

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/88817

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/88817
mailto:wrap@warwick.ac.uk

SPIHT image coding:

Analysis, Improvements and

Applications

By

Jian Zhu

A thesis submitted for the Degree of

Doctor of Philosophy

Department of Engineering

University of Warwick

November 2002

Contents

List of Figures .. VI

List of Tables ... XI

Acknowledgements ... XIV

Declarations ... XV

Summary ... XVI

Abbreviations .. XVII

Chapter 1 Introduction ... 1

1.1 Requirements of image coding .. 1

1.1. 1 Image and video compression .. 1

1.1.2 Lossless image coding ... 2

1.1.3 Lossy image coding ... 2

1.1.4 New features of image coding .. .3

1.2 Image coding methods .. 5

1.2.1 Statistical models .. 5

1.2.2 Physical models .. 8

1.3 Research objectives ... 8

Reference ... 10

Chapter 2 The Wavelet Transform ... 11

2.1 Two-channel filter banks ... 11

2.2 Biorthogonal filter banks ... 13

2.3 Perfect reconstruction FIR filter banks .. 15

2.4 Wavelet transform ... 17

2.4.1 Scaling function .. 17

CONTENTS III

2.4.2 Wavelet. .. 18

2.4.3 Wavelets from filter banks .. 18

2.4.4 Filter banks from wavelets .. 22

2.4.5 Summary and example .. 23

2.5 Multi-resolution decomposition .. 23

2.6 Two-dimensional wavelet transform ... 25

2.7 Edge extension .. 27

2.8 Arrangements of wavelet coefficients ... 30

2.9 Summary .. 34

Reference ... 36

Chapter 3 Statistical Properties of Wavelet Coefficients 37

3.1 Distribution of all wavelet coefficients40

3.2 Distribution of wavelet coefficients on LL43

3.3 Distribution of wavelet coefficients on HL, LH and HH46

3.4 Intra-subband correlation .. 54

3.5 Inter-subband correlation at same level ... 58

3.6 Inter-level correlation on HL, LH and HH ... 58

3.7 Summary .. 59

Reference ... 70

Chapter 4 SPIHT Image Coding .. 71

4.1 Organisation of wavelet coefficients ... 72

4.2 Successive approximation quantisation ... 75

4.3 Ordered bit-plane coding ... 76

4.4 Procedure of SPIHT coding .. 77

4.5 A simple example ... 83

CONTENTS IV

4.6 Arithmetic coding ... 91

4.6.1 Arithmetic coding models ... 94

4.7 Summary .. 96

Reference ... 96

Chapter 5 Improvements to the SPIHT Algorithm ... 97

5.1 DC-level shifting .. 97

5.2 Introduce the virtual trees .. 98

5.3 Omit the predictable symbols .. 107

5.4 Offset the quantisation .. 109

5.5 Optimise the arithmetic coding ... 115

5.6 A simple example ... 117

5.7 Summary .. 126

Reference ... 127

Chapter 6 Pre-processing for SPIHT Coding ... 128

6.1 Speed up the judgement of significance of trees .. 128

6.2 Pre-processing for SPIHT ... 132

6.3 Summary .. 136

Chapter 7 Performance of SPIHT Image Coding ... 137

7.1 Implementation of the SPIHT algorithm .. 137

7.2 Performance of the SPIHT algorithm .. 141

7.3 Performance gain of the improvements to the SPIHT algorithm 146

7.3.1 DC-level shifting ... 146

7.3.2 Virtual trees .. 150

7.3.3 Omit predictable coding symbols .. 155

7.3.4 Quantisation offset .. 158

CONTENTS v

7.3.5 Pre-processing for lossy image coding ... 161

7.3.6 Arithmetic coding ... 164

7.3.7 Judgement of the significance oftrees ... 167

7.3.8 Overall rate-distortion performance gain ... 171

7.4 Speed ofthe SPIHT algorithm ... 181

7.5 Summary .. 184

Reference ... 185

Chapter 8 Lossless image coding using the SPIHT algorithm 186

8.1 Reversible integer-to-integer wavelet transforms 186

8.2 Performance evaluation of the integer wavelet transforms for the SPIHT

algorithm .. 189

8.3 Content-based lossless image coding using the SPIHT algorithm 193

8.4 Summary .. 202

Reference ... 203

Chapter 9 Discussion and Conclusions .. 204

9.1 Summary and conclusions ... 204

9.2 Future work .. 209

Reference ... 211

Bibliography ... 212

List of Figures

Figure 1.1 Neighbours used for prediction in CALIC. ... 6

Figure 1.2 Transform coding system ... 6

Figure 2.1 Two-channel filter banks ... 11

Figure 2.2 Three-level octave decomposition .. 24

Figure 2.3 Three-level octave reconstruction .. 24

Figure 2.4 2D separable wavelet analysis .. 26

Figure 2.5 2D separable wavelet synthesis .. 26

Figure 2.6 Subbands of 3-scale wavelet transform .. 27

Figure 2.7 Periodic extension ... 28

Figure 2.8 Symmetric extension ... 29

Figure 2.9 Symmetric extension without overlapping ... 30

Figure 2.10 Down/up-sampling and edge extension in case of odd length input 31

Figure 2.11 Down/up-sampling and edge extension in case of even length input.. ... 32

Figure 2.12 Results of 3-scale wavelet transform, 50 x 37 image 33

Figure 2.13 Edge extension without overlapping in case of odd length input 34

Figure 3.1 Lena (512x512, 8bpp) ... 38

Figure 3.2 Subbands of 5-scale wavelet transform .. 39

Figure 3.3 Distribution of all wavelet coefficients of Lena (linear axis)40

Figure 3.4 Distribution of all wavelet coefficients of Lena (log y-axis)41

Figure 3.5 Distribution of all wavelet coefficients of Lena (non-linear x-axis)42

Figure 3.6 Distribution of wavelet coefficients on LL of Lena 44

Figure 3.7 Distribution of all wavelet coefficients on HL, LH and HH of Lena 44

LIST OF FIGURES VII

Figure 3.8 Distribution of wavelet coefficients on LL of Lena after DC-level shifting

... 45

Figure 3.9 Distribution of wavelet coefficients on level 4 of Lena47

Figure 3.10 Distribution of wavelet coefficients of Lena in division ±248

Figure 3.11 Distribution of wavelet coefficients of Lena in division ±348

Figure 3.12 Distribution of wavelet coefficients of Lena in division ±449

Figure 3.13 Distribution of wavelet coefficients of Lena in division ±549

Figure 3.14 Distribution of wavelet coefficients of Lena in division ±5 50

Figure 3.15 Distribution of wavelet coefficients of Lena in division ±6 50

Figure 3.16 Distribution of wavelet coefficients of Lena in division ±7 51

Figure 3.17 Distribution of wavelet coefficients of Lena in division ±8 51

Figure 3.18 Distribution of wavelet coefficients of Lena in division ±9 52

Figure 3.19 Distribution of wavelet coefficients of Lena in division ± 10 52

Figure 3.20 Intra-subband correlation of wavelet coefficients of Lena on HL4 55

Figure 3.21 Intra-subband correlation of wavelet coefficients of Lena on LH4 55

Figure 3.22 Intra-subband correlation of wavelet coefficients of Lena on HH4 56

Figure 3.23 Intra-subband correlation of wavelet coefficients of Lena on HHO 56

Figure 3.24 Barbara ··· .. ··· .. ··· ·······.····· ·· 60

Figure 3.25 Boats ... 61

Figure 3.26 Goldhill · .. · ·· .. ···· .. ·· .. ··········· ········· 62

Figure 3.27 Mandrill ··· .. ············ .. ··········· ······ .. · 63

Figure 3.28 Peppers .. ······ .. ····· 64

Figure 3.29 Zelda ... ····· .. ··· 65

Figure 3.30 Distribution of wavelet coefficients on LL ... 67

Figure 3.31 Distribution of all wavelet coefficients on HL, LH and HH 67

LIST OF FIGURES VIII

Figure 4.1 SPIHT image coding system .. 71

Figure 4.2 Correspondence of wavelet coefficients on different levels 73

Figure 4.3 Value of wavelet coefficient in binary mode .. 76

Figure 4.4 Bit-planes of wavelet coefficients .. 77

Figure 4.5 Last rows and columns of HLO, LHO and HHO 78

Figure 4.6 Example of 2-scale wavelet transform of a 20 x 16 image 84

Figure 4.7 Models for the probability of symbols in arithmetic coding 92

Figure 4.8 Probability of symbol series in arithmetic coding 93

Figure 5.1 Wavelet coefficients of 64x64 image after 4-scale wavelet transform .. 102

Figure 5.2 Merging of Vn to Vn+1 for initial trees ... 105

Figure 5.3 Partitioning of trees (including virtual trees) .. 106

Figure 5.4 Reconstructed Lena at 0.04 bpp ... 113

Figure 5.5 Reconstructed Lena at 0.8 bpp ... 114

Figure 5.6 Example of2-scale wavelet transform of a 20 x 16 image 118

Figure 6.1 Example of 2-scale wavelet transform of a 20 x 16 image 131

Figure 6.2 Mmax for the 20 x 16 example image .. 132

Figure 6.3 Mmax after pre-processing for the 20 x 16 example image 135

Figure 7.1 Performance difference of the SPIHT algorithm between

Said&Pearlman's and our implementation for GoldhilI 140

Figure 7.2 Performance comparison of SPIHT, JPEG and JPEG2000 image coding

for Goldhill ··· ···· .. ····· .. ·· .. ······ .. ····· · 142

Figure 7.3 Performance comparison of SPIHT, JPEG and JPEG2000 image coding

for Zelda ··· .. ······· .. ··· .. ········ .. · .. ··· .. ··········· .. ··· 142

Figure 7.4 Performance of the SPIHT algorithm under various levels of wavelet

transform for Goldhill ... 144

LIST OF FIGURES IX

Figure 7.5 Performance of the SPIHT algorithm under various levels of wavelet

transform for Zelda ... 145

Figure 7.6 Performance gain of various DC-level shifting schemes for Lena 148

Figure 7.7 Performance gain of DC-level shifting in the SPIHT algorithm for Lena

... 150

Figure 7.8 Performance gain of using the virtual trees in the SPIHT coding for Boat

... 152

Figure 7.9 Performance gain of using virtual trees in SPIHT coding for Boat 153

Figure 7.10 Performance gain of omitting the predictable symbols in SPIHT coding

for Barbara ... 157

Figure 7.11 Performance gain of the quantisation offset in the SPIHT coding for

Mandrill .. 160

Figure 7.12 Performance gain of pre-processing in the SPIHT algorithm for Peppers

... 163

Figure 7.13 Performance gain of the optimisation of the arithmetic coding in the

SPIHT algorithm for Goldhill ... 166

Figure 7.14 Running time of SPIHT encoding for Goldhill.. 171

Figure 7.15 Performance of the SPIHT algorithm without arithmetic coding for

Zelda .. 172

Figure 7.16 Performance gain of the improvements to the SPIHT algorithm without

arithmetic coding for Zelda ... 173

Figure 7.17 Reconstructed Zelda, coded by the original SPIHT at 0.1 bpp (PSNR

26.1 dB) .. ············ 174

Figure 7.18 Reconstructed Zelda, coded by the improved SPIHT at 0.1 bpp (PSNR

31.9 dB) .. ····· .. 175

LIST OF FIGURES x

Figure 7.19 Performance of the SPIRT algorithm for Zelda 176

Figure 7.20 Performance gain of arithmetic coding and the improvements to the

SPIHT algorithm using the 5-scale wavelet transform for Zelda 177

Figure 7.21 Performance gain of the improvements to the SPIHT algorithm without

arithmetic coding for various test images .. 179

Figure 7.22 Speed of SPIHT encoding for Zelda ... 182

Figure 7.23 Speed of the SPIRT decoding for Zelda ... 182

Figure 8.1 CT image of head .. 191

Figure 8.2 CT image of liver ... 192

Figure 8.3 Histogram of CT head image ... 194

Figure 8.4 CT image of head: bone ... 195

Figure 8.5 CT image of head excluding bone .. 196

Figure 8.6 Context to model the arithmetic coding of shape 197

Figure 8.7 Direct neighbouring pixels ... 197

Figure 8.8 CT image of head: edge of bone .. 198

Figure 8.9 CT image of head: tissues .. 199

Figure 8.10 CT image of head: tissues (without blank margin) 201

List of Tables

Table 2.1 Filter coefficients of biorthogonal 9/7 wavelet transform. 23

Table 3.1 Mean value of the wavelet coefficients of Lena in each division 53

Table 3.2 Auto-correlation coefficients of maximum magnitude (excluding 1) of

wavelet coefficients of Lena on level 1 - 4 ... 57

Table 3.3 Inter-subband correlation of wavelet coefficients of Lena on HL, LH and

HH of same level .. 58

Table 3.4 Inter-level correlation coefficients of wavelet coefficients of Lena 59

Table 3.5 Mean value of the wavelet coefficients in each division 68

Table 3.6 Typical correlation coefficients ... 69

Table 4.1 Initial LIP for the example image .. 85

Table 4.2 Initial LIS for the example image .. 86

Table 4.3 Processing of the LIS in the third round .. 89

Table 4.4 Output bit-stream in the first three rounds of SPIHT encoding 91

Table 5.1 Wavelet coefficients on LL in the outermost divisions 99

Table 5.2 Number of wavelet coefficients (NWC) on HL, LH and HH in the

outermost divisions (OMD) .. 100

Table 5.3 Average mean value of WCs in each division .. 110

Table 5.4 Encoded length of Lena after the scan of a list at each threshold in the

original SPIHT ... 112

Table 5.5 Initial LIP for the example image .. 120

Table 5.6 Initial LIS for the example image .. 121

Table 5.7 Processing of the LIS in the third round .. 123

LIST OF TABLES XII

Table 5.8 Output bit-stream in the first three rounds of the improved SPIHT

encoding ... 124

Table 5.9 Length of output bit-stream in the first three round of the original and the

improved SPIHT encoding .. 125

Table 6.1 Maximum coding errors of wavelet coefficients during the scan of a list at

threshold T 133

Table 7.1 Programs for the original SPIHT algorithm available on Internet 137

Table 7.2 Programs for the SPIHT coding .. 138

Table 7.3 Performance of the SPIHT algorithm without the arithmetic coding for

Goldhill .. 139

Table 7 .4 Average difference of PSNR for various test images 141

Table 7.5 Performance of SPIHT and EBCOT for Lena and Barbara 143

Table 7.6 Performance comparison for DC-level shifting (Lena) 147

Table 7.7 Performance comparison for DC-level shifting (various test images) 148

Table 7.8 Performance gain of DC-level shifting .. 149

Table 7.9 Performance ofthe SPIHT algorithm using the virtual trees for Boat 151

Table 7.10 Performance gain of using the virtual trees in the SPIHT coding for

various test images .. 155

Table 7.11 Performance of the SPIHT algorithm omitting the predictable symbols

for Barbara ... 156

Table 7.12 Performance gain of omitting the predictable symbols in the SPIHT

coding for various test images ... 158

Table 7.13 Performance of the SPIHT algorithm with the quantisation offset for

Mandrill .. 159

LIST OF TABLES XIII

Table 7.14 Performance gain of the quantisation offset in the SPIHT coding for

various test images .. 161

Table 7.15 Performance of the SPIHT algorithm with pre-processing for Peppers 162

Table 7.16 Performance gain of the pre-processing in the SPIRT algorithm for

various test images .. 164

Table 7.17 Optimisation of arithmetic coding (Goldhill) 165

Table 7.18 Performance gain of the optimisation of arithmetic coding in the SPIRT

algorithm for various test images .. 167

Table 7.19 Speed of the original SPIRT algorithm judging the significance of trees

directly (Goldhill @ 1.0 bpp) .. 168

Table 7.20 Running time (seconds) of the original SPIRT encoding judging the

significance of trees directly ... 170

Table 7.21 Running time (seconds) of the SPIRT encoding using the proposed

scheme to judge the significance of trees .. 170

Table 7.22 Performance of the SPIRT algorithm without the arithmetic coding for

Goldhill and Zelda ··· .. 180

Table 7.23 Running time of the improved SPIRT encoding 181

Table 7.24 Speed of wavelet transform (Zelda) ... 184

Table 8.1 Compression ratio of lossless image coding using the improved SPIRT

algorithm .. ·························· ... · 190

Table 8.2 Comparison of the original (OSPIRT) and the improved SPIHT algorithm

(ISPIHT) for lossless image coding ... 193

Table 8.3 Lossless coding rate (bpp) of CT head image using the SPIHT algorithm

based on segmentation and margin cutting .. 201

Acknowledgements

My deepest appreciation and thanks go to my supervisor, Dr. Stuart S. Lawson, for

his guidance, advice, help and patience over the last several years.

Many thanks to Dr. Sarah Wayte, Imaging Physicist in the Department of Clinical

Physics and Bioengineering, University Hospitals Coventry and Warwickshire NHS

Trust, for providing the medical image data which I worked on.

Finally I would like to thank Professor Malcolm McCrae and the Warwick Graduate

School for the financial support.

Declarations

The work in this thesis has been discussed in the following papers:

S.S.Lawson and J.Zhu, 'Image compression using wavelets and JPEG-2oo0: A

tutorial', lEE Electronics & Communication Engineering Journal, Vo1.l4, No.3,

pp.112-121, June 2002.

J.Zhu and S.S.Lawson, 'Improvements to SPIRT for lossy image coding', The 8th

IEEE International Conference on Electronics, Circuits and Systems (ICECS2oo1),

Vol.3, pp.1363-6, 2-5 September 2001, Malta.

IZhu and S.S.Lawson, 'Pre-processing of SPIRT for lossy image coding', lEE

Electronics Letters, Vol.3?, No.11, pp.68?-8, 24 May 2001.

L.Q.Xu, J.Zhu, F.Stentiford, 'Video summarization and semantics editing tools',

Photonics West - International Symposia on Electronic Imaging (Electronic Storage

and retrieval for media databases), Proceedings of SPIE, Vol.4315, No.25, 24-26

January 2001, San Jose, California.

IZhu and S.S.Lawson, 'The generic stochastic gradient adaptive algorithm', The

fifth IMA (the institute of mathematics and its applications) International conference

on Mathematics in Signal Processing: 18-20 December 2000, Warwick University.

IZhu and S.S.Lawson, 'Improvements of the SPIHT for Image Coding by Wavelet

Transform', lEE Colloquium on Time-Scale and Time-Frequency Analysis and

Applications, pp.2411-5, 29 February 2000, London.

Summary
Image compression plays an important role in image storage and transmission. In the
popular Internet applications and mobile communications, image coding is required
to be not only efficient but also scalable. Recent wavelet techniques provide a way
for efficient and scalable image coding. SPIHT (set partitioning in hierarchical trees)
is such an algorithm based on wavelet transform.
This thesis analyses and improves the SPIHT algorithm. The preliminary part of the
thesis investigates two-dimensional multi-resolution decomposition for image coding
using the wavelet transform, which is reviewed and analysed systematically. The
wavelet transform is implemented using filter banks, and the z-domain proofs are
given for the key implementation steps. A scheme of wavelet transform for
arbitrarily sized images is proposed.
The statistical properties of the wavelet coefficients (being the output of the wavelet
transform) are explored for natural images. The energy in the transform domain is
localised and highly concentrated on the low-resolution subband. The wavelet
coefficients are DC-biased, and the gravity centre of most octave-segmented value
sections (which are relevant to the binary bit-planes) is offset by approximately one
eighth of the section range from the geometrical centre. The intra-subband
correlation coefficients are the largest, followed by the inter-level correlation
coefficients in the middle then the trivial inter-subband correlation coefficients on
the same resolution level. The statistical properties reveal the success of the SPIHT
algorithm, and lead to further improvements.
The subsequent parts of the thesis examine the SPIHT algorithm. The concepts of
successive approximation quantisation and ordered bit-plane coding are highlighted.
The procedure of SPIHT image coding is demonstrated with a simple example. A
solution for arbitrarily sized images is proposed.
Seven measures are proposed to improve the SPIHT algorithm. Three DC-level
shifting schemes are discussed, and the one subtracting the geometrical centre in the
image domain is selected in the thesis. The virtual trees are introduced to hold more
wavelet coefficients in each of the initial sets. A scheme is proposed to reduce the
redundancy in the coding bit-stream by omitting the predictable symbols. The
quantisation of wavelet coefficients is offset by one eighth from the geometrical
centre. A pre-processing technique is proposed to speed up the judgement of the
significance of trees, and a smoothing is imposed on the magnitude of the wavelet
coefficients during the pre-processing for lossy image coding. The optimisation of
arithmetic coding is also discussed.
Experimental results show that these improvements to SPIHT get a significant
performance gain. The running time is reduced by up to a half. The PSNR (peak
signal to noise ratio) is improved a lot at very low bit rates, up to 12 dB in the
extreme case. Moderate improvements are also made at high bit rates.
The SPIHT algorithm is applied to loss less image coding. Various wavelet
transforms are evaluated for lossless SPIHT image coding. Experimental results
show that the interpolating transform (4, 4) and the S+P transform (2+2, 2) are the
best for natural images among the transforms used, the interpolating transform (4, 2)
is the best for CT images, and the bi-orthogonal transform (9, 7) is always the worst.
Content-based lossless coding of a CT head image is presented in the thesis, using
segmentation and SPIHT. Although the performance gain is limited in the
experiments, it shows the potential advantage of content-based image coding.

Abbreviations

The following abbreviations are used within this thesis:

ID

2D

3D

3G

Bio97

bpp

bps

Kbps

Mbps

CALIC

CR

CT

dB

DC

DCT

DVD

DWA

DWS

EBCOT

EOB

EZW

One-Dimensional

Two-Dimensional

Three-Dimensional

Third Generation

Bi-orthogonal transform (9, 7)

Bits Per Pixel

B its Per Second

Kilo B its Per Second

Million Bits Per Second

Context-based Adaptive Lossless Image Coding

Compression Ratio

Computer Tomography

Decibel

Direct Current

Discrete Cosine Transform

Digital V ideoN ersatile Disc

Discrete Wavelet Analysis

Discrete Wavelet Synthesis

Embedded Block Coding with Optimised Truncation

End Of Bit-stream

Embedded Zero-tree Wavelet image coding

ABBREVIATIONS

FIR

HDTV

lEE

IEEE

IPT22

IPT24

IPT42

IPT44

IPT62

JPEG

LIP

LMS

LIS

LSB

LSP

MPEG

MSB

MSE

PR

PSNR

SP222

SPIE

SPIHT

UMTS

VCD

Finite Impulse Response

High Definition Television

The Institution of Electrical Engineers

The Institute of Electrical and Electronics Engineers

Interpolating Transform (2, 2)

Interpolating Transform (2, 4)

Interpolating Transform (4, 2)

Interpolating Transform (4, 4)

Interpolating Transform (2, 2)

Joint Photography Experts Group

List of Insignificant Pixels (wavelet coefficients)

Least Mean Square

List of Insignificant Sets

Least Significant Bit

List of Significant Pixels (wavelet coefficients)

Moving Picture Experts Group

Most Significant Bit

Mean Square Error

Perfect Reconstruction

Peak Signal to Noise Ratio

S+P transform (2+2,2)

The Society of Photo-Optical Instrumentation Engineers

Set Partitioning In Hierarchical Trees

Universal Mobile Telecommunication System

Video Compact Disc

XVIII

ABBREVIATIONS XIX

we Wavelet coefficient

WT Wavelet transform

Chapter 1

Introduction

1.1 Requirements of image coding

1.1.1 Image and video compression

Image and video coding play an important role in many existing and emerging

applications, such as digital camera, HDTV (high definition television), video

storage (VCD, DVD, etc.), video conference, multimedia (games, etc.), internet

image and video browsing, digital library, and so on.

The size of the digitised image and video are very large. For example, a colour

image of 512x512 pixels with 24 bits per pixel, is about 786 kilobytes in size. A

90-minute film of 25 frames per second, 352x288 pixels per frame, and 24 bits per

pixel for colour, is about 41 gigabytes in size. That does not include the voice. As

can be seen, to store images and videos, huge storage space is needed.

It is often needed to transmit images and videos in applications. To browse the above

image at home, through the Internet, using a modem with the communication speed

of 28 kilo bits per second, one need to wait for more than 4 minutes after the request

is issued. To see the above film on line, the communication bandwidth needs to be

about 60 megabits per second.

In reality, the storage capacity and communication bandwidth of the images and

videos stated above is not affordable. Thanks to the coding techniques, especially

Chapter 1. Introduction 2

compression in coding, we do not have to suffer all these. In other words, images and

videos have to be compressed for storage and communication.

The discussion here is on image coding. Image is the basic element of a video.

Although video coding is different from image coding, some image coding

techniques are used in video coding. For example, intra-frame coding for video is

just image coding, and the object-based video-coding standard MPEG-4 adopts

image-coding technique directly for static texture coding [1].

1.1.2 Lossless image coding

An image can be compressed and reconstructed without loss. The reconstructed

image after decoding is exactly the same as the original image before encoding.

High compression ratio (CR) is the main concern of lossless image coding. CR is the

ratio of the coding rate of the original image (in bit/pixel or bpp) over the average

coding rate of the encoded image:

C
. R' Coding rate of original image

ompreSSlon aho = (1.1)
A verage coding rate of encoded image

As can be seen later, compression is very limited in loss less image coding.

Lossless image coding is often used in some special cases, such as medicine and

astronautics. In some countries, the law imposes lossless coding for medical image

compression. In astronautics, the photos from space are rare, so no one would like to

lose any detail.

1.1.3 Lossy image coding

Normally an image is to be viewed by humans, no matter it is for storage or for

communication. The image definition that human eyes can distinguish is limited.

Human sight is not so sensitive to some extent with the minute details of an image.

Chapter 1. Introduction 3

In most cases, lossless image coding is not necessary, lossy image coding is

acceptable if enough detail is retained.

For lossy image coding, the reconstructed image quality changes with the coding

rate. The rate-distortion curve is the key to evaluate the performance of lossy image

coding. The distortion is measured by the peak signal to noise ratio (PSNR). For

8-bits grey image, the maximum pixel value is 255, and PSNR is defined as follows:

255 2

PSNR = 1010glO(--) dB
MSE

(1.2)

Where MSE is the mean square error between the original and the reconstructed

images. For an image whose size is MxN, denoting ai,j the pixels of the original

image and bi,j the pixels of the reconstructed image (0 5{ i < M and 0 < j < M), MSE

is calculated as follows:

M-IN-I

MSE = [~~·'ca . . -b ..)2]1(M xN) .t...J.t...J I,J I,J (1.3)
;=0 j=O

For both lossless and lossy image coding, easy implementation is very important.

Computation complexity, speed of encoding and decoding, and memory usage are

some of the concerned aspects.

1.1.4 New features of image coding

Internet and mobile phones are becoming more and more popular, and have a

profound impact on our daily life. Recently, with the development and convergence

of mobile communications and Internet, mobile multimedia services have become

feasible and are in demand. Due to the limited available bandwidth and error-borne

property of mobile communication channels, image and video transmission and

delivery for mobile communications (and Internet as well) require efficient, scalable

and error-resilient image and video coding.

Chapter 1. Introduction 4

For example, in the current second-generation mobile communication system GSM

(global system for mobile communications) and its evolutions (e.g. GPRS - general

packet radio service, and EDGE - enhanced data rates for GSM evolution), the

available channel to a single user is 9.6 Kbps (kilo bits/second) in bandwidth, and up

to 384 Kbps at most. In the emerging third generation mobile communication

systems, such as UMTS (universal mobile telecommunication system), the available

single channel will be 384 Kbps initially, and up to 2 Mbps (million bits/second)

later. But in practice, the channel may need to be shared by several users for various

services. Transmission of an image over such a channel takes time. It is desirable to

build up the image progressively while the transmission is being carried on, then the

user can terminate the transmission when the received image is clear enough and

he/she does not want to wait any longer. On the other hand, the user may be moving.

Unlike the wired channels (such as optical fibre or copper cable), the error rate of the

mobile channel is relatively high due to the changing mUlti-path fading and other

interference. The user may move from the covering region/cell of one base-station to

that of another. The connecting channel of the user may need to change during

communication (called handover). In case of bad coverage or lack of sufficient

channels, the communication may break down. It is desired to build up the image

based on the transmitted data. All these cases require a scalable and error resilient

image coding. Of course, efficient image coding is the key above all.

Other new features are required for image coding in various applications, such as

region-of-interest coding. For example, doctors may be interested in a particular

region of a medical image for diagnosis, thus this region needs to be shown very

clearly while a lower quality is acceptable for other regions. Similarly, for a portrait

in a background, the viewers often tend to look at the face more than other regions,

Chapter 1. Introduction 5

thus a clearer face gives better subjective feeling on overall image quality. It is

desired to raise the definition for the region of interest in image coding.

1.2 Image coding methods

There are many approaches to image coding. Most of them can be put into two

fundamental categories: image coding based on statistical models and physical

models. They treat image data differently, but they are often combined and

integrated in practical solutions.

1.2.1 Statistical models

Most image coding methods are based on statistical models. An image is taken as a

set of data. Statistical characteristics of the data set are explored and exploited for

compression. Compression can be carried out in image domain or transform domain.

In image domain, prediction is often used. CALIC (Context-based Adaptive Lossless

Image Coding) is one of the successful candidates for predictive coding [2]. The

image pixels are coded in raster scan order (from left to right in a row, then down to

the next row). Current coding pixel is predicted according to a few neighbours, as

indicated in Figure 1.1. The prediction is adjusted according to the gradient in the

neighbourhood, to reflect the classified horizontal or vertical edge type - sharp,

normal, weak, or flat. The prediction error is coded using context -based arithmetic

coding. The context used for arithmetic coding is the texture information of selected

neighbours with respect to the predicted value, plus the quantised energy of previous

prediction error. For each context, the expectation of prediction error is fed back to

improve the prediction accuracy. Full details can be found in [2].

Chapter 1. Introduction 6

UU UUR

UL U UR

LL L ?

Figure 1.1 Neighbours used for prediction in CALIC

? = Pixel to be coded, U = Up, R = Right, L = Left

Here we concentrate on transform coding. Figure 1.2 shows the framework of a

transform coding system. Image pixels are transformed to coefficients on subbands,

then the coefficients are quantised and entropy encoded. On the decoding side, the

reverse is done - the encoded bit-stream is entropy decoded and de-quantised

(dequantisation here means mapping of codes to values of coefficients), and the

resulting coefficients are inverse transformed to reconstruct the image.

Image
pixels

Image
pixels

~

.. Forward .. Quantisation ... transform ...

Inverse De-
transform quantisation

Figure 1.2 Transform coding system

Entropy ... encode

"
Entropy
decode

Two transforms are widely used for transform coding: the discrete cosine transform

(DCT) and the wavelet transform.

The DCT is orthogonal, and is used to de-correlate the image data so as to reduce its

entropy. The DCT is adopted in JPEG - the international image coding standard [3].

Chapter 1. Introduction 7

In JPEG, an image is divided into blocks of 8x8 pixels. Then two-dimensional (20)

OCT is applied to the image blocks. The coefficients in the transform domain are

quantised and entropy coded.

Recently the wavelet transform has shown its advantages in image coding. The

advantages include not only the high rate-distortion performance, but also the

scalability of coding rate and PSNR. Embedded zerotree wavelet coding (EZW) [4],

set partitioning in hierarchical trees (SPIHT) [5], and embedded block coding with

optimised truncation (EBCOT) [6] are three well-known representatives. They have

two key concepts in common, as described in the following two paragraphs.

The first is successive approximation quantisation of wavelet coefficients. The

wavelet coefficients are quantised using a gradually refined threshold other than a

fixed value. Usually the quantisation threshold is reduced by half in each round of

the coding. The coding is in fact a binary bit-plane coding. The wavelet coefficients

are coded bit-plane by bit-plane, from the most significant bit (MSB) to the least

significant bit (LSB).

Second, the three algorithms exploit in different ways the facts that neighbouring

pixels of an image are often continuous in value and that the edges of objects in an

image tend to cluster together. Neighbouring wavelet coefficients from a squared

region are grouped together in a set for coding in the EZW and SPIHT algorithms.

EBCOT uses context based models for arithmetic coding, where a wavelet

coefficient is entropy coded according to the conditional probability under the

condition of the latest known status of neighbouring wavelet coefficients.

EZW set up the foundations of the successful novel embedded wavelet image

coding. SPIHT, as an improvement to EZW, is very efficient even without entropy

Chapter 1. Introduction 8

coding - this is exclusive to SPIHT. EBCOT, the most recent one, is adopted as the

basic encoding engine in the new international standard JPEG 2000 [7].

1.2.2 Physical models

Video coding based on physical models has been successful, for example, motion­

compensated video coding in MPEG-l and MPEG-2 [8], and object-based video

coding in MPEG-4 [1]. They are based on the natural characteristics of the objects in

the video, and the physical formation of the video signal (e.g. the projection of three­

dimensional objects on a two-dimensional plane, and the effect of camera movement

such as pan, zoom in/out, rotation, tilt, etc.).

The similar concept can be used in image coding. The objects can be separated from

the background in the image. If the shape of the object is regular, and the colour of

the object is consistent, the object can be encoded separately, to get the most

compression.

Due to its complexity, image coding based on physical models has not been studied

very much.

1.3 Research objectives

This research is on the SPIHT algorithm. The objective was to investigate various

aspects of SPIHT image coding, such as the wavelet transform, organisation of

wavelet coefficients, quantisation, and entropy coding. This included exploring

statistical properties of wavelet coefficients of natural images, developing novel

algorithms for image compression, and applying them in image coding applications.

In chapter 2, the wavelet transform for image coding is discussed. Chapter 3 explores

the statistical properties of wavelet coefficients of natural images. Chapter 4

examines the SPIHT algorithm. Chapter 5 and 6 present some novel schemes to

Chapter 1. Introduction 9

improve SPIHT, and chapter 7 is the numerical results of the improvements for lossy

image coding. In Chapter 8, the SPIHT algorithm and the new improvements are

applied to lossless image coding. Performance evaluation is done for various

reversible integer-to-integer wavelet transforms. Chapter 8 also gives some of the

attempts on image coding based on physical models - content-based SPIHT coding

for CT head image. Chapter 9 concludes the thesis.

This research started before EBCOT was published and JPEG 2000 was established.

Although EBCOT outperforms SPIHT in some aspects, SPIHT still has its exclusive

advantage. Besides, as shall be seen, some of the research results for SPIHT are

applicable to JPEG 2000 as well.

Chapter 1. Introduction 10

References

[1] T.Ebrahimi and C.Home, 'MPEG-4 Natural Video Coding - An Overview',

Signal Processing: Image Communication, Vol. 15, No.4-5, pp.365-85, Elsevier

Science, 1anuary 2000.

[2] X.Wu and N.Memon, 'Context-based, Adaptive, Lossless Image Codec', IEEE

Transactions on Communications, Vol.45, No.4, pp.437-44, April 1997.

[3] W.B.Pennebaker and 1.L.MitcheI1. 1PEG still image data compression standard.

Van Nostrand Reinhold, New York, 1993.

[4] 1.M.Shapiro, 'Embedded Image Coding Using Zerotrees of Wavelet

Coefficients', IEEE Transactions on Signal Processing, Vo1.41, No.12, pp.3445-62,

December 1993.

[5] ASaid and W.APearlman, 'A new, fast, and efficient image codec based on set

partitioning in hierarchical trees', IEEE Transactions on Circuits and Systems for

Video Technology, Vo1.6, No.3, pp.243-50, 1une 1996.

[6] D.Taubman, 'High performance scalable image compression with EBCOT',

IEEE Transactions on Image Processing, Vo1.9, No.7, pp.1158-70, July 2000.

[7] ASkodras, C.Christopoulos and T.Ebrahimi, 'The 1PEG2000 Still Image

Compression Standard', IEEE Signal Processing Magazine, Vol.I8, No.5, pp.36-58,

September 2001.

[S] 1.L.Mitchell, et al. MPEG video compression standard. Van Nostrand Reinhold,

New York, 1997.

Chapter 2

The Wavelet Transform

This chapter describes some of the properties of the discrete wavelet transform

(OWT) that are pertinent to image compression. The wavelet analysis and synthesis

are reviewed, along with multi-resolution transform, and from one-dimensional (10)

to two-dimensional (20) transform. The relationship of the filter banks and the

wavelet transform (WT) are explored, with emphasis on the biorthogonal case.

Image edge extension for WT are discussed.

2.1 Two-channel filter banks

To understand 20 wavelet analysis and synthesis for image coding, we start with

two-channel filter banks, as shown in Figure 2.1. Here we take a brief review, with

emphasis on perfect reconstruction (PR) which leads to biorthogonal filter banks.

More details can be found in [1] - [6].

r ___________ ~_~~ly~l~ ________ .
....----, .

:L La(z) {,2 ~~

r----------~YP1~~~1~ _________ _
•

Ls(z)

x(n) x(n)

Ha(z) H Hs(z)

.----------------------------
Figure 2.1 Two-channel filter banks

Chapter 2. The Wavelet Transform 12

The analysis filter banks are inside the left dashed box of Figure 2.1, and the

synthesis filter banks are inside the right box. The signal x(n) is filtered by lowpass

and highpass analysis filters - La(z) and Ha(z) , and then down-sampled

(decimated) by 2 (denoted by J..2 in Figure 2.1). The analysis filter banks decompose

x(n) and produces two subbands: the low (L) and high (H) subbands. The

decomposed signals are

l(k) = Lla(2k - n)x(n)
• (2.1)

h(k) = L ha(2k - n)x(n)
•

To reconstruct x(n), The Land H signals are up-sampled (stretched) by 2 (denoted

by i2 in Figure 2.1), interpolated with zeros, and then filtered by lowpass and

highpass synthesis filters - Ls(z) and Hs(z). The results from the two channels are

added up to the reconstructed signal:

x(m) = ~)ls(m-2k)l(k)+hs(m-2k)h(k)]
k

Insert (2.1), we get

x(m) = Lx(n) ~:Cla(2k - n)ls(m -2k) + ha(2k - n)hs(m- 2k)] (2.2)
n k

We use the z-transform to analyse the filter banks. For a sequence x(n),

X(z) = Lx(n)z-n . X(z) becomes [X(Zll2) + X(-il2)]12 if down-sampled by 2, and
n

becomes X(l) if up-sampled by 2.

