7,280 research outputs found

    Using dempster-shafer theory to fuse multiple information sources in region-based segmentation

    Get PDF
    This paper presents a new method for segmentation of images into large regions that reflect the real world objects present in a scene. It explores the feasibility of utilizing spatial configuration of regions and their geometric properties (the so-called Syntactic Visual Features [1]) for improving the correspondence of segmentation results produced by the well-known Recursive Shortest Spanning Tree (RSST) algorithm [2] to semantic objects present in the scene. The main contribution of this paper is a novel framework for integration of evidence from multiple sources with the region merging process based on the Dempster-Shafer (DS) theory [3] that allows integration of sources providing evidence with different accuracy and reliability. Extensive experiments indicate that the proposed solution limits formation of regions spanning more than one semantic object

    BSP-fields: An Exact Representation of Polygonal Objects by Differentiable Scalar Fields Based on Binary Space Partitioning

    Get PDF
    The problem considered in this work is to find a dimension independent algorithm for the generation of signed scalar fields exactly representing polygonal objects and satisfying the following requirements: the defining real function takes zero value exactly at the polygonal object boundary; no extra zero-value isosurfaces should be generated; C1 continuity of the function in the entire domain. The proposed algorithms are based on the binary space partitioning (BSP) of the object by the planes passing through the polygonal faces and are independent of the object genus, the number of disjoint components, and holes in the initial polygonal mesh. Several extensions to the basic algorithm are proposed to satisfy the selected optimization criteria. The generated BSP-fields allow for applying techniques of the function-based modeling to already existing legacy objects from CAD and computer animation areas, which is illustrated by several examples

    Region-based segmentation of images using syntactic visual features

    Get PDF
    This paper presents a robust and efficient method for segmentation of images into large regions that reflect the real world objects present in the scene. We propose an extension to the well known Recursive Shortest Spanning Tree (RSST) algorithm based on a new color model and so-called syntactic features [1]. We introduce practical solutions, integrated within the RSST framework, to structure analysis based on the shape and spatial configuration of image regions. We demonstrate that syntactic features provide a reliable basis for region merging criteria which prevent formation of regions spanning more than one semantic object, thereby significantly improving the perceptual quality of the output segmentation. Experiments indicate that the proposed features are generic in nature and allow satisfactory segmentation of real world images from various sources without adjustment to algorithm parameters

    Semi-automatic video object segmentation for multimedia applications

    Get PDF
    A semi-automatic video object segmentation tool is presented for segmenting both still pictures and image sequences. The approach comprises both automatic segmentation algorithms and manual user interaction. The still image segmentation component is comprised of a conventional spatial segmentation algorithm (Recursive Shortest Spanning Tree (RSST)), a hierarchical segmentation representation method (Binary Partition Tree (BPT)), and user interaction. An initial segmentation partition of homogeneous regions is created using RSST. The BPT technique is then used to merge these regions and hierarchically represent the segmentation in a binary tree. The semantic objects are then manually built by selectively clicking on image regions. A video object-tracking component enables image sequence segmentation, and this subsystem is based on motion estimation, spatial segmentation, object projection, region classification, and user interaction. The motion between the previous frame and the current frame is estimated, and the previous object is then projected onto the current partition. A region classification technique is used to determine which regions in the current partition belong to the projected object. User interaction is allowed for object re-initialisation when the segmentation results become inaccurate. The combination of all these components enables offline video sequence segmentation. The results presented on standard test sequences illustrate the potential use of this system for object-based coding and representation of multimedia

    The aceToolbox: low-level audiovisual feature extraction for retrieval and classification

    Get PDF
    In this paper we present an overview of a software platform that has been developed within the aceMedia project, termed the aceToolbox, that provides global and local lowlevel feature extraction from audio-visual content. The toolbox is based on the MPEG-7 eXperimental Model (XM), with extensions to provide descriptor extraction from arbitrarily shaped image segments, thereby supporting local descriptors reflecting real image content. We describe the architecture of the toolbox as well as providing an overview of the descriptors supported to date. We also briefly describe the segmentation algorithm provided. We then demonstrate the usefulness of the toolbox in the context of two different content processing scenarios: similarity-based retrieval in large collections and scene-level classification of still images

