7 research outputs found

    Extrapolation of Incomplete Image Data with Discrete Orthogonal Transforms

    Get PDF
    In image processing and transmission, interpolation and extrapolation are of great importance whenever missing pixels have to be filled in, and many methods have been proposed to solve this problem. In this paper we present a method for extrapolating the missing data with an existing set of basis functions of a selected orthogonal transform. The best extrapolation is found according to linear approximation theory as a weighted sum of basis functions, where coefficients of the sum are solutions of the derived matrix equation

    360-Degree Panoramic Video Coding

    Get PDF
    Virtual reality (VR) creates an immersive experience of real world in virtual environment through computer interface. Due to the technological advancements in recent years, VR technology is growing very fast and as a result industrial usage of this technology is feasible nowadays. This technology is being used in many applications for example gaming, education, streaming live events, etc. Since VR is visualizing the real world experience, the image or video content which is used must represent the whole 3D world characteristics. Omnidirectional images/videos demonstrate such characteristics and hence are used in VR applications. However, these contents are not suitable for conventional video coding standards, which use only 2D image/video format content. Accordingly, the omnidirectional content are projected onto a 2D image plane using cylindrical or pseudo-cylindrical projections. In this work, coding methods for two types of projection formats that are popular among the VR contents are studied: Equirectangular panoramic projection and Pseudo-cylindrical panoramic projection. The equirectangular projection is the most commonly used format in VR applications due to its rectangular image plane and also wide support in software development environments. However, this projection stretches the nadir and zenith areas of the panorama and as a result contain a relatively large portion of redundant data in these areas. The redundant information causes extra bitrate and also higher encoding/decoding time. Regional downsampling (RDS) methods are used in this work in order to decrease the extra bitrate caused by over-stretched polar areas. These methods are categorized into persistent regional down-sampling (P-RDS) and temporal regional down-sampling (T-RDS) methods. In the P-RDS method, the down-sampling is applied to all frames of the video, but in the T-RDS method, only inter frames are down-sampled and the intra frames are coded in full resolution format in order to maintain the highest possible quality of these frames. The pseudo-cylindrical projections map the 3D spherical domain to a non-rectangular 2D image plane in which the polar areas do not have redundant information. Therefore, the more realistic sample distribution of 3D world is achieved by using these projection formats. However, because of non-rectangular image plane format, pseudocylindrical panoramas are not favorable for image/video coding standards and as a result the compression performance is not efficient. Therefore, two methods are investigated for improving the intra-frame and inter-frame compression of these panorama formats. In the intra-frame coding method, border edges are smoothed by modifying the content of the image in non-effective picture area. In the interframe coding method, gaining the benefit of 360-degree property of the content, non-effective picture area of reference frames at the border is filled with the content of the effective picture area from the opposite border to improve the performance of motion compensation. As a final contribution, the quality assessment methods in VR applications are studied. Since the VR content are mainly displayed in head mounted displays (HMDs) which use 3D coordinate system, measuring the quality of decoded image/video with conventional methods does not represent the quality fairly. In this work, spherical quality metrics are investigated for measuring the quality of the proposed coding methods of omnidirectional panoramas. Moreover, a novel spherical quality metric (USS-PSNR) is proposed for evaluating the quality of VR images/video

    Segmentation based coding of depth Information for 3D video

    Get PDF
    Increased interest in 3D artifact and the need of transmitting, broadcasting and saving the whole information that represents the 3D view, has been a hot topic in recent years. Knowing that adding the depth information to the views will increase the encoding bitrate considerably, we decided to find a new approach to encode/decode the depth information for 3D video. In this project, different approaches to encode/decode the depth information are experienced and a new method is implemented which its result is compared to the best previously developed method considering both bitrate and quality (PSNR)

    SPIHT image coding : analysis, improvements and applications.

    Get PDF
    Image compression plays an important role in image storage and transmission. In the popular Internet applications and mobile communications, image coding is required to be not only efficient but also scalable. Recent wavelet techniques provide a way for efficient and scalable image coding. SPIHT (set partitioning in hierarchical trees) is such an algorithm based on wavelet transform. This thesis analyses and improves the SPIHT algorithm. The preliminary part of the thesis investigates two-dimensional multi-resolution decomposition for image coding using the wavelet transform, which is reviewed and analysed systematically. The wavelet transform is implemented using filter banks, and the z-domain proofs are given for the key implementation steps. A scheme of wavelet transform for arbitrarily sized images is proposed. The statistical properties of the wavelet coefficients (being the output of the wavelet transform) are explored for natural images. The energy in the transform domain is localised and highly concentrated on the low-resolution subband. The wavelet coefficients are DC-biased, and the gravity centre of most octave-segmented value sections (which are relevant to the binary bit-planes) is offset by approximately one eighth of the section range from the geometrical centre. The intra-subband correlation coefficients are the largest, followed by the inter-level correlation coefficients in the middle then the trivial inter-subband correlation coefficients on the same resolution level. The statistical properties reveal the success of the SPIHT algorithm, and lead to further improvements. The subsequent parts of the thesis examine the SPIHT algorithm. The concepts of successive approximation quantisation and ordered bit-plane coding are highlighted. The procedure of SPIHT image coding is demonstrated with a simple example. A solution for arbitrarily sized images is proposed. Seven measures are proposed to improve the SPIHT algorithm. Three DC-level shifting schemes are discussed, and the one subtracting the geometrical centre in the image domain is selected in the thesis. The virtual trees are introduced to hold more wavelet coefficients in each of the initial sets. A scheme is proposed to reduce the redundancy in the coding bit-stream by omitting the predictable symbols. The quantisation of wavelet coefficients is offset by one eighth from the geometrical centre. A pre-processing technique is proposed to speed up the judgement of the significance of trees, and a smoothing is imposed on the magnitude of the wavelet coefficients during the pre-processing for lossy image coding. The optimisation of arithmetic coding is also discussed. Experimental results show that these improvements to SPIHT get a significant performance gain. The running time is reduced by up to a half. The PSNR (peak signal to noise ratio) is improved a lot at very low bit rates, up to 12 dB in the extreme case. Moderate improvements are also made at high bit rates. The SPIHT algorithm is applied to loss less image coding. Various wavelet transforms are evaluated for lossless SPIHT image coding. Experimental results show that the interpolating transform (4, 4) and the S+P transform (2+2, 2) are the best for natural images among the transforms used, the interpolating transform (4, 2) is the best for CT images, and the bi-orthogonal transform (9, 7) is always the worst. Content-based lossless coding of a CT head image is presented in the thesis, using segmentation and SPIHT. Although the performance gain is limited in the experiments, it shows the potential advantage of content-based image coding
    corecore