In Figure 2.1, the results of analysis are

L(z) = [La(zll2)X(i12
) + La(-il2)X(-ll2)]12

H(z) = [Ha(i12)X(zll2) + Ha(-zll2)X(-i12)JI2

The synthesis result is

X(z) = Ls(z)L(Z2) + Hs(z)H(Z2)

(2.3)

Chapter 2. The Wavelet Transform

Insert (2.3), we get

x (z) = [La(z)Ls(z) + Ha(z)Hs(z)]X (z)1 2

+ [La(-z)Ls(z) + Ha(-z)Hs(z)]X(-z)/2

To get PR, for any x(n), x(n) = x(n). For (2.4), this implies

La(z)Ls(z) + Ha(z)Hs(z) = 2

La(-z)Ls(z) + Ha(-z)Hs(z) = 0

13

(2.4)

(2.5)

(2.6)

(2.5) and (2.6) are necessary and sufficient conditions for PRo In the time domain, as

can be seen from (2.2), they are equivalent to

L[la(2k - n)ls(m - 2k) + ha(2k - n)hs(m - 2k)] = Oem - n) (2.7)
k

If we exchange La(z) with Ls(z) and Ha(z) with Hs(z), (2.5) - (2.6) or (2.7) still hold.

In other words, {La(z), Ha(z)} and {Ls(z), Hs(z)} are interchangeable.

2.2 Biorthogonal filter banks

We shall see in this section that PR filter banks are biorthogonal. Stephane Mallat

proved this in [1] through the Fourier transform. Here we present a detailed proof in

z-domain.

From (2.5) and (2.6), Ls(z) and Hs(z) can be expressed by La(z) and Ha(z):

Ls(z) = -2·Ha(-z)ID(z) (2.8)

Hs(z) = 2·La(-z)/D(z) (2.9)

Where D(z) = La(-z)Ha(z)-La(z)Ha(-z). It can be verified that D(-z) = -D(z). From

(2.8) and (2.9), we get, respectively,

Ha(z) = Ls(-z)D(z)12

La(z) = -Hs(-z)D(z)12

Insert (2.9) and (2.10) into (2.5), we get

La(z)Ls(z) + La(-z)Ls(-z) = 2

(2.10)

(2.11)

(2.12)

Chapter 2. The Wavelet Transform

Insert (2.8) and (2.11) into (2.5), we get

lIa(-z)lIs(-z) + lIa(z)lIs(z) = 2

Rewrite (2.8) and (2.11):

lIa(-z) = -Ls(z)D(z)12

lIs(-z) = -2La(z)ID(z)

From (2.10) and (2.14), we have

Ls(z)lIa(z) + Ls(-z)lIa(-z) = 0

From (2.9) and (2.15), we have

La(z)lIs(z) + La(-z)lIs(-z) = 0

In time domain, (2.12) - (2.13) and (2.16) - (2.17) mean, respectively,

LLs(n)La(2k -n) = t5(k)
n

Lhs(n)ha(2k -n) = t5(k)
n

Lfs(n)ha(2k - n) = 0
n

Lhs(n)fa(2k -n) = 0
n

Denote La (n) = far-nY, and ha(n) = ha(-n). (2.18) - (2.21) become

LLs(n)la(n - 2k) = t5(k)
n

Lhs(n)ha(n - 2k) = t5(k)
n

LLs(n)ha(n - 2k) = 0
n

Lhs(n)La(n-2k) =0
n

14

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

Chapter 2. The Wavelet Transform 15

The relations (2.22) - (2.25) are known as biorthogonality, and La(z), Ls(z) , Ha(z)

and Hs(z) are called biorthogonal filter banks. We see here that general PR filter

banks are biorthogonal.

2.3 Perfect reconstruction FIR filter banks

As a special case of biorthogonal filter banks, PR FIR filter banks can have linear

phase, which is often desired in practice. As we shall see, PR FIR filter banks are

used throughout the thesis.

We explore the relations of filters for PR FIR filter banks. We follow similar steps as

in [2], but not the same, and we give more details.

If we use FIR (finite impulse response) filters, La(z), Ls(z), Ha(z) and Hs(z) can be

written as a product of a polynomial in Z-I with an integer power of il. Notice that

for every root of La(-z) (root for iI, same afterwards) there is an equal and opposite

root of La(z), and the roots of Ha(-z) are also equal and opposite to the roots of

Ha(z). So La(-z) and Ha(-z) have no zeros in common otherwise the PR condition of

(2.5) could not always hold. It follows from (2.6) that Ls(z) = 0 whenever

Ha(-z) = 0, and Hs(z) = 0 whenever La(-z) = O. We can write Ls(z) in the form

Ls(z) = Ha(-z)p(z) (2.26)

Where p(z) is also a product of a polynomial in i l with an integer power of Z-I.

Substitute (2.26) into (2.6), we get

Hs(z) = -La(-z)p(z) (2.27)

Similarly, Ls(z) and Hs(z) have no zeros in common because of (2.5). It follows from

(2.6) that La(-z) = 0 whenever Hs(z) = 0, and Ha(-z) = 0 whenever Ls(z) = O.

Consequently

Ha(-z) = Ls(z)q(z) (2.28)

Chapter 2. The Wavelet Transform 16

lA2(-z) = -lIs(z)q(z) (2.29)

Where q(z) is again a product of a polynomial in Z·I with an integer power of il.

Substitute (2.28) into (2.26), we get

p(z)q(z) = 1 (2.30)

Recall that p(z) and q(z) are both products of a polynomial in i J with an integer

power of z·J. The only possible solution for (2.30) is

p(z) = el

()
·I·k q Z =e Z

(2.31)

(2.32)

Where e is a constant (e;t(J) and k is an integer. Substitute (2.32) into (2.28), we get

lIa(z)=(-1 /e·1 z·kLs(-z)

Substitute (2.31) into (2.27), we get

IIs(z) = -cllA2(-z)

Insert (2.33) and (2.34) into (2.5), we get

lA2(z)Ls(z) - (-l/lA2(-z)Ls(-z) = 2

For (2.35) to hold, k can only be odd, k=2K + 1. Then (2.33) - (2.35) become

lIa(z)=-e·1 i 2K
•
1 Ls(-z)

IIs(z) = _CZ
2K

+
JlA2(_z)

lA2(z)Ls(z) + lA2(-z)Ls(-z) = 2

In time domain, (2.36) - (2.38) means

ha(n)=(-l t-c·1 ·ls(n-2K-1)

hs(n)=(-I t·e ·la(n+2K + 1)

Lis(n)ia(2k - n) = 8(k)
n

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

As in section 2.2, denote la(n) = la(-n) and ha(n) = ha(-n). Choose c=l and K=-l,

(2.39) - (2.41) become

Chapter 2. The Wavelet Transform 17

ha(n) = (-It ls(1- n) (2.42)

hs(n) = (-It la(l- n) (2.43)

Ils(n)la(n- 2k) = o(k) (2.44)
n

The relation (2.42) to (2.44) are very important and well known for the PR FIR filter

banks.

2.4 Wavelet transform

Now we explain the relations between the filter banks and the WT. First we build the

WT from the filter banks, and then get the filter banks from the WT. For generality,

the biorthogonal case is used for analysis. As we shall see later, the orthogonal WT

is a special case of biorthogonal WT.

2.4.1 Scaling function

The dilation equations define the scaling functions ~t) and ip (t):

rp(t) = JiIla(n)rp(2t - n) (2.45)
n

ip(t) = ..J2Ils(n)ip(2t - n) (2.46)
n

qX.t) and ip (t) satisfy the biorthogonal relations:

(rp(t), ip(t - n») = o(n) (2.47)

Where (x(t), yet») is the inner product of x(t) and yet). (x(t), yet») = 1 x(t)y(t)dt .

Denote rpj,dt) = ff2~it-k), and ip j,k(t) = ff2 ip (it-k). For fixed j, f/1,k(t) spans Vj ,

and ip j,lt) spans V J. It can be seen that VJ c VJ+l' V J C V j+l, and

rpj,k (t) = Ila(n)rpj+\,2k+n (t) (2.48)
n

Chapter 2. The Wavelet Transform 18

ipj,k(t) = I,ls(n)ipj+I,2k+n(t) (2.49)
n

2.4.2 Wavelet

The wavelet equations define the wavelet w(t) and W (t):

wet) = J2I,ha(n)({J(2t - n) (2.50)
n

W(t) = J2I,hs(n)ip(2t -n) (2.51)
n

Denote wj,dtJ = ff2w(it-k), and W j,k(t) = ff2 W (it-k). For fixed j, wj,dt) spans Wj,

and W j,k(t) spans W j. It can be seen that Wj c Vj+h W j C V j+l, and

Wj,k (t) = I,ha(n)({Jj+I,2k+n (t) (2.52)
n

(2.53)
n

2.4.3 Wavelets from filter banks

Now suppose La(z), Ls(z) , Ha(z) and Hs(z) are PR filter banks. (2.7) is satisfied.

La (z), Ls(z) , Ha (z) and Hs(z) are biorthogonal, as related by (2.22) to (2.25). We

build the biorthogonal WT. The key is to prove the biorthogonal relations of qJj,k(t),

iP j,lt) , Wj,k(t) and W j,dt):

(Wj,m (t), wj,n (t») = 8(m - n)

(((Jj,m(t), wj,n(t») = 0

Although a proof can be found in literature, we present our own proof here.

By definition, we have

(2.54)

(2.55)

(2.56)

(2.57)

Chapter 2. The Wavelet Transform 19

(({Jj,m(t),iPj,n(t)) = J ({Jj,m(t)'Pj,n(t)dt
t

= J 2 jl2
({J(2

j
t - m)· 2 j/2 'P(2

j
t - n)dt

t

Let T = 2 j t - m ,

(({Jj,m (t), 'Pj.n (t)) = J ({J(T)'P(T + m - n)dT
r

Applying (2.47), we obtain (2.54).

Similarly, by definition and applying (2.52) and (2.53), we have

(Wj,m(t), wj.n(t)) = f Wj.m (t)wj,n (t)dt
t

= fLha(l)({Jj+l,2m+l (t)· Lhs(k)'Pj+l.2n+k (t)dt
t I k

= LLha(l)hs(k) J ({Jj+l.2m+l (t)'Pj+l,2n+k (t)dt
kit

Applying (2.54):

(W j,m (t), W j.n (t») = L L ha(l)hs(k)O(2m + 1- 2n - k)
k I

= Lhs(k)ha(k - 2m + 2n)
k

Applying (2.23), we obtain (2.55).

By definition and applying (2.48) and (2.53), we have

(({Jj,m (t), Wj,n(t)) = J ({Jj,m (t)wj .n (t)dt
t

= fL1a(l)({Jj+l.2m+1 (t)· Lhs(k)'Pj+l,2n+k (t)dt
t I k

= LLhs(k)la(l) f ({Jj+l,2m+1 (t)iP j +1.2n+k (t)dt
kIt

Applying (2.54):

(({Jj.m (t), wj •n (t)) = LLhs(k)la(l)O(2m + 1- 2n - k)
k I

= Lhs(k)la(k-2m+2n)
k

Applying (2.25), we obtain (2.56).

Chapter 2. The Wavelet Transform 20

By definition and applying (2.49) and (2.52), we have

(ip j.m (t), W j,n (t)) = f ip j,m (t)w j,n (t)dt
t

= fI/s(k)CPj+l,2m+k (t). Lha(l)qJj+l,2n+l (t)dt
t k I

= LLls(k)ha(l) f qJj+l,2n+l(t)CPj+l,2m+k (t)dt
kit

Applying (2.54):

(CPj,m (t), Wj,n (t») = LLls(k)ha(l)8(2n + 1- 2m - k)
k I

= Lls(k)ha(k-2n+2m)
k

Applying (2.24), we obtain (2.57). The proof is completed.

(2.56) says W j .1 Vj, and (2.57) says Wj.l V j. Now we check the relationship of

V j+l, V j and W j. Any J(t) E V j+l can be expressed as

J(t) = La j+l,kCPj+l,k (t) (2.58)
k

It follows from (2.58) and (2.54) that

I n

= Laj+1,nJ ({Jj+l,k(t)CPj+1.n(t)dt
n I

= laj+I,n8(k -n)
n

= a j+I,k

That is

a j+I,k = (/ (t), qJ j+1.k (t») (2.59)

Define

(2.60)

(2.61)

Insert (2.58) and (2.48) into (2.60):

Chapter 2. The Wavelet Transform 21

a j,k = f [Ia j+l,ntPj+l,n (t)] {Lla(m)~j+I,2k+m (t)]dt
t n m

= I I a j+l,n la(m) f ~ j+I,2k+m (t)tP j+l,n (t)dt
m n t

Applying (2.54):

m n

= Ila(n - 2k)a j+l,n
n

That is

aj,k = Ila(2k -n)aj+l,n (2.62)
n

Similarly, insert (2.58) and (2.52) into (2.61), and apply (2.54), we obtain:

bj,k = Iha(2k - n)a j+l,n (2.63)
n

Now with (2.49), (2.53), (2.62) and (2.63), we have

Iaj,ktPj,k(t) + Ibj,kWj,k(t)
k k

= I[Ila(2k - n)a j+l,n]' [Ils(m)tPj+I,2k+m (t)]
k n m

+ I[Iha(2k - n)a j+l,n]' [Ihs(m)tPj+I,2k+m (t)]
k n m

Let 2k+m = i,

Ia j,ktPj,k (t) + Ibj,k Wj,k (t)
k k

= I[Ila(2k - n)a j+l,n]' [IZs(i - 2k)tPj+I,;(t)]
k n i

+ I[Iha(2k - n)a j+l,nl' [Ihs(i - 2k)tPj+l,i (t)]
k n i

= IIa j+l,ntPj+l,i I[la(2k - n)ls(i - 2k) + ha(2k - n)hs(i - 2k)]
n i k

Applying (2.7),

Ia j,ktPj,k (t) + Ibj,k Wj,k (t)
k k

= IIaj+l,ntPj+l,it5'(n-i)
n i

= I a j+l,n tP j+l,n
n

Chapter 2. The Wavelet Transform 22

Applying (2.58), we obtain

~>j,kq;j,k(t)+ Lbj,kWj,k(t) = f(t)
k k

Or rewrite as

f(t) = La j,kq;j,k (t) + Lbj,k Wj,k (t) (2.64)
k k

(2.64) means that V j Ee W j ~ V j+l. Because V j C V j+l and W j C V j+l, we have

Similarly, we have Vj+l = Vj Ee Wj.

According to the relations, we can decompose a function in a high level by the

scaling function of the low level and the wavelet. The wavelet part is the details that

represent the complement between the high resolution and the low resolution.

Repeating the relations for various j, we have

This suggests the multi-resolution decomposition, which is to be discussed in the

next section.

ACohen, Ingrid Daubechies, and J.-C. Feauveau proved in [2] that in the FIR case,

wj,it) constitute a frame in L2(R), and Wj,k(t) and W j,k(t) constitute dual Riesz bases.

2.4.4 Filter banks from wavelets

Now inversely, we get the filter banks from the WT. We can easily get the fast WT,

(2.62) and (2.63), from biorthogonal wavelets [1][5]. (2.62) means that filtered by

La(z) and sub-sampled by 2, we get aj,k from aj+l,k. while (2.63) means that filtered

by Ha(z) and sub-sampled by 2, we get bj,k from aj+l,k. That is to say, La(z) and

Ha(z) constitute the two-channel analysis filter banks.

Chapter 2. The Wavelet Transform 23

On the other hand, we can get (2.22) to (2.25) from (2.54) to (2.57) [3]. That is,

La(z), Ls(z), Ha(z) and Hs(z) are biorthogonal. As can be verified, Ls(z) and Hs(z)

constitute the two-channel synthesis filter banks with PR.

2.4.5 Summary and example

If we impose qi,t) = ip (t) or Ls(z) = La (z), the biorthogonal WT defined by (2.45)

to (2.53) becomes orthogonal WT, and the biorthogonal filter banks become

orthogonal filter banks.

Now with the relations between the filter banks and the WT, we can choose filters

from a wide range of wavelet families for subband decomposition.

As an example, Table 2.1 gives the filter coefficients of the biorthogonal 917 WT [2],

which is very popular for image coding. It is symmetric.

Table 2.1 Filter coefficients of biorthogonal 9/7 wavelet transform

n la(n) 1.J2 ls(n) 1.J2

0 0.602949018236 0.557543526229

±1 0.266864118443 0.295635881557

±2 -0.078223266529 -0.028771763114

±3 -0.016864118443 -0.045635881557

±4 0.026748757411 0

2.5 Multi-resolution decomposition

A signal can be decomposed into multi-levels or subbands using two-channel filter

banks as a building block. Figure 2.2 is an example of a 3-level decomposition. The

Chapter 2. The Wavelet Transform 24

input signal is decomposed into two subbands, and the decomposition is iterated on

the low subband output signal. This results in octave decomposition in the frequency

domain, as shown on the scale at the bottom of Figure 2.2.

x(n)

~2

LO

HO

1---------...... HI

~---------------------~H2

o I LO I HO I HI H2 I • Frequency

x(n)

Figure 2.2 Three-level octave decomposition

Ls(z) LO

Ls(z) t 2

Hs(z)

HO

t2 I+-------HI

~------------------------------H2

Figure 2.3 Three-level octave reconstruction

Chapter 2. The Wavelet Transform 25

The octave decomposition is identical to multi-scale WT, as supported by the

wavelet theory discussed in section 2.4. From the wavelet point of view, Figure 2.2

is three-scale WT. Take x(n) as a3,n in (2.59), which is an analysis coefficient of WT

on V 3, then L2, LI, and LO are coefficients on V 2, V 1, and V 0 respectively, and

H2, HI, and HO are coefficients on W 2, WI, and W 0 respectively.

Figure 2.3 does the opposite of Figure 2.2: three-level octave reconstruction. It is just

the reverse of Figure 2.2, replacing the analysis filters with the synthesis filters and

down-sampling with up-sampling.

The octave decomposition is widely used for multi-resolution decomposition.

2.6 Two-dimensional wavelet transform

The previous sections discussed the 1 D WT. For 2D images, we need the 2D WT.

We can extend the ID WT to 2D WT simply by applying the ID WT to the two

spatial dimensions separately. In this case, the corresponding transfer function

B(z]' zz), where z/ and zz relate to the two spatial dimensions, is separable,

B(zl, zz) = B!Czl)Bz(zz). Non-separable B(z/, zz) is much more complex

mathematically. As a polynomial of two variables, factorisation is not possible in

general. It is beyond our discussion.

Figure 2.4 shows the separable 2D wavelet analysis. First, 1 D horizontal filter banks

are used for each rows of the 2D image pixels, x(m,n), resulting in the horizontal low

(L) and high (H) subband. Then, 1 D vertical filter banks are applied to each columns

of Land H, resulting in four subbands: LL, LH, HL, and HH, where the first letter of

the two- letter acronym denotes the horizontal L or H subband and the second

denotes the vertical L or H subband. The same filter banks are used for horizontal

and vertical filtering in Figure 2.4.

Chapter 2. The Wavelet Transform

Horizontal filter
____ iAI~_l!.g !~_~~ 2 ___ _

x(m,n)

Vertical filter

__J~~~l}g_~<!!l!I]!I}~L_

Figure 2.4 2D separable wavelet analysis

Horizontal filter Vertical filter

LL

LH

HL

HH

r-----{~}~p~!~~~l-----, r - - - ~~~~I!~LC:~~~~I!~_ ---,

i(m,n)

, , , , , , ,
:L

._----------------------,

Figure 2.5 2D separable wavelet synthesis

LL

LH

HL

HH

26

Chapter 2. The Wavelet Transform 27

Figure 2.5 shows the 2D separable wavelet synthesis. It is just the reverse of the 2D

separable wavelet analysis, with synthesis filters for analysis filters and up-sampling

for down-sampling.

For 2D multi-resolution decomposition, the 2D wavelet analysis in Figure 2.4 is

repeated on LL. As the result, 3-scale 2D WT produces 10 subbands, as shown in

Figure 2.6. We call the resulting data in the transform domain wavelet coefficients

(WC).

LLO HLO HLI HL2

LHO HHO

LHI HHI

LH2 HH2

Figure 2.6 Subbands of 3-scale wavelet transform

2.7 Edge extension

When an input signal of length M is convolved with a FIR filter of length N, the

valid output is of length M + N - 1, which is normally longer than the input. It is

desired that the length of the output does not expand after the WT in image coding.

Chapter 2. The Wavelet Transform 28

The solution is to take the finite length input as part of a periodic signal. We know

that the output is periodic, and the period is the same as the input. We can keep only

a period of the output without losing any information. Now we discuss the formation

of the periodic signal.

The direct method is to repeat the input periodically, as shown in Figure 2.7. In

practice, the signal is normally longer than the FIR filters, and we just need to repeat

M-l samples of the input in order to calculate a whole period of the output, as

indicated in Figure 2.7. So, it is in fact edge extension. We call this method periodic

extension.

Input Period

; :
~ Samples to calculate a period of output~
: :: . ..
: ::
i Filter length. i Filter length i
:II1II .: :II1II ~:

ffil..;:: .. illTI ffil.:;: .. illTI
Figure 2.7 Periodic extension

Another method is symmetric periodic extension. We flip over the input and append

to the original input (with one sample at the end overlapped), then repeat the new

extended signal periodically (again with one sample at the end overlapped), as

shown in Figure 2.8. The resulting signal is periodic, and is symmetric around the

overlapped sample at both ends of the input. The output signal after convolution is

also periodic, and can be symmetric or anti-symmetric if the filter used is symmetric

or anti-symmetric (also known as linear phase in signal processing terminology). For

linear phase PR real FIR filter banks, the filters can only be biorthogonal and of odd

Chapter 2. The Wavelet Transform 29

length (M = 2m + J), except the trivial Haar filters [1]. In practice, we just need the

m samples added at both ends of the input in order to calculate all the output samples

that are not redundant. As in periodic extension, we call this method symmetric edge

extension.

Period

J Input

2

Figure 2.8 Symmetric extension

Notice that at the edge, the added samples in symmetric extension are from the

neighbours, and those in periodic extension are from the other end of the input. In

image coding, neighbouring image pixels tend to be similar (because they are

probably from the same area of the same object), while the pixels at different ends of

rows or columns are relatively far away and thus less correlated. So, at the edge in

transform domain, the output signal in the symmetric extension case is probably

smoother than that in the periodic extension case, while the later is likely to have

jitters. For better coding performance, we use symmetric extension except otherwise

stated.

Similar edge extensions were used for arbitrarily shaped visual object coding in [7],

and more edge extensions were discussed there. But to our knowledge, if we use

linear phase FIR filter banks, the symmetric edge extension presented here is the best

for image compression, and can retain PR no matter the input is of odd or even

length.

Chapter 2. The Wavelet Transform 30

The periodic extension and the symmetric periodic extension were also discussed in

[8]. But for the symmetric periodic extension presented in [8], the first and the last

input samples appear in the extended signal, without overlapping of these samples

for flipping and periodic repeat, as shown in Figure 2.9. If the input is of odd length,

it is not possible to get PR without expanding the signal length in WT, as explained

at the end of section 2.8.

1:1 I 2 I

Period

1 Input

IN-q :1 N IN-II I 2 2

Figure 2.9 Symmetric extension without overlapping

If we use IIR filters, it is difficult to find an arrangement without expanding the

signal length under the condition of PRo

2.8 Arrangements of wavelet coefficients

As discussed previously, the WT will keep the size of 2D signals. For a M x N

image, the corresponding WCs are also of size M x N. For a k-scale WT, it is easy to

keep the signal size if M and N are integer mUltiples of 2k. But for images of

arbitrary size, the WT should be done carefully, especially the down-sampling and

up-sampling. Here we present a scheme, as shown in Figure 2.10 and Figure 2.11.

Input signal samples are numbered starting from 1. To use symmetric edge

extension, the filters are symmetric or anti-symmetric, and of odd length (2m+ 1).

2m+ 1 neighbouring input samples are multiplied with the 2m+ 1 filter coefficients in

order, and sum up to an output sample. We align this output sample at the centre of

Chapter 2. The Wavelet Transform 31

the 2m+ 1 input samples. After low-pass analysis filtering using La(z), we keep the

odd numbered samples by down-sampling. After high-pass analysis filtering using

Ha(z) , we keep the even numbered samples by down-sampling. The down-sampled

outputs are also symmetric. The samples outside the boundary of the input are

redundant. They are rejected, keeping the output the same size as the input. On the

synthesis side, the Hand L signals are up-sampled by inserting a zero between every

sample, and then extending symmetrically at the edge to recover the symmetric

periodic signal before synthesis filtering.

In Figure 2.10, the total number of input samples is odd (2n+ 1). The high subband

output signal (H) is one sample shorter than the low subband (L). The edge extension

of L signal after up-sampling, for synthesis, is the same as that of the input for

analysis. For H signal, an extra zero should be inserted at both ends before applying

the same edge extension as that for the input.

Edge Input (odd length) Edge
extension ~ extension

· .. 1 3 I 2 1 2 I 3 I 4 I I 2n-1 1 2n 12n+1 2n 1 2n-1 I .. ·

Edge

~I"l
L (odd numbered)

~I"
Edge

extension extension

.. ·1 3 I 3 12n-1 1 12n+! 12n-] I .. ·
Edge

2 ~I"
H (even numbered)

t
Edge

extension extension

.. · 1 1 2 1 4 1 2n I I .. · . 2n

Figure 2.10 Down/up-sampling and edge extension in case of odd length input

In Figure 2.11, the input samples are of even length. The two output subband signals

(H and L) are of the same length. For synthesis, after up-sampling, an extra zero is

inserted at the right side of the L signal and at the left side of the H signal, then the H

Chapter 2. The Wavelet Transform 32

and L signals are extended symmetrically at the edge in the same way as that to the

input for analysis.

Edge .. Input (even length) Edge
extension r

~ .. extension

.. ·1 3 1 2 1 2 I 3 I 4 1 1 2n-2 1 2n-1 I 2n 2n- 1 1 2n-2 I .. ·

Edge

~I~ 1

L (odd numbered) I Edge
extension

.. ·1 3 1 3 1 2n-1 1

~:~ ">1"";0"
I .. · 2n-1 1

Edge

2t
H (even numbered)

2"~1~
Edge

extension extension

.. · 1 1 2 1 4 1 12n-2 1 1 2n-2 I .. .

Figure 2.11 DOWn/up-sampling and edge extension in case of even length input

The edge extension in Figure 2.10 and Figure 2.11 is for symmetric filters. In the

anti-symmetric case, the output samples outside the boundary are of the equal and

opposite values as that shown in these figures. So, the edge extension of the Hand L

signals for synthesis should use the equal and opposite values as well.

Now we check the resulting WCs based on the above scheme. Suppose the image is

of size MxN. For a k-scale WT, we get 3k+ 1 subbands, namely, LLO, HLn, LHn and

HHn, where n = 0, 1, ... , k- l.

Denote Rn the number of rows of HLn, and en the number of columns of LHn. For

the convenience of calculation, we set Rk=M , and Ck=N. Rn and Cn can be calculated

according to the following iteration, for n from k-l to 0:

Rn = LCRn+l + J)/2J

CII = LCC'I+l +1)/2J

Where Lx J denotes the integer part of x.

We also denote

2.65

Chapter 2. The Wavelet Transform

'n = LRn+1 12J

en = LCn+1 12J

33

2.66

The size of LLO is Ro x Co, the size of HLn is Rn x Cn• the size of LHn is rn x Cn, and

the size of HHn is rn x Cn.

Take an image of size 50 x 37 as an example, we do a 3-scale WT. The WCs are

arranged as shown in Figure 2.12.

LLO HLO HLI HL2
(7x5) (7x5)

LHO HHO (13x9) (25x18)

(6x5) (6x5)

LHI HH1
,

(12xlO) (12x9)

LH2 HH2

(25x19) (25xI8)

Figure 2.12 Results of 3-scale wavelet transform, 50 x 37 image

Now we explain why the symmetric edge extension without overlapping (shown in

Figure 2.9) cannot get PR if we keep the output the same length as the input in WT,

in case the input is of odd length. The length of the Hand L signals has to be

different, as shown in Figure 2.13. Here inside the boundary, down-sampling is the

same as in Figure 2.10, keeping odd-numbered samples for L signal and even-

numbered samples for H signal. But outside the boundary, the even-numbered

samples are kept outside the L signal, and the odd-numbered samples are kept

Chapter 2. The Wavelet Transform 34

outside the H signal. The down-sampled output is no longer symmetric. We can still

reject the output samples outside the boundary and get the Hand L signals. But it is

impossible to recover the rejected samples from the Hand L signals. For synthesis,

the edge extension after up-sampling has to be different with that in Figure 2.10. The

edge extension of the up-sampled L signal can be the same as that in Figure 2.9, but

an extra zero need to be inserted on each side of the up-sampled L signal before the

same edge extension, as shown in Figure 2.13. After edge extension, the first and last

samples of L signal are repeated continuously, and two continuous zeros appear at

both ends of H signal. For signal reconstruction, the continuously repeated samples

in the extended L signal mean unnecessary extra information or redundancy, while

the continuos zeros in the extended H signal mean insufficient information. As the

result, PR cannot be reached.

Edge Input (odd length) Edge
extension extension

.. ·1 2 I I 2 I 3 1 4 I I 2n-l I 2n I 2n+ I 2n+ 1 1 2n I· ..

Edge I L (odd numbered) I Edge
extension ____ -t--------.:...----~--------l.~ ... ~ extension

... 1 1 I 1 3 12n-1 1 12n+1 2n+ll I ...

Edgo I
oxtonsion ~:~

... 1 2 1 2

H (even numbered)

I 4 I 2n

Edge
extension

1 2n I···

Figure 2.13 Edge extension without overlapping in case of odd length input

2.9 Summary

In this chapter, we have reviewed filter banks and the wavelet transform (WT). The

nece sary and sufficient conditions for perfect reconstruction CPR) were addressed.

Chapter 2. The Wavelet Transform 35

We showed that the PR filter banks are biorthogonal, and showed the relations of the

filters for PR FIR filter banks. We also showed the relationship between the filter

banks and the WT. We built the biorthogonal WT from PR filter banks, and got PR

filter banks from biorthogonal wavelet transform. Proofs for the above conditions

and relations were presented, and many were proved using our own technique.

We went through separable two-dimensional multi-resolution WT using two-channel

filter banks. It is the key for the transform coding of images. We also discussed the

image edge extension for the WT. Various edge extension methods were given,

together with our choice. The final arrangements of the WCs were presented.

Chapter 2. The Wavelet Transform 36

References

[1] S.Mallat. A wavelet tour of signal processing. Academic Press, 1998.

[2] A.Cohen, I.Daubechies and l-C.Feauveau, 'Biorthogonal bases of compactly

supported wavelets', Communications on Pure and Applied Mathematics, Vol.XLV,

pp.485-560, 1992.

[3] M.Vetterli and C.Herley, 'Wavelets and Filter banks: theory and design', IEEE

Transactions on signal processing, Vo1.40, No.9, pp.2207-32, September 1992.

[4] C.S.Burrus, R.A.Gopinath and H.Guo. Introduction to wavelets and wavelet

transforms: A Primer. Prentice Hall, NJ, 1998.

[5] G.Strang and T.Nguyen. Wavelets and Filter banks. Wellesley-Cambridge Press,

1997.

[6] M.Vetterli and J.Kovacevic. Wavelets and subband coding. Prentice hall, NJ,

1995.

[7] S.Li and W.Li, 'Shape-adaptive discrete wavelet transform for arbitrarily shaped

visual object coding', IEEE Transactions on circuits and systems for video

technology, Vol. 10, No.5, pp.725-43, August 2000.

[8] B.E.Usevitch, 'A tutorial on modem lossy wavelet image compression:

foundation of JPEG 2000', IEEE Signal Processing Magazine, Vo1.l8, No.5,

pp.22-35, September 2001.

Chapter 3

Statistical Properties of Wavelet

Coefficients

To code a data set efficiently, we must know its statistical properties so as to choose

the appropriate coding method. In this chapter, we check the distribution of the

wavelet coefficients (We) of typical natural images, and then explore their

intra-subband, inter-subband (at the same level), and inter-level correlation. It will

help us in understanding the techniques used in the transform coding of images, such

as EZW (embedded zerotree wavelet coding) [1], SPIRT (set partitioning in

hierarchical trees) [2], and EBCOT (embedded block coding with optimised

truncation of the embedded bit-streams) [3], and in our own research.

We use Lena as an example image, as shown in Figure 3.1. It is often used as a test

image in image coding. Its size is 512 x 512, and it is 8 bits per pixel (bpp),

greyscale. We apply the 5-scale biorthogonal 917 wavelet transform (WT) to the

image. The WT results in 16 subbands as shown in Figure 3.2: LLO, HLn, LHn,

HHn, where n is the decomposition level (or resolution) numbered from 0 to 4. We

also denote LLO as LL, and refer HL, LH and HH to any or all (according to the

relevant context) of HLn, LHn and HHn respectively.

Chapter 3. Statistical Properties of Wavelet Coefficients 38

Figure 3.1 Lena (512x512, 8bpp)

Chapter 3. Statistical Properties of Wavelet Coefficients 39

ILLO ~LO
HLl

LHO ~HO
HL2

LHI HHI
HL3

LH2 HH2
HL4

LH3 HH3

LH4 HH4

Figure 3.2 Subbands of 5-scale wavelet transform

Chapter 3. Statistical Properties of Wavelet Coefficients 40

3.1 Distribution of all wavelet coefficients

The maximum value of all WCs of Lena is 6760.5, and the minimum is -1337.3.

Figure 3.3 shows the histogram of the WC values lying between neighbouring

integers. In detail, for a positive integer k, the height of the bar at k represents the

total number of WCs whose values are in the range [k, k+ 1), while the height of the

bar at -k represents the total number of WCs whose value is in the range (-k-l, -k].

At 0, the height of the bar represents the total number of WCs whose value is in the

range (-1, 1).

Wavelet coefficients

6

5 -

2

1

OL---~----L---~----~--~----~--~ ____ ~ __ ~
-2000 -1000 0 1000 2000 3000 4000 5000 6000 7000

Value

Figure 3.3 Distribution of aU wavelet coefficients of Lena (linear axis)

Chapter 3. Statistical Properties of Wavelet Coefficients 41

Wawlet coefficients
105

.----.----,-----,----.-----.----.----.-----.----.

1 0° L-----L_~ Il~ ~"---'--1__1..._____'_____'____'____"_______l
-2000 -1000 o 1000 2000 3000 4000 5000 6000 7000

Value

Figure 3.4 Distribution of aU wavelet coefficients of Lena (log y-axis)

Figure 3.3 shows that most WCs gather round O. To see the distribution clearly, we

use a logarithmic scale for the vertical axis (y). For convenience, we plot a curve

instead of the histogram. The result is shown in Figure 3.4. The curve is not

continuous. This is because in some ranges, the total number of WCs is O.

Figure 3.4 is better than Figure 3.3, but still not clear enough to see the distribution

of WCs. Another way is to use a non-linear horizontal axis (x). We slice the WC

value (x-axis) into non-linear divisions: [2k, 2k+l
) (indexed as k+ 1), (2k+1, _2k]

(indexed as -k-I), and (-1, 1) (indexed as 0), where k is a non-negative integer. All

the WCs of Lena lie in division -11 to 13. The resulting distribution is shown in

Figure 3.5.

Chapter 3. Statistical Properties of Wavelet Coefficients

X 10
4

7

6

5

....
~ 4
E
::l
C

~ 3
I-

2

1

0
-15 -10 -5

Wavelet coefficients

o
Di'.1sion of value

5

42

10 15

Figure 3.5 Distribution of all wavelet coefficients of Lena (non-linear x-axis)

Now we can see the distribution clearly from Figure 3.5. We ignore the three special

divisions -1,0, and 1, which stands for range (-2, -1], (-1,1), and [1, 2) respectively.

On the left negative side, as the division goes closer towards 0, although the interval

of the division becomes shorter (the interval of division -k is half that of division

-k-l, where k is an integer and k > 1), the total number of WCs in the division

becomes larger. It is similar on the right positive side in Figure 3.5. This means that,

the magnitude of most WCs is very small, while most of the signal energy is carried

by a very few number of WCs. This is why we have changed the graph to view the

distribution of WCs from Figure 3.3 to Figure 3.4 and then to Figure 3.5. This

statistical property is good for coding.

Chapter 3. Statistical Properties of Wavelet Coefficients 43

The same co-ordinates (index of the specified non-linear divisions for x-axis) are

used in the graphs of the distribution of the WCs later in this chapter, except as

otherwise stated.

3.2 Distribution of wavelet coefficients on

LL

Now we check the distribution of the WCs on a subband. We check LL first, shown

in Figure 3.6. There are 256 WCs on LL altogether, the maximum value is 6760.5,

the minimum is 1486.1, and the mean value is 3954.0. They lie in division 11 to 13

in Figure 3.6. To compare, we show the distribution of all other WCs (on HL, LH

and HH, excluding LL) in Figure 3.7. Those WCs lie in division -11 to 11, with

maximum 1200.5, minimum -1337.3, and mean -0.0119. Apparently, the WCs on

LL are DC(direct current)-biased, while other WCs are DC-balanced. The minimum

value of the WCs on LL is greater than the maximum value of other WCs. That is

why there are some humps on the right end of Figure 3.5.

We can make the WCs on LL DC-balanced by deducting their mean value. This

suggests a DC-level shifting. The distribution of the WCs on LL after DC-level

shifting is shown in Figure 3.8. Now the maximum value becomes 2806.5, and the

minimum becomes -2467.9. The WCs lie in the division -12 to 12.

As the WCs on LL are only 1/1024 of all WCs in number, and they are often not

overlapped with other WCs in value, the DC-level shifting will not change the

overall statistical property of the WCs very much as described previously in this

section. However, it does reduce the total number of bit planes of the magnitude of

all WCs by 1, and will favour the coding.

