
Farid Shamani
Design of Intellectual Property-Based Hardware
Blocks Integrable With Embedded RISC Processors

Julkaisu 1498 • Publication 1498

Tampere 2017

Tampereen teknillinen yliopisto. Julkaisu 1498
Tampere University of Technology. Publication 1498

Farid Shamani

Design of Intellectual Property-Based Hardware Blocks
Integrable with Embedded RISC Processors

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 22nd of September 2017, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2017

Doctoral candidate: Farid Shamani

Laboratory of Electronics and Communications
Engineering
Tampere University of Technology
Finland

Supervisor: Professor Jari Nurmi
Laboratory of Electronics and Communications
Engineering
Tampere University of Technology
Finland

Pre-examiners: Professor Michael Hübner

Lehrstuhl für Eingebettete Systeme der
Informationstechnik (ESIT)
Ruhr-Universität Bochum
Germany

Adjunct Professor Pasi Liljeberg
Department of Future Technology
University of Turku
Finland

Opponents: Professor Peeter Ellervee
Department of Computer Systems
Tallinn University of Technology
Estonia

Adjunct Professor Pasi Liljeberg
Department of Future Technology
University of Turku
Finland

ISBN 978-952-15-4009-7 (printed)
ISBN 978-952-15-4014-1 (PDF)
ISSN 1459-2045

Abstract

The main focus of this thesis is to research methods, architecture, and implementation of
hardware acceleration for a Reduced Instruction Set Computer (RISC) platform. The
target platform is a single-core general-purpose embedded processor (the COFFEE core)
which was developed by our group at Tampere University of Technology. The COFFEE
core alone cannot meet the requirements of the modern applications due to the lack
of several components of which the Memory Management Unit (MMU) is one of the
prominent ones. Since the MMU is one of the main requirements of today’s processors,
COFFEE with no MMU was not able to run an operating system. In the design of the
MMU, we employed two additional micro-Translation-Lookaside Buffers (TLBs) to speed
up the translation process, as well as minimizing congestions of the data/instruction
address translations with a unified TLB. The MMU is tightly-coupled with the COFFEE
RISC core through the Peripheral Control Block (PCB) interface of the core. The
hardware implementation, alongside some optimization techniques and post synthesis
results are presented, as well.

Another intention of this work is to prepare a reconfigurable platform to send and receive
data packets of the next generation wireless communications. Hence, we will further
discuss a recently emerged wireless modulation technique known as Non-Contiguous
Orthogonal Frequency Division Multiplexing (NC-OFDM), a promising technique to
alleviate spectrum scarcity problem. However, one of the primary concerns in such systems
is the synchronization. To that end, we developed a reconfigurable hardware component
to perform as a synchronizer. The developed module exploits Partial Reconfiguration
(PR) feature in order to reconfigure itself. Eventually, we will come up with several
architectural choices for systems with different limiting factors such as power consumption,
operating frequency, and silicon area. The synchronizer can be loosely-coupled via one of
the available co-processor slots of the target processor, the COFFEE RISC core.

In addition, we are willing to improve the versatility of the COFFEE core even in industrial
use cases. Hence, we developed a reconfigurable hardware component capable of operating
in the Controller Area Network (CAN) protocol. In the first step of this implementation,
we mainly concentrate on receiving, decoding, and extracting the data segment of a
CAN-based packet. Moreover, this hardware block can reconfigure itself on-the-fly to
operate on different data frames. More details regarding hardware implementation issues,
as well as post synthesis results are also presented. The CAN module is loosely-coupled
with the COFFEE RISC processor through one of the available co-processor blocks.

i

Preface

The work presented here was carried out during 2014-2017 with the Department of
Electronics and Communications Engineering at Tampere University of Technology
(TUT).

Given the opportunity, I would like to express my deepest gratitude to Prof. Jari Nurmi,
who made this possible to complete my M.Sc. degree first, and the Ph.D. degree in the
second stage. It was my absolute pleasure to be a member of Team Nurmi for more than
five years. I would also like to extend my many thanks to Dr. Tech. Tapani Ahonen,
who always gave me precious suggestions, comments and feedbacks. It would have never
been possible without his friendly support. I also acknowledge Dr. Tech. Jarno M. A.
Tanskanen for giving the opportunity to expand my knowledge in other fields of science
and technology, as well as the financial support of a portion of this work.

I would laso like to acknowledge the reviewers of this thesis: Prof. Michael Hübner from
Ruhr-University Bochum, as well as the Adjunct Prof. Pasi Liljeberg from University of
Turku for their invaluable comments to improve the quality of this thesis.

This work was financially supported by the ARTEMIS JU under grant agreement number
295371, as well as the Academy of Finland under contract number 258506 (DEFT: Design
of a Highly-parallel Heterogeneous MP-SoC Architecture for Future Wireless Technologies).
I would like to gratefully acknowledge the grants supported by the Finnish Cultural
Foundation, along with the Jane and Aatos Erkko Foundation under the project Biological
Neuronal Communications and Computing with ICT.

Over the last 6 years in Tampere, there was a great number of people who came to my
life and left after a while. I learned from many of them, some made me suffer, and some
left unforgettable memories of themselves. I would like to extend my appreciation to
all my friends who came, who stayed, and who left; especially the ones who became
happy with my every little achievement, and stayed right beside me when I was about to
fail. Although there are too many of you to name here, I would like to specifically name
Payman Aflaki, Milad Mosallaei, Zahra Abbaszadeh, Maede Arvani, Vida Fakour Sevom,
Hadis Behzadifar, and Paula Rakowska for the nice moments we shared together.

I would like to express my unutterable gratitude to my family: Masoud, Ada, Saeed,
Sepideh, Saghar, and especially my Mother, Soror Zamani, for their unconditional love,
support, and kindness. Thank you for standing right beside me through all these tough
years. Although we have been living all around the world for the last 15 years, your
presences linger in my daily life. Words cannot describe how much I am proud to have
such a supportive family.

Many many thanks to my closest relatives who have enlarged my family: my sisters-in-law
Nasrin Aminian and Shideh Bakhshi, and brothers-in-law Amir Taheri and Mohsen

iii

iv Preface

Shamani, for giving positive energy, alongside the non-stop love they shared. The same
words are extended to my lovely nephews and nieces: Arman, Armin, Ava, Tara, Adrian,
Toulu, Roz, Bardia, and Benita.

I lost my father when I just filled four. There are two persons in my life who never let
me feel the lack of my father. The first and foremost, my beloved mother, Soror, who
sacrificed her own life to raise her children. I do believe that the heaven would not be
sufficient to accommodate her in the other life. I wish there would have been a sentence to
express how thankful I am. In the second place, I would like to sincerely acknowledge my
elder brother Masoud for fulfilling my father’s place. All the support he has provided me
over the years was the greatest gift anyone has ever given me. Thank you for sacrificing
your own life for teaching me how to realize my own potentials.

My extreme appreciation is extended to Ada, as well. Thank you, Ada, for the pure love
and your full support during these years. Nothing would have been possible without your
unconditional love and support. Words are quite limited to express me deep inside, hence,
the least I can do is to dedicate this work to you dear.

I would like to explicitly appreciate Saeed Shamani for being more than just a brother.
Although you are sixteen years older than me, you are the best friend in the world that I
have ever had, without even a second thought. Back when I was a kid, I swear I could
never have imagined that one day we could build such a strong friendly relationship. Do
you remember years ago when I was a teenage? I am talking about the time you were my
private teacher in Mathematics and Physics. Whoever I am today and whatever I have
achieved so far, is the fruit of the tree you planted many years ago.

I would like to thank Sepideh for pushing me towards studying at TUT. This would have
not been possible without your unlimited encouragements and motivations. I have to
admit that I owe you one of the most important achievement of my life.

Thank you, Saghar, for all the love and support you shared, especially when I was in Iran.
I will never forget that you would always be there whenever I needed a shoulder to cry
on. I spent the best days of my 20s with you.

