(x, v)) cos θ(x, v)A(f) (2)

3.3 Numerical Solution of the Discrete Equation

The Proposed Algorithm

Lemma 1. We have lim
R→+∞

∑

v∈ΣR,f∈F (v)

cos θ(x, v)A(f) = 1.

An immediate consequence of this lemma is that our linear system
(Equation 2) satisfies the formal properties under which the Jacobi re-
laxation and Gauss-Seidel relaxation both converge to a solution of the

system (see [SP94] for the similar use of Gauss-Seidel relaxation in clas-
sical radiosity).

Now we explain the iterative scheme. We set B0(x) = E(x) for each
voxel x of the scene. Then we inductively define Bi(x) for i ≥ 1 by:

Bi(x) = E(x) + ρ(x)
∑

v∈ΣR,f∈F (v)

Bi−1(I(x, v)) cos θ(x, v)A(f) (3)

When i tends to infinity, the numbers Bi for all voxels exponencially
converge to a solution of the discrete Equation 2.

4 Implementation and Complexity

4.1 Going Over a Discrete Line

We remind the reader that the voxels of the surfaces are encoded in an
octree. The problem is, given a voxel x and an integer vector v, to compute
the first voxel I(x, v) encountered by following a discrete line from x in
the direction of v. First, which discrete line should we choose, since there
are several ? Here, the good arithmetical properties of the chosen line are
not really important. The main problem is to perform a fast computation
of a 6−connected discrete line which is close to the continuous half line
from x directed by v.

To do so, we introduce a current voxel M initialized to x. In fact, we
must initialize M to a voxel close to x on the considered discrete line in
such a way that M is not, as is x, a surface voxel, i.e. the leave L(M)
of the octee corresponding to M is a complement leave. The choice of an
initial M is a bit tricky.

Then we iterate the following procedure until the leaf L(M) is an
object leave. We assume for instance that the coordinates of the vector v
are all positive.

1. Find the limits xmax, ymax, zmax of the cube corresponding to the leaf
L(M) of the octree ;

2. Determine, using integers, which limit will be crossed first from x by
following the line in the direction v ;

3. Assume that, say, the limit xmax is crossed first. Compute a new
voxel M having xmax + 1 as first coordinate on the discrete line. To
insure 6−connectedness, we choose M such that M.y ≤ ymax and
M.z ≤ zmax ;

4. Find the new leaf L(M) in the octree data structure.

Let W be the width of the voxels matrix. Since the time for searching
a leaf in the octree is at most logW , the time for going over the discrete
line is at most W logW . In fact, the required time is generally much less
because, when the complement leave L(M) corresponding toM represents
a large cube C, first the depth of L(M) is less than logW , and second, we
jump directly to the exit of C without considering intermediate voxels.
We see here one advantage of the octree data structure: going over a
discrete line is fast.

4.2 The two Main Steps of the Method

The purpose of the method is to compute the numbers Bi(x) for each
voxel x of the discretized scene, and for i sufficiently large so that Bi(x)
is a correct approximation of the solution of Equation 2. Fortunately, the
convergence is exponential with respect to i, and it turns out that, in
practice, we have an accurate enough estimation for i = 5, . . . , 10.

As the classical radiosity techniques, our method consists in two main
steps :

1. Computation, for all voxels x of the scene and for all voxels v of the
discrete sphere ΣR centered at the point x, of the first voxel I(x, v)
encountered by following the discrete 6−connected line issued from x

through v. The address of the corresponding leave of the octree data
structure may be stored.

2. Computation, using the inductive definition of Bi(x) (Equation 3) and
the I(x, v) computed during the first step, of the numbers Bi’s.

The First Step Note that the result of the first step depends only on the
geometry of the scene, and not on the material properties of the objects
(numbers ρ(x)) nor on the illumination conditions (light sources, emi-
tance). This first step is analogous to the comptation of the form factors

in classical radiosity methods, and doesn’t need to be performed again
in case of a change in the illumination conditions. Note the important
difference of our method with respect to other radiosity methods, that
the first step consists in integer only computations.

The complexity of the method is the time L for going over the longest
discrete line segment included in the complement of the scene, multiplied
by the number |ΣR| of voxels of the considered discrete sphere (which is
O(R2)), multiplied by the number N of voxels of the scene.