Chapter 3. Statistical Properties of Wavelet Coefficients

Wavelet coefficients on LL
140

120

100

...
Q) 80 ..0
E
::I
c:
(ij

60 -0
I-

40

20

0 '---

-15 -10 -5 0 5 10 15
Di\1sion of value

Figure 3.6 Distribution of wavelet coefficients on LL of Lena

X 10
4

7

6

5

...
~4
E
::I
c:

~3
I-

2

1

0
-15 -10

Wavelet coefficients on HL, LH and HH

-5 o
Di\1sion of value

5 10 15

44

Figure 3.7 Distribution of aU wavelet coefficients on HL, LH and HH of Lena

Chapter 3. Statistical Properties of Wavelet Coefficients

50

45

40

35

(j) 30
.0
E
E 25
ca -0 20 I-

15

10

5

0
-15 -10

Wawlet coefficients on LL

-5 o
Division of \'slue

5

45

10 15

Figure 3.8 Distribution of wavelet coefficients on LL of Lena after DC-level

shifting

Chapter 3. Statistical Properties of Wavelet Coefficients 46

3.3 Distribution of wavelet coefficients on

HL, LH and HH

The WCs on LL spread around over their range as shown in Figure 3.8, while the

WCs on HL, LH and HH gather round 0 as shown in Figure 3.7. We need to take this

into consideration for coding, and use different strategies to encode them.

Now we take a close look at the distribution of the WCs on HL, LH and RH, from

various points of view. We check individual subbands first. Figure 3.9 depicts the

distributions of the WCs on HL4, LH4 and HH4. The three subbands are of the finest

resolution -leveI4, and the WCs on them are dominant in number. The three curves

for subband HL4 (solid line), LH4 (dotted line) and HH4 (dashed line) are of similar

shape, and are similar as that for all WCs on HL, LH and HH in Figure 3.7. Further

studies show that the WCs of any HL, LH or HH subband are of similar distribution.

Their distribution is similar in the sense that the majority of WCs gather round 0, and

that the number of WCs in a division increases monotonically as the division getting

closer towards 0 (except division -1, 0 and 1). We treat them as a whole later in this

section.

Now we check the detailed distribution of these WCs inside each division, shown in

Figure 3.10 - Figure 3.19. We use a linear horizontal axis (x) inside each division.

We see again that in every division, the number of WCs in each of the equally

spaced intervals increases monotonically as their value getting closer to 0, except in

Figure 3.13 and Figure 3.19. For Figure 3.13, if we merge every two intervals, it

becomes Figure 3.14, in which the number of WCs increases monotonically as the

value goes towards O. In Figure 3.15 - Figure 3.19, we merge the intervals in the

same way. In Figure 3.19, the left negative side does not increase monotonically.

Chapter 3. Statistical Properties of Wavelet Coefficients 47

This is not surprising if we notice that the total number of WCs is only 44, which is

not enough to observe the typical distribution in a wide range - (-1024, -512]. For

the outermost divisions -11 and 11, which represent range (-2048, -1024] and

[1024, 2048), the total number of WCs are 7 and 2 respectively. It is meaningless to

discuss their distribution.

X 10
4 Wawlet coefficients on lewl 4

2.5

~ \ --- LH

/.1
- HH

2

/r~1
"

/f '~\ ... 1.5 I ,

Q)

/f ':\
.0
E
::J I ,

c
/f ~ n;

'0 I

t- 1 t , , , ,

0.5 t
\ ..
\, ,

0
-15 -10 -5 0 5 10 15

Dh.1sion of value

Figure 3.9 Distribution of wavelet coefficients on level 4 of Lena

Chapter 3. Statistical Properties of Wavelet Coefficients

X 10
4 Wawlet coefficients: value in range (-4, -2] & [2, 4)

2~----.-----.-----------------------,-----,-----,

1.B

1.6

1.4

Q; 1.2
.0
E
E 1
(ij

o
I- 0.8

0.6

0.4

0.2

-3 -2 2 3
Value

Figure 3.10 Distribution of wavelet coefficients of Lena in division ±2

Wawlet coefficients: value in range (-B, -4] & [4, B)
9000r-~-'--'--'----------------------.--'-.r-.-~

BOOO

7000

6000

~ 5000
:J c:
~ 4000
o
I-

3000

2000

1000

O~~--~--------------------------~L-~~L-~~
-7 -6 -5 -4 4 5 6 7

Value

Figure 3.11 Distribution of wavelet coefficients of Lena in division ±3

48

Chapter 3. Statistical Properties of Wavelet Coefficients

Wavelet coefficients: value in range (-16, -8] & [8, 16)
2000

1800

1600

1400

.... 1200 OJ
.D
E
:J 1000 c
(tj -0 800 I-

600

400

200

0
-20 -15 -10 -5 0 5 10 15 20

Value

Figure 3.12 Distribution of wavelet coefficients of Lena in division ±4

500

450

400

350

Qj 300
.D
E
~ 250
(tj .-
(3. 200

150

100

50

0
-40

Wavelet coefficients: value in range (-32, -16] & [16, 32)

-30 -20 -10 o
Value

10 20 30 40

Figure 3.13 Distribution of wavelet coefficients of Lena in division ±5

49

Chapter 3. Statistical Properties of Wavelet Coefficients

Wawlet coefficients: \Ellue in range (-32, -1S] & [1S, 32)
1000

900

800

700

.... SOO
~
E
:l 500 c
(is
'0 400 I-

300

200

100

0
-40 -30 -20 -10 0 10 20 30 40

Value

Figure 3.14 Distribution of wavelet coefficients of Lena in division ±S

....
~
E

Wawlet coefficients: \Ellue in range (-S4, -32] & [32, 64)
SOO~----~----~----~----~----'-----'-----~----~

500

400

~ 300

~
200

100

OL-__ ~LL~~LL~ __ ~ ____ ~ ____ ~ __ ~~LL~UL ____ ~

-80 -so -40 -20 o
Value

20 40 so 80

Figure 3.15 Distribution of wavelet coefficients of Lena in division ±6

50

Chapter 3. Statistical Properties of Wavelet Coefficients

Wavelet coefficients: \alue in range (-128, -64] & [64, 128)
450r-----.-.--.--,-------------------.--.~,_,_--~

400

350

300
....
Q)

~ 250
:::J
c
g 200
~

150

100

50

OL---~~L-~~------------------~L_ __ JL ______ ~

-112-96 -80-64 64 80 96 112
Value

Figure 3.16 Distribution of wavelet coefficients of Lena in division ±7

Wavelet coefficients: \alue in range (-256, -128] & [128, 256)
180.-.--.---.--.------------------------.--,--.--.-,

160

140

120
....
Q)

~ 100
:::J
C

(ij 80
~

60

40

20

O~--~~--------------------------~L-~~L_~~

-224-192 -160 -128 128 160 192 224
Value

Figure 3.17 Distribution of wavelet coefficients of Lena in division ±8

51

Chapter 3. Statistical Properties of Wavelet Coefficients

Wavelet coefficients: value in range (-512, -256] & [256, 512)
70.-,--,--,--,,_----------------------,--,---.--,-,

60

50

~ 40
E
::J
C

~ 30
I-

20

10

o~--~------~----------------------~~------~
~8-384-320-256 256 320 384448

Value

Figure 3.18 Distribution of wavelet coefficients of Lena in division ±9

Wawlet coefficients: value in range (-1024, -512] & [512, 1024)
18.-,--,--,--,,-----------------------~-,,_-.--~

16

14

12

....
Q)

~ 10
::J
C

CiS 8
'0
I-

6

4

2

-896-768 -640 -512 512 640 768 896
Value

Figure 3.19 Distribution of wavelet coefficients of Lena in division ±10

52

Chapter 3. Statistical Properties of Wavelet Coefficients 53

Table 3.1 Mean value of the wavelet coefficients of Lena in each division

Division Range Centre Mean

-11 (-2048, -1024] -1536 -1124.6

-10 (-1024, -512] -768 -776.37

-9 (-512, -256] -384 -343.14

-8 (-256, -128] -192 -175.33

-7 (-128, -64] -96 -88.179

-6 (-64, -32] -48 -43.915

-5 (-32, -16] -24 -22.316

-4 (-16, -8] -12 -10.967

-3 (-8,-4] -6 -5.4905

-2 (-4, -2] -3 -2.8692

2 [2,4) 3 2.8671

3 [4,8) 6 5.4948

4 [8, 16) 12 11.024

5 [16,32) 24 22.07

6 [32,64) 48 44.554

7 [64, 128) 96 87.607

8 [128,256) 192 176.45

9 [256,512) 384 349.43

10 [512, 1024) 768 699.42

11 [1024, 2048) 1536 1192.9

Chapter 3. Statistical Properties of Wavelet Coefficients 54

We list the mean value of the WCs in each division in Table 3.1, together with the

central value of the division. As can be seen, the magnitude of the mean value is

normally less than that ofthe central value (except in division -10).

3.4 Intra-subband correlation

The correlation between the WCs is very important for the strategy used to encode

them. Higher correlation means more redundancy, and more compression could be

achieved in coding if proper strategy is used.

To study the correlation of WCs for image coding, we are more interested in

relations between signals than their absolute value. So, we use the correlation

coefficient rather than the covariance. For the two-dimensional (2D) matrices A and

B, of the same size, we define their correlation coefficient as

I I a(i, j)b(i, j)

(3.1)

Where a(i, j) and b(i, j) are elements of A and B respectively at co-ordinates (i, j).

If B is equal to A shifted by m horizontally and shifted by n vertically, and the

elements shifted in/out of the matrix boundaries are deleted, then r defined in (3.1)

becomes the auto-correlation coefficient of A and is denoted as rem, n).

The value of the correlation coefficients is in the range [-1, 1 J.

We use these definitions throughout the rest ofthis chapter.

Figure 3.20 to Figure 3.22 show the auto-correlation coefficients of the WCs on HL,

LH and HH of level 4 (the finest resolution). At the centre of the figures, reO, 0) = 1,

which has the maximum magnitude. In general, r located close to the centre has

greater magnitude than r outside.

Chapter 3. Statistical Properties of Wavelet Coefficients

(/) -c
.~
o
~ 0.5
o
o
c
o
.~

~ 0
o
o

-.!-
Q)

(/)

-0.5
10

Wavelet coefficients on HL4
"';',

.' . ,:'

Horizontal shift -10 -10

55

10

Vertical shift:

Figure 3.20 Intra-subband correlation of wavelet coefficients of Lena on HL4

(/)

"E
Q)

.(3

~ 0.5
o
o
c
o
.~

Wavelet coefficients on LH4

.... : .

e O~>2:~s:s~£g~$27i1 ...
o
o

-.!­
Q)
(/)

-0.5
10

Horizontal shift -10 -10

10

Vertical shift:

Figure 3.21 Intra-subband correlation of wavelet coefficients of Lena on LH4

Chapter 3. Statistical Properties of Wavelet Coefficients

(J)

"E
.~
u
~ 0.5
o
u
c:
o

'';::;
('Ill

.... : .

Wavelet coefficients on HH4
.. ,;",

:
:

:
;
:

,,·i·
:
:

:
:
:
:
:
i

~ 0 ~~~~~~~~~~~
o
u

,.!..
Q)

(/)

-0.5
10

Horizontal shift -10 -10

56

10

Vertical shift

Figure 3.22 Intra-subband correlation of wavelet coefficients of Lena on HH4

(J) -c:
.~ 0.5

~
o
u
c: 0 o
.~

Q)
~

S -0.5
,.!..
Q)
(/)

-1
10

" . .. '

.. '

Horizontal shift

Wavelet coefficients on HHO

.. '

-10

";'
: ,
!
: ,

... ···i··
", I ,

:
;

-10

10

Vertical shift

Figure 3.23 Intra-subband correlation of wavelet coefficients of Lena on HHO

Chapter 3. Statistical Properties of Wavelet Coefficients 57

Further studies show that as the resolution (decomposition level) decreases, the

surface of rem, n) becomes irregular. An extreme example is shown in Figure 3.23.

We know that each WC corresponds to a square area of the original image. As the

resolution decreases, the corresponding area increases, and rem ,n) is becoming

correlation between regions more than a correlation between pixels. The results here

imply that neighbouring pixels are more correlated than regions. This property is

typical for natural images.

Table 3.2 Auto-correlation coefficients of maximum magnitude (excluding 1) of

wavelet coefficients of Lena on level 1 - 4

sub band (m, n) rem, n)

HLI (-1,0) 0.331395

HL2 (0, -I) -0.29049

HL3 (0, -1) -0.291538

HL4 (0, -1) -0.39712

LHI (-1, 0) -0. 382147

LH2 (-1,0) -0. 333728

LH3 (-1,0) -0.424268

LH4 (-1, 0) -0. 349077

HHI (1, -1) 0.213838

HH2 (-1,0) -0.202929

HH3 (-1,0) -0.241199

HH4 (-1,0) -0. 172336

Chapter 3. Statistical Properties of Wavelet Coefficients 58

However, the surface of r(m, n) is quite similar for resolution 1 - 4. We list r(m, n)

of the maximum magnitude around the centre (excluding r(0, 0» in Table 3.2. Here

we are concerned about the magnitude other than the sign.

The average magnitude of r(m, n) in Table 3.2 is 0.30. We shall use this as a typical

value for the intra-subband correlation coefficient.

3.5 Inter-subband correlation at same level

Now we use definition (3.1) to calculate the inter-subband correlation coefficients at

the same level. Table 3.3 lists the results. The average magnitude is 0.029. We shall

refer to it as typical value.

Table 3.3 Inter-subband correlation of wavelet coefficients of Lena on HL, LH

and HH of same level

Level LH&HH HL&HH HL&LH

1 -0.076130 -0.008845 0.066117

2 0.057193 -0.034465 0.041589

3 -0.011938 -0.005396 0.063084

4 -0.004136 -0.021111 0.049080

3.6 Inter-level correlation on HL, LH and

HH

From chapter 2, we know that a WC of a coarse level corresponds to four WCs of the

next fine level. To see the inter-level correlation, we correlate the WCs of the coarse

level with the WCs at one of the four corresponding spatial orientations on the fine

Chapter 3. Statistical Properties of Wavelet Coefficients 59

level. We get four correlation coefficients, and choose the value of maximum

magnitude as the final result, as listed in Table 3.4. Their average magnitude is 0.13,

which will be used as the typical value.

Table 3.4 Inter-level correlation coefficients of wavelet coefficients of Lena

Level HL LH HH

0&1 0.214268 0.198743 -0.24192

1&2 0.103587 0.206566 -0.21096

2&3 0.167398 0.117892 -0.116673

3&4 0.114635 0.141768 0.0645661

3.7 Summary

Further experiments show that the WCs of other natural images have similar

statistical properties. We present a group of example images here, of various types:

Barbara (portrait, Figure 3.24), Boats (Figure 3.25), Goldhill (landscape,

Figure 3.26), Mandrill (animal, Figure 3.27), Peppers (vegetable, Figure 3.28), and

Zelda (portrait, Figure 3.29), etc. They are all of size 512 x 512, and are 8 bpp,

greyscale. They will be used later in the thesis. 5-scale biorthogonal WT is used.

Chapter 3. Statistical Properties of Wavelet Coefficients 60

Figure 3.24 Barbara

Chapter 3. Statistical Properties of Wavelet Coefficients 61

Figure 3.25 Boats

Chapter 3. Statistical Properties of Wavelet Coefficients 62

Figure 3.26 Goldhill

Chapter 3. Statistical Properties of Wavelet Coefficients 63

Figure 3.27 Mandrill

Chapter 3. Statistical Properties of Wavelet Coefficients 64

Figure 3.28 Peppers

Chapter 3. Statistical Properties of Wavelet Coefficients 65

Figure 3.29 Zelda

Chapter 3. Statistical Properties of Wavelet Coefficients 66

The distribution of the WCs on LL (after DC-level shifting) is shown in Figure 3.30,

and Figure 3.31 shows the distribution of other WCs. As can be seen, the WCs on

LL spread around, while other WCs gather round O. For the WCs on HL, LH and

HH, as the division of their values (except 0 and ± 1) goes close towards 0, the width

(range of values) of the division is halved, but the total number of WCs in the

division increases. This statistical property explains the advantage of bit-plane

coding of the WCs. In the successful transform coding algorithms, e.g., EZW,

SPIHT, and EBCOT, the WCs are all encoded bit-plane by bit-plane, from the most

significant bits (MSB) down to the least significant bits (LSB).

The mean value of the WCs in each division is listed in Table 3.5. It can be seen that

the magnitude of the mean value is always lower than the magnitude of the central

value of the division (with only one exception: division -10 of Lena). The difference

between the two magnitudes increases as the range (width) of the division increases.

Our work will exploit this property to increase the compression of natural images.

Table 3.6 lists the typical value of intra-subband, inter-subband (at the same level)

and inter-level correlation coefficients. The average value for these images is 0.32,

0.022 and 0.10 respectively. Compared with the maximum value of 1, the

intra-subband correlation is very high, while the inter-subband correlation is

relatively low. This suggests that it could be most fruitful to take full advantage of

the intra-subband for compression in image coding. Some more compression could

still be obtained to exploit the inter-subband correlation at the same level, although it

is the worst among the three. The inter-level correlation is always in the middle,

between the intra-subband and the inter-subband correlation, but relatively close to

the intra-subband and far away from inter-subband, which implies that it is also very

important for image compression.

Chapter 3. Statistical Properties of Wavelet Coefficients

90

80

70

60
....
Q)

.0 50 E
:J
C

co 40 -0
I-

30

20

10

0
-15 -10

Wavelet coefficients on LL

-5

- Zelda
Barbara
Boats
Goldhill
Mandrill
Peppers

o
Dil.1sion

5 10

Figure 3.30 Distribution of wavelet coefficients on LL

15

Wavelet coefficients on HL, LH and HH X 10
4

8~--~--~--~---~~==~====~

.....
Q)
.0

7

6

5

E
~ 4
co o
I- 3

2

OL---­
-15 -10

Dil.1sion

- Zelda
Barbara

- Boats
......... Goldhill

Mandrill
Peppers

10 15

Figure 3.31 Distribution of all wavelet coefficients on HL, LH and HH

67

Chapter 3. Statistical Properties of Wavelet Coefficients 68

Table 3.5 Mean value of the wavelet coefficients in each division

Div Centre Barbara Boat Goldhill Lena Mandrill Peppers Zelda Average

-12 -3072 / / / / / -2356.1 / -2356.1

-11 -1536 -1088.7 -1362.1 -1175 -1124.6 / -1226.4 -1124.6 -1173.7

-10 -768 -684.63 -676.99 -670.17 -776.37 -645.8 -697.76 -776.37 -692.69

-9 -384 -353.65 -343.97 -339.87 -343.14 -335.5 -358.3 -343.14 -347.34

-8 -192 -170.04 -175.66 -174.66 -175.33 -163.78 -172.92 -175.33 -172.32

-7 -96 -85.412 -87.389 -86.421 -88.179 -84.888 -89.622 -88.179 -87.225

-6 -48 -45.264 -44.434 -44.01 -43.915 -44.4 -44.971 -43.915 -44.433

-5 -24 -22.502 -22.291 -22.129 -22.316 -22.477 -22.079 -22.316 -22.252

-4 -12 -11.348 -11.295 -11.11 -10.967 -11.418 -10.729 -10.967 -11.108

-3 -6 -5.6158 -5.6257 -5.6721 -5.4905 -5.8274 -5.5733 -5.4905 -5.5999

-2 -3 -2.8503 -2.8354 -2.907 -2.8692 -2.9716 -2.9074 -2.8692 -2.8836

2 3 2.8439 2.832 2.9144 2.8671 2.9662 2.9143 2.8671 2.8838

3 6 5.5999 5.6019 5.6708 5.4948 5.8383 5.5797 5.4948 5.5974

4 12 11.341 11.284 11.093 11.024 11.431 10.708 11.024 11.117

5 24 22.48 22.198 22.065 22.07 22.461 22.035 22.07 22.207

6 48 45.317 44.223 43.836 44.554 44.441 44.326 44.554 44.429

7 96 85.166 87.048 86.485 87.607 85.711 88.749 87.607 86.983

8 192 169.73 174.78 171.78 176.45 166.86 179.14 176.45 172.57

9 384 347.26 343.29 342.48 349.43 341.88 349.72 349.43 345.77

10 768 702.19 644.72 657.2 699.42 611.11 683.92 699.42 667.57

11 1536 1313.7 1257.1 / 1192.9 / 1341.4 1192.9 1244.6

Chapter 3. Statistical Properties of Wavelet Coefficients 69

Table 3.6 Typical correlation coefficients

Intra-subband Inter-subband Inter-level

Barbara 0.36 0.035 0.11

Boat 0.42 0.026 0.097

Goldhill 0.35 0.012 0.086

Lena 0.30 0.029 0.13

Mandrill 0.19 0.015 0.063

Peppers 0.31 0.013 0.15

Zelda 0.34 0.027 0.098

Average 0.32 0.022 0.10

In fact, the zerotree technique used in EZW and SPIHT takes advantage of the

inter-level correlation, and exploits intra-subband correlation to some limited extent.

EBCOT exploits mainly the intra-subband correlation, more thoroughly and flexibly

than the zerotree technique. The performance of EBCOT is similar to or a little better

than that of EZW and SPIHT, and was adopted as the basic encoding engine of

JPEG2000 [4]. This result reflects the relation of intra-subband and inter-level

correlation. If we find a way to exploit intra-subband correlation more flexibly in

SPIHT, the performance could be improved.

Chapter 3. Statistical Properties of Wavelet Coefficients 70

References

[1] I.M.Shapiro, 'Embedded Image Coding Using Zerotrees of Wavelet

Coefficients', IEEE Transactions on Signal Processing, Vol.41, No.12, pp.3445-62,

December 1993.

[2] ASaid and W.APearlman, 'A new, fast, and efficient image codec based on set

partitioning in hierarchical trees', IEEE Transactions on Circuits and Systems for

Video Technology, Vol.6, No.3, pp.243-50, June 1996.

[3] D.Taubman, 'High performance scalable image compression with EBCOT',

IEEE Transactions on Image Processing, Vo1.9, No.7, pp.1158-70, July 2000.

[4] ASkodras, C.Christopoulos and T.Ebrahimi, 'The IPEG2000 Still Image

Compression Standard', IEEE Signal Processing Magazine, Vol. 18, No.5, pp.36-58,

September 200 1.

Chapter 4

SPIHT Image Coding

The SPIRT (set partitioning in hierarchical trees) algorithm for image coding was

introduced by A.Said and W.A.Pearlman [1]. It is a fine-tuned version of EZW

(embedded zerotree wavelet) coding presented by J.M.Shapiro [2]. Both SPIRT and

EZW are based on the zerotree technique, but the performance of SPIRT is much

better than EZW. We review the SPIRT algorithm here, along with the zerotree

technique.

The SPIRT image coding system is made up of three main parts: wavelet transform

(WT), SPIRT coding and entropy coding, as indicated in Figure 4.1. The WT maps

image pixels to wavelet coefficients (WC) , as addressed in chapter 2. The SPIRT

coding is the core of SPIRT image coding system, including the organisation of

WCs, quantisation and ordered bit-plane coding. The reSUlting bit-stream can be

compressed further by entropy coding, but this is optional. Arithmetic coding is used

for the entropy coding in the SPIRT image coding system. We discuss the SPIRT

coding and the arithmetic coding in detail in this chapter.

Image
pixels

Image
pixels

....

.. Wavelet .. SPIRT ... analysis ... encode

Wavelet SPIRT
synthesis ~ decode

Figure 4.1 SPIHT image coding system

... Arithmetic

... encode

~ ..

Arithmetic
decode

Chapter 4. SPIHT Image Coding 72

This chapter is organised as follows. Section 4.1 and 4.2 introduce organisation of

WCs and quantisation in SPIHT coding. Section 4.3 explains the ordered bit-plane

coding. The procedure of SPIHT coding is presented in section 4.4, and arithmetic

coding in section 4.5. Section 4.7 summarises the chapter.

4.1 Organisation of wavelet coefficients

The WT maps image pixels to WCs. In chapter 2, we discussed the arrangement of

WCs in matrix form. For a K-scale WT and a RK x CK image, subband LLO is of size

Ro x Co, HLn is of size Rn x en, LHn is of size rn x Cn, and HHn is of size rn x en,

where n = 0, ... , K-1, and

Rn =L(Rn+1 +1)/2j

Cn =L(Cn+1 +1)/2j

rn = LRn+l /2j

en = LCn+1 /2j

If the horizontal and vertical length of the image are integer multiples of 2K
, we have

Rn = rn and Cn = en. For HL, LH or HH, corresponding to every WC on resolution

level n, there are four WCs on level n+ 1 which have the same spatial orientation, as

shown in Figure 4.2.

If the horizontal or vertical length of the image is not an integer multiple of 2K
, some

Rn and Cn might be different from rn and en. In this case, zeros are padded after the

last row/column of each subband if necessary, for the wavelet coefficients to fit into

a structure for a (2K x Ro) X (2 K x Co) image, so that the number of rows / columns is

the same for all subbands on each level. After padding, for HL, LH or HH,

corresponding to every WC on resolution level n (n = 0, 1, ... , K-2), there are four

WCs on level n+ 1 which have the same spatial orientation, as in Figure 4.2.

Chapter 4. SPIHT Image Coding 73

Figure 4.2 Correspondence of wavelet coefficients on different levels

Through padding (if needed), the organisation of WCs in the above two cases

becomes identical. Suppose the size of subband LLO is Mo x No, then

Rn = rn = Mo·2n, en = en = No·2n, and the matrix of all WCs is of size M x N, where

M = Mo-2K and N = No·2K. Denote W the matrix of WCs, and wei, j) its element,

o :!{ i < M and 0 :!{ j < N. The correspondence of WCs on neighbouring resolution

levels which have same spatial orientation, shown in Figure 4.2, can be described as

follows.

For Mo :!{ i < MI2 or No :!{ j < NI2, w(i, j) is on subband HLn, LHn or HHn

(0 :!{ n < K-1). w(2i, 2j), w(2i, 2j+1). w(2i+1, 2j) and w(2i+l, 2j+1) are the four

corresponding WCs in resolution level n+ 1. The four WCs, as a set, are denoted as

O(i, j).

Every element in O(i, j), if it is not on resolution level K-J, can have four

corresponding WCs of its own on the next finer resolution. Starting from wei, j), the

correspondence can be iterated till resolution level K-1. All descendant WCs of

Chapter 4. SPIRT Image Coding 74

wei, j), as a set, are denoted as D(i, j). Here is a tree structure, a hierarchical tree.

Every node corresponds to a We. The root of tree is at (i, j). The leaf nodes are on

the finest resolution - level K-l. Every node, except the leaf nodes, has four

branches, which lead to four direct descendants or offspring - O(i, j). D(i, j) is full

as a tree, every node is occupied by a WC, except the root. The total number of

resolution levels covered by a tree is called the depth of the tree. Normally, O(i, j) is

a subset of D(i, j), its depth is 1. If (i, j) is on resolution level K-2, O(i, j) = D(i, j).

Till now, the root of tree can only be on HL, LH and HH. It is extended to LLO in the

following. The WCs on LLO can be denoted by wei, j), where 0 ~ i < Mo and

o ~j < No. These WCs are grouped in four, as shown in Figure 4.2. A group is made

up of w(2i, 2j), w(2i, 2j+ 1), w(2i+ I, 2j) and w(2i+ 1, 2j+ I), where 0 ~ i < Mr/2 and

o ~j < Nr/2.

HLO, LHO and HHO are of the same size as LLO. Their WCs are also grouped in

four, the same as the WCs on LLO, shown in Figure 4.2. The four WCs in a group

are w(mo+2i, no+2j), w(mo+2i, no+2j+l), w(mo+2i+l, no+2j) and

w(mo+2i+l, no+2j+l), where 0 ~i < Mr/2, 0 ~j < Nr/2, and (mo, no) is the index of

the first WC at the top-left corner in relevant subband. For HLO, mo = 0, no = No. For

LHO, rno = Mo, no = O. For HHO, mo = Mo, no = No.

Corresponding to each group on LLO, there is a group on HLO, LHO and HHO, which

has the same spatial orientation. The group of WCs on HLO, as a set, is defined as

0(2i, 2j+l), the group on LHO is defined as 0(2i+l, 2j), and the group on HHO as

0(2i+l, 2j+l). The roots of the three sets lie in the corresponding group on LLO, as

shown in Figure 4.2. D(2i, 2j+l), D(2i+l, 2j) and D(2i+l, 2j+l) are also defined

accordingly. Note that the top-left WC at (2i, 2j) in a group on LLO does not have

any descendant.

Chapter 4. SPIHT Image Coding 75

If Mo or No is odd, the last row or column of WCs on LLO cannot be grouped. In

other words, these WCs do not have any descendant.

Another type of tree, L(i, j), is also defined, as follows:

L(i, j) = D(i, j) - O(i, j)

O(i, j), D(i, j) or L(i, j) refers to a specific tree with root at (i, j). Without index, 0, D

or L refers to the type of trees. D and L are two key type of trees to organise WCs on

HL, LH and HH in the SPIHT coding. They are hierarchical trees in structure.

4.2 Successive approximation quantisation

Successive approximation quantisation is used in SPIHT image coding.

Denote a wavelet coefficient as x. For a given threshold T, x is significant if Ix I ~ T;

otherwise, x is insignificant.

For -2T < x < 2T, x is quantised to y, as follows:

If -2T < x 5 -T (significant), y = -3Tf2;

If -T < x < T (insignificant), y = 0;

If T 5 x < 2T (significant), y = 3Tf2;

For significant x, Ixl- T is defined as the residue. It is always positive, no sign is

needed.

The quantisation is applied to all WCs. Then the threshold is reduced by half and

becomes Tf2. The previous insignificant WCs (-T < x < n will be quantised using

the new threshold. The residue of the previous significant WCs will also be

quantised using the new threshold, giving new quantisation results together with the

previous quantisation.

The procedure repeats until the coding ends. As the threshold T becomes smaller, the

quantisation becomes finer: the maximum quantisation error (= T(2) becomes

Chapter 4. SPIRT Image Coding 76

smaller, and y approximates x more and more accurately. From this point of view, it

is a successive approximation quantisation.

4.3 Ordered bit-plane coding

A binary symbol is coded every time the magnitude (or residue) of a WC is

compared with the threshold during quantisation. If the WC (or residue) is

significant, a binary symbol '1' is produced; if the WC (or residue) is insignificant, a

binary symbol '0' is produced. The binary symbol indicates the significance of the

WC (or residue). For a WC, another binary symbol is produced following the

significance symbol, indicating the sign. A residue has no sign.

Normally, the thresholds used for quantisation are integer powers of 2: T = 2n
, n is

an integer. In successive approximation quantisation, n decreases by I after each

round.

We express the value of WCs with a sign bit and the magnitude in binary mode, and

number the bits for magnitude from the least significant bit (LSB) up to the most

significant bit (MSB) with integer starting from 0, as shown in Figure 4.3. Ignoring

the sign bit, the coding with quantisation using threshold T = 2n is in fact getting the

n-th bit of the magnitude. The coding with successive approximation quantisation is

to get the magnitude bit by bit, from MSB to LSB. For the whole WCs, the coding is

bit-plane by bit-plane, from MSB to LSB (shown in Figure 4.4). We call it ordered

bit-plane coding.

2 0

E:] 0-1 --'-_----L.---'_'---J

Sign MSB LSB

Figure 4.3 Value of wavelet coefficient in binary mode

Chapter 4. SPIHT Image Coding 77

Bit planes

MSB

LSB

Vertical

Figure 4.4 Bit-planes of wavelet coefficients

4.4 Procedure of SPIHT coding

As described in section 4.1, the WCs on HL, LH and HH are organised in

hierarchical spatial-orientation trees. To apply the ordered bit-plane coding described

in section 4.3, a tree is defined to be insignificant if all its WCs are insignificant;

otherwise the tree is significant. In the SPIHT coding, an insignificant tree produces

a binary symbol '0', and a significant tree produces a binary symbol' 1'. If a tree is

significant, it will be partitioned successively, resolution by resolution along the

hierarchy towards the finest resolution, to reach the significant WCs. Individual WCs

and/or subsets are produced during partitioning.

Three ordered lists are used in SPIHT coding, called list of insignificant sets (LIS),

list of insignificant WCs (LIP, P for pixel - we keep the original name used in [1 n,

and list of significant WCs (LSP). The LIS lists all the trees which have not been

found to be significant. There are two types of tree, D and L. Given the matrix of

WCs, a tree in the LIS can be identified by its type and index of root. A WC in the

Chapter 4. SPIRT Image Coding 78

LIP or the LSP can be identified by its index provided that the matrix of WCs is

known. For encoding, we can store the residues of significant WCs in the LSP

instead of their index, as the residues are all what we need, and it is one value while

the index contains two integers.

The three lists are scanned for coding, and each entry is tested to get its significance

as in section 4.2. The order of WCs or trees in a list is important, it must be the same

for encoding and decoding.

Now we introduce the procedure of SPIRT coding. It consists of four steps in order:

initialisation, sorting pass, refinement pass, and quantisation-threshold update. They

are discussed in the following paragraphes.

LLO HLO

------------------~

LHO HHO

------------------~ ------------------~

o No-l No 2No- l

o

Mo-l

Mo

2Mo-l

Figure 4.5 Last rows and columns of HLO, LHO and HHO

Chapter 4. SPIHT Image Coding 79

During initialisation, the LIS, the LIP, the LSP and the quantisation threshold are

initialised. All coordinates (index of the WCs) on LLO are added to the LIP, and

those with descendants also to the LIS as trees of D type. If Mo or No is odd, neither

the WCs in the last rows or columns on HLO, LHO and HHO (shown in Figure 4.5)

nor their descendants are included in any tree with root on LLO, so their coordinates

must be added to the LIP, and also to the LIS as trees of D type (for their

desendants). The LSP is emptied. Suppose the maximum magnitude of all WCs

(denoted as A) lie in the range [2n
, 2n

+
1
). That is, the total number of bit planes is

n = LzogzAj Then the initial quantisation threshold is set to be T = 2n.

The LIS and the LIP are processed in the sorting pass. The WCs or their sets are

sorted into two categories according to the current quantisation threshold:

insignificant or significant. Insignificant WCs remain in the LIS, and significant

WCs are moved to the LSP. Similarly, insignificant trees remain in the LIS, and

significant trees are partitioned. The individual WCs produced by set partitioning are

tested, and added to the LIP if insignificant, or added to the LSP if significant. The

subsets produced by set partitioning are added to the LIS for further test (including

the test later at current quantisation threshold).

During the refinement pass, all entries entered the LSP in the previous rounds (i.e.,

except those entered at current quantisation threshold) are tested and coded.

Quantisation-threshold update prepares the threshold T for the next round of coding.

The new threshold becomes half of the previous value. The sorting pass and the

refinement pass will be repeated in the next round.

We summarise the procedure of SPIHT coding in the following. The significance

value of WC w(i, j) is denoted as S(i, j), and the significance value of tree D(i, j) and

Chapter 4. SPIHT Image Coding 80

L(i, j) are denoted as S(D(i, j)) and S(L(i, j)) respectively. S is I (for the significant

WC or tree) or 0 (for the insignificant WC or tree).

Procedure of SPIHT coding

(1) Initialisation:

LIP: (i, j), where i = 0, i, ... , Mo-i andj = 0, i, ... , No-i (for WCs on LLO);

(Mo-i, j+No), (2Mo-i, j) and (2Mo-i, j+No), where j = 0, i, ... , No-2, if Mo is

odd (for last rows of HLO, LHO and HHO, refer to Figure 4.5);

(i, 2No-i), (i+Mo, No-i) and (i+Mo, 2No-i), where i = 0, i, ... , Mo-2, if No is

odd (for last columns of HLO, LHO and HHO, refer to Figure 4.5);

(Mo-i, 2No-i), (2Mo-I, No-i) and (2Mo-I, 2No-i), if Mo or No is odd (for the

bottom-right corner of HLO, LHO and HHO, refer to Figure 4.5).

LIS: D(2i, 2j+i), D(2i+I, 2j) and D(2i+i, 2j+I), where i = 0, 1, ... , McI2-I and

j =0, 1, ... , Nr/2-I (for trees with roots on LLO);

LSP:0.

D(Mo-i, j+No), D(2Mo-I, j) and D(2Mo-i, j+No), where j = 0, i, ... , No-2, if

Mo is odd (for trees with roots in last rows of HLO, LHO and HHO, refer to

Figure 4.5);

D(i, 2No-I), D(i+Mo. No-I) and D(i+Mo, 2No-I), where i = 0, i, ... , Mo-2, if

No is odd (for trees with roots in last columns of HLO, LHO and HHO, refer

to Figure 4.5);

D(Mo-I, 2No-i), D(2Mo-I, No-I) and D(2Mo-I, 2No-I), if Mo or No is odd

(for trees with roots at the bottom-right corner of HLO, LHO and HHO, refer

to Figure 4.5).

T = 2n
, where n = L log2 (max (i.j) (/w (i, j) /)) j, 0 5i < M and 0 5j < N.

Chapter 4. SPIHT Image Coding

(2) Sorting pass:

(2.1) For each entry (i, j) in the LIP do:

(2.1.1) Output Sri, j);

81

(2.1.2) If Sri, j) = J then output the sign of wei, j), add (i, j) to the LSP, and

remove wei, j) from the LIP.

(2.2) For each entry (i, j) in the LIS do:

(2.2.1) If the entry is of type D then

• Output S(D(i, j»;

• If S(D(i, j» = J then

• For each w(k, 1) E O(i, j) do:

• Output S(k, 1);

• If S(k, I) = 1 then output the sign of wei, j), and add (i, j) to the

LSP.

• If S(k, 1) = 0 then add (i, j) to the LIP.

• If (i, j) is not on the second finest resolution then add L(i, j) to the

end of LIS.

• Remove D(i, j) from the LIS.

(2.2.2) If the entry is of type L then

• Output S(L(i, j»;

• If S(L(i, j» = 1 then

• For each w(k, 1) E O(i, j), add D(k, 1) to the end of LIS;

• Remove L(i, j) from the LIS.