To the future love of my life, thank you for being disappeared within these rough years
and let me progress towards my ultimate goals. Whoever and wherever you are, it is now
the time to show yourself up. ,

31 August 2017, Espoo, Finland
Farid Shamani

Contents

Abstract i

Preface iii

Acronyms vii

List of Publications xi

1 Introduction 1
1.1 Objective and Scope of the Research . 2
1.2 Author’s Contribution to the Published Work 3
1.3 Thesis Outline . 4

2 Reconfigurable IP-Based NC-OFDM Synchronizer Module 5
2.1 Spectrum Scarcity Problem . 5
2.2 Cognitive Radio as a Solution . 5
2.3 Related Works . 7
2.4 The State-of-the-art in NC-OFDM Synchronization 8
2.5 The Infrastructure of the Multicorrelator . 10
2.6 Partial Reconfiguration . 17
2.7 FPGA Constraints . 18
2.8 Experimental Results with Further Discussion 20
2.9 Concluding Remarks . 27

3 Reconfigurable IP-Based Memory Management Unit 29
3.1 The Virtual Memory . 29
3.2 The Virtual Address . 30
3.3 How the OS Manages Virtual Addresses . 30
3.4 Memory Management Unit . 30
3.5 The Infrastructure of the MMU . 33
3.6 FPGA Implementations . 37
3.7 Integration Issues . 41
3.8 Synthesis Results . 46
3.9 Concluding Remarks . 48

4 Reconfigurable IP-Based Controller Area Network Module 51
4.1 Background . 51
4.2 Motivation . 51
4.3 CAN Protocol Specification . 52

v

vi Contents

4.4 The Structure of a CAN Frame . 53
4.5 Design Considerations . 54
4.6 The FPGA Implementation and Integration 57
4.7 Synthesis Results . 57
4.8 Concluding Remarks . 57

5 Conclusion 59
5.1 Main Results . 59
5.2 Future Developments . 60

Bibliography 61

Appendix A 67

The Architecture of the Platform 69
Embedded Processors . 69
COFFEE, a General-Purpose Embedded Processor 69
General Characteristics . 70
An Insight to the Architecture of the Core . 71
Hardware Implementation Costs and Details . 72

Publications 75

Acronyms

ACK Acknowledge

ALMs Adaptive Logic Modules

ALUTs Adaptive Look-Up Tables

APP A Posterior Probability

ASIC Application Specific Integrated Circuit

ATT Address Translation Table

CAN Controller Area Network

CP Cyclic Prefix

CCB Core Configuration Block

CISC Complex Instruction Set Computer

CR Cognitive Radio

CRs Condition Registers

CRC Cyclic Redundancy Check

CSMA/CR Carrier Sense Multiple Access/Collision Resolution

CGRAs Coarse-Grain Reconfigurable Arrays

DF Direct Form

DLC Data Length Code

DMA Direct Memory Access

DSA Dynamic Spectrum Access

DSP Digital Signal Processor

DTLB Data Translation Look-aside Buffer

EA Effective Address

EOF End-of-Frame

EPN Effective Page Number

vii

viii Acronyms

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GPP General Purpose Processor

GPRs General Purpose Registers

HDD Hard Decision-based Detection

IFFT Inverse Fast Fourier Transform

IC Integrated Circuit

IDE Identifier Extension

I/O Input/Output

IP Intellectual Property

ISA Instruction Set Architecture

ITLB Instruction Translation Look-aside Buffer

LAN Local Area Network

LDPC Low-Density Parity-Check

LRU Least Recently Used

LTF Long Training Field

LTS Long Training Symbol

MAC Multiply-Accumulate

ML MultiplierLess

MMU Memory Management Unit

MSR Machine State Register

NIC Network Interface Controller

NC-OFDM Non-Contiguous Orthogonal Frequency Division Multiplexing

OFDM Orthogonal Frequency Division Multiplexing

OOB Out-of-Band

OPDF Optimized Parallel Direct Form

OPPDF Optimized Pipelined-Parallel Direct Form

OS Operating System

OTDF Optimized Transposed Direct Form

PAPR Peak-to-Average Power Ratio

ix

PCB Peripheral Control Block

PDF Parallel Direct Form

PID Process ID

PPDF Pipelined-Parallel Direct Form

PR Partial Reconfiguration

PSR Processor Status Register

RI Register Insertion

RISC Reduced Instruction Set Computer

RPN Real Page Number

RTR Remote Transmission Request

SDD Soft Decision-based Detection

SDR Software Define Radio

SNR Signal-to-Noise Ratio

SOF Start-of-Frame

SRR Substitute Remote Request

STF Short Training Field

STS Short Training Symbol

TDF Transposed Direct Form

TLB Translation-Lookaside Buffer

UTLB Unified Translation Look-aside Buffer

VCD Value Change Dump

VHDL Very high speed integrated circuits Hardware Description Language

VM Virtual Memory

VPN Virtual Page Number

ZPR Zone Protection Register

List of Publications

Most of the contents of this thesis is based on the following publications in which the
author of the thesis is the main author. The publications are referred to as [P. #] in the
manuscript. All the following publications are appended at the end of the thesis.

I F. Shamani, R. Airoldi, T. Ahonen, and J. Nurmi, "FPGA Implementation of a
Flexible Synchronizer for Cognitive Radio Applications", in Proceedings of the 2014
Conference on Design and Architectures for Signal and Image Processing (DASIP),
Madrid, Spain, pp. 1–8, Oct. 2014.

II F. Shamani, V. F. Sevom, T. Ahonen, and J. Nurmi, "FPGA Implementation Issues
of a Flexible Synchronizer Suitable for NC-OFDM-Based Cognitive Radios", in
Elsevier Journal of Systems Architecture (SYSARC), Nov. 2016.

III F. Shamani, T. Ahonen, and J. Nurmi, "Synchronization in NC-OFDM-Based
Cognitive Radio Platforms", in W. Hussain et al. "Computing Platforms for
Software-Defined Radio", Springer International Publishing, pp. 189–207, 2017.

IV F. Shamani, V. F. Sevom, J. Nurmi, and T. Ahonen, "Design, Implementation and
Analysis of a run-Time Configurable Memory Management Unit on FPGA", in IEEE
Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International
Symposium on System-on-Chip (SoC), Oslo, Norway, pp. 1–8, Oct. 2015.

V F. Shamani, V. F. Sevom, T. Ahonen, and J. Nurmi, "Integration Issues of a run-
Time Configurable Memory Management Unit to a RISC Processor on FPGA", in
Elsevier Journal of Microprocessors and Microsystems (MICPRO), Dec. 2016.

VI F. Shamani, V. F. Sevom, T. Ahonen, and J. Nurmi, "FPGA Implementation
and Integration of a Reconfigurable CAN-Based co-Processor to the COFFEE
RISC Processor", in IEEE Nordic Circuits and Systems Conference (NORCAS):
NORCHIP & International Symposium on System-on-Chip (SoC), Copenhagen,
Denmark, pp. 1–6, Nov. 2016.

xi

1 Introduction

During the last decade, technology advancements have significantly affected people’s
lives. Unprecedented growth in science and technology has accomplished modernity.
In that respect, a number of digital systems can be found in most of the electronics
devices. The main engine of such systems is typically a programmable processor which
controls other peripheral electronics components. In the world of Embedded Systems and
Systems-on-Chip (SoCs), these programmable processors are designed in a way to offer
the maximum flexibility, minimum silicon area, fast operating frequency, and low power
consumption. On the other hand, they do not necessarily perform well enough to meet
some real-time requirements of embedded applications. Hence, the demand of real-time
support in embedded applications is become more into picture day by day.

One possible solution is to employ hardware accelerators, which also called Functional
Units (FUs), co-processing in parallel with the main processor [1]. In principle, co-
processing accelerates the overall performance of the system by offloading computationally
intensive task from the main processor. Therefore, components capable of co-processing
are usually dedicated Intellectual Property (IP) blocks which can execute a certain
function considerably faster than the main processor. Nevertheless, characteristics such
as scalability, flexibility, and reconfigurability are some of the prominent features of a
good design.

