97 research outputs found

    Contribution to design a communication framework for vehicular ad hoc networks in urban scenarios

    Get PDF
    The constant mobility of people, the growing need to be always connected, the large number of vehicles that nowadays can be found in the roads and the advances in technology make Vehicular Ad hoc Networks (VANETs) be a major area of research. Vehicular Ad hoc Networks are a special type of wireless Mobile Ad hoc Networks (MANETs), which allow a group of mobile nodes configure a temporary network and maintain it without the need of a fixed infrastructure. A vehicular network presents some specific characteristics, as the very high speed of nodes. Due to this high speed the topology changes are frequent and the communication links may last only a few seconds. Smart cities are now a reality and have a direct relationship with vehicular networks. With the help of existing infrastructure such as traffic lights, we propose a scheme to update and analyse traffic density and a warning system to spread alert messages. With this, traffic lights assist vehicular networks to take proper decisions. This would ensure less congested streets. It would also be possible that the routing protocol forwards data packets to vehicles on streets with enough neighbours to increase the possibility of delivering the packets to destination. Sharing updated, reliable and real-time information, about traffic conditions, weather or security alerts, increases the need of algorithms for the dissemination of information that take into account the main beneffits and constraints of these networks. For all this, routing protocols for vehicular networks have the difficult task to select and establish transmission links to send the data packets from source to destination through multiple nodes using intermediate vehicles efficiently. The main objective of this thesis is to provide improvements in the communication framework for vehicular networks to improve decisions to select next hops in the moment to send information, in this way improving the exchange of information to provide suitable communication to minimize accidents, reduce congestion, optimize resources for emergencies, etc. Also, we include intelligence to vehicles at the moment to take routing decisions. Making them map-aware, being conscious of the presence of buildings and other obstacles in urban environments. Furthermore, our proposal considers the decision to store packets for a maximum time until finding other neighbouring nodes to forward the packets before discarding them. For this, we propose a protocol that considers multiple metrics that we call MMMR (A Multimetric, Map-Aware Routing Protocol ). MMMR is a protocol based on geographical knowledge of the environment and vehicle location. The metrics considered are the distance, the density of vehicles in transmission range, the available bandwidth and the future trajectory of the neighbouring nodes. This allows us to have a complete view of the vehicular scenario to anticipate the driver about possible changes that may occur. Thus, a node can select a node among all its neighbours, which is the best option to increase the likelihood of successful packet delivery, minimizing time and offering a level of quality and service. In the same way, being aware of the increase of information in wireless environments, we analyse the possibility of offering anonymity services. We include a mechanism of anonymity in routing protocols based on the Crowd algorithm, which uses the idea of hiding the original source of a packet. This allowed us to add some level of anonymity on VANET routing protocols. The analytical modeling of the available bandwidth between nodes in a VANET, the use of city infrastructure in a smart way, the forwarding selection in data routing byvehicles and the provision of anonymity in communications, are issues that have been addressed in this PhD thesis. In our research work we provide contributions to improve the communication framework for Vehicular Ad hoc Networks obtaining benefits toenhance the everyday of the population.La movilidad constante de las personas y la creciente necesidad de estar conectados en todo momento ha hecho de las redes vehiculares un área cuyo interés ha ido en aumento. La gran cantidad de vehículos que hay en la actualidad, y los avances tecnológicos han hecho de las redes vehiculares (VANETS, Vehicular Ad hoc Networks) un gran campo de investigación. Las redes vehiculares son un tipo especial de redes móviles ad hoc inalámbricas, las cuales, al igual que las redes MANET (Mobile Ad hoc Networks), permiten a un grupo de nodos móviles tanto configurar como mantener una red temporal