109 research outputs found

    Mapping DSP algorithms to a reconfigurable architecture Adaptive Wireless Networking (AWGN)

    Get PDF
    This report will discuss the Adaptive Wireless Networking project. The vision of the Adaptive Wireless Networking project will be given. The strategy of the project will be the implementation of multiple communication systems in dynamically reconfigurable heterogeneous hardware. An overview of a wireless LAN communication system, namely HiperLAN/2, and a Bluetooth communication system will be given. Possible implementations of these systems in a dynamically reconfigurable architecture are discussed. Suggestions for future activities in the Adaptive Wireless Networking project are also given

    Algorithm-Architecture Co-Design for Digital Front-Ends in Mobile Receivers

    Get PDF
    The methodology behind this work has been to use the concept of algorithm-hardware co-design to achieve efficient solutions related to the digital front-end in mobile receivers. It has been shown that, by looking at algorithms and hardware architectures together, more efficient solutions can be found; i.e., efficient with respect to some design measure. In this thesis the main focus have been placed on two such parameters; first reduced complexity algorithms to lower energy consumptions at limited performance degradation, secondly to handle the increasing number of wireless standards that preferably should run on the same hardware platform. To be able to perform this task it is crucial to understand both sides of the table, i.e., both algorithms and concepts for wireless communication as well as the implications arising on the hardware architecture. It is easier to handle the high complexity by separating those disciplines in a way of layered abstraction. However, this representation is imperfect, since many interconnected "details" belonging to different layers are lost in the attempt of handling the complexity. This results in poor implementations and the design of mobile terminals is no exception. Wireless communication standards are often designed based on mathematical algorithms with theoretical boundaries, with few considerations to actual implementation constraints such as, energy consumption, silicon area, etc. This thesis does not try to remove the layer abstraction model, given its undeniable advantages, but rather uses those cross-layer "details" that went missing during the abstraction. This is done in three manners: In the first part, the cross-layer optimization is carried out from the algorithm perspective. Important circuit design parameters, such as quantization are taken into consideration when designing the algorithm for OFDM symbol timing, CFO, and SNR estimation with a single bit, namely, the Sign-Bit. Proof-of-concept circuits were fabricated and showed high potential for low-end receivers. In the second part, the cross-layer optimization is accomplished from the opposite side, i.e., the hardware-architectural side. A SDR architecture is known for its flexibility and scalability over many applications. In this work a filtering application is mapped into software instructions in the SDR architecture in order to make filtering-specific modules redundant, and thus, save silicon area. In the third and last part, the optimization is done from an intermediate point within the algorithm-architecture spectrum. Here, a heterogeneous architecture with a combination of highly efficient and highly flexible modules is used to accomplish initial synchronization in at least two concurrent OFDM standards. A demonstrator was build capable of performing synchronization in any two standards, including LTE, WiFi, and DVB-H

    State of the art baseband DSP platforms for Software Defined Radio: A survey

    Get PDF
    Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced by different universities and industries to support SDR applications. This article presents an overview of current platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future trends.Peer reviewe

    LTE implementation on CGRA based SiLago Platform

    Get PDF
    Abstract. This thesis implements long term evolution (LTE) transmission layer on a coarse grained reconfigurable called, dynamically reconfigurable resource array (DRRA). Specifically, we implement physical downlink shared channel baseband signal processing blocks (PDSCH) at high level. The overall implementation follows silicon large grain object (SiLago) design methodology. The methodology employs SiLago blocks instead of mainstream standard cells. The main ambition of this thesis was to prove that a standard as complex as LTE can be implemented using the in-house SiLago framework. The work aims to prove that customized design with efficiency close to application specific integrated circuit (ASIC) for LTE can be generated with the programming ease of MATLAB. During this thesis, we have generated a completely parametrizable LTE standard at high level

