

DEGREE PROGRAMME IN WIRELESS COMMUNICATIONS ENGINEERING

MASTER’S THESIS

LTE IMPLEMENTATION ON CGRA BASED

SILAGO PLATFORM

 Author Muhammad Hasnain Ilyas

 Supervisor Prof. Jari Iinatti

 Second Examiner Dr. Kari Kärkkäinen

 Technical Advisor Dr. Syed M. Asad Hassan Jafri

 Examiner Prof. Ahmed Hemani

MAY, 2017

Ilyas M. (2017) LTE implementation on CGRA based SiLago platform. University

of Oulu, Degree Programme in Wireless Communications Engineering. Master’s

Thesis, 67 p.

ABSTRACT

This thesis implements long term evolution (LTE) transmission layer on a coarse

grained reconfigurable called, dynamically reconfigurable resource array

(DRRA). Specifically, we implement physical downlink shared channel baseband

signal processing blocks (PDSCH) at high level. The overall implementation

follows silicon large grain object (SiLago) design methodology. The methodology

employs SiLago blocks instead of mainstream standard cells. The main ambition

of this thesis was to prove that a standard as complex as LTE can be implemented

using the in-house SiLago framework. The work aims to prove that customized

design with efficiency close to application specific integrated circuit (ASIC) for

LTE can be generated with the programming ease of MATLAB. During this

thesis, we have generated a completely parametrizable LTE standard at high

level.

Key words: DRRA, SiLago, HLS, LTE, MIMO, OFDM.

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

PREFACE

LIST OF ABBREVIATIONS AND SYMBOLS

1. INTRODUCTION .. 8

2. OVERVIEW ... 10

2.1. LTE 3GPP ... 10

2.2. SiLago Platform ... 13

3. LTE SCRAMBLING AND MODULATION .. 16

3.1. Scrambler ... 16

3.2. Modulation .. 19

4. MIMO ... 24

4.1. General Description ... 24

4.2. Layer Mapping .. 25

4.3. Precoding ... 27

5. OFDM ... 30

5.1. Definition ... 30

5.2. Resource Element Mapper .. 31

5.3. OFDM Signal Generation.. 36

6. RESULTS ... 37

7. DISCUSSION ... 41

8. SUMMARY .. 42

9. REFERENCES ... 44

10. APPENDICES .. 48

PREFACE

This Master thesis has been carried out at KTH royal institute of technology, Sweden

in partial fulfilment for the degree towards Master’s Degree Programme in Wireless

Communications Engineering from University of Oulu, Finland. First of all, I would

like to thanks Prof. Jari Iinatti for supervising this thesis and his excellent guidance to

finalize this work. I would also like to thanks my second examiner Dr. Kari Kärkkäinen

for his useful comments. I would like to thanks Prof. Ahmed Hemani to give me an

opportunity to complete this thesis work under his research group at KTH institute.

Many thanks to Dr Syed M. Asad Hassan Jafri for his excellent support, guidance,

encouragement and advices during each step of this work.

I would not be able to say “thanks” to my parents, beloved sisters and my brother.

Their love, prayers and kindness for me are beyond limitations. At the end I would like

to dedicate this intellectual effort to my mentor “ Prof. Ahmed Rafique Akhtar”.

Oulu, MAY 2017

Muhammad Hasnain Ilyas

LIST OF ABBREVIATIONS AND SYMBOLS

𝑎𝑘
(𝑚) complex modulation symbol during the mth OFDM symbol interval

𝑏(𝑞) block of bits

𝑐(𝑛) final scrambling sequence

𝐶𝑖𝑛𝑖𝑡 second m-sequence initialization of scrambler

k resource element with frequency-domain index k

l resource element with time-domain index l

𝑀𝑠𝑦𝑚𝑏
𝑎𝑝

 number of modulation symbols to transmit per antenna port

𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

 number of modulation symbols to transmit per layer

𝑁𝑐 number of subcarriers

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 physical layer cell identity

𝑁𝑆𝑦𝑚𝑏
𝐷𝐿 number of OFDM symbols in downlink slot

𝑁𝑅𝐵
𝐷𝐿 downlink bandwidth configuration, expressed in multiples of 𝑁𝑆𝐶

𝑅𝐵

𝑁𝑆𝐶
𝑅𝐵 resource block size in frequency domain, as a number of subcarrier

𝑛𝑠 subframe number

𝑛𝑅𝑁𝑇𝐼 radio network temporary identifier

𝑞 codeword number

𝑇𝑢 modulation symbol rate of considered OFDM subcarrier

v number of transmission layers

W precoding matrix for downlink spatial multiplexing

𝑥1 first m-sequence of scrambler

𝑥2 second m-sequence of scrambler

Δ𝑓 subcarrier spacing

3GPP third generation partnership project

4G fourth generation

5G fifth generation
ASIC application specific integrated circuits

AlgoSil algorithm to silicon

BER bit error rate

BW band width

CDD cyclic delay diversity

CGRA coarse grain reconfigurable architectures

CP cyclic prefix

CQI channel quality indicator

CRC cyclic redundancy check

CRS cell specific reference signal

DC direct current

DCI downlink control information

DFT discrete fourier transforms

DiMArch distributed memory architecture

DPU data path unit

DRRA dynamically reconfigurable resource array

DSP digital signal processor

EDA electronic design automation

eNodeB evolved node b

FDD frequency division duplexing

FPGA field programmable gate array

FFT fast fourier transform

FDM frequency division multiplexing

HLS high level synthesis

IFFT inverse fast fourier transform

ITRS international technology roadmap for semiconductors

ISI inter symbol interference

LTE long term evaluation

LFSR linear feedback shift register

LUT lookup tables

MAC medium access layer

MAC multiply and accumulate unit

MIMO multiple input multiple output

OFDM orthogonal frequency division multiplexing

PAPR peak to average power ratio

PBCH physical broadcast channel

PCFICH physical control format indicator channel

PDSCH physical downlink shared channel

PDCCH physical downlink control channel

PMCH physical multicast channel

PMI precoder matrix indicator

PHICH physical hybrid indicator channel

QAM quadrature amplitude modulation

QPP quadrature permuted polynomial

QPSK quadrature phase shift keying

RE resource element

REG resource element group

RB resource block

RTL register transfer level

RFIE register file

RS reference signals

SiLago silicon large grain object

SRAM static random access memory

SYLVA system level synthesis

SCFDM single carrier frequency division multiplexing

SSS secondary synchronization signal

TDD time division duplexing

VLSI very large scale integration

VHDL very hardware description language

1. INTRODUCTION

Long term evolution (LTE) is known as the 4th generation cellular technology. It is

the latest wireless communication standard, which is developed by third generation

partnership project (3GPP). LTE technology has been covered most of the end user

demands in terms of better spectral efficiency and maximum throughput. Further

improvements in LTE leads fourth generation (4G) technology towards the 5th

generation (5G). The standardization for upcoming 5G technology is underway and

shall be completed by 2020 [1].

Different design challenges should be considered as in particular from the

implementation perspective of LTE on the architecture level, where energy efficiency

and computational complexity like problems are still demand to be investigated on

different digital signal processing platforms [2]. In general, baseband signal processing

algorithms of LTE and the other previous wireless standards are implemented on

application specific integrated circuits (ASICs), field programmable gate arrays

(FPGAs) and digital signal processors (DSPs) [3]. ASIC has the lack of flexibility as

compared to FPGA and on the other side FPGA is less efficient in performance

compared to ASIC [4].

 Coarse grained reconfigurable architectures (CGRAs) [5] may be considered for

the implementation of DSP applications in future. These CGRAs have the efficiency

close to ASICs and also have an advantage of flexibility like FPGA. Meanwhile, the

cost of CGRAs is quite low as compared to ASICs [6]. On the other hand, international

technology roadmap for semiconductors (ITRS) [20] has pushed the very large scale

integration (VLSI) community to set new targets by 2020 in terms of performance

improvement while the design effort remains constant. These targets are also

compelled the VLSI community to look out new architectural innovations [20].

A recently developed heterogeneous dark silicon [7] aware coarse grain

reconfigurable fabric is proposed to fulfils the ITRS goals [8, 20]. This CGRA fabric

provides micro architecture level hardware centric customization by SiLago platform

[23]. It is also known as high-level synthesis methodology from broader perspective.

Moreover, customization cost is also reduced by SiLago method. SiLago method is

produced a timing and DRC clean GDSII design by using the large grain micro

architecture level hardened and characterized blocks. The abstraction gap between

Simulink and physical design level is reduced. It shows 2 to 3 orders improvement in

synthesis efficiency as well as ability to precisely predict cost metrics. This platform

is also used to analysis the system level area, energy and latency of different DSP

algorithms [9].

As mentioned before, implementing complex signal processing algorithms on

architectural level is a great challenge. VLSI community is trying to solve this problem

by providing alternate approaches like high-level synthesis (HLS). HLS tools directly

map the algorithm to the hardware. In general algorithm is written in any high-level

language and mapped onto hardware by a HLS tool. In our case, one algorithm is

modeled one MATLAB function and will be implemented on hardware. SiLago

platform is proposed for this purpose. This master thesis addresses the issue related to

HLS in particular with SiLago platform’s perspective by using the basic

implementation of LTE physical downlink baseband signal processing blocks.

This thesis provides a deep understanding from theoretical to implementation

perspective of LTE. Signal processing blocks are considered to bridge the gap between

9

algorithm development and its implementation from low level to high level

perspective. The key points of this thesis are summarized as follows.

 3GPP standard analysis for considered signal processing blocks.

 Development of MATLAB codes for the SiLago platform.

 Overview of data communication and management flow on architecture level.

 Modeling the signal processing blocks on Simulink.

 Verification of the correct functionality of developed MATLAB codes with

golden model MATLAB codes for SiLago platform.

The rest of this thesis report is organized as follows: Chapter 2 explains the SiLago

platform overview and LTE physical layer signal processing blocks. Chapter 3 covers

the LTE scrambler and mapper implementation. In Chapter 4 MIMO introduction and

the related signal processing blocks are discussed. Finally, Chapter 5 explains the

OFDM technology and implementation overview from transmission side. At the end,

Chapter 6 describes the results section. Discussion of the thesis is also included in

Chapter 7 where the conclusion and future work is also presents. At the end Chapter 8

provides the summary of the thesis.

10

2. OVERVIEW

This chapter describes the background information, for the development of more

understanding towards the thesis. First part of this chapter in Section 2.1 is specifically

explained the LTE baseband transmission side, which further describes that which

signal processing blocks are going to be considered for the implementation on

considered signal processing platform. While second part of this chapter in Section

2.2, explains the detail of SiLago platform, as exploring the information related to

understands the considered signal processing platform.

2.1. LTE 3GPP

Wireless communications standards are emerging after the introduction of 1G standard

in 1980. 1G standard was based on analogue technology while digital technology is

introduced in second generation wireless systems. After the evaluation of second

generation world experienced the broadband data wirelessly in 3G systems, as the

Figure 1 shows the evaluation of cellular technology, adopted from [10]. LTE/LTE

advanced released by 3GPP has successfully launched the 4G systems globally with

the enhancement of previous wireless standards. Now the emerging trends are near

approaching to introduce the 5G systems with new developments from each aspect of

existing LTE systems. [11]

Figure 1. Evolution of Mobile communication standards.

Whereas LTE has introduced the new technologies e.g. MIMO, OFDMA, turbo

coding etc. These technological innovations are related to the physical layer of LTE.

Physical layer is dealt with the all processing data bit wise from the higher layers.

Different signal processing techniques are implemented on physical layer data for the

successful transmission and reception of LTE system.

11

LTE Physical Layer

LTE physical layer signal processing chain is related with the uplink and downlink

data transmission from mobile terminal(UE) to base station (eNodeB) and base station

to mobile terminal respectively. In signal processing chain the only difference between

the uplink and downlink as an additional discrete fourier transform (DFT) block in

uplink side for reducing of peak-to-average power ratio (PAPR) [12]. High PAPR is a

bottleneck of OFDM technology. Therefore, many different schemes are proposed for

reducing PAPR. This is the reason why in uplink side introducing an external signal

processing block. Uplink transmission generates the single carrier frequency division

multiplexing (SCFDM) symbols as compared to the downlink side while downlink

transmission produces the orthogonal frequency division multiplexing (OFDM)

symbols. [13]

Figure 2 represents the LTE physical layer transmitter model both for uplink and

downlink transmission from signal processing chain perspective. Whereas it is obvious

that the specifications for each block are different both for uplink and downlink side,

standardization details can be found in [14, 15].