The Second Step Now we come to the second step which, after the first
step, is quite straightforward. The second step is called the propagation

step. Let us mention that all calculations concerning discrete spheres, in-
cluding computation of the solid angles A(f), can be performed once for
all, independently from the voxel x. Note that we stored the normal vector
at each voxel (which is used for computing cos θ(x, v)) while discretizing
the scene, and that this normal vector is computed by continuous tech-
niques (such as the Phong method). An interesting point is that we can,
instead of duplicating the variables Bi in order to store Bi−1 and Bi as
Equation 3 suggests, we can use the previously computed Bi(y) instead
of Bi−1(y) in order to compute Bi(x). The obtained method can also be
proved to converge, and, practically speaking, it converges even faster.
The complexity of this step is the number i of iterations (typically 5 or
6), multiplied by |ΣR|, multiplied by the number of voxels of the scene.
Therefore, as we can also observe from experiments, the complexity of
the second step is lower than the complexity of the first step. Hence the
overall complexity of the method is LN |ΣR| + iN |ΣR|.

4.3 About the Space Complexity

The memory cost of the method, as described above, mainly corresponds
to the cost of storage of the adresses of I(x, v) for all x and v, which is
N |ΣR|. This can be managed by storing the octree data structure (hence
voxel information) in the RAM, while storing the addresses I(x, v)’s on a
disk. Indeed, by implementing carefully the algorithm, we can write once
for all each address I(x, v) (maybe write blocks of a few MB) during the
first step, and then, during the second step, read these addresses as many
times as the number i of propagations, always in the same order as the
addresses were written. Thus, the disk write/read cost is low, and the
memory cost affordable.

5 Experimental Results

First let us describe the computer with which the experiments were made:
the processor is 1.2 GHz, we needed 500Mo of RAM, and a 50Go IDE
disk. We present 2 experiments with the same 3D scene:

– The first experiment uses a 315*315*190 matrix of voxels, the surfaces
being approximates by about 1 million voxels; the radius of the used
discrete sphere is 30, so that the cardinality of the discrete sphere
(which is the number of directions in space taken into account) is

9194. The amount of memory used is less than 120Mo in RAM to
store the octree data structure, about 18Go were written on the disk.
The runtime is about 25 hours.

– The second experiment (Figure 1(a)) uses a 420*420*250 matrix of
voxels; the radius of the used discrete sphere is 38, so that the cardi-
nality of the discrete sphere is around 15000. The amount of RAM to
encode the octree data structure is about 200Mo, and less than 50Go
were written on the disk. The runtime is about 72 hours.

Conclusion

We have presented a completely new simulation technique for lighting in
a 3D scene made of ideal diffuse reflectors. This method is based on a
space voxelization, integer only arithmetic, and give promizing results.
However, this is the first paper on this method and a huge amount of
work remains to be done, including, first the evaluation of the method as
a simulation technique and comparison with classical radiosity methods;
second the generalization to an adaptative voxel space by working with
higher resolution arround highly curved objects (see [BM02]); third the
generalization to specular reflectors and transparency; and fourth arith-
metical optimization.

References

[ANF97] E. Andres, Ph. Nehlig, J. Francon, Tunnel-Free Supercover 3D Polygons and
Polyhedra, Eurographics ’97, Budapest, Computer Graphics Forum, ed. Blackwell
Publishers, vol. 16, 3, pp. C3-C13, 1997.

[BM00] J. Burguet, R. Malgouyres, Strong Thinning and Polyhedric Approximation
of the surface of a Voxel Object, Proceedings Discrete Applied Mathematics (DAM)
125(1), pp 93-114, 2002.

[BM02] J. Burguet, R. Malgouyres, Multiscale Discrete Surfaces, Proceedings of
DGCI’2002, Lecture Notes in Computer Science 2301, Springer, pp 338-349, 2002.

[FVD96] J.D. Foley, A. Van Dam, S.K. Feiner and J.F. Hughes, Computer Graphics:
introduction and practice (second edition in C), Addison-Wesley.

[S85] J. Sandor: Octree Data Structures and Perspective Imagery, C&G Vol. 9, No. 4,
pp.393-405, 1985

[SP94] F.X. Sillon and C. Puech, Radiosity & Golbal Illumination, Morgan Kaufmann
Publishers, San Francisco, California, 1994.

[SC95] N. Stolte and R. Caubet. Discrete Ray-Tracing of Huge Voxel Spaces, Euro-
graphics 95, pages 383-394, Maastricht, August 1995. Blackwell.

[W95] K. Y. Whang et al, Octree-R: an adaptive octree for efficient ray tracing, IEEE
TVCG, Vol. 1, No. 4, pp. 343-349, 1995

[YCK92] R. Yagel, D. Cohen, and A. Kaufman, Discrete Ray Tracing, IEEE Computer
Graphics and Applications, September 1992, 19-28.

(a) 25 hours, viewpoint 1.

(b) 72 hours, viewpoint 2.

Fig. 1. Color plates: the living-room scene.