    An Exact Representation of Polygonal Objects by C1-continuous Scalar Fields Based on Binary Space Partitioning

    Get PDF
    The problem considered in this work is to find a dimension independent algorithm for the generation of signed scalar fields exactly representing polygonal objects and satisfying the following requirements: the defining real function takes zero value exactly at the polygonal object boundary; no extra zero-value isosurfaces should be generated; C1 continuity of the function in the entire domain. The proposed algorithms are based on the binary space partitioning (BSP) of the object by the planes passing through the polygonal faces and are independent of the object genus, the number of disjoint components, and holes in the initial polygonal mesh. Several extensions to the basic algorithm are proposed to satisfy the selected optimization criteria. The generated BSP-fields allow for applying techniques of function-based modelling to already existing legacy objects from CAD and computer animation areas, which is illustrated by several examples

    Using contour information and segmentation for object registration, modeling and retrieval

    Get PDF
    This thesis considers different aspects of the utilization of contour information and syntactic and semantic image segmentation for object registration, modeling and retrieval in the context of content-based indexing and retrieval in large collections of images. Target applications include retrieval in collections of closed silhouettes, holistic w ord recognition in handwritten historical manuscripts and shape registration. Also, the thesis explores the feasibility of contour-based syntactic features for improving the correspondence of the output of bottom-up segmentation to semantic objects present in the scene and discusses the feasibility of different strategies for image analysis utilizing contour information, e.g. segmentation driven by visual features versus segmentation driven by shape models or semi-automatic in selected application scenarios. There are three contributions in this thesis. The first contribution considers structure analysis based on the shape and spatial configuration of image regions (socalled syntactic visual features) and their utilization for automatic image segmentation. The second contribution is the study of novel shape features, matching algorithms and similarity measures. Various applications of the proposed solutions are presented throughout the thesis providing the basis for the third contribution which is a discussion of the feasibility of different recognition strategies utilizing contour information. In each case, the performance and generality of the proposed approach has been analyzed based on extensive rigorous experimentation using as large as possible test collections

    The Second Hungarian Workshop on Image Analysis : Budapest, June 7-9, 1988.

    Get PDF

    On morphological hierarchical representations for image processing and spatial data clustering

    Full text link
    Hierarchical data representations in the context of classi cation and data clustering were put forward during the fties. Recently, hierarchical image representations have gained renewed interest for segmentation purposes. In this paper, we briefly survey fundamental results on hierarchical clustering and then detail recent paradigms developed for the hierarchical representation of images in the framework of mathematical morphology: constrained connectivity and ultrametric watersheds. Constrained connectivity can be viewed as a way to constrain an initial hierarchy in such a way that a set of desired constraints are satis ed. The framework of ultrametric watersheds provides a generic scheme for computing any hierarchical connected clustering, in particular when such a hierarchy is constrained. The suitability of this framework for solving practical problems is illustrated with applications in remote sensing

    Robot navigation control based on monocular images: An image processing algorithm for obstacle avoidance decisions

    Get PDF
    This paper covers the use of monocular vision to control autonomous navigation for a robot in a dynamically changing environment. The solution focused on using colour segmentation against a selected floor plane to distinctly separate obstacles from traversable space, this is then supplemented with canny edge detection to separate similarly coloured boundaries to the floor plane. The resulting binary map (where white identifies an obstacle-free area and black identifies an obstacle) could then be processed by fuzzy logic or neural networks to control the robot’s next movements. Findings shows that the algorithm performed strongly on solid coloured carpets, wooden and concrete floors but had difficulty in separating colours in multi-coloured floor types such as patterned carpets
    corecore