Figure 2. Generic overview of LTE transmitter side physical layer.

Physical layer processing is taken into account when data is arrived in form of

transport blocks from the medium access control (MAC) layer. Data is consisted on

different number of bits and one transport block is known as one code word and either

one or two code words can be processed, it depends on the scheduling. A very general

description of these signal processing blocks is given in Table 1. [11, 13]

12

Table 1. LTE transmission side signal processing block description

CRC

attachment

A 24-bit cyclic redundancy check (CRC) is attached to each

transport block, in particular before the insertion of data in

channel coding (Turbo encoder) block. This process is helpful at

receiver side for early termination of turbo decoding iterations,

hence computational complexity of turbo decoding procedure

sort out.

Code-block

segmentation

This block will be only activated if the inserted data from MAC

layer is exceeded from the defined range of bits for turbo encoder,

hence this block segmentation divides the number of bits into

smaller blocks then CRC appended once again and data bits are

inserted into turbo encoder in channel coding block.

Channel coding Channel coding in LTE is based on turbo encoding. Turbo

encoder is used for this process which consist on a LTE QPP

internal inner interleaver, sandwiched between two eight state

constituent encoders. Overall turbo encoder rate is 1/3, while

constituent encoders have two rate-1/2.

Rate matching Rate matching is used to adjust or meet the coding rate

requirement as according to the scheduling which is based upon

channel condition. Three sub block inter leavers are used to

collect the three output bits from turbo encoder, known as

systematic, first and second parity bits. Circular buffer is used for

the desired code rate, used puncturing or repeating method.

Code-word

reconstruction

Code word reconstruction block is implemented after rate

matching block and is used to concatenating the code blocks

which come outs from rate matching block for further processing.

Scrambler Scrambler block produces the scrambling sequences and these

bits are multiplied (exclusive or operation) with coming code

word bits. This block helps out to randomized the interferences.

Mapper In this block, three modulation schemes as quadrature phase shift

keying (QPSK), quadrature amplitude modulation (QAM)-16

and QAM-64 are used to mapped the scrambled bits to the

complex modulated symbols.

Layer Mapper This section divides the modulated symbols on to different layers

for the requirement as for MIMO transmission mode.

DFT DFT block used in uplink transmission and converts the layer

mapper symbols from frequency domain to time domain

symbols.

Precoding Precoding section is used to multiplied the symbols with a certain

matrix which holds the characteristics of desired MIMO

transmission scheme.

Resource

Element

Mapper

Different symbols from different channels with reference and

synchronization signals are re arranged according to the MAC

scheduler.

OFDM/SCFDM

signal

generation

FFT/IFFT butterfly is used for the transformation of the arranged

symbols to the time domain signal. At the end, cyclic prefix (CP)

is inserted in each OFDM symbol.

13

While in this master thesis only considered the downlink transmission chain for the

implementation side on SiLago platform as shown in Figure 3. From scrambler to

OFDM signal generation all the algorithms are modified according to the SiLago

platform.

Figure 3. PDSCH signal processing blocks.

Receiver side base band signal processing involved very complex algorithms. The

complexity issues are discussed in detail in [16]. However, the receiving side

algorithms implementation is out of scope at this time.

2.2. SiLago Platform

This introduction describes a brief overview of SiLago platform; explanation of

different terms is only focused, which are used throughout in this master thesis while

the complete references are given for further detail.

A SiLago platform has been developed [17] which is based on coarse grain

reconfigurable computation and storage fabrics, as dynamically reconfigurable

resource array (DRRA) and distributed memory architecture (DiMArch) respectively

as shown in Figure 4 [17].

Figure 4. Main elements of SiLago Platform.

14

DRRA

Dynamically reconfigurable resource array (DRRA) [18] is known as parallel

distributed digital signal processing (PDDSP) fabric. It is based upon the CGRA cell

and each cell holds one register file, one data path unit (DPU), four address generation

units (AGUs) and one sequencer. The number of cells are dependent on the

requirements of the application. [19]

 DPUs: Data path units [20] are basically designed for the implementation of

DSP algorithms. Whereas these are 16-bit integer units with four 16 bit inputs

and two 16 bit outputs. In general, DPU consists of two sections as one is

known as arithmetic section which deals with different arithmetic operations

such as, butterfly operations for FFT/IFFT, MAC, add, subtract, sum of

difference etc. Other section of DPU is consist on logical section which deals

with logical instructions and single bit shift operations. DPU is also performs

the overflow/underflow, saturation, truncation/rounding check [19].

 Register file: Register file [21] of DRRA is 64 word 16-bit register file

including with two read and two write ports. It is used to provide the data to

DPU for the processing. Register file is also holds the AGU which generates

the addresses for read and write ports [19].

DiMArch

DiMArch [22] known as distributed memory architecture which provides the external

large memory to DRRA fabric. This fabric is consisted on static random access

memory (SRAM) banks which are interconnected by two network on chips (NOCs).

One is known as circuit switched NOC which is used to transfer the data between

SRAM banks and DRRA register files. Other NOC known as packet switch control

NOC which is used to configure the data.

SiLago Design Methodology

SiLago blocks are consisted on arithmetic logic units, register files, sequencer,

interconnect elements etc. These blocks are considered as micro architectural level

design units that replaces standard cells. Whereas micro architectural operations are

divided into three main categories known as computation, storage and configuration.

Computation part is dealt with DRRA operations, in which data is route from register

file to DPU for computation and then data is routing back to a register file or transfer

to the another DPU. Storage unit is used to process the data from storage blocks as

data is moved between SRAM bank to SRAM bank in DiMArch region or SRAM

bank to register file and register file to SRAM bank. [17]

Figure 5 [17] represents the SiLago design methodology which consists of three

major steps. In first step SiLago blocks are hardened and characterized by

RTL/Logic/Physical EDA flow [9]. For this step this master thesis also put some effort

to investigates how considered signal processing blocks are going to be hardened for

SiLago platform.

15

Figure 5. SiLago Design flow.

In second step on the basis of these blocks a general library of signal processing

algorithm is created by the algorithm to silicon (AlgoSil) tool. AlgoSil synthesizes

hardware which is based on SiLago blocks of an algorithm/function from MATLAB

[17]. Major contribution in this thesis for the developments of MATLAB codes for

considered signal processing blocks, which helps out to synthesize the hardware.

 In final step a system level synthesis tool known as SYLVA [24] is used. Simulink

model or application is fed into the SYLVA as input. SYLVA decides the best

functions from AlgoSil developed library for Simulink model then perform execution

processes [24]. At the end, SiLago platform generates the macro GDSII and reports

mainly in terms of system level area, energy, latency etc. For the result section, chosen

signal processing blocks are modeled in Simulink. In addition, for the results we also

taken the assumptions of different parameters of signal processing blocks for the

generation of different functional implementations by SYLVA tool.

16

3. LTE SCRAMBLING AND MODULATION

Scrambling and modulation blocks are investigated in detail from LTE implementation

perspective, based upon 3GPP standardization parameters. First part of this chapter is

consisted on LTE scrambler part and the second part of the chapter is dealt with

modulation detail of LTE. The main idea in this chapter is just to show how the basic

implementation of these blocks are taken place at low level.

3.1. Scrambler

Scrambler is the first signal processing block in physical downlink processing chain

as shown in Figure 6. This block generates the scrambling sequence, which is

implemented on each bit of every code word. In general, scrambler is used to reduce

the interference between transmitted data, that is the reason scrambling sequences are

increases the randomness of transmitted bits. [10]

Figure 6. Scrambler block in PDSCH signal processing chain.

Scrambling sequence is pseudo random and generated by the length-31 Gold

sequence. The overall procedure for this operation is given in [14] and also described

as

 𝑥1(𝑛 + 31) = (𝑥1(𝑛 + 3) + 𝑥1(𝑛))𝑚𝑜𝑑2 (3.1)

 𝑥2(𝑛 + 31) = (𝑥2(𝑛 + 3) + 𝑥2(𝑛 + 2) + 𝑥2(𝑛 + 1) + 𝑥2(𝑛))𝑚𝑜𝑑2. (3.2)

The above equations are the m-sequences and also the polynomials of linear

feedback shift registers (LFSR) for hardware implementation side, which finally

produces the scrambling sequence according to

 𝑐(𝑛) = (𝑥1(𝑛 + 𝑁𝑐) + 𝑥2(𝑛 + 𝑁𝑐))mod2, (3.3)

Where 𝑐(𝑛) represents the final scrambling sequence of length 𝑀𝑝𝑛 𝑤ℎ𝑒𝑟𝑒 𝑛 =

0,1, … , 𝑀𝑝𝑛 − 1. Moreover, 𝑁𝑐 = 1600 which explains the initializations of m-

sequences, which are taken place 1600 times. The initializations of m-sequences are

also standardized according to LTE specifications as below.

First m-sequence (𝑥1) initializations will be as

17

 𝑥1(0) = 1, 𝑥1(𝑛) = 0, 𝑛 = 1,2 , … ,30,

Second m-sequence initialization depends on different parameters and transport

channel type; this initialization is denoted by 𝐶𝑖𝑛𝑖𝑡.

This condition is elaborated from parameters perspective as

 𝐶𝑖𝑛𝑖𝑡 = {𝑛𝑅𝑁𝑇𝐼 . 214 + 𝑞. 213 + (𝑛𝑠/2). 29 + 𝑁𝐼𝐷
𝑐𝑒𝑙𝑙} for PDSCH

 𝐶𝑖𝑛𝑖𝑡 = {(𝑛𝑠/2). 29 + 𝑁𝐼𝐷
𝑀𝐵𝑆𝐹𝑁}. for PMCH

Parameters which are used in 𝐶𝑖𝑛𝑖𝑡 are available in detail in different research papers

as [25, 26], here is just mentioned the functionality of these parameters in Table 2.

Table 2. LTE scrambler parameters description for second initial condition

Parameter Description

𝑛𝑅𝑁𝑇𝐼 Radio network temporary identifier is functionally corresponding user

equipment (UE) with physical downlink control channel (PDCCH);

value is used to describes the resource allocation for PDCCH.

𝑞 Number of code words, one code word consists on one block of bits.

Two code words used for spatial multiplexing.

𝑛𝑠 Number of sub frames which could be any value from 0 to 9, as one

LTE frame is consists of 10 sub frames.

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 Cell Identity associated with synchronization signals, acknowledging

about Cell ID Group and Cell ID Sector.

Equation (3.3) is the output of Gold sequence which is implemented for each code

word. This implementation is done by exclusive or operation according to [14] as

described in

�̃�(𝑞)(𝑖) = (𝑏(𝑞)(𝑖) + 𝑐(𝑞)(𝑖)) 𝑚𝑜𝑑2. (3.4)

Where q is code word and 𝑏(𝑞) represents the block of bits,

𝑏(𝑞)(0), … , 𝑏(𝑞) (𝑀𝑏𝑖𝑡
(𝑞)

− 1) , where 𝑀𝑏𝑖𝑡
(𝑞)

 is bit number in code word q. Code word q

is exclusive or with generated gold sequence and finally scrambled bits are come out

from scrambler block and represented with �̃�(𝑞). This scrambled bit sequence will be

transmitted in one sub frame and the same procedure is also possible if the number of

code words are two but in that particular case the value of q in 𝐶𝑖𝑛𝑖𝑡 will be equal to 1

else if code word is one block then the value of q will be 0 as 𝑞𝜖{0,1} [14].
Figure 7 shows the overall operation which already explained above. This Figure

represents the LFSR 1 (x1) and LFSR 2 (x2) operation with respective initialized

values and specified polynomials according to the LTE specifications. Finally, at the

end scrambled output bits are generated.

18

Figure 7. Representation of Scrambling Operation.