por si mismos sin la necesidad de una infraestructura fija. Las redes vehiculares presentan algunas características muy representativas, por ejemplo, la alta velocidad que pueden alcanzar los nodos, en este caso vehículos. Debido a esta alta velocidad la topología cambia frecuentemente y la duración de los enlaces de comunicación puede ser de unos pocos segundos. Estas redes tienen una amplia área de aplicación, pudiendo tener comunicación entre los mismos nodos (V2V) o entre los vehículos y una infraestructura fija (V2I). Uno de los principales desafíos existentes en las VANET es la seguridad vial donde el gobierno y fabricantes de automóviles han centrado principalmente sus esfuerzos. Gracias a la rápida evolución de las tecnologías de comunicación inalámbrica los investigadores han logrado introducir las redes vehiculares dentro de las comunicaciones diarias permitiendo una amplia variedad de servicios para ofrecer. Las ciudades inteligentes son ahora una realidad y tienen una relación directa con las redes vehiculares. Con la ayuda de la infraestructura existente, como semáforos, se propone un sistema de análisis de densidad de tráfico y mensajes de alerta. Con esto, los semáforos ayudan a la red vehicular en la toma de decisiones. Así se logrará disponer de calles menos congestionadas para hacer una circulación más fluida (lo cual disminuye la contaminación). Además, sería posible que el protocolo de encaminamiento de datos elija vehículos en calles con suficientes vecinos para incrementar la posibilidad de entregar los paquetes al destino (minimizando pérdidas de información). El compartir información actualizada, confiable y en tiempo real sobre el estado del tráfico, clima o alertas de seguridad, aumenta la necesidad de algoritmos de difusión de la información que consideren los principales beneficios y restricciones de estas redes. Así mismo, considerar servicios críticos que necesiten un nivel de calidad y servicio es otro desafío importante. Por todo esto, un protocolo de encaminamiento para este tipo de redes tiene la difícil tarea de seleccionar y establecer enlaces de transmisión para enviar los datos desde el origen hacia el destino vía múltiples nodos utilizando vehículos intermedios de una manera eficiente. El principal objetivo de esta tesis es ofrecer mejoras en los sistemas de comunicación vehicular que mejoren la toma de decisiones en el momento de realizar el envío de la información, con lo cual se mejora el intercambio de información para poder ofrecer comunicación oportuna que minimice accidentes, reduzca atascos, optimice los recursos destinados a emergencias, etc. Así mismo, incluimos más inteligencia a los coches en el momento de tomar decisiones de encaminamiento de paquetes. Haciéndolos conscientes de la presencia de edificios y otros obstáculos en los entornos urbanos. Así como tomar la decisión de guardar paquetes durante un tiempo máximo de modo que se encuentre otros nodos vecinos para encaminar paquetes de información antes de descartarlo. Para esto, proponemos un protocolo basado en múltiples métricas (MMMR, A Multimetric, Map-aware Routing Protocol ) que es un protocolo geográfio basado en el conocimiento del entorno y localización de los vehículos. Las métricas consideradas son la distancia, la densidad de vehículos en el área de transmisión, el ancho de banda disponible y la trayectoria futura de los nodos vecinos. Esto nos permite tener una visión completa del escenario vehicular y anticiparnos a los posibles cambios que puedan suceder. Así, un nodo podrá seleccionar aquel nodo entre todos sus vecinos posibles que sea la mejor opción para incrementar la posibilidad de entrega exitosa de paquetes, minimizando tiempos y ofreciendo un cierto nivel de calidad y servicio. De la misma manera, conscientes del incremento de información que circula por medios inalámbricos, se analizó la posibilidad de servicios de anonimato. Incluimos pues un mecanismo de anonimato en protocolos de encaminamiento basado en el algoritmo Crowd, que se basa en la idea de ocultar la fuente original de un paquete. Esto nos permitió añadir cierto nivel de anonimato que pueden ofrecer los protocolos de encaminamiento. El modelado analítico del ancho de banda disponible entre nodos de una VANET, el uso de la infraestructura de la ciudad de una manera inteligente, la adecuada toma de decisiones de encaminamiento de datos por parte de los vehículos y la disposición de anonimato en las comunicaciones, son problemas que han sido abordados en este trabajo de tesis doctoral que ofrece contribuciones a la mejora de las comunicaciones en redes vehiculares en entornos urbanos aportando beneficios en el desarrollo de la vida diaria de la población