Decades ago, computer architectural designers were encountered to choose between
flexibility and performance. If we consider Application Specific Integrated Circuit (ASIC)
technology on one end and the General Purpose Processor (GPP) on the opposite end,
there was a huge gap between these two design choices. Typically, GPPs are closer to
the software side. They can execute any function consisted of several instructions due
to the versatility of their instruction set. Thus, they are very flexible to perform any
computable task, while their performance is very poor for performing some specific tasks.
In principle, an ASIC is designed to perform some specific tasks very fast and efficient.
Hence, ASICs has the potential to achieve higher speed, less silicon area, and less power
consumption compared to the GPPs on performing a specific task. On the other hand,
ASICs are not flexible in terms of architectural changes. Once an ASIC is fabricated,
it cannot be altered to perform another application [2]. Therefore, ASICs are typically
used for high-volume embedded systems, such as mobile phones. In addition, only few
companies can afford to implement their products on ASICs due to the high production
costs.

Reconfigurable Computing is intended to fill the gap between ASIC (hardware) and GPP
(software) by achieving higher performance than software, while offering more flexibility
compared to the hardware [3]. The main idea of employing reconfigurable architectures is
back to 1950s where the Gerald Estrin proposed the concept of Reconfigurable Architecture

1

2 Chapter 1. Introduction

Blocks [4]. The idea was to use the main processor to control and monitor the behavior
of an array of reconfigurable hardware blocks. We can consider that the 1980s-1990s
was a renaissance in this field of research and several reconfigurable platforms were
introduced, including Ramming Machine, Hartenstein’s XPuter, and PAM Machine [5].
By the invent of the Field Programmable Gate Array (FPGA) in the mid 1980s and early
1990s, real-time signal processing (such as video and audio signal processing) which was
too computationally intensive for microprocessors, came more into picture [6]. Indeed,
the FPGAs, as one of the major reconfigurable platforms, could successfully fill the gap
between software-oriented and hardware-oriented architectures. Although the FPGAs offer
satisfactory performance for most of the embedded applications, the energy consumption
of an FPGA-based embedded system should be carefully considered.

1.1 Objective and Scope of the Research

The primary objective of this work is to research the influence of hardware acceleration
in the world of embedded systems. In that sense, some reconfigurable architectural
solutions and research methods, with their respective hardware implementations suitable
for a Reduced Instruction Set Computer (RISC)-based platform are developed. The
main motivation, in that respect, is to provide a flexible approach to increase the overall
performance of a computing platform, while the efficiency is maximized and power
consumption is maintained at an acceptable level. In addition, a reconfigurable platform
has the potential to be adapted in different operational environments.

As the case study, we take into consideration an embedded processor named COFFEE
core for the proof-of-concept. The core is an open-source embedded processor in which
reusability and configurability are two prominent characteristics of the core. So far, the
core is integrated with several IP blocks as different co-processors to create an embedded
platform. For example, the integration of a floating point unit as a co-processor was
done in [7]. The floating point co-processor is called MILK. The COFFEE core which
is tightly-coupled with the MILK co-processor is named CAPPUCCINO. In another
attempt, the COFFEE is integrated with three co-processors to form a programmable
baseband receiver platform [8]. In [9], the multi-core version of the COFFEE is used to
build a platform suitable for Software Define Radio (SDR). The COFFEE is also used
to create a template named CREMA which is based on the principle of Coarse-Grain
Reconfigurable Arrays (CGRAs) [10]. More information regarding the COFFEE core is
appended at the end of this thesis in Section Appendix A.

Although the COFFEE has exploited different configurations to create various platforms,
it still requires more efforts to increase the versatility and application performance of the
core. For example, the core is heavily suffering from the lack of a Memory Management
Unit (MMU) [11]. As discussed earlier, the ultimate motivation behind this research work
is to design several reconfigurable IP blocks loosely/tightly-coupled with the COFFEE
processor. However, the integration of the developed IP blocks are not only limited to the
target processor; they are integrable with any standard RISC architecture. The developed
IP blocks fulfill the general characteristics of a good digital design previously mentioned.
In addition, other design parameters, such as energy efficiency, are vastly taken into
consideration in the hardware description of each IP block. Indeed, the energy efficiency
is very crucial in battery-powered embedded applications. In our research group, we have
a way of thinking that a good IP block is worth more than a good design.

The overall content of this thesis is composed of three main sections. In each section, we

1.2. Author’s Contribution to the Published Work 3

try to develop a reconfigure architecture specifically designed for a particular application.
In the first section, a reconfigurable module which is capable of receiving and decoding one
of the potential modulation techniques of the next generation wireless communication is
developed. The target modulation is the Non-Contiguous Orthogonal Frequency Division
Multiplexing (NC-OFDM) technique, in which the wireless spectrum can be utilized
efficiently. Although the NC-OFDM has the potential to alleviate spectrum scarcity to
some extent, synchronization in those systems is one of the major problems. In that respect,
we propose a reconfigurable architecture which is able to tackle synchronization problem
of an NC-OFDM-based system. One of the main characteristics of the synchronizer is the
capability of reconfiguring itself during the run-time using Partial Reconfiguration (PR)
feature.

In the second section, another reconfigurable architecture is designed to operate as an
MMU. One of the main applications of the MMU is to enable virtual-to-physical address
translations. In fact, the MMU is developed to improve the overall performance of the
processor. The infrastructure of the MMU is based on employing several Translation-
Lookaside Buffers (TLBs) simultaneously in different hierarchies. Each TLB has a different
size in terms of the number of entries. The MMU reconfigures itself during the run-time
to operate on different page sizes, from 1KB to 16MB in the virtual space.

The third section concentrates on another reconfigurable module which is able to operate
in the context of Controller Area Network (CAN) protocol. The CAN module is capable
of reconfiguring itself while operating to operate on different data frames, i.e. standard
data frame and extended data frame. Furthermore, the CAN module guarantees the
integrity of the data in several situations.

1.2 Author’s Contribution to the Published Work

The context of this thesis has mainly been extracted from the Publications [P. I] – [P. VI]
in which the author was the primary author. Prof. Nurmi supervised the overall work
and gave invaluable comments and feedbacks on each of the publications.

Publication [P. I]: The purpose of this paper was to design and develop an IP-based
synchronizer to alleviate one of the major problems in next generation wireless communi-
cations. We developed a novel method how to perform synchronization in such systems.
The hardware implementation and considerations are done by the author. The idea of
using Partial Reconfiguration (PR) technique arose by the second author, Dr. Tech. R.
Airoldi. The third author, Dr. Tech. T. Ahonen, as well as the fourth author, Prof. J.
Nurmi, gave technical comments, along with invaluable feedbacks.

Publication [P. II]: This paper was an extension to our previous work [P. I] with an
invitation. In this paper, the first author put his best effort on optimizing the hardware
implementation of the mentioned design. As a result, magnificent improvements in terms
of maximum operating frequency were achieved, while the hardware resource allocation,
alongside the power consumption drastically reduced. This IP block has the potential
to be loosely-coupled with the COFFEE RISC processor. This work is mainly done by
the first author, while the third author V.F. Sevom assisted in some simulations and
verifications. The remaining authors gave very nice comments on overall work.

Publication [P. III]: In this publication, the first author discussed the synchronization
problem in next generation wireless communications. The entire work is done by the first
author, while Dr. Ahonen and Prof. Nurmi gave the final comments on the work.

4 Chapter 1. Introduction

Publication [P. IV]: The main contribution of this paper was to develop a run-time
configurable memory management unit. The entire hardware implementation was done
by the first author. The second author assisted in MatLab computations. Dr. Ahonen
and Prof. Nurmi gave technical comments and supervised the entire work.

Publication [P. V]: This publication was an extension to our previous work in [P. IV]. In
this paper, the integration issues of the proposed memory management unit with the
COFFEE core (tightly-coupled) was investigated in detail. The overall work, including
integration and optimizations, were performed by the first author. The second author
assisted in some simulations and verifications with a new set of test vectors. The entire
work was supervised by Dr. Ahonen, along with Prof. Nurmi.

Publication [P. VI]: In this publication, a reconfigurable Controller Area Network (CAN)
protocol was developed which was loosely-coupled with the COFFEE RISC processor.
The first author designed and implemented the entire CAN protocol as an IP block on
FPGA. The integration with COFFEE processor was done by the first author, as well.
The verification of the design was done by the help of the second author. This work was
fully supervised by Dr. Ahonen and Prof. Nurmi.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, the author discusses the
synchronization problem in next generation wireless communications. The-state-of-the-art,
as well as the hardware implementation issues are widely discussed. Chapter 3 describes
the developed memory management unit and its respective technical issues, e.g. how to
integrate the MMU with the COFFEE processor. Chapter 4 explains the development of
the proposed CAN module on FPGA with its respective integration with COFFEE RISC
processor. Eventually, Chapter 5 summarizes the overall research work. Appendix A
gives an insight to the COFFEE platform in terms of architecture, design considerations,
hardware cost, etc.