Implementation Aspect

As far as implementation on SiLago hardware is concerned, the static initialization

condition for LFSR 1 is stored in register file section. For parameters, dependent

initialization should be calculated from initialization calculator for LFSR 2, the values

for these parameters could be chosen in Table 3 [14] final output from the calculation

should be equal to the 32-bit array.

Table 3. Parameter values for calculation

Parameter Values

𝑛𝑅𝑁𝑇𝐼 Type is integer range could be any value in range [0, 65535].

𝑞 Type is integer and the value either [0,1].

𝑛𝑠 Sub frame index integer type value chosen from [0,9].

𝑁𝐼𝐷
𝑐𝑒𝑙𝑙 Consist on CellID_Group and CellID_Sector and the ranges for both

parameters are in the range of [0,167] and [0,2] respectively. Finally

calculated according to (3* CellID_Group + CellID_Sector). Or

directly selected Cell ID in the range of [0,503].

The second initialization is run time decision which depends on the different

parameters and different channel types [14]. All parameter values for initial condition

are stored initially in register file section and the calculation equation is implemented

on DPU. Output of gold sequence generation is calculated according to the Equation

(3.3). Finally, at the end scrambler sequence is exclusive-or with input code word bits.

The input code word bits are also stored in register file section.

Figure 8 represents the hardware structure for designing the LTE scrambler block

on SiLago platform. One point is note that register file element has 16-bit value and

LTE specified LFSR has 32 bit, for this problem we can store all operations with two

elements jointly in register file section.

19

Figure 8. Hardware Implementation of LTE scrambler block.

At the end MATLAB code is modified for the system level synthesis (SYLVA)

compiler. Original MATLAB version code of scrambling block is available in [13].

But according to SiLago platform, modification is done as available in Appendix 1.

This code explains that input code word bits are stored in memory and the size of

memory is dependent on the length of code word bits. Register file has 64 elements

and in each element, 16-bit value is stored. According to that parameter, register file

size is parametric which depends on the number of code word bits. Secondly, each

initialization condition is also stored in two elements. Output scrambled bits has the

same size as the input code word bit length.

3.2. Modulation

After scrambling the code word block, the next procedure is mapping these bits for the

modulation process. LTE mapper is the next block after the scrambling block for the

implementation of modulation as shown in Figure 9.

Figure 9. LTE Mapper block on PDSCH signal processing chain.

Three types of modulation schemes are used in LTE according to the 3GPP

specifications [14] as are, quadrature phase shift keying (QPSK), 16 QAM and 64

QAM. These modulation schemes are adaptive and adopted according to the channel

20

condition, all procedure is done by the instruction of the user equipment (UE) to

evolved node B (eNodeB), with the correct estimation of channel quality indicator

(CQI) [27]. These modulation schemes have different advantages (e.g. data rates, BER

performance) in different LTE configurations, a detail analysis of LTE using different

modulation schemes is present in [28]. Different physical channels have adopted

different modulation schemes in downlink, as per the standard specifications by the

3GPP described in Table 4 [14].

Table 4. Modulations schemes

Physical Channel Modulation Schemes

PDSCH QPSK, 16QAM, 64QAM

PMCH QPSK, 16QAM, 64QAM

PBCH QPSK

PCFICH QPSK

PDCCH QPSK

PHICH BPSK

Implementation Aspect

Modulation mapper is used to map the transmitted scrambling bit sequence in each

code word. These scrambling bits are mapped to the complex valued modulated

symbol as depends on, which modulation scheme is going to be use. According to the

[14] 2 bits, 4 bits and 6 bits are used for QPSK, QAM-16 and QAM-64 respectively.

Complex modulated symbol values are given in Section 7.1 of [14].

For QPSK the modulation symbol values are given in Table 5 also present in

Section 7.1.2 in [14]. It means that for each scrambled, pairs of bits, (𝑏𝑖 , 𝑏(𝑖+1)) are

mapped to these values and generates symbols which are consist on the I and Q

component. These mapping values are static and can be stored in form of look up tables

for the hardware implementation’s perspective, as also suggested in [29]. By

evaluating this concept three different look up tables are used to implement these

modulation schemes. Other two tables are also available in Section 7.1.3 and 7.1.4 in

[14] for QAM-16 and QAM-64 respectively.

Table 5. QPSK modulation mapping values

𝑏𝑖 , 𝑏(𝑖+1) I Q

00 1/√2 1/√2

01 1/√2 −1/√2

10 −1/√2 1/√2

11 −1/√2 −1/√2

For QAM-16, quadruplets of bits, (𝑏𝑖 , 𝑏(𝑖+1), 𝑏(𝑖+2),𝑏(𝑖+3)), are mapped to I and Q

components according to the Table 6 [14]. Moreover, for QAM-64 modulation,

sextuplets of bits, (𝑏𝑖 , 𝑏(𝑖+1), 𝑏(𝑖+2),𝑏(𝑖+3), 𝑏(𝑖+4),𝑏(𝑖+5)), are mapped to the complex

values according to Table 7 [14].

21

Table 6. 16QAM modulation mapping values

𝑏𝑖 , 𝑏(𝑖+1), 𝑏(𝑖+2),𝑏(𝑖+3) I Q

0000 1/√10 1/√10

0001 1/√10 3/√10

0010 3/√10 1/√10

0011 3/√10 3/√10

0100 1/√10 −1/√10

0101 1/√10 −3/√10

0110 3/√10 −1/√10

0111 3/√10 −3/√10

1000 −1/√10 1/√10

1001 −1/√10 3/√10

1010 −3/√10 1/√10

1011 −3/√10 3/√10

1100 −1/√10 −1/√10

1101 −1/√10 −3/√10

1110 −3/√10 −1/√10

1111 −3/√10 −3/√10

Look up tables of these values can be build up by very hardware description

language (VHDL). Symbol values of I and Q outputs are each mapped to the

corresponding bit sequence value. Look up tables can be designed, as I and Q values

are stored or converted into fixed point value and fi MATLAB function is used for the

accurate precision [30]. Mux is used to change the modulation scheme. This effort is

also helpful for designing the LTE mapper block in SiLago platform. LUTs are stored

in memory, as scrambling bits are already stored. Sequencer is used to be change the

modulation order with any bit sequence. According to the modulation order,

scrambling bits are converting to the respective complex modulated symbols.

Figure 10 shows the hardware implementation view on SiLago platform, describes

the functionality of LTE mapping block. Mapping operation will take place in DPU

and the output values will be stored back to register file section. Modulation symbol

values consist on I and Q components. I represent real value and Q represents

imaginary value, both values are stored in register file section.

22

Figure 10. LTE mapper implementation.

MATLAB code is modified for SYLVA compiler, as available in Appendix 2. In

MATLAB, scrambling bits are converted to modulation symbols as depends on which

modulation scheme is used. Modulation symbols are spilt to I and Q symbols

separately and then stored back to the memory. At least 384 bits are required for

64QAM higher modulation order. Every symbol has 16-bit value each for I and Q

component. Register file has 64 elements, whereas may be there is need to store both

I and Q values in SRAM memory block for further processing. All of this procedure

is parametric, even if other modulation schemes are selected, the number of scrambling

bits are reduced, in scrambling MATLAB section.

23

Table 7. 64QAM modulation values

𝑏𝑖 − 𝑏(𝑖+5) I Q 𝑏𝑖 − 𝑏(𝑖+5) I Q

000000 3/√42 3/√42 100000 −3/√42 3/√42

000001 3/√42 1/√42 100001 −3/√42 1/√42

000010 1/√42 3/√42 100010 −1/√42 3/√42

000011 1/√42 1/√42 100011 −1/√42 1/√42

000100 3/√42 5/√42 100100 −3/√42 5/√42

000101 3/√42 7/√42 100101 −3/√42 7/√42

000110 1/√42 5/√42 100110 −1/√42 5/√42

000111 1/√42 7/√42 100111 −1/√42 7/√42

001000 5/√42 3/√42 101000 −5/√42 3/√42

001001 5/√42 1/√42 101001 −5/√42 1/√42

001010 7/√42 3/√42 101010 −7/√42 3/√42

001011 7/√42 1/√42 101011 −7/√42 1/√42

001100 5/√42 5/√42 101100 −5/√42 5/√42

001101 5/√42 7/√42 101101 −5/√42 7/√42

001110 7/√42 5/√42 101110 −7/√42 5/√42

001111 7/√42 7/√42 101111 −7/√42 7/√42

010000 3/√42 −3/√42 110000 −3/√42 −3/√42

010001 3/√42 −1/√42 110001 −3/√42 −1/√42

010010 1/√42 −3/√42 110010 −1/√42 −3/√42

010011 1/√42 −1/√42 110011 −1/√42 −1/√42

010100 3/√42 −5/√42 110100 −3/√42 −5/√42

010101 3/√42 −7/√42 110101 −3/√42 −7/√42

010110 1/√42 −5/√42 110110 −1/√42 −5/√42

010111 1/√42 −7/√42 110111 −1/√42 −7/√42

011000 5/√42 −3/√42 111000 −5/√42 −3/√42

011001 5/√42 −1/√42 111001 −5/√42 −1/√42

011010 7/√42 −3/√42 111010 −7/√42 −3/√42

011011 7/√42 −1/√42 111011 −7/√42 −1/√42

011100 5/√42 −5/√42 111100 −5/√42 −5/√42

011101 5/√42 −7/√42 111101 −5/√42 −7/√42

011110 7/√42 −5/√42 111110 −7/√42 −5/√42

011111 7/√42 −7/√42 111111 −7/√42 −7/√42

24

4. MIMO

This chapter describes the overview of MIMO implementation techniques on

transmission side. In general, two signal processing blocks are used for the MIMO

implementation. Section 1 is deals with the general description of MIMO system and

the next two sections are covered the layer mapping and precoding signal processing

blocks respectively.

4.1. General Description

Multiple input and multiple output is an antenna mapping technique. This
technique is used more than one antenna for the transmission and reception of
data. High throughput and maximum spectral efficiency is utilized by MIMO.
MIMO method is maximized the signal to noise ratio, increases the data rates and
provides the directional beams by exploiting different techniques such as
transmit diversity, spatial multiplexing and beamforming respectively [11]. [11]

Every transmitted subcarrier is multiplied with the channel matrix before the

transmission take place on transmitter side as shown in Figure 11, this channel matrix

is selected according to the MIMO modes.

Figure 11. Representation of general block diagram of MIMO system.

Different MIMO transmission modes are available in LTE. These modes have

different specifications from implementation perspective as described in Table 8 [13].

Table 8. LTE transmission modes

Mode Detail of transmission modes

Mode 1 Single antenna transmission

Mode 2 Transmit diversity

Mode 3 Open loop spatial multiplexing with cyclic delay diversity (CDD)

Mode 4 Closed loop spatial multiplexing

Mode 5 Multi user MIMO

Mode 6 Close loop spatial multiplexing using single transmission layer

Mode 7 Non-codebook based precoding utilizes single layer beam forming

Mode 8 Non-codebook based precoding utilized dual layer beam forming

Mode 9 Non-codebook based precoding supporting up to eight layers

25

In signal processing chain two blocks are related to the MIMO implementation on

transmitter side as shown in Figure 12. Layer mapper is used to mapped the modulated

symbols into different layers and in precoding section the matrix is multiplied to the

layered modulated symbols.

Figure 12. MIMO block representation.

The detail of these blocks describes in next sections, and on the other hand this

detail provides a general overview of that how the MIMO implementation take place

on hardware side from transmitter’s perspective.

4.2. Layer Mapping

All stored modulated symbols are divided into different layers before precoding block

in MIMO section. For this procedure layer mapper is used in signal processing chain.

Each code word is mapped onto one or more layers; it depends on which MIMO

mode is use. Specific instructions are given in [14]. Complex values modulated

symbols are represented by

 𝑥(𝑖) = [𝑥(0)(𝑖) … 𝑥(𝑣−1)(𝑖)] 𝑇. (4.1)

The equation represents the layer mapper output, where as 𝑖 = 0,1 … , 𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

− 1

and v is the number of layers and 𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

 is the number of modulated symbols per layer

[14].

In single antenna port case, there is only one layer is needed. It means, there is no

need to divide the modulated symbols and layer mapper block, prior to precoding.

