
 I

Department of Signal Theory and Communications

M.Sc. dissertation

Segmentation based coding of depth
Information for 3D video

Author: Payman Aflaki Beni

Advisor: Professor Javier Ruiz Hidalgo

Barcelona, July 2009

 II

Contents

1. Abstract 1

2.. Introduction 3

3. Background 5

3.1. Encoding methods . 5
3.2. MVC (Multi-view video coding) 9

3.2.1. Introduction . 9
3.2.2. Coding . 10

3.3. MVD (MVC + Depth) . 12

4. Segmentation 14
4.1. Introduction . 14
4.2. Segmentation techniques . 15
4.3. BPT method . 17

5. Segmentation based coding 20
5.1. Introduction . 20
5.2. Coding of contour and texture . 21

5.2.1. Chain code contour coding 22
5.2.2. Orthobasis texture coding . 24

6. Entropy coding 26
6.1. Introduction . 26
6.2. Different methods . 27

7. Virtual view rendering 29
7.1. Introduction . 29
7.2. Virtual camera . . . 30
7.3. Virtual view . 31
7.4. PSNR calculation . 32

8. Segmentation based coding method 35
8.1. Abstract . 35
8.2. H.264 coding . 36
8.3. View segmentation . 39
8.4. Comparison with depth segmentation 40

8.4.1. Over segmentation . 40
8.4.2. Under segmentation . 42

8.5. New segmentation based coding method 43
8.6. Effects of new method on quality and bitrate 45

 III

9. Experimental results 47

9.1. Calculations of PSNR and bitrate 47
9.2. H.264 coding . 47
9.3. Original depth segmentation . 51
9.4. Only view segmentation . 53
9.5. Segmentation based coding method 55

10. Conclusion and future work 60

11. References 62

 1

1. Abstract
Increased interest in 3D artifact and the need of transmitting, broadcasting and saving the
whole information that represents the 3D view, has been a hot topic in recent years.
Knowing that adding the depth information to the views will increase the encoding bitrate
considerably, we decided to find a new approach to encode/decode the depth information
for 3D video.

In this project, different approaches to encode/decode the depth information are
experienced and a new method is implemented which its result is compared to the best
previously developed method considering both bitrate and quality (PSNR).

First the depth image is segmented using a BPT (binary partition tree) method which
divides the image to different homogeneous partitions based on gray level value of its
pixels. Then using this partitioned image, the contours are coded exploiting chain code
contour coding and to encode each partition Orthobasis method is exploited. (Fig. 1.1)

Fig. 1.1: Steps of a successful segmentation based coding

Considering that in such a way the quality of final image is high and the bitrate is high as
well, we had to make decision whether this approach is suitable or not. Regarding the
very high bitrate which was mostly devoted to contour coding while using the lossless
mode (depending on the number of regions, contour coding takes even more than 90% of
the total bitrate), we tried to tackle the problem in such a way that the bitrate decreases
along with having a satisfactory quality. In the proposed method, a combination of
decoded view segmentation with completion by original depth segmentation is explained
and implemented.

The reference for our results is H.264/AVC, which is the pioneer in the field of video
coding nowadays. In this thesis, because of the work load, no time interpolation has been
exploited. It means without using the dependency of images through the time, a very
satisfactory result has been achieved. So, the outcome of H.264 was processed in two
cases: first, while using it as an I frame intra coder and second, while using the optimized
H.264. This means, using encoded depth information of each original camera, we tried to
create the virtual views based on distance distribution between each pair of nearby
original cameras. In this case we could study the PSNR of different coding methods
based on the quality of virtual rendered images.

Image
Segmentation

Contour
Coding

Texture
Coding

 2

The results were satisfactory and for specific and reasonable quality of decoded depth
images, our new segmentation based coding method out performed H.264. This means,
while having the same PSNR, we managed to achieve a lower bitrate.

 3

2. Introduction
It is believed that 3D is the next major revolution in the history of TV. Both at
professional and consumer electronics exhibitions, companies are eager to show their
new 3D products that always attract a lot of interest. Obviously, if a workable and
commercially acceptable solution can be found, the introduction of 3D-TV will generate
a huge replacement market for the current 2D-TV sets. In this decade, it is expected that
technology will progress far enough to make a full 3D-TV application available on the
mass consumer market, including content generation, coding, transmission and display.

In recent years, various multimedia services have become available and the demand for
realistic multimedia systems is growing rapidly. A number of three-dimensional (3D)
video technologies, such as holography, two-view stereoscopic system with special
glasses, 3D wide screen cinema, and multi-view video have been studied. Among them,
multi-view video (MVV) is the key technology for various applications including free-
viewpoint video (FVV) [1], [2], free-viewpoint television (FVT), 3DTV[3],
teleconference, and surveillance systems. The traditional video is a two-dimensional (2D)
medium and only provides a passive way for viewers to observe the scene. However, 3D
and free viewpoint video are new types of natural video media that expand the user’s
sensation far beyond what is offered by traditional media. The first offers a 3D depth
impression of the observed scenery, and the second one, on the other hand, is
characterized by providing the user the ability to interactively select an arbitrary
viewpoint (depending on the number of views that has been put in the structure of the
FVT) in the video scene as known from computer graphics. Both technologies do not
exclude each other, but rather can be combined into one system. A common characteristic
of such technologies is that they use MVV data, where a real world scene is recorded by
multiple synchronized cameras. MVV can offer arbitrary viewpoints of dynamic scenes
and thus allow more realistic video.

Target applications include broadcast television and other forms of video entertainment,
as well as surveillance. These applications are enabled through convergence of
technologies from computer graphics, computer vision, multimedia and related fields,
and rapid progress in research covering the whole processing chain from capturing, signal
processing, data representation, compression, transmission, display and interaction. Some
of these application scenarios may be based on proprietary systems, as for instance
already employed for (post-) production of movies and TV content. On the other hand
there are also application scenarios that require interoperable systems, such as 3DTV
broadcast or free viewpoint video on DVD. This may open huge consumer market for 3D
displays, set-top boxes, media, content, DVDs, HD-DVDs, BRDs, etc., along with the
corresponding equipment for production, transmission, etc.

The multi-view video includes multi-viewpoint video sequences captured by multiple
cameras at the same time, but at different positions. In the context of MVV, this format is
combined with multi-view video to the multi-view video + depth (MVD) format,
consisting of multiple color videos with associated multiple depth data of one scene.
MVD representations cause a vast amount of data to be stored or transmitted to the user.

 4

It means that because of the increased number of cameras, the MVD contains a large
amount of data. Since this system has serious limitations on information distribution
applications, such as broadcasting, network streaming services, and other commercial
applications, we need to compress the multi-view sequence efficiently without sacrificing
visual quality significantly. As a result, efficient compression techniques are essential for
realizing such applications. Previous work presented various solutions for multi-view
video coding (MVC), mostly based on H.264 with combined temporal and inter-view
prediction, as well as different approaches for depth image coding, like transform- or
wavelet-based depth compression.

In this step, since depth-maps are not directly viewed and knowing that traditional image
compression methods have been designed to provide maximum perceived visual quality,
a direct application is suboptimal for depth-map compression. In other words, the
sensitivity of the rendering error depends on image content as well as on the depth map.
The depth maps are never directly viewed-rather they are used for rendering new images
whose quality is of importance in the application, so, in this case, having the highest
perceived visual quality of depth image is not the most important issue. For example:
errors in the depth map close to an intensity edge can result in ugly rendering artifacts,
while errors on smooth surface will be unnoticed.

This urged us to try to exploit a segmentation based approach to encode/decode the depth
video. So while preserving the contours, using different possible methods like chain code
or multi grid chain code, we can send the whole information of each partition with a
texture coding method like Polynomial or Orthobasis. Combining this segmentation
method we can preserve the good quality of the final rendered images while having the
contours of the depth image as much similar as possible to the original ones.

Using this approach on two sequences of “Ballet ” and “Breakdancers “ (which are the
two well known and commonly used sequences in the field of depth coding), the bitrate
and quality for different combinations of mentioned methods will be calculated and the
results are compared with each other and considering the nicety of final images the best
one will be chosen. As well, as a reference for the comparison, the results will be
compared with those of H.264 achieved by two different configurations, to see the
performance of the proposed methods. Finally in this project a satisfactory method to
compress the depth information is achieved which can compete or even outperform the
reference in specific qualities.

This report is organized as follows. Section 3 is about the background needed for this
research. The segmentation methods are introduced in section 4. Section 5 covers the
segmentation based coding subject while in section 6 the entropy coding is explained.
Section 7 is about virtual view rendering, especially its application to evaluate the effects
of depth-image compression. In section 8 different approaches that leaded us to the new
segmentation based coding method are discussed and the proposed method is explained.
Experimental results are completely presented in section 9. Finally, the paper concludes
with Section 10.

 5

3. Background

3.1. Encoding methods

To encode a video, different methods have been exploited so far, which mostly are
concentrating on best perceived visual quality of the decoded video.

State-of-the-art video coding, such as H.264, addresses coding of natural scenes and is
good at exploiting similarities between neighboring frames containing smooth structures.

Video compression refers to reducing the quantity of data used to represent digital video
images, and is a combination of spatial image compression and temporal motion
compensation. Video compression is an example of the concept of source coding in
information theory. Compressed video can effectively reduce the bandwidth required to
transmit video via terrestrial broadcast, via cable TV, or via satellite TV services.
Particularly in this project, we use an efficient method to encode the images who will
create the video. As well the middle virtual images will be rendered using some algebraic
methods and image projection approaches.

H.264 employs state-of-the-art video coding technologies and promises to have
significant impact on future generations of video coding products, markets and services.
So in this thesis a method of encoding/decoding for depth images will be introduced and
explained. This will be followed by the results and the comparison with the reference.

For video coding, we can name two major standards of MPEG and H.26x which have a
joint point in H.264. Below is a summary of both standards and a short description about
their history and different versions:

MPEG
(Moving Pictures Experts Group) An ISO/ITU standard for compressing digital video. It
is the universal standard for digital terrestrial, cable and satellite TV, DVDs and digital
video recorders (DVRs).

MPEG is an asymmetrical system. It takes longer to compress the video than it does to
decompress it in the DVD player, PC, set-top box or digital TV set. As a result, in the
early days, compression was performed only in the studio. As chips advanced and
became less costly, they enabled digital video recorders, such as Tivos, to convert analog
TV to MPEG and record it on disk in real time.

The MPEG compression methodology is considered asymmetric while the encoder is
more complex than the decoder. The encoder needs to be algorithmic or adaptive whereas
the decoder is 'dumb' and carries out fixed actions. This is considered advantageous in
applications such as broadcasting where the number of expensive complex encoders are
small but the number of simple inexpensive decoders is large. This approach of the ISO

 6

to standardization in MPEG is considered novel because it is not the encoder which is
standardized; instead, the way in which a decoder shall interpret the bit stream is defined.
A decoder which can successfully interpret the bitstream is said to be compliant. The
advantage of standardizing the decoder is that over time encoding algorithms can
improve yet compliant decoders will continue to function with them. The MPEG
standards give very little information regarding structure and operation of the encoder
and implementers can supply encoders using proprietary algorithms. This gives scope for
competition between different encoder designs which means that better designs can
evolve and users will have greater choice because of different levels of cost and
complexity can exist in a range of coders yet a compliant decoder will operate with them
all.

MPEG uses lossy compression within each frame similar to JPEG, which means pixels
from the original images are permanently discarded. It also uses inter-frame coding,
which further compresses the data by encoding only the differences between periodic
frames. MPEG performs the actual compression using the discrete cosine transform
(DCT) method.

The MPEG standards consist of different parts where each part covers a certain aspect of
the whole specification. MPEG standardization can be devided as below:

• MPEG-1 (Video CDs)

Although MPEG-1 supports higher resolutions, it is typically coded at 352x240 x
30fps (NTSC) or 352x288 x 25fps (PAL/SECAM). Full 704x480 and 704x576
frames (BT.601) were scaled down for encoding and scaled up for playback. MPEG-1
uses the YCbCr color space with 4:2:0 sampling, but did not provide a standard way
of handling interlaced video. Data rates were limited to 1.8 Mbps, but often exceeded.

• MPEG-2 (DVD, Digital TV)

MPEG-2 provides broadcast quality video with resolutions up to 1920x1080. It
supports a variety of audio/video formats, including legacy TV, HDTV and five
channel surround sound. MPEG-2 uses the YCbCr color space with 4:2:0, 4:2:2 and
4:4:4 sampling and supports interlaced video. Data rates are from 1.5 to 60 Mbps.

• MPEG-4 (All Inclusive and Interactive)

MPEG-4 is an extremely comprehensive system for multimedia representation and
distribution. Based on a variation of Apple's QuickTime file format, MPEG-4 offers a
variety of compression options, including low-bandwidth formats for transmitting to
wireless devices as well as high-bandwidth for studio processing..

MPEG-4 also incorporates AAC, which is a high-quality audio encoder. MPEG-4
AAC is widely used as an audio-only format.

 7

A major feature of MPEG-4 is its ability to identify and deal with separate audio and
video objects in the frame, which allows separate elements to be compressed more
efficiently and dealt with independently. User-controlled interactive sequences that
include audio, video, text, 2D and 3D objects and animations are all part of the
MPEG-4 framework.

MPEG-4 uses further coding tools with additional complexity to achieve higher
compression factors than MPEG-2. In addition to more efficient coding of video,
MPEG-4 moves closer to computer graphics applications. In more complex profiles,
the MPEG-4 decoder effectively becomes a rendering processor and the compressed
bitstream describes three-dimensional shapes and surface texture. MPEG-4 also
provides Intellectual Property Management and Protection (IPMP) which provides
the facility to use proprietary technologies to manage and protect content like digital
rights management. Several new higher-efficiency video standards (newer than
MPEG-2 Video) are included (an alternative to MPEG-2 Video), notably:

• MPEG-4 Part 2:

Despite allowing much more efficient Compression than MPEG-2 (as used in DVDs
and most DTV), it lacks the advanced technology for which AVC (Advanced Video
Coding) is named, including CABAC, InLoop Deblocking, and Partitions. The best
known implementations of MPEG-4 Part 2 are the DivX and XviD codecs, which
began primarily as computer-bound formats that required a computer to watch but are
now playable by a large number of standalone DVD players.