2 Reconfigurable IP-Based
NC-OFDM Synchronizer Module

The main context of this chapter is extracted from [PI], [PII] and [PIII]. This chapter
provides a wide discussion about an alternative solution to cope with spectrum scarcity
problem. In this regard, we proposed a flexible Non-Contiguous Orthogonal Frequency
Division Multiplexing (NC-OFDM)-based synchronizer which is capable of reconfiguring
itself on-the-fly using Partial Reconfiguration (PR) feature. In addition to the state-of-
the-art, this chapter provides a deep insight to the hardware implementation which leads
to revealing various constraints. Furthermore, the author provides different architectural
choices with their respective trade-offs, e.g. using more silicon area to achieve higher
operating frequency. The proposed synchronizer has the potential to be loosely-coupled
with the COFFEE core as a co-processor.

2.1 Spectrum Scarcity Problem

The trend towards replacing wired systems with wireless devices is getting stronger.
Generally speaking, wireless technology is being advanced day after day. The number of
wireless users who demand higher data rate is increasing per day [12]. Since the spectrum
is a finite resource, increasing number of wireless users is leading to spectrum scarcity
problem. It is mainly due to the fact that the frequency bands between 10MHz to 6GHz are
most suitable for wireless communications due to the characteristics of the electromagnetic
waves. However, this wide frequency band is not sufficient to accommodate all today’s
wireless users at once [13].

2.2 Cognitive Radio as a Solution

One possible solution to resolve spectrum scarcity problem is to employ Dynamic Spectrum
Access (DSA). Conceptually, the DSA is a promising technique which employs unused
frequency bands allocated to a licensed user, e.g. TV broadcast, for secondary user
activities [14]. These unoccupied frequency bands are also known as white spaces. In
principle, secondary users willing to transmit within a licensed band are permitted to
transmit their data via the available white spaces as long as they do not interfere with
the incumbent licensed user. Cognitive Radio (CR) is a device capable of employing
DSA technique. In context, the CR is a flexible platform in which most of the baseband
processing is performed in programmable processing technologies such as GPP, Digital
Signal Processor (DSP), and FPGA [9]. In CR, the transmitter is able to detect which
communication channels are occupied and which are not. Indeed, the CR is always aware
of its surrounding. For example, Figure 2.1 depicts a real measurement of the spectrum

5

6 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module
6 Codes and Games for Dynamic Spectrum Access 163

Fig. 6.2. Spectrum utilization snapshot at Berkeley.

by secondary users is one of the promising ideas that can mitigate spectrum
scarcity, potentially without major changes to incumbents.

The first step in dynamic spectrum access is the detection of unused spec-
tral bands. Therefore, a cognitive radio device measures the RF energy in
a channel or monitors the received signal strength indicator to determine
whether the channel is idle or not. But this approach has a problem in that
wireless devices can only sense the presence of a Primary User (PU) if and only
if the energy detected is above a certain threshold. It is true that one cannot
arbitrarily lower the threshold as this would result in non-detection because of
the presence of noise. In the feature detection approach, which has been used
in the military to detect the presence of weak signals [9], the wireless device
uses cyclostationary signal processing to detect the presence of primaries.
If a signal exhibits strong cyclostationary properties, it can be detected at
very low Signal-to-Noise Ratios (SNR) [11]. Then, the question is how to
share the available spectrum efficiently and fairly.

The FCC spectrum Policy Task Force [12] has recommended a paradigm
shift in interference assessment from the largely fixed operations. This facili-
tates real-time interactions between a transmitter and a receiver in an adaptive
manner. The recommendation is based on a new metric called the interfer-
ence temperature, which is intended to quantify and manage the sources of
interference in a radio environment. The interference temperature is defined
to be the RF power measured at a receiving antenna per unit bandwidth.
The key idea for this new metric is that, firstly, the interference tempera-
ture at a receiving antenna provides an accurate measure for the acceptable
level of RF interference in the frequency band of interest; any transmission
in that band is considered to be “harmful” if it would increase the noise
floor above the interference temperature threshold as shown in Figure 6.3.
Secondly, given a particular frequency band in which the interference temper-
ature is not exceeded, that band could be made available to secondary users.
Hence, a secondary device might attempt to coexist with the primary, such
that the presence of secondary devices goes unnoticed.

Figure 2.1: A portion of the spectrum allocated to a licensed user. Obviously, the licensed user
does not efficiently utilize the spectrum [15, p. 163]

at downtown Berkeley. As it is obviously clear, the licensed user mostly utilizes the
first 2GHz of the dedicated 6GHz spectrum, while the rest of the spectrum is not fully
utilized. The CR has the ability to instantly employ unoccupied channels within the
licensed spectrum for secondary transmissions while avoiding the ones occupied by the
primary user. Moreover, the CR should guarantee that there will be no interference with
the licensed user’s subbands.

2.2.1 NC-OFDM, a Recently Emerged Technology

CRs have still their own challenges including how to sense the spectrum, which data
transmission technique is the most efficient one, etc. So far, there have been several
modulation techniques to be employed in CR of which the Orthogonal Frequency Division
Multiplexing (OFDM) is the most favorable one [16]. The orthogonality between over-
lapped carriers is one of the major features that discriminates the OFDM from the other
modulation techniques [17]. However, the OFDM technique has its own disadvantages
such as Peak-to-Average Power Ratio (PAPR), sensitivity to carrier frequency offset, and
extra overhead due to using a Cyclic Prefix (CP). In addition, since the OFDM operates
in a contiguous spectrum mode, a 5MHz transceiver can only transmit when an idle
5MHz spectrum band is detected. If we take into the assumption that a 5MHz band is
occupied by a narrowband transceiver, e.g. 200kHz, the entire 5MHz band is treated as
busy. In this case, more than 90% of the bandwidth is being wasted by the narrowband
transceiver to transmit at only 200kHz speed [18].

One alternative solution capable of tackling the above-mentioned problem is an upgraded
form of the conventional OFDM technique named NC-OFDM. Indeed, the NC-OFDM
technique has recently attracted many researchers due to its capability of turning off a
subset of subcarriers which are not required for the transmission or those which might
cause interferences with the adjacent users. Furthermore, the NC-OFDM has been
nominated as a promising candidate for high data rate transmissions in the context of
the CR [14]. Potentially, the NC-OFDM can be one of the best candidates towards the
next generation wireless communications, 5G [19].

2.3. Related Works 7

2.2.2 Synchronization, one of the Major Problems

As previously mentioned, NC-OFDM is a reliable candidate to exploit the spectrum more
efficiently. Although this technique is able to cope with the spectrum scarcity problem,
similar to other techniques, it has its own challenges. One of the primary challenges in
NC-OFDM is how to synchronize the receiver with the transmitter. The main reason is
that since the NC-OFDM transmitter is able to use any white space within the licensed
spectrum (of course, by considering the constraints mentioned such as not interfering with
the licensed user’s subbands), the secondary user has the potential to be presented in any
location within the spectrum. Nevertheless, one challenge is to detect the location of the
secondary transmitter within the prime spectrum from the receiver’s point of view. In
addition, the NC-OFDM transmitter is able to switch off unnecessary subcarriers which
result in an alteration to the time-domain representation of the signal. A tiny change in
the waveform of a time-domain signal will generate a stochastic location for the preamble,
pilot and data carriers. In this regard, the second challenge is to find the exact locations
of the mentioned subcarriers in the receiver side.

2.3 Related Works

In principle, there are two well-known methods which have widely been used to syn-
chronize both receiver and transmitter. A very straightforward solution is to dedicate
a particular channel (a secondary channel) to reveal the essential synchronization char-
acteristics of the transmitter to the receiver. In the literature, this solution is known
as the Out-of-Band (OOB) communication. Authors in [20, 21, 22, 23, 24] have studied
synchronization in OOB systems and proposed some techniques with respect to the
out-of-band synchronization. In this method, since the receiver is always aware of the
location of the secondary user in the entire spectrum, the synchronization is potentially
similar to that of OFDM. However, the additional hardware cost, along with dedicating a
portion of bandwidth to the secondary channel are two limiting factors which limit the
functionality of the out-of-band data transmission in some practical situations [25].