In transmit diversity mode, there are two and four layers are used. The number of

layers depends upon the number of transmit antennas e.g. for two antennas, two layers

are used and same as, for four antennas, four layers are used. Moreover, in this mode

only one code word is used and Table 9 presents the code word to layer mapping for

transmit diversity [14].

26

Table 9. Layer mapping for transmit diversity

Number of Layers Number of code words Layer mapping

2 1 𝑥(0)(𝑖) = 𝑑(0)(2𝑖)

𝑥(1)(𝑖) = 𝑑(0)(2𝑖 + 1)

4 1 𝑥(0)(𝑖) = 𝑑(0)(4𝑖)

𝑥(1)(𝑖) = 𝑑(0)(4𝑖 + 1)

𝑥(2)(𝑖) = 𝑑(0)(4𝑖 + 2)

𝑥(3)(𝑖) = 𝑑(0)(4𝑖 + 3)

In spatial multiplexing case, up to eight layers are used, which should be less than

or equal to the number of antennas. One or two number of code words are also used in

spatial multiplexing. There are total 11 different cases are in consideration for the

spatial multiplexing, as for up to four layers either one or two code words are used, but

from five to eight layers two code words are used. Table 10 only described as the

different cases of layer mapping for the spatial multiplexing and mapping details for

each case is available in Table 6.3.3.2-1 in Section 6.3.3.2 in [14].

Table 10. Case description for code words to layer mapping for Spatial Multiplexing.

Case Number of Layers Number of code words

1 1 1

2 2 1

3 2 2

4 3 1

5 3 2

6 4 1

7 4 2

8 5 2

9 6 2

10 7 2

11 8 2

Implementation Analysis

In general, modulated data can be divided into layers on MATLAB, for this procedure

original code is given in [13]. Where two code words can be used to get the output,

which is equal to the 2D matrix and second dimension represents the number of layers.

[13]

But in our case, first we decide that which MIMO scheme should we use, to check

out the complexity and storage capability on our platform. In that scenario, we decided

to implement the spatial multiplexing case 7 according to our assumption as mention

in Table 10. This case divides the data stream of two code words into four layers. As

well as this case also covers the transmit diversity mode and most of the generic part

27

of spatial multiplexing from implementation perspective. According to LTE 3GPP

standard the detail for this implementation is given below in Table 11 [14].

Table 11. Spatial multiplexing implementation parameters for Layer Mapping.

Case Number of Layers Number of code Words Layer Mapping

7 4 2 𝑥(0)(𝑖) = 𝑑(0)(2𝑖)

𝑥(1)(𝑖) = 𝑑(0)(2𝑖 + 1)

𝑥(2)(𝑖) = 𝑑(1)(2𝑖)

𝑥(3)(𝑖) = 𝑑(1)(2𝑖 + 1)

Equations 4.2 to 4.5 represented the operation on code words in layer mapping as

 𝑥(0)(𝑖) = 𝑑(0)(2𝑖) (4.2)

 𝑥(1)(𝑖) = 𝑑(0)(2𝑖 + 1) (4.3)

 𝑥(2)(𝑖) = 𝑑(1)(2𝑖) (4.4)

 𝑥(3)(𝑖) = 𝑑(1)(2𝑖 + 1) (4.5)

where 𝑥(0) … 𝑥(3) are layers, 𝑑(0) is the modulated symbols of first code word,

𝑑(1) is the modulated symbols of second code word, 𝑖 = 0,1 … , 𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

− 1 and

𝑀𝑠𝑦𝑚𝑏
𝑙𝑎𝑦𝑒𝑟

= 𝑀𝑠𝑦𝑚𝑏
(0)

/2 = 𝑀𝑠𝑦𝑚𝑏
(1)

/2.

MATLAB code is given in Appendix 3 as for the layer mapping of that case.

Modulated data is coming from two LTE mappers. This data is then divides into four

layers as according to above equations. But on hardware implementation side, I and Q

modulated symbols are stored separately, hence layer mapper implementation also

happens separately on these modulated symbols. Layer mapper output is stored back

to the SRAM memory, for further proceeding. If there is no need to store the mapped

layer data, it could be used directly for matrix multiplication in precoding block. This

code is only referring to the spatial multiplexing with two code words and four number

of layers.

For the proof of concept, implementation is taken place only for this case for spatial

multiplexing but the implementation of the other cases is also possible both for

transmit diversity and spatial multiplexing.

4.3. Precoding

Next procedure in MIMO block, a predefined matrix is multiplied with the stored layer

data block, according to the 3GPP specifications [14]. In precoding block section, final

output data is obtained from precoding block for the transmission on different antenna

ports. A vector of layer block data is inserted into the precoder block, where output is

generated, which is based upon, which MIMO scheme is going to be use for the

transmission. Layer block data vector is represented with the Equation 4.1 and output

from precoder block is represents with Equation 4.6 [14] as

 𝑦(𝑖) = [… 𝑦(𝑝)(𝑖) …]𝑇. (4.6)

28

Where 𝑖 = 0,1, … , 𝑀𝑠𝑦𝑚𝑏
𝑎𝑝

− 1 generated block of vectors is mapped onto

resources on each antenna port, 𝑀𝑠𝑦𝑚𝑏
𝑎𝑝

 number of symbols per antenna port and

𝑦(𝑝)(𝑖) is signal for antenna port p.

For the transmission on single antenna port, there is no need to multiplication of

precoding matrix, but modulated symbols vector is directly used to mapped on relevant

antenna port as described in Section 6.3.4.1 in [14].

Moreover, for transmit diversity case, precoding matrix is defined according to

3GPP specification in each antenna port case e.g. two port and four port. This

precoding matrix is multiplied with layer data and transmitted on respective antenna

port. Precoding matrix specifications are available in Section 6.3.4.3 in [14].

Finally, in case of spatial multiplexing there is also a need for the multiplication of

precoder matrix with layer block data in precoding block section. This precoding

matrix is based upon the codebook. This codebook index has different matrix values

for different antenna ports configuration, as in spatial multiplexing either two or four

antenna ports can be used. For two antennas ports the codebook value is specified in

Table 6.3.4.2.3-1 in [14].

In general, for the four antenna ports, precoding matrix with code book index is

represented with 𝑊𝑛 and this equal to the Equation 4.7 as

 𝑊𝑛 = 𝐼 − 2𝑢𝑛𝑢𝑛
𝐻/𝑢𝑛

𝐻𝑢𝑛. (4.7)

Where I represent the identity matrix and vector 𝑢𝑛 is given in Table 6.3.4.2.3-2 in

[14]. Precoding matrix is represented with other quantity set {S} as 𝑊𝑛
{𝑆}

 , which

means that output columns of precoding matrix are interchanged according to the

specified values in set {S}. All values for precoding matrix for four antenna ports in

spatial multiplexing are given in Table 6.3.4.2.3-2 in detail [14].

Spatial multiplexing is divides into two types as, one is without cyclic delay

diversity closed loop precoding method and the other is with large cyclic delay

diversity open loop precoding method. In both cases precoding matrix 𝑊(𝑖) is

multiplied with layer data and the values of precoding matrix are same. The difference

is, in case of without cyclic delay diversity, precoding matrix is directly multiplied

with layer data but in case of with cyclic delay diversity, two more matrices are

multiplied with layer data as well. Description and values of matrices are given in

Section 6.3.4.2.1 and 6.3.4.2.2 in [14].

Implementation Analysis

In general, for the implementation of precoding block, usually a matrix multiplication

is done with layer block data, as either its transmit diversity MIMO mode or spatial

multiplexing.

As far as spatial multiplexing is concerned, original MATLAB codes are available

in [13], one for the generation of precoding matrix and the other one is matrix

multiplication with layer data.

29

Figure 13 represents the MIMO implementation of spatial multiplexing closed loop

based precoding method overview on internal hardware structure. It depicts that

modulated symbols are inserted into the layer mapper block, which are already stored

in register files. Layer mapper block divides the symbols according to the desired

configuration. Output of the layer mapper is inserted in precoding block section for

the multiplication with precoding matrix. Precoding matrix values are stored in register

file or SRAM. These values are different according to the different codebooks. For

each codebook, precoding matrix values are static and can be stored either in LUTs

forms or another hardware could be designed for the generation of these values

according to the Equation 4.7. Precoding matrix values are most probably complex

valued symbols, real and imaginary values for each codebook are stored separately.

Finally, precoding matrix as per codebook index is multiplied with layer data vector.

Layer data vector has modulated symbol values, with real and imaginary values as

well. As a precoding matrix values are dependent on codebook index, this index value

could be changed on run time, according to the precoder matrix indicator (PMI)

instruction.

Figure 13. MIMO implementation overview.

MATLAB code is modified for the MIMO implementation which is compatible on

SiLago platform, as available in Appendix 4. Real and imaginary values of precoding

matrix are stored in register files (RFIE). These values are multiplied vector by vector

with stored real and imaginary values of layer block. Output of the precoding matrix

multiplication is stored back on SRAM memory. Output values are also consisted on

real and imaginary values and stored separately on SRAM memory.

30

5. OFDM

This chapter describes the air interface of LTE which known as OFDM in downlink

side. First section is dealt with the description of OFDM system while SCFDM is not

explained here because this air interface system is used in LTE uplink side. Second

section describes the detail of the OFDM frame structure and its possible

implementation methodology. In final section the OFDM signal generation’s

description is provided from the implementations perspective.

5.1. Definition

Orthogonal frequency division multiplexing is a type of multi carrier transmission. In

this scheme, data is transmitted over the narrowband subcarriers. It means that data is

firstly divides and transmitted onto those subcarriers, which have smaller frequency

range transmission instead of the large frequency range. This concept is useful for the

successful data transmission against the different type of interferences e.g. frequency

selective fading, ISI etc. On the other hand, these narrowband subcarriers are

multiplexed with each other and transmitted over the efficient bandwidth as illustrate

in Figure 14, orthogonality between subcarriers prevents them from the internal

interference with each other. [31]

Figure 14. Efficient Bandwidth utilization with OFDM vs FDM.

Since OFDMA has already been successfully implemented on different digital

communications applications such as digital video broadcasting, digital subscriber line

and has been the part of many standards, as theoretical and conceptual detail analysis

is available in [32]. Moreover, this scheme has also been adopted by the 3GPP LTE

due to its diverse advantages, a detail survey is available in [33].

31

Mathematical expression for the OFDM baseband signal can be expressed as from

[11]. Δ𝑓 is the subcarrier spacing and Δ𝑓 = 1/𝑇𝑢 whereas 𝑇𝑢 is equal to the modulation

symbol rate of respective subcarrier.

This Equation as explains the overall structure of OFDM baseband signal as

 𝑥(𝑡) = ∑ 𝑥𝑘(𝑡)

𝑁𝑐−1

𝑘=1

= ∑ 𝑎𝑘
(𝑚)

𝑁𝑐−1

𝑘=1

𝑒𝑗2𝜋𝑘Δ𝑓𝑡. (5.1)

 Whereas 𝑥(𝑡) belongs to the time interval 𝑚𝑇𝑢 ≤ 𝑡 < (𝑚 + 1)𝑇𝑢, 𝑁𝑐 is represents

the number of subcarriers, 𝑘 is the index of modulated subcarrier 𝑥𝑘(𝑡) with frequency

𝑓𝑘 = 𝑘. Δ𝑓 and 𝑎𝑘
(𝑚) is the complex modulation symbol during the 𝑚𝑡ℎ OFDM

symbol interval [11].

One important point is that; all subcarriers holds the complex modulated symbols

which represents with 𝑎𝑘 in frequency domain and when IFFT is implemented on these

subcarriers after that an OFDM symbol is generated in time domain which holds many

modulated subcarriers in frequency domain and the Equation (5.1) is basically explains

a general model of any subcarrier modulated symbol as in accordance with respective

OFDM symbol interval.

In implementation scenario of OFDM in LTE is basically consisted on two signal

processing blocks as shown in Figure 15.

Figure 15. OFDM signal processing blocks on PDSCH signal processing chain.