    Efficient medium access control protocol for vehicular ad-hoc networks

    Get PDF
    Intelligent transportation systems (ITS) have enjoyed a tremendous growth in the last decade and the advancement in communication technologies has played a big role behind the success of ITS. Inter-vehicle communication (IVC) is a critical requirement for ITS and due to the nature of communication, vehicular ad-hoc network technology (VANET) is the most suitable communication technology for inter-vehicle communications. In Practice, however, VANET poses some extreme challenges including dropping out of connections as the moving vehicle moves out of the coverage range, joining of new nodes moving at high speeds, dynamic change in topology and connectivity, time variability of signal strength, throughput and time delay. One of the most challenging issues facing vehicular networks lies in the design of efficient resource management schemes, due to the mobile nature of nodes, delay constraints for safety applications and interference. The main application of VANET in ITS lies in the exchange of safety messages between nodes. Moreover, as the wireless access in vehicular environment (WAVE) moves closer to reality, management of these networks is of increasing concern for ITS designers and other stakeholder groups. As such, management of resources plays a significant role in VANET and ITS. For resource management in VANET, a medium access control protocol is used, which makes sure that limited resources are distributed efficiently. In this thesis, an efficient Multichannel Cognitive MAC (MCM) is developed, which assesses the quality of channel prior to transmission. MCM employs dynamic channel allocation and negotiation algorithms to achieve a significant improvement in channel utilisation, system reliability, and delay constraints while simultaneously addressing Quality of Service. Moreover, modified access priority parameters and safety message acknowledgments will be used to improve the reliability of safety messages. The proposed protocols are implemented using network simulation tools. Extensive experiments demonstrated a faster and more efficient reception of safety messages compared to existing VANET technologies. Finally, improvements in delay and packet delivery ratios are presented

    An efficient cluster-based service model for vehicular ad-hoc networks on motorways

    Get PDF
    Vehicular Ad-Hoc Networks (VANET) can, but not limited to provide users with useful traffic and environmental information services to improve travelling efficiency and road safety. The communications systems used in VANET include vehicle-to-vehicle communications (V2V) and vehicle-to-infrastructure communications (V2I). The transmission delay and the energy consumption cost for maintaining good-quality communications vary depending on the transmission distance and transmission power, especially on motorways where vehicles are moving at higher speeds. In addition, in modern transportation systems, electric vehicles are becoming more and more popular, which require a more efficient battery management, this also call for an efficient way of vehicular transmission. In this project, a cluster-based two-way data service model to provide real-time data services for vehicles on motorways is designed. The design promotes efficient cooperation between V2V and V2I, or namely V2X, with the objective of improving both service and energy performance for vehicular networks with traffic in the same direction. Clustering is an effective way of applying V2X in VANET systems, where the cluster head will take the main responsibility of exchanging data with Road Side Units (RSU) and other cluster members. The model includes local service data collection, data aggregation, and service data downloading. We use SUMO and OMNET++ to simulate the traffic scenarios and the network communications. Two different models (V2X and V2I) are compared to evaluate the performance of the proposed model under different flow speeds. From the results, we conclude that the cluster-based service model outperforms the non-clustered model in terms of service successful ratio, network throughput and energy consumption

    Modeling and Simulation of Vehicle to Vehicle and Infrastructure Communication in Realistic Large Scale Urban Area