• MPEG-4 Part 10:

MPEG-4 Part 10 (or Advanced Video Coding or H.264) may be used on HD DVD
and Blu-ray discs, along with VC-1. As well MPEG-2. 10 was designed specifically
with High Definition (HD) video for home theater applications in mind as one
potential application. It also includes specifications for lower quality video for
portable devices, allowing a single standard to be compatible across a wide range of
different needs.

Advanced Video Coding (AVC) is the newest entry in the series of international
video coding standards. It is currently the most powerful and state-of-the-art standard,
and was developed by a Joint Video Team (JVT) consisting of experts from ITU-T’s
Video Coding Experts Group (VCEG) and ISO/IEC’s Moving Picture Experts Group
(MPEG) created in 2001. The ITU-T H.264 standard and the ISO/IEC MPEG-4 Part
10 standard (formally, ISO/IEC 14496-10) are technically identical. The final drafting
work on the first version of the standard was completed in May 2003. As has been the
case with past standards, its design provides the most current balance between the
coding efficiency, implementation complexity, and cost based on state of VLSI
design technology (CPUs, DSPs, ASICs, FPGAs, etc).

 8

H.264/MPEG-4 Part 10 contains a number of new features that allow it to compress
video much more effectively than older standards and to provide more flexibility for
application to a wide variety of network environments.

The main goals of this standardization effort are to develop a simple and
straightforward video coding design, with enhanced compression performance, and to
provide a “network-friendly” video representation which addresses “conversational”
(video telephony) and “non-conversational” (storage, broadcast or streaming)
applications. H.264 has achieved a significant improvement in the rate-distortion
efficiency – providing, typically, a factor of two in bitrate savings when compared
with existing standards

It presents some new features like :

- Multi-picture inter-picture prediction
- Spatial prediction from the edges of neighboring blocks for "intra" coding, rather

than the "DC"-only prediction found in MPEG-2 Part 2 and the transform
coefficient prediction found in H.263v2 and MPEG-4 Part 2

- Lossless macroblock coding features
- Flexible interlaced-scan video coding features
- New transform design features
- An entropy coding design
- Loss resilience features

Note that MPEG-4 Part 10 defines a different format than MPEG-4 Part 2 and should
not be confused with it. MPEG-4 Part 10 is commonly referred to as H.264 or AVC,
and was jointly developed by ITU-T and MPEG.

• MPEG-7 (Meta-Data)

Formally called the Multimedia Content Description Interface, MPEG-7 provides a
tool set for completely describing multimedia content. MPEG-7 is designed to be
generic and not targeted to a specific application.

MPEG-7 is about describing multimedia objects and has nothing to do with
compression. It provides a library of core description tools and an XML-based
Description Definition Language (DDL) for extending the library with additional
multimedia objects. Color, texture, shape and motion are examples of characteristics
defined by MPEG-7.

ITU-T
The Video Coding Experts Group or Visual Coding Experts Group (VCEG) is the
informal name of Question 6 (Video coding) of Working Party 3 (Media coding) of Study
Group 16 (Multimedia coding, systems and applications) of the ITU-T.This organization

 9

has standardized (and is responsible for the maintenance of) the following video
compression formats and ancillary standards:

• H.120: the first digital video coding standard. v1 (1984) featured conditional
replenishment, differential PCM, scalar quantization, variable-length coding and a
switch for quincunx sampling. v2 (1988) added motion compensation and
background prediction. This standard was little-used and no codecs exist.

• H.261: was the first practical digital video coding standard (late 1990). This design
was a pioneering effort, and all subsequent international video coding standards have
been based closely on its design.

• H.262: it is identical in content to the video part of the ISO/IEC MPEG-2 standard
(ISO/IEC 13818-2). This standard was developed in a joint partnership between
VCEG and MPEG, and thus it became published as a standard of both organizations.
ITU-T Recommendation H.262 and ISO/IEC 13818-2 were developed and published
as "common text" international standards. As a result, the two documents are
completely identical in all aspects.

• H.263: was developed as an evolutionary improvement based on experience from
H.261, and the MPEG-1 and MPEG-2 standards. Its first version was completed in
1995 and provided a suitable replacement for H.261 at all bitrates.

• H.263v2: also known as H.263+ or as the 1998 version of H.263, is the informal
name of the second edition of the H.263 international video coding standard. It retains
the entire technical content of the original version of the standard, but enhances
H.263 capabilities by adding several annexes which substantially improve encoding
efficiency and provide other capabilities (such as enhanced robustness against data
loss in the transmission channel). The H.263+ project was completed in late 1997 or
early 1998, and was then followed by an "H.263++" project that added a few more
enhancements in late 2000.

• H.264: Will be discussed in the MPEG standardization section. (MPEG 4, part 10)

3.2. MVC (Multi-view video coding)

3.2.1. Introduction

Since our world is not a 2D world, 3D has always been an exciting target in visual
representation. 3D experiences may be provided through multi-view video (MVV),
notably: i) 3D video (also called stereo) which brings a depth impression of a scene, and
ii) free viewpoint video (FVV) which allows an interactive selection of the viewpoint and
direction within certain ranges. Of course, 3D experiences may require special 3D display
technology but many new products have been announced and exhibited recently. In fact,
there are new 3D display technologies with interesting features such as no glasses, multi-

 10

persons displays, higher display resolutions, and also avoiding uneasy feelings
(headaches, nausea, eye strain, etc.).

3D technology is relevant for broadcasting, teleconference, surveillance, interactive
video, cinema, gaming and other immersive video applications. While there is already a
MPEG-2 Video multi-view profile, the truth is that it passed almost unnoticed, especially
due to its low compression efficiency in comparison with the simulcasting (or
independent view coding) alternative. Multi-view video refers to a set of N temporal
synchronized video streams coming from cameras that capture the same real world scene
from different viewpoints. MVV provides the ability to change viewpoint freely when
multiple views are available; it is also possible to render one view (real or virtual) to
legacy 2D displays. Clearly, the most well known case is stereo video (N = 2), with each
view derived for projection into one eye, in order to create the illusion of depth. Since
2001, MPEG has been studying 3D based applications and their needs in terms of content
representation. While many good tools developed both by the Video and SNHC MPEG
subgroups are already available in MPEG-4 Visual, it was recognized that the MVV case
was becoming relevant enough to develop a novel, more efficient standard. Following the
same process as for SVC, an AVC backward compatibility requirement was identified
which again led to a Multi-view Video Coding (MVC) standard built on the top of the
AVC standard, again in the context of the JVT.

Multi-view video coding (MVC) is one of the most interesting technologies for future
multimedia applications such as free-viewpoint video or photorealistic rendering of 3D
scenes. Multi-view video will be used to drive next-generation 3D displays. These next-
generation displays enable viewing of high resolution stereoscopic images from arbitrary
positions and without need for glasses. The multi-view video provides the 3D display
with view-dependent pixels that render a different color to the observer based on viewing
angle.

3.2.2. Coding

For 3D systems based on multi-view video to become feasible, we need simultaneous
recording of a moving scene with several cameras that will generate huge amounts of
data which makes efficient compression necessary. The most straightforward solution to
MVC is to independently code each video of each camera with a conventional video
codec, e.g. H.264. As the efficiency of this so-called simulcast coding is not optimal,
much effort has been spent to find better solutions. In many publications, it could be
shown that there exists significant correlation across the different views at the same or
similar time instances[59, 60, 61].

In order to achieve efficient compression results, exploitation of these inter-view
dependencies is indispensable. Most multi-view codecs that have been published recently
use some kind of inter-view prediction and show superior performance compared to
simulcast coding. The new MVC reference software used for MPEG evaluations is an
example for this strategy.

 11

Compression is certainly needed; since the increase in the amount of data and storage
requirements, new compression techniques that exploit not only the temporal correlation
in the video, but also the inter view correlation between the videos are being extensively
studied in the context of H.264[4].

As mentioned, a simple for coding multi-view video is to encode each view
independently using a state-of-art video codec such as H.264/AVC[4]. The advantage of
this approach is that it could be achieved with current standards and existing hardware.
However, it does not exploit the redundancy across views, thereby not realizing the most
efficient representation in compressed form.

The basic idea employed in all related works on efficient multi-view video coding is to
exploit spatial and temporal redundancy for compression, since all cameras capture the
same scene from different viewpoints, inter view redundancy is present. A sample
prediction structure is shown in Fig. 3.1. Pictures are not only predicted from temporal
neighbors, but also from spatial neighbors in adjacent views.

Fig. 3.1: Sample prediction structure for multi-view video coding that exploits both temporal and
spatial redundancy

It has been shown that coding multi-view video in this way does give significantly better
results compared to the simple H.264 simulcast solution [5]. Improvements of more than
2 dB have been reported for the same bitrate, and subjective testing has indicated that the
same quality could be achieved with approximately half the bitrate for a number of test
sequences.

 12

There are many variations on the prediction structure considering both temporal and
spatial dependencies. The structure not only affects coding performance, but has notable
impact on delay, memory requirements and random access. It has been confirmed that the
majority of gains are obtained using interview prediction at anchor positions, i.e., set of
pictures that have no temporal prediction, only spatial prediction such as T0 in Fig. 3.1 .

Besides the exploitation of the temporal and spatial redundancy within each view,
redundancy can also be exploited across the different views to achieve higher coding
gains. The current AVC multi-view extension, MVC, does not require any changes to
lower-level AVC syntax, and thus it is very compatible with single-layer AVC hardware,
since no new coding tools have already been accepted in MVC. Inter-view prediction is
enabled just with the flexible design of decoded reference picture management which
allows decoded pictures from other views to be inserted and removed from the reference
picture buffer. Small changes to the high-level AVC syntax have been introduced, e.g. to
specify view dependency. Some of the tools which are still under consideration are
illumination compensation (to incorporate illumination changes into the motion
compensation process), adaptive reference filtering (to compensate for the focus misma-
tches between views), motion skip mode (to infer motion information from the
corresponding block in neighboring view), and view synthesis prediction (to generate
synthesized views from neighboring views using estimated depth, then use synthesized
view for prediction). All these tools would require changes to slice/macroblock level
AVC syntax. Additional 10-15% gains are expected depending on the content. It is still
not clear if this amount of gains will be enough to make worthwhile to include these tools
in the MVC standard. Since MVV video codecs are required to store/transmit huge
amounts of data, the standardization goal is to reach 50% bitrate savings over
independent coding of views (simulcasting) with same quality by defining another
extension to the AVC standard.

3.3. MVD (MVC + Depth)

The MVD format consists of several camera sequences of color texture images and
associated per sample depth images or depth maps as illustrated in Fig. 3.2. Depth images
are a 2D representation of the 3D surface of the scene. Therefore the depth range is
restricted to a range in between two extremes Znear and Zfar, indicating the minimum and
maximum distance of the corresponding 3D point from the camera respectively. By
quantizing the values in this range, the depth image in Fig. 3.2 is specified which will
result to a grey scale image. A sequence of such depth images can be converted into a
YUV 4:0:0 format video signal and compressed by any state-of-the-art video codec.

Since depth images represent the scene depth, their characteristics differ from texture
images. Encoding depth images with video codecs that are highly optimized to the
statistical properties and human perception of color or texture video sequences, might be
efficient but results in disturbing artifacts. Therefore novel algorithms for depth image
compression are developed, that are adapted to their special characteristics, namely
smooth regions delineated by sharp edges.

 13

(a)

(b)

Fig. 3.2: Example for the MVD format with texture image (b) and corresponding depth-image (a).

We should be aware of the fully effectiveness of traditional image compression methods
in providing maximum perceived visual quality, and as well know that depth-maps are
not directly viewed. But depth images will be used to render some virtual images. It
means they will be used to create some view images which their quality is of importance
to us, not the quality of decoded depth maps themselves. Knowing this, we will result that
having the highest perceived visual quality is not the most important issue. And
especially for depth images preserving the contours is one of the fundamental tasks that
should be considered in all the phases of the encoding/decoding process.

Bearing in mind the up-mentioned resolution, we were urged to try to exploit a
segmentation based approach to encode/decode the depth video. As a result, the image
had to be divided to different regions and contours and partitions had to be encoded
separately.

Using this approach on two sequences of “Ballet ” and “Breakdancers “, different
combinations of the encoding methods will be tested and the best approach regarding
both a low bitrate and a high quality will be chosen and in order to evaluate the properties
of segmentation based method for depth coding algorithm, the coding results are
compared to H.264 as a reference.

 14

4. Segmentation

4.1. Introduction

Image segmentation is a long standing problem in computer vision and is a fundamental
step in many areas of this aspect including stereo vision and object recognition. In
computer vision, segmentation refers to the process of partitioning a digital image into
multiple segments (sets of pixels). The segmentation is based on measurements taken
from the image and might be grey level, colour, texture, depth, motion, etc. The goal of
segmentation is to simplify and/or change the representation of an image into something
that is more meaningful with respect to a particular application and easier to analyze. It
provides additional information about the contents of an image by identifying edges and
regions of similar color and texture, while simplifying the image from thousands of pixels
to less than a few hundred segments. More precisely, image segmentation is the process
of assigning a label to every pixel in an image such that pixels with the same label share
certain visual characteristics.

The result of image segmentation is a set of partitions that collectively cover the entire
image, or a set of contours extracted from the image. Each of the pixels in a region are
similar with respect to some characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with respect to the same
characteristic(s).