First block is based on the arrangement of different subcarriers in frequency domain

known as resource element mapping [13]. In next block, these subcarriers in terms of

resource element vectors are fed into the IFFT for the OFDM symbol generation in

time domain [13]. Detail of these blocks is explained in next sections.

5.2. Resource Element Mapper

Resource element mapper is the next block, after processing the data from
precoding block in signal processing chain. Precoded data is inserted into the
resource element mapper block, mapper placed this data onto the different places
of resource grid. Whereas, resource grid is a virtual grid which is used to

32

understand the arrangement of data, later on this arranged data is inserted into
the IFFT for the OFDM signal generation [13].

In other words, resource grid is generated from the resource element mapper, as by

placing the data which comes from different channels onto the relevant places on the

resource grid. For mapping this data on resource grid, it is quite necessary to

understand all parameters which are used in resource grid. Usually resource grid is

based upon the frequency and time domain structure from the understanding

perspective. Some of the instructions in order to arrange the data onto the resource grid

are quite same, others are different according to the specifications. In resource element

mapper, different type of data comes from different channels from higher layers and

some of the signals are generated separately, also fed into the resource element

mapper. Resource element mapper takes all data and mapped it on to the resource grid.

[11, 14, 10]

Data is extracted from these channels to be mapped on to the resource grid as,

 Physical downlink shared channel (PDSCH)

 Physical multicast channels (PMCH)

 Physical broadcast channel (PBCH)

 Primary synchronization signals (PSS)

 Secondary synchronization signals (SSS)

 Reference signals (RS)

 Physical downlink control channels (PDCCH)

 Physical control format indicator channel (PCFICH)

 Physical hybrid automatic repeat request indicator channel (PHICH)

User data is associated with PDSCH. PMCH is used for the multimedia broadcast

single frequency network (MBSFN). PBCH is used for the system information to help

out the terminal for cell search. In general PSS, SSS and RS are used to

synchronization and equalization purpose on receiver side, these signals are generated

separately according to the LTE specifications and not associated with higher layers.

PDCCH, PCFICH, PHICH are control channels, also known as L1/L2 control channels

and moreover PDCCH has linked with downlink control information (DCI) formats.

The data of all channels are inserted on to the resource grid; the places are arranged

by the resource element mapper. Resource grid is based upon the LTE frame structure,

as frame structure is either frequency division duplexing (FDD) or time division

duplexing (TDD) type. Figure 16 represents FDD frame structure’s generic overview

from the time domain’s perspective, as which shows that every frame has a 10ms long

duration in time, whereas each sub frame has a 1ms long, which means that each frame

is consisted on 10 sub frames. Furthermore, each sub frame is consisted on 2 time slots

and each time slot has a 0.5ms duration in time domain. One-time slot is consisted on

either 7 or 6 OFDM symbols, depends on CP types as normal CP or extended CP

respectively.

33

Figure 16. Generic Overview of LTE time domain FDD frame structure.

From frequency domain’s perspective, each OFDM symbol is consisted on different

number of OFDM subcarriers as according to the bandwidth. In general, resource grid

is presented with resource block and this resource block is associated with one-time

slot. Each resource block has 12 OFDM subcarriers on y-axis in frequency domain and

6 or 7 OFDM symbols on x-axis in time domain, as depicts in Figure 17. Each element

in resource block is known as resource element which is the smallest unit in entire

resource grid. Resource element is filled with one complex modulated symbol by the

resource element mapper and known as OFDM sub carrier.

Figure 17. LTE Resource Grid.

34

This resource block is known as a resource grid for FDD frame structure and whole

data is mapped directly to the resource block. Number of resource blocks are

associated with the transmitted bandwidth. All resource blocks respective to their

specified bandwidth are presented within one-time slot, whereas 6 or 7 OFDM

symbols are remain same in x axis but number of subcarriers are increases according

to the bandwidth on y axis. The arrangement of resource blocks as shown in Figure 18

for 1.4MHz bandwidth which has 72 sub carriers and 6 resource blocks. And for other

bandwidths, resource blocks are arranged in the same way.

Figure 18. Resource Block arrangement in 1.4MHz BW.

Table 11 [34, 35] shows the number of resource blocks and number of subcarriers

according to the LTE bandwidth specifications. These parameters are important to

understand for the implementation perspective.

Table 11. Number of Resource blocks according to LTE bandwidth

Bandwidth(MHz) Number of Resource Blocks Number of Subcarriers

1.4 6 72

3 15 180

5 25 300

10 50 600

15 75 900

20 100 1200

35

Implementation Analysis

According to the 3GPP standard the data is mapped to the resource grid with index

pair (k, l) which represents the one resource element where 𝑘 = 0, … , 𝑁𝑅𝐵
𝐷𝐿𝑁𝑆𝐶

𝑅𝐵 − 1 is

the resource element value in frequency domain and 𝑙 = 0, … , 𝑁𝑆𝑦𝑚𝑏
𝐷𝐿 − 1 is the

resource element value in time domain.

Five different types of reference signals are used in LTE downlink side and these

reference signals are transmitted according to the specified antenna ports, the detail of

generation and mapping the reference signals on different antenna ports are given in

Section 6.10 in [14]. Usually, cell specific reference signals are used for the

transmission, which are associated with the PDSCH. Cell specific reference signals

are transmitted on 0 to 3 antenna ports. The arrangements of these reference signals in

each resource block is taken place separately, for different antenna ports. For

synchronization signals, generation and mapping details are available in Section 6.11

in [14]. Whereas these signals are generated with Zadoff-Chu sequences [14]. In FDD

frame structure, both PSS and SSS are available in each first slot of sub-frame 0 and 5

at the last and second last OFDM symbol respectively. Control channels are available

usually at first OFDM symbol and resource element groups are introduced for the

mapping of these signals according to 3GPP, mapping detail is available in Section

6.2.4 in [14]. PBCH are available in first sub-frame of each radio frame and the detail

of mapping is available in Section 6.6.4 in [14]. Whereas PDSCH data is mapped on

other OFDM symbol as mentioned in Section 6.3.5 in [14].

In real implementation scenario, the data is mapped on frequency domain side, by

the correct arrangement as according to the specifications. Data should be arranged by

considering the first OFDM symbol specifications with first slot number as with first

sub-frame in every radio frame. For example, if the bandwidth is 1.4 MHz, 6 resource

blocks with 72 subcarriers are included in first OFDM symbol. Data should be

arranged as starts from first slot number and with first OFDM symbol then second

OFDM symbol mapping will be considered with another 72 subcarriers arrangement

with respective arrangement specification and this process will be continued. Later on,

the first OFDM symbol supposition arrangement which consists of 72 OFDM

subcarriers whereas in real senses each subcarrier is consists on complex modulated

symbol. It means for real and imaginary part, there will be a parallel arrangement is

needed for each subcarrier, finally this arrangement is inserted to the IFFT for real

OFDM symbol generation.

MATLAB code is given for the implementation of resource grid in [13]. Whereas

only cell specific reference signals and user data is considered for the generation of

resource grid. Three main entities are under consideration for mapping the data as one

is number of subcarriers, second is the slot number and third is sub frame number. The

indexes of these entities are used for mapping the data onto the resource grid.

In our case, we just only considered the PDSCH data as which already stored in

memory and it could be arranged by resource element mapper or directly inserted into

the IFFT block.

36

5.3. OFDM Signal Generation

After the arrangements of modulated data with resource element mapper, the data is

fed into the IFFT block. IFFT is operated on each column or OFDM symbol of

resource grid which consists on different number of subcarriers as according to the

Table 11. This FFT/IFFT is also different in sizes according to the LTE specified

bandwidth describes in Table 12 [34, 35]. According to that table respective size of

FFT/IFFT is used. FFT/IFFT is implemented with fast fourier transform algorithm

which developed by Cooley and Tukey [36].

Table 12. LTE FFT size according to respective bandwidth

Bandwidth(MHz) Sampling Frequency(MHz) FFT size

1.4 1.92 128

3 3.84 256

5 7.68 512

10 15.36 1024

15 23.04 1536

20 30.72 2048

From implementation perspective, the vector of subcarriers is taken from the

resource element mapper and appended zeros by zero padding block before the

insertion to the FFT/IFFT section. Zeros are padded at direct current (DC) subcarrier

and around the edges of DC subcarrier [37], until the numbers of subcarriers required

for FFT/IFFT size are achieved. After the FFT/IFFT section cyclic prefix is inserted

to the OFDM time domain symbol. Cyclic prefix is used as a guard interval provided

to the OFDM symbols. Two type of cyclic prefix are used one is known as normal

cyclic prefix and the other known as extended cyclic prefix. [13]

For implementation perspective FFT/IFFT is already developed for SiLago

platform as in [18] and we just need to inserts the data to the MATLAB code which is

also designed and available for the FFT/IFFT functionality. CP implementation is out

of scope at this time.

37

6. RESULTS

Two parts are considered for the results section. One part consists of the development

of MATLAB codes for SiLago platform. These codes are modified version of already

available golden model of MATLAB functions in [20]. The developed MATLAB

codes are in generally arranged in the manner of SYLVA compiler. The modifications

are made according to the compilers instruction. In these codes, real and imaginary

data is divided for the implementation on SiLago platform.

After the development of these codes when input is inserted in MATLAB original

codes and the modified version codes, the output is same. Later on, these MATLAB

codes are useful for the high-level synthesis of considered signal processing blocks on

SiLago platform.

In the other part of results section, the assumptions of three models with different

specifications are considered and modeled it on MATLAB as available in Table 13.

Table 13. Assumptions for modeling

Case Number of bits Modulation FFT size

1 1200 QPSK 512

2 4800 QAM-16 1024

3 14400 QAM-64 2048

In first part, we designed the modeling library on Simulink for considered signal

processing blocks as shown in Figure 19. In this library, we have assigned the

parameter values according to our assumptions which are mapped directly on SiLago

platform.

Figure 19. LTE model Simulink Library.

For this purpose, meanwhile we have also updated the lib file for the results

generation on the basis of these parameters, this lib file is also available in Appendix

5 and different functional implementations are also presents for the more

computational complex blocks for example in precoding and FFT section.

After that on the basis of this library three systems are interconnected on Simulink

on the behalf of this library which represents the three-different cases.

Figure 20 represents the first case of our assumptions. We have considered two

code words and 1200 scrambler bits input.

38

Figure 20. QPSK PDSCH processing Simulink blocks.

QPSK scheme is considered as a modulated implementation part. Layer mapper

divides the symbols into four independent streams. In precoding section a matrix is

multiplied with layer mapper symbols. Resource element mapper is just passed

through the four streams towards the IFFT block. In IFFT section 512 FFT size is

implemented. Four frequency domain streams are converted into the time domain

streams. Time domain streams are ready to be inserted into digital front end processing

part of transmitter. After the analog domain these four streams data are out from four

different antennas.

Figure 21 represents the synchronous data flow graph for the insertion of our

models into the SiLago platform.

Figure 21. Synchronous data flow graph for modeling.

Moreover, synthesis result values are present in Table 14 for case 1.

Table 14. Synthesis results for QPSK mode

FIMPS Area

(SiLago Cells)

Latency

(Cycles)

Sample Interval

22 49 5523 2398

Table 14 represents the implementation results of QPSK modeling blocks on

SiLago platform using the system level synthesis tool, called Sylva [17]. Sylva

evaluated 22 different functions (FIMP in Table 14). The total area consumed by in

terms of SiLago blocks was 49. i.e. 49 was the optimal number of SiLago cells to

implement the LTE transmitter taking into consideration the design constraints. Sylva

synthesized the design on 400 MHz clock frequency. The first output from the

39

transmitter took a latency of 5523 cycles. After filling the pipeline, the design was able

to generate an output after every 2398 cycles (referred to as sample interval in the

Table 14).

Figure 21 shows the second case of modeling blocks on our assumption. In this case

4800 bits are used in scrambler part.

Figure 21. QAM-16 PDSCH Simulink blocks.

QAM 16 is considered for the modulated implementation part. At the end 1024

point FFT size is used for the IFFT implementation. The data flow procedure is same

from implementation scenario as mentioned in case 1.

Table 15 represents the synthesis results of QAM-16 mode. According to these

results Sylva evaluates the 20 different functions.