    Get PDF
    During the last decades, Intelligent Transportation System (ITS) has progressed at a rapid rate, which aim to improve transportation activities in terms of safety and efficiency. Car to Car or Vehicle-to-Vehicle (V2V) communications and Car/Vehicle-to-Infrastructure (I2V or V2I) communications are important components of the ITS architecture. Communication between cars is often referred to Vehicular Ad-Hoc Networks (VANET) and it has many advantages such as: reducing cars accidents, minimizing the traffic jam, reducing fuel consumption and emissions and etc. VANET architectures have been standardized in the IEEE-802.11p specification. For a closer look on V2V and V2I studies, the necessity of simulations is obvious. Network simulators can simulate the ad-hoc network but they cannot simulate the huge traffic of cities. In order to solve this problem, this thesis studies the Veins framework which is used to run a traffic (SUMO) and a network (OMNET++) simulator in parallel and simulates the realistic traffics of the city of Cologne, Germany, as an ad-hoc network. Several different simulations and performance analyses have been done to investigate the ability of different VANET applications. In the simulations, cars move in the real map of the city of Cologne and communicate with each other and also with RoadSideUnits with using IEEE 802.11p standard. Then, Probability of Beacons Delivery (PBD) in different area of a real city are calculated and also are compared with the analytical model. This study is the first research performed on calculating PBD of IEEE 802.11p in realistic large urban area. Then, the thesis focuses on modelling and analysis of the applications of the V2I in real city. In these sections, two different simulations of application of the VANET are done by developing the Veins framework and also by developing two new programs written in Python which are connected to SUMO and control the real traffic simulation. One program simulates a real city with intelligent traffic lights for decreasing response time of emergency vehicles by using V2I. The results show that using V2I communication based on 802.11p between emergency cars and traffic lights can decrease the response time of emergency cars up to 70%. Another program, simulates dynamic route planning in real traffic simulation which is used V2I and V2V communication. The result of this simulation show the capability of V2V and V2I to decrease the traveling time, fuel consumptions and emissions of the cars in the city

    Reliable Multihop Broadcast Protocol with a Low-Overhead Link Quality Assessment for ITS Based on VANETs in Highway Scenarios

    Get PDF
    Vehicular ad hoc networks (VANETs) have been identified as a key technology to enable intelligent transport systems (ITS), which are aimed to radically improve the safety, comfort, and greenness of the vehicles in the road. However, in order to fully exploit VANETs potential, several issues must be addressed. Because of the high dynamic of VANETs and the impairments in the wireless channel, one key issue arising when working with VANETs is the multihop dissemination of broadcast packets for safety and infotainment applications. In this paper a reliable low-overhead multihop broadcast (RLMB) protocol is proposed to address the well-known broadcast storm problem. The proposed RLMB takes advantage of the hello messages exchanged between the vehicles and it processes such information to intelligently select a relay set and reduce the redundant broadcast. Additionally, to reduce the hello messages rate dependency, RLMB uses a point-to-zone link evaluation approach. RLMB performance is compared with one of the leading multihop broadcast protocols existing to date. Performance metrics show that our RLMB solution outperforms the leading protocol in terms of important metrics such as packet dissemination ratio, overhead, and delay

    Study of Obstacle effect on the GPSR protocol and a Novel Intelligent Greedy Routing protocol for VANETs