Additionally, image segmentation has applications separate from computer vision; it is
frequently used to aid in isolating or removing specific portions of an image. From those
applications we can name Content Based Image Retrieval (CBIR), object recognition,
matching of stereo pairs for 3-D reconstruction, navigation and artificial expert medical.
Although a seemingly simple first step in high level computer vision tasks, there are
many challenges to an ideal image segmentation. There are many possible correct
segmentations, and the one we are looking for depends on the application. For example,
in object recognition, the goal is often to find segments that describe objects. However,
the idea of “objects” is itself vague. Most of the time objects can be subdivided into
smaller objects. For example, a tree can further be divided into a trunk and its leaves. To
clearly define an ideal segmentation we must decide on the level of detail that we want.
Another application of segmentation is as a preliminary step to stereo vision. Here, we
want to group together pixels that are the same distance from the camera, and thus an
ideal segmentation has relatively small segments where many put together define an
object. Even if we can formulate a definition for an ideal segmentation, there are many
difficulties to overcome. The information we know directly about an image is the
intensity/color and location of each pixel, and therefore these two variables are the central
source of data for any segmentation. However, color and intensity can vary significantly
over a single object. Also, shadows, reflections, and textures add sharp color contrasts to
the same surface. Additionally, the image can be distorted or blurry. Edges that look
clearly defined from far away are often blurry and hard to distinguish at the pixel level.
Similarly, an area that looks like a solid color at a distance may be seen as mix of many

 15

colors at the pixel level and may be interpreted as a number of segments. Shortly we can
say a segmentation of an image is a partition of the image that reveals some of its content.

The confusion in defining image segmentation (and also perceptual grouping) simply
reflects the following two facts:

1) It is difficult to model all types of stochastic patterns in generic vision.

Real world images consist of multiple layers of stochastic processes, such as texture,
texton, stochastic point, line, curve, graph, region, and object processes, which generate
images through spatial organizations. Thus an appropriate formulation should be image
decomposition or parsing, which decomposes an image into its natural constituents as
various stochastic processes.

This subsumes image segmentation as region process, and naturally integrates object
recognition and perceptual organization. The latter deal with point, line, curve, and
object processes. Implicit in this formulation is the notion of generative models for image
interpretation in contrast to classification and discrimination methods. A segmentation
algorithm must be general enough to handle many families of image models in a
principled way.

2) Image segmentation is a computational process and should NOT be treated as a task.

Real images are intrinsically ambiguous, and our perception changes dynamically, even
in a very short time duration, depending on our attention. Generally speaking, the more
one looks at an image, the more one sees. It seems narrow-minded to think that a
segmentation algorithm just outputs one final result. Instead a segmentation algorithm
should realize the intrinsic ambiguities characterized, say, in a Bayesian posterior
probability, and outputs multiple distinct solutions dynamically and endlessly so that
these solutions, as samples, “best preserve” the posterior density. Then we need a
mathematical principle for pruning and selecting the outputs.

4.2. Segmentation techniques

Image segmentation is an ill-posed problem [6]. For a given image, different partitions
can be obtained depending on the homogeneity criteria. So, the segmentation approach
has to be selected depending on the final specific application where it is to be used. In the
framework of segmentation-based video coding the goal is the quality of the final image
representation as well as its coding cost. This means that, to obtain a suitable partition for
coding purposes, the special characteristics of the coding techniques that are used should
be taken into account. Thus the segmentation process not only has to describe the
information in the scene, but also has to lead to a low cost representation.

Three major steps can be outlined in a segmentation process [7]: simplification, feature
extraction and decision. The simplification step aims at reducing the complexity of the
process by removing irrelevant information. The feature extraction step involves the

 16

choice of the type of homogeneity to be considered (this is, the choice of the feature
space) and the process of estimation of the feature (or features) that will be analyzed
looking for homogeneity. This analysis of the data in the feature space is performed later
in the decision step, where the position of the boundaries in the decision space is
established. These boundaries separate data areas that contain elements sharing the same
characteristics in the feature space.

Then, a classification is done according to the decision viewpoint, with two main
categories: transition based and homogeneity based segmentation techniques.
Transition based techniques intend to estimate the position of discontinuities (that are
evaluated in the feature space) in the decision space. To do this, a pre-processing step that
defines transition zones is followed by a process of reduction of uncertainty in these
zones that provides the final region borders.

The second category is formed by techniques that work by looking, in the decision step,
for regions where elements are homogeneous with respect to the feature space. In the
literature one can find two main types of homogeneity criteria: deterministic and
probabilistic. In both cases, a model is given for each region. In deterministic models, the
decision on to which region belongs each pixel is taken by computing the distance
between the actual pixel value and the different model estimations (one per region) for
this pixel. In probabilistic schemes, regions are modeled by a random field and also a
posteriori likelihood of the data to be a sample of this random field is computed.

In spatial segmentation, features are estimated from spatial information (color or gray
level). Features such as size, contrast, spectral content or dynamic characterize visually
relevant objects. For each feature, a different homogeneity criterion can be applied.

Coding systems that only utilize spatial segmentation face the problem of exploiting
temporal redundancy. Although some different ways to solve this problem exist [8, 9, 10,
11, 12, 13], perhaps the most useful method uses a time recursive segmentation of the
sequence [14, 15, 16]. In this case the sequence is regarded as a 3D signal and the
segmentation is carried out over a window of several frames that is shifted along the
sequence as the processing of the sequence advances along the time axis. In this
approach, the partitions of former frames are used to initialize the segmentation
procedure of the new frames.

There are also segmentation techniques that directly combine both spatial and temporal
homogeneity in the same partition[17]. This spatio-temporal approach seems to provide
the most promising results. As there is a strong interaction between the estimation of the
moving objects boundaries and their motions, it makes sense to use spatial and motion
information in the segmentation step. This is the case of the joint estimation of motion
and segmentation. The segmentation is expressed as a relaxation problem based on a
Markov Random Field (MRF) modeling and a Bayesian criterion [18]. In this context, the
spatio temporal segmentation and the motion are simultaneously estimated [19].

 17

Only spatial and spatio-temporal homogeneity based segmentation methods are better
suited for coding purposes because of its superior accuracy on the position of boundaries.
In general, spatial and spatio-temporal segmentation techniques use homogeneity-based
methods in the decision step. This is because the transition-based approach presents
problems when used in spatial segmentation (lack of robustness, lack of accuracy at the
transitions). However, some spatial transition-based segmentation techniques have been
presented [20, 21], these methods are mostly intended for video analysis and indexing
and are not well suited for coding purposes.

Even though spatio-temporal segmentation provides better result in video coding
applications, purely spatial segmentation techniques are important by several reasons
[22]. Any coding technique needs an intra-frame coding mode, and intra-frame
segmentations can utilize only spatial information. Moreover, spatial segmentation is
useful even in systems that use motion-based segmentation because there are always
regions in which the motion approach will fail. This is the case, for instance of new
objects appearing in the scene.

4.3. BPT method

Shortly, we can say Binary Partition Trees method is a region-oriented image
representation[24]. BPT concentrates on a compact and structured representation of a set
of meaningful regions that can be extracted from an image. It offers a multi-scale
representation of the image and define a translation invariant 2-connectivity rule among
regions. This representation can be used for a large number of processing goals such as
filtering, segmentation, information retrieval and visual browsing. Furthermore, the
processing of the tree representation leads to very efficient algorithms. Finally, for some
applications, it may be interesting to compute the Binary Partition Tree once and to store
it for subsequent use for various applications.

In a region-based image representation, objects in the scene are obtained by the union of
regions in an initial partition. Since an arbitrary partition may contain about a hundred of
regions, the number of different possible unions among these regions can be large.
Actually, a region-based representation implies a compromise between accuracy (related
to the number of regions in the partition) and processing efficiency (related to the number
of unions of regions to be analyzed).

From this set of regions at various resolution levels, an application dependent algorithm
can select the most convenient one(s) for its concrete application.

There exist different approaches to hierarchical region-based image representation,
usually related to tree data structures. In these structures, tree nodes are associated with
regions in the image whereas tree links represent the inclusion relation.

Especially in the Binary Partition Tree (BPT) [23] reflects the similarity between
neighboring regions. It proposes a hierarchy of regions created by a merging algorithm
that can make use of any similarity measure. Starting from a given partition (that can be
as fine as assuming that each pixel or each flat zone is a region), the region merging

 18

algorithm proceeds iteratively by 1) computing a similarity measure (merging criterion)
for all pair of neighbor regions, 2) selecting the most similar pair of regions and merging
them into a new region, and 3) updating the neighborhood and the similarity measures.
The algorithm iterates steps 2) and 3) until all regions are merged into a single region.

The BPT stores the whole merging sequence from an initial partition to the one-single
region representation. The leaves in the tree are the regions in the initial partition.
Merging is represented by creating a parent node (the new region resulting from the
merging) and linking it to its two children nodes (the pair of regions that are merged). An
example of BPT is shown in Fig. 4.1 [24]. As with the other tree representations, the
nodes of the tree represent regions and the links of the inclusion relationship.

Fig. 4.1: Example of BPT and illustration of its ability to represent objects in the scene: (a)
Original image, (b) Initial partition where each region has been filled with its mean color, (c)

Binary Partition Tree and examples of nodes representing objects in the scene

 19

The BPT represents a set of regions at different scales of resolution and its nodes provide
good estimates of the objects in the scene. Classical object detection algorithms scan the
image at numerous positions and scales looking for the possible representations of the
object in the scene. Using the BPT representation, the image has to be analyzed only at
the positions and scales that are proposed by the BPT nodes. Therefore, the BPT can be
considered as a means of reducing the search space in object detection tasks.

 20

5. Segmentation based coding

5.1. Introduction

Coding of arbitrarily shaped image segments is an important tool to achieve object-based
coding, which is becoming more and more popular in todays multimedia applications.
Segmentation-based coding methods (SBCS) [25, 26, 27, 28, 29, 30] rely on an adaptive
partition of the image, that can be described as a set of textured regions with arbitrarily
shaped contours. In this case unlike block based methods, the size and shape of each
partition is not fixed and dependes on the specific image and its content. Texture and
contour information can be adaptively coded using an appropriate representation model
for each image segment. So, region based image coding methods divide an image into
homogeneous regions with coding of contour and texture information done separately
[62, 63]. These techniques have the advantage of adaptive allocation of bit budget to code
the texture according to the activity level of each segment.

The goal is efficient sequence coding, i.e., maximal quality of the decoded images for a
given coding cost (or the dual problem, minimal coding cost for a given image quality).
The segmentation has to produce a set of regions (partitions) suitable for coding
purposes. This can be done by ensuring that the regions are homogeneous in some sense
(e.g. gray level,color or motion). Due to this homogeneity, the information of each region
can be separately coded in an efficient manner, while there is not that much change inside
each partition.

A common problem found in segmentation-based coding systems is the high cost of
coding the contour information in comparison to texture coding. Accurate contour
representation is very important for the quality of the decoded images because the errors
that appear in the decoded images have an important visual effect. This leads to the use of
lossless or near-lossless coding techniques. However, a partition of the image with many
regions will produce highly homogeneous regions, with an easily codable texture which
will decrease the amount of data that should be sent for texture coding; but the cost of
contours will be very high. On the contrary, a partition with few regions will lower the
cost of contours but the regions can be rather inhomogeneous and a lot more coefficients
are needed to encode each partition in an efficient and acceptable way. So there is a
trade-off between these two options.

In this thesis different combinations of number of regions and number of coefficients
related to each region are practiced to make the best possible ratio between these two, in
order to find the optimized possible quality with a specified cost. This will be done by
choosing a fix PSNR and changing the number of regions along with cost of encoding of
each region to gain different bitrates. As well the dual problem can be implemented and
while having more or less the same bitrate, changing the quality and comparing the
achieved results to find the best trade off

.

 21

5.2. Coding of contour and texture

Once the segmentation step has been performed, the resulting partition (shape and
localization of the regions) and the texture (gray level or color information) of the
resulting regions have to be encoded and transmitted[56]. Usually, the process is to
encode first the contour and later the texture, in a closed loop approach. This way, errors
due to lossy contour encoding are avoided.

Two main differences can be noticed with respect to block-based coding systems. The
first one is that in block-based systems there is no need of the partition coding step
because it is fixed a priori (rectangular blocks) while in segmentation based method the
shape of contours is arbitrary and depends on the content of the image. The second
difference is that the arbitrarily-shaped regions that appear in SBCS make possible a
better adaption to the local image characteristics but also increase the complexity of the
texture coding methods with respect to the block-based techniques.

The regions resulting after a segmentation process are statistically quasi-stationary and
should therefore enable higher data compression ratios [31]. However, traditional
blockbased texture coding techniques can not exploit efficiently this quasi-stationarity
because they perform poorly on border blocks. In this case, the overhead imposed by the
need to code the contour information, can result in a performance loss.

There are many texture and contour coding techniques that can be used in this kind of
systems. Some of them are an evolution of existing block-based techniques, with
modifications to deal with blocks located at region borders, while others are designed
specially for SBCS.

We can cite for example, Shape-Adaptive DCT [32, 33], Shape-Adaptive Wavelet [34]
and padding methods [35] as examples of the first category, while the generalized
orthogonal transform method in [36] is on the second category.

Due to non-stationarity behavior of images, some texture coding techniques may be
appropriate in some regions, whereas they may be particularly inefficient in some others.
But still all the above commented techniques are adequate because they can be used in a
scalable coding and the trade-off between coding cost and quality can be chosen for rate-
control purposes.

Partition coding is necessary on SBCS to inform the receiver of the shape (contour) and
spatial/temporal localization of the regions. Contour coding can be lossless or lossy.
Because the human visual system is very sensitive to errors in the localization of the
contours of the regions, lossless or near-lossless approaches are popular. However, these
methods are expensive fron the bitrate point of view.

In the literature it is possible to find a wide range of contour coding techniques. Among
the lossless techniques, can be pointed out Chain Code (CC) [37, 68], Morphological
Skeleton [38, 39], transition points [40] and Quadtree decomposition (a particular case of

 22

Skeleton [41]). Multigrid Chain Code (MGCC) [42, 43] is an example of a near-lossless
technique (it is an extension of Chain Code). Finally, some examples of lossless
techniques are Fourier descriptors [44, 45], and polygonal [46] and Spline [47]
approximations. Note that partition coding has to deal not only with the contour of the
regions, but also with the temporal evolution along the video sequence. This is important
because it will be the basis for an efficient inter-frame mode, thus helping to effectively
remove the temporal partition redundancy.