Table 15. Synthesis results for QAM-16 mode

FIMPs Area

(SiLago Cells)

Latency

(Cycles)

Sample Interval

20 47 15951 9598

The total area is consumed by in terms of SiLago blocks was 47. In this

implementation, the first output comes from transmitter took a latency of 15951 cycles.

After the filling of pipeline, this design was able to generate an output after every 9598

intervals.

The final assumptions are taken place in case 3 as shown in Figure 22. Whereas

14400 bits are used as in scrambler part. QAM-64 is used for the mapping scheme as

in modulation part. In IFFT block 2048 point FFT is considered for the IFFT

implementation. The data flow procedure is same as mentioned in above cases.

Figure 22. QAM-64 PDSCH Simulink blocks.

40

Table 16 shows the synthesis results for QAM-64 mode as a case 3 on SiLago

platform. Sylva evaluates the 24 different functions (FIMP in Table 16).

Table 16. Synthesis results for QAM-64 mode

FIMPS Area

(SiLago Cells)

Latency

(Cycles)

Sample Interval

24 51 42553 28798

The total area consumed by in terms of SiLago blocks was 51. i.e. 51 was the

optimal number of SiLago cells to implement the LTE transmitter taking into

consideration the design constraints. As already mentioned above, Sylva synthesized

the design on 400 MHz clock frequency. The first output from the transmitter took a

latency of 42553 cycles. After filling the pipeline, the design was able to generate an

output after every 28798 cycles (referred to as sample interval in the Table 16).

In Figure 23 chart shows the comparison between three different cases with the

normalization factor of synthesis results. This chart depicts that case 3 is one of the

more resource hungry part on SiLago platform. It means that FIMPs, area, latency and

sample intervals are huge in case 3 as in comparison to case 2 and case 1. While in

case 2 the number of FIMPs and area are slightly less as compared to the case 1. But

latency and sample intervals are greater in case 2 than in case 1.

Figure 23. Normalization chart of synthesis result.

0

0,2

0,4

0,6

0,8

1

1,2

FIMPs Area Latency Sample Interval

Normalization of synthesis result

Case1 Case2 Case3

41

7. DISCUSSION

In this master thesis, we have implemented the PDSCH base band signal processing

blocks on the SiLago platform from high level synthesis perspective. For this purpose,

we have theoretically studied about these blocks. Scrambler, mapper, MIMO and

OFDM blocks are studied from LTE standards perspective. LTE scrambler consists on

the two LFSR. One LFSR initial condition is given but the other LFSR initial condition

is parametric which is based upon LTE radio resource scheduling scheme. This scheme

is also discussed in this thesis for the LTE scrambler part. LTE mapper block depends

on the three modulation schemes namely as QPSK, 16-QAM and 64-QAM. The

implementation technique of these modulation schemes for SiLago platform is also

presented in this thesis. MIMO signal processing block which is based on further two

signal processing blocks as layer mapper and precoding block, also explained in detail

in this thesis. While OFDM block consists on the resource element mapper and OFDM

signal generation block. In resource element mapper section the detail of different LTE

channels and its implementation scenario is discussed. And in OFDM signal

generation block the explanation is presented relating to how the modulated data is

inserts from resource element block to the IFFT block.

SiLago platform is based upon the two-coarse grain reconfigurable architectures

and the behaviour of SiLago platform is considered as a high-level synthesis

perspective. The detail of SiLago platform and its design methodology is also

explained in this thesis.

We have done analysis of considered signal processing blocks for the

implementation scenario on the SiLago platform. We have developed the MATLAB

codes for the SiLago platform. The codes are based upon the SYLVA compilers

instructions. Real and imaginary data is also divides in these codes. On the other hand,

we have also managed the data flow on architectural level. The data flow is managed

in terms of register files and SRAM. Three different modes of these blocks are

considered for the implementation on SiLago platform that is why three different types

of data flow is managed. At the end, we have modeled considered signal processing

blocks on Simulink. The blocks are used for SYLVA compiler after that we present

the results in terms of area, latency, functional implementations and time interval,

generated with the help of the SYLVA tool.

We have found that the dynamic behaviour of these blocks is a challenge to

implement on SiLago platform. The Sylva compiler is not able to switch one

functionality to the other on runtime. For example, in our case it is not possible yet

that Sylva tool switch QPSK to QAM-16 or QAM-64 on run time. That is why we

have developed three different cases on our platform.

From future perspective, we will try to implement the receiver side signal

processing blocks of LTE on SiLago platform. We will also need to improve the

dynamic behaviour of SiLago platform in future. In other terms the implementation of

radio resource management of LTE on SiLago platform is the next challenge.

42

8. SUMMARY

Long term evolution is a latest wireless standard known as fourth generation cellular

technology which is developed by 3GPP. The base band signal processing of LTE

standard is quite complex for implementation perspective on hardware. Different

hardware platforms are used for signal processing algorithms of LTE. A newly

developed SiLago platform is introduced in this master thesis which is used the CGRA

based architecture. While SiLago platform consists on the SiLago design

methodology. SiLago design methodology depends on the three steps. While LTE

PDSCH base band signal processing blocks are considered for the implementation on

SiLago platform. PDSCH blocks are the main building blocks of LTE. Whereas LTE

scrambling, modulation, MIMO and OFDM signal processing blocks are included in

PDSCH signal processing chain.

One advantage of scrambler is the reduction of interferences in LTE. LTE scrambler

is based upon the two LFSR which are used to produce the gold sequence of bits. These

bits are exclusive or with incoming bits from the previous block of LTE signal

processing chain. After scrambling the bits, LTE mapper is used to map these bits on

three different modulation schemes. Different number of bits are mapped to the

complex modulation symbols as depends on which modulation scheme is used. For

example, in QPSK 2 bits are mapped to the complex modulated symbols same as 4

bits and 6 bits are used in QAM 16 and QAM 64 modulation schemes respectively.

After modulation of the symbols the data is inserted into the MIMO section. Two

blocks are considered for the MIMO implementation. As one is known as layer

mapping block in this block the modulated symbols are divides into different layers.

Layers division is based upon the MIMO antenna transmission scheme. In our case,

we assumed that the data is transmitted on four antennas. That is why the modulated

symbols are divides into four number of layers. While the next block of MIMO named

as precoding block deals with the complex matrix multiplication of the layered

modulated symbols. In precoding, different cases of matrix multiplication are used

which is based upon the MIMO transmission mode. As in general transmit diversity,

spatial multiplexing and beamforming is used in MIMO. In our case, we assumed the

spatial multiplexing case for four antenna transmission. For this different number of

codebook based complex matrices are used for the multiplication of layer modulated

data.

When the complex matrix multiplication of layer data is done in MIMO block then

these modulated symbols are inserted into the OFDM block. OFDM block consist on

the resource element mapper and OFDM signal generation block. In resource element

mapper, the complex modulated data which comes from previous block is arranged

with other channels data. Resource element mapper is quite complex for understanding

perspective which is based on the time frequency grid. When data is arranged in

resource element mapper then this data is ready to inserts in the OFDM signal

generation block. Where IFFT is implemented on inserted data and converts this data

from frequency domain to the time domain.

In result section three different modes are considered for the PDSCH base band

signal processing blocks. According to these modes three Simulink models are

developed. One general library is also developed for these blocks on Simulink. In

parallel the MATLAB codes are also developed for SiLago platform. The developed

models are inserted into the SYLVA compiler for results generation. SYLVA mapped

43

these models onto the SiLago platform from high level synthesis perspective. At the

end results are generated in terms of area, latency and the sample interval of SiLago

platform.

44

9. REFERENCES

[1] A. Gupta and R. K. Jha, "A Survey of 5G Network: Architecture and

Emerging Technologies," in IEEE Access, vol. 3, no. , pp. 1206-1232, 2015.

[2] J. Berkmann, C. Carbonelli, F. Dietrich, C. Drewes and W. Xu, "On 3G LTE

Terminal Implementation - Standard, Algorithms, Complexities and

Challenges," 2008 International Wireless Communications and Mobile

Computing Conference, Crete Island, 2008, pp. 970-975.

[3] P. Brauer, M. Lundqvist and A. Mällo, "Improving Latency in a Signal

Processing System on the Epiphany Architecture," 2016 24th Euromicro

International Conference on Parallel, Distributed, and Network-Based

Processing (PDP), Heraklion, 2016, pp. 796-800.

[4] Ian Kuon, Russell Tessier and Jonathan Rose (2008), "FPGA Architecture:

Survey and Challenges", Foundations and Trends® in Electronic Design

Automation: Vol. 2: No. 2, pp 135-253.

[5] R. Hartenstein, "A decade of reconfigurable computing: a visionary

retrospective," Proceedings Design, Automation and Test in Europe.

Conference and Exhibition 2001, Munich, 2001, pp. 642-649.

[6] M. A. Shami and A. Hemani, "Control Scheme for a CGRA," 2010 22nd

International Symposium on Computer Architecture and High Performance

Computing, Petropolis, 2010, pp. 17-24.

[7] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan

Sankaralingam, and Doug Burger. 2011. Dark silicon and the end of

multicore scaling. SIGARCH Comput. Archit. News 39, 3 (June 2011), 365-

376. DOI=http://dx.doi.org/10.1145/2024723.2000108

[8] S. M. A. H. Jafri et al., "Energy-aware coarse-grained reconfigurable

architectures using dynamically reconfigurable isolation cells," International

Symposium on Quality Electronic Design (ISQED), Santa Clara, CA, 2013,

pp. 104-111.

[9] N. Farahini, A. Hemani, H. Sohofi and S. Li, "Physical design aware system

level synthesis of hardware," 2015 International Conference on Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS),

Samos, 2015, pp. 141-148.

[10] Stefina Sesia, Issam Toufik and Matthew Beker, “LTE The UMTS Long

Term Evolution from Theory to Practise’’.

[11] Eirk Dahlman, Stefan Parkvall and Johan Skold“4G: LTE/LTE-Advanced

for Mobile Broadband”, 2014.

45

[12] T. Jiang and Y. Wu, "An Overview: Peak-to-Average Power Ratio

Reduction Techniques for OFDM Signals," in IEEE Transactions on

Broadcasting, vol. 54, no. 2, pp. 257-268, June 2008.

[13] Houman Zarrinkoub,” Understanding LTE with MATLAB from

Mathematical Modeling to Simulation and Prototyping”.

[14] 3GPP TS 36.211, Physicals Channels and Modulation, version 11.2.0,

Release 11, 2012-09.

[15] 3GPP TS 36.212, Multiplexing and Channel coding, version 12.2.0 Release

12, 2014-10.

[16] D. Wu, J. Eilert, D. Liu, A. Nilsson, E. Tell and E. Alfredsson, "System

architecture for 3GPP LTE modem using a programmable baseband

processor," 2009 International Symposium on System-on-Chip, Tampere,

2009, pp. 132-137

[17] Nasim Farahini, “SiLago: Enabling System Level Automation Methodology

to Design Custom High-Performance Computing Platform,” Doctoral

Thesis in ICT, KTH, Stockholm, Sweden 2016.

[18] M. A. Shami, “ Dynamically Reconfigurable Resource Array”, Doctoral

Thesis in ICT, KTH, Stockholm, Sweden 2012.

[19] M. A. Shami and A. Hemani, "Morphable DPU: Smart and efficient data

path for signal processing applications," 2009 IEEE Workshop on Signal

Processing Systems, Tampere, 2009, pp. 167-172.

[20] O. Malik and A. Hemani, "Synchronizing distributed state machines in a

coarse grain reconfigurable architecture," 2011 International Symposium on

System on Chip (SoC), Tampere, 2011, pp. 128-135.

[21] M. A. Shami and A. Hemani, "Address generation scheme for a coarse grain

reconfigurable architecture," ASAP 2011 - 22nd IEEE International

Conference on Application-specific Systems, Architectures and Processors,

Santa Monica, CA, 2011, pp. 17-24.

[22] M. A. Tajammul, M. A. Shami, A. Hemani and S. Moorthi, "NoC Based

Distributed Partitionable Memory System for a Coarse Grain

Reconfigurable Architecture," 2011 24th Internatioal Conference on VLSI

Design, Chennai, 2011, pp. 232-237.