In contrast to the out-of-band communications, In-Band data transmissions more at-
tract researchers in the field of NC-OFDM systems. In this method, the prerequisite
synchronization information is embedded in the same packet sent by the transmitter. It
is now the receiver’s concern how to extract that information in order to synchronize
itself with the transmitter. In this thesis, we have also taken into account how to perform
synchronization in an in-band environment. Similar to out-of-band systems, there are
some studies regarding the in-band communication which few of them are briefly explained
as follows.

In [26], a fractional bandwidth model is proposed in which a new format for the preamble
is introduced. In frequency-domain, a specific pseudo-noise is generated in a way that
the time-domain representation of the preamble comes with two identical halves with
different sign bits. Apart from the OFDM based scheme, the interferences caused by the
licensed users have not been fully considered. The authors took into the assumption that
the power level of the primary user is lower than the secondary transmitter, while in
reality, it is the secondary transmitter which should minimize its transmitting power to
prevent interference with the adjacent primary user due to the sidelobe leakages [27].

In [25], the receiver takes A Posterior Probability (APP) algorithm into consideration
to discover the active subchannels, while the interference caused by the licensed user

8 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

is accounted. In the case of detecting an active subchannel, the receiver performs a
Hard Decision-based Detection (HDD) algorithm to extract NC-OFDM symbols. A
poor performance in a noisy channel, as well as the subchannels closed to the primary
user, is one drawback of employing HDD algorithm. Therefore, the receiver takes into
account a Soft Decision-based Detection (SDD) to increase the performance in such noisy
environments.
Li et al. in [28], tried to improve the methodology introduced in [25]. According to their
claim, the system code rate of the proposed algorithm is only 1/4, while only half of the
subcarriers are active. They propose a Low-Density Parity-Check (LDPC) to improve
system code rate right after the APP is finished. The authors mainly emphasized on
how to generate the LDPC code, while the synchronization procedure is not exactly
addressed. They have taken into the assumption that the receiver has a perfect solution
to synchronize itself with the transmitter.
Saha et al. proposed a blind synchronization method in which the receiver is capable of
locally regenerating the time-domain representation of the frequency-domain incoming
signal [29, 30]. They also exploit a multiplier-less approach to detect active subcarriers in
the frequency-domain. The multiplier-less approach provides an acceptable performance
in packet detection stage while omitting a massive number of unnecessary complex
computations. Furthermore, by having known the fundamental information regarding
the primary user’s activities in the spectrum, a binary mask is employed to filter out the
primary user’s active subcarriers in the frequency-domain. The rest of synchronization is
inferred to be similar to the OFDM.

2.4 The State-of-the-art in NC-OFDM Synchronization

As previously stated, since the time-domain representation of the signal in an NC-OFDM-
based system is altered, the synchronizer block should find another way to detect the
secondary transmission. Although synchronization in an OFDM system can be performed
in time-domain, frequency-domain or both, an OFDM receiver is more likely to perform
synchronization in time-domain. The main reason is that synchronization in frequency-
domain is very computationally expensive in the receiver. However, it seems that an
NC-OFDM receiver has no possible solution than to perform synchronization in the
frequency-domain, since the shape of the time-domain preamble is altered. In this work,
we employ several techniques, e.g. multiplier-less approach, alongside the state-of-the-art
features, e.g. partial reconfiguration, in order to keep the receiver synchronized with
the secondary transmitter. Moreover, the synchronizer block is carefully designed for
different scenarios, for example, when the silicon area is the limiting factor, when power
consumption is the main factor, or reaching to the maximum operating frequency is the
ultimate target.

2.4.1 The Conventional Method
Figure 2.2 shows the most common synchronization mechanism in an NC-OFDM system.
Conceptually, the synchronization is performed in two major sections. First, the subcarrier
detection and, second, preamble regeneration and packet detection. As previously studied,
the receiver has no prior information about the subbands in which the secondary user is
active. Nevertheless, the first step is to collect as much information about the spectrum
as possible. Hence, the receiver gathers all the available subbands in the spectrum and
starts sensing each of them to detect the active ones, using one of the sensing methods.

2.4. The State-of-the-art in NC-OFDM Synchronization 9

I/Q samples
Spectrum
Sensing

Secondary User
Present?

Primary User’s Information

New Preamble
Generator

No

Yes

Correlation
Correlation

Peak?

No

Packet
Decoding

Bits Extraction Yes

Packet
Decoaded

Figure 2.2: The most common synchronization scheme. Reconstructed from [P. I] © IEEE,
2014.

According to the Federal Communications Commission, secondary users willing to transmit
in a licensed spectrum may have the preliminary information about the licensed user
such as power, location, and signal structure [31]. Having fundamental information
about the licensed user, those subcarriers which belong to the licensed user are masked.
Once the licensed user is masked, the remaining active subcarriers are considered for the
secondary transmitter. The first phase of the synchronization (secondary user detection)
is successfully finished at this stage.
Now, it is possible to form the time-domain representation of the secondary signal by
using a low-cost Inverse Fast Fourier Transform (IFFT) unit. Once the new preambles are
generated, the correlator is fed by recently generated parameters and, subsequently, the
maximum similarity between a buffered version of the incoming signal and the generated
preamble is investigated. As soon as the correlator finds a peak, the entire packet is
delivered to the packet decoding block to extract the data bits. In case that the correlator
fails to detect a peak, there is a possibility that the secondary transmitter has terminated
the connection on the set of subcarriers detected as active in the previous stage. Therefore,
the sensing unit will start sensing the spectrum from the scratch to find active subbands
occupied by the secondary transmitter.

2.4.2 The Proposed Synchronizer
The synchronizer proposed in this work follows the same dataflow as Figure 2.2 presents.
The contribution beyond the state-of-the-art of this work is to employ a reconfigurable
multicorrelator to perform both spectrum sensing and correlation on demand. From the
architectural point of view, the multicorrelator is able to reconfigure its parameters to
perform either autocorrelation function for spectrum sensing or crosscorrelation function
for packet detection phase using Partial Reconfiguration feature.
Figure 2.3 illustrates how the multicorrelator operates in an NC-OFDM receiver. In the
first phase (secondary transmission detection), the controller block (re)configures the
multicorrelator to perform autocorrelation during the run-time to monitor the entire
spectrum. Here, the autocorrelation function computes the maximum similarity between
the incoming signal and a delayed version of itself. The achieved results are compared
with a threshold. The magnitude of the threshold is determined by the receiver during the
inter packet time slot. When the channel is idle, the magnitude of the noise is determined.
Then, the noise level is subtracted from the overall energy of the signal, leading to an

10 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

approximate threshold value. However, this method might not be practical in very low
Signal-to-Noise Ratio (SNR) regions.

When the presence of the secondary user is detected by the receiver, all active subcarriers
(excluding those related to the licensed user) are handed to the preamble regenerator
unit to generate a time-domain form of the frequency-domain signals. Meanwhile, the
controller reconfigures the multicorrelator using PR feature to perform crosscorrelation
function (packet detection phase). Once the multicorrelator is set up with regenerated
coefficients, the crosscorrelation is performed to find the boundaries of the packet. Since
the crosscorrelation function is a computationally intensive task, Roberto Airoldi proposed
a two-step threshold verification mechanism in [32]. This method is further investigated
in next sections. Once the second threshold level is met by the Threshold Detector block,
the packet is delivered to the Packet Decoding block to extract the data.

2.5 The Infrastructure of the Multicorrelator

The multicorrelator is composed of several fundamental subblocks of which the Finite
Impulse Response (FIR) block is the most prominent one. As Figure 2.4 presents, the
multicorrelator consist of a Memory block, FIR filter block, Threshold Detector block,
and Controller block. Each block is briefly explained in the following subsections.