    Get PDF
    In recent years, connected vehicle technologies have been developed by automotive companies, academia, and researchers as part of Intelligent Transportation Systems (ITS). This group of stakeholders continue to work on these technologies to make them as reliable and cost-effective as possible. This attention is because of the increasing connected vehicles safety-related, entertainment, and traffic management applications, which have the potential to decrease the number of road accidents, save fuel and time for millions of daily commuters worldwide. Vehicular Ad-Hoc Network (VANET), which is a subgroup of Mobile Ad-Hoc Network (MANET), is being developed and implemented in vehicles as the critical structure for connected vehicles applications. VANET provides a promising concept to reduce the number of fatalities caused by road accidents, to improve traffic efficiency, and to provide infotainment. To support the increasing number of safety-related applications, VANETs are required to perform reliably. Since VANETs promise numerous safety applications requiring time-bound delivery of data packets, it is also necessary to replicate real-world scenarios in simulations as accurately as possible. Taking into account the effect of realistic obstacles while simulating a variety of case scenarios increases the reliability of the tested routing protocol to appropriately perform in real-world situations. It also exposes routing protocols to possible vulnerabilities caused by obstacles. Nevertheless, it is not uncommon for researchers to omit real-world physical layer communication hurdles in simulation-based tests, including not considering the effect of obstacles on their routing protocol performance evaluation simulations. Consequently, the performance of these protocols is usually overestimated and do not support in real-world environment. Failure to account for obstacle effects overstate the network performance. In this thesis, a framework for measuring obstacle effects on routing protocols is defined. We also propose, a new routing protocol based on the traditional Greedy Perimeter Stateless Routing (GPSR) protocol called Intelligent Greedy Routing (IGR) protocol. The proposed IGR protocol considers a parameter called ReceptivityReceptivity to chose the next hop in a route. We implemented the new protocol using the Simulation of Urban Mobility (SUMO) and the Network Simulator (NS-3). An analysis of Packet Delivery Ratio (PDR), End-to-End Delay (E2ED) and Mean Hop count with the assumption that nodes (vehicles) are moving in various topologies is presented in this thesis. The study presented here gives a general idea of the effects of obstacles on the Greedy Perimeter Stateless Routing (GPSR) protocol considering multiple realistic scenarios such as Urban, Residential and Highway. In addition, we compare the performance of GPSR and the new IGR protocols with the presence of obstacles considering various topologies. The new proposed IGR protocol performs better compared to the traditional GPSR for all the investigated metrics

    Modeling and Simulation of Vehicle to Vehicle and Infrastructure Communication in Realistic Large Scale Urban Area

    Get PDF
    During the last decades, Intelligent Transportation System (ITS) has progressed at a rapid rate, which aim to improve transportation activities in terms of safety and efficiency. Car to Car or Vehicle-to-Vehicle (V2V) communications and Car/Vehicle-to-Infrastructure (I2V or V2I) communications are important components of the ITS architecture. Communication between cars is often referred to Vehicular Ad-Hoc Networks (VANET) and it has many advantages such as: reducing cars accidents, minimizing the traffic jam, reducing fuel consumption and emissions and etc. VANET architectures have been standardized in the IEEE-802.11p specification. For a closer look on V2V and V2I studies, the necessity of simulations is obvious. Network simulators can simulate the ad-hoc network but they cannot simulate the huge traffic of cities. In order to solve this problem, this thesis studies the Veins framework which is used to run a traffic (SUMO) and a network (OMNET++) simulator in parallel and simulates the realistic traffics of the city of Cologne, Germany, as an ad-hoc network. Several different simulations and performance analyses have been done to investigate the ability of different VANET applications. In the simulations, cars move in the real map of the city of Cologne and communicate with each other and also with RoadSideUnits with using IEEE 802.11p standard. Then, Probability of Beacons Delivery (PBD) in different area of a real city are calculated and also are compared with the analytical model. This study is the first research performed on calculating PBD of IEEE 802.11p in realistic large urban area. Then, the thesis focuses on modelling and analysis of the applications of the V2I in real city. In these sections, two different simulations of application of the VANET are done by developing the Veins framework and also by developing two new programs written in Python which are connected to SUMO and control the real traffic simulation. One program simulates a real city with intelligent traffic lights for decreasing response time of emergency vehicles by using V2I. The results show that using V2I communication based on 802.11p between emergency cars and traffic lights can decrease the response time of emergency cars up to 70%. Another program, simulates dynamic route planning in real traffic simulation which is used V2I and V2V communication. The result of this simulation show the capability of V2V and V2I to decrease the traveling time, fuel consumptions and emissions of the cars in the city