[23] S. P. Azad, N. Farahini and A. Hemani, "Customization methodology of a

Coarse Grained Reconfigurable architecture," 2014 NORCHIP, Tampere,

2014, pp. 1-4.

[24] Shuo Li, N. Farahini, A. Hemani, K. Rosvall and I. Sander, "System level

synthesis of hardware for DSP applications using pre-characterized function

implementations," 2013 International Conference on Hardware/Software

46

Codesign and System Synthesis (CODES+ISSS), Montreal, QC, 2013, pp.

1-10.

[25] X. Chen, W. Yang, C. Xu and Y. I. Kim, "RNTI Allocation Schemes for

User Equipments in LTE System," 2012 8th International Conference on

Wireless Communications, Networking and Mobile Computing, Shanghai,

2012, pp. 1-4.

[26] Youngkwon Ryu and Jeong Gon Kim, "Cell search for 3GPP LTE system

using interference cancellation," 2015 Seventh International Conference on

Ubiquitous and Future Networks, Sapporo, 2015, pp. 579-584.

[27] Y. Wang, A. Abdelhadi and T. C. Clancy, "Optimal power allocation for

LTE users with different modulations," 2016 Annual IEEE Systems

Conference (SysCon), Orlando, FL, 2016, pp. 1-5.

[28] Sampath Kumar D and P. Samundiswary, "Performance analysis of MIMO-

LTE using various modulation schemes under different channels," 2015

International Conference on Electrical, Electronics, Signals,

Communication and Optimization (EESCO), Visakhapatnam, 2015, pp. 1-

4.

[29] Jakob L. Buthler and Michael Buhl, “Implementation of a LTE inspired

Transceiver On a USRP Platform,” Group12gr1056, Aalborg University,

May 2012.

[30] Online Available: https://se.mathworks.com/help/fixedpoint/ref/fi.html.

[31] Richard van Nee and Ramjee Prasad, “OFDM for Multimedia Wireless

Communications.

[32] Ahmad R.S Bahai, Burton R.Saltzberg and Mustafa Ergen, “ Mulit-Carrier

Digital Communictions Theory and Applications of OFDM” Second

Edition.

[33] T. Hwang, C. Yang, G. Wu, S. Li and G. Y. Li, "OFDM and Its Wireless

Applications: A Survey," in IEEE Transactions on Vehicular Technology,

vol. 58, no. 4, pp. 1673-1694, May 2009.

[34] 3GPP TS 36.211 V9.4.0 (2010-07), “Evolved Universal Terrestrial Radio

Access (E-UTRA); Base Station (BS) radio transmission and reception”.

[35] 3GPP TS 36.101 V8.4.0 (2008-12), “Evolved Universal Terrestrial Radio

Access (E-UTRA); User Equipment (UE) radio transmission and reception.”

[36] C. H. Yang, T. H. Yu and D. Markovic, "Power and Area Minimization of

Reconfigurable FFT Processors: A 3GPP-LTE Example," in IEEE Journal

of Solid-State Circuits, vol. 47, no. 3, pp. 757-768, March 2012.

[37] H. Kee, S. S. Bhattacharyya, I. Wong and Y. Rao, "FPGA-based design and

implementation of the 3GPP-LTE physical layer using parameterized

https://se.mathworks.com/help/fixedpoint/ref/fi.html

47

synchronous dataflow techniques," 2010 IEEE International Conference on

Acoustics, Speech and Signal Processing, Dallas, TX, 2010, pp. 1510-1513.

48

10. APPENDICES

Appendix 1. Scrambler code

Appendix 2. Mapper code

Appendix 3. Layer Mapper code

Appendix 4. MIMO code

Appendix 5. Modeling lib file

49

Appendix 1. Scrambler code

Mode=1; % M=1,2,3 then 4QAM, 16QAM, 64QAM respectively.

if Mode==1

 type=1;

elseif Mode==2

 type=2;

elseif Mode==3

 type=4;

end

Number_of_bits=1200*Mode*type;

bits_from_scrambler=Number_of_bits;

% SRAM to declaration

M_1=[1:Number_of_bits/16]; %!MEM<0,0>;

%Memory initialiazation

M_1=randi([0 1],Number_of_bits/16,1);

reg_size=64;

reg_loop_size=64*ceil((Number_of_bits/16)/reg_size);

reg_1=[1:64];%!REFI

% LFSR_1_codition

LFSR_1_condition=[zeros(1, 30) 1]; %!REFI <0,1>

% LFSR_2_initialcondition_parameters

RNTI=1;q=0;nS=1;NcellID=0; %!REFI <0,1>

%Codeword_input= %!MEM<0,0>

for i=1:64:Number_of_bits/16

 temp=min(i+63, Number_of_bits/16); %!DPU <0,0>

 reg_1=M_1(i:temp);

 reg_1=scrambler_DPU(reg_1, LFSR_1_condition,RNTI,q,nS,NcellID) %!

DPU<> [0,0]

 M_1(i:temp)=reg_1

end

50

Appendix 2. Mapper code

register_size=64;

% Memory size

M_size_original=1024;

M_size=(bits_from_scrambler)/(2*Mode);

% Register file size

R=(bits_from_scrambler/Mode);

if Mode==1

 Memory_real =[1:(M_size+40)]; %! MEM<> [1,1]

 Memory_imag=[M_size+41:M_size_original]; %! MEM<>[1,1]

 Memory_imag=[1:((2*(M_size+40))-M_size_original)+40]; %! MEM <>

[1,2]

elseif Mode==2

Memory_real = [1:M_size_original]; %! MEM <>[1,1]

Memory_real = [1:((M_size+16)-(M_size_original))]; %! MEM <>[1,2]

Memory_imag = [((M_size+16)-(M_size_original))+1:M_size_original];

%! MEM <> [1,3]

Memory_imag = [1:((M_size+16)-(M_size_original-((M_size+16)-

(M_size_original))))]; %! MEM <> [1,4]

elseif Mode==3

Memory_real = [1:M_size_original]; %! MEM <> [1,1]

Memory_real = [1:M_size_original]; %! MEM <> [1,2]

Memory_real = [1:((M_size+32)-(2*(M_size_original)))]; %! MEM<>

[1,3]

Memory_imag = [((M_size+32)-(2*M_size_original))+1:M_size_original];

%! MEM <> [1,3]

Memory_imag = [1:M_size_original]; %! MEM <> [1,4]

Memory_imag = [1:((M_size+32)-(M_size_original+(M_size_original-

((M_size+32)-(2*M_size_original)))))]; %! MEM <> [1,5]

end

% Register file declaration

Reg1_real=[1:register_size]; %! RFILE<> [1,1]

Reg2_imag=[1:register_size]; %! RFILE<> [1,2]

 for n=1:ceil((R/2)/register_size)

Reg1_real=mapper_DPU_real(Scrambler_output,Mode,n,register_size,R,bi

ts_from_scrambler); %! DPU<> [1,1]

51

Reg2_imag=mapper_DPU_imag(Scrambler_output,Mode,n,register_size,R,bi

ts_from_scrambler); %! DPU<> [1,1]

Memory_real((n-1)*64+1:n*64)=Reg1_real;

Memory_imag((n-1)*64+1:n*64)=Reg2_imag;

 end

52

Appendix 3. Layer Mapper Code

% Instruction for Layer mapper

c=2; % Number of Codewords

v=4; % Number of Layers

% comes from other mapper.

LayerMapper1_real=Memory_real; %! MEM<> [1,1]

LayerMapper2_real=Memory_real; %! MEM<> [1,1]

LayerMapper1_imag=Memory_imag; %! MEM<> [1,1]

LayerMapper2_imag=Memory_imag; %! MEM<> [1,1]

% Real layer mapping

size_real=size(LayerMapper1_real,1);

LayerMapper1_real_out=zeros(size_real/2,v);

size_imag=size(LayerMapper1_imag,1);

LayerMapper1_imag_out=zeros(size_imag/2,v);

for n=1:size_real/2

 L1_real(n)=LayerMapper1_real(n*2-1);

 L2_real(n)=LayerMapper1_real(n*2);

 L3_real(n)=LayerMapper2_real(n*2-1);

 L4_real(n)=LayerMapper2_real(n*2);

 L1_imag(n)=LayerMapper1_imag(n*2-1);

 L2_imag(n)=LayerMapper1_imag(n*2);

 L3_imag(n)=LayerMapper2_imag(n*2-1);

 L4_imag(n)=LayerMapper2_imag(n*2);

LayerMapper1_real_out(n,:)=[L1_real(n);L2_real(n);L3_real(n);L4_real

(n)]

LayerMapper1_imag_out(n,:)=[L1_imag(n);L2_imag(n);L3_imag(n);L4_imag

(n)]

 end

53

Appendix 4. MIMO code

% Memory allocation for precoding Matrix

Precoder_Matrix_size=16;

Precoder_real_M= [1:Precoder_Matrix_size]; %! MEM <> [1,1]

Precoder_imag_M= [Precoder_Matrix_size+1:2*Precoder_Matrix_size]; %!

MEM<> [1,1]

% Memory allocation for layer block data

 if Mode==1

% Mode 1 --> Layer block data size 1200 complex symbols

 M_size_original=1024;

 Layer_size=1200;

MIMO_real = [1:M_size_original]; %! MEM <>[1,1]

MIMO_real = [1:((Layer_size)-(M_size_original))]; %! MEM <>[1,2]

MIMO_imag = [((Layer_size)-(M_size_original))+1:M_size_original]; %!

MEM <> [1,3]

MIMO_imag = [1:(Layer_size-(M_size_original-((Layer_size)-

(M_size_original))))]; %! MEM <> [1,4]

 elseif Mode==2

 % Mode 2 --> Layer block data size is 2400 complex symbols

 M_size_original=1024;

 Layer_size=2400;

MIMO_real = [1:M_size_original]; %! MEM <> [1,1]

MIMO_real = [1:M_size_original]; %! MEM <> [1,2]

MIMO_real = [1:((Layer_size)-(2*(M_size_original)))]; %! MEM<> [1,3]

MIMO_imag = [((Layer_size)-(2*M_size_original))+1:M_size_original];

%! MEM <> [1,3]

MIMO_imag = [1:M_size_original]; %! MEM <> [1,4]

MIMO_imag = [1:(Layer_size-(M_size_original+(M_size_original-

((Layer_size)-(2*M_size_original)))))]; %! MEM <> [1,5]

 elseif Mode==3

 % Mode 3 --> Layer block data size is 4800 complex symbols

 M_size_original=1024;

 Layer_size=4800;

MIMO_real = [1:M_size_original]; %! MEM <> [1,1]

MIMO_real = [1:M_size_original]; %! M EM <> [1,2]

MIMO_real = [1:M_size_original]; %! MEM <> [1,3]

MIMO_real = [1:M_size_original]; %! MEM <> [1,4]

MIMO_real = [1:((Layer_size)-(4*(M_size_original)))]; %! MEM <>

[1,5]

MIMO_imag = [(((Layer_size)-

(4*(M_size_original)))+1):M_size_original]; %! MEM <> [1,5]

MIMO_imag = [1:M_size_original]; %! MEM<> [1,6]

MIMO_imag = [1:M_size_original]; %! MEM <> [1,7]

MIMO_imag = [1:M_size_original]; %! MEM <> [1,8]

MIMO_imag = [1:M_size_original]; %! MEM <> [1,9]

54

MIMO_imag = [1:(Layer_size-(4*M_size_original+(M_size_original-

((Layer_size)-(4*M_size_original)))))]; %! MEM <> [1,10]

 end

% Register file allocation

Reg_real_MIMO=[1:16]; %!RFIE <> [1,1]

Reg_imag_MIMO=[17:32]; %!RFIE <> [1,1]

% Precoding block Instructions

cbIdx=4; %codebook index

numTx=4; % Transmit antennas

v=4; % number of layers

% Wn pre define matrix which can be stored in register or Mem

PrecoderMatrix_output=PrecoderMatrix(cbIdx, numTx, v);

%cycles=16

Precoder_real_M=real(PrecoderMatrix_output);

%cycles=16

Precoder_imag_M=imag(PrecoderMatrix_output);

Wn_size=size(PrecoderMatrix_output,1);

% Layer Mapper output is used to multiply with Wn.