In this thesis for contour coding method Chain Code has been selected as a lossless
method to preserve the contours completely and making it possible to compare the results
and see the maximum quality that can be achieved. As well for texture coding different
orders of the Orthobasis method has been used. So, considering the possibility of
choosing different number of regions and also different orders of texture coding, it would
be possible to find the best mixture for the specific application of depth coding.

5.2.1. Chain code contour coding

Chain Code techniques [37, 48] allow lossless coding of image partitions. Regions are
represented by their boundaries and the coding process consists on tracking and encoding
the boundaries. The process used to encode a partition[56] is:

• Define an appropriate boundary representation. This usually leads to constructing a
’contour’ image.

• Using the fact that two consecutive boundary points in a discrete grid are neighbors,
encode the movements from one contour point to another, starting from a given initial
point (or various), until the complete contour is tracked.

The contour of a given partition can be represented using a hexagonal contour grid [49].
In this case, a one to one relationship between partitions and their boundary
representation can be achieved. In this type of representation, each pair of neighbor pixels
in the partition is separated by a contour grid site. This contour grid site is labeled as
active if the associated pair of pixels have different labels, otherwise it is labeled as
inactive.

This concept is illustrated in the first example of Fig. 5.1, where circular and line
segment elements represent sites from the partition and contour grids, respectively.

 23

Fig. 5.1: Relationship between partition and contour grid sites[56]

Encoding of the contours is done by specifying the set of movements necessary to track
the complete set of active contour grid sites. Shape and position information is jointly
coded by introducing the location information in the chain code itself. The neighborhood
system is 6-connected and, therefore, there are 6 basic movements. Nevertheless, as a
derivative chain code is used [37], the amount of possible movements reduces to 3: turn
right, turn left and straight ahead (r,l,s) (See Fig. 5.2).

Fig. 5.2: Movements in a hexagonal grid for DCC[56]

The intersections of contours are encoded by using triple points. A triple point is a site in
the contour grid that has at least three active neighbor contour sites (See Fig. 5.3) where
at least three contours will meet each other in one point. Triple points can be used to
locate the initial point of a new contour segment. Triple points are encoded by
introducing a new symbol, M, in the chain itself. Only a subset of the triple points are
actually necessary to describe the whole set of contours. These triple points are called
active triple points and only active triple points are marked in the chain by the symbol M
while the rest of the triple points will be recognized using only active triple points.

 24

Fig. 5.3: Example of triple points. The ellipses mark the triple points in the example partition.
The right figure shows a detail of a triple point[56]

Regions that have no contact with other regions do not produce any triple point and have
to be directly addressed by the coordinates of their initial points.

In the inter-frame case, differential coding of the contours is used. That is, as the decoder
already knows the contours that correspond to the compensated partition, only the new
contours have to be sent. The contour segments are encoded by sending the initial point
(always located on already known contours) and the set of movements describing the
segment. Note that it is not necessary to send the ending point. The decoder can detect an
end of segment when an already known contour is reached by the new contour.

5.2.2. Orthobasis texture coding

The boundaries are approximated by contour coding methods , and the remaining
information to be coded consists of the inside of the regions, that is, their texture.
Different texture coding methods can be used in this stage, provided they are region
oriented. The simplest texture coding method consists of the coding of the mean value for
every region, thus leading to a very cheap texture coding cost. Several more complex
methods for the efficient coding of texture information have been proposed so far. The
polynomial method represents an image segment using polynomial functions of degree
0–3 [64], [65]. Gilge et al. [36] proposed a more accurate method in which a generalized
orthogonal transformation can be constructed with respect to the shape of the image
segment at the cost of calculating the orthogonalizing basis images. Generalized
orthogonal transforms [31] rely on an approximation of the texture within each region by
an orthogonal polynomial function. Only the coefficients of this function are sent to the
receiver. Then, low complexity shape-adaptive DCT algorithms have been introduced to
efficiently transform the image blocks that contain object boundaries [65, 66]. These

 25

algorithms first divide an image into blocks and then code the boundary blocks using the
shape-adaptive DCT. Although boundary blocks are encoded effectively, the problem of
blocking effects inside the image segments remains unsolved. Another approach to
encode the image segments is the region-based wavelet transform [67, 34], which was
implemented by Barnard [67] using a dyadic wavelet transform. The advantages of the
wavelet-based scheme are its low computational complexity, ability to code the details
inside the segment, and absence of blocking effects in the reconstructed images.

In this thesis Orthobasis texture coding is used. This method operates segment by
segment and needs the shape information which by an approximative contour description
can be reconstructed at the decoder site. Orthogonalization schemes can be used to obtain
a set of basis functions which is orthogonal with respect to the shape of the region,
resulting in a generalized region-oriented transform coder. In this case the transmission of
the used basis functional set is not necessary, because if the receiver has the same basic
knowledge, e.g. uses the same starting polynomials, the orthogonal basis functional set
can be re-generated at the receiver. The coded and transmitted segment shape contains
the information how to derive the basis functions. Finally, the produced orthogonal basis
functions are used for the segment content approximation coefficients and they determine
the amount of each basis function needed for the content reconstruction, in other words,
the segment is recovered by the weighted summation of the basis functional set with the
approximation coefficients as the weighting factors. The algorithm then proceeds to the
next segment. For further information the reader is refered to section 5 of reference [57].

 26

6. Entropy Coding

6.1. Introduction

In information theory, entropy is a measure of the uncertainty associated with a random
variable. The term by itself in this context usually refers to the Shannon entropy [50],
which quantifies, in the sense of an expected value, the information contained in a
message, usually in units such as bits. Equivalently, the Shannon entropy is a measure of
the average information content that one is missing when one does not know the value of
the random variable. Shannon entropy equation is shown in Eq. 6.1:

Eq. 6.1: Shanon entropy equation, p is the probability of a given symbol

Shannon's entropy represents an absolute limit on the best possible lossless compression
of any communication under certain constraints: treating messages to be encoded as a
sequence of independent and identically-distributed random variables; Shannon's source
coding theorem shows that, in the limit, the average length of the shortest possible
representation to encode the messages in a given alphabet is their entropy divided by the
logarithm of the number of symbols in the target alphabet.

The process of entropy coding (EC) can be split in two parts: modeling and coding.
Modeling assigns probabilities to the symbols, and coding produces a bit sequence from
these probabilities. As established in Shannon's source coding theorem, there is a
relationship between the symbol probability and its corresponding bit sequence.
In order to achieve a good compression rate, an exact probability estimation is needed.
Since the model is responsible for the probability of each symbol, modeling is one of the
most important tasks in data compression.

Entropy coding can be done with a coding scheme, which uses a discrete number of bits
for each symbol, for example Huffman coding, or with a coding scheme, which uses a
discrete number of bits for several symbols. In the last case we get arithmetic coding if
the number of symbols is equal to the total number of symbols to encode.

The notion of compression systems captures the idea that data may be transformed into
something which is encoded, then transmitted to a destination, and finally transformed
back into the original data. Any data compression approach, whether employing
arithmetic coding, Huffman codes, or any other coding technique, has a model which
makes some assumptions about the data and the events encoded. And finally the goal is to
compress data, which might either be stored on a computer-readable media or be sent

 27

over some form of stream. This data could represent anything, reaching from simple text
up to graphics, binary executable programs, etc.

6.2. Different methods

There are few main techniques for achieving entropy coding:

• Huffman Coding

The basic idea of Huffman coding, which is one of the simplest variable length
coding schemes, is to encode symbols that have higher probability to appear with
fewer bits of output. Since each symbol can be represented by different amount of
bits, it is important that no symbol code is a prefix of other symbol code. A code with
this property is else called the Prefix Code.

Static Huffman coding uses the symbols probabilities and then it makes the codes,
which are of variable length. Note that one code can only have one symbol. The tree
for static Huffman Coding is proved [51] to provide with an optimal Prefix Code for
any given input stream. The main disadvantage of Static Huffman Coding is a need to
care statistics information together with encoded stream of symbols. Adaptive
Huffman Coding allows to avoid transmitting statistics data. Statistics information is
gathered in the same pass and Huffman tree is updated accordingly. This way encoder
and decoder both build Huffman tree while reading stream of data. Adaptive scheme
is intended to avoid the input stream preprocessing during the encoding. Adaptive
scheme gain us with two main benefits:

- Decompression can be started before compression is finished.
- No need to pass statistics data together with compressed data stream.

 The main disadvantages are:

- Complexity: Statistics data must be calculated and interpreted on-the-fly.
- Compression ratio is generally lower then in static coding. Although for short

input sequences benefit of not sending statistics data can be more significant.

• Run-length Coding (RLC)

RLC is a very simple form of data compression in which runs of data are stored as a
single data value and count, rather than as the original run. This is most useful on data
that contains many such runs: for example, relatively simple graphic images such as
icons, line drawings, and animations. It is not recommended for use with files that
don't have many runs as it could potentially double the file size. (very useful for
binary data containing long runs of ones or zeros

 28

• Arithmetic Coding

This type of coding is a widely used method and relatively new variable length
coding scheme that can combine the best features of Huffman and run-length coding,
and also adapt to data with non-stationary statistics. Arithmetic coding completely
bypasses the idea of replacing an input symbol with a specific code. Instead, it takes a
stream of input symbols and replaces it with a single floating point output number.
The only drawback is its computational complexity although compression tends to be
better than what Huffman can achieve.

Arithmetic coding encodes data (the data string) by creating a code string which
represents a fractional value on the number line between 0 and 1. This single number
can be uniquely decoded to create the exact stream of symbols. The coding algorithm
is symbolwise recursive; i.e., it operates upon and encodes (decodes) one data symbol
per iteration or recursion. So, the encoding and decoding algorithms perform
arithmetic operations on the code string. On each recursion, the algorithm
successively partitions an interval.

In comparison to the well-known Huffman Coding algorithm, Arithmetic Coding
overcomes the constraint that the symbol to be encoded has to be coded by a whole
number of bits. This leads to higher efficiency and a better compression ratio in
general. Indeed Arithmetic Coding can be proven to almost reach the best
compression ratio possible, which is bounded by the entropy of the data being
encoded. Though during encoding the algorithm generates one code for the whole
input stream, this is done in a fully sequential manner, symbol after symbol.

• Lempel-Ziv Compression algorithms

Lempel-Ziv Compression algorithms are easily divided in two main groups: LZ77
and LZ78. The bold difference between these two groups is that LZ77 do not need an
explicit dictionary where LZ78 do need it.

- LZ77
The main idea of LZ77 is to find the longest match to the current part of the input
stream in the already passed part of the input stream.

- LZ78
The main idea of LZ78 is to enhance dictionary with appearance of each unencoded
symbol. Each time, if symbol found that can not be encoded, the dictionary is
enhanced with new entity that is the last found entity plus one symbol.

In this thesis for entropy coding, an arithmetic coding will be used to decrease the bitrate
to the lowest possible level.

 29

7. Virtual view rendering

7.1. Introduction

The generation of virtual environments for telepresence systems, interactive viewing, and
immersion in remote 3D-scenarios is an expanding and very promising research field.
The challenge of this technology is to design systems capable of synthesizing views from
any desired perspective using a set of real-scene perspectives. In such a system, two main
parts can be distinguished: multi-view image-analysis and viewpoint synthesis.

The main advantage of MVD representations in contrast to MVV is that due to the
availability of depth information, 3D rendering based applications like FVV can be
realized. Multi-view video + depth data together (MVD) with camera geometry provide
the possibility to synthesize or render arbitrary intermediate views from a 3D
representation of the scene. Virtual view rendering uses pairs of neighboring original
camera views to render arbitrary virtual views on a specified camera path between them.
The relation between points in 3D scene space and the values in a depth image is defined
by the projection matrix, allowing for projecting and unprojecting depth data. First the
depth images are unprojected, resulting in a colored 3D particle cloud for each original
camera. Next the projection matrix of a virtual camera is calculated from the two original
cameras projection matrices by spherical linear interpolation (SLERP) and linear
interpolation (LERP). These methods originate from computer graphics in the context of
quaternion interpolation. Using the projection matrix of virtual cameras we have the
ability to render the virtual view weighting according to the virtual camera’s position
relative to the original cameras.

The final goal is to render a sequence of virtual views in between each two original
camera, and using this method we can implement the possibility of having MVD. (Fig.
7.1)

Fig. 7.1: The positioning of 8 cameras for Breakdancers sequence and respective reference

camera

 30

7.2. Virtual camera

For all the cameras aligned in this method, we are using the same coordinate system
which is referred as a 3D world. In this general coordinate system all the positions of
original and virtual cameras will be calculated based on a reference and afterwards all the
calculation will be according to this global positioning. For example in the Breakdancers
this reference (origin) point is the location of camera 4.

Each camera has three matrices which by, it is possible to calculate the projection matrix
respected to that camera:

 Rotation matrix: also called a coordinate transformation matrix is a 3*3 matrix and

by using a conversion, it will be converted to three Euler Angles regarding specific
direction of each camera in the 3D world (which direction the camera is aiming for).
Euler Angles consist of the Pitch, Roll and Yaw angles (or equivalently, the Elevation,
Bank, and Heading). The formula is as below and it can be used to convert the angles
to rotation matrix and vice versa:

Using this formula we can find the three Euler angles of each real camera, and then
the same Euler angles for each virtual camera should be calculated. To do this algebra
while considering the distance distribution of virtual cameras in between each two
original camera and using a simple linear and algebraic division, we can find the
respective angles for the considered virtual camera. In this step using the reverse
usage of the above formula we can create the rotation matrix of each virtual camera.

 Translation Vector: a 3 items vector which will represent the exact position of the

camera in 3D world in the global coordinate system and in respect to the reference of
this system (ex. camera 4 in the Breakdancers sequence). Which consist of X,Y and Z
for each camera. So considering the distance from each one of original cameras and
using a simple linear distance distribution in between those two, we can calculate the
translation vector of each virtual camera.