(3) Refinement pass:

For each entry (i, j) in the LSP which entered before current round (T > 2n
),

output the n-th bit of wei, j).

Chapter 4. SPIHT Image Coding 82

(4) Quantisation-threshold update:

Decrease n by 1 (halve 1) and go to step (2).

In (2.2) of the procedure, "each entry in the LIS" includes those added to the end of

the LIS at current quantisation threshold.

In the procedure, all branching conditions are based on the significance data S. S is

calculated and output by the encoder, and is available to the decoder. If we replace

all output by input, it becomes the procedure for decoding. Of course, some

information such as image size, the number of WT scales, and the total number of bit

planes of WCs, must be coded in the header and be available to the decoder in

advance.

An additional task of the decoder is dequantisation - to map the binary code of WCs

to an approximated value. All elements of W are initialised to O. When (i, j) is moved

to the LSP at quantisation threshold T = 2n, it is known that 2n ~ / lV(i, j) / < 2n+ J. SO,

the decoder set the magnitude of w(i, j) to the middle value of the range, 1.5 x 2n.

The sign of w(i, j) is also known from the input sign bit in the meanwhile. Similarly,

during the refinement pass, the decoder adjusts the magnitude according to the input

bit - n-th bit of w(i, j): If the input bit is 0, subtract 2n-J from the magnitude;

otherwise, if the input bit is 1, add 2n-i to the magnitude. In this manner, the

distortion gradually decreases during both the sorting and refinement passes.

Due to the ordered bit-plane coding, the encoding and decoding process at a

quantisation threshold reduces the largest distortion of the image pixels, measured by

the mean square error (assuming the WT is unitary). The encoding and decoding can

stop at any point and almost all the coding bits in the truncated bit-streams will

Chapter 4. SPIHT Image Coding 83

contribute to the reconstructed image. This means the coding bit-streams are fully

embedded.

4.5 A simple example

A simple example is used to demonstrate the procedure of SPIHT coding in this

section. Consider the simple 2-scale wavelet transform of a 20 x 16 image. The array

of wavelet coefficients is shown in Figure 4.6. The elements of the array are a(i, j),

where 0 S'i S'20, and 0 S'j S'16.

Since the largest coefficient magnitude is / a(3,2) / = 98 (1100010 in binary), there

are seven bit-planes (DO to D6, where DO is LSB at the right end and D6 is MSB at

the left end), and the initial quantisation threshold is T = 64 (or 2n
, where n = 6).

The initial LIP is shown in Table 4.1. The order of the wavelet coefficients on LLO

in the LIP could be different with that in the table, but must be the same for encoding

and decoding. In the table, they are grouped in four (2 x 2).

The initial LIS is shown in Table 4.2. An alternative order of trees is that the trees on

HL with root at last row of HLO succeed the trees on HL with root at LLO, and the

same order applies to trees on LH and HH. The resulting order of trees is: No. 1 to 4,

followed by No. 13 to 16, then No.5 to 8 and No. 17 to 20, and then No.9 to 12 and

No. 21 to 24. Again the order must be the same for encoding and decoding.

In the sorting pass of SPIHT coding, the LIP is processed first. The entries in the LIP

are scanned one by one in order. The first wavelet coefficient is a(O, 0) = -14. Its

magnitude (= 14) is less than T (= 64 currently), so the encoder outputs a binary

symbol 0 (for insignificant), and a(O, 0) stays in the LIP. It is the same for the

wavelet coefficients No.2 to 14, and thirteen Os are produced for them by the

encoder.

Chapter 4. SPIHT Image Coding 84

o 2:- 4 .5 6 7 R 9 IO 11 12 n 14 15

o -14 -S2 -34 31 3 -7 0 1 1 2 0 -1 2 0 2 -2

-16 -54 -5 19 10 -4 -1 -11 -2 0 1 -2 0 -1 0 -2

2 -31 -45 9 31 13 3 -24 -9 1 0 1 2 -3 1 0 0

-32 -3 98 43 29 -15 -1 -14 3 0 2 -9 0 5 0 -/

5 -34 13 40 -9 -5 0 2 3 0 -2 2 -8 4 0 -3

.5 0 -3 -8 0 -2 5 -8 -1 0 5 -6 0 0 0 0 -2

(> -7 1 9 4 -3 5 3 3 5 3 -6 0 -1 0 -2 -1

7 -16 -13 -13 3 -9 -12 -2 5 -3 0 3 -2 3 -4 2 0

1 21 0 -3 0 0 -5 -5 1 1 0 3 -4 -5 3 0

1 -34 -6 12 -2 -6 2 4 0 -2 1 0 0 -1 0 1

10 0 -1 0 1 3 2 1 0 1 0 0 1 -1 -1 0 0

11 0 -1 0 -4 -4 2 -2 0 1 0 0 4 0 2 0 0

12 0 0 -1 -8 2 -1 -4 -1 0 0 -1 -1 4 -1 0 1

-7 0 -1 3 -1 1 0 0 0 0 1 4 -3 0 0 0

14 8 0 5 20 0 0 -1 -1 0 0 1 -3 0 0 0 0

15 -1 0 -5 -5 2 0 -1 0 0 0 -1 0 0 0 1 0

16 -5 0 0 -5 -1 0 -3 0 -1 1 3 -2 2 0 0 0

17 -8 0 -1 11 0 0 0 1 5 0 0 1 0 -1 0 1

18 0 -6 3 -3 -4 3 0 -1 0 1 -4 3 -4 1 0 -1

19 0 3 -1 -7 1 1 0 0 0 -2 0 0 0 0 0 0

Figure 4.6 Example of 2-scale wavelet transform of a 20 x 16 image

Chapter 4. SPIHT Image Coding 85

Table 4.1 Initial LIP for the example image

No Subband Co-ordinates Value No Subband Co-ordinates Value

1 (0,0) -J4 17 (4,0) 5

r---
2 (0, J) -52 18 LLO (4, J) -34

f----

3 (1,0) -J6 19 (last row) (4,2) J3

f----

4 (J, J) -54 20 (4,3) 40

r---
5 (0,2) -34 21 (4,4) -9

r---

6 (0,3) 3J 22 Last row (4,5) -5

f--

7 (J,2) -5 23 ofHLO
(4,6) 0

r---
8 LLO (1,3) J9 24 (4, 7) 2

I--

9 (2,0) -31 25 (9,0) 1

f--

10 (2, J) -45 26 Last row (9,1) -34

r---
ofLHO

11 (3,0) -32 27 (9,2) -6

-
12 (3, 1) -3 28 (9,3) 12

-
13 (2,2) 9 29 (9,4) -2

-
14 (2,3) 3J 30 Last row (9,5) -6

r--
ofHHO

15 (3,2) 98 31 (9,6) 2

r---

16 (3,3) 43 32 (9, 7) 4

Chapter 4. SPIHT Image Coding 86

Table 4.2 Initial LIS for the example image

No Sub- Tree Wavelet coefficients No Sub- Tree Wavelet

band band coefficients

1 D(O,I) 3,-7, 10,-4; 1, 2, 0,-1,-2, 0, 13 D(4,4) 1, 1, 0,-2

HL
1,-2, 1,0, 1,2, 3, 0, 2,-9

HL
I--

2 D(0,3) 0, 1,-1,-11; 2,0,2,-2, 0,-1, 14 D(4,5) 0,3,1, °
0,-2,-3, 1,0,0, 0, 5, 0,-1

~ (root (root

3 at D(2,1) 13,3,29,-15; 3, 0,-2, 2, 0, 15 at last D(4,6) -4,-5, 0,-1

LLO) 5,-6,0, 5, 3,-6, 0,-3,0, 3,-2 row
r--

4 D(2,3) -24,-9,-1,-14; -8, 4, 0,-3, 0, 16 of D(4, 7) 3,0,0,1

0, 0,-2,-1, 0,-2,-1, 3,-4, 2, ° HLO)

5 D(I,O) 0,-3,-7, 1; 0,-1, 0, 1, 0,-1, 17 D(9,0) 0.-6, 0, 3

LH
0,-4, 0, 0,-1,-8,-7, 0,-1, 3

LH
I--

6 D(1,2) -8, 0, 9, 4; 3, 2, 1, 0,-4, 2,-2, 18 D(9,1) 3,-3,-1,-7

0,2,-1,-4,-1,-1, 1,0, °
I-- (root (root

7 at D(3,0) -16,-13,1,21; 8,0,5,20,-1, 19 at last D(9,2) -4, 3, 1, 1

LLO) 0,-5,-5,-5, 0, 0,-5,-8,0,-1, 11 row
I--

8 D(3,2) -13,3,0,-3,' 0,0,-1,-1,2,0, 20 of D(9,3) 0,-1,0, °
-1, 0,-1, 0,-3, 0, 0, 0, 0, 1 LHO)

9 D(l,I) -2, 5, -3, 5; 1, 0, 0, 1, 1, 0, 0, 21 D(9,4) 0, 1, 0,-2

HH
4, 0, 0,-1,-1, 0, 0, 1,4

HH
~

10 D(1, 3) -8,-1, 3, 3; -1,-1, 0, 0, 0, 2, 22 D(9,5) -4,3,0, °
0, 0, 4,-1, 0, 1,-3, 0, 0, °

!--- (root (root

11 at D(3,1) -9,-12, 0, 0; 0, 0, 1,-3, 0, 0, 23 at last D(9,6) -4, 1, 0, °
LLO) -1, 0,-1, 1, 3,-2, 5, 0, 0, 1

row
~

12 D(3,3) -2,5,-5,-5; 0, 0, 0, 0, 0, 0, 1, 24 of D(9,7) 0,-1, 0, °
0,2,0,0, 0, 0,-1,0, 1 HHO)

Chapter 4. SPIRT Image Coding 87

For the fifth wavelet coefficient, a(3, 2) = 98, the magnitude (= 98) is greater than T,

so the encoder outputs a 1 (for significant), followed by the sign bit 0 (for +), and

a(3, 2) is moved to the LSP, whose residue is 34 now.

The wavelet coefficients No. 16 to 32 are all insignificant. They stay in the LIP, and

seventeen Os are added to the encoded bit-stream for them.

In summary, the encoded bit-stream for the wavelet coefficients in the LIP at T = 64

consists of fourteen Os followed by a 1 and then eighteen Os, which is 0000, 0000,

0000,0010,0000,0000,0000,0000,0.

Then the trees in the LIS are processed. The entries in the LIS are scanned one by

one in order. For any of the initial trees in the LIS, the maximum magnitude is less

than T, so the trees are all insignificant. The trees stay in the LIS, and the encoder

outputs a 0 for every tree. Twenty-four Os are added to the encoded bit-stream.

In the refinement pass at T = 64, since the initial LSP is empty, the encoder does

nothing.

That is the end of the first round of SPIRT coding (T = 64). The length of the

encoded bit-stream is fifty-seven bits. All the binary symbols in the encoded

bit-stream are 0 except the fifteenth.

Now the LIP is the same as that in Table 4.1 except that the entry No. 15 is removed.

The LIS is exactly the same as that in Table 4.2. The LSP has one entry, a(3, 2),

whose residue is 34.

Then the quantisation threshold is reduced by half, T = 32, and n = 5. The sorting

pass and the refinement pass are repeated at the new quantisation threshold in the

second round.

The sorting pass in the second round is similar to that in the first round. The encoded

bit-stream for the LIP is 0110, 1111, 0000, 1111, 0001, 0011, 0100, 0000, 1100,

Chapter 4. SPIRT Image Coding 88

0000, which consists of forty binary symbols. Nine entries are moved from the LIP

to the LSP. Then twenty-four Os are added to the encoded bit-stream for the

twenty-four trees in the LIS which are all insignificant at T = 32.

To demonstrate the processing of a wavelet coefficient whose value is negative, the

second entry in the LIP, a(O, 1) = -52, is picked up as an example to be described

here. It is significant at current quantisation threshold T = 32. The encoder outputs a

1 (for significant), followed by a 1 for the sign (-), and moves a(O, 1) to the LSP (its

residue is 20).

The only entry in the LSP before the second round is a(3, 2) = 98, whose residue is

34 (or 10,0010 in binary). During the refinement pass of the second round, the

encoder outputs a 1, which is D5 of the magnitude/residue of a(3, 2). The new

residue for a(3,2) is 2 (or 0,0010 in binary).

That is the end of the second round. Sixty-five symbols are added to the output

bit-stream. Now there are twenty-two wavelet coefficients in the LIP, twenty-four

trees in the LIS, and ten entries in the LSP.

In the third round, T = 16, and n = 4. The encoded bit-stream for the LIP is 0111,

0010, 1100, 1000,0000, 0000, 000, which consists of twenty-seven binary symbols.

Five entries are moved from the LIP to the LSP. The processing of the LIS is

illustrated in Table 4.3. Steps 3 and 27 are described in the following paragraphs to

demonstrate the partitioning of D and L trees respectively.

Chapter 4. SPIHT Image Coding 89

Table 4.3 Processing of the LIS in the third round

Step Trees to be Output Trees staying Wavelet coefficients Residues added
processed symbols in the LIS added to the LIP to the LSP

1 D(O,I) 0 D(O,I)

2 D(0,3) 0 D(0,3)

3 D(2,I) 100100 a(2,4),a(2,5),a(3,5) a(3,4)

4 D(2,3) 111000 a(2, 7),a(3,6),a(3,7) a(2,6)

5 D(I,O) 0 D(I,O)

6 D(1,2) 0 D(1,2)

7 D(3,0) 1110010 a(7,I),a(8,0) a(7,0), a(8,I)

8 D(3,2) 0 D(3,2)

9 D(1,I) 0 D(1,I)

10 D(1,3) 0 D(1,3)

11 D(3, I) 0 D(3,I)

12 D(3,3) 0 D(3,3)

13 D(4,4) 0 D(4,4)

14 D(4,5) 0 D(4,5)

15 D(4,6) 0 D(4,6)

16 D(4, 7) 0 D(4, 7)

17 D(9,0) 0 D(9,0)

18 D(9, 1) 0 D(9,I)

19 D(9,2) 0 D(9,2)

20 D(9,3) 0 D(9,3)

21 D(9,4) 0 D(9,4)

22 D(9,5) 0 D(9,5)

23 D(9,6) 0 D(9,6)

24 D(9, 7) 0 D(9,7)

25 L(2,I) 0 L(2,I)

26 L(2,3) 0 L(2,3)

27 L(3,0) 1

28 D(7,0) 0 D(7,0)

29 D(7,I) 101000 a(14,2),a(15,2),a(15,3) a(14,3)

30 D(8,0) 0 D(B,O)

31 D(8,I) 0 D(8,I)

Chapter 4. SPIHT Image Coding 90

In Step 3, D(2, 1) are scanned and processed. Since the maximum magnitude of

wavelet coefficients on D(2, 1) is 29, which is greater than T (= 16), D(2, 1) is

significant. The encoder outputs a 1 (for significant). Then D(2, 1) is partitioned to

0(2, 1) and L(2, 1). The four wavelet coefficients on 0(2, 1), including a(2, 4),

a(2, 5), a(3, 4) and a(3, 5), are scanned and processed in the order. The value of

a(2, 4), a(2, 5) and a(3, 5) are 13, 3 and -15 respectively. They are insignificant at

T = 16, so the encoder outputs three Os (one for each). They are added to the end of

the LIP. a(3, 5) (= 29) is significant at T = 16, so a 1 is added to the output

bit-stream, followed by a ° for the sign (+). a(3, 5) is added to the end of the LSP.

L(2, 1) is added to the end of the LIS, which will be processed latter in the same

(third) round at Step 25. D(2, 1) is removed from the LIS in the end. In summary, the

output symbols here for D(2, 1) are 100100.

In Step 27, L(3, 0), which was partitioned from D(3, 0) earlier in the same (third)

round at Step 7, are processed. The maximum magnitude of wavelet coefficients on

L(3, 0) is 20, which is greater than T, so L(3, 0) is significant. The encoder outputs a

1 (for significant), and partitions L(3, 0) to four subtrees - D(7, 0), D(7, 1), D(B, 0)

and D(B, 1). The four subtrees are then added to the end of the LIS, which will be

processed latter in the same (third) round at steps 28 to 31. L(3, 0) is removed from

the LIS.

In the refinement pass of the third round, the ten entries in the LSP at the beginning

of the round are scanned one by one in order, and ten binary symbols (0110,0000,00)

are added to the output bit -stream as the result. The other ten entries added to the

LSP in the sorting pass of the same (third) round (five from the LIP and five from

the LIS) are not processed in this (third) round.

Chapter 4. SPIHT Image Coding 91

By the end of the third round, there are 211 encoded binary symbols in the output

bit-stream, which is summarised in Table 4.4.

Table 4.4 Output bit-stream in the first three rounds of SPIHT encoding

T List Total No. Symbols

LIP 33 1-33 0000,0000,0000,0010,0000,0000,0000,0000,

64 0

LIS 24 34-57 0000,0000,0000,0000,0000,0000

LSP 0

LIP 40 58-97 0110, 1111,0000, 1111,0001,0011,0100,0000,

32 1100,0000

LIS 24 98-121 0000, 0000, 0000, 0000, 0000, 0000

LSP 1 122 1

LIP 27 123-149 0111,0010,1100,1000,0000,0000,000

16 LIS 52 150-201 0010,0100, 1110,0000, 1110,0100,0000,0000,

0000,0000,0010,1010,0000

LSP 10 202-211 0110, 0000, 00

The procedure can be repeated again and again, till the desired coding rate or PSNR

is reached. Only integer values are listed in Figure 4.6. In fact, any real value can be

encoded by SPIHT coding. For the fractional part, T = 2n
, where n < O.

4.6 Arithmetic coding

The output of the SPIHT encoding process is a binary bit-stream. It can be

compressed further using entropy coding (or Shannon coding) based on the

Chapter 4. SPIHT Image Coding 92

probabilities of symbols. The arithmetic coding algorithm by Witten et al. [3] is used

for entropy coding here.

The simplest implementation is to compress the output bit-stream of SPIHT

encoding using arithmetic coding with an adaptive model of two symbols for binary

1 and o. It is more efficient if various models are used to exploit various distribution

patterns of trees and individual WCs in the SPIHT coding.

We review briefly arithmetic coding using the adaptive model. Full details of the

implementation can be found in [3]. The set of coding symbols, Xn (n = 1, 2, ... , M),

are predefined and ordered. The frequency of each symbol is counted as they appear,

and every oncoming symbol is encoded and decoded based on the established

statistical distribution. The probability of each symbol, denoted as Pn, is calculated

according to the frequency of symbols, and mapped onto a range (denoted as Pn)

between 0 and 1 in order, as indicated in Figure 4.7. The boundaries of Pn are Uno}

n

and Un, where Uo = 0 and Un = I, Pm for n = 1, 2, ... , M. The width of P n is
m=)

Un - Uno} = pn.

Un-l

o Uo

Figure 4.7 Models for the probability of symbols in arithmetic coding

Chapter 4. SPIRT Image Coding 93

Consider all the input symbols of the encoder as a whole, the probability qn of the

particular symbol series Yn (n is total number of symbols) is also mapped onto a

range (denoted as Qn) between 0 and 1 in order, as shown in Figure 4.8. The

boundaries of Qn are Vn and Vn. Qi = Pm for Yi = {xmJ. That is, Vi = Um-l and

Vi = Um. As a symbol Xm appears and is added to the series, Yn+l = {Yn, xmJ, the

probability of the symbol series becomes qn+l = qn . Pm, and its mapped range

becomes Qn+i, whose boundaries are Vn+i = Vn + (Vn - vn) . Um-l and

Vn+l = Vn + (Vn - vn) . Um. The width of Qn+i is Vn+l - Vn+l = qn+l = qn . Pm < qn. This

means as n increases, the width of Qn decreases thus Vn and Vn become closer. In

binary, some more bits of Vn and Vn might become equal every time since a symbol is

added, or some more bits of Qn become fixed in other words. The encoder outputs

these fixed bits and records the remaining vague range of Qn for encoding of

on-coming symbols.

The reverse is done in the decoder. The probability qn and its mapped range Qn are

for the decoded symbol series. As more bits are input from the encoded bit-stream,

Qn is narrowed to Qn+i. Qn+i in Qn is the range for a specific symbol, thus the symbol

is decoded.

, 1 , , , , , , , , , , ,
Urn

, ,
~~

, ,
~~

~~
, ,

~~ ,
Urn-l

~~ ,
Yo - ...

~~ ,
~~

- ~~~
~~~ 

, .. .... .... , .. , .. ...... .... 
0 

.... 
0 0 

xrn Yo Yo+l = {Yo, xrn} 

Figure 4.8 Probability of symbol series in arithmetic coding 



Chapter 4. SPIHT Image Coding 94 

For an adaptive model, the initial frequencies of all symbols should be same in the 

encoder and the decoder. Any predefined values can be used for the initial 

frequencies, but it is often set to 1 for each symbol, for quick adaptation in the 

beginning. 

To avoid overflow, the frequency of each symbol is halved when the sum of 

frequencies for all symbols reaches a maximum value (called maximum frequency). 

The maximum frequency should also be same in the encoder and the decoder. This 

scheme has an extra advantage: more weight is put on the latest symbols for the 

adaptation of the probability distribution pattern. 

The initial frequencies and the maximum frequency are two key parameters for an 

adaptive model. 

Arithmetic coding can also use a fixed model. The procedure is the same as using an 

adaptive model, except that the probability of each symbol is fixed, thus it is not 

needed to count the frequency of symbols. Arithmetic coding using a fixed model is 

faster than that using an adaptive model. 

4.6.1 Arithmetic coding models 

In SPIHT coding, there are seven classes of binary symbols in the encoded 

bit-stream. They are the significance values and signs of WCs in the LIP, the 

significance values of D and L trees in the LIS, the significance values and signs of 

individual WCs partitioned from the D tree in LIS, and the significance values of 

WC residues in the LSP. Both the encoder and the decoder know the class of every 

symbol, so various models could be used in arithmetic coding, to track the 

distribution pattern of each class of symbols. 



Chapter 4. SPIHT Image Coding 95 

In [1], neighbouring WCs and D trees are grouped for arithmetic coding, to exploit 

their correlation. Initially, neighbouring WCs from LL in the LIP are grouped in four 

(2 x 2), and the three D trees with roots in a LIP group and descendants in HL, LH 

and HH respectively form a group in the LIS (refer to section 4.1 for grouping). 

As significant WCs are moved out from the LIP during the sorting pass of SPIHT 

coding, the sizes of the groups they belong to are reduced to 3, 2 and 1, and then a 

group is removed from the LIP when all its four WCs become significant. The 

significance values of WCs in a group are coded as a single symbol in arithmetic 

coding. An adaptive model is used for each group of different sizes. It is similar for 

the groups of trees in the LIS. 

On the other hand, more groups are produced during set partitioning. The four WCs 

of O(m, n) partitioned from D(m, n) are grouped together for arithmetic coding, and 

the four D subtrees partitioned from a L tree are also grouped together. This group of 

four D trees is unique due to its size. The group of four newly partitioned WCs can 

use either the same model as the group of four in LIP, or a different model of its 

own. 

The L trees use an adaptive model of its own, with only two symbols for the 

significance values of trees. 

Experiences show that little can be gained in using adaptive models for the 

significance values of WC residues in the LSP and the sign of WCs. So a simple 

fixed model with equal distribution between binary symbols 1 and 0 can be used for 

these two kinds of symbols in arithmetic coding. 



Chapter 4. SPIHT Image Coding 96 

4.7 Summary 

We reviewed the procedure of SPIHT coding and arithmetic coding in this chapter. 

The organisation of wavelet coefficients in hierarchical trees as sets and the concept 

of successive approximation quantisation and ordered bit-plane coding were 

highlighted. Adaptive models used in arithmetic coding to compress the output of 

SPIHT coding were also discussed. The contents of this chapter are the basis of our 

research. 

An example of a 20 x 16 image using 2-scale wavelet transform was presented to 

demonstrate the procedure of SPIHT coding. A simple solution to organise the 

wavelet coefficients of an arbitrarily sized image for SPIHT coding was discussed. 

These are not available in literature. 

References 

[1] A.Said and W.A.Pearlman, 'A new, fast, and efficient image codec based on set 

partitioning in hierarchical trees', IEEE Transactions on Circuits and Systems for 

Video Technology, Vo1.6, No.3, pp.243-50, June 1996. 

[2] J.M.Shapiro, 'Embedded Image Coding Using Zerotrees of Wavelet 

Coefficients', IEEE Transactions on Signal Processing, Vo1.41, No.12, pp.3445-62, 

December 1993. 

[3] I.H.Witten, R.M.Neal and lG.Cleary, 'Arithmetic Coding for Data 

Compression', Communications ofthe ACM, Vo1.30, No.6, pp.520-40, June 1987. 



Chapter 5 

Improvements to the SPIHT 

Algorithm 

The SPIHT image coding [1] is very efficient, it outperforms the EZW (embedded 

zerotree wavelet) coding [2] and the image coding standard JPEG [3]. Though it can 

be improved and become more efficient. We present our improvements in this 

chapter. The DC-level shifting of image pixels or their wavelet coefficients (WC) is 

discussed in section 5.1. We introduce the new type of trees in section 5.2, propose a 

scheme to reduce the redundancy in the encoded symbols in section 5.3, and offset 

the quantisation in section 5.4. Section 5.5 addresses the optimisation of arithmetic 

coding, and section 5.6 summarises the chapter. 

5.1 DC-level shifting 

The original image data before coding is normally an array of unsigned values. The 

mean value of image pixels is positive. For example, the mean value of 8-bit grey 

image is around 127. It is often inefficient to encode such non-negative data directly 

in zerotree-based transform coding [1][2]. So we shift the DC level before coding. 

There are many schemes to shift the DC level. The first and simplest scheme is to 

deduct from the image pixels the middle value of the possible dynamic range. For 

example, use the value 127 for 8-bit grey image. Statistically, the mean value of the 

image pixels after the DC-level shift is close to zero, and thus won't have any major 

impact on the efficiency of coding. 



Chapter 5. Improvements to the SPIHT Algorithm 98 

The second scheme is to calculate the actual mean value and then deduct from the 

image pixels. The mean value needs to be coded together with the residue of image 

pixels. For simplicity, the mean value is rounded to its nearest integer. 

The third scheme is to shift the DC level in the transform domain. As we know, the 

DC level will only affect the final LL subband in the transform domain. We can 

calculate the mean value of all WCs on LL, round to its nearest integer, and then 

deduct from the WCs on LL. This mean-value also need to be coded together with all 

WCs. 

The difference between the three schemes is not very much. We use the first scheme 

in the thesis, except otherwise stated. 

5.2 Introduce the virtual trees 

Experiments show that at the beginning of SPIHT -encoded binary symbols, 0 is 

dominant, especially if the image is large in size and the number of wavelet 

transform (WT) scales is small. This can be explained by the statistical properties of 

wavelet coefficients (WC) described in chapter 3, as in the following. 

The output symbols of the SPIHT encoder at the beginning are the coding results of 

the initial WCs in the LIP (list of insignificant WCs) and the initial sets in the LIS 

(list of insignificant sets). These initial WCs are from the LL subband, and the roots 

of those initial trees are on LL too. 

Recall that the WCs on LL spread around over their range. Their typical distributions 

were shown in figure 3.29. We list the number of WCs on LL in the outermost 

divisions for each image in Table 5.1, together with their corresponding percentages 

in two hundred and fifty-six total WCs on LL. The WCs in the outermost divisions 

are a small ratio of total WCs on LL. In the first round of SPIHT coding, the 



Chapter 5. Improvements to the SPIHT Algorithm 99 

quantisation threshold is T = 2048. These WCs are found to be significant and 

produce symbol 1 for significance, and the rest produce symbol O. As the result, 0 is 

dominant in the encoded symbols for initial WCs in the LIP. 

Table 5.1 Wavelet coefficients on LL in the outermost divisions 

Image Outermost Range of Wavelet coefficients 

divisions magnitude Number Percentage 

Lena ±12 [2048, 4096) 28 11% 

Barbara ±12 [2048, 4096) 18 7% 

Boat ±12 [2048, 4096) 35 14% 

Goldhill ±12 [2048, 4096) 38 15% 

Mandrill ±12 [2048,4096) 4 2% 

Peppers ±12 [2048, 4096) 42 16% 

Similarly, we list the WCs on HL, LH and HH in their outermost divisions in 

Table 5.2. There are sixty-four initial trees for HL, LH, or HH, 64 x 3 altogether in 

the LIS. The same initial quantisation threshold, T = 2048, is used for the initial 

WCs in the LIP and the initial trees in the LIS. In the first round of SPIHT coding, 

the encoded symbols for all initial trees are 0, except one or two trees on HL of 

image Peppers which include the two WCs in divisions ±12. 

In the second round, the WCs in divisions ±ll become significant. Half of the 

outermost divisions listed in Table 5.2 are ±1O. In these cases, there is no WC in 

divisions ± 11, so the encoded symbols for the relevant trees are Os. In other cases, 

the total number of WCs in divisions ±11 (9 for LH of Peppers) is small compared 



Chapter 5. Improvements to the SPIHT Algorithm 100 

with the total number of trees on relevant subband in the LIS (64, maybe more for 

LH of Peppers). Even if each of these WCs belongs to a different tree, the significant 

trees are still of a small ratio, thus 0 is dominant in the encoded symbols. 

Table 5.2 Number of wavelet coefficients (NWC) on HL, LH and HH in the 

outermost divisions (OM D) 

Image HL LH HH 

OMD NWC OMD NWC OMD NWC 

Lena ±11 8 ±10 7 ±11 1 

Barbara ±11 5 ±10 25 ±10 5 

Boat ±11 2 ±11 10 ±10 2 

Goldhill ±11 2 ±10 14 ±10 2 

Mandrill ±10 17 ±10 1 I ±10 1 

Peppers ±11 16 ±12 2 ±11 2 

We know the binary coding is not efficient if one symbol (0 or 1) is much more in 

number than the other. We can take advantage of the unbalanced distribution of 

symbols for compression in several ways, such as run length coding. Another way is 

to set the initial frequencies of adaptive models to match the distribution in 

arithmetic coding. But the extremely unbalanced initial frequencies can not easily 

adapt to the distribution of oncoming symbols later without causing any coding 

inefficiency, and this method does not benefit the SPIRT coding without arithmetic 

coding. 

We work out a solution by introducing the virtual trees. To define the virtual trees, 

we extend D(i, j) to Dnfi, j). We observe the following facts of WCs and DO, j). For 



Chapter 5. Improvements to the SPIHT Algorithm 101 

K-scales WT, the resolutions of WCs are from level 0 to level K-l. The root of D( i, j) 

is at (i, j), and its leaves are on the finest resolution - level K-l. Suppose (i, j) is on 

level M (M < K-l), then the depth of D(i, j) is K-J-M. We rewrite D(i, j) as 

DK-I-M(i, j), including the depth information in its denotation. Similarly, for a generic 

depth, Dnfi, j) is the same as D(i, j), except that its leaves are on level 

M+n (M+n < K). In other words, Dn(i, j) is a subset of D(i, j), with root at (i, j) and 

depth of n. In particular, Do(i, j) = 0. 

Figure 5.1 shows an example of the WCs of a 64x64 image after a 4-scale WT. 

There are four resolutions: level 0 to level 3. D(2, 5) includes four WCs on HL1, 

sixteen WCs on HL2, and thirty-two leaves on HL3. Its depth is 3, so we also write it 

as Di2, 5). D2f2, 5) has the four WCs on HL1, and the sixteen WCs on HL2 which 

are leaves. Dl(2, 5) has only the four WCs on HLI, which are leaves. Dl2, 5) and 

DIf2, 5) are subsets of D(2, 5). 

We also define Gm.nfi, j) = Dm(i, j) - Dnfi, j), where n 5m. Gm.n(i, j) is a general form 

for trees, with root at (i, j) on level M and depth of m-n. The WCs of Gm.n(i, j) are on 

level M+n+J to M+m. As examples, in Figure 5.1, G3•2(2, 5) includes the sixty-four 

WCs on HL3, G3,J(2, 5) includes the sixteen WCs on HL2 and the sixty-four WCs on 

HL3, and GZ,l(2, 5) includes the sixteen WCs on HL2. 

All type of trees can be written in Gm.nfi, j): 

D(i, j) = GK-M-l.O(i, j) = DK-M-Ifi, j) 

D(i,j) = G1.o(i,j) = DIfi,j) 

L(i, j) = GK-M-l.l(i, j) = DK-M-Ifi, j) - DIfi, j) 



Chapter 5. Improvements to the SPIRT Algorithm 102 

o 4 8 16 32 63 

LLO H~ HLl 
n Irn--

HL2 

'~O ~HO HL3 
-...... 

o 

4 

\ LHI HHI mil 
~ ffi ---- r----..... 

8 

16 

\ LH2 HH2 

3 2 

LH3 HH3 

6 3 

Figure 5.1 Wavelet coefficients of 64x64 image after 4-scale wavelet transform 

For example, in Figure 5.1, D(2, 5) = G3,o(2, 5), 0(2, 5) = Gj,o(2, 5), and 

L(2, 5) = G3A2, 5). 

The initial trees in the LIS, with roots on LL, are of D type: D(i, j) = GK.O(i, j). Their 

roots are defined specially. In Figure 5.1, D( 3, 0) is such an example, which includes 

the four WCs on LHO, the sixteen WCs on LH1, the sixty-four WCs on LH2, and the 

two hundred and fifty-six WCs on LH3. According to the general rules of other trees, 

these roots are on resolution level -1. 

Now we define a virtual tree using Gm.n{i, j): 



Chapter 5. Improvements to the SPIHT Algorithm 103 

Where n > O. The depth of Vn(i, j) are K, which means that the WCs of Vii, j) covers 

all resolutions from level 0 to level K-1. This implies that the leaves of Dii, j) are on 

level -1, thus its root (i, j) is on level -n-1. Dii, j) does not actually exist. But Vii, j) 

is of tree structure indeed, like L(i, j). So we call Vn(i, j) the virtual tree, and identify 

it using Vor Vn as a tree type. 

Vo(i, j) = GK,o(i, j). It is the same as the initial D trees in the LIS with root on LL in 

the original SPIHT. Like those initial D trees, we define the root of Vn(i, j) specially. 

But unlike those initial D trees with root defined on LL, here the root of Vn(i, j) is 

defined as the co-ordinates (index) of the top-left WC on resolution level 0 in the set. 

For consistent, we include Vo(i, j) in Vii, j) (n ;?O). Vii, j) can be uniquely identified 

by its type Vn and root (i, j). 

We look at the examples in Figure 5.1 again. Vo(4, 0) = D(3, 0), and V] (4, 0) 

includes all WCs on LH (LHO, LH1, LH2 and LH3). 

Vii, j) is made up of 4n neighbouring Vo(i, j) in a square spatial orientation region. 

During the initialisation of SPIHT coding, Vn(i, j) is used instead of Vo(i, j). The 

initial V trees are set to be as large as possible. This can be done as in the following. 

Starting from Vo(i, j), we keep on merging every neighbouring four Vii, j) in a 

square spatial orientation region to a Vn+](i, j), until there are no more 2x2 

neighbouring V trees of the same size to merge. Figure 5.2 illustrates the merging 

procedure. Only HLO is shown, whose size is IOx13. We start from Vo in figure (a). 

some are merged to VI in figure (b), and then V2 in figure (c). Figure (c) is the final 

result. 



Chapter 5. Improvements to the SPIHT Algorithm 

r.--.I r.--.I r.--.I f·--·I 
I I I I I I 
I Vo I I Vo I I Vo I I Vo : 
I. .1 I. .1 I. .1 I. .1 L ____ L ____ L ____ L.. ____ 

r.--.I r.--.I r.--.I r.--.I 
I I I I I I I I 
I Vo I I Vo I I Vo I I Vo I 
I. .1 L ____ I. .1 L ____ I. .1 L ____ I. .1 L ____ 

r.--.I r.--.I r---- r.--.I 
I I I I I· .1 I I 
I Vo I I Vo I I Vo : I Vo I 
I. .1 L. ____ I. .1 L. ____ I. .1 L ____ I. .1 L.. ____ 

r.--.I f·--·I f·--·' r.--.I I I I I 
I Vo I I Vo : I Vo : I Vo I 
I. .1 I. .1 I. .1 I. .1 L ____ L ____ L ____ L ____ 

r.--.I r.--.I r.--.I r.--.I 
I I I I I I I I 
I Vo I I Vo I I Vo I I Vo I 
I. .1 I. .1 I. .1 I. .1 L ____ L ____ L ____ L.. ____ 

(a) 

(b) 

r.--.I r.--.I 
I I I I 
I Vo I I Vo I 
I. .1 L ____ I. .1 L ____ 

r.--.I r.--.I 
I I I I 
I Vo I I Vo I 
I. .1 L ____ I. .1 L ____ 

r.--.I 
I I 
I Vo I f·--·I 

I Vo : 
I. .1 L ____ I. .1 L.. ____ 

r.--.I f·--·' I I 
I Vo I I Vo : 
I. .1 I. .1 L ____ L.. ____ 

r.-.I r----
I I I· .1 
I Vo I I Vo : 
I. .1 I. .1 L ____ L ____ 

r----------I· • • .1 I VI : :. • • .1 
I I I. • • .1 
I I 
I I I. • • .1 ----______ 1 

r----------I· • • .1 I VI : :. . . .1 
I I I. • • .1 
1 I 
I I 
I. • • .1 ----_--___ 1 

Figure 5.2 Merging of Vn to Vn+l for initial trees 

104 

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 
• 
• 
• 
• 
• 
• 
• 



Chapter 5. Improvements to the SPIHT Algorithm 105 

(c) 

Figure S.2 Merging of Vn to Vn+l for initial trees 

As the result, the total number of initial trees is very much reduced compared with 

Said and Pearlman's initialisation in [1] (described in chapter 4 of this thesis, we 

refer to their algorithm the original SPIHT). In the example of Figure 5.2, the 

number of trees for HL is reduced from thirty to nine. In case of a 512x512 image 

and 5-scales WT, there are only three initial trees in the LIS in our scheme -

ViO, 16), Vl16, 0) and VJf16, 16), while there are 64x3 (=192) initial trees in the 

original SPIHT algorithm. 