LayerMapper_Symbols_real=LayerMapper1_real_out; %! RFILE<> [4,4]

LayerMapper_Symbols_imag=LayerMapper1_imag_out; %! RFILE<> [4,4]

% Matrix Multiplication

% MIMO_out_real = complex(zeros(size(LayerMapper_Symbols_real)));

% MIMO_out_imag = complex(zeros(size(LayerMapper_Symbols_imag)));

inLen = size(LayerMapper_Symbols_real, 1);

for n = 1:inLen %this executes 300/600/1200 times

 for p=1:Wn_size % this executes 4 times

 W_real=Precoder_real_M(1:p,:);

 W_imag=Precoder_imag_M(1:p,:);

%cycles=2

Reg_real_MIMO = [W_real W_imag] * [(LayerMapper_Symbols_real(n, :))

-(LayerMapper_Symbols_imag(n, :))]'; %! DPU<> [4,4]

Reg_imag_MIMO = [W_imag W_real] * [(LayerMapper_Symbols_real(n, :))

(LayerMapper_Symbols_imag(n, :))]' ; %! DPU<> [4,4]

 end

 %cycles= 2

 MIMO_out_real(n,:) = Reg_real_MIMO.' ;

 MIMO_out_imag(n,:) = Reg_imag_MIMO.' ;

 MIMO_real=MIMO_out_real

 MIMO_imag=MIMO_out_imag

% MIMO_out ;%! MEM <> [0,0]

end

55

Appendix 5. Modeling Lib file

output is for the last input

"Scrambler":

 {

 "count": 1,

 "0": {

 "output_phase": 1,

 "name": "Scrambler",

 "area": 1,

 "height": 1,

 "input_phase": 1,

 "width": 1,

 "computation_phase": 1,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 1

 },

 "name": "Scrambler",

 "input_ports": {

 "din": "bit"},

 "output_ports": {

 "dout": "bit"

 },

 "generics": {},

 "types": [

 0

]

 },

output is for the last input

"QPSK":

 {

 "count": 1,

 "0": {

 "output_phase": 1,

 "name": "QPSK",

 "area": 1,

 "height": 1,

 "input_phase": 2,

 "width": 1,

 "computation_phase": 2,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 20,

56

 },

 "name": "QPSK",

 "input_ports": {

 "din": "bit"},

 "output_ports": {

 "dout": "complex"

 },

 "generics": {},

 "types": [

 0

]

 },

output is for the last input

"QAM_16":

 {

 "count": 1,

 "0": {

 "output_phase": 1,

 "name": "QAM_16",

 "area": 1,

 "height": 1,

 "input_phase": 4,

 "width": 1,

 "computation_phase": 4,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 30,

 },

 "name": "QAM_16",

 "input_ports": {

 "din": "bit"},

 "output_ports": {

 "dout": "complex"

 },

 "generics": {},

 "types": [

 0

]

 },

output is for the last input

"QAM_64":

 {

 "count": 1,

57

 "0": {

 "output_phase": 1,

 "name": "QAM_64",

 "area": 1,

 "height": 1,

 "input_phase": 6,

 "width": 1,

 "computation_phase": 6,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 50,

 },

 "name": "QAM_64",

 "input_ports": {

 "din": "bit"},

 "output_ports": {

 "dout": "complex"

 },

 "generics": {},

 "types": [

 0

]

 },

input: 2 streams

each stream is 600 complex symbols

output: 300 X 4 matrix complex symbols

"LayerMapper_600_300":

 {

 "count": 1,

 "0": {

 "output_phase": 300,

 "name": "LayerMapper_600_300",

 "area": 1,

 "height": 1,

 "input_phase": 600,

 "width": 1,

 "computation_phase": 900,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 128

 },

 "name": "LayerMapper_600_300",

 "input_ports": {

58

 "din1": "complex",

 "din2": "complex"

 },

 "output_ports": {

 "dout1": "complex",

 "dout2": "complex",

 "dout3": "complex",

 "dout4": "complex"

 },

 "generics": {},

 "types": [

 0

]

 },

input: 2 streams

each stream is 600 complex symbols

output: 300 X 4 matrix complex symbols

"LayerMapper_1200_600":

 {

 "count": 1,

 "0": {

 "output_phase": 600,

 "name": "LayerMapper_1200_600",

 "area": 1,

 "height": 1,

 "input_phase": 1200,

 "width": 1,

 "computation_phase": 1800,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 256

 },

 "name": "LayerMapper_1200_600",

 "input_ports": {

 "din1": "complex",

 "din2": "complex"

 },

 "output_ports": {

 "dout1": "complex",

 "dout2": "complex",

 "dout3": "complex",

 "dout4": "complex"

 },

 "generics": {},

 "types": [

59

 0

]

 },

input: 2 streams

each stream is 600 complex symbols

output: 300 X 4 matrix complex symbols

"LayerMapper_2400_1200":

 {

 "count": 1,

 "0": {

 "output_phase": 1200,

 "name": "LayerMapper_2400_1200",

 "area": 1,

 "height": 1,

 "input_phase": 2400,

 "width": 1,

 "computation_phase": 3600,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 512

 },

 "name": "LayerMapper_2400_1200",

 "input_ports": {

 "din1": "complex",

 "din2": "complex"

 },

 "output_ports": {

 "dout1": "complex",

 "dout2": "complex",

 "dout3": "complex",

 "dout4": "complex"

 },

 "generics": {},

 "types": [

 0

]

 },

1 symbol to 1 symbol

it has internal states

"Precoding":

 {

 "count": 5,

 "0": {

 "output_phase": 1,

60

 "name": "Precoding",

 "area": 1,

 "height": 1,

 "input_phase": 1,

 "width": 1,

 "computation_phase": 164,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 9088

 },

 "1": {

 "output_phase": 1,

 "name": "Precoding",

 "area": 2,

 "height": 2,

 "input_phase": 1,

 "width": 1,

 "computation_phase": 84,

 "type_name": "fimp_1",

 "actors": [],

 "type": 1,

 "energy": 9200

 },

 "2": {

 "output_phase": 1,

 "name": "Precoding",

 "area": 4,

 "height": 2,

 "input_phase": 1,

 "width": 2,

 "computation_phase": 44,

 "type_name": "fimp_2",

 "actors": [],

 "type": 0,

 "energy": 9500

 },

 "3": {

 "output_phase": 1,

 "name": "Precoding",

 "area": 8,

 "height": 4,

 "input_phase": 1,

 "width": 2,

 "computation_phase": 32,

61

 "type_name": "fimp_3",

 "actors": [],

 "type": 0,

 "energy": 9700

 },

 "4": {

 "output_phase": 1,

 "name": "Precoding",

 "area": 16,

 "height": 4,

 "input_phase": 1,

 "width": 4,

 "computation_phase": 24,

 "type_name": "fimp_3",

 "actors": [],

 "type": 0,

 "energy": 9900

 },

 "name": "Precoding",

 "input_ports": {

 "din1": "complex",

 "din2": "complex",

 "din3": "complex",

 "din4": "complex",

 },

 "output_ports": {

 "dout1": "complex",

 "dout2": "complex",

 "dout3": "complex",

 "dout4": "complex",

 },

 "generics": {},

 "types": [

 0,

 1,

 2,

 3,

 4

]

 },

PDSCH

"Remapper_300_512":

 {

62

 "count": 1,

 "0": {

 "output_phase": 512,

 "name": "Remapper_300_512",

 "area": 1,

 "height": 1,

 "input_phase": 300,

 "width": 1,

 "computation_phase": 512,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 1

 },

 "name": "Remapper_300_512",

 "input_ports": {

 "din": "complex",

 },

 "output_ports": {

 "dout": "complex",

 },

 "generics": {},

 "types": [

 0

]

 },

PDSCH

"Remapper_600_1024":

 {

 "count": 1,

 "0": {

 "output_phase": 1024,

 "name": "Remapper_600_1024",

 "area": 1,

 "height": 1,

 "input_phase": 600,

 "width": 1,

 "computation_phase": 1024,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 1

 },

 "name": "Remapper_600_1024",

 "input_ports": {

63

 "In1": "complex",

 },

 "output_ports": {

 "Out1": "complex",

 },

 "generics": {},

 "types": [

 0

]

 },

PDSCH

"Remapper_1200_2048":

 {

 "count": 1,

 "0": {

 "output_phase": 2048,

 "name": "Remapper_1200_2048",

 "area": 1,

 "height": 1,

 "input_phase": 1200,

 "width": 1,

 "computation_phase": 2048,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 1

 },

 "name": "Remapper_1200_2048",

 "input_ports": {

 "In1": "complex",

 },

 "output_ports": {

 "Out1": "complex",

 },

 "generics": {},

 "types": [

 0

]

 },

"IFFT_512":

 {

 "count": 1,

 "0": {

 "output_phase": 512,

64

 "name": "IFFT_512",

 "area": 1,

 "height": 1,

 "input_phase": 512,

 "width": 1,

 "computation_phase": 2304,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 881100

 },

 "1": {

 "output_phase": 512,

 "name": "IFFT_512",

 "area": 2,

 "height": 1,

 "input_phase": 512,

 "width": 2,

 "computation_phase": 1152,

 "type_name": "fimp_1",

 "actors": [],

 "type": 1,

 "energy": 883055

 },

 "2": {

 "output_phase": 512,

 "name": "IFFT_512",

 "area": 4,

 "height": 2,

 "input_phase": 512,

 "width": 2,

 "computation_phase": 576,

 "type_name": "fimp_2",

 "actors": [],

 "type": 2,

 "energy": 916666

 },

 "name": "IFFT_512",

 "input_ports": {

 "din": "complex"

 },

 "output_ports": {

 "dout": "complex"

 },

65

 "generics": {},

 "types": [

 0,

 1,

 2

]

 },

"IFFT_1024":

 {

 "count": 1,

 "0": {

 "output_phase": 1024,

 "name": "IFFT_1024",

 "area": 1,

 "height": 1,

 "input_phase": 1024,

 "width": 1,

 "computation_phase": 5120,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 1958000

 },

 "1": {

 "output_phase": 1024,

 "name": "IFFT_1024",

 "area": 2,

 "height": 1,

 "input_phase": 1024,

 "width": 2,

 "computation_phase": 2560,

 "type_name": "fimp_1",

 "actors": [],

 "type": 1,

 "energy": 1962344

 },

 "2": {

 "output_phase": 1024,

 "name": "IFFT_1024",

 "area": 4,

 "height": 2,

 "input_phase": 1024,

 "width": 2,

66

 "computation_phase": 1280,

 "type_name": "fimp_2",

 "actors": [],

 "type": 2,

 "energy": 2037035

 },

 "name": "IFFT_1024",

 "input_ports": {

 "din": "complex"

 },

 "output_ports": {

 "dout": "complex"

 },

 "generics": {},

 "types": [

 0,

 1,

 2

]

 },

"IFFT_2048":

 {

 "count": 3,

 "0": {

 "output_phase": 2048,

 "name": "IFFT_2048",

 "area": 1,

 "height": 1,

 "input_phase": 2048,

 "width": 1,

 "computation_phase": 11264,

 "type_name": "fimp_0",

 "actors": [],

 "type": 0,

 "energy": 2883600

 },

 "1": {

 "output_phase": 2048,

 "name": "IFFT_2048",

 "area": 1,

 "height": 1,

 "input_phase": 2048,

 "width": 2,

 "computation_phase": 5632,

67

 "type_name": "fimp_1",

 "actors": [],

 "type": 1,

 "energy": 2890000

 },

 "2": {

 "output_phase": 2048,

 "name": "IFFT_2048",

 "area": 1,

 "height": 2,

 "input_phase": 2048,

 "width": 2,

 "computation_phase": 2816,

 "type_name": "fimp_2",

 "actors": [],

 "type": 2,

 "energy": 3000000

 },

 "name": "IFFT_2048",

 "input_ports": {

 "din": "complex"

 },

 "output_ports": {

 "dout": "complex"

 },

 "generics": {},

 "types": [

 0,

 1,

 2

]

 }