2.5.1 Memory Block
This block is a simple SRAM which is used to store regenerated coefficients. Each
memory word is 32 bits long of which we assigned the first 16 bits for the Real part and
the remaining 16 subsequent bits represent the Imaginary part of the incoming signal.
For example, the value 0x1234ABCD in a memory block infers that 0x1234 is the real
part and 0xABCD is the imaginary part of the signal, respectively. The main reason
why we take 16-bit input signals into consideration is that 16-bit coefficients provide
enough accuracy for the FIR filter to perform crosscorrelation [33]. From the hardware
implementation point of view, we employed an unsynthesizable SRAM described by the
Very high speed integrated circuits Hardware Description Language (VHDL) code for the
simulation and a synthesizable IP block provided by Quartus II environment for synthesis
purpose, respectively.

I/Q Samples Multi-
Correlator

Primary User
Information

Preamble
Regenerator

Packet
Decoding

Bits
Extraction

A.C.
Peak

No Peak

Controller

C.C.
Peak

A.C./
C.C. Threshold

Detector

A.C.: AutoCorrelation
C.C.: CrossCorrelation

Figure 2.3: The proposed architecture for the synchronizer [P. II] © Elsevier, 2016.

2.5. The Infrastructure of the Multicorrelator 11

Coeff.
Register

Bank

Input Register
Chain

MAC
Operation

Unit
Result

Threshold
Detector

M
E
M
O
R
Y

Autocorr.
Peak

CrossCorr./
Autocorr.

Freeze

Corr.
Peak

FIR Filter

Enable

Packet Decoded

INPUT

Ready

Multicorrelator

Controller

Regenerated
Preamble

Thr2

Thr1

Buffered
Version

Figure 2.4: The infrastructure of the multicorrelator [P. II] © Elsevier, 2016.

2.5.2 Threshold Detector block

The main objective of this block is to compare the computed results of the FIR filter
with a predefined threshold value. In the first phase (secondary transmitter detection)
the filter computes the autocorrelation function. The autocorrelation measures when the
similarity between the incoming signal and a delayed version of itself is in the maximum
level. In that respect, the energy of the noise is calculated when the channel is idle. Once
the channel becomes busy, the energy of the noise is subtracted from the total energy. As
soon as the final result exceeds a threshold, the corresponding subcarrier is considered to
be active. In contrast to autocorrelation, the threshold detector employs two threshold
points when the filter is computing crosscorrelation function. It is mainly due to the fact
that calculating crosscorrelation function is a very energy-hungry task. Therefore, we
apply a 2-step verification algorithm proposed in [32]. As Figure 2.5 illustrates, in the
first step the crosscorrelation of the first half of the signal is computed. The obtained
results are compared with a preliminary threshold Thr1. If the magnitude of the Thr1
for the first-half calculation is met, the multicorrelator computes the second half and,
subsequently, computes the overall results with a second threshold Thr2. At this stage,
a peak shows that there was a good correlation between the buffered signal and the
regenerated preambles. Otherwise, the buffered version of the signal is discarded, even
though the first threshold was met. A proper value of the preliminary threshold (Thr1),
as well as the original threshold (Thr2), has a massive impact on the signal detection. For
example, setting a low value for the Thr1 might lead to false detection of the signal in low
SNR regions. On the other hand, although a high value will guarantee the robustness of
the calculation, it might result in packet loss since a low-power signal might be considered
as noise. Therefore, a good approximation for the Thr1 is 45% of the Thr2 [32].

12 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

Incoming Signal Not Detected

No

Yes

No
Yes

Detected

> Thr2> Thr1

Figure 2.5: The 2-step verification algorithm [P. III] © Springer, 2017.

2.5.3 Controller Block

The controller block continuously monitors all the subblocks. Based on the information
received by the threshold detector, the controller decides how to configure the multicor-
relator. When the multicorrelator is detecting a secondary transmission, the controller
configures the coefficients of the filter with the delayed version of the incoming signal.
The length of the filter for calculating autocorrelation is 16-tap due to the structure of
the preamble in IEEE 802.11a. In this standard, each packet starts with a predefined
sequence of bits known as preamble. The preamble consists of two parts, a Short Training
Symbol (STS) alongside a Long Training Symbol (LTS). The STS is composed of ten
repetitive sequences of bits, each sequence is 16-bit long. Thus, the STS, which also
known as Short Training Field (STF), provides a very good autocorrelation properties.
The LTS is constructed from two identical 64-bit sequences. The LTS, or Long Training
Field (LTF), provides more robust properties for exact timing acquisition [34]. Figure
2.6 illustrates the correlation characteristics of the preamble. The controller can simply
configure the filter to compute the autocorrelation function by redirecting the incoming
signal to the coefficients of the filter. In a similar way, the controller sets up the filter
with regenerated preamble stored in the SRAM.PHY interoperability with 11a/g legacy OFDM devices 63

0 50 100 150 200 250 300 350
−35

−30

−25

−20

−15

−10

−5

0

Time Domain Sample Number

M
ag

ni
tu

de
 (

dB
)

STF

cyclic prefix

LTF
symbol 1

LTF
symbol 2

Samples
@ 20 MHz

64

Figure 4.6 Correlation of the preamble with long training symbol.

equation, yk = hk · Lk + zk . The values for Lk are given in Eq. (4.2). The known training
symbol information is divided out of the received signal leaving the channel estimate
for each subcarrier k, ĥk = yk/Lk .

Since the channel estimate is used to equalize the subsequent OFDM symbols, noise
on the channel estimate propagates through the packet during data detection. To reduce
the noise on the channel estimate, subcarrier smoothing may be employed. A simple
approach is to perform a weighted average of the channel estimate at subcarrier k with
its adjacent neighbors, as shown in Eq. (4.3):

h̃k = a · ĥk−1 + b · ĥk + a · ĥk+1

2 · a + b
(4.3)

The nature of the channel must be taken into consideration with subcarrier smoothing.
In a low delay spread, flat fading channel, channel taps on adjacent subcarriers are
highly correlated and subcarrier smoothing provides a significant noise reduction benefit.
However, in a highly frequency selective fading channel, adjacent channel taps may not

Figure 2.6: The correlation of the preamble with STS and LTS [35]

2.5. The Infrastructure of the Multicorrelator 13

2.5.4 FIR Filter Block
As earlier mentioned, the FIR filter is the most resource-hungry and power-consuming
block of the synchronizer. Therefore, we put our best effort to carefully design the filter
to minimize the hardware costs. As previously studied, NC-OFDM-based CR should
gather as much information about the spectrum as possible. Hence, the CR receiver
has to employ a very large order of the FIR filter in the synchronizer (e.g. 4096-tap
filter). Although having such a high-order FIR filter is feasible, it raises serious issues
from the hardware limitations point of view. The first concern is the limited silicon
area. Another problem is the massive energy consumption of the high-order filters due
to performing a large number of complex Multiply-Accumulate (MAC) operations. In
addition, a high-order filter has the potential to degrade the overall performance of the
whole system when some crucial considerations are ignored during the design time. In
the following, we will explain some techniques in order to overcome the above-mentioned
issues to some extent.

An FIR filter periodically calculates the MAC operation as Equation 2.1

y(n) = c(n) ∗ x(n) =
N−1
∑
k=0

c(k)x(n − k) (2.1)

where the y(n) is the filter response, comprising the sum of products of a set of conjugated
coefficients c(k) with the filter input x(n − k) delayed by k samples, on a window whose
length is N . Therefore, we will have the complex operation as Equation 2.2

(Re1 + Im1i) × (Re2 − Im2i) = Re1(Re2 − Im2i) + Im1i(Re2 − Im2i)
= Re1Re2 − (Re1Im2)i + (Re2Im1)i − (Im1Im2)i2

= Re1Re2 + Im1Im2 + (Re2Im1 −Re1Im2)i
(2.2)

where Re1Re2 + Im1Im2 and Re2Im1 −Re1Im2 are the Real and Imaginary calculations
of the I/Q signals, respectively. By taking Equation 2.2 into consideration, we can figure
out that an N -tap complex FIR filter requires 2 ×N multipliers, as well as (2 ×N) − 1
adders to compute the final results. On the other hand, implementing a multiplier requires
more hardware resources than an adder. Additionally, the hardware implementation
of the multiplier is very much slower than the adder, as well. Therefore, there have
been some studies on the possibility to replace a multiplier with the cost of inserting
additional adders. Karatsuba multiplication [36] as well as the Golub’s method [37] were
two famous multiplication methods in which a multiplier can be replaced by three adders.
In Karatsuba multiplication, if we assume P = (Re1 + Im1) × (Re2 − Im2), R = Re1Re2
and I = Im1Im2, we will generate the Equation 2.3 as follows:

P = (Re1 + Im1) × (Re2 − Im2)
= Re1Re2 +Re2Im1 −Re1Im2 − Im1Im2

= R +Re2Im1 −Re1Im2 − I
Re2Im1 −Re1Im2 = P −R + I (2.3)

14 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

Then, the Equation 2.4 is derived as:

(Re1 + Im1i) × (Re2 − Im2i) = (R − I) + (P −R + I)i
= Re1Re2 + Im1Im2

+ [(Re1 + Im1)(Re2 − Im2) −Re1Re2 + Im1Im2]i
(2.4)

Golub’s method can be derived in a similar way to the Karatsuba’s as Equation 2.5

(Re1 + Im1i) × (Re2 − Im2i) = [(Re1 + Im1)(Re2 + Im2) −Re1Im2 −Re2Im1]
+ (Re2Im1 −Re1Im2)i (2.5)

At first glance, both methods require 5 multipliers, the multiplication results for both
Re1Re2 and Im1Im2 are computed once, though. Hence, we can reuse those results in
the other section of the equation.
All these efforts try to replace only one multiplier with the cost of some adders. It is
mainly because of that implementing a complex FIR filter is potentially 4 times more
hardware resource expensive than a real-valued FIR filter. In the next section, we will
investigate which one of these methods is the most suitable one for the target FPGA
device.
Technically, the proposed multicorrelator operates in two different modes. First one is the
high-precision mode in which the multicorrelator employs a MAC-based FIR filter and the
second mode is the low-precision mode in which the multicorrelator degrades the precision
of the filter using a MultiplierLess (ML) method. The multicorrelator reconfigures the FIR
filter block on-the-fly using high-precision alongside the low-precision mode to compute
crosscorrelation and autocorrelation functions, respectively. These two modes are further
inspected in the following subsections.

2.5.4.1 MAC-Based FIR Filter Architecture

In principle, FIR filters are constructed from three fundamental blocks known as multipli-
ers, adders and delay elements. These three blocks can be integrated together in different
shapes, each of them calculates the Equation 2.1. The most straightforward structure
for the FIR filters is the Direct Form (DF) architecture. In DF, the input is propagated
through the delay elements as Figure 2.7a depicts. The DF architecture heavily suffers
from the long critical path in a design with a high-order FIR filter. For example, the
critical path for a 256-tap FIR filter is equal to Tcrit. = Tm +(255×Ta), where the Tm and
Ta are units of time required by the multiplier and adder to compute the corresponding
results, respectively. Hence, we do not study this structure any further and just present
some preliminary results after the synthesis in section 2.8.1.
Figure 2.7b is a well-known enhanced form of the DF architecture which is widely known
as Transposed Direct Form (TDF). Technically, the main difference between TDF and DF
is only the change in the location of the delay elements, as well as inverting the coefficient
elements. Irrespective of the order of the FIR filter, the critical path of the TDF is always
Tcrit. = Tm+Ta since the delay elements cut the long critical path introduced in high-order
filters. However, the TDF architecture may suffer from the long interconnection problem

2.5. The Infrastructure of the Multicorrelator 15

x x x x

++ +

X(n)

C(0) C(1) C(2) C(k)

Y(n)

D D D

(a) The DF architecture suffers from the long critical path

x x x x

D D ++ +

X(n)

C(k) C(k – 1) C(k-2) C(0)

Y(n)

(b) The TDF architecture mitigates the critical path, but potentially suffers
from long input interconnection

Figure 2.7: The most common forms of the FIR filter [P. II] © Elsevier, 2016.

in the input path of a filter with a large number of taps. Moreover, TDF architecture
is not capable of employing ternary adders due to the nature of its structure. We will
explain when and where employing ternary adders are useful in section 2.7 in detail.

Since both DF and TDF architectures have some critical issues in high-order filter designs,
we further investigate two other candidates to mitigate the long critical path, introduced
in DF, along with the long interconnection problem, which is potentially introduced
in TDF. These two methods are known as Parallel Direct Form (PDF) and Pipelined-
Parallel Direct Form (PPDF). Figure 2.8 presents the PDF architecture which is another
alteration to the DF format. Instead of employing a serial chain of adders, the PDF uses
a specific structure similar to binary adders tree in which all the branches are processed in
parallel. Hence, the critical path is limited to Tcrit = Tm+(⌈logN

2 ⌉ × Ta) = Tm+(8×Ta) for
the example 256-tap FIR filter. This architecture does not introduce a long critical path,
while it distributes the long interconnection through the binary tree. Similar to previous
architectures, the PDF form has its own disadvantages of which hardware implementation
complexity is one of the major ones.

The PPDF shown in Figure 2.9 is an enhanced form of the PDF structure in which
all the branches are pipelined. Although both critical path and long interconnection
problems are mitigated in this structure, the resource usage is heavily increased. The
PPDF employs an additional delay element after each addition. Therefore, the critical
path will remain at the minimum level of Tcrit. = Tm + Ta. This architecture also has
the same design complexity as of the PDF, alongside using a huge amount of hardware
resources. Furthermore, this architecture cannot exploit ternary adders due to the nature
of its structure. Further explanation about the ternary adders are given in section 2.8.2
in detail.

16 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

x x x x

+

X(n)

C(0) C(1) C(k – 1) C(k)

D D D

+
x x

+

C(2) C(3)

DD

+ +
++

+
Y(n)

Figure 2.8: The PDF architecture uses a binary adder tree shape [P. II] © Elsevier, 2016.

x x x x

+

X(n)

C(0) C(1) C(k – 1) C(k)

D D D

+
x x

+

C(2) C(3)

DD

+ +
++

+

D D

D D

DD

DD

D

D

D

Y(n)

Figure 2.9: The PPDF architecture employs a bunch of delay elements to minimize both the
critical path and the interconnections [P. II] © Elsevier, 2016.

2.5.4.2 ML-Based FIR Filter

The ML-based FIR filters have recently attracted more researchers since it requires a
very low amount of hardware resources. The ML is an approximate computing technique
where the most of the computations are mitigated [38]. In the context of the FIR
filters, the coefficient multipliers are replaced by adders and shift elements, while the
coefficients are represented in a form of summed powers of 2. According to Saha et al.,
experiences with MATLAB reveal that a sign bit correlation (instead of a full MAC
operation) between the filter input and coefficients, provide sufficient accuracy to detect
the secondary transmitter (autocorrelation) even in low SNR regions [29, 30]. In either
case, the total number of registers, multiplier, and adders are dramatically decreased.
Furthermore, the energy consumption of an ML-based correlator is massively lower than
the MAC-based ones since a significant number of intensive MAC operations are mitigated.
We will further investigate the overall results later on in section 2.8. We also observed
that the hardware implementation of the sign bit correlation was successful to detect
the secondary transmitter. Implementing an ML-based FIR filter is very straightforward
without introducing additional complexity to the design. Hardware implementation of
the sign-bit correlator is a simple XOR or XNOR gate depending on the designer’s choice.
Although the ML-based FIR filter presents satisfactory results to perform autocorrelation

2.6. Partial Reconfiguration 17

function, it still requires more practical studies in the field of communications since it is
an approximate computing method.

2.6 Partial Reconfiguration

Partial Reconfiguration is a powerful ability available on some of the FPGA devices in
which a particular part of the FPGA can be reconfigured, while the remaining parts
are operating normally. Partial Reconfiguration was first available on Xilinx XC6200
devices in 1995 [39]. Later on in mid-2010, Altera Corporation announced that their
newly released 28nm Stratix V FPGA was equipped with a friendly method to do PR
[40]. The PR is a specific feature which enables particular portions of the FPGA to be
reconfigured on-the-fly without disrupting rest of the circuit during the run-time. This
feature reserves a portion of the FPGA to perform PR on that region. The PR region may
have different configurations, as well as the functionality, while everything else outside of
this region has a normal operation. It implies that the PR region is dynamically changed,
while the remaining portions of the FPGA are static.