Vn(i, j) (n > 0) is processed in the similar way as L(i. j) in the sorting pass. If Vn(i. j) 

is significant, it is partitioned to four subtrees - Vn-J (k, I), where k = i or ;+2n and 

Vo(i, j) is in fact a D tree, except its root is defined specially. It is processed in the 

same way as D(i. j). Significant Vo(i. j) is partitioned to a L tree - GK,J(i. j) with root 

at resolution level -1, and four individual WCs at (k, I), where k = i or i+2° and 



Chapter 5. Improvements to the SPIHT Algorithm 106 

1= j or j+2°. Here (i, j) is in fact on level 0, so L(i, j) = GK-U(i, j). To distinguish the 

partitioned GK,di, j) with L(i, j), we denote it V(i, j). 

U(i, j) is also a virtual tree, with virtual root defined specially. Similarly, significant 

U(i, j) is partitioned to four D(k, I), where k = i or i+ 1 and I = j or j+ 1. 

D(i, j) and L(i, j) are processed as usual. Significant D(i, j) is partitioned to L(i, j) and 

four individual WCs at (k, I), where k = 2i or 2i+ 1 and I = 2j or 2j+ 1. Significant 

L(i, j) is partitioned to four D(k, I), where k = 2i or 2i+ 1 and I = 2j or 2j+ 1. 

In summary, significant trees are partitioned, producing new trees of different type, 

as shown in Figure 5.3. Individual WCs are also produced when partitioning Vo(i, j) 

or D(i, j). 

Figure 5.3 Partitioning of trees (including virtual trees) 

When any of the above trees is scanned during the sorting pass of SPIHT coding, a 

binary symbol is coded for the significance of the tree. 

Due to the small amount of initial trees in the LIS, the proposed scheme is sure to 

produce less encoded symbols in the beginning than the original SPIHT algorithm. 

For the initial WCs in the LIP, similar virtual trees can be used. As their distribution 

probability, which can be exploited in compression, is mainly for the outermost 

divisions, for simplicity, we choose a sort of run length coding, and limit its usage to 

the first round of scan in the sorting pass. To be compatible with the arithmetic 

coding, we group the initial WCs in four (2x2). We substitute the four encoded Os 

for a group of initial WCs with one binary symbol O. If the encoded symbols for the 

group are not four Os, a binary symbol 1 is inserted before these four symbols. The 



Chapter 5. Improvements to the SPIHT Algorithm 107 

coding result of this run length coding is in fact the same as using a virtual 0 tree for 

the initial WCs in the LIP. 

As these proposed schemes reduce the encoded symbols mainly in the beginning of 

SPIHT coding, they are particularly effective for low bit rate image coding. 

5.3 Omit the predictable symbols 

In the sorting pass of SPIHT coding, if a tree is significant, it is partitioned into 

subtrees and/or individual WCs. At least one of the partitioned subtrees or WCs is 

significant. This means there is redundancy in the encoded symbols. Entropy coding 

can take advantage of some of the redundancy, but not all. We propose an approach 

to reduce the redundancy without entropy coding. 

First, we re-arrange the processing of Vnfi, j), U{i, j) and L(i, j), which are denoted in 

this paragraph as Gm.n(i, j) in general form with n ~ 1. We reserve 4n_l spaces 

following the position of Gm.nfi, j) in the LIS, so that Gm.n{i, j) occupies 4n entries 

altogether in the LIS. During the LIS scan in the sorting pass, the reserved spaces are 

skipped if Gm.nfi, j) is insignificant. If Gm.nfi, j) is significant, it is partitioned into 

four subtrees. The subtrees fill in the spaces occupied by Gm.n{i, j), and are scanned 

immediately after Gm.nfi, j). 

Now we check and change the encoding when partitioning a significant tree. If 

Vn(i, j), U(i, j) or L(i, j) is significant, its significance value is coded, and it is 

partitioned to four subtrees. Then the four subtrees are scanned and coded. If the 

former three subtrees are all insignificant, the fourth must be significant. In this case, 

the output bit pattern (binary symbols) is 10001, with the first symbol for the 

significance of the partitioned tree, followed by the significance values of four 

subtrees. As the last symbol is predictable from previous four symbols, we omit it. 



Chapter 5. Improvements to the SPIHT Algorithm 108 

The trees are grouped for arithmetic coding (refer to section 4.5 for details). A group 

of four trees can only be four D-trees partitioned from a significant L or U - tree, or 

four V or U - trees partitioned from a significant V - tree. At lease one of the coding 

symbols for the group of four trees is 1. If the coding symbols are 0001, the last 

symbol 1 is predictable and thus can be omitted. This suggests another 

implementation ofthe above scheme. Here V(i, j), U(i, j) and L(i, j) do not need extra 

spaces (empty entries) in the LIS, and their subtrees are added to the end of the LIS 

as in the original SPIHT algorithm. 

The second case is DO, j) with root (i, j) on resolution level K-2. It is in fact 00, j). If 

it is significant, it is partitioned to four individual WCs. If the former three WCs are 

all insignificant, the fourth must be significant. Thus the relevant output bit pattern is 

10001. The last symbol is predictable, so we omit it too. 

The third case is D(i, j) in general (excluding the D(i, j) in the second case). If it is 

significant, it is partitioned to four individual WCs and one L(i, j). If the four 

individual WCs are all insignificant, L(i, j) must be significant. In this case, we do 

not code the significance of the L( i, j), and do not add the L( i, j) to the end of the LIS 

(refer to the original SPIHT for details). Instead, we partition L(i, j) immediately to 

four D(k, I), and add them to the end of the LIS. 

The schemes in the former two cases are only for the SPIHT image coding system 

without arithmetic coding. In the third case, it does not matter whether the arithmetic 

coding is used or not. 

Despite the above, all other processes in the sorting pass remain the same as in the 

original SPIHT. As the omitted symbols are predictable, we can easily decode the 

symbols without extra loss, following the same procedure as in the encoding. 



Chapter 5. Improvements to the SPIRT Algorithm 109 

5.4 Offset the quantisation 

Recall the quantisation in the original SPIRT. For threshold T (T > 0), insignificant 

WCs in the range (-T, T) are quantised to 0; significant WCs in the range (-2T, -T] 

are quantised to -3TI2; and significant WCs in the range [T, 2T) are quantised to 

3T!2. Is the quantisation optimal? 

PSNR as defined in equation 1.2 of chapter 1 is used to measure the performance of 

image coding. The higher the PSNR, the better the reconstructed image. As equation 

(1.2) indicated, to get maximum PSNR, minimum MSE is wanted. 

The optimisation here is: finding a quantisation value to approximate all the WCs in 

a division, to get the minimum MSE. 

It is a least mean square (LMS) problem. As we know, the solution is the mean value 

of these WCs. 

For convenience, we discuss only the positive WCs in the following. It is similar for 

the negative WCs. 

As the distribution of WCs in chapter 3 shows, for natural image, there are more 

WCs in the range [0, T) than WCs in the range [T, 2T). It is also true that there are 

more WCs in the range [T, 3T(2) than WCs in the range [3T!2, 2T). The mean value 

of the WCs in the range [T, 2T) is less than the geometric centre of the division 

(division centre in short), 3T!2. So, the quantisation in the original SPIHT, where the 

quantised value of WCs in each division is the division centre, is not optimal. 



Chapter 5. Improvements to the SPIRT Algorithm 110 

Table 5.3 Average mean value ofWCs in each division 

Division Centre Average Difference TI8 

-12 -3072 -2356.1 715.9 256 

-11 -1536 -1173.7 362.34 128 

-10 -768 -692.69 75.313 64 

-9 -384 -347.34 36.657 32 

-8 -192 -172.32 19.682 16 

-7 -96 -87.225 8.7754 8 

-6 -48 -44.433 3.5674 4 

-5 -24 -22.252 1.7479 2 

-4 -12 -11.108 0.89237 1 

-3 -6 -5.5999 0.40013 0.5 

-2 -3 -2.8836 0.11642 0.25 

2 3 2.8838 0.11619 0.25 

3 6 5.5974 0.40257 0.5 

4 12 11.117 0.88318 1 

5 24 22.207 1.7931 2 

6 48 44.429 3.5709 4 

7 96 86.983 9.0174 8 

8 192 172.57 19.425 16 

9 384 345.77 38.234 32 

10 768 667.57 100.43 64 

11 1536 1244.6 291.36 128 



Chapter 5. Improvements to the SPIHT Algorithm 111 

The distribution of WCs is different for different images. For various test images, the 

mean value of WCs in each division is calculated, to see if there is a common 

solution for the quantisation optimisation. The results are listed in table 3.5 of 

chapter 3. We extract the average mean value of WCs in each division for the test 

images and list in Table 5.3 (as "Average" in short). As can be seen in the table, the 

magnitude of the average mean value is always less than the magnitude of the 

division centre ("Centre" in the table). Their difference is calculated and listed in the 

table (as "Difference"). 

Studying the data in Table 5.3, we found that the difference between the average 

mean value and the division centre can be approximated by one eighth of the 

relevant quantisation threshold. Denote the difference as .1, we have .1 ::::: T18. The 

approximation is very good if 8 ~T ~ 128 (e.g., for division ±4, ±5, ±6, ±7 and ±8). 

In fact, that covers the most useful range of thresholds in applications, as is to be 

explained later. 

We offset the quantisation of SPIHT coding. The magnitude of WCs in the range 

fT, 2T) and (-2T, T] is quantised to 3T12 - .1, instead of the magnitude of division 

centre 3T12. 

The quantisation offset affects only the decoder in implementation. We adjust the 

decoding procedure at threshold T. During the sorting pass, the magnitude of 

significant WCs, which is in the range fT, 2T), is set as 3T12 - .1 instead of 3T/2. The 

WCs with magnitude no less than 2T are in the LSP. For those with magnitude in the 

range f2T, 4T), they are scanned for the first time in the refinement pass. Their 

magnitudes are refined to the geometric centre, 5T12 or 7T12 according to their range 

f2T, 3T) or f 3T, 4T) indicated by the relevant coding symbol. Notice that they were 

moved to the LSP in the previous round, their magnitudes were offset from the 



Chapter 5. Improvements to the SPIHT Algorithm 112 

division centre, and the quantisation offset is removed here. Other processes remain 

the same as in the original SPIHT. We see that only the WCs with magnitude in the 

range [T, 4T) can be affected by the quantisation offset at threshold T. 

Table 5.4 Encoded length of Lena after the scan of a 

list at each threshold in the original SPIHT 

Threshold Encoded image length (bits) 

LIP LIS LSP 

2048 284 476 476 

1024 773 1,009 1,037 

512 1,294 1,920 2,026 

256 2,359 3,969 4,236 

128 5,116 9,741 10,310 

64 12,776 22,046 23,476 

32 28,884 46,867 50,238 

16 60,920 94,229 101,749 

8 122,490 191,479 207,097 

4 252,318 415,082 447,040 

2 559,611 702,978 775,514 

1 915,160 957,669 1,095,491 



Chapter 5. Improvements to the SPIRT Algorithm 113 

Take image Lena as an example. Table 5.4 lists its encoded length after a list 

(LIPILISILSP) has been scanned at each threshold in the original SPIRT. Before 

T = 64, the maximum encoded length is 10,310 bits, the coding rate is 0.04 bit per 

pixel (bpp). Figure 5.4 shows the reconstructed image at this rate. The distortion is 

large. The image quality is not acceptable in most applications. 

Figure 5.4 Reconstructed Lena at 0.04 bpp 

After T = 8, the encoded length of Lena is 207,097 bits. The coding rate is 0.8 bpp. 

Figure 5.5 shows the reconstructed image at this rate. Compared with the original 

Lena (refer to figure 3.1 in chapter 3), one can hardly tell any difference. The image 

quality is good enough for most applications where lossy image coding is eligible. 



Chapter 5. Improvements to the SPIRT Algorithm 114 

Figure 5.5 Reconstructed Lena at 0.8 bpp 

In summary, for image Lena, the important bit rates of concern lie mostly in the 

range (0.04, 0.8). This is relevant to the SPIRT coding stopping at T E [8, 64]. The 

WCs in the range [T, 4T), which is [8, 256) for T E [8, 64J, can be affected by the 

quantisation offset. These WCs are in divisions ±4, ±5, ±6, ±7 and ±8. As stated 

previously, in these divisions, L1 = TI8 approximates the difference in Table 5.3 very 

well. It is concluded that the quantisation offset of L1 = TI8 is good enough for most 

applications. 



Chapter 5. Improvements to the SPIHT Algorithm 115 

L1 = TI8 can be calculated by 3 bits shift to the right (least significant bit) of T, which 

is very simple and fast. That is the reason L1 = TI8 is chosen, other than any other 

more accurate values around T18. 

For T < 8, since integer operation is often used, L1 = TI8 is rounded to 0, or 

L1 = LTI8J That means there is no offset for the quantisation if T < 8. 

For T > 128, L1 = TI8 is less than the difference in Table 5.3. That means the 

performance of SPIHT with the quantisation offset is not optimal, but better than that 

without quantisation offset. 

So, the quantisation offset L1 = TI8 is appropriate to be applied for any threshold T 

during the whole SPIHT coding procedure, although it is not optimal at the 

beginning and the end. 

For a selected offset model L1 = f(T), the parameters of the model (functionj) can be 

optimised for typical test images using LMS criteria. Though our approximation is 

simple and effective in practice. 

5.5 Optimise the arithmetic coding 

For the adaptive models of arithmetic coding used in the SPIHT image coding 

system, the initial frequencies and the maximum frequency can be optimised for 

each model. 

An extra symbol is added in the arithmetic coding model to mark the end of 

bitstream (EOB) in implementation. The frequency of the EOB symbol is set to 1 

initially and never changes before the arithmetic coding ends. Normally, this value is 

trivial among the frequencies of all symbols. But if we set all the initial frequencies 

to be 1, the EOB symbol does change the distribution of symbols, and the effect can 

not be ignored in the beginning of arithmetic coding using adaptive models, or in 



Chapter 5. Improvements to the SPIRT Algorithm 116 

case a fixed model is used. In both cases, the initial frequencies of other symbols 

(excluding EOB) can be increased to reduce the effect of the EOB symbol. 

Now we take a close look at some of the adaptive models used. For the initial WCs 

in the LIP grouped in four, an adaptive model with sixteen symbols (0000 - 1111) is 

used to code their significance values. As the cause of introducing the virtual trees in 

section 5.1, symbol 0000 is dominant in the beginning of SPIRT coding. We set the 

initial frequency of symbol 0000 higher than others to track this unbalanced initial 

distribution. 

D trees grouped in four come only from partitioned significant L or U trees. As 

discussed in section 5.3, these four trees in the group can not be all insignificant, so 

there are fifteen possible symbols (0001 - 1111) for their significance values. We 

can also use a model of sixteen symbols (0000 - 1111), but set the initial frequency 

of 0000 as O. It is similar for a group of four V trees, and for a group of four WCs 

partitioned from a significant D tree which is in fact an 0 tree. 

Experiments show that the distribution pattern of significance values of L trees 

changes rapidly during the procedure of SPIHT coding. The distribution changes 

dramatically when the quantisation threshold changes, but there is still some 

similarity between successive round of sorting pass. We can use a small maximum 

frequency for L trees, and/or halve all the frequencies at the end of each round. 

For a group of n WCs (or trees), the co-ordinates of WCs (or tree roots) may occupy 

any n of four possible orientation positions. This orientation occupation may contain 

texture information. We can use an adaptive model for each group with different 

orientation occupation. 

Experiments show that these approaches above do get some performance gain, but 

the gain is very limited. 



Chapter 5. Improvements to the SPIHT Algorithm 117 

More models can be used in arithmetic coding to track the distribution patterns of the 

symbols of SPIHT coding. But we must be aware that the total number of symbols 

produced by the SPIHT encoding for an image is limited. As the number of models 

increases, the number of symbols for each model decreases. On the other hand, an 

adaptive model needs enough symbols to track their distribution pattern, the more 

the better. The arithmetic coding is often inefficient at the beginning before the 

models have adapted well to the distribution pattern. We should take both aspects 

into consideration and compromise in setting arithmetic coding models. 

The recent embedded block coding with optimised truncation (EBCOT) [4] uses 

context-based models for arithmetic coding, to exploit the intra-subband correlation 

of WCs. Only immediate neighbours are used as context. The context models are 

classified into categories, and an arithmetic coding model is used for each of the 

context categories. Hence the total number of arithmetic coding models are reduced 

dramatically. Similar context-based models can be used for the WCs and trees in the 

arithmetic coding of SPIHT. EBCOT outperforms most state-of-the-art image coding 

algorithms, and was adopted as the coding engine of JPEG-2000. We know that the 

SPIHT algorithm exploits the inter-level correlation of WCs successfully. The 

combination of context-based arithmetic coding and the SPIHT algorithm can exploit 

both the intra-subband correlation and inter-level correlation efficiently, and is 

promising. 

5.6 A simple example 

An example is presented in this section to demonstrate the improved SPIHT coding, 

using the same 20 x 16 image used in section 4.5 of chapter 4. For convenience, the 

wavelet coefficients in Figure 4.6 are repeated in Figure 5.6. 



Chapter 5. Improvements to the SPIHT Algorithm 118 

o 2 ~ 4 .5 6 7 II 9 \0 II 12 D 14 15 

o -J4 -52 -34 3J 3 -7 0 J J 2 0 -J 2 0 2 -2 

-J6 -54 -5 J9 JO -4 -J -11 -2 0 J -2 0 -J 0 -2 

2 -3J -45 9 3J J3 3 -24 -9 J 0 J 2 -3 J 0 0 

-32 -3 98 43 29 -J5 -J -J4 3 0 2 -9 0 5 0 -J 

5 -34 J3 40 -9 -5 0 2 3 0 -2 2 -8 4 0 -3 

5 0 -3 -8 0 -2 5 -8 -J 0 5 -6 0 0 0 0 -2 

6 -7 J 9 4 -3 5 3 3 5 3 -6 0 -J 0 -2 -J 

7 -J6 -J3 -J3 3 -9 -12 -2 5 -3 0 3 -2 3 -4 2 0 

J 2J 0 -3 0 0 -5 -5 J J 0 3 -4 -5 3 0 

<) J -34 -6 12 -2 -6 2 4 0 -2 J 0 0 -J 0 J 

10 0 -J 0 J 3 2 J 0 J 0 0 J -J -J 0 0 

II 0 -J 0 -4 -4 2 -2 0 J 0 0 4 0 2 0 0 

12 0 0 -J -8 2 -J -4 -J 0 0 -J -J 4 -J 0 J 

-7 0 -J 3 -J J 0 0 0 0 J 4 -3 0 0 0 

14 8 0 5 20 0 0 -J -J 0 0 J -3 0 0 0 0 

15 -J 0 -5 -5 2 0 -J 0 0 0 -J 0 0 0 J 0 

16 -5 0 0 -5 -J 0 -3 0 -J J 3 -2 2 0 0 0 

17 -8 0 -J 11 0 0 0 J 5 0 0 J 0 -1 0 1 

18 0 -6 3 -3 -4 3 0 -1 0 1 -4 3 -4 1 0 -1 

19 0 3 -J -7 1 1 0 0 0 -2 0 0 0 0 0 0 

Figure 5.6 Example of 2-scale wavelet transform of a 20 x 16 image 



Chapter 5. Improvements to the SPIHT Algorithm 119 

Only the SPIHT encoding without arithmetic coding is discussed here in the 

example, so the relevant improvements include the virtual trees and omitting the 

predictable symbols. 

The initial LIP is the same for the improved and original SPIRT coding. In the 

improved and original SPIRT encoding, the processing of the LSP is the same, and 

the processing of the LIP is also the same except in the first round of sorting pass. 

Only the differences are discussed he(e, that is the processing of the LIP in the first 

round and the LIS. 

For convenience, the initial LIP in Table 4.1 is repeated in Table 5.5. There is a little 

difference between the two tables. The wavelet coefficients in Table 5.5 are grouped 

in four. 

In the first round of the sorting pass, the wavelet coefficients in the initial LIP 

(Table 5.5) are scanned and processed group by group in order. For the first group, 

the four wavelet coefficients are all insignificant at the initial quantisation threshold 

T = 64. The encoder outputs a 0 (for insignificant), and the four wavelet coefficients 

stay in the LIP. The results are the same for groups 2 and 3. For group 4, the third 

wavelet coefficient is significant. The encoder outputs a 1 (for significant), followed 

by the coding symbols for the four individual wavelet coefficients in the group, 

which are 00100. Groups 5 to 8 are all insignificant, and four Os are encoded for 

them. 

In summary, the encoded bit-stream for the LIP in the first round of SPIRT encoding 

is 0001,0010,0000,0, which contains thirteen binary symbols. Recall that the original 

SPIHT encoding produces thirty-three binary symbols for the LIP in the first round. 

The improvement reduces the length of the output bit-stream by twenty bits, which is 

more than 60%. 



Chapter 5. Improvements to the SPIHT Algorithm 120 

Table 5.5 Initial LIP for the example image 

Group Sub band Co-ordinates Value Group Subband Co-ordinates Value 

(0,0) -14 (4,0) 5 

1 (0,1) -52 5 LLO (4,1) -34 

(1,0) -16 (last row) (4,2) 13 

(1,1) -54 (4,3) 40 

(0,2) -34 (4,4) -9 

2 (0,3) 31 6 Last row (4,5) -5 

(1,2) -5 ofHLO 
(4,6) 0 

LLO (1,3) 19 (4,7) 2 

(2,0) -31 (9,0) I 

3 (2, 1) -45 7 Last row (9, I) -34 

(3,0) -32 ofLHO 
(9,2) -6 

(3, I) -3 (9,3) 12 

(2,2) 9 (9,4) -2 

4 (2,3) 31 8 Last row (9,5) -6 

(3,2) 98 ofHHO 
(9,6) 2 

(3,3) 43 (9,7) 4 



Chapter 5. Improvements to the SPIHT Algorithm 121 

The initial LIS for the improved SPIHT coding is listed in Table 5.6. For 

convenience, the co-ordinates are listed for the wavelet coefficients on the virtual 

trees, while the values are listed for that on D-trees. 

Table 5.6 Initial LIS for the example image 

No Sub- Tree Wavelet No Sub- Tree Wavelet 

band coefficients band coefficients 

a(i, j): i = 0 - 3, 4 HL D(4,4) 1, 1, 0,-2 

l"-

I HL VdO,4) j=4-7; 
5 (root at D(4,5) 0,3,1,0 

r-
a(i, j): i = 0 - 7, 

6 
last row 

D(4,6) -4,-5, 0,-1 

j = 8 - 15 I"- ofHLO) 
7 D(4,7) 3,0,0,1 

a(i, j): i = 5 - 8, 8 LH D(9,0) 0.-6,0,3 

I"-

2 LH Vd5,0) j = 0 - 3; 9 (root at D(9,1) 3,-3,-1,-7 

r-
a(i, j): i = 10 - 17, 

10 
last row 

D(9,2) -4,3, 1, 1 

j=0-7 - ofLHO) 
11 D(9,3) 0,-1,0,0 

a(i, j): i = 5 - 8, 12 HH D(9,4) 0, 1, 0,-2 

-

3 HH Vd5,4) j=4-7; 13 (root at D(9,5) -4,3,0,0 

-
a(i, j): i = 10 - 17, 

14 last row 
D(9,6) -4, 1, 0, 0 

j = 8 - 15 ,--- ofHHO) 
15 D(9, 7) 0,-1, 0, 0 



Chapter 5. Improvements to the SPIHT Algorithm 122 

In the first two rounds of SPIHT encoding, all trees are insignificant, and fifteen Os 

are added to the output bit-stream in each round, instead of twenty-four in the 

original SPIHT encoding. 

The processing of the LIS in the third round is illustrated in Table 5.7. Steps 1, 18 

and 26 are described in the following paragraphs to demonstrate the partitioning of V 

and Utrees. 

There are fifteen entries in the LIS at the beginning of the third round. In step 1, the 

first entry - VdO, 4) is scanned and processed. Since the maximum magnitude of 

wavelet coefficients on VdO, 4) is 29, which is greater than T (= 16), VdO, 4) is 

significant. The encoder outputs a 1 (for significant), and partitions VdO, 4) to four 

subtrees - Vo(O, 4), Vo(O, 6), Vo(2, 4) and Vo(2, 6), which are added to the end of 

the LIS and processed latter in the same (third) round at steps 16 to 19. 

In step 18, Vo(2, 4) is processed. The maximum magnitude of wavelet coefficients on 

Vo(2, 4) is 29, which is greater than T, so Vo(2, 4) is significant. The encoder outputs 

a 1 (for significant), and partitions Vo(2, 4) to U(2, 4) and four individual wavelet 

coefficients - a(2, 4), a(2, 5), a(3, 4) and a(3, 5), which are then scanned and 

processed in the order that they are listed. a(2, 4), a(2, 5) and a(3, 5) are 

insignificant, so they are added to the end of the LIP. a(3, 5) is significant, so it is 

added to the end of the LSP. The encoded binary symbols for the four wavelet 

coefficients are 00 1 00. U(2, 4) is added to the end of the LIS and processed latter in 

the same (third) round at step 24. In fact, the processing of Vo(2, 4) is the same as 

that of D(2, 1) in the original SPIHT encoding (step 2 in Table 4.3), except that the 

names of trees and step numbers are different. 

In step 26, U(7, 0) is processed, in the same way as L(3, 0) in the original SPIHT 

encoding (step 27 in Table 4.3). 



Chapter 5. Improvements to the SPIHT Algorithm 123 

Table 5.7 Processing of the LIS in the third round 

Step Trees to be Output Trees staying Wavelet coefficients Residues added 
processed symbols in the LIS added to the LIP totheLSP 

1 VdO,4) 1 

2 Vd5,0) 1 

3 Vd5,4) 0 Vd5,4) 

4 D(4,4) 0 D(4,4) 

5 D(4,5) 0 D(4,5) 

6 D(4,6) 0 D(4,6) 

7 D(4, 7) 0 D(4,7) 

8 D(9,0) 0 D(9,0) 

9 D(9, I) 0 D(9,1) 

10 D(9,2) 0 D(9,2) 

11 D(9,3) 0 D(9,3) 

12 D(9,4) 0 D(9,4) 

13 D(9,5) 0 D(9,5) 

14 D(9,6) 0 D(9,6) 

15 D(9, 7) 0 D(9,7) 

16 Vo(O,4) 0 Vo(0,4) 

17 Vo(0,6) 0 Vo(0,6) 

18 Vo(2,4) 100100 a(2,4),a(2,5),a(3,5) a(3,4) 

19 Vo(2,6) 111000 a(2, 7), a( 3,6), a( 3.7) a(2.6) 

20 Vo(5,0) 0 Vo(5,0) 

21 Vo(5,2) 0 Vo(5,2) 

22 Vo(7,0) 1110010 a(7, l),a(8,0) a(7,0), a(8,l) 

23 Vo(7,2) 0 Vo(7,2) 

24 U(2,4) 0 U(2,4) 

25 U(2,6) 0 U(2,6) 

26 U(7,0) 1 

27 D(7,0) 0 D(7, 0) 

28 D(7,I) 101000 a( 14,2),a( 15,2),a( 15,3) a(l4,3) 

29 D(8,0) 0 D(8,0) 

30 D(B,J) 0 D(B,l) 



Chapter 5. Improvements to the SPIHT Algorithm 124 

There is an alternative processing order for the trees listed in Table 5.7. Each 

VI - tree in the LIS is followed by three extra empty entries. In the first step, the 

partitioned Vo(O, 4), Vo(O, 6), Vo(2, 4) and Vo(2, 6) replace the entry for Vo(O, 4) and 

the three reserved empty entries, and the processing of steps 16 to 19 in Table 5.7 

follows immediately. It is similar for Vo(5, 0) of entry 2 in Table 5.7. After the 

processing of Vo(5, 4) (entry 3 in Table 5.7), the three reserved empty entries are 

skipped because Vd 5, 4) is insignificant. Processing of other entries is the same as in 

Table 5.7. The resulting output bit-stream for the LIS in the third round is 1001, 

0010, 0111, 0001, 0011, 1001, 0000, 0000, 0000, 0000, 0010, 1010, 0000, which 

consists of forty-two binary symbols. For the two processing orders, the overall 

output symbols are the same, but in a different orders. 

Table 5.8 Output bit-stream in the first three rounds of the improved SPIHT 

encoding 

T List Total No. Symbols 

LIP 13 1-13 000 1,00 10,0000,0 

64 LIS 15 14-28 0000, 0000, 0000, 000 

LSP ° 
LIP 40 29-68 0110, 1111,0000, 1111,0001,0011,0100,0000, 

32 
1100,0000 

LIS 15 69-83 0000, 0000, 0000, 000 

LSP 1 84 1 

LIP 27 85-111 0111,0010,1100,1000,0000,0000,000 

16 LIS 42 112-153 1001,0010,0111,0001,0011,1001,0000,0000, 

0000,0000,0010,1010,0000 

LSP 10 154-163 0110, 0000, 00 



Chapter 5. Improvements to the SPIHT Algorithm 125 

In summary, by the end of the third round, there are one hundred and sixty-three 

encoded binary symbols in the output bit-stream, which is summarised in Table 5.8. 

For comparison, we list the coding results of both the original and the improved 

SPIHT (OSPIHT and ISPIHT) in Table 5.9. The table shows that the length of the 

output bit-stream is reduced significantly by the improvements. 

Table 5.9 Length of output bit-stream in the tirst three round of the original 

and the improved SPIHT encoding 

T List Each part Overall 

OSPIHT ISPIHT Save OSPIHT ISPIHT Save 

LIP 33 13 20 61% 33 13 20 61% 

64 LIS 24 15 9 38% 57 28 29 51% 

LSP 0 0 57 28 29 51% 

LIP 40 40 97 68 29 30% 

32 LIS 24 15 9 38% 121 83 38 31% 

LSP 1 1 122 84 38 31% 

LIP 27 27 149 111 38 26% 

16 LIS 52 42 10 19% 201 153 48 24% 

LSP 10 10 211 163 48 23% 

To demonstrate the improvement of omitting the predictable coding symbols, the 

encoding procedure is carried on to the fourth round at T = 8. We check the trees 

V 0(5, 0) and D( 8, J) remaining in the LIS after the third round (entries 20 and 30 in 

Table 5.7). 

V0(5, 0) is significant at T = 8. It is partitioned into U(5, 0) and four individual 

wavelet coefficients - a(5, 0), a(5, 1), a(6, 0) and a(6, 1). The values of the four 



Chapter 5. Improvements to the SPIHT Algorithm 126 

wavelet coefficients are 0, -3, -7 and J, which are all insignificant. So, the output 

coding symbols are 10000. The four wavelet coefficients are added to the end of the 

LIP. U(5, 0) is known to be significant at this point, and it is partitioned immediately 

to four subtrees - D(5, 0), D(5, 1), D(6, 0) and D(6, 1). The four subtrees are added 

to the end of the LIS to be processed latter in the same (forth) round. On the 

contrary, in the original SPIHT coding, U(5, 0) is not partitioned and is added to the 

end of the LIS. U(5, 0) will be scanned and processed latter in the same round, which 

will produce a predictable 1 and be partitioned into the four subtrees. The output 

symbol I for U(5, 0) is omitted in the improved SPIHT coding. 

D(8, 1) consists of four wavelet coefficients - a(16, 2), a(16, 3), a(17, 2) and 

a(17, 3), whose values are 0, -5, -J and 11. D( 8, 1) is significant at T = 8, and is 

partitioned to the four individual wavelet coefficients. The output coding symbols 

are 1000. For comparison, in the original SPIHT coding, the output symbols are 

10001. The last symbol is omitted in the improved SPIHT coding. 

More coding symbols are omitted in the fourth round and beyond in the improved 

SPIHT coding. As the result, the length of the output bit-stream is reduced without 

sacrificing the PSNR. Or, for the same coding length (thus the same coding rate), the 

improved SPIHT algorithm gets higher PSNR than the original SPIHT algorithm. 

5.7 Summary 

DC-level shifting for the zerotree-based transform coding was discussed in this 

chapter. We selected the simplest method, deducting the image pixels by a fixed 

value - the centre ofthe dynamic range. As we shall see in chapter 7, this is also the 

best among the three discussed methods in most cases. The other two methods are: 

deducting the image pixels by their mean value and deducting the WCs on LL by 



Chapter 5. Improvements to the SPIHT Algorithm 127 

their mean value. For these two methods, the mean value must be coded together 

with the WCs. 

Three measures were presented in this chapter to improve the SPIHT coding. First, 

the virtual trees, Vn and V, were introduced, together with the run length coding for 

initial WCs in the LIP. Second, the procedure of set partitioning was re-arranged to 

omit the predictable symbols. Third, the quantised value of a division was moved 

from the geometric centre to the statistical centre. A simple example is given to 

demonstrate the procedure of the improved SPIHT coding. The performance gain of 

these improvements will be demonstrated in chapter 7. 

Ways to optimise the arithmetic coding are also discussed. A promising approach to 

combine the context-based arithmetic coding (as used in EBCOT) and the SPIHT 

coding is pointed out. 

References 

[1] A.Said and W.A.Pearlman, 'A new, fast, and efficient image codec based on set 

partitioning in hierarchical trees', IEEE Transactions on Circuits and Systems for 

Video Technology, Vo1.6, No.3, pp.243-50, June 1996. 

[2] J.M.Shapiro, 'Embedded Image Coding Using Zerotrees of Wavelet 

Coefficients', IEEE Transactions on Signal Processing, Vo1.41, No.12, pp.3445-62, 

December 1993. 

[3] W.B.Pennebaker and 1.L.Mitchell. JPEG still image data compression standard. 

Van Nostrand Reinhold, New York, 1993. 

[4] D.Taubman, 'High performance scalable image compression with EBCOT', 

IEEE Transactions on Image Processing, Vo1.9, No.7, pp.1158-70, July 2000. 



Chapter 6 

Pre-processing for SPIHT Coding 

6.1 Speed up the judgement of 

significance of trees 

During SPIHT coding, the significance value of every tree in the list of insignificant 

sets (LIS) is required. The direct solution is to check the nodes on the tree and 

compare the wavelet coefficients (WC) with the quantisation threshold. 

If a tree is insignificant with respect to the current threshold, all the nodes on the tree 

will be checked. Later for the next smaller threshold, the nodes on the tree will be 

checked again. If the tree is insignificant again, all the nodes will be checked for the 

second time, and so on. As the result, the same set of WCs may be compared 

individually with different thresholds again and again. 

If a tree is found to be significant after checking many of the nodes on the tree, it 

will be partitioned into four subtrees as well. Then for the subtrees, their nodes will 

be checked, while many of the WCs have been compared with the same threshold 

previously. As the result, some WCs may be compared with the same threshold 

again and again. 

So, the direct solution to judge the significance of trees is not efficient. Can the 

comparison be done only once for each WC? The answer is yes. A new scheme is 

developed here. 



Chapter 6. Pre-processing for SPIHT Coding 129 

For an image of size M*N, we define a matrix Mmax whose size is M12 x N12. The 

element of Mmax, mmax(i, j) (0 5i < M12 and 0 5j < N12), is the maximum magnitude 

of D(i, j) if (i, j) is not on LLO. For (k, I) on LLO, mmax(k, I) is the maximum 

magnitude of Vii, j) (if it exists), where k = L i/2(n+l)Jand I = Lj12(n+J)J After the 

wavelet transform during the SPIHT image coding, we calculate Mmax fITst, and then 

use Mmax to judge the significance of all type of trees as in the following paragraphs. 

Denote the current quantisation threshold as T. 

(I) For D(i, j), compare mnuu;(i, j) with T. 

If mmax(i, j) < T, D(i, j) is insignificant; 

If mmax(i, j) ~ T, D(i, j) is significant. 

(2) For L(i,j), it is made up of four subtrees: D(k, I), where k = 2i or 2i+l, and 

1 = 2j or 2j+l. Compare mmax(k, I) with T. 

If all the four mmax(k, I) < T, L(i, j) is insignificant; 

If any of the four mnuu;(k, I) ~ T, L(i, j) is significant. 

We denote Lmax the maximum value of the four mmax(k, I) here. 

(3) For Uri, j), it is made up of four subtrees: D(k, I), where k = i or i+ 1, and 

1 = j or j+ 1. Compare mmax(k, I) with T. 

If all the four mmax(k, I) < T, Uri, j) is insignificant; 

If any of the four mnuu;(k, I) ~ T, Uri, j) is significant. 

We denote Umax the maximum value of the four mmax(k, I) here. 

(4) For Vii, j), compare mmdk, I) with T, where k = Li/2(n+J) Jand 1 = /j12(n+l) J 

If mmax(k, l) < T, Vn(i, j) is insignificant; 

If mmax( k, I) ~ T, Vn( i, j) is significant. 



Chapter 6. Pre-processing for SPIHT Coding 130 

To get Mmax, we calculate from the bottom up. That is, start from mfll(JX(i, j) where 

MI4 ~i < M12 and NI4 ~j < N12. Here D(i, j) is O(i, j), which has four WCs only. 

mfll(JX(i, j) is the maximum magnitude of the four WCs. 

For i < MI4 and j < N14, D(i, j) = O(i, j) + L(i, j). It is easy to calculate the 

maximum magnitude of the four WCs belong to O(i, j), denoted as Ofll(JX. L(i, j) is 

made up of four subtrees: D(k, I), where k = 2i or 2i+1, and 1 = 2j or 2j+1. mmax(k, 1) 

is known already. Determine LfIl(JX, the maximum value among the four mmax(k, I). 

mmax(i, j) is the larger value of Omax and LfIl(JX. 

For (k, I) on LLO, mmax(k, I) related with VnCi, j) is calculated similarly. mmax(k, I) 

related with Vo(i, j) comes from relevant Omax and Umax. There is no O(i, j) for Vn(i, j) 

(n > 0), so the relevant mmax(k, I) equals to VfIl(JX. 

In summary, Mmax is calculated before the SPIHT coding procedure. With this 

overhead of processing, the judgement of the significance of trees is simplified 

significantly, thus reducing the computation load. But extra memory space for Mmax 

is required. That is an exchange of space (memory) for time (speed). 