 Calibration matrix: a unique 3*3 matrix which includes the intrinsic parameters of
each camera which will be calculated based on the physical structure of each camera
and is different from one camera to another one. The parameters which are used to
create this matrix are as below :

- Position of image center in the image (It is typically not at (width/2, height/2) of

image)

 31

- Focal length
- Different scaling factors for row pixels and column pixels
- Skew factor
- Lens distortion (pin-cushion effect)

This information is available based on each original camera’s intrinsic characteristics
(provided by producer company) and can not be calculated for the virtual cameras. As
a result and knowing that this matrix can not be created or calculated for the virtual
cameras, in this thesis, the calibration matrix related to closest original camera will be
used for each one of the virtual cameras in order to have the best approximation.

Using these three steps, we have the rotation matrix, translation vector and calibration
matrix of each virtual camera and using the below equation, we can calculate the
projection matrix of that virtual camera:

 Projection matrix P = K * [Rot | Trans]

Where K = calibration matrix, Rot = Rotation matrix and Trans = Translation vector.
This matrix will be used in the next section to create the virtual views.

7.3. Virtual view

The goal of this step is to create the virtual color view related to each virtual camera [55].
Here, we use for each pixel of the color image related to each original camera, the
appropriate “depth” value in the same location at the depth image. At this point, we will
use the projection matrix of each camera to project this point to the 3D world. Note that
this 3D point is with respect to a reference camera which specifies a global coordinate
system as mentioned in section 7.2. For the Breakdancers sequence we have the camera 4
as the reference.

Using this method, we can create 2 virtual views for each virtual camera. This will be
done using the information of left and right original cameras separately. Joining these two
images and trying to filter the blurred areas and filling the gaps, cracks and occlusions,
we can achieve a good presentation of the middle virtual view. In Fig. 7.2 we can see the
depth maps, and color view of two consecutive cameras (camera 3 & 4) and the rendered
virtual view in the middle of them.

 32

Fig. 7.2: Original view and depth image for (a) camera 3 and (b) camera 4

for ballet sequence, (c) Virtual view rendered in between them

7.4. PSNR calculation

Considering that depth images are not perceived directly and they will be used to create
these rendered images which their quality is of importance to us, ordinary comparison of
quality of depth images and calculating the traditional PSNR is not the best possible way
to evaluate the exactness of our depth map coding method. Fig. 7.3 is calculated based on

 (a) (b)

 (c)

 33

different quantization steps of H.264. For this specific figure 7 quantization steps of
46,44,40,36,32,28 and 24 are used which by increasing this factor, we will decrease the
quality and bitrate. As it can be been below, the quality of decoded images for even
quantization step equal to 44 is more than 34 db which is a completely satisfactory result.

Fig. 7.3: Traditional PSNR for depth images

In this step and to calculate the PSNR, the rendering technique described in the previous
section is first applied to uncompressed input data, resulting in a reference output image.
In a second try the same virtual view is rendered by using compressed input data. The
impact of coding artifacts on the quality of rendered views can now be analyzed by
comparing the reference picture with the one rendered with compressed input data in
terms of objective and subjective quality [58].

Using this method and considering that while going further from each original camera,
the effect of depth quality will be more visible (considering that in farther points, error
regarding depth maps will affect the rendered view more), we expect the PSNR to
decrease while we approach to the middle position of each two original camera and to be
maximum in the closest position to each original camera. (Fig. 7.4)

As well in the exact position of each original camera, the PSNR goes to infinite. This is
because we are projecting a color image in a specific point using two different depth
maps (original depth and compressed one) into the exact same place. So the difference of
depth images won’t be sensed while we are using the same position of rendering the
virtual image as the one that we have taken the original view itself. Actually in the exact
position of original cameras, if we use two completely different depth maps, we get the
same infinite PSNR because we use the same original view and each pixel of that will be
projected into the exact same place of original view.

 34

Fig. 7.4: PSNR calculation method for depth maps

Using this method, we can achieve a good evaluation of depth compression and
considering that in real world, depth maps are used to create the virtual views (as we
implemented in this quality comparison technique), we can be sure that this is the correct
way to evaluate our segmentation based depth coding approach.

 35

8. Proposed segmentation based coding method

8.1. Abstract

As explained in section 1, using chain code contour coding method along with Orthobasis
partition coding is very costly and generates a high rate of bits which won’t make it
possible to compete with H.264 at all. Also having in mind that most of this bitrate is
used by contour coding part of data, we thought of new possible approaches to make it
possible to reduce this bitrate to a reasonable number that has the potential to compete
our reference.

It is clear that the decoder is provided with the decoded view image and having only the
depth images alone doesn’t have any meaning. In other words, a receiver without having
the decoded color images is incomplete and doesn’t provide any perceivable information
to the observer. This said along with thinking about a possible adjacent method of
contour coding and considering the similarities between segmentation of depth image and
color images, we thought about the possibility of exploiting this resemblance to do some
part of the segmentation based on decoded color images and complete it with some
information regarding original depth image segmentation. Using this new technique will
produce some extra information which will be sent to the decoder along with the rest of
the data for partition coding. So the quality of decoded depth images will increase
considerably along with a reasonable raise in bitrate. The bitrate related to this extra
information is not comparable to what we get using contour coding. Here we have a
much lower bitrate which makes it possible to overcome H.264 with the same quality of
rendered virtual images.

Using this combination method, the results outperform the outcome while only using
view segmentation (based on the quality point of view). As well, while they are using
view segmentation for some of the process, their quality is not as high as the results
achieved by using only original depth segmentation (by exploiting contour coding which
takes a high bitrate). The experimental results in section 9.5 will show a good view and
understanding about this unique method of segmentation based coding of depth
information.

In this thesis, for partition coding Orthobasis method will be used and considering that it
is the same for all the experimental results, we don’t focus on it. (This is one of the
important aspects of future research that can be done). The most important part of this
research deals with the way that segmentation will be made and how it is possible to
decrease the bitrate while having a good final quality; this said, we try to tackle this
problem based on the contour coding part rather than partition coding and as a result
different approaches in this case are implemented and compared.

 36

8.2. H.264 coding

As any other novel method, our new approach should be compared to the best already
implemented and accessible algorithm that does the same process. In the case of video
coding, the pioneer is H.264/AVC which our results will be compared to it as the
reference. If we achieve a better bitrate while having the same quality, or the dual
situation (gaining a better quality while having the same bitrate), we can consider our
new method a success.

As reviewed in section 3.1, H.264 [52, 54] is the best video coding standard of the ITU-T
Video Coding Experts Group and the ISO/IEC Moving Picture Experts Group and
represents a major step forward in the development of video coding standards. As already
mentioned in section 3.1, it uses state-of-the-art coding tools and provides enhanced
coding efficiency for a wide range of applications, including video telephony, video
conferencing, TV, storage (DVD and/or hard disk based, especially high-definition
DVD), streaming video, digital video authoring, digital cinema, and many others. In Fig.
8.1 we can see the performance of this algorithm compared to other already implemented
methods. As it can be obviously seen for the same bitrate the quality of decoded images,
using H.264, is higher than the rest.

Fig. 8.1: Comparison between different coding methods already implemented [53]

 37

The main goals of the H.264 standardization effort have been enhanced compression
performance and provision of a “network-friendly” video representation addressing
“conversational” (video telephony) and “nonconversational” (storage, broadcast, or
streaming) applications. Also, H.264 has achieved a significant improvement in rate-
distortion efficiency relative to existing standards.

At a basic overview level, the coding structure of this standard is similar to that of all
prior major digital video standards. The architecture and the core building blocks of the
encoder show that it is also based on motion-compensated DCT-like transform coding.
Each picture is compressed by partitioning it as one or more slices; each slice consists of
macroblocks, which are blocks of 16x16 luma samples with corresponding chroma
samples. However, each macroblock is also divided into sub-macroblock partitions for
motion-compensated prediction. The prediction partitions can have seven different sizes
– 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4. The spatial transform for the residual data is
then either 8x8 or 4x4. In past major standards, the transform block size has always been
8x8, so the 4x4 block size provides an enhanced specificity in locating residual difference
signals. The block size used for the spatial transform is always either the same or smaller
than the block size used for prediction. The hierarchy of a video sequence, from sequence
to samples is given by Fig. 8.2.

Video Sequence

Picture 1 Picture 2 ... Last Picture

Slice 1 Slice 2 ... Last Slice

Macro block 1 Macro block 2 ... Last Macro block

Macro block
partition 1

Macro block
partition 2

... Last Macro block
partitions

Macro block
partition 1

Macro block
partition 2

... Last Mcroblock
partition

Block 1 Block 2 ... Last Block

Sample 1 Sample 2 ... Last Sample

Fig 8.2.: The hierarchy of a video sequence, from sequence to samples

 38

Considering that H.264 is the reference and it will be compared with our method, it is
necessary to explain its coding tools more in detail. This known, we can mention that
slices in a picture are compressed by using the following coding tools:

 "Intra" spatial (block based) prediction

- Full-macroblock luma or chroma prediction – 4 modes (directions) for prediction
- 8x8 (FRExt-only) or 4x4 luma prediction – 9 modes (directions) for prediction

 "Inter" temporal prediction – block based motion estimation and compensation

- Multiple reference pictures
- Reference B pictures
- Arbitrary referencing order
- Variable block sizes for motion compensation

 Seven block sizes: 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4

- 1/4-sample luma interpolation (1/4 or 1/8th-sample chroma interpolation)
- Weighted prediction
- Frame or Field based motion estimation for interlaced scanned video

 Interlaced coding features

- Frame-field adaptation

 Picture Adaptive Frame Field (PicAFF)

 MacroBlock Adaptive Frame Field (MBAFF)
- Field scan

 Lossless representation capability

- Intra PCM raw sample-value macroblocks
- Entropy-coded transform-bypass lossless macroblocks (FRExt-only)
- 8x8 (FRExt-only) or 4x4 integer inverse transform (conceptually similar to the

well-known DCT)
- Residual color transform for efficient RGB coding without conversion loss or bit

expansion (FRExt-only)

 Scalar quantization

 Encoder-specified perceptually weighted quantization scaling matrices (FRExt-only)

 Logarithmic control of quantization step size as a function of quantization control
parameter

 Deblocking filter (within the motion compensation loop)

 Coefficient scanning, Zig-Zag

 39

 Lossless Entropy coding
- Universal Variable Length Coding (UVLC) using Exp-Golomb codes
- Context Adaptive VLC (CAVLC)
- Context-based Adaptive Binary Arithmetic Coding (CABAC)

 Error Resilience Tools

- Flexible Macro block Ordering (FMO)
- Arbitrary Slice Order (ASO)
- Redundant Slices

 SP and SI synchronization pictures for streaming and other uses

For further information, the reader is referred to [52] to have an idea about different
methods used in H.264 to increase the performance.

H.264 is completely based on block matching methods and doesn’t apply segmentation
encoding approaches at all; While in our new proposed method, the base of encoding is
due to use of segmentation and uses the information of contours and partitions to recreate
the final decoded image. This shows that our approach for depth coding is fundamentally
different from that of our reference and is not just a modification of it.

8.3. View segmentation

Using segmentation and possible object detection methods, we can have a general
understanding of what is going on in the image. While just using view segmentation, we
can segment the image based on the different color levels of pixels and texture
construction of the view. As shown in the Fig. 8.3 (created using BPT method [24]) we
can see that view segmentation is able to partition the image and show its content to an
acceptable extent.

(a)

(b)

Fig. 8.3: View segmentation gives a good understanding of the image
(a) Original image, (b) View segmentation

 40

Considering that view and depth images are taken from the same scene and the objects,
foreground and background are the same for both of them, we thought of the possibility
of exploiting the view image segmentation for the decoding part of our segmentation
based coding of depth information. Using this method, the whole created contours will
not be the same as those of depth segmentation, but those contours that overlap between
these two, are exactly the same. As well in this approach we can have a good partitioning
of objects of the image.

Using view segmentation, we only need to send the information related to that of
partition coding of the depth image, while the contours will be re created in decoder using
the decoded color image. So while using the segmentation of decoded view in the
receiver, we will be able to decrease the amount of being transmitted data to a
considerable level. Having this in mind and considering that contour coding takes most
of the transmitted data, this approach will be a very successful step from bitrate point of
view.

While decreasing the bitrate and by achieving a good result, we are supposed to pay a
cost. Here, quality of the final rendered virtual views will decrease comparing to the
quality of virtual views rendered by the decoded depth images using lossless contour
coding algorithms; and it is logical while we are using color views instead of the original
depth maps to segment the image. A complete set of experimental results of this approach
are available in section 9.5 which will show that this approach is applicable but has some
restrictions that will result in low quality of final rendered virtual images. The exact
effects on bitrate and PSNR will be pursued in the following sections.

8.4. Comparison with depth segmentation

As mentioned in the previous section, we considered the possibility of segmenting the
decoded view images instead of sending the encoded data regarding the contours of the
depth images which is very costly. Using this method, obviously the quality of final
rendered virtual images will decrease, while we are not using the exact contours of the
depth images in the receiver part in order to recreate the depth images.

There are different reasons that the segmentation applied on the decoded view images is
not as exact as the segmentation of original depth images. Some of them deal with lack of
segmentation which will not segment some parts of the image where they are supposed to
be partitioned and some others will over segment the image. The latter will result in
increasing the bitrate because regarding the increased number of segments, more
coefficients should be sent for partition coding. Over all, we can divide the problems of
view segmentation to two general below branches:

8.4.1. Over segmentation

Over segmentation deals with the possibility of segmenting some objects to two or more
regions while considering the depth point of view, they should be all segmented as a
homogeneous region. This happens while we have different colors for a region with the

 41

same depth. For example if we have a person having a pants and coat with different
colors; using view segmentation method, they will be segmented to two different regions.
In the same case and using depth segmentation the whole person will probably be
segmented as one object where it has a constant distance from camera for all of its pixels.
This is shown in Fig. 8.4. In this figure you can see the original depth and relative
segmentation and also the encoded color image and its segmentation. They both are
partitioned to 20 regions using BPT method [24] and it is noticeable that the man
standing at the right and also the dancing lady have almost one segment in depth but they
are divided to different regions in view segmentation.