    A Comparative Survey of VANET Clustering Techniques

    Full text link
    © 2016 Crown. A vehicular ad hoc network (VANET) is a mobile ad hoc network in which network nodes are vehicles - most commonly road vehicles. VANETs present a unique range of challenges and opportunities for routing protocols due to the semi-organized nature of vehicular movements subject to the constraints of road geometry and rules, and the obstacles which limit physical connectivity in urban environments. In particular, the problems of routing protocol reliability and scalability across large urban VANETs are currently the subject of intense research. Clustering can be used to improve routing scalability and reliability in VANETs, as it results in the distributed formation of hierarchical network structures by grouping vehicles together based on correlated spatial distribution and relative velocity. In addition to the benefits to routing, these groups can serve as the foundation for accident or congestion detection, information dissemination and entertainment applications. This paper explores the design choices made in the development of clustering algorithms targeted at VANETs. It presents a taxonomy of the techniques applied to solve the problems of cluster head election, cluster affiliation, and cluster management, and identifies new directions and recent trends in the design of these algorithms. Additionally, methodologies for validating clustering performance are reviewed, and a key shortcoming - the lack of realistic vehicular channel modeling - is identified. The importance of a rigorous and standardized performance evaluation regime utilizing realistic vehicular channel models is demonstrated

    Réseaux de capteurs ubiquitous dans l'environnement NGN

    Get PDF
    Ubiquités Sensor Network (USN) is a conceptual network built over existing physical networks. It makes use of sensed data and provides knowledge services to anyone, anywhere and at anytime, and where the information is generated by using context awareness. Smart wearable devices and USNs are emerging rapidly providing many reliable services facilitating people life. Those very useful small end terminals and devices require a global communication substrate to provide a comprehensive global end user service. In 2010, the ITU-T provided the requirements to support USN applications and services in the Next Génération Network (NGN) environment to exploit the advantages of the core network. One of the main promising markets for the USN application and services is the e-Health. It provides continuous patients’ monitoring and enables a great improvement in medical services. On the other hand, Vehicular Ad-Hoc NETwork (VANET) is an emerging technology, which provides intelligent communication between mobile vehicles. Integrating VANET with USN has a great potential to improve road safety and traffic efficiency. Most VANET applications are applied in real time and they are sensitive to delay, especially those related to safety and health. In this work, we propose to use IP Multimedia Subsystem (IMS) as a service controller sub-layer in the USN environment providing a global substrate for a comprehensive end-to-end service. Moreover, we propose to integrate VANETs with USN for more rich applications and facilities, which will ease the life of humans. We started studying the challenges on the road to achieve this goalUbiquitous Sensor Network (USN) est un réseau conceptuel construit sur des réseaux physiques existantes. Il se sert des données détectées et fournit des services de connaissances à quiconque, n'importe où et à tout moment, et où l'information est générée en utilisant la sensibilité au contexte. Dispositifs et USN portables intelligents émergent rapidement en offrant de nombreux services fiables facilitant la vie des gens. Ces petits terminaux et terminaux très utiles besoin d'un substrat de communication globale pour fournir un service complet de l'utilisateur final global. En 2010, ITU -T a fourni les exigences pour supporter des applications et services USN dans le Next Generation Network (NGN) de l'environnement d'exploiter les avantages du réseau de base. L'un des principaux marchés prometteurs pour l'application et les services USN est la e- santé. Il fournit le suivi des patients en continu et permet une grande amélioration dans les services médicaux. D'autre part, des Véhicules Ad-hoc NETwork (VANET) est une technologie émergente qui permet une communication intelligente entre les véhicules mobiles. Intégrer VANET avec USN a un grand potentiel pour améliorer la sécurité routière et la fluidité du trafic. La plupart des applications VANET sont appliqués en temps réel et ils sont sensibles à retarder, en particulier ceux liés à la sécurité et à la santé. Dans ce travail, nous proposons d'utiliser l'IP Multimédia Subsystem (IMS) comme une sous- couche de contrôle de service dans l'environnement USN fournir un substrat mondiale pour un service complet de bout en bout. De plus, nous vous proposons d'intégrer VANETs avec USN pour des applications et des installations riches plus, ce qui facilitera la vie des humains. Nous avons commencé à étudier les défis sur la route pour atteindre cet objecti
    corecore