An example is given here to show Mmax and its usage to judge the significance of 

trees. For the same 20 x 16 image used in chapters 4 and 5 (the wavelet coefficients 

are repeated in Figure 6.1), Mmax is shown in Figure 6.2. m(O, 0) and m(4, j), 

where j = 0 - 3, do not exist. 

To judge the significance of VlO, 4), we just check the significance of m(O, 1) 

against T. Similarly, for D(4, 4) and Vo(O, 4), we check m(4, 4) and m(O, 2) for the 

relevant significance. For U(2, 4), we check m(2, 4), m(2, 5), m(3, 4) and m(3, 5) - if 

any of the four is significant, U(2, 4) is significant; otherwise U(2, 4) is insignificant. 

We do not have an L - tree in the example. 



Chapter 6. Pre-processing for SPIHT Coding 131 

o 2:~ 4 5 6 7 R 9 10 11 12 13 14 15 

() -14 -52 -34 31 3 -7 0 1 1 2 0 -1 2 0 2 -2 

-16 -54 -5 19 10 -4 -1 -11 -2 0 1 -2 0 -1 0 -2 

2 -31 -45 9 31 13 3 -24 -9 1 0 1 2 -3 1 0 0 

-32 -3 98 43 29 -15 -1 -14 3 0 2 -9 0 5 0 -1 

4 5 -34 13 40 -9 -5 0 2 3 0 -2 2 -8 4 0 -3 

5 0 -3 -8 0 -2 5 -8 -1 0 5 -6 0 0 0 0 -2 

6 -7 1 9 4 -3 5 3 3 5 3 -6 0 -1 0 -2 -1 

7 -16 -13 -13 3 -9 -12 -2 5 -3 0 3 -2 3 -4 2 0 

8 1 21 0 -3 0 0 -5 -5 1 1 0 3 -4 -5 3 0 

9 1 -34 -6 12 -2 -6 2 4 0 -2 1 0 0 -1 0 1 

10 0 -1 0 1 3 2 1 0 1 0 0 1 -1 -1 0 0 

II 0 -1 0 -4 -4 2 -2 0 1 0 0 4 0 2 0 0 

12 0 0 -1 -8 2 -1 -4 -1 0 0 -1 -1 4 -1 0 1 

-7 0 -1 3 -1 1 0 0 0 0 1 4 -3 0 0 0 

14 8 0 5 20 0 0 -1 -1 0 0 1 -3 0 0 0 0 

15 -I 0 -5 -5 2 0 -1 0 0 0 -1 0 0 0 1 0 

16 -5 0 0 -5 -1 0 -3 0 -1 1 3 -2 2 0 0 0 

17 -8 0 -1 11 0 0 0 1 5 0 0 1 0 -1 0 1 

II! 0 -6 3 -3 -4 3 0 -1 0 1 -4 3 -4 1 0 -1 

0 3 -1 -7 1 1 0 0 0 -2 0 0 0 0 0 0 

Figure 6.1 Example of 2-scale wavelet transform of a 20 x 16 image 



Chapter 6. Pre-processing for SPIHT Coding 132 

o 1 345 6 7 

o 29 10 11 2 2 2 2 

21 12 29 24 3 9 5 1 

8 9 5 8 5 6 8 3 

., 21 13 12 5 5 6 4 2 

4 2 3 5 3 

5 1 4 4 2 1 4 2 0 

7 8 2 4 0 4 4 1 

7 8 20 2 1 0 3 0 1 

8 8 11 1 3 5 3 2 1 

9 6 7 4 1 2 4 4 1 

Figure 6.2 Mmax for the 20 x 16 example image 

6.2 Pre-processing for SPIHT 

It is mentioned in section 5.3 of chapter 5 that the SPIHT image coding stopping at 

T = 8 was good enough for most applications. The relevant maximum coding error 

of the WCs (wavelet coefficients) may be 8 or even 16, as we shall see from 

Table 6.1. 

Studying the procedure of SPIHT coding, some interesting cases are found. For 

example, on tree D(i, j), suppose only one of the WCs on a leaf node is significant, 

but its magnitude x is just a little above the threshold T: 

x = T + o(ois a small value, 0 ~ 0 <D 



Chapter 6. Pre-processing for SPIHT Coding 133 

Then the whole tree is significant, and will be partitioned until the leaf is reached at 

this threshold. 

In this special case, if the significance of the sole significant WC is ignored, the tree 

will remain as an insignificant tree and stay in the LIS. The symbols to encode the 

tree are saved significantly. Table 6.1 lists the coding errors of the specially treated 

WC and other WCs during the scan of a list (LIP - list of insignificant WCs, LIS -

list of insignificant sets, or LSP -list of significant WCs) at T. The results are for the 

SPIHT without the quantisation offset (refer to section 5.3 of chapter 5 for the 

offset). The coding error of the specially treated WC is not significant compared with 

the maximum coding error of other WCs. 

Table 6.1 Maximum coding errors of wavelet coefficients during the scan of a 

list at threshold T 

Magnitude Coding errors 

of wavelet 
LIP LIS LSP 

coefficient 

The T+6 T+6 T+6 T+6 

specially-
2T+6 2T+6 2T+6 TI2+6 

treated 

wavelet 
(~ Til + 0) 

coefficient 2nT+6 T+6 T+6 T+6 

(n>l) (~ Til + 0) 

Other wavelet coefficients <2T <2T <T 



Chapter 6. Pre-processing for SPIHT Coding 134 

This method is applied to all the sole significant WCs on the trees. Recall that in 

section 6.1, Mmax is used to judge the significance of a tree. Mmax can be modified to 

ignore the significance of any sole significant WC on the trees. For bit-plane coding, 

the threshold T = 2n (n is a positive integer). In fact the calculation of Mmax is 

modified, as follows. 

For D(i, j), the maximum magnitude of the four WCs from O(i, j) is Omax. Let 

m = Llog2(Omax)J. and s = 2m. Then s $ Omax < 2s. We also define a constant p to be 

the up-limit of 0, so that 8 < p. Normally, 0 < p < 8. 

For MI4 5i < MI2 and NI4 $j < NI2, D(i, j) is O(i, j), which has four WCs only. If 

Omax = s + 0, but only the magnitude of one WC is of the value and the magnitude of 

the other three WCs is less than s, then force mmax(i, j) = s - 1 (the maximum value 

below s). Otherwise, mmax(i, j) = Omax, as in section 6.l. 

For i < MI4 andj < N14, D(i, j) = O(i, j) + L(i, j). L(i, j) is made up of four subtrees: 

D(k, I), where k = 2i or 2i+1, and I = 2j or 2j+1. The maximum value among the 

four mmax(k, I) is Lmax. If Omax = s + 0, but Lmax and the magnitude of three WCs of 

00, j) is less than s, then force mmaxO, j) = s - 1. Otherwise mmax(i, j) is the larger 

value of Omax and Lmax, as in section 6.1. 

For Vii, j), the relevant mmaii, j) is calculated in the same way as in section 6.1. 

The processing is done before the bit-plane coding in SPIHT. It is called 

pre-processing for SPIHT. 

If P = 0, 8 does not exist (since 0 $ 8 < {J). Then there will not be any pre-processing 

in fact. 

Take the example in section 6.1. Set p = 1. Mmax after pre-processing is shown in 

Figure 6.3. 



Chapter 6. Pre-processing for SPIHT Coding 135 

We examine the encoding of Vo(5, 0) at T = 8 (the forth round). m(2, 0) = 8 before 

pre-processing, so Vo(5, 0) was significant and partitioned, producing five binary 

coding symbols immediately and more latter in the same round for the partitioned 

subtrees (refer to chapter 5 for details). Now m(2, 0) = 7 after pre-processing, thus 

Vo(5, 0) is insignificant and remains in the LIS, producing only one binary coding 

symbols in this round. The price for the shortened output bit-stream is a little bit 

degrading of the PSNR, which can not be recovered in decoding. 

o .:I 5 (, 7 

o 29 10 11 2 1 1 2 

21 12 29 24 3 9 5 0 

7 9 5 7 5 6 7 3 

.\ 21 13 12 5 5 6 3 2 

4 1 3 5 3 

5 1 3 3 1 1 3 1 0 

11 7 7 1 3 0 3 3 0 

7 7 20 1 1 0 3 0 0 

7 11 0 3 5 3 1 0 

9 6 7 3 0 1 3 3 0 

Figure 6.3 Mmtu after pre-processing for the 20 x 16 example image 



Chapter 6. Pre-processing for SPIHT Coding 136 

6.3 Summary 

A pre-processing technique has been proposed for SPIHT in this chapter. A matrix, 

Mmax, is used to hold the maximum magnitude of wavelet coefficients on D and Vn 

trees. During the calculation of M max, some elements whose values are higher than 

but very close to one of the quantisation thresholds are cut down, to reduce the 

impact of sole large wavelet coefficient of a tree on coding efficiency. 

As to be shown in chapter 7, the pre-processing can significantly reduce the 

computation needed to judge the significance of trees, and improve the efficiency of 

SPIHT coding. 



Chapter 7 

Performance of SPIHT Image 

Coding 

In chapter 5 and 6, we proposed the improvements to the SPIRT (set partitioning in 

hierarchical trees) image coding, introducing virtual trees, omitting predictable 

coding symbols, quantisation offset, using a matrix to speed up the judgement of the 

significance of trees, and pre-processing. We also discussed the DC-level shifting, 

and explored ways to optimise the arithmetic coding. Now we show the performance 

of the SPIRT algorithm and the performance gain of these improvements. 

7.1 Implementation of the SPIHT algorithm 

The programs for the original SPIRT image coding are available on the Internet 

(Said&Pearlman's implementation, [1]). There are two programs executable on the 

PC (.exe) for the SPIRT algorithm without the arithmetic coding, and two for the 

SPIRT algorithm with the arithmetic coding. They are listed in Table 7.1. 

Table 7.1 Programs for the original SPIHT algorithm available on Internet 

Program Name Entropy Coding 

Encoder Decoder Method 

fastcode fastdecd none 

codetree decdtree arithmetic 



Chapter 7. Performance of SPIHT Image Coding 138 

The source code of these programs is not available, and the implementation details 

are not clear. To carry out the improvements, we write our own programs using C++, 

each with a MATLAB interface so that we can do various experiments easily in 

MATLAB. We separate the wavelet transform (WT) from the SPIHT coding, so that 

we can use various WTs and DC-level shifting. The programs for the WT are DWA 

(for analysis) and DWS (for synthesis), and the programs for the SPIHT coding are 

listed in Table 7.2. They are dynamic-linked libraries (.dU). The programs for the 

original SPIHT algorithm (SPIHTencode, SPIHTdecode, SPIHTacEncode, and 

SPIHTacDecode) are written strictly according to the procedure described in [2]. 

Table 7.2 Programs for the SPIHT coding 

Program Name SPIHT Entropy Coding 

algorithm Method 
Encoder Decoder 

SPIHTencode SPIHTdecode original none 

SPIHTacEncode SPIHTacDecode original arithmetic 

ISPIHTencode ISPIHTdecode improved none 

ISPIHTacEncode ISPIHTacDecode improved arithmetic 

We use 5-scale bi-orthogonal 917 WT [3] for the SPIHf algorithm in the 

experiments, except as stated otherwise. The test images shown in chapter 3 

(Barbara, Boat, Goldhill, Lena, Mandrill, Peppers, and Zelda) are used for the 

simulations. 



Chapter 7. Performance of SPIHT Image Coding 139 

Table 7.3 Performance of the SPIHT algorithm without the arithmetic coding 

for Goldhill 

Coding Rate PSNR (dB) 

(bpp) Our implementation Said & Pearlman's difference 

0.05 25.8346 26.0370 0.2024 

0.10 27.5103 27.6737 0.1634 

0.15 28.5424 28.7150 0.1726 

0.20 29.3337 29.5289 0.1952 

0.25 30.1003 30.2157 0.1154 

0.30 30.7426 30.8348 0.0922 

0.35 31.2318 31.3345 0.1027 

0.40 31.6580 31.8073 0.1493 

0.45 32.1063 32.2752 0.1689 

0.50 32.5484 32.7064 0.1580 

0.55 32.9554 33.0854 0.1300 

0.60 33.3908 33.5135 0.1227 

0.65 33.7877 33.8682 0.0805 

0.70 34.1347 34.2178 0.0831 

0.75 34.4676 34.5524 0.0848 

0.80 34.7453 34.8429 0.0976 

0.85 35.0219 35.1372 0.1153 

0.90 35.2997 35.4293 0.1296 

0.95 35.5614 35.7109 0.1495 

1.00 35.8463 36.0027 0.1564 

Average 32.2410 32.3744 0.1335 



Chapter 7. Performance of SPIHT Image Coding 140 

To see the performance of our implementation, we use SPIHTencode and 

SPIHTdecode (our implementation of the SPIHT algorithm without the arithmetic 

coding) to encode and decode the test images. The decoder stops after decoding a 

given length of the coded bit-streams, which is equivalent to a relevant coding rate. 

The results of PSNR at twenty equally-spaced coding rates of 0.05 - I bpp for 

Goldhill are listed in Table 7.3. 

We also list the results using fastcode and fastdecd (Said and Pearlman's 

implementation of the SPIHT algorithm without the arithmetic coding) in Table 7.3 

for comparison. As can be seen, Said and Pearlman's implementation outperforms 

our implementation at all coding rates. The difference is about 0.20 dB maximum, 

and 0.13 dB in average. The difference is also depicted in Figure 7.1. 

0.22,-----.-----,---.,---,------,---.,---,-----,----y-----, 

0.2 

0.18 

m 0.16 
:e. 
a: z 
~ 0.14 

0.12 

0.1 

0.08 L-_-'--_~ _ ___'_ _ ____L __ '--_....L._...J.::::::~ _ ___'_ _ ___L_-----l 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Rate (bpp) 

Figure 7.1 Performance difference of the SPIRT algorithm between 

Said&Pearlman's and our implementation for Goldhill 



Chapter 7. Performance of SPIHT Image Coding 141 

In the case of other test images, the results are similar. Said and Pearlman's 

implementation outperforms our implementation in all cases. We list the average 

differences of PSNR in Table 7.4. The differences are small. We use our 

implementation of the original SPIHT algorithm as the base to measure the 

performance gain of the improvements. 

Table 7.4 Average difference of PSNR for various test images 

Image Barbara Boat Goldhill Lena Mandrill Peppers Zelda 

Difference 0.1571 0.1606 0.1335 0.1227 0.1449 0.1148 0.1145 

7.2 Performance of the SPIHT algorithm 

In this section we study the performance of the SPIHT algorithm. First, we compare 

the SPIHT algorithm with the international image coding standards JPEG [4] and 

JPEG2000 [5]. Then we investigate the performance of the SPIHT algorithm using 

various levels of wavelet transform. 

We use Said&Pearlman's programs "codetree" and "decdtree" in Table 7.1 for the 

SPIHT algorithm, the software from the independent JPEG group for JPEG [6], and 

the JasPer software for JPEG2000 [7]. The rate-distortion performance for Goldhill 

is depicted in Figure 7.2, and that for Zelda is in Figure 7.3. We can see that the 

SPIHT algorithm outperforms JPEG, and that the PSNR difference is about 2 dB. 

The performance of SPIHT and JPEG2000 are very close. The PSNR of SPIHT is a 

little bit higher than that of JPEG2000 at the ends of low and high coding rates. 

The results for other test images are similar. 



Chapter 7. Performance of SPIHT Image Coding 142 

Performance comparison of SPIHT, JPEG2000 and JPEG for Goldhill 
42 

40 

38 --
36 

m34 
:E.. 

~ 32 
Cf) 
Q. ,/ 

30 / --- SPIHT 
- JPEG2000 

28 - - JPEG 

26 

24 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Coding rate (bpp) 

Figure 7.2 Performance comparison ofSPIHT, JPEG and JPEG2000 image 
coding for Goldhill 

Performance comparison of SPIHT, JPEG2000 and JPEG for Zelda 

46 

44 

42 

40 --
m38 
:E.. / 
~ 36 

I Cf) 
Q. 

34 / --- SPIHT 

32 
- JPEG2000 
- - JPEG 

28 

26~-L~---L---L--~----~--~---L __ -L __ ~ __ ~ 
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

Coding rate (bpp) 

Figure 7.3 Performance comparison ofSPIHT, JPEG and JPEG2000 image 
coding for Zelda 



Chapter 7. Performance of SPIHT Image Coding 143 

The basic encoding engine of JPEG2000 is based on the EBCOT algorithm [5]. 

JPEG2000 modified the EBCOT algorithm to reduce complexity [8]. The 

performance of the SPIHT algorithm and the EBCOT algorithm are also very close, 

as shown in Table 7.5. The results for EBCOT and SPIHT in the table are from [8]. 

The results for EBCOT are for bit-stream with only one layer, which are the best 

using octave decomposition but not SNR scalable. We calculate the results for 

SPIHT using "codetree" and "decdtree", and find that the results for Lena are the 

same as that from [8], but the results for Barbara are quite different with that from 

[8]. The results for Barbara calculated using "codetree" and "decdtree" are listed in 

Table 7.5 under SPIHT*. The difference may be due to different versions of the 

SPIHT algorithm or the Barbara image. 

Table 7.5 Performance ofSPIHT and EBCOT for Lena and Barbara 

Coding PSNR (dB) 

Rate Lena Barbara 

(bpp) EBCOT SPIHT EBCOT SPIHT SPIHT* 

0.0625 28.30 28.38 23.45 23.35 23.77 

0.125 31.22 31.10 25.55 24.86 25.38 

0.25 34.38 34.11 28.55 27.58 28.13 

0.5 37.43 37.21 32.48 31.39 32.11 

1.0 40.61 40.41 37.37 36.41 37.45 



Chapter 7. Performance of SPIHT Image Coding 144 

As mentioned in section 7.1, we usually use the 5-scale wavelet transform for the 

SPIHT algorithm in the experiments. Now we check the performance using various 

levels of wavelet transform. Since we cannot change the wavelet transform in Said 

and Pearlman's implementation (in fact we do not know the number of wavelet 

transform levels used in their programmes), we use our implementation here. 

Figure 7.4 and Figure 7.5 show the results for Goldhill and Zelda. The results for 

other test images are similar. 

Performance of the SPIHT algorithm for Goldhill 
36.---.----.----.---.----.----.---.----.----.---~ 

34 

32 

m 
"0 -a:: 30 z 
(J) 
a.. 

- - - 6-scale wavelet transform 
- 5-scale wavelet transform 

28 - - 4-scale wavelet transform 
- - 3-scale wavelet transform 

26 

24wu--~--~----~--~--~----~--~--~----~--~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Coding rate (bpp) 

0.9 1 

Figure 7.4 Performance of the SPIHT algorithm under various levels of wavelet 

transform for GoldhiU 



Chapter 7. Performance of SPIHT Image Coding 

CD 
~ 

40 

38 

cr: 36 z en 
a.. 

34 

32 
/ 

Perfonnance of the SPIHT algorithm for Zelda 

~ ./"-, 

/ 

I 
- - - 6-scale wavelet transfonn 

/ - 5-scale wavelet transfonn 
- - 4-scale wavelet transfonn 
- - 3-scale wavelet transfonn 

/ 

/ 

30L-LL-L-L~L---J---~----~--~----~--~--~--~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Coding rate (bpp) 

0.9 1 

145 

Figure 7.S Performance of the SPIHT algorithm under various levels of wavelet 

transform for Zelda 

Figure 7.4 and Figure 7.5 show that the performance of the SPIHT algorithm using 

high scale wavelet transform is better than that using low scale wavelet transform. 

But the performance difference between high levels of wavelet transform (such as 

5 and 6-scale) is very small. We can also use 7 or even 8-scale wavelet transform for 

the test image whose size is 512 x 512, but their performance differences with 

6-scale wavelet transform are so minute that we cannot differentiate them if they 

were to be depicted in Figure 7.4 and Figure 7.5. The 5-scale wavelet transform is 

good enough in the SPIHT algorithm for images of size 512 x 512. 



Chapter 7. Performance of SPIHT Image Coding 146 

7.3 Performance gain of the improvements 

to the SPIHT algorithm 

The proposed improvements to the SPIHT algorithm include: (1) DC-level shifting; 

(2) Virtual trees; (3) Redundancy reduction by omitting predictable coding symbols; 

(4) Quantisation offset; (5) Pre-processing (for lossy image coding); (6) Speeding up 

the judgement of the significance of trees; (7) optimisation of the arithmetic coding. 

We examine the performance gain of individual and all improvements. 

7.3.1 DC-level shifting 

We compare the performance of the SPIHT algorithm with and without DC-level 

shifting. Various DC-level shifting schemes (described in chapter 5) are studied. 

SPIHTencode and SPIHTdecode are used for encoding and decoding of the wavelet 

coefficients (WC) after a 3-scale wavelet transform. The numerical results for Lena 

are shown in Table 7.6. 

As Table 7.6 shows, with DC-level shifting, PSNR are higher than that without 

DC-level shifting (about 0.65 dB in average). The performance gains of various 

DC-level shifting schemes are depicted in Figure 7.6. The differences between the 

three DC-level shifting schemes are so small (no more than 0.007 dB in average) that 

the three curves in Figure 7.6 are almost identical. In general, the performance gain 

at low coding rate is higher than that at high coding rate. 

The results for Lena are typical. The results for other test images are similar. 

Table 7.7 lists the average PSNR of the test images using various DC-level shifting. 

In most cases (5 out of 7), the SPIHT algorithm with fixed DC-level shifting in the 

image domain gives the best performance. 



Chapter 7. Performance of SPIHT Image Coding 147 

Table 7.6 Performance comparison for DC-level shifting (Lena) 

Coding PSNR (dB) 

Rate No DC-level Image Domain DC-level shifting Transform Domain 

(bpp) shifting Fixed (127) Mean DC-level shifting 

0.05 16.6260 21.0700 21.0540 21.0540 

0.10 24.0120 26.0010 26.0200 26.0190 

0.15 27.4100 28.6930 28.6940 28.6920 

0.20 29.9240 30.6430 30.6410 30.6410 

0.25 31.2730 31.9930 31.9910 31.9890 

0.30 32.6850 33.2740 33.2730 33.2720 

0.35 33.5900 33.9970 33.9990 33.9990 

0.40 34.3290 34.7490 34.7530 34.7520 

0.45 35.0360 35.4260 35.4250 35.4240 

0.50 35.7740 36.0820 36.0820 36.0820 

0.55 36.3200 36.5510 36.5470 36.5470 

0.60 36.7080 36.9230 36.9220 36.9210 

0.65 37.1130 37.3150 37.3140 37.3130 

0.70 37.5090 37.7050 37.7060 37.7050 

0.75 37.8600 37.9920 37.9920 37.9930 

0.80 38.1350 38.2630 38.2640 38.2640 

0.85 38.4400 38.6610 38.6590 38.6590 

0.90 38.8550 39.0140 39.0130 39.0130 

0.95 39.1420 39.2940 39.2930 39.2930 

1.00 39.4230 39.5770 39.5770 39.5770 

Average 34.0081 34.6611 34.6610 34.6605 



Chapter 7. Performance of SPIHT Image Coding 148 

Penonnance gain of DC-Iewl shifting 
4.5,..-----.------,----r----r--.---...,----,---,----r---, 

4 

3.5 - Transform domain 
- - - Image domain (fixed) 

3 
- Image domain (mean) 

~2.5 
a: 
~ 2 
a.. 

1.5 

0.5 

OL--~-~-~--~---~--~--~---L--~--~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Coding rate (bpp) 

Figure 7.6 Performance gain of various DC-level shifting schemes for Lena 

Table 7.7 Performance comparison for DC-level shifting (various test images) 

Image Average PSNR (dB) 

No DC-level Image Domain DC-level shifting Transform Domain 

shifting Fixed (127) Mean DC-level shifting 

Barbara 29.5321 30.1077 30.1077 30.1119 

Boat 31.5664 32.1732 32.1537 32.1486 

Goldhill 30.7096 31.3514 31.3492 31.3509 

Lena 34.0081 34.6611 34.6610 34.6605 

Mandrill 24.0390 24.4393 24.4382 24.4386 

Peppers 32.9977 32.9989 33.5976 33.5958 

Zelda 36.4599 37.2203 37.2114 37.2086 



Chapter 7. Performance of SPIHT Image Coding 149 

We conclude that DC-level shifting does improve the performance of the SPIHT 

algorithm, especially at low coding rates. The performance improvement at low 

coding rates is higher than that at high coding rates. We choose the fixed DC-level 

shifting in the image domain for the rest of the experiments, because it is the best in 

most cases and is the simplest. The maximum and the average performance gains of 

the fixed DC-level shifting in the image domain for various test images using 3-scale 

wavelet transform are listed in Table 7.8. 

Table 7.8 Performance gain of DC-level shifting 

Image PSNR (dB) 

Maximum Average 

Barbara 3.737897 0.575585 

Boat 3.792362 0.606830 

Goldhill 6.074123 0.641783 

Lena 4.443772 0.653007 

Mandrill 3.187370 0.400251 

Peppers 0.298223 0.001281 

Zelda 5.877013 0.760401 

Now we vary the number of wavelet transform levels and check the performance 

gain. The results for Lena are depicted in Figure 7.7. 

Figure 7.7 shows that the performance gains of DC-level shifting in the SPIHT 

algorithm changes a lot with the levels of wavelet transform. The performance gain 

using the low-scale wavelet transform is higher than that using the high-scale 

wavelet transform. 



Chapter 7. Performance of SPIHT Image Coding 

Performance gain of DC-level shifting in the SPIHT algorithm for Lena 
3~--~---.----'----.----.----.----r---.----.--~ 

2.5 

2 I 

~ 
a: 1.5 I 

Z 
(/) 
a.. 

1 

0.5 

I, 
\ 
\ 

,/' 

'\ 

- - 3-scale wavelet transform 
- - 4-scale wavelet transform 
- - - 5-scale wavelet transform 
- 6-scale wavelet transform 

',1,1, ~----'-~/""'-......_ 
.. #0_ ... __ .... __ :..-,;"'" - ~ ... _____ .... _ _ " _____ _ 

OL--=~====~~~~---w~--~~~~~~~~~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Coding rate (bpp) 

0.9 1 

150 

Figure 7.7 Perfonnance gain ofne-Ievel shifting in the SPIHT algorithm for 

Lena 

The results for other test images are similar, except Peppers. There is little 

performance gain of DC-level shifting for Peppers in any case. 

7.3.2 Virtual trees 

In this section we use the virtual trees in SPIHT coding and check the performance 

of the improvement. The results for Boat using the 3-scale wavelet transform are 

listed in Table 7.9. The performance of the original SPIHT algorithm is also listed in 

the table. 



Chapter 7. Performance of SPIRT Image Coding 151 

Table 7.9 Performance of the SPIRT algorithm using the virtual trees for Boat 

Coding Rate PSNR (dB) 

(bpp) Original SPIRT V irtual tree Difference 

0.05 16.9517 20.7275 3.7759 

0.10 22.5659 24.8655 2.2996 

0.15 25.4006 26.7450 1.3444 

0.20 26.9088 28.3708 1.4620 

0.25 28.4762 29.3340 0.8579 

0.30 29.3604 30.2867 0.9263 

0.35 30.3386 31.2563 0.9178 

0.40 31.3134 32.0209 0.7075 

0.45 32.0381 32.5781 0.5400 

0.50 32.5895 33.1471 0.5576 

0.55 33.1588 33.7310 0.5722 

0.60 33.7531 34.2944 0.5413 

0.65 34.3242 34.9591 0.6349 

0.70 34.9825 35.4376 0.4551 

0.75 35.4579 35.9404 0.4825 

0.80 35.9534 36.3217 0.3683 

0.85 36.3192 36.7349 0.4157 

0.90 36.7303 37.1308 0.4005 

0.95 37.1264 37.5781 0.4517 

1.00 37.5783 37.9765 0.3982 

Average 31.5664 32.4718 0.9055 



Chapter 7. Performance of SPIHT Image Coding 152 

Table 7.9 shows that the improved SPIHT algorithm using the virtual trees 

outperforms the original SPIHT algorithm at all coding rates. The PSNR difference 

is about 3.8 dB maximum and 0.9 dB in average. The PSNR difference is also 

depicted in Figure 7.8. 

-to 
~ 
a: z en 
a.. 

Pertormance gain of using \Artual trees in SPIHT coding 
4 

3.5 

3 

2.5 

2 

1.5 

0.5 

O~--J---~----~--~--~----~--~--~----~--~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Rate (bpp) 

1 

Figure 7.8 Performance gain of using the virtual trees in the SPIHT coding for 

Boat 

As Figure 7.8 shows, the performance gain of using the virtual trees in the SPIHT 

coding at low coding rates is higher than that at high coding rates in general. This 

suggests that the virtual tree technique is more efficient for the low-rate image 

coding than for the high-rate. This can be explained by the fact that the virtual tree 

technique mainly reduces the coding symbols at the beginning of the SPIHT coding. 

The total number of symbols reduced is limited. As the coding rate goes higher, the 



Chapter 7. Performance of SPIHT Image Coding 153 

ratio of the reduced symbols in total coding symbols becomes less, so that the 

reduction becomes less important. 

Now we vary the number of wavelet transform levels and check the performance 

gain. The results are depicted in Figure 7.9. 

co 
:E-
o: z en 
a.. 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

o 
o 

Performance gain of using \Artual trees in SPIHT coding for Boat 

0.1 0.2 0.3 

- - 3-scale waYelet transform 
- - 4-scale waYelet transform 
- - - 5-scale wawlet transform 
- 6-scale wawlet transform 

0.4 0.5 0.6 
Coding rate (bpp) 

0.7 0.8 0.9 1 

Figure 7.9 Perfonnance gain of using virtual trees in SPIHT coding for Boat 

Figure 7.9 shows that the performance gain of using the virtual trees in the SPIHT 

algorithm changes a lot with levels of wavelet transform. The performance gain 

using the low-scale wavelet transform is higher than that using the high-scale 

wavelet transform. 

This is explained in the following discussion. Recall that the virtual tree technique 

reduces the total number of initial trees in the LIS (list of the insignificant sets). As 

the number of wavelet transform levels increases, the size of subbands LL, HLO, 



Chapter 7. Performance of SPIHT Image Coding 154 

LHO and HHO decreases, and the number of initial trees in the original SPIHT 

algorithm also decreases, thus there is less to be gained by using the virtual trees. In 

the extreme case, for the 512 x 512 image, after an 8-scale wavelet transform, the 

size of LL, HLO, LHO or HHO is 2 x 2. There exists no other initial virtual tree in the 

LIS except Vo, which is actually the initial D tree in the original SPIHT algorithm. 

So, there is no performance gain by using the virtual trees in the extreme case. 

In Figure 7.9, there is no performance gain at very low coding rates (e.g. 0.02 bpp) 

when using the 3-scale wavelet transform. This is because the SPIHT coding starts 

from the LIP, which includes all the wavelet coefficients on LL initially. The virtual 

trees in the LIS have not been coded yet during this period. The coding rate at the 

beginning of the LIS scan depends on the size of LL. For 3-scale wavelet transform, 

the size of LL is 64x64, the coding rate of the initial wavelet coefficients in the LIP 

is about 0.02 bpp for a 512x512 image, or between 1/64 bpp and 1/32 bpp 

accurately. For higher scale wavelet transforms, this coding rate is too low to be 

shown in Figure 7.9. 

The results for Boat are typical. The results for other test images are similar. 

Table 7.10 lists the maximum and the average performance gain of using the virtual 

trees in the SPIRT coding for various test images. The 3-scale wavelet transform is 

used here. 



Chapter 7. Performance of SPIHT Image Coding 155 

Table 7.10 Performance gain of using the virtual trees in the SPIHT coding for 

various test images 

Image PSNR (dB) 

Maximum Average 

Barbara 3.696666 0.902046 

Boat 3.775896 0.905480 

Goldhill 5.485875 0.844814 

Lena 4.583156 1.013042 

Mandrill 2.648991 0.489282 

Peppers 4.494274 0.892464 

Zelda 4.966644 1.109960 

7.3.3 Omit predictable coding symbols 

In this section we omit the predictable symbols in the SPIHT coding and check the 

performance of the improvement. The results for Barbara using the 5-scale wavelet 

transform are listed in Table 7.11. The performance of the original SPIHT algorithm 

is also listed in the table. 

Table 7.11 shows that the improved SPIHT algorithm omitting the predictable 

symbols outperforms the original SPIHT algorithm at all coding rates. The PSNR 

difference is about 0.14 dB maximum and 0.105 dB in average. The PSNR 

difference is also depicted in Figure 7.10 (the dotted line). 



Chapter 7. Performance of SPIHT Image Coding 156 

Table 7.11 Performance of the SPIHT algorithm omitting the predictable 

symbols for Barbara 

Coding Rate PSNR (dB) 

(bpp) Original SPIHT Omit predictable Difference 

0.05 23.1742 23.1977 0.0234 

0.10 24.3055 24.4138 0.1084 

0.15 25.4207 25.5598 0.1391 

0.20 26.5952 26.6583 0.0631 

0.25 27.5392 27.6244 0.0853 

0.30 28.4817 28.5721 0.0904 

0.35 29.3690 29.5092 0.1402 

0.40 30.2752 30.3638 0.0886 

0.45 30.8993 30.9981 0.0987 

0.50 31.5772 31.6474 0.0703 

0.55 32.1018 32.2339 0.1321 

0.60 32.7024 32.8026 0.1002 

0.65 33.2964 33.4335 0.1371 

0.70 33.8864 34.0216 0.1353 

0.75 34.4859 34.6215 0.1356 

0.80 34.9636 35.0753 0.1117 

0.85 35.4169 35.5558 0.1389 

0.90 35.9623 36.0483 0.0860 

0.95 36.3544 36.4610 0.1067 

1.00 36.7688 36.8799 0.1112 

Average 31.1788 31.2839 0.1051 



Chapter 7. Performance of SPIRT Image Coding 

Performance gain of omitting predictable symbols in SPIHT coding for Barbara 
0.18~--~--~----~---'----~--~----~--~--~--~ 

0.16 

0.14 

0.12 

~ 0.1 
a: z 
CIJ 0.08 
no 

0.06 

0.04 

0.02 
I 

" , 

/' 

'\ 
/ , 

\ 

\ 

\ 
,,' I /' 

\' / 
", / 

I V 

/ 
/ 

/, 
\ 

/ 

- 3-scale wavelet transform 
- - 4-scale wavelet transform 
- - - 5-scale wavelet transform 
- 6-scale wavelet transform 

OL---~--~----~--~----~--~--~~--~--~--~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
Coding rate (bpp) 

0.9 1 

157 

Figure 7.10 Performance gain of omitting the predictable symbols in SPIHT 

coding for Barbara 

Now we vary the number of wavelet transform levels and check the performance 

gain. The results are depicted in Figure 7.10. As can be seen, the performance gain 

changes with the levels of wavelet transform, but the difference is not significant. In 

fact, there are only ten values for each curve in the figure. If more values were 

depicted, the curves would mix together that we could hardly distinguish any curve 

from the others. 

The results for Barbara are typical. The results for other test images are similar. 

Table 7. 12 lists the maximum and the average performance gain of omitting the 

predictable symbols in the SPIRT coding for various test images. The 5-scale 

wavelet transform is used here. 



Chapter 7. Performance of SPIRT Image Coding 158 

Table 7.12 Performance gain of omitting the predictable symbols in the SPIHT 

coding for various test images 

Image PSNR (dB) 

Maximum Average 

Barbara 0.145604 0.084623 

Boat 0.098055 0.046216 

Goldhill 0.091744 0.040003 

Lena 0.099213 0.037865 

Mandrill 0.120768 0.056696 

Peppers 0.130776 0.036815 

Zelda 0.075692 0.024998 

7.3.4 Quantisation offset 

In this section we offset the quantisation of the wavelet coefficients in the SPIRT 

coding and check the performance of the improvement. The results for Mandrill 

using the 5-scale wavelet transform are listed in Table 7.13. The performance of the 

original SPIRT algorithm is also listed in the table. 

Table 7.13 shows that the improved SPIRT algorithm with the quantisation offset 

outperforms the original SPIRT algorithm at all coding rates. The PSNR difference 

is about 0.12 dB maximum and 0.05 dB in average. The PSNR difference is also 

depicted in Figure 7.11 (the dotted curve). 



Chapter 7. Performance of SPIHT Image Coding 159 

Table 7.13 Performance of the SPIHT algorithm with the quantisation offset for 

Mandrill 

Coding Rate PSNR (dB) 

(bpp) Original SPIHT Quantisation offset Difference 

0.05 20.0730 20.0967 0.0237 

0.10 21.0524 21.0795 0.0271 

0.15 21.6538 21.6899 0.0362 

0.20 22.2370 22.2875 0.0505 

0.25 22.7641 22.8345 0.0704 

0.30 23.3261 23.3630 0.0369 

0.35 23.8040 23.8474 0.0433 

0.40 24.2129 24.2617 0.0489 

0.45 24.6180 24.6726 0.0546 

0.50 25.0210 25.0835 0.0625 

0.55 25.4234 25.4954 0.0721 

0.60 25.8275 25.9135 0.0860 

0.65 26.2347 26.3362 0.1015 

0.70 26.5537 26.6730 0.1193 

0.75 26.9899 27.0141 0.0242 

0.80 27.3037 27.3286 0.0248 

0.85 27.6189 27.6456 0.0266 

0.90 27.9491 27.9785 0.0294 

0.95 28.2585 28.2923 0.0338 

1.00 28.5403 28.5784 0.0380 

Average 24.9731 25.0236 0.0505 



Chapter 7. Performance of SPIHT Image Coding 

Performance gain of quantisation offset in SPIHT coding for Mandrill 
0.15~--~----'-----'---~-----'----'----'----~--~ 

iii' 
~ 
a: z en 
a.. 

0.1 

0.05 

- 3-scale wavelet transform 
- - 4-scale wavelet transform 
- - - 5-scale wavelet transform 
- 6-scale wavelet transform 

0.2 0.3 0.4 0.5 0.6 0.7 
Coding rate (bpp) 

0.8 0.9 1 

160 

Figure 7.11 Performance gain of the quantisation offset in the SPIHT coding for 

Mandrill 

Now we vary the number of wavelet transform levels and check the performance 

gain. The results are depicted in Figure 7.11. As can be seen, the performance gain 

changes with the levels of wavelet transform, but the difference is not significant. 