(a)

(b)

(c)

(d)

Fig. 8.4: (a) Original depth image, (b) Original encoded color image

(c) Segmented depth image, (d) Segmented color image
We can see that the same objects in (d) are over segmented in comparison to (c)

 42

This problem results in increasing the bitrate but it doesn’t affect the quality of the final
rendered virtual images that much because we are just dividing a homogenous region to
two or more partitions and relatively we send the information of each partition using
texture coding methods separately; so the final depth image will be created almost the
same as the original one while bitrate has increased.

Having this in mind, if the final bitrate is not that restricted, this problem may not cause
such a big problem in the quality of final rendered images. But still finding new methods
and solutions to decrease the number of regions to that of the original depth segmentation
would be the ideal case and is of interest. This approach can be implemented in future
possible research in this field.

8.4.2. Under segmentation

Another problem deals with some parts that are supposed to be partitioned from depth
point of view, but using view segmentation they are not segmented. This problem results
in a less acceptable final virtual rendered image, which some parts are not shown in their
correct 3D position. This problem might happen in some different situations which two of
the most important and common ones will be explained below:

 First case is while having an object in the foreground which has the same color as the

background. In this case, while we are using view segmentation, the algorithm
doesn’t segment the closer object separately from background because the decision
will be made based on the color level of the pixels. So, something that should be
segmented separately will be merged with the background or other objects with
different depth levels. Using the depth image, while knowing that these objects with
the same color in view image have different presentations in depth image with
different gray level values, they will be segmented separately. In Fig. 8.4 and
considering the left leg of the dancing lady in image (d), we can see the effect of this
problem in the segmented image. In this case, while the color of the skin of the lady is
similar to the background, the two regions are merged into one homogenous region in
view segmentation while are separately segmented using depth image.

This problem will affect the final PSNR a lot, as well the final rendered image doesn’t
show the scene with an acceptable quality. So, while this defect deals with not exact
presentation of virtual views along with a decrease in the quality of the final rendered
images, we should think of an applicable way to make our algorithm able to
overcome it.

 Another possibility is the case when we have a smooth and homogenous area in color

image which will go from a shallow depth to a deep one. In this case as well, the
color image segmentation will segment the whole object as a single region, while
depth image segmentation will partition in based on the distance from the camera.

As an example, we can think of a wall in the scene. The whole wall has the same
color (sometimes illumination and brightness may change the color and as a result

 43

segmentation), so using the view segmentation it will be considered as a homogenous
area and will not be segmented; but while two opposite ends of the wall are not
located at the same distance from camera, it will be segmented to different regions
based on the gray level of the depth image and depending on the number of regions
for that image. In this case, partition coding (in our case Orthobasis) will help us
create the content of that specific region close to that of the original depth image. This
means, for example, the gray level value of the pixels of the wall will be recreated
based on the information that will be sent to the receiver using partition coding. This
happens while we segment the wall as a homogenous and relatively larger region,
which is not the perfect partitioning. As a result, considering that the region is bigger
in comparison to the depth segmentation of the same object, maybe our partition
coding methods won’t be able to present it as good as if it was segmented to some
different partitions. Anyway, as well in this case, the view segmentation won’t give a
perfect perceived quality of the 3D location of the wall.

Again in Fig. 8.4, and paying attention to the right wall in the image (c), easily we
can observe the segmentation of the wall based on gray level value of the pixels in
depth image; while in image (d) the segmentation is based on the different colors of
the wall (depends on brightness, illumination and other factors) and has nothing to do
with the distance from camera. In this specific example and based on the Fig. 8.4 (d),
considering that the wall is segmented in a completely different way, the effect of
color partition coding will be even worse than when the whole wall is segmented as a
homogenous region. Same as the previous explained problem, this aspect of under
segmentation is important too. If this problem remains un-touched, we can
completely remove the depth feeling of uniform objects with different depth levels of
their two ends which is also related to some regions that should be segmented to
different regions but will not. So the solution should be able to handle this problem
too.

Considering these two major problems and knowing that exploiting a contour coding
method is not logical because of the high cost, the best possible approach would be a
mixture of these two methods which can achieve a low bitrate along with a good
approximation of the depth segmentation while solving the problems of view partitioning.
This said, we are ready to go through the proposed segmentation based coding of depth
information for 3D video.

8.5. New segmentation based coding method

Using direct segmentation of original depth images by means of lossless contour coding
and Orthobasis partition coding, forces us to send both of these two set of encoded data to
the receiver which means very high bitrate as discusses in section 8.4; As well, if we just
focus on partition coding and exploit the segmentation from decoded color image, the
bitrate will be very appropriate but the quality of rendered images is not high enough to
give an acceptable understanding about the 3D aspect of the scene. As a result a new
method should be implemented which while keeping the quality high, doesn’t introduce a
costly transmission bitrate.

 44

In our novel method of segmentation based coding of depth information, we exploit the
decoded color image along with original depth image. This means, we do a base
segmentation regarding the decoded color image and try to create the BPT branches in
such a way that final result matches with that of original depth image segmentation.
Obviously the final partitioning will not be exactly the same as original depth image
segmentation, but a reasonable approximation of that with respect to the fact that bitrate
will be much less is a satisfactory result. In other words, we can consider this joint usage
of decoded color image and original depth image partitioning to achieve a segmentation
of depth image, as a contour coding method which will represent the contours as much
close as possible to those of original depth segments. This can be done using two
different methods (both based on BPT segmentation method):

a. Make the initial segmentation with a high number of partitions using decoded color

image in the receiver. The stop point of this initial segmentation will be based on a
comparison with original depth image segmentation and having a difference error
between them less than a specific threshold (i.e. 15%). Shortly, this means the initial
segmentation in decoded color image can be up to 15% different from that of original
depth image. Afterward, based on the information of original depth segmentation, we
will send all the remained merging sequence from that initial segmentation to the
final partitioning of the image which will be a smaller number of regions (i.e. initial
segmentation with 1500 regions will be converted to a partitioning with only 80
regions). Using this method, we will skip a large part on initial segmentation and only
a sequence of numbers will be sent to decoder which will inform the receiver the
exact mergings that should be applied after the initial segmentation. By means of this
technique, except the first threshold that would be an approximation of the correct
initial partitioning, all the other steps will be the same as original depth segmentation
steps. The effects of quality and bitrate will be explained later in section 9.6.

b. In the second approach, a base segmentation will be done using the decoded color

image in the receiver and it will be mapped on the original depth image afterwards.
So, we have the same base segmentation for both original depth and decoded color
image. Form this point on, the BPT segmentation will be applied to each image
separately and considering that some of the initial partitions won’t be merged in the
depth segmentation but they will be merged in the decoded color image, there will be
a sequence of numbers which will inform the receiver about some mergings that
shouldn’t be implemented. Using this method all the segmentation will be based on
decoded color image, and sometimes when the merging shouldn’t be applied (base on
the information of original depth segmentation), it will be skipped. As a result in this
method the amount of information that should be sent to the receiver will decrease a
lot while the implementation of the whole process is based on the decoded color
image and will be completed in the decoder.

Even with applying this approach, we don’t merge some partitions that are separated
in the decoded color partitioning but not in the original depth partitioning. This fault
is due to the over segmentation explained in section 8.4. This happens because we are

 45

not informing the decoder about the merging sequence, but the non merging
sequence. As explained before this defect can be somehow covered using the
Orthobasis partition coding method but still won’t be perfectly reconstructed. So, we
still will have some partitions which are over segmented in the decoder. Considering
partition coding, this defect results in some more coefficients to be sent to the
receiver, but comparing the benefit that we achieve regarding contour coding this
increase of bitrate is completely negligible; and the final quality of rendered virtual
images are almost the same(even considering over segmentation), so this is not a big
problem. Still and in the future work, there must be an algorithm to make our
technique able to overcome this defect too.

Using each one of these two methods, we will decrease the bitrate by a very considerable
amount, but we have to keep in mind that both PSNR and bitrate along with comparison
between them and our reference is of our interest. This will be explained completely in
the following section.

8.6. Effects of new method on quality and bitrate

Results show that both of these methods will give a nearly similar PSNR, because they
both use initial segmentation of decoded color image and then they try to create the rest
of BPT segmentation sequence using the original depth image. So the final result will be
the same as mapping the initial decoded color image segmentation to the original depth
image, and applying BPT partitioning method. In this approach, the quality is not the
highest achievable one because of the first segmentation that we apply while doing the
initial partitioning using decoded color image and not original depth image; but still
considering the final results, we can see that this is completely acceptable in the sense of
both quality and bitrate.

From this point of view, the quality will remain almost equal for both methods and the
preference and decision will be made based on the bitrate. Considering that the sequence
of numbers that should be sent to the receiver is different for these two methods, they will
be discussed separately in terms of bitrate:

a. Using the first method mentioned in previous section, we don’t achieve the lowest

bitrate possible and the merging sequence that should be sent to the decoder includes
a lot of information so it will increase the bitrate with a considerable amount. This is
because we have to send all the merging sequence in between of the two initial
partitioning and desired partitioning while for every merging at least two numbers
should be sent; each number represents the label of one of the two regions that should
be merged. For example if the initial segmentation has 1000 regions and the best
partitioning (final one) has 80 regions, we need to send 2*920=1840 numbers. We
found out, as expected, that this method is not as efficient as the second one from
bitrate point of view; so the second method has been implemented.

b. Based on the fundamental algorithm of the second method, we will not try to send all

of the merging sequence as the first approach. Here we will concentrate on the

 46

differences between two segmentations. As explained before, only a sequence of
numbers regarding the non merging nodes will be sent to the decoder. For every step,
only one number represents the specific merging that shouldn’t be implemented. By
applying this method, while achieving the same final result, we can decrease the
amount of the information to be sent because only a portion of the total mergings has
to be marked and for each one only one number should be transmitted. Considering
the same example as the previous method, going from 1000 regions to 80 regions,
less than 920 numbers should be sent; in practice the real approximation is around
600 numbers which comparing 1840 is much less. Each member of this sequence of
numbers, represents the difference of each two consecutive node numbers not the
number of each node itself (to minimize the bitrate as much as possible). So,
theoretically and mathematically, the bitrate will decrease at least to one half of the
previous approach. This depends on the depth image and the decrease can be much
more than this.

So, the second approach is the winner because of the better bitrate. Using this method of
“segmentation based coding of depth information for 3D video”, we have to send two
sequences of data: First, the coefficients regarding partition coding, which in this thesis
Orthobasis partition coding has been exploited. Second, a sequence of numbers which
will inform the decoder about the non merging nodes for the creation of BPT
segmentation.

 47

9. Experimental results

9.1. Calculations of PSNR and bitrate

All the experimental results in this thesis will be done for two sequences of Ballet and
Breakdancers. Each sequence includes eight synchronized cameras that take the video of
the same scene for both depth and color view through the time. We have all the
information regarding calibration matrix, translation vector and rotation matrix of these
eight cameras, so the projection matrix of them and virtual cameras in between can be
calculated. The duration of the whole sequence will be 100 frames for each camera. The
rate is 30 frames per second and the bitrate will be calculated based on this frame rate.
Based on the frame rate and number of frames, the whole sequence will be almost 3.3
second long which is long enough to give us a good observation about the effectiveness
of coding methods.

In this thesis, as mentioned in section 7, the distance between each two original camera
will be covered with 9 virtual cameras and the virtual views will be rendered using the
projection matrix of these virtual cameras. Using the same method for different coding
methods, we can make the comparison between each two desired technique.

By means of this technique of PSNR calculation, we will compare the qualities of final
rendered virtual images based on the distribution of virtual cameras in between the
original cameras. As a result of this fact, for each figure we should fix the quality and
compare the bitrate regarding that specified quality and observe the difference as a
measurement of comparison.

The final results will be calculated for the novel proposed method in this thesis and also
for two different cases of H.264 coding method as the reference. First, while it is coded
only using I frames and second while it is using I, B and P frames for the regular and
optimized coding (GOP with length 12). Obviously in the first configuration of H.264,
the bitrate will be more comparing the second one. The results will be compared to both
of these references to show its efficiency perfectly

9.2. H.264 coding

As mentioned in section 8.2, our reference of comparison is H.264 which is the pioneer in
video coding nowadays. The comparison will be done as the encoding/decoding will be
applied by using reference as well as our new proposed method on depth images. Then by
creating the virtual views using two different decoded depth images and comparing the
quality of those rendered color images with the same virtual views rendered by the
original depth images, we can achieve a good PSNR comparison. Using this method, we
can fix one of bitrate or PSNR for both methods and check the performance on the other
one.

 48

Using H.264 method, we can exploit different quantization steps (in the range of 1 to 51)
which will result in decoded images with different qualities and different bitrates.
Obviously while increasing the quantization step the quality and bitrate will decrease.

To have a good understanding about the effect of quantization step, in Fig. 9.1 you can
see the dependency of bitrate and quality on quantization step for H.264 algorithm (for
depth images of Breakdancers sequence). While the quantization step increases, the
exactness of the algorithm declines and as a result, as shown on the left Y axis, the PSNR
decreases. At the same time, the amount of the information that should be sent reduces,
so as shown on the right Y axis the bitrate decreases too.

Fig. 9.1: Dependency of bitrate and PSNR on the quantization step in H.264 coding method

In Fig. 9.2 we can see the traditional graphs of PSNR and Bitrate for two sequences of
depth images, based on 8 cameras and 100 frames per camera. Different points in these
graphs are calculated based on different quantization steps used to encode the depth
images for the whole video sequences. The different quantization steps of H.264 used in
this research are 24, 28, 32, 36, 40, 44 and 46 which will represent the best quality to
worst quality respectively. As well, you can see the figures for both cases of H.264
configuration based on the number of I frames used to encode the depth images in each
GOP. Once, we use H.264 as an I intra coder which all the images will be coded in intra
mode (quantization step from 44 to 24). As the second experience, the same procedure
will be done with GOPs with length of 12 images(quantization step from 46 to 24).