    Power and Energy Aware Heterogeneous Computing Platform

    Get PDF
    During the last decade, wireless technologies have experienced significant development, most notably in the form of mobile cellular radio evolution from GSM to UMTS/HSPA and thereon to Long-Term Evolution (LTE) for increasing the capacity and speed of wireless data networks. Considering the real-time constraints of the new wireless standards and their demands for parallel processing, reconfigurable architectures and in particular, multicore platforms are part of the most successful platforms due to providing high computational parallelism and throughput. In addition to that, by moving toward Internet-of-Things (IoT), the number of wireless sensors and IP-based high throughput network routers is growing at a rapid pace. Despite all the progression in IoT, due to power and energy consumption, a single chip platform for providing multiple communication standards and a large processing bandwidth is still missing.The strong demand for performing different sets of operations by the embedded systems and increasing the computational performance has led to the use of heterogeneous multicore architectures with the help of accelerators for computationally-intensive data-parallel tasks acting as coprocessors. Currently, highly heterogeneous systems are the most power-area efficient solution for performing complex signal processing systems. Additionally, the importance of IoT has increased significantly the need for heterogeneous and reconfigurable platforms.On the other hand, subsequent to the breakdown of the Dennardian scaling and due to the enormous heat dissipation, the performance of a single chip was obstructed by the utilization wall since all cores cannot be clocked at their maximum operating frequency. Therefore, a thermal melt-down might be happened as a result of high instantaneous power dissipation. In this context, a large fraction of the chip, which is switched-off (Dark) or operated at a very low frequency (Dim) is called Dark Silicon. The Dark Silicon issue is a constraint for the performance of computers, especially when the up-coming IoT scenario will demand a very high performance level with high energy efficiency. Among the suggested solution to combat the problem of Dark-Silicon, the use of application-specific accelerators and in particular Coarse-Grained Reconfigurable Arrays (CGRAs) are the main motivation of this thesis work.This thesis deals with design and implementation of Software Defined Radio (SDR) as well as High Efficiency Video Coding (HEVC) application-specific accelerators for computationally intensive kernels and data-parallel tasks. One of the most important data transmission schemes in SDR due to its ability of providing high data rates is Orthogonal Frequency Division Multiplexing (OFDM). This research work focuses on the evaluation of Heterogeneous Accelerator-Rich Platform (HARP) by implementing OFDM receiver blocks as designs for proof-of-concept. The HARP template allows the designer to instantiate a heterogeneous reconfigurable platform with a very large amount of custom-tailored computational resources while delivering a high performance in terms of many high-level metrics. The availability of this platform lays an excellent foundation to investigate techniques and methods to replace the Dark or Dim part of chip with high-performance silicon dissipating very low power and energy. Furthermore, this research work is also addressing the power and energy issues of the embedded computing systems by tailoring the HARP for self-aware and energy-aware computing models. In this context, the instantaneous power dissipation and therefore the heat dissipation of HARP are mitigated on FPGA/ASIC by using Dynamic Voltage and Frequency Scaling (DVFS) to minimize the dark/dim part of the chip. Upgraded HARP for self-aware and energy-aware computing can be utilized as an energy-efficient general-purpose transceiver platform that is cognitive to many radio standards and can provide high throughput while consuming as little energy as possible. The evaluation of HARP has shown promising results, which makes it a suitable platform for avoiding Dark Silicon in embedded computing platforms and also for diverse needs of IoT communications.In this thesis, the author designed the blocks of OFDM receiver by crafting templatebased CGRA devices and then attached them to HARP’s Network-on-Chip (NoC) nodes. The performance of application-specific accelerators generated from templatebased CGRAs, the performance of the entire platform subsequent to integrating the CGRA nodes on HARP and the NoC traffic are recorded in terms of several highlevel performance metrics. In evaluating HARP on FPGA prototype, it delivers a performance of 0.012 GOPS/mW. Because of the scalability and regularity in HARP, the author considered its value as architectural constant. In addition to showing the gain and the benefits of maximizing the number of reconfigurable processing resources on a platform in comparison to the scaled performance of several state-of-the-art platforms, HARP’s architectural constant ensures application-independent figure of merit. HARP is further evaluated by implementing various sizes of Discrete Cosine transform (DCT) and Discrete Sine Transform (DST) dedicated for HEVC standard, which showed its ability to sustain Full HD 1080p format at 30 fps on FPGA. The author also integrated self-aware computing model in HARP to mitigate the power dissipation of an OFDM receiver. In the case of FPGA implementation, the total power dissipation of the platform showed 16.8% reduction due to employing the Feedback Control System (FCS) technique with Dynamic Frequency Scaling (DFS). Furthermore, by moving to ASIC technology and scaling both frequency and voltage simultaneously, significant dynamic power reduction (up to 82.98%) was achieved, which proved the DFS/DVFS techniques as one step forward to mitigate the Dark Silicon issue