The results for Mandrill are typical. The results for other test images are similar. 

Table 7.14 lists the maximum and the average performance gain of the quantisation 

offset in the SPIHT coding for various test images, using the 5-scale wavelet 

transform. 



Chapter 7. Performance of SPIHT Image Coding 161 

Table 7.14 Performance gain of the quantisation offset in the SPIHT coding for 

various test images 

Image PSNR (dB) 

Maximum Average 

Barbara 0.110525 0.024564 

Boat 0.063191 0.029683 

Goldhill 0.065569 0.033288 

Lena 0.059797 0.024154 

Mandrill 0.119306 0.050491 

Peppers 0.088732 0.029296 

Zelda 0.050236 0.029173 

7.3.5 Pre-processing for lossy image coding 

In this section we apply pre-processing to the SPIHT algorithm and check the 

performance of the improvement. The parameter ~ for pre-processing is set to be 2. 

The results for Peppers using the 5-scale wavelet transform are listed in Table 7.15. 

The performance of the original SPIHT algorithm is also listed in the table. 

Table 7.15 shows that the improved SPIHT algorithm with pre-processing 

outperforms the original SPIHT algorithm at almost all coding rates (with only one 

exception at 0.25 bpp). The PSNR difference is about 0.41 dB maximum and 0.16 

dB in average. The PSNR difference is also depicted in Figure 7.12 (the dotted 

curve). 



Chapter 7. Performance of SPIHT Image Coding 

Table 7.15 Performance of the SPIHT algorithm with pre-processing for 

Peppers 

Coding Rate PSNR (dB) 

(bpp) Original SPIHT Pre-processing Difference 

0.05 26.1578 26.1640 0.0062 

0.10 29.0917 29.1475 0.0559 

0.15 30.6949 30.7341 0.0392 

0.20 32.0638 32.1671 0.1033 

0.25 33.0086 32.9956 -0.0130 

0.30 33.5823 33.6950 0.1126 

0.35 34.2085 34.2889 0.0804 

0.40 34.6631 34.8558 0.1927 

0.45 35.1805 35.2286 0.0481 

0.50 35.5239 35.5572 0.0332 

0.55 35.7850 35.8588 0.0737 

0.60 36.0230 36.1756 0.1526 

0.65 36.2701 36.4346 0.1646 

0.70 36.4936 36.6865 0.1929 

0.75 36.6780 36.9741 0.2961 

0.80 36.8881 37.2709 0.3828 

0.85 37.0801 37.4929 0.4128 

0.90 37.2780 37.6859 0.4079 

0.95 37.5560 37.8602 0.3042 

1.00 37.8815 38.0384 0.1569 

Average 34.6054 34.7656 0.1602 

162 



Chapter 7. Performance of SPIHT Image Coding 

m 
32-
a: z 
CJ) 
0.. 

Perfonnance gain of pre-processing in SPIHT coding for Peppers 
0.5.---.----.----.---.----.----.---,,---.----~--~ 

- 3-scale wavelet transfonn 
0.4 - - 4-scale wavelet transfonn 

- - - 5-scale wavelet transfonn 
- 6-scale wavelet transfonn 

0.3 

0.1 

~.1L---~--~----~--~--~----~--~--~----~--~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Coding rate (bpp) 

1 

163 

Figure 7.12 Perfonnance gain of pre-processing in the SPIHT algorithm for 

Peppers 

Now we vary the number of wavelet transform levels and check the performance 

gain. The results are depicted in Figure 7.12. As can be seen, the performance gain 

changes with the levels of wavelet transform, but the difference is not significant. 

The results for Peppers are typical. The results for other test images are similar. 

Table 7.16 lists the maximum and the average performance gain of the 

pre-processing in the SPIHT coding for various test images. The 5-scale wavelet 

transform is used here. 



Chapter 7. Performance of SPIHT Image Coding 164 

Table 7.16 Performance gain of the pre-processing in the SPIHT algorithm for 

various test images 

Image PSNR (dB) 

Maximum Average 

Barbara 0.284992 0.102971 

Boat 0.386628 0.150213 

Goldhill 0.340984 0.120651 

Lena 0.321143 0.128116 

Mandrill 0.215864 0.071373 

Peppers 0.412769 0.160151 

Zelda 0.453334 0.192245 

7.3.6 Arithmetic coding 

In this section we optimise arithmetic coding for the spurr algorithm and check the 

performance of the optimisation. For the groups of wavelet coefficients (We) in the 

LIP (list of insignificant WC), we use one model for each pattern of spatial 

orientation occupation, instead of one model for each group containing the same 

number of WCs. We also adjust the initial frequencies and the maximum frequency 

for each arithmetic coding model. The optimisation is made for the 5-scale wavelet 

transform. The results for Goldhill are listed in Table 7.17. The performance of the 

SPIHT algorithm without optimisation for arithmetic coding is also listed in the 

table. 



Chapter 7. Performance of SPIHT Image Coding 165 

Table 7.17 Optimisation of arithmetic coding (GoldhiU) 

Coding Rate PSNR(dB) 

(bpp) Original Optimised Difference 

0.05 25.9534 25.9716 0.0182 

0.10 27.7620 27.7864 0.0245 

0.15 28.7258 28.7467 0.0209 

0.20 29.6183 29.6464 0.0280 

0.25 30.4265 30.4583 0.0318 

0.30 31.0227 31.0459 0.0232 

0.35 31.4819 31.5215 0.0396 

0.40 31.9560 31.9959 0.0399 

0.45 32.4406 32.4814 0.0407 

0.50 32.9226 32.9610 0.0384 

0.55 33.4013 33.4745 0.0732 

0.60 33.8103 33.8463 0.0360 

0.65 34.1662 34.2015 0.0354 

0.70 34.5159 34.5475 0.0316 

0.75 34.8009 34.8454 0.0445 

0.80 35.1073 35.1590 0.0518 

0.85 35.4043 35.4427 0.0384 

0.90 35.6983 35.7487 0.0504 

0.95 36.0057 36.0533 0.0476 

1.00 36.3132 36.3622 0.0489 

Average 32.5767 32.6148 0.0382 



Chapter 7. Performance of SPIHT Image Coding 166 

Table 7.17 shows that the optimisation gets some performance gain at all coding 

rates. The PSNR difference is about 0.07 dB maximum and 0.04 dB in average. The 

PSNR difference is also depicted in Figure 7.13. 

Performance gain of optimisation of arithmetic coding in SPIHT algorithm 
0.08~--~---'----.---'----'----.---'----'----r---, 

0.07 

0.06 

co 0.05 
~ 
a: z 
~ 0.04 

0.03 

0.02 

0.01L---~--~----L---~--~----L---~--~----~--~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Rate (bpp) 

Figure 7.13 Performance gain of the optimisation of the arithmetic coding in the 

SPIHT algorithm for Goldhill 

The results for Goldhill are typical. The results for other test images are similar. 

Table 7.18 lists the maximum and the average performance gain of the optimisation 

of arithmetic coding in the SPIRT algorithm for various test images. 



Chapter 7. Performance of SPIHT Image Coding 167 

Table 7.18 Performance gain of the optimisation of arithmetic coding in the 

SPIHT algorithm for various test images 

Image PSNR (dB) 

Maximum Average 

Barbara 0.066176 0.043427 

Boat 0.102048 0.051910 

Go ldh ill 0.073152 0.038158 

Lena 0.056916 0.039462 

Mandrill 0.060098 0.035692 

Peppers 0.050691 0.034181 

Zelda 0.063511 0.034469 

7.3.7 Judgement of the significance of trees 

In this section we compare the speed of the SPIHT encoding using two different 

schemes to judge the significance of trees, namely, the proposed scheme and the 

direct judgement. 

We measure the speed by the running time of the relevant program modules. The 

programs run on a PC with a GenuineIntel 350MHz CPU, 64M byte memory and 

Windows NT 4.0. To get accurate results, we close all other applications in the 

system. But we still get different running times for the same program in repeated 

experiments. 

The results of the original SPIHT algorithm judging the significance of trees directly 

for Goldhill (using 5-scale wavelet transform) at coding rate of 1.0 bpp in twenty 

repeated experiments are listed in Table 7.19. The running time is for SPIHT 

encoding only. excluding the wavelet transform and the MATLAB interface. 



Chapter 7. Performance of SPIHT Image Coding 168 

Table 7.19 Speed of the original SPIHT algorithm judging the significance of 

trees directly (Goldhill @ 1.0 bpp) 

Experiment Running time of SPIHT encoding (s) 

1 0.220 

2 0.280 

3 0.221 

4 0.221 

5 0.220 

6 0.220 

7 0.220 

8 0.210 

9 0.220 

to 0.210 

II 0.220 

12 0.211 

13 0.220 

14 0.220 

15 0.211 

16 0.221 

17 0.210 

18 0.210 

19 0.211 

20 0.220 



Chapter 7. Performance of SPIHT Image Coding 169 

Without interference and measuring error, the actual running time of the program 

with the same input data should be the same in the repeated experiments. The 

measurement is done by reading the clock of the PC at the beginning and the end of 

the program and calculating the difference. A tick of the clock is 0.01 seconds. So 

the reading error of the beginning and the end time is less than 0.01 seconds 

(±O.OI s), the error of the measured running time is less than 0.02 seconds (±O.02 s), 

and the difference between the measured running time should be less than 0.04 

seconds (±O.02 s). But this is not true in Table 7.19, as well as in other experiments. 

We conclude that there must be some interference in the system. 

Since there is no other application program running on the PC while we are 

measuring running time in MATLAB, the only possible interference is from the 

operating system. It is a networked PC, so this could cause the interference. Anyway, 

the interference can only slow down the running of the program and increase the 

measured running time. So, the true running time is within the 0.04 seconds above 

the minimum measured results (valid range). 

If we repeat the measuring experiments, the actual running time is likely to appear 

most frequently in the measured results. Studying Table 7.19 and the results of other 

experiments, we see that the measured running time which appears most frequently 

is the minimum or close to the minimum. We take the most frequent running time as 

the final result. An alternative is to calculate the average value of the measured 

running times in the valid range. The two methods get (almost) the same results. For 

example, it is 0.22 seconds in Table 7.19. 

Table 7.20 and Table 7.21 list the running time of the SPIHT encoding for the test 

images at various coding rates, judging the significance of trees directly and by the 



Chapter 7. Performance of SPIHT Image Coding 170 

proposed scheme respectively. We can see that in each table, for various images, the 

running time of the SPIHT encoding is almost the same at the same coding rate. 

Table 7.20 Running time (seconds) of the original SPIHT encoding judging the 

significance of trees directly 

Rate (bpp) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Barbara 0.12 0.15 0.17 0.19 0.21 0.23 0.24 0.26 0.28 0.29 

Boat 0.13 0.15 0.18 0.20 0.22 0.24 0.25 0.27 0.29 0.30 

Goldhill 0.13 0.16 0.18 0.20 0.22 0.24 0.25 0.27 0.28 0.30 

Lena 0.14 0.17 0.19 0.21 0.22 0.24 0.26 0.28 0.29 0.30 

Mandrill 0.13 0.17 0.19 0.21 0.22 0.24 0.26 0.27 0.29 0.31 

Peppers 0.14 0.17 0.19 0.21 0.23 0.24 0.25 0.28 0.29 0.31 

Zelda 0.14 0.17 0.19 0.21 0.23 0.25 0.26 0.28 0.29 0.30 

Table 7.21 Running time (seconds) of the SPIHT encoding using the proposed 

scheme to judge the significance of trees 

Rate (bpp) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Barbara 0.07 0.08 0.10 0.11 0.12 0.13 0.15 0.16 0.18 0.19 

Boat 0.07 0.08 0.09 0.11 0.13 0.14 0.15 0.17 0.18 0.19 

Goldhill 0.07 0.08 0.10 0.11 0.13 0.14 0.15 0.17 0.18 0.20 

Lena 0.07 0.08 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 

Mandrill 0.07 0.08 0.10 0.11 0.13 0.14 0.15 0.17 0.18 0.19 

Peppers 0.07 0.08 0.10 0.12 0.13 0.14 0.15 0.17 0.18 0.20 

Zelda 0.07 0.08 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.19 



Chapter 7. Performance of SPIHT Image Coding 171 

We depict the running time of SPIHT encoding at various coding rates for Goldhill 

in Figure 7. 14. As can be seen, SPIHT encoding using the proposed scheme to judge 

the significance of trees runs much faster than that by direct judgement. 

SPIHT encoding of Goldhill 
0.3.---~----~--~----~---.----.----.----.---~ 

0.25 

f ~ 0.2 
$ 

~ 
:;: 

.~ 0.15 
; 
II: 

0.1 

0.05 
0.2 

- Direct judgement 
- - - Proposed scheme 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 
Coding rate (bpp) 

Figure 7.14 Running time ofSPIHT encoding for Goldhill 

7.3.8 Overall rate-distortion performance gain 

2 

In this section we apply all the improvements to the SPIHT algorithm and check the 

rate-distortion performance. The results for Zelda, using the 3-scale wavelet 

transform. and without arithmetic coding. are depicted in Figure 7.15. The 

performance of the original SPIHT algorithm is also depicted in the figure. 



Chapter 7. Performance of SPIHT Image Coding 

Perfonnance of the SPIHT algorithm without arithmetic coding for Zelda 
45 

------ ---- -----
40 

35 

m30 
:E. 
CI: - - - Improwd SPIHT 
z 
~ 25 I 

- Original SPIHT 

I 
I 
I 
I 

20 
I 
I 
I 
I 

15 

10~--~---L--~----~--~---L--~----L---~--~ 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Coding rate (bpp) 
o 0.1 1 

172 

Figure 7.15 Performance of the SPIHT algorithm without arithmetic coding for 

Zelda 

The results show that the improved SPIHT algorithm outperforms the original 

SPIHT algorithm at all coding rates. Figure 7.16 depicts the performance gain (the 

dashed curve). The curve is very much alike with that for DC-level shifting and the 

virtual trees. In fact, the performance gain for 3-scale wavelet transform is mainly 

the results of DC-level shifting and the virtual tree technique, especially at low 

coding rates. The performance gain is up to 11.8 dB at 0.04 bpp. 

Figure 7.17 and Figure 7.18 show the reconstructed image of Zelda coded by the 

original and the improved SPIHT at 0.1 bpp respectively. Figure 7.18 is much clearer 

than Figure 7.17, due to the improvements to the SPIHT algorithm. 



Chapter 7. Performance of SPIRT Image Coding 

II: 6 z 
CI) 
a.. 

4 

2 
\ 
\ 
\ 

Perfonnance gain of improwments to the SPIHT algorithm for Zelda 

- - 3-scale wawlet transform 
- - 4-scale wawlet transform 
- - - 5-scale wawlet transform 
- 6-scale wawlet transform 

\ 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Coding rate (bpp) 

173 

1 

Figure 7.16 Performance gain of the improvements to the SPIHT algorithm 

without arithmetic coding for Zelda 



Chapter 7. Performance of SPIRT Image Coding 

Figure 7.17 Reconstructed Zelda, coded by the original SPIHT at 0.1 bpp 

(PSNR 26.1 dB) 

174 



Chapter 7. Performance of SPIHT Image Coding 175 

Figure 7.18 Reconstructed Zelda, coded by the improved SPIHT at 0.1 bpp 

(PSNR 31.9 dB) 



Chapter 7. Performance of SPIHT Image Coding 176 

Now we vary the number of wavelet transform levels and check the performance 

gain. The results are depicted in Figure 7.16. As can be seen, the performance gain 

changes a lot with the levels of wavelet transform. The performance gain using the 

low-scale wavelet transform is higher than that using the high-scale wavelet 

transform. This is due to the performance gains contributed by DC-level shifting and 

the virtual tree technique, which are the major parts of the overall performance gain 

for the low-scale wavelet transform. For the high-scale wavelet transform, the 

contributions of other improvements form the dominant parts of the overall 

performance gain. 

The performances of the original and improved SPIHT algorithm with arithmetic 

coding are depicted in Figure 7. 19. The 5-scale wavelet transform is used here. 

41 

40 

39 

_38 
III 
~ 
a: 37 z 
(J) 

Q. 36 

35 

34 

33 

Performance of SPIHT algorithm for Zelda 

- - Improwd SPIHT with arithmetic coding 
- - - Original SPIHT with arithmetic coding 
- Improwd SPIHT without arithmetic coding 
- - Original SPIHT without arithmetic coding 

32~~~--~----L----L---J ____ ~ __ -L __ -J ____ ~ __ ~ 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Coding rate (bpp) 

Figure 7.19 Perfonnance of the SPIRT algorithm for Zelda 

1 



Chapter 7. Performance of SPIHT Image Coding 177 

Figure 7.19 shows that with arithmetic coding, the improved SPIHT algorithm (the 

dash-dotted curve) outperforms the original SPIHT algorithm (the dotted curve) at 

any coding rate. The performance gain is depicted in Figure 7.20 (the dotted curve). 

Perfonnance gain (Zelda) 
1~--~--~----'---'----'----'---'----'----'---~ 

0.9 

0.8 

0.7 

0.6 

0.3 

0.2 

0.1 

- - - Arithmetic coding in original SP IHT algorithm 
- Improwments to SPIHT algorithm without arithmetic coding 
- - Improwments to SPIHT algorithm with arithmetic coding 

, 
I 

I 

, 
I 

OL-__ J-__ ~ ____ L-__ J-__ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Coding rate (bpp) 

1 

Figure 7.20 Performance gain of arithmetic coding and the improvements to the 

SPIHT algorithm using the 5-scale wavelet transform for Zelda 

The performances of the SPIHT algorithm without arithmetic coding are also 

depicted in Figure 7.19. It is interesting to see that the rate-distortion curve of the 

improved SPIHT algorithm without the arithmetic coding (the solid line) is almost 

identical to that of the original SPIHT with arithmetic coding (the dotted line). The 

performance gain of the arithmetic coding in the SPIHT algorithm (the dashed line in 

Figure 7.20) is 0.31 dB in average (for the 100 coding rates equally spaced between 

0.01 - 1.00 bpp), and that of the improvements (the solid line in Figure 7.20) is 0.28 



Chapter 7. Performance of SPIHT Image Coding 178 

dB. Their difference is only 0.03 dB. In other words, the improvements explore and 

exploit successfully the redundancy in the SPIHT encoded bit-streams (without 

arithmetic coding) for compression, and approach the performance of the arithmetic 

coding. 

The performance gain of the improvements to the SPIHT algorithm with 

arithmetic coding is also depicted in Figure 7.20. We can see that the performance 

gain of the improvements to the SPIHT algorithm with arithmetic coding (the dotted 

line) is less than that without arithmetic coding (the solid line) at most coding rates. 

This means that there is less to be gained by arithmetic coding in the SPIHT 

algorithm after the improvements. This also shows the success of the improvements 

to the SPIHT algorithm. 

We get similar results for other test images. The performance gains of the 

improvements to the SPIHT algorithm without the arithmetic coding (using 5-scale 

wavelet transform) for various test images are shown in Figure 7.21. 

In section 7.1, we showed that Said and Pearlman's implementation of the SPIHT 

algorithm outperforms our implementation using the 5-scale wavelet transform. The 

improved SPIHT algorithm (using 5 or higher scale wavelet transform) outperforms 

the original SPIHT algorithm, no matter whose implementation it is, as shown by the 

examples in Table 7.22 - the performance of the improved SPIHT algorithm 

(ISPIHT: ISPIHTencode and ISPIHTdecode) and that of Said & Pearlman's 

implementation (OSPIHT: "codetree" and "decdtree") for Goldhill. 



Chapter 7. Performance ofSPIHT Image Coding 

0.9 

0.8 

0.7 

0.6 ........ co 
:s-
o:: 0.5 
z 
C/) 

0.. 0.4 

0.3 

0.2 

0.1 

Performance gain of improvements to SPIKT algorithm 

barb 
boat 

......... goldhill 
- lena 

mandrill 
- peppers 
- zelda 

OL-__ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~ ____ L-__ -L ____ L-__ ~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Rate (bpp) 

179 

Figure 7.21 Performance gain of the improvements to the SpmT algorithm 

without arithmetic coding for various test images 



Chapter 7. Performance of SPIHT Image Coding 180 

Table 7.22 Performance of the SPIHT algorithm without the arithmetic coding 

for Goldhill and Zelda 

Coding PSNR (dB) 

Rate Goldhill Zelda 

(bpp) OSPIHT ISPIHT OSPIHT ISPIHT 

0.1 27.67 27.69 33.75 33.87 

0.2 29.53 29.56 36.38 36.49 

0.3 30.83 30.83 37.82 37.84 

0.4 31.81 31.84 38.69 38.86 

0.5 32.71 32.83 39.33 39.46 

0.6 33.51 33.62 39.94 40.03 

0.7 34.22 34.26 40.41 40.56 

0.8 34.84 34.89 40.82 41.03 

0.9 35.43 35.57 41.24 41.56 

1.0 36.00 36.27 41.61 41.98 



Chapter 7. Performance of SPIHT Image Coding 181 

7.4 Speed of the SPIHT algorithm 

In this section we apply all the improvements to the SPIHT algorithm and check the 

speed. Table 7.23 lists the running time of the improved SPIHT encoder (with all the 

improvements but without arithmetic coding). We can see that the encoding speed of 

the improved SPIHT algorithm is almost the same for various images. 

Table 7.23 Running time of the improved SPIHT encoding 

Rate (bpp) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Barbara 0.08 0.09 0.10 0.12 0.13 0.15 0.16 0.17 0.18 0.20 

Boat 0.08 0.09 0.11 0.12 0.14 0.15 0.16 0.17 0.19 0.20 

Goldhill 0.08 0.09 0.10 0.12 0.14 0.15 0.17 0.18 0.19 0.20 

Lena 0.08 0.09 0.11 0.12 0.14 0.15 0.16 0.18 0.19 0.21 

Mandrill 0.08 0.09 0.11 0.12 0.14 0.15 0.16 0.18 0.20 0.21 

Peppers 0.08 0.09 0.11 0.12 0.14 0.15 0.16 0.18 0.19 0.21 

Zelda 0.08 0.09 0.11 0.12 0.13 0.15 0.16 0.18 0.20 0.21 

In Figure 7.22, we depict the running time of various versions of the SPIHT encoder. 

The dashed line is for the improved SPIHT algorithm, and the dotted line is for the 

SPIHT algorithm using the proposed scheme to judge the significance of trees. We 

can see that other improvements (except the proposed judgement) slow down the 

SPIHT encoding a little. But the improved SPIHT encoding is stilI much faster than 

the original SPIHT encoding judging the significance of trees directly (the running 

time for the latter is the solid line in Figure 7.22). 



Chapter 7. Performance of SPIHT Image Coding 

SPIHT encoding of Zelda 
0.45.----.----.-----.----.-----r----,----.----~----~ 

0.4 

0.35 

-en 
§ 0.3 
~ 
~ 

~ 0.25 
:;::::; 

~ 
'c 0.2 
c: 
::::I a: 

0.15 

0.1 

./ 
- Direct judgement 
- - - Proposed judgement 

./ 

- - Arithmetic coding 
- Improwd SPIHT 

---- ------ -:-:--------- -------- -::-:- - - ---
./ -- ---- --

./ ---- -:::::- :-::::-- --
-::----

0.05L---~----~----L---~-----L----~--~-----L--~ 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
Coding rate (bpp) 

Figure 7.22 Speed of SPIHT encoding for Zelda 

SPIHT decoding of Zelda 
0.45 ..-------r--.---.----.---r---.----,-----r--~ 

0.4 
- Arithmetic coding 

0.35 
- - - Improved SPIHT 
- Original SPIHT 

~ 
§ 0.3 

! 
~ 0.25 

:;::::; 

g' 
'c 0.2 

~ -------------;;~ 
-- --~ ----------0.05 L...",:::::::..::.--1---L...---1---

1
L...----L..--.L.----L-_-L-_---l 

0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 

0.15 

0.1 

Coding rate (bpp) 

Figure 7.23 Speed of the SPIHT decoding for Zelda 

182 



Chapter 7. Performance of SPIHT Image Coding 183 

The dash-dot line in Figure 7.22 shows the running time of the SPIHT encoder with 

arithmetic coding (using the proposed judgement). We see that the SPIHT algorithm 

with the arithmetic coding runs much slower that that without arithmetic coding, 

especially at the high coding rates. This is also true for the decoder, as shown in 

Figure 7.23. 

Figure 7.23 also shows that the decoding speed is almost the same for the improved 

and the original SPIHT algorithm. The SPIHT decoder does not need to judge the 

significance of trees, which is time-consuming. 

We can see from Figure 7.22 and Figure 7.23 that the improved SPIHT algorithm 

without arithmetic coding is much faster than the original SPIHT algorithm with 

arithmetic coding. On the other hand, the performance of the two algorithms are 

almost the same as shown in Figure 7.19 (their PSNR difference is only 0.03 dB in 

average). 

One of the major advantages of the SPIHT algorithm is that it can get very good 

performance without using arithmetic coding. The improvements enhance the 

advantage. The improved SPIHT algorithm without arithmetic coding gets almost 

the same performance as the original SPIHT algorithm with arithmetic coding, but is 

much faster. 

The running time of the wavelet transform is also checked, and the results for Zelda 

are listed in Table 7.24. We see that the running time increases as the number of 

wavelet transform levels increases from 1, but is fixed (in the measurement accuracy 

of 0.01 seconds) if the number of wavelet transform levels is 3 or larger. For SPIHT 

image coding, we usually use large scales of wavelet transform in practice, and the 

running time is fixed. 



Chapter 7. Performance of SPIHT Image Coding 184 

Table 7.24 Speed of wavelet transform (Zelda) 

Scale 1 2 3 4 5 6 

Running Analysis 0.39 0.47 0.48 0.49 0.49 0.49 

time (s) Synthesis 0.48 0.58 0.60 0.60 0.60 0.60 

The wavelet transform runs much slower than SPIHT coding. The fast wavelet 

transform is the most important to increase the speed of SPIHT image coding. Some 

work was done recently on the fast implementation of the biorthogonal 9n wavelet 

transform in literature [9]. 

For other test images, the running time for the SPIHT algorithm is similar. 

7.5 Summary 

We have presented the performance of the SPIHT algorithm and the performance 

gain of the improvements in this chapter. The results revealed that the improved 

SPIHT algorithm outperforms the original SPIHT algorithm at any coding rate, and 

is faster than the original SPIHT algorithm. We also showed that the improved 

SPIHT algorithm without arithmetic coding approximates the performance of the 

original SPIHT algorithm with arithmetic coding. This is essential, as we do not need 

to use complex arithmetic coding in order to get the same performance, and the 

running speed becomes fast. 



Chapter 7. Performance of SPIHT Image Coding 185 

References 

[1] ASaid and W.APearlman. http://www.cipr.rpi.edu/researchlSPIHT/. The Center 

for Image Processing Research at the Rensselaer Polytechnic Institute. 

[2] ASaid and W.APearlman, 'A new, fast, and efficient image codec based on set 

partitioning in hierarchical trees', IEEE Transactions on Circuits and Systems for 

Video Technology, Vo1.6, No.3, pp.243-50, June 1996. 

[3] A Cohen, I.Daubechies and J.-C.Feauveau, 'Biorthogonal bases of compactly 

supported wavelets', Communications on Pure and Applied Mathematics, Vol.XLV, 

pp.485-560, 1992. 

[4] W.B.Pennebaker and lL.Mitchell. JPEG still image data compression standard. 

Van Nostrand Reinhold, New York, 1993. 

[5] A.Skodras, C.Christopoulos and T.Ebrahimi, 'The JPEG2000 Still Image 

Compression Standard', IEEE Signal Processing Magazine, Vo1.18, No.5, pp.36-58, 

September 200 1. 

[6] T.G.Lane, et aI. The Independent JPEG Group's JPEG software, release 6b of 

27-Mar-1998. http://www.ijg.org!. 

[7] M.D.Adams. Jasper software - JPEG2000 codec. 

http://www.ece.uvic.ca/-mdadams/jasper/. 

[8] D.Taubman, 'High performance scalable image compression with EBCOT', 

IEEE Transactions on Image Processing, Vo1.9, No.7, pp.1158-1170, July 2000. 

[9] H.Meng and Z.Wang, 'Fast spatial combinative lifting algorithm of wavelet 

transform using the 9/7 filter for image block compression', lEE Electronics Letters, 

Vo1.36, No.21, pp.1766-7, 12 October 2000. 



Chapter 8 

Lossless image coding using the 

SPIHT algorithm 

Transform coding is good at lossy image coding, while predictive coding such as 

CALIC (context-based adaptive lossless image coding [1]) is good at lossless image 

coding. But sometimes it is desirable to support both lossless and lossy image coding 

in the same system. We consider transform coding for lossless image coding here. 

There are two typical approaches to use transform coding in lossless image coding. 

One is a lossy transform coding plus a lossless coding for the image residue [2]. The 

other needs a reversible wavelet transform that maps integers to integers. We discuss 

lossless image coding using the SPIRT algorithm (set partitioning in hierarchical 

trees [3]) and the reversible integer-to-integer wavelet transforms in this chapter. 

This chapter also presents some attempts on image coding based on physical models 

_ content-based SPIRT coding for the cr image of head. 

8.1 Reversible integer-to-integer wavelet 

transforms 

The lifting factorisation can be used to build the reversible integer-to-integer wavelet 

transforms [4]. We use some of the examples in [4] whose impulse response is 

symmetric that are therefore suitable for symmetric extension on the image edge. 

For forward transforms, we denote: 



Chapter 8. Lossless image coding using the SPIHT algorithm 187 

Input signal: so(n), n=1, 2, ... , N 

Low pass output: 1(. sdn), n=1, 2, ... , NI2-1 

High pass output: ddn)lK; n=1, 2, ... , NI2-1 

Here N is an even positive integer, 1( is the scaling factor. We can ignore 1( in 

practice, just bearing in mind its existence for the inverse wavelet transform. This is 

similar to the non-unitary expansion. 

We use Lx) to denote the largest integer not exceeding x. 

The forward transforms of the integer-to-integer wavelet transforms we use are listed 

in the following. 

8.1.1 Interpolating transform (2,2): IPT22 

ddn) = so(2n+l) - L (so(2n) + so(2n+2» 1 2 + 112) 

sdn) = so(2n) + L (ddn-l) + ddn» 1 4 + 112) 

8.1.2 Interpolating transform (4,2): IPT42 

ddn) = so(2n+l) - L9116· (so(2n) + so(2n+2» - (so(2n-2) + so(2n+4) /16 + 112) 

sJfn) = so(2n) + L (ddn-l) + dj(n»14 + 112) 

8.1.3 Interpolating transform (2,4): IPT24 

dj(n) = so(2n+1) -L (so(2n) + so(2n+2»12 + 112) 

sdn) = so(2n) + L 19164 . (dJfn-l) + ddn» - 3164 (ddn-2) + ddn+ 1) + 112) 

8.1.4 Interpolating transform (6,2): IPT62 

ddn) = so(2n+1) - L 751128 . (so(2n) + so(2n+2» - 251256 . (so(2n-2) + 

so(2n+4» + 31256 . (so(2n-4) + so(2n+6» + 112) 

sJfn) = so(2n) + L (dj(n-1) + dj(n» 1 4 + 112) 



Chapter 8. Lossless image coding using the SPIHT algorithm 188 

8.1.5 Interpolating transform (4,4): IPT44 

ddn) = so(2n+I) - L9I16· (so(2n) + so(2n+2)) - (so(2n-2) + so(2n+4)) /16+112) 

sdn) = so(2n) + L 9/32 . (ddn-I) + ddn)) - (ddn-2) + ddn+l)) / 32 + 112) 

8.1.6 S+P transform (2+2,2): SP222 

dP)(n) = so(2n+I) - L (so(2n) + so(2n+2))/2 + 112J 

sdn) = so(2n) + L (d/)(n-l) + d/)(n)) / 4 + 1121 

dICn) = d/)(n) - L (sJfn) + sJfn+I)) / 16 - (sJfn-l) + sdn+2)) / 16 + 112) 

8.1.7 Bi-orthogonal transform (9,7): Bio97 

Where 

d/)(n) = so(2n+1) - L a· (so(2n) + so(2n+2)) + 112J 

s/)(n) = so(2n) + L p. (d/l)(n-I) + dP)(n)) + 112) 

ddn) = d/)(n) - L yo (s/)(n) + sP)(n+ 1)) + 112) 

sJfn) = s/)(n) + L o· (dJfn-l) + ddn)) + 112) 

a= -1.586134342 

P = -0.05298011854 

y= 0.8829110762 

0= 0.4435068522 

1(= 1.149604398 

For multi-resolution transforms, the filtering is repeated on the low pass output sdn). 

The inverse transform can be obtained directly by rewriting the equations of forward 

transforms in the reverse order. For example, the inverse Bio97 transform is 

s/)(n) = sJfn) - L oed/en-I) + dln)) + 112) 



Chapter 8. Lossless image coding using the SPIHT algorithm 

d/l)(n) = ddn) + L r(sP)(n) + sP)(n+l) + 112) 

so(2n) = s/l)(n) - L P (d/l)(n-l) + dP)(n» + 112) 

so(2n+1) = d/J)(n) + L a(so(2n) + so(2n+2» + 112) 

8.2 Performance evaluation of the integer 

wavelet transforms for the SPIHT 

algorithm 

189 

The performance evaluation of the integer wavelet transforms can be found in the 

literature for JPEG-2000 [5] but none for the SPIRT algorithm. Due to the success of 

the SPIRT algorithm, the evaluation is worth doing. 

We use the reversible integer-to-integer wavelet transforms listed in section 8.1 for 

the improved SPIHT image coding (refer to chapter 5 for details). The 

pre-processing in chapter 6 is not eligible for lossless image coding, so the parameter 

~ is set to be o. The compression ratios of various test images are listed in Table 8.1. 

In the experiments, the 5-scale wavelet transform is used, and entropy coding is not 

used. All improvements are applied to the SPIRT algorithm except DC-level 

shifting. DC-level shifting makes the compression ratio much lower for Bi097, and 

makes little improvements for other wavelet transforms. What makes Bi097 different 

from others is that Bi097 is not unitary because we ignore the scaling factor 1( in the 

implementation. 

For each image in Table 8.1, we mark the maximum compression ratio with bold, 

and the minimum with italic. Among the seven symmetric integer wavelet 

transforms, bi-orthogonal 917 is always the worst for all the test images, and the 

IPT44 and the SP222 are the best for natural images. This conclusion is the same as 



Chapter 8. Lossless image coding using the SPIRT algorithm 190 

that in [5]. By choosing the proper wavelet transform, we can reduce the size of the 

seven encoded natural images by 1.2 to 6.7 Kbytes. That is 0.6% to 4.8%, or 3.1 % in 

average. 

Table 8.1 Compression ratio of lossless image coding using the improved SPIRT 

algorithm 

IPT22 IPT42 IPT24 IPT62 IPT44 SP222 Bi097 

Barbara 1.634 1.664 1.638 1.672 1.672 1.665 1.618 

Boat 1.731 1.736 1.730 1.733 1.741 1.744 1.669 

Goldhill 1.598 1.598 1.593 1.593 1.598 1.601 1.564 

Lena 1.780 1.788 1.775 1.784 1.790 1.790 1.724 

Mandrill 1.292 1.294 1.290 1.292 1.296 1.295 1.288 

Peppers 1.653 1.649 1.653 1.645 1.653 1.653 1.615 

Zelda 1.891 1.898 1.894 1.894 1.907 1.900 1.820 

CT-head 4.803 4.983 4.686 4.957 4.944 4.872 4.223 

CT-liver 3.787 3.808 3.737 3.780 3.793 3.781 3.620 

Other transforms may be the best for a particular class of images. For example, the 

IPT42 is the best for the CT images of head and liver (Figure 8.1 and Figure 8.2). 

The size difference of the head image encoded using various wavelet transforms is 

up to 18%, and that of the liver image is up to 5.2%. This suggests that it is more 

important to use a proper wavelet transform for CT images than that for natural 

images. In fact, the lossless image coding is required more for medical images than 

for natural images. 



Chapter 8. Lossless image coding using the SPIRT algorithm 191 

Figure 8.1 CT image of head 



Chapter 8. Lossless image coding using the SPIRT algorithm 192 

Figure 8.2 CT image of liver 



Chapter 8. Lossless image coding using the SPIRT algorithm 193 

To show the effect of the improvements to the SPIRT algorithm n the los Ie 

image coding, we also apply the original SPIHT algorithm in the 10 sles image 

coding. The best results and the relevant wavelet transform are listed in Table 8.2. 

We can see that the improvements to the SPTIIT algorithm reduce the length of the 

encoded image by about 1%. 

Table 8.2 Comparison of the original (OSPIHT) and the improved SPIHT 

algorithm (ISPIHT) for lossless image coding 

Image Wavelet Length of the encoded image (bits) 

transform OSPIHT ISPIHT Difference % 

Barbara IPT44 1269185 1254688 14497 1.2 

Boat SP222 1217817 1202837 14980 1.3 

Goldhill SP222 1323959 1309605 14354 1.1 

Lena IPT44 1187054 1171386 15668 1.3 

Mandrill IPT44 1633713 1618855 14858 0.9 

Peppers SP222 1285321 1268419 16902 1.3 

Zelda IPT44 1116116 1099801 ] 6315 1.5 

CT-head IPT42 494006 488923 5083 1.0 

CT-liver IPT42 662880 655957 6923 1.1 

8.3 Content-based loss less image coding 

using the SPIHT algorithm 

Observing Figure 8.1, we see two distinguishing region : the black outlying and the 

white ring. We draw the histogram of the pixels in Figure 8.3. As can be een in 



Chapter 8. Lossless image coding using the SPIHT algorithm 194 

Figure 8.3, there are two outstanding bars at 0 and 245. 60% of the pixels are 0 

(which are black in Figure 8.1), 8.4% are 245 (which are white in Figure 8.1), and 

the rest lie between 1 and 244 (which are grey in Figure 8.1). 