 49

(a)

(b)

(c)

(d)

Fig. 9.2: Shows the traditional PSNR/Bitrate graphs of H.264 for two sequences of Ballet and
Breakdancers for the depth images - (a) , (b) using optimized H.264 with all I, B and P frames -

(c) , (d) only using I frames

As it can be seen in Fig. 9.2, while we are using the H.264 coder as I frames, the bitrate
will increase considerably (almost twice in Ballet sequence). We compare the results of
both of these configurations of H.264 with the new proposed method.

To do the comparison in this thesis, the quantization step 44 has been used for H.264
algorithm and using the exact method explained in section 7.4, we can find the U shape
graphs of quality with respect to the distance between each two original camera. The
quantization step equal to 44 will give a decoded depth image with a quality of 34.69 db
for Ballet and 35.89 db for Breakdancers. This is a completely acceptable PSNR and as a

 50

result, the decoded depth images with this quality will be used as the reference for the
comparison in this work. In Fig. 9.7, a comparison between the decoded depth images
with original ones is shown for H.264 coding method with quantization step of 44 and
our proposed method. The final graphs are as shown in Fig. 9.3 for two configurations of
H.264. First, while using it as an I intra coder and second, use the optimized
configuration of H.264 which exploits I, P and B frames. These graphs are created using
the original and H.264 encoded depth images of Ballet and Breakdancers sequences;
considering that we have 8 original cameras, there will be 7 possible positions between
each two original camera to create the virtual views and render the U shape PSNR graphs
(each one like Fig. 7.4). In this distance between each two original camera, 9 virtual
views have been rendered to create the graphs as shown with * in Fig. 9.3. It can be
easily seen that there is not much difference between these two configurations of H.264
while the bitrate is completely different (Table. 9.1 and also shown in Fig. 9.2) This
result will be compared to that of our segmentation based coding method of depth
information in the section 9.6 and the difference between PSNR and bitrate will show the
performance of each algorithm.

(a)

(b)

Fig. 9.3: Comparison of PSNR using two configurations of H.264 coding method with
quantization step 44 for (a) Ballet, (b) Breakdancers sequence.

 51

 Ballet (Kbps) Breakdancers (Kbps)

H.264, All I Intra coding 414.144 262.55

H.264, Optimized 155.75 148.905

Table. 9.1: Comparison between the bitrate of two configurations of H.264

9.3. Original depth segmentation

First approach for the new segmentation base coding method of depth information is to
segment the depth images separately and only based on the gray level value of its pixels.
Then try to send the encoded contour and partitions separately and recreate the depth
image in the receiver. Having this in mind, we applied BPT as the segmentation
algorithm on the depth image; then using contour chain code method, the boundaries
were encoded and put in a buffer. Afterward, each region was encoded using the order
two of Orthobasis partition coding algorithm. Both these information should be
transmitted to the receiver to make it possible to recreate the depth images.

As mentioned before, this way of coding won’t be optimized because a huge amount of
bitrate will be devoted to the contour coded information. This known, we can have a
good understanding regarding the costliness of this method. In Fig. 9.4, we can see the
comparison of bitrates between H.264 (QS=44) and original depth segmentation coding
for Ballet sequence. In this experiment, chain code contour coding as a lossless method is
used to encode the contours and Orthobasis method with order two is used as the partition
coding method. As it can be seen, the bitrate for partition coding is acceptable (Fig. 9.4,
b) while contour coding takes too many bits (Fig. 9.4, a). As well for the more or less
same PSNR based on virtual rendered images, we can see that the difference between
bitrate of this method and H.264 is not acceptable (Fig. 9.4, c). For the same quality
which will be achieved using 71 regions, we will have a bitrate equal to 121 Kbps for
H.264 while it is 3740 Kbps for original depth image segmentation using lossless contour
coding along with partition coding method (Table. 9.2 shows the bitrates relative to the
Fig. 9.4). This means, using the direct method doesn’t result in a good way of coding the
depth information because it is too costly to be accepted as an applicable transmitting
method.

Just as an example, and to make the pass more clear for the rest of the experimental
results, a virtual rendered PSNR graph including the comparison of the results regarding
the above mentioned method and both configurations of H.264 is shown in Fig. 9.5.
Considering that using our method we try to approximate the original depth coding
segmentation, the graph that we can see in Fig. 9.5 shows the highest possible gain that
can be achieved by our method. In this figure the bitrate is completely different and is
much more for the proposed method (Table. 9.3 shows the bitrates relative to the Fig.
9.5), but we can have a good understanding about the quality of the rendered images
using exact contour and partition coding of original depth images. Also, this graph will be

 52

used afterwards in the next sections to compare our proposed method with the best final
result that can be achieved. (Using this specific number of region and algorithm of
partition coding - order two of Orthobasis).

(a)

(b)

(c)

Fig. 9.4: Comparison of bitrate for H.264 and direct segmentation of original depth
images, (a) Showing only contour coding bitrate (b) partition coding bitrate (c) Sum of
contour and partition coding bitrate along with the same PSNR line

 Contour
Coding

Partition
Coding

Partition + Contour
Coding (Kbps)

H.264 (Kbps)
Optimized.

H.264 (Kbps)
All I frames

Ballet sequence 3675 65 3740 155 414

Table. 9.2: The Bitrates for the primary segmentation based method while having
the same PSNR with two configurations of H.264 (Ballet sequence)

 53

(a)

(b)

Fig. 9.5: Comparison between PSNR using original depth segmentation (Using lossless chain
code contour coding and Orthobasis partition coding with order two) and two configurations of

H.264 with quantization step = 44 for two sequences of (a) Ballet, (b) Breakdancers

 Ballet (Kbps) Breakdancers (Kbps)

H.264, All I Intra coding 414.144 262.55

H.264, Optimized 155.75 148.905

Original depth segmentation 3740 3160

Table. 9.3: Comparison between the bitrate of two configurations of H.264 and Original

depth segmentation

9.4. Only view segmentation

Having in mind that sending the data regarding the contour coding takes most of the
bitrate, so a primary approach would be considering segmentation based on the
decoded color images and using them to recreate the depth images in the receiver

 54

side. In this approach, while we are already provided with the encoded color images
in the receiver, we can use this information to achieve a good approximation of the
contours of the original depth image (as explained in section 8.3).

In this case, the only information that should be transmitted is the partition coding of
the depth images while their contours will be approximated using the encoded color
images at the receiver. Table. 9.4 shows the difference between the bitrates in this
mode. Even though the bitrate regarding the decoded color image segmentation is
very low in this experience, but considering the reasons explained in sections 8.3 and
8.4 using the view segmentation alone is not practically useful. As a result, the quality
of the rendered images will be less than that of the virtual images rendered using
lossless contour coding due to the lack of exactness while using the segmentation of
decoded color views. Fig. 9.6 shows the result of using this method in comparison to
H.264 using both configurations.

(a)

(b)

Fig. 9.6: Using only view segmentation to calculate the PSNR and its comparison with both
configurations of H.264 for (a) Ballet (b) Breakdancers sequences

 55

 Ballet (Kbps) Breakdancers (Kbps)

H.264, All I Intra coding 414.144 262.55

H.264, Optimized 155.75 148.905

Decoded color image segmentation 69.297 71.27

Table. 9.4: Comparison between the bitrate of two configurations of H.264 and Decoded

color image segmentation

9.5. Segmentation based coding method

Based on using only view segmentation, we know that it has some defects comparing
the original depth segmentation and doesn’t represent the depth image as exact as we
expect it to be (as described in section 8.4). So, we thought about the new method
(explained in section 8.5 & 8.6) to decrease the bitrate as much as possible.
Considering that we are basing our initial segmentation on the decoded color image in
the receiver, it can not achieve the highest quality for the final rendered images. The
reason is that, even if we start with a very high number of regions in base
segmentation of the decoded color image, it still has some fundamental and basic
differences from that of original depth image which will result in some differences
that can not be fixed even after using the non merging sequence. So these
fundamental differences will remain and will limit the final quality to some extent.

We know that the depth images have very smooth structures and many parts of the
image are homogeneous (which doesn’t necessarily happen for color images). As
well, we know that these depth images are not directly seen, but are used in the
middle steps to create the correct virtual view in between the original cameras. In this
thesis, the quantization step 44 will be used for encoding depth images using H.264
which will result in a quality of 34.69 db for the ballet sequence and 35.89 db for the
Breakdancers sequence. This is a completely acceptable PSNR (in respect to the
original depth images) which represents the logicalness of using such bitrates to
encode depth images. The above reasons justify the relatively low bitrates used in this
research. In Fig. 9.7, you can see a comparison between the original depth image and
the decoded images using H.264 with quantization step 44 and our proposed method.

 56

(a)

(b)

(c) (d)

(e) (f)
Fig. 9.7: Comparison of original and decoded depth images using H.264 coding method with

quantization step equal to 44 and proposed method
(a) Original depth image (c) H.264 decoded image (e) Proposed method decoded image for

Ballet Sequence
(b) Original depth image (d) H.264 decoded image (f) Proposed method decoded image for

Breakdancers Sequence

 57

The final results, which will use the segmentation based approach, are compared to
both configurations of H.264 with quantization step 44 in Fig. 9.8. As it can be seen
on this figure, the PSNR of our proposed method and optimized configuration of
H.264 are close and in some parts even the segmentation based approach outperforms
the reference. The PSNR H.264 while using only I frames is lower comparing the
other methods and its bitrate is higher, this makes it not a rival with optimized H.264
and segmentation based coding method.

Considering the bitrate of Segmentation based coding method, we have two series of
data that should be sent to the decoder. First is the partition coding which includes the
coefficients of Orthobasis coding method using order two; second set of data that
represents the non-merging sequence (as explained in section 8.5). In Table. 9.5 we
can compare the bitrate of reference to that of the proposed method breaked up to its
two fundamental sets of data. To calculate the bitrate of proposed method for the non
merging sequence, while having the sequence of numbers representing the nodes, the
difference of these numbers has been written to a file as a binary sequence and the
result has been entropy coded. The same process has happened for the coefficients
regarding partition coding created by Orthobasis method.

(a)

(b)

Fig. 9.8: Comparison between Segmentation based coding method with both
configurations of H.264 using quantization step equal to 44 for sequences

(a) Ballet, (b) Breakdancers

 58

 Ballet Breakdancers

Segmentation based method (partition coding) 69.297 Kbps 71.27 Kbps

Segmentation based method (non-merging sequence) 51.03 50.93

Segmentation based method (Total) 120.327 122.2

H.264, All I Intra coding 414.144 262.55

H.264, Optimized 155.75 148.905

Table. 9.5: Bitrate comparison between H.264 (QS=44) and segmentation based coding

method, (All bitrates are Kilo bits per second)

As shown in Table. 9.5, the total bitrate of segmentation based coding method is much
less than H.264 while it is exploited as an I intra coder. Even while using it as an
optimized coder of depth information with GOPs of length 12, still the bitrate achieved
by proposed method outperforms that of reference.

We can do the dual process of the same experiment; it means while having the same
bitrate, comparing the PSNR. To achieve the same bitrate as ours by mean of H.264, we
have to adjust the quantization step equal to 46 for ballet sequence and 45 for
Breakdancers sequence. Fig. 9.9 shows the comparison of these two methods while
having almost the same bitrate. As well, Table. 9.6 contains the bitrate information
related to Fig. 9.9. It is important to pay attention to the fact that, using H.264 as an I
intra coder increases the bitrate so much that only by using very poor quality of decoded
image we can achieve the same bitrate as that of ours; as a result in Fig. 9.9 only the
comparison with optimized H.264 is presented.

 Ballet(Kbps) Breakdancers(Kbps)

Segmentation based method (Total) 120.327 122.2

H.264, Optimized 121.059 133.11

Table. 9.6: Bitrate comparison between H.264 and segmentation based coding method,
(All bitrates are Kilo bits per second), Ballet sequence with quantization step equal to 46

and Breakdancers equal to 45

 59

(a)

(b)

Fig. 9.9: Comparison between same bitrate of segmentation based coding method with
optimized H.264 using quantization step equal to (a) 46 for Ballet sequence, and (b) 45

for Breakdancers sequence

Considering Fig 9.9 along with Table. 9.6 it is known that while having the same bitrate
segmentation based coding method of depth information overcomes H.264.

 60

10. Conclusion and future work

In this work, we have presented a comparative study on depth image compression which
deals with a completely new approach for depth coding of 3D video. This new method
was implemented and the results were compared to that of our reference. Knowing that
H.264 uses block matching method while our new method uses segmentation based
algorithms, this method is not an edition or complication of the previously implemented
method, but it is a method implemented for the first time in this field.

This method did the partitioning of original depth image based on segmentation of both
decoded color image and original depth image. This was done using an initial
segmentation based on decoded color image; Then trying to complete the BPT sequence
using some extra information received from encoder. This data informs the decoder
which nodes in BPT creation shouldn’t be merged together while doing the BPT
segmentation process. While only with some limited information, we can instruct the
decoder how to implement the rest of the segmentation steps on the decoded color image,
the bitrate in this approach won’t be high at all. This happens while we have achieved a
good quality if rendered virtual views.

Based on the results achieved, segmentation based coding method of depth images is able
to overcome H.264 for the specific and reasonable qualities. This means, while having
the same quality, we can achieve a better bitrate for the virtual rendered images in
between original cameras which has been the final goal of this thesis from the beginning.

We have to keep in mind that this result has been achieved without exploiting the
relevancies between consecutive images in time. This said, we can mention some of the
possible future work possibilities:

• Using time interpolation
Knowing that both of the sequences of depth images are taken with a frame-rate equal to
30 fps, it is obvious that there is a very high dependency between images that occur in
consecutive frames. This can be done, by processing the coefficients regarding partition
coding. First a logical dependency between segmentation of consecutive frames should
be pursued. Then the coefficients regarding same partitions will be processes to find out
the correlations between them. Regarding lack of time for this thesis, we couldn’t manage
to exploit this dependency which will result in a considerable decrease in bitrate. This is
the most important future work that can reduce the cost of the method.