    Multi-core architectures with coarse-grained dynamically reconfigurable processors for broadband wireless access technologies

    Get PDF
    Broadband Wireless Access technologies have significant market potential, especially the WiMAX protocol which can deliver data rates of tens of Mbps. Strong demand for high performance WiMAX solutions is forcing designers to seek help from multi-core processors that offer competitive advantages in terms of all performance metrics, such as speed, power and area. Through the provision of a degree of flexibility similar to that of a DSP and performance and power consumption advantages approaching that of an ASIC, coarse-grained dynamically reconfigurable processors are proving to be strong candidates for processing cores used in future high performance multi-core processor systems. This thesis investigates multi-core architectures with a newly emerging dynamically reconfigurable processor – RICA, targeting WiMAX physical layer applications. A novel master-slave multi-core architecture is proposed, using RICA processing cores. A SystemC based simulator, called MRPSIM, is devised to model this multi-core architecture. This simulator provides fast simulation speed and timing accuracy, offers flexible architectural options to configure the multi-core architecture, and enables the analysis and investigation of multi-core architectures. Meanwhile a profiling-driven mapping methodology is developed to partition the WiMAX application into multiple tasks as well as schedule and map these tasks onto the multi-core architecture, aiming to reduce the overall system execution time. Both the MRPSIM simulator and the mapping methodology are seamlessly integrated with the existing RICA tool flow. Based on the proposed master-slave multi-core architecture, a series of diverse homogeneous and heterogeneous multi-core solutions are designed for different fixed WiMAX physical layer profiles. Implemented in ANSI C and executed on the MRPSIM simulator, these multi-core solutions contain different numbers of cores, combine various memory architectures and task partitioning schemes, and deliver high throughputs at relatively low area costs. Meanwhile a design space exploration methodology is developed to search the design space for multi-core systems to find suitable solutions under certain system constraints. Finally, laying a foundation for future multithreading exploration on the proposed multi-core architecture, this thesis investigates the porting of a real-time operating system – Micro C/OS-II to a single RICA processor. A multitasking version of WiMAX is implemented on a single RICA processor with the operating system support

    Design of Intellectual Property-Based Hardware Blocks Integrable with Embedded RISC Processors

    Get PDF
    The main focus of this thesis is to research methods, architecture, and implementation of hardware acceleration for a Reduced Instruction Set Computer (RISC) platform. The target platform is a single-core general-purpose embedded processor (the COFFEE core) which was developed by our group at Tampere University of Technology. The COFFEE core alone cannot meet the requirements of the modern applications due to the lack of several components of which the Memory Management Unit (MMU) is one of the prominent ones. Since the MMU is one of the main requirements of today’s processors, COFFEE with no MMU was not able to run an operating system. In the design of the MMU, we employed two additional micro-Translation-Lookaside Buffers (TLBs) to speed up the translation process, as well as minimizing congestions of the data/instruction address translations with a unified TLB. The MMU is tightly-coupled with the COFFEE RISC core through the Peripheral Control Block (PCB) interface of the core. The hardware implementation, alongside some optimization techniques and post synthesis results are presented, as well.Another intention of this work is to prepare a reconfigurable platform to send and receive data packets of the next generation wireless communications. Hence, we will further discuss a recently emerged wireless modulation technique known as Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-OFDM), a promising technique to alleviate spectrum scarcity problem. However, one of the primary concerns in such systems is the synchronization. To that end, we developed a reconfigurable hardware component to perform as a synchronizer. The developed module exploits Partial Reconfiguration (PR) feature in order to reconfigure itself. Eventually, we will come up with several architectural choices for systems with different limiting factors such as power consumption, operating frequency, and silicon area. The synchronizer can be loosely-coupled via one of the available co-processor slots of the target processor, the COFFEE RISC core.In addition, we are willing to improve the versatility of the COFFEE core even in industrial use cases. Hence, we developed a reconfigurable hardware component capable of operating in the Controller Area Network (CAN) protocol. In the first step of this implementation, we mainly concentrate on receiving, decoding, and extracting the data segment of a CAN-based packet. Moreover, this hardware block can reconfigure itself on-the-fly to operate on different data frames. More details regarding hardware implementation issues, as well as post synthesis results are also presented. The CAN module is loosely-coupled with the COFFEE RISC processor through one of the available co-processor block

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF
    corecore