X 10
5 Histogram of CT head image 

2r--------.--------.---------.--------.--------~ 

1.8 

1.6 

1.4 

(/) 

Q5 1.2 
>< 
'0.. 
15 1 ... 
Q) 
.0 

§ 0.8 
z 

0.6 

0.4 

0.2 

L .L 
OL-------~--~ .. --------~-------L------~ 
o 50 100 150 200 250 

Values of pixels 

Figure 8.3 Histogram of CT head image 

The bright white ring represents the image of bone (skull). It has no detail d 

information except its shape and position. This is true also for the black outlying 

region. The bone is much harder than the surrounding tissues thus the relevant pi I 

values are much larger on the CT image. To get a clear image of the tissues, th 

pixels representing the bone have to be saturated to the maximum value of 245 (the 

ten largest values of the 8-bit code are reserved). 

The pixel values at the edge of the bone on the CT image are likely to jump. Thi 

jump produces large wavelet coefficients in the subbands produced by highpa 



Chapter 8. Lossless image coding using the SPIHT algorithm 195 

filtering (i.e., HL, LH and HH). As we know, this is not good for the coding using 

the SPIHT algorithm. 

We segment the bone from the other features for coding, by separating the pixels 

whose values are 245 from the others. The results of segmentation are shown in 

Figure 8.4 (the bone) and Figure 8.5 (other features). 

Figure 8.4 CT image of head: bone 



Chapter 8. Lossless image coding using the SPIRT a]godthm 196 

Figure 8.5 CT image of head excluding bone 

We encode the bone (Figure 8.4) and other features (Figure 8.5) separately . . or the 

bone, only the shape needs to be coded. We use the context-based arithmetic c ding 

[6]. Each pixel can only be one of the two values: 0 or 245. The context inf; rmation 

of four previously coded neighbours (indicated in Figure 8.6) is used to classify the 

probability of current pixels. There are sixteen models for arithmetic coding. very 

pixel is coded according to its conditional distribution under its context. 



Chapter 8. Lossless image coding using the SPIHT algorithm 

x X xl 
X 0 

Figure 8.6 Context to model the arithmetic coding of shape 

o - pixel to be coded, x - context. 

197 

As for the other part of the head image excluding the bone (Figure 8.5), we see that 

there are still white pixels at the edge of the bone. A further check reveals that 

although their values are less than 245, those white pixels are still not continuous in 

value from the neighbouring area. This is due to the sub-pixel alignment of the bone 

edge. The bone occupies part of a pixel, and the value of the pixel is the mean value 

of the bone and the neighbouring tissue at the position. So again, we separate the 

direct neighbours of the bone from the other part, including the horizontal, vertical 

and diagonal neighbouring pixels (indicated in Figure 8.7). The results are shown in 

Figure 8.8 (the edge) and Figure 8.9 (the tissues). 

D V D 

H 0 H 

D V D 

Figure 8.7 Direct neighbouring pixels 

0- original pixel, H - horizontal neighbour, V - vertical neighbour, 

D - diagonal neighbour. 



Chapter 8. Lossless image coding using the SPIRT algorithm 198 

Figure S.S CT image of head: edge of bone 



Chapter 8. Lossless image coding using the SPIHT algorithm 199 

Figure 8.9 CT image of head: tissues 



Chapter 8. Lossless image coding using the SPIHT algorithm 200 

Now what remains in Figure 8.9 are the tissues of the head excluding the bone. 

There is no bright white edge. As for the edge of bone in Figure 8.8, both the 

encoder and the decoder know its position from the shape of the bone. We define a 

scan order (e.g. raster), and code the pixel value of the edge using arithmetic coding, 

or just 8 bits each. As the total number of pixels of the edge is very small compared 

with the whole image, the two coding methods make little difference. 

To code the tissues in Figure 8.9, we use the SPIHT algorithm and the wavelet 

transform IPT42. At the edge of the bone, we can extend the tissues symmetrically, 

the same as at the edge of the whole image. Alternatively, we fill the edge pixels (at 

the position indicated in Figure 8.8) with half the mean value of its direct horizontal 

and vertical neighbouring pixels of the tissues. For simplicity, we use the second 

method. 

We can remove the blank black outlying region in Figure 8.9 before applying the 

SPIHT algorithm. We need to code its shape, and then we can extend the edge of the 

remaining image symmetrically along the shape for the wavelet transform. For 

simplicity, we reduce the blank outlying region by cutting the margin squarely and 

leaving a reduced square image (Figure 8.10) to be coded using the SPIHT 

algorithm. In this case, we need to code only the four widths of the margins cutting 

away at the top, bottom, left and right. In practice, we cut the margins before the 

segmentation, so that the shape coding of bone can benefit from it as well. 

The results of lossless coding based on the segmentation and the margin cutting are 

listed in Table 8.3. The results show that the coding benefits from both the 

segmentation and the margin cutting. The segmentation and the margin cutting 

reduce the coding rate by 2.4%, or equivalently, increase the compression ratio by 



Chapter 8. Lossless image coding using the SPIRT algorithm 2 I 

2.4%. Table 8.3 also shows the performance gain of the impr vern nts t th IH 

algorithm again. 

Figure 8.10 CT image of head: ti u without blank margin 

Table 8.3 Lossless coding rate (bpp) of T head imag u ing til PI 

algorithm based on segmentation and mar in utting 

SPIRT algorithm None Segm ntation Margin uttin B lh 

Original 1.622 1.611 1.599 1.583 

Improved 1.606 1.594 1.583 1.567 



Chapter 8. Lossless image coding using the SPIHT algorithm 202 

8.4 Summary 

We have applied the improved SPIHT algorithm to lossless image coding using the 

reversible integer-to-integer wavelet transform. Numerical results showed that the 

IPT44 and the SP222 are the best for natural images among the symmetric 

transforms used in the experiments, and the IPT42 is the best for CT images. The 

difference of the compression ratio using various transforms in the SPIHT algorithm 

is about 3% for natural images, and the difference is much larger for CT images. It 

has also been shown that the improvements to the SPIHT algorithm increase the 

compression ratio by about 1 %. 

Some of our attempts on image coding based on physical models have also been 

presented in this chapter - the content-based SPIHT coding for the CT image of 

head. We separated the image into four parts: the blank outlying margin, the bone, 

the edge of the bone, and the tissues. Each part is coded using a particular scheme. 

The blank outlying margins are cut away, leaving a reduced square image containing 

the desired information. Four parameters are coded, indicating the widths of the 

margins on each side. The bone is coded by its shape, using the context-based shape 

coding in MPEG-4. The edge of the bone is coded using arithmetic coding. The 

tissues are coded using the SPIHT algorithm. Compared with the SPIHT algorithm 

for the whole image, the content-based image coding increases the compression ratio 

by 2.4% for lossless coding. Although the performance gain is not very high. the 

experiments demonstrate the potential advantage of the content-based image coding. 

More complicated image processing techniques can be used for compression. 



Chapter 8. Lossless image coding using the SPIHT algorithm 203 

References 

[1] X.Wu and N.Memon, 'Context-based, Adaptive, Lossless Image Codec', IEEE 

Transactions on Communications, Vol.45, No.4, pp.437-44, April 1997. 

[2] ASaid and W.APearlman, 'An image multiresolution representation for lossless 

and lossy compression', IEEE Transactions on Image Processing, Vol.5, No.9, 

pp.1303-10, September 1996. 

[3] ASaid and W.APearlman, 'A new, fast, and efficient image codec based on set 

partitioning in hierarchical trees', IEEE Transactions on Circuits and Systems for 

Video Technology, Vo1.6, No.3, pp.243-50, June 1996. 

[4] AR.Calderbank, I.Daubechies, W.Sweldens and B.L.Yeo, 'Wavelet Transforms 

that Map Integers to Integers', Applied and Computational Harmonic Analysis, 

Vol.5, pp.332-369, July 1998. 

[5] M.D.Adams and F.Kossentini, 'Reversible Integer-to-Integer Wavelet 

Transforms for Image Compression: Performance Evaluation and Analysis', IEEE 

Transactions On Image Processing, Vo1.9, No.6, pp.101O-24, June 2000. 

[6] T.Ebrahimi and C.Horne, 'MPEG-4 Natural Video Coding - An Overview', 

Signal Processing: Image Communication, Vol. 15, No.4-5, pp.365-85, Elsevier 

Science, January 2000. 



Chapter 9 

Discussion and Conclusions 

This thesis has studied the novel scalable image coding using the SPIHT (set 

partitioning in hierarchical trees [1]) algorithm based on wavelet transform. This is 

accomplished by the analysis of the wavelet transform, statistical properties of the 

wavelet coefficients (being the output of wavelet transform) and the procedure of 

SPIHT coding, followed by the improvements to the SPIHT algorithm and the 

applications of the SPIHT algorithm in lossless image coding. 

This chapter presents a discussion of the work that was undertaken in this research 

project. The results of this work are summarised and suggestions for further work 

proposed. 

9.1 Summary and conclusions 

The main original contribution of this thesis is the improvements to the SPIHT 

algorithm, including DC-level shifting, virtual trees, omitting the predictable coding 

symbols, quantisation offset, pre-processing, and optimisation of arithmetic coding. 

Further contributions include a solution of wavelet transform and SPIHT coding for 

arbitrarily-sized image, study of statistical properties of wavelet coefficients for 

natural images, evaluation of various integer wavelet transforms for lossless image 

coding using the SPIHT algorithm, and tries on content-based image coding. 

Chapter 1 introduced the requirements of image coding, including the latest new 

features such as scalability, error-resilience and region-of-interest. The 



Chapter 9. Discussion and Conclusions 205 

methodologies of image coding were also discussed, which are categorised into 

statistical and physical models. 

The wavelet transform is the basis of the newly emerged image coding algorithms 

such as EZW (embedded zerotree wavelet coding [2]), SPIHT and EBCOT 

(embedded block coding with optimised truncation [3]). The wavelet transform can 

be constructed from two-channel filter banks. To get perfect reconstruction, two­

channel filter banks have to be biorthogonal. Biorthogonal FIR (finite impulse 

response) filter banks are often used for image coding because they have the 

advantage of linear phase. The necessary and sufficient conditions for perfect 

reconstruction, and the relations between filter banks and wavelet transform were 

proofed in z-domain in Chapter 2, using our own techniques. 

Multi-resolution decomposition can be made using two-channel filter banks as a 

building block. Octave decomposition is usually used in image coding. It is 

implemented by repeating the decomposition on the low subband. 

Image is two-dimensional (2D) signal, which needs 2D wavelet transform. A simple 

solution is 2D separable wavelet transform, which applies a one-dimensional (ID) 

wavelet transform to each dimension of the image. 

The length of an image signal is limited in any of the two dimensions. To keep the 

signal length unchanged after wavelet transform, and without losing any information, 

the image signal is extended at the edge for calculation. After wavelet transform, 

extra samples at the edge (due to extension) are discarded. Several edge extension 

methods were checked, and a periodic extension and a symmetric extension were 

found to be suitable for arbitrary image size. Because of the nature of natural images, 

the symmetric edge extension normally gets better performance in image coding than 

the periodic extension. Symmetric edge extension requires the wavelet transform to 



Chapter 9. Discussion and Conclusions 206 

be linear phase. That is why linear phase is desirable in wavelet transform for image 

coding. 

The energy of an image is localised after wavelet transform. That is the key for the 

success of transform coding. Statistical properties of wavelet coefficients were 

explored in chapter 3, including the distribution of values of each subband, the intra­

subband correlation, inter-subband correlation, and inter-level correlation. The 

results for natural images show that the energy is highly concentrated. A small 

amount of values carry most of the energies. This suggests that successive 

approximation quantisation (or bit-plane coding) is efficient in coding. This is 

because the distribution of Is and Os is highly biased (most Os, and only a few Is) for 

significant bits of the values (in binary). The entropy coding can take advantage of 

this distribution and compress the data efficiently. In fact, bit-plane coding is used in 

EZW, SPIHT and EBCOT. The energy of wavelet coefficients is also concentrated 

on low level (resolution) subbands. 

The typical value of intra-subband correlation coefficient is 0.32, and those for inter­

level and inter-subband are 0.10 and 0.022 respectively. The inter-subband 

correlation is relatively trivial, and the intra-subband correlation is the largest. The 

SPIHT algorithm takes advantage of the inter-level correction by organising the 

wavelet coefficients at the same spatial orientation on various decomposition levels 

as a set in a hierarchical tree. This tree structure also contains the neighbouring 

wavelet coefficients on each of the relevant subbands in a set, thus the intra-subband 

correlation is exploited to some limited extend for coding. The coding and 

partitioning of trees also benefits from the energy concentration on low level 

subbands. 



Chapter 9. Discussion and Conclusions 207 

The EBCOT algorithm takes advantage of the intra-subband correlation by context­

based arithmetic coding. The modelling of arithmetic coding is so successful that the 

rate-distortion performance of EBCOT is better than that of SPIHT at some coding 

rates in the extreme case, although EBCOT exploits intra-subband correlation only. 

In this extreme case, the EBCOT coded bit-stream contains only one layer, which is 

not optimal for truncation. The results of EBCOT show the potential compression in 

image coding exploiting the intra-subband correlation. 

Statistical studies also reveal that not only the overall energy of wavelet coefficients 

is concentrated, but also the distribution of values in a sub-range (relevant to a bit 

plane) is biased - more values on the small-magnitude half. The gravity centre of a 

typical sub-range is offset from the geometrical centre by about one eighth of the 

total length of the range. This property is exploited in the improvements to the 

SPIHT algorithm for decoding. 

The key techniques of SPIHT coding were highlighted in chapter 4, including 

organising the wavelet coefficients as a set in hierarchical trees, successive 

approximation quantisation, and ordered bit-plane coding. The detailed 

implementation procedure was also presented in chapter 4. 

Observing the encoded bit-stream, and studying the procedure of SPIHT coding, it 

was found that the SPIHT algorithm could be improved for better rate-distortion 

performance and faster running speed. The improvements were described in chapter 

5 and 6, including DC-level shifting, virtual trees, omitting predictable coding 

symbols, quantisation offset, and pre-processing. Simple and direct efforts were also 

made to optimise the arithmetic coding for the SPIHT algorithm. 

Numerical results in chapter 7 showed the success of the improvements to the SPIHT 

algorithm. With the improvements, the running time of the SPIHT algorithm is 



Chapter 9. Discussion and Conclusions 208 

reduced almost by half, and the rate-distortion performance is also improved 

significantly, especially at low coding rates. The performance gain is very important 

for applications such as image transmission in mobile communications. 

The performance of the SPIHT algorithm was also compared with that of JPEG [4] 

and JPEG2000 [5]. SPIHT is the best, outperforms JPEG and JPEG2000. 

It is sometimes desired to use the same system for lossy and lossless image coding. 

Chapter 8 addressed the lossless image coding using reversible integer wavelet 

transform and SPIRT coding. Performance was evaluated for lossless SPIHT image 

coding using different integer wavelet transforms. The results revealed that the 

coding rate could be saved by several percent by choosing proper integer wavelet 

transform, and the best wavelet transform varied depending on the type of image. In 

our experiments, the interpolating transform (4, 4) and the S+P transform (2+2, 2) 

[6] are often the best for the natural images, and the popular bi-orthogonal 917 

transform is the worst. For the CT images, the interpolating transform (4, 2) [6] is 

the best. 

Content-based video coding has been adopted in MPEG-4 [7], and has proved to be 

successful. Content-based image coding was tried in this research project, for both 

2D and 3D (volumetric) medical images. The idea here is to separate the special 

object and region from the background of an image, and applying various coding 

schemes respectively. 

Content-based coding for the 2D CT image of head was presented in chapter 8. The 

image was segmented into four parts, which are the outside blank margins, the bones 

(skull), the outside edge of bones, and the remaining tissues. The margins are square 

regions with pixel value of 0, which are encoded by the width on each side of the 

image. The bones consist of pixels whose values are 245 - the maximum pixel value. 



Chapter 9. Discussion and Conclusions 209 

The outside edge of bones includes the neighbouring pixels of the bones, which are 

formed partly by the bones. The shape of bones is encoded using context-based 

arithmetic coding, and the values of its outside edge are encoded using arithmetic 

coding. The remaining tissues are encoded using the SPIHT algorithm. Numerical 

results show that the content-based coding scheme reduces the lossless coding length 

of the CT head image by several percent. Further improvements could be made by 

using arbitrary-shaped margins, and by using the wavelet transform and the SPIHT 

algorithm for arbitrary-shaped object (or region). 

For 3D volumetric CT images, neighbouring images were encoded using prediction. 

Various prediction techniques were tried, both in image domain and wavelet 

transform domain. An iterative robust estimation algorithm using an optical flow 

model [8] was also tried in the prediction. But these efforts failed to get any 

performance gain in coding. The reason is that the prediction (or shape mapping) can 

not be absolutely accurate. Significant prediction errors are produced at the edge of 

the object, resulting in high energy in the high subband of wavelet coefficients, 

which is not good for SPIHT. These failed attempts are not presented in the thesis. 

9.2 Future work 

As discussed in section 9.1, the primary researches on content-based image coding 

have shown its potential advantage. Further compression could be reached from 

content-based image coding, or image coding based on physical models in general. 

Even in the primary researches, some further work could be done, as pointed out in 

section 9.1. Content-based image coding is especially good for special applications 

such as lossless coding of some medical images. 



Chapter 9. Discussion and Conclusions 210 

SPIHT exploits the inter-level correlation efficiently, and exploits the intra-subband 

correlation partially. The statistical properties of the wavelet coefficients show that 

the intra-subband correlation is the most important among the intra-subband, the 

inter-level and the inter-subband correlation. The key technique of EBCOT is the 

modelling of arithmetic coding, which exploits the intra-subband correlation 

thoroughly by the successful context-based adaptive arithmetic coding. Similar 

techniques (i.e., efficient modelling of context-based adaptive arithmetic coding) 

could be used to code the individual wavelet coefficients and the significance of 

trees in SPIHT. 



Chapter 9. Discussion and Conclusions 211 

References 

[1] A.Said and W.A.Pearlman, 'A new, fast, and efficient image codec based on set 

partitioning in hierarchical trees', IEEE Transactions on Circuits and Systems for 

Video Technology, Vol.6, No.3, pp.243-50, June 1996. 

[2] I.M.Shapiro, 'Embedded Image Coding Using Zerotrees of Wavelet 

Coefficients', IEEE Transactions on Signal Processing, Vol.41, No.12, pp.3445-62, 

December 1993. 

[3] D.Taubman, 'High performance scalable image compression with EBCOT', 

IEEE Transactions on Image Processing, Vol.9, No.7, pp.1158-70, July 2000. 

[4] W.B.Pennebaker and J.L.Mitchell. JPEG still image data compression standard. 

Van Nostrand Reinhold, New York, 1993. 

[5] A.Skodras, C.Christopoulos and T.Ebrahimi, 'The JPEG2000 Still Image 

Compression Standard', IEEE Signal Processing Magazine, Vo1.l8, No.5, pp.36-58, 

September 200 I. 

[6] A.R.Calderbank, I.Daubechies, W.Sweldens and B.L.Yeo, 'Wavelet Transforms 

that Map Integers to Integers', Applied and Computational Harmonic Analysis, 

Vol.5, pp.332-369, July 1998. 

[7] T.Ebrahimi and C.Horne, 'MPEG-4 Natural Video Coding - An Overview', 

Signal Processing: Image Communication, Vol. 15, No.4-5, pp.365-85, Elsevier 

Science, January 2000. 

[8] J.M.Odobez and P.Bouthemy, 'Robust multiresolution estimation of parametric 

motion models' , Journal of Visual Communication and Image Representation, Vol.6, 

No.4, pp.348-365, December 1995. 



Bibliography 

[1] Michael D. Adams and Andreas Antoniou, 'Reversible EZW-based image 

compression using best transform selection and selective partial embedding', IEEE 

Transactions on Circuits and Systems - II. Analog and Digital Processing, Vo1.47 , 

No.IO, pp.1119-22, October 2000. 

[2] Philippe Aigrain, Hongjiang Zhang and Dragutin Petkovic, 'Content-based 

representation and retrieval of visual media: A state-of-the-art review', Multimedia 

Tools and Applications, Vo1.3, pp.l79-202, 1996. 

[3] Maaruf Ali, 'Medical image compression using set partitioning in hierarchical 

trees for (military) telemedicine applications', lEE Colloquium on Time-Scale and 

Time-Frequency Analysis and Applications, pp.22/1-5, London, 29 February 2000. 

[4] Marc Antonini, Michel Barlaud, Pierre Mathieu and Ingrid Daubechies, 'Image 

coding using wavelet transform', IEEE Transactions on Image Processing, Vol. I , 

No.2, pp.205-20, April 1992. 

[5] Joel Askelof, Mathias Larsson Car lander and Charilaos Christopoulos, 'Region 

of interest coding in JPEG 2000' , Signal Processing: Image Communication, Vol. 17 , 

No.1, pp.1 05-111, Elsevier Science, January 2002. 

[6] Olivier Avaro, Alexandros Eleftheriadis, Carsten Herpel, Ganesh Rajan and Liam 

Ward, 'MPEG-4 Systems: Overview', Signal Processing: Image Communication, 

Vol. 15, No.4-5, pp.281-98, Elsevier Science, January 2000. 

[7] Noel Brady, 'MPEG-4 standardized methods for the compression of arbitrarily 

shaped video objects', IEEE Transactions on Circuits and Systems for Video 

Technology, Vol.9, No.8, pp.I170-89, December 1999. 



Bibliography 213 

[8] Patrick Bouthemy, Marc Gelgon and Fabrice Ganansia, 'A unified Approach to 

shot change detection and camera motion characterization', IEEE Transactions on 

Circuits and Systems for Video Technology, Vo1.9, No.7, pp.1030-44, October 1999. 

[9] Zhaohui Cai, K.R.Subramanian and Tee Hiang Cheng, 'Modifications on 

morphology-based image coding', lEE Electronics Letters, Vo1.37, No.7, pp.421-2, 

29 March 2001. 

[10] Zuo-Dian Chen, Ruey-Feng Chang and Wen-Jia Kuo, 'Adaptive predictive 

multiplicative autoregressive model for medical image compression', IEEE 

Transactions on Medical Imaging, Vo1.l8, No.2, pp.181-4, February 1999. 

[11] Sungdae Cho and William A. Pearlman, 'A full-Featured, Error-Resilient, 

Scalable Wavelet Video Codec Based on the Set Partitioning in Hierarchical Trees 

(SPIHT) algorithm', IEEE Transactions on Circuit and Systems for Video 

Technology, Vo1.l2, No.3, pp.157-71, March 2002. 

[12] Seung-Jong Choi and John W. Woods, 'Motion-compensated 3-D subband 

coding of video', IEEE Transaction on Image Processing, Vo1.8, No.3, pp.155-67, 

February 1999. 

[13] Charilaos Christopoulos, Athanassios Skodras and Touradj Ebrahimi, 'The 

JPEG2000 still image coding system: An overview', IEEE Transactions on 

Consumer Electronics, Vo1.46, No.4, pp.l1 03-27, November 2000. 

[14] Christos Chrysafis and Antonio Ortega, 'Efficient context-based entropy coding 

for lossy wavelet image compression', IEEE Proceedings of Data Compression 

Conference (DCC'97), pp.241-50, 1997. 

[15] Charles D. Creusere, 'Fast embedded compression for video', IEEE Transaction 

on Image Processing, Vo1.8, No.12, pp.1811-16, December 1999. 



Bibliography 214 

[16] Edouard Francois and Patrick Bouthemy, 'Derivation of qualitative information 

in motion analysis', Image and Vision Computing, Vol.8, No.4, pp.279-88, 

November 1990. 

[17] Vivek K. Goyal, 'Theoretical foundations of transform coding', IEEE Signal 

Processing Magazine, Vo1.18, No.5, pp.9-21, September 2001. 

[18] Bilge Gunsel, A. Murat Tekalp and Peter J.L. van Beek, 'Content-based access 

to video objects: Temporal segmentation, visual summarization, and feature 

extraction', Signal Processing, Vol.66, pp.261-80, Elsevier Science, 1998. 

[19] c. Herpel and A. Eleftheriadis, 'MPEG-4 Systems: Elementary stream 

management', Signal Processing: Image Communication, Vo1.l5, No.4-5, 

pp.299-320, Elsevier Science, January 2000. 

[20] S.W.Hong and P.Bao, 'An edge-preserving subband coding model based on 

non-adaptive and adaptive regularization', Image and Vision Computing, Vo1.18, 

pp.573-82, Elsevier Science, 2000. 

[21] Ashraf A. Kassim and Lifeng Zhao, 'Rate-scalable object-based wavelet codec 

with implicit shape coding', IEEE Transactions on Circuits and Systems for Video 

Technology, Vo1.10, No.7, pp.1068-79, October 2000. 

[22] Andre Kaup, 'Object-based texture coding of moving video in MPEG-4', IEEE 

Transactions on Circuits and Systems for Video Technology, Vo1.9, No.1, pp.5-15, 

February 1999. 

[23] E. Khan and M. Ghanbari, 'Very low bit rate video coding using virtual 

SPIHT', lEE Electronics Letters, Vol.37, No.1, pp.40-42, 4 January 2001. 

[24] Omid E. Kia and David S. Doermann, 'Residual coding in document image 

compression', IEEE Transactions on Image Processing, Vo1.9, No.6, pp.961-9, June 

2000. 



Bibliography 215 

[25] Beong-Jo Kim, Zixiang Xiong and William A. Pearlman, 'Low bit-rate scalable 

video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT)" IEEE 

Transactions on Circuits and Systems for Video Technology, Vol.lO, No.8, 

pp.1374-87, December 2000. 

[26] Hyo Joon Kim and Choong Woong Lee, 'Efficient significance map coding 

using block-based zero tree and quadtree', lEE Electronics Letters, Vol.36, No.13, 

pp.lll 0-1, 22 June 2000. 

[27] Youngseop Kim and William A. Pearlman, 'Lossless volumetric medical image 

compression', SPIE Conference on Applications of Digital Image Processing, 

Vol.3803, pp.305-12, Denver, Colorado, July 1999. 

[28] Eleftherios Kofidis, Nicholas Kolokotronis, Aliki Vassilarakou, Sergios 

Theodoridis and Dionisis Cavouras, 'Wavelet-based medical image compression', 

Future Generation Computer Systems, Vo1.15, pp.223-43, Elsevier Science, 1999. 

[29] M.H.Lee and K.N.Ngan, 'Video coding with a variable block-sizing technique 

in the wavelet transform domain', Journal of Electronic Imaging, Vol.7, No.3, 

pp.539-47, 1998. 

[30] Jin Li and Shawrnin Lei, 'An embedded still image coder with rate-distortion 

optimization', IEEE Transactions on Image Processing, Vol.S, No.7, pp.913-23, July 

1999. 

[31] Jiebo Luo, Xiaohui Wang, Changwen Chen and Kevin J. Parker, 'Volumetric 

medical image compression with three-dimensional wavelet transform and octave 

zerotree coding', SPIE Proceedings of Visual Communications and Image 

Processing, Vo1.2727, pp.579-90, 1996. 



Bibliography 216 

[32] Stephane G. Mallat, 'A theory for multiresolution signal decomposition: The 

wavelet representation', IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 1 I, No.7, pp.674-93, July 1989. 

[33] Hong Man, Faouzi Kossentini and Mark J.T. Smith, 'A family of efficient and 

channel error resilient wavelet/subband image coders', IEEE Transactions on 

Circuits and Systems for Video Technology, Vol.9, No.1, pp.95-108, February 1999. 

[34] Michael W. Marcellin et al., 'An overview of quantization in JPEG 2000', 

Signal Processing: Image Communication, Vol. 17 , No.1, pp.73-84, Elsevier Science, 

January 2002. 

[35] Detlev Marpe, Gabi Blattermann, Jens Ricke and Peter Maab, 'A two-layered 

wavelet-based algorithm for efficient lossless and lossy image compression', IEEE 

Transactions on Circuits and Systems for Video Technology, VoUO, No.7, 

pp.1094-1102, October 2000. 

[36] Detlev Marpe and Hans L. Cycon, 'Very low bit-rate video coding using 

wavelet-based techniques', IEEE Transactions on Circuits and Systems for Video 

Technology, Vol.9, No.1, pp.85-94, February 1999. 

[37] Peter Meer, Doron Mints, Azriel Rosenfeld and Dong Yoon Kim, 'Robust 

regression methods for computer vision: A review', International Journal of 

Computer Vision, Vo1.6, No.1, pp.59-70, 1991. 

[38] Francois G. Meyer, Amir Z. Averbuch and Jan-Olov Stromberg, 'Fast adaptive 

wavelet packet image compression', IEEE Transaction on Image Processing, Vo1.9, 

No.5, pp.792-8oo, May 2000. 

[39] Adrian Munteanu, Jan Cornelis, Geert Van der Auwera and Paul Cristea, 

'Wavelet image compression - The quadtree coding approach', IEEE Transactions 



Bibliography 217 

on Information Technology in Biomedicine, Vol.3, No.3, pp.176-85, September 

1999. 

[40] Adrian Munteanu, Jan Cornelis and Paul Cristea, 'Wavelet-based lossless 

compression of coronary angiographic images', IEEE Transactions on Medical 

Imaging, Vo1.18, No.3, pp.272-81, March 1999. 

[41] Torsten Palfner and Erika Muller, 'Effects of symmetric periodic extension for 

multiwavelet filter banks on image coding', IEEE Proceedings of International 

Conference on Image Processing (lCIP'1999), Vol.l, pp.628-32, 1999. 

[42] Fernando Pereira, 'MPEG-4: Why, how and when?', Signal Processing: Image 

Communication, Vo1.l5, No.4-5, pp.271-9, Elsevier Science, January 2000. 

[43] Niall C. Phelan and Joseph T. Ennis, 'Medical image compression based on a 

morphological representation of wavelet coefficients', Medical Physics, Vol.26, 

No.8, pp.1607-11, August 1999. 

[44] See-May Phoong, Chai W. Kim, P.P.Vaidyanathan and Rashid Ansari, 'A new 

class of two-channel biorthogonal filter banks and wavelet bases', IEEE Transaction 

on Signal Processing, Vol.43, No.3, pp.649-65, March 1995. 

[45] Nikolay Polyak and William A. Pearlman, 'A new flexible bi-orthogonal filter 

design for multiresolution filterbanks with application to image compression', IEEE 

Transactions on Signal Processing, Vol.48, No.8, pp.2279-88, August 2000. 

[46] Richard Qian, Niels Haering and Ibrahim Sezan, 'A computational approach to 

semantic event detection', IEEE Computer Society Conference on Computer Vision 

and Pattern Recognition, Vol.l, pp.200-6, 1999. 

[47] Majid Rabbani and Rajan Joshi, 'An overview of the JPEG 2000 still image 

compression standard', Signal Processing: Image Communication, Vol.l7, No.1, 

pp.3-48, Elsevier Science, January 2002. 



Bibliography 218 

[48] Injong Rhee, Graham R. Martin, S. muthukrishnan and Roger A. Packwood, 

'Quadtree-structured variable-size block-matching motion estimation with minimal 

error', IEEE Transactions on Circuits and Systems for Video Technology, Vol.lO, 

No.1, pp.42-50, February 2000. 

[49] Diego Santa-Cruz, Raphael Grosbois and Touradj Ebrahimi, 'JPEG 2000 

performance evaluation and assessment', Signal Processing: Image Communication, 

Vol.17, No.1, pp.113-130, Elsevier Science, January 2002. 

[50] Harpreet S. Sawhney and Serge Ayer, 'Compact representations of videos 

through dominant and multiple motion estimation', IEEE Transactions on Pattern 

Analysis and Machine Intelligence, Vo1.l8, No.8, pp.814-30, August 1996. 

[51] Donald F. Schomer, Almos A. Elekes, John D. Hazle, John C. Huffman, 

Stephen K. Thompson, Charles K. Chui and William A. Murphy, 'Introduction to 

wavelet-based compression of medical images', Imaging & Therapeutic Technology, 

Vol. 18, No.2, pp.469-81, March-April 1998. 

[52] A.Sharaf and F.Marvasti, 'Motion compensation using spatial transformations 

with forward mapping', Signal Processing: Image Communication, Vol. 14, 

pp.209-27, Elsevier Science, 1999. 

[53] Ke Shen and Edward J. Delp, 'Wavelet based rate scalable video compression', 

IEEE Transactions on Circuits and Systems for Video Technology, Vo1.9, No.1, 

pp.109-122, February 1999. 

[54] Christoph Stiller and Janusz Konrad, 'Estimating motion in image sequences'. 

IEEE Signal Processing Magazine, Vol. 16, No.4, pp.70-91, July 1999. 

[55] Shen-Chuan Tai, Yung-Gi Wu and Chang-Wei Lin, 'An adaptive 3-D discrete 

cosine transform coder for medical image compression'. IEEE Transactions on 

Information Technology in Biomedicine, Vol.4, No.3, pp.259-63, September 2000. 



Bibliography 219 

[56] R.H.G. Tan, J.F.Zhang, R.Morgan and A.Greenwood, 'Still image compression 

based on 2D discrete wavelet transform', lEE Electronics Letters, Vol.35, No.22, 

pp.1934-5, 28 October 1999. 

[57] David Taubman and Michael Marcellin. JPEG2000: Image compression 

fundamentals, standards, and practice. Kluwer Academic Publishers, Boston and 

London, 2002. 

[58] David Taubman, Erik Ordentlich, Marcelo Weinberger and Gadiel Seroussi, 

'Embedded block coding in JPEG 2()()()', Signal Processing: Image Communication, 

Vol. 17 , No.1, pp.49-72, Elsevier Science, January 2002. 

[59] David Taubman, Erik Ordentlich, Marcelo Weinberger, Gadiel Seroussi, Ikuro 

Veno and Fumitaka Ono, 'Embedded block coding in JPEG2000', IEEE Proceedings 

of International Conference on Image Processing (ICIP '2000) , Vol.2, pp.33-36, 

2000. 

[60] P.P.Vaidyanathan, 'Quadrature mirror filter banks, M-band extensions and 

perfect-reconstruction techniques', IEEE Acoustic, Speech, and Signal Processing 

Magazine, Vol.35, No.7, pp.4-20, July 987. 

[61] Jozsef Vass, Bing-Bing Chai, Kannappan Palaniappan and Xinhua Zhuang, 

'Significance-linked connected component analysis for very low bit-rate wavelet 

video coding', IEEE Transactions on Circuits and Systems for Video Technology, 

Vol.9, No.4, pp.630-47, June 1999. 

[62] c. De Vleeschouwer and B. Macq, 'Subband dictionaries for low-cost matching 

pursuits of video residues', IEEE Transactions on Circuits and Systems for Video 

Technology, Vo1.9, No.7, pp.984-93, October 1999. 



Bibliography 220 

[63] James S. Walker, 'Lossy image codec based on adaptively scanned wavelet 

difference reduction', Optical Engineering, Vo1.39, No.7, pp.l891-7, SPIE, July 

2000. 

[64] Qi Wang and Mohammed Chanbari, 'Scalable coding of very high resolution 

video using the virtual zero tree , , IEEE Transactions on Circuits and Systems for 

Video Technology, Vol.7, No.5, pp.719-27, October 1997. 

[65] Lora G. Weiss, 'Wavelets and wideband correlation processing', IEEE Signal 

Processing Magazine, Vol.ll, No.1, pp.13-32, January 1994. 

[66] Roland Wilson, 'Image analysis and segmentation using mixture models', lEE 

Colloquium on Time-Scale and Time-Frequency Analysis and Applications, 

pp.11l1-6, London, 29 February 2000. 

[67] Zixiang Xiong, Kannan Ramchandran Mt·ch ITO h d d Y Q. Zh ' ae. rc ar an a- m ang, 

'A comparative study of DCT and wavelet-based l·ma d·' IEEE T t· ge co mg , ransac Ions 

on Circuits and Systems for Video Technology, Vol.9, No.5, pp.692-5, August 1999. 

[68] Zixiang Xiong, Xiaolin Wu, D.Y.Yun and W.A.Pearlman, 'Progressive coding 

of medical volumetric data using three-dimensional integer wavelet packet 

transform', IEEE Second Workshop on Multimedia Signal Processing, pp.553-8, 

Piscataway, NJ, USA, 1998. 

[69] Jizheng Xu, Zixiang Xiong, Shipeng Li and Ya-Qin Zhang, 'Memory-

Constraint 3-D Wavelet Transform for Video Coding Without Boundary effects', 

IEEE Transactions on Circuit and Systems for Video Technology, Vo1.l2, No.9. 

pp.812-18, September 2002. 

[70] Xuguang Yang and Kannan Ramchandran, 'Scalable wavelet video coding 

using aliasing-reduced hierarchical motion compensation', IEEE Transactions on 

Image Processing, Vo1.9, No.5, pp.778-91, May 2000. 



Bibliography 221 

[71] Minerva M. Yeung and Boon-Lock Yeo, 'Video visualization for compact 

presentation and fast browsing of pictorial content', IEEE Transactions on Circuits 

and Systems for Video Technology, Vol.7, No.5, pp.771-85, October 1997. 

[72] Yufei Yuan and Choong Wah Chan, 'Coding of arbitrarily shaped video objects 

based on SPIHT', lEE Electronics Letters, Vo1.36, No.13, pp.tl 05-6, 22 June 2000. 

[73] Wenjun Zeng, Scott Daly and Shawmin Lei, 'An overview of the visual 

optimization tools in JPEG 2000', Signal Processing: Image Communication, 

VoU7, No.1, pp.85-104, Elsevier Science, January 2002. 

[74] Kui Zhang and Josef Kittler, 'Global motion estimation and robust regression 

for video coding', Proceedings of the 1998 IEEE International Conference on 

Acoustics, Speech and Signal Processing, Vo1.5, pp.2589-92, 1998. 

[75] Zongping Zhang, Guizhong Liu, and Yiwen Yang, 'High performance full 

scalable video compression with embedded multiresolution MC-3DSPIHT', IEEE 

Proceedings of International Conference on Image Processing (ICIP' 2002) , Vol.3, 

pp.721-24,2oo2. 