• Handling the “to be merged” regions
As mentioned in section 8.5, it is possible to think of possible algorithms to send some
information to receiver informing it about the need of merging some segments with each
other. In explained approach in this thesis, we are concentrating on non merging
sequence which will have a very good effect on the outcome of the system. But still there
will be some partitions which will be over segmented using decoded color image
segmentation (explained in section 8.4). Implementing this algorithm will result in an

 61

even more decreased bitrate based on the partition coding, while some data should be
sent to decoder informing it about the needed mergings.

• Using rate-distortion methods
There are some numbers in this thesis which has been achieved and used based on some
experimental results. i.e. initial segmentation of decoded color image, best segmentation
number for Breakdancers and Ballet sequences and order of Orthobasis partition coding
method. While using rate-distortion algorithms we will be able to find the best values for
these which will result in a better quality and lower bitrate.

• Alternative partition coding methods
In this thesis, second order of Orthobasis partition coding has been exploited to encode
the information of each region. Using more optimized methods and even some techniques
adjusted to specific characteristics of depth images will be able to improve the results in
the sense of both quality and bitrate.

 62

11. References

[1] A. Smolic, K. Müller, P. Merkle, C. Fehn, P. Kauff, P. Eisert, and Thomas Wiegand, 3D
Video and Free Viewpoint Video –Technologies, Applications and MPEG Standards, ICME
2006, IEEE International Conference on Multimedia and Expo, Toronto, Ontario, Canada, July
2006.

[2] A. Smolic, and P. Kauff, Interactive 3D Video Representation and Coding Technologies,
Proceedings of the IEEE, Special Issue on Advances in Video Coding and Delivery, vol. 93, no.
1, Jan. 2005.

[3] H. Ozaktas, and L. Onural, Three-Dimensional Television: Capture, Transmission, and
Display, Springer, Heidelberg, December 2007.

[4] ITU-T Rec. & ISO/IEC 14496-10 AVC., Advanced video coding for generic audiovisual
services, 2005

[5] P.Merkle, K. Muler, A. Smolic, and T. Wiegand. Efficient compression of multi-view video
exploiting interview dependencies based on H.264 in proc. IEEE int’l Conf. Multimedia & Expo,
2006

[6] M. Bertero, T.A. Poggio, and V. Torre., Ill-posed problems in early vision. Proceedings of the
IEEE, 76:869–887, 1988.

[7] P. Salembier and F. Marqués. Region-based representation of image and video: Segmentation
tools for multimedia services. IEEE Trans. on Circuit and Systems for Video Technology,
9(8):1147–1169, December 1999.

[8] J. K. Aggarwal and W. N. Martin., Analyzing dynamic scenes containing multiple moving
objects. In T. S. Huang, editor, Image sequence analysis, pages 355–380. Springer- Verlag, New
York, 1981.

[9] P. Salembier and M. Pardàs. Hierarchical morphological segmentation for image sequence
coding. IEEE Trans. on Image Processing, 3(5):639–651, September 1994.

[10] P. Salembier., Morphological multiscale segmentation for image coding. EURASIP Signal
Processing, 38(3):359–386, September 1994.

[11] P. Willemin, T. Reed, and M. Kunt. Image sequence coding by split and merge. IEEE
Transactions on Communications, 39(12):1845–1855, 1991.

[12] M. Pardàs and P. Salembier., 3D morphological segmentation and motion estimation for
image sequences. EURASIP Signal Processing, 38(2):31–43, September 1994.

[13] S. Rajala, M. Civanlar, and W. Lee., Video data compression using three-dimensional
segmentation based on HVS properties. In IEEE, editor, International Conference on Acoustics,
Speech and Signal Processing, pages 1092–1905, New York (NY), USA, 1988.

 63

[14] M. Pardàs and P. Salembier., Time-recursive segmentation of image sequences. In
EURASIP, editor, EUSIPCO 94, VII European Signal Processing Conference, pages 8–21,
Edinburgh, U.K., September 13-16 1994.

[15] F. Marqués, V. Vera, and A. Gasull., Recursive image sequence segmentation by
hierarchical models. In Proc. of the 12th International Conference on Pattern Recognition, pages
523–525, Oct 1994.

[16] B. Marcotegui and F. Meyer., Morphological segmentation of image sequences. In J. Serra
and P. Soille, editors, Mathematical morphology and its applications to image processing, pages
101–108. Kluwer Academic Publishers, 1994.

[17] P. Salembier, F. Marqués, M. Pardàs, R. Morros, I. Corset, S. Jeannin, L. Bouchard, F.
Meyer, and B. Marcotegui., Segmentation-based video coding system allowing the manipulation
of objects. IEEE Trans. on Circuits and Systems for Video Technology, 7(1):60–73, February
1997.

[18] F. Dufaux and F. Moscheni., Segmentation-based motion estimation for second generation
video coding techniques. In L. Torres and M. Kunt, editors, Video Coding: The Second
Generation Approach, pages 79–124. Kluwer Academic Publishers, 1996. ISBN: 0 7923 9680 4.

[19] F. Dufaux and F. Moscheni., Spatio-temporal segmentation based on motion and static
segmentation. In IEEE International Conference on Image Processing, ICIP’95, Washington, DC,
October 1995.

[20] T. Meier and K.N. Ngan., Automatic segmentation of moving objects for video object plane
generation. IEEE Trans. on Circuits and Systems for Video Technology, 8(5):525–538,
September 1998.

[21] Y. Deng and B.S. Manjunath Netra-v., Toward an object-based video representation. IEEE
Trans. on Circuits and Systems for Video Technology, 8(5):616–627, September 1998.

[22] F. Marqués, M. Pardàs, and P. Salembier. Coding-oriented segmentation of video
sequences.In L. Torres and M. Kunt, editors, Video Coding: The Second Generation Approach,
pages 79–124. Kluwer Academic Publishers, 1996. ISBN: 0 7923 9680 4.

 [23] P. Salembier and L. Garrido, “Binary partition tree as an efficient representation for image
processing, segmentation and information retrieval,” IEEE Trans. Image Process., vol. 9, no. 4,
pp. 561–575, Apr. 2000.

[24] Veronica Vilaplana, Member, IEEE, Ferran Marques, Member, IEEE, and Philippe
Salembier, Member, IEEE, “Binary Partition Trees for Object Detection”, IEEE Trans. Image
Process., vol. 17, no. 11, Nov 2008

[25] M. Kunt, A. Ikonomopoulos, and M. Kocher., Second generation image coding techniques.
Proceedings of the IEEE, 73(4):549–575, April 1985.

[26] H.G. Musmann, M. Hotter, and J. Ostermann., Object-oriented analysis-synthesis coding of
moving images. Signal Processing: Image Communication, 1(2):117–138, October 1989.

 64

[27] L. Torres and M. Kunt. Video Coding: The second generation approach. Kluwer Academic
Publishers, Boston, 1996.

[28] C. Gu., 3D contour image coding by morphological filters and motion estimation. In IEEE,
editor, International Conference on Acoustics, Speech and Signal Processing, ICASSP’94,
Australia, April 1994.

[29] P. Salembier, L. Torres, F. Meyer, and C. Gu. Region-based video coding using
mathematical morphology. Proceedings of IEEE (Invited Paper), 83(6):843–857, June 1995.

[30] E. Reusens. Joint optimization of representation model and frame segmentation for generic
video compression. Signal Processing, 46:105–117, September 1995.

[31] M. Gilge. Region-oriented texture coding. In L. Torres and M. Kunt, editors, Video Coding:
The Second Generation Approach, pages 171–218. Kluwer Academic Publishers, 1996. ISBN: 0
7923 9680 4.

[32] T. Sikora, S. Bauer, and B. Makai. Efficiency of shape-adaptive 2-d transforms for coding of
arbitrarily shaped image segments. IEEE Trans. on Circuits and Systems for Video Technology,
1995.

[33] E. Jensen, K. Rijkse, I. Lagendijk, and P. van Beek. Coding of arbitrarily sahaped image
segments. In Proceedings of Workshop on Image Analysis and Synthesis in Image Coding,
Berlin, October 1994.

[34] H. Katata, N. Ito, T.Aono, and H.Kusao. Object Wavelet Transform for coding of
arbitrarily-shaped image segments. IEEE Trans. on Circuits and Systems for Video Technology,
7(1):234–237, February 1997.

[35] A. Kaup., Object-based texture coding of moving video in MPEG-4. IEEE Trans. On
Circuits and Systems for Video Technology, 9(1):5–15, February 1999.

[36] M. Gilge, T. Engelhardt, and Mehlan R. Coding of arbitrarily shaped image segments based
on a generalized orthogonal transform. EURASIP, Image Communications, 1(2):153–180,
October 1989.

[37] H. Freeman. On the coding of arbitrary geometric configurations. IRE Trans. Electronic,
Comp., EC(10):260–268, June 1961.

[38] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

[39] F. Marqués, S. Fioravanti, and P. Brigger., Coding of image partitions by morphological
skeletons using overlapping structuring elements. In IEEE, editor, 1995 IEEE Workshop on
Nonlinear Signal and Image Processing, pages 250–253, Halkidiki, Greece, June 20-22 1995.

[40] A.J. Pinho. A method for encoding region boundaries based on transition points. Image and
Vision Computing, 16(3):213–218, March 1998.

 65

[41] R. Kresch and D. Malah., Quadtree and bitplane decompositions as particular cases of the
generalized morphological skeleton. In IEEE, editor, 1995 IEEE Workshop on Nonlinear Signal
and Image Processing, Halkidiki, Greece, June 1995.

[42] T. Minami and K. Shinohara., Encoding of line drawings with multiple grid chain code.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 8:265–276, March 1986.

[43] A. Gasull, F. Marqués, and J. A. Garc´ıa. Lossy, image contour coding with multiple grid
chain code. In Workshop on Image Analysis and Synthesis in Image Coding94, WIASIC’94,
pages B4.1–B4.4, Berlin, Germany, October 1994

[44] C.T. Zahn and R.Z. Roskies. Fourier descriptors for plane closed curves. IEEE Trans. on
Computers, 21(3):269–281, March 1972.

[45] P. Van Otterloo., A contour-oriented approach for shape analysis. Prentice Hall
International(UK), 1991.

[46] J.G. Dunham., Optimum unifirm piecewise linear approximation of planar curves. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 8:67–75, January 1986.

[47] L.L. Schumaker. Spline functions: basic theory. Wiley-Interscience, New York, 1981.

[48] P. Salembier, F. Marqués, and A. Gasull., Coding of partition sequences. In L. Torres and
M. Kunt, editors, Video Coding: The Second Generation Approach. Kluwer, 1996. ISBN: 0 7923
9680 4.

[49] F. Marqués, J. Sauleda, and T. Gasull. Shape and location coding for contour images.In
Picture Coding Symposium, pages 18.6.1–18.6.2, Lausanne, Switzerland, March 1993.

[50] Claude E. Shannon: A Mathematical Theory of Communication, Bell System Technical
Journal, Vol. 27, pp. 379–423, 623–656, 1948.

[51] A Method for the Construction of Minimum-Redundancy Codes. David A. Huffman.
http://compression.graphicon.ru/download/articles/huff/huffman_1952_minimum-redundancy-
codes.pdf

[52] ThomasWiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthxra, Overview of the
H.264 Video Coding Standard , IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR
VIDEO TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

[53] Introduction to H.264, Bo Hong Multimedia Communications Laboratory University of
Texas at Dallas, November 22, 2002

[54] ATI Technologies Inc., Introduction to H.264, 09/05. PN: 129-40558-10

[55] Carolina Martínez Ordinas , Virtual View Generation for Free Viewpoint Applications,
Master thesis to be completed and available in ETSETB library by July 2009

 66

[56] Josep Ramon Morros, Optimization of Segmentation Based Video Sequence Coding
Techniques: Application to Content Based Functionalities, Ph.D. Dissertation, October
2004

[57] Video coding, the second Generation Approach, Edited by Luis Torres and Muraat Kunt,
November, 1995

[58] P. Merkle, Y. Morvan, A. Smolic, D. Farin1, K. Müller, P.H.N. de With, and T. Wiegand ,
The Effect of Depth Compression on Multi-view Rendering Quality

[59] N. Garc´ıa, F. Jaureguizar, and J.I. Ronda. Pixel-based video compression schemes. In L.
Torres and M. Kunt, editors, Video Coding: The Second Generation Approach, pages 31–78.
Kluwer Academic Publishers, 1996. ISBN: 0 7923 9680 4.

[60] C. Stiller and J. Konrad. Estimating motion in image sequences: A tutorial on modeling and
computation of 2D motion. IEEE Signal Processing Magazine, 16(4):70–91, July 1999.

[61] Thomas Wiegand and Bern Girod. Multi-Frame Motion-Compensated Prediction for Video
Transmission. Kluwer Academic Publishers, Boston, 2001.

[62] M. Kunt, A. Ikonomopoulous, and M. Kocher, Second-generation image coding, Proc.
IEEE, vol. 73, pp. 549–574, Apr. 1985.

 [63] R. Talluri et al., A robust, scalable, object-based video compression technique for very low
bit-rate coding, IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 221–234, Feb. 1997.

[64] H. Sanderson and G. Crebbin, Region-based image coding using polynomial intensity
functions, Proc. IEE Vision Image Signal Processing, vol. 143, no. 1, pp. 15–22, Feb. 1996.

[65] G. Biggar et al., Segmented-image coding: performance comparison with the discrete cosine
transform, Proc. Inst. Elect. Eng.—F, vol. 135, no. 2, pp. 121–132, Apr. 1988.

[65] T. Sikora and B. Makai, Shape-adaptive DCT for generic coding of video, IEEE Trans.
Circuits Syst. Video Tech., vol. 5, no. 1, pp. 59–62, Feb. 1995.

 [66] P. Kauff et al., Functional coding of video using a shape-adaptive DCT algorithm and an
object-based motion prediction toolbox, IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp.
181–197, Feb. 1997.

[67] H. J. Barnard, Image and video coding using a wavelet decomposition, Ph.D dissertation,
Dept. Elect. Eng., Delft Univ. Technol., The Netherlands, May 1994.

[68] D. Saupe, M. Ruhl, Evolutionary fractal image compression, IEEE International Conference
on Image Processing (ICIP'96), Lausanne, Sept. 1996 1