In this work, the synchronizer employs the PR feature to reconfigure itself to either
perform autocorrelation or crosscorrelation functions on demand. Figure 2.10a illustrates
an example of the multicorrelator infrastructure when it is (re)configured to perform
autocorrelation function. In the same figure, the PR region consists of three identical
multicorrelators. Three is the maximum number of multicorrelators that our target FPGA
device allows implementing on hardware due to the resource constraints. Nevertheless,
fewer multicorrelators can be assigned in PR region depending on the application, as
well as the FFT window. Furthermore, the multicorrelator is (re)configured to detect
any secondary transmission. Therefore, each multicorrelator is (re)configured with ML-
based FIR filters. On the other hand, there are plenty of resources dedicated to each
multicorrelator in the PR region, because each multicorrelator should also be able to
perform crosscorrelation function in the following steps. In addition, since the ML-based
technique is a very low-cost approach, each multicorrelator has sufficient resources available
to perform autocorrelation on a wide-band spectrum. How wide a multicorrelator can be
is totally dependent to other parameters such as the spectrum, FFT window, etc.

Figure 2.10b illustrates a scenario in which two multicorrelators have detected a secondary
transmission, while the remaining one has failed to detect. In this example, the first
multicorrelator alongside the third one is configured to perform crosscorrelation between
the buffered version of the incoming signal and the regenerated time-domain preambles.
Meanwhile, the CR can decide what the second idle multicorrelator should do. For
instance, the CR might allow the idle multicorrelator to keep sensing the spectrum or
release the hardware resources dedicated to the second multicorrelator for other purposes,
e.g. hardware accelerators. Once the connection is disrupted, the PR region is reconfigured
for all the multicorrelators to perform autocorrelation function and this circulation will
be continued.

Another advantage of using PR feature is to set up a multi-standard receiver. Recon-
figuration on-the-fly provides the ability to load various IEEE standards on the system,
at will. For example, a single receiver can set up its parameters to operate in a variety
of IEEE standards (such as 802.11, 802.15, 802.22, etc) without a single change in the
hardware. Using PR feature enables such a CR to be more versatile and powerful than
ever.

18 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

Regenerated
Preamble

Controller

Su
bc

ar
ri

er
 0

PR Region

A
u

to
co

rr
 0

A
u

to
co

rr
 1

A
u

to
co

rr
 k

-1
Su

bc
ar

ri
er

 k
-1

Multicorr-1

A
u

to
co

rr
 k

A
u

to
co

rr
 k

+1

A
u

to
co

rr
 m

-1

A
u

to
co

rr
 m

A
u

to
co

rr
 m

+1

A
u

to
co

rr
 n

-1

Multicorr-2 Multicorr-3
Su

b
ca

rr
ie

r
1

Su
bc

ar
ri

er
 k

Su
b

ca
rr

ie
r

k+
1

Su
b

ca
rr

ie
r

m
-1

Su
bc

ar
ri

er
 m

Su
b

ca
rr

ie
r

m
+

1

Su
b

ca
rr

ie
r

n-
1

Controlling Signals

(a) The autocorrelation function

Regenerated
Preamble

Controller

PR Region
Multicorr-1

Crosscorr.

Multicorr-3

Active Subcarriers Set-2

Controlling Signals

Crosscorr.

Active Subcarriers Set-1

Multicorr-2

(b) The crosscorrelation function

Figure 2.10: The infrastructure of the multicorrelator when employs Partial Reconfiguration
feature to perform either autocorrelation or crosscorrelation functions on demand [P. II] ©
Elsevier, 2016.

2.7 FPGA Constraints

In this section, we further inspect the hardware implementation, as well as the obstacles
one might encounter during the implementation. Although NC-OFDM-based CR brings
a variety of advantages, it has its own challenges and constraints. Some of the most
important hardware constraints are inspected as follows.

2.7.1 Insufficient DSP Blocks

Technically, today’s FPGAs are equipped with several DSP blocks depending on the
family board. DSP blocks can implement chain adders, multipliers and a combination
of both (MAC operations) on the hardware. Practically, DSPs are used to calculate

2.7. FPGA Constraints 19

In
pu

t
R

eg
is

te
r

x

x

In
te

rm
e

d
ia

te
 M

u
lt

ip
le

xe
r

18-bit
Coeff.
Bank

18-bit
Coeff.
Bank

+
-

+
-
Ʃ

O
u

tp
u

t
M

u
lt

ip
le

xe
r

O
u

tp
u

t
R

eg
is

te
r

+
-

Real and Imaginary Signals

18x18

18x18

+
-

+
-

In
pu

t
R

eg
is

te
r

x

x

In
te

rm
e

d
ia

te
 M

u
lt

ip
le

xe
r

18-bit
Coeff.
Bank

18-bit
Coeff.
Bank

+
-

+
-
Ʃ

O
u

tp
u

t
M

u
lt

ip
le

xe
r

O
u

tp
u

t
R

eg
is

te
r

+
-

18x18

18x18

+
-

+
-

Figure 2.11: How the Stratix V cascades two DSP blocks to compute a complex multiplication
[P. II] © Elsevier, 2016.

computationally intensive tasks such as digital filtering algorithms. However, such as
other hardware elements, DSP blocks are finite hardware resources. Hence, utilizing a
DSP block as much as possible is a very important issue from the hardware point of view.
Depending on the FPGA technology, each DSP block tries to perform the MAC operation
in the best efficient way. For example, DSP blocks on the Stratix II and Stratix III FPGA
devices of the Altera Corporation are designed to compute Karatsuba algorithm more
efficient than the conventional method [41]. In contrast to the above-mentioned FPGA
families, Stratix V provides a different mode to calculate MAC operations. Additionally,
Stratix V have a specific mode in the DSP structure to compute complex multiplication as
the traditional method [42]. As we practically observed, DSP blocks of a Stratix V board
are utilized more efficiently in the traditional method than neither Gulob’s method nor
Karatsuba’s algorithm. Numerically, each complex multiplication requires two cascaded
DSP blocks whereas three DSP blocks are required in both Gulob’s and Karatsuba’s
methods. Figure 2.11 presents the infrastructure of a DSP block available on Stratix V
series, as well as how the board cascades two DSPs to compute a complex multiplication.

The FPGA board we employed for prototyping is the Altera FPGA Stratix V family,
series "5SGSMD5K2F40C2N". The maximum number of available DSP blocks for this
series is 1590 units. Moreover, each multicorrelator is able to perform crosscorrelation on
an FFT window size of 256. As mentioned above, each complex multiplication requires 2
DSP blocks to compute the result. Hence, each multicorrelator demands 256×2 = 512 DSP
blocks to operate normally. Therefore, the target FPGA device does not allow the designer
to implement more than three multicorrelators. This is the first limitation for such a
platform from the hardware point of view. However, there are two approaches to tackle
the insufficient DSP problem. A very straightforward solution is to enforce the synthesis
tool to implement the MAC operation on look-up tables instead of implementing in the
DSP. This method has the potential to increase hardware resources up to 10 times more,
while the MAC operation is executed much slower than when the DSP block computes
the results. Another alternative is to degrade the filter precision. For example, one can

20 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

employ several 64-tap FIR filters instead of employing a 256-tap one. This method is also
heavily dependent on the application, as well as the environment.

2.7.1.1 Silicon Area

The silicon area is another concern in such large designs. On FPGA, silicon area is
translated to advanced look-up table based units that form the combinatorial logic of the
design. As previously mentioned, the FIR filter is the most resource-hungry block in the
synchronizer. In the previous subsection, we studied that the DSP blocks are very limited.
In addition, a high-order FIR filter will also exhaust other fundamental components, such
as registers. As the order of the filter becomes larger, the more hardware resources are
required. Potentially, an FIR filter with a large number of taps can occupy most of the
available hardware resources on the target FPGA. It does not allow to implement other
fundamental components of a CR receiver, e.g. FFT, on the same FPGA die.

2.7.1.2 Power Consumption

The total power consumption is mainly depending on three major parameters known
as static power (Ps), dynamic power (Pd) and Input/Output (I/O) power (Pio). Static
power is the power required to operate the FPGA when there is no activity on the circuit.
Therefore, the Ps is almost constant in each design. Pd is the power consumed when
there is an activity on the circuit and transistors are toggling and parasitic capacitors
are charged and discharged. Pio is a magnitude of the power required for a signal to
start from the input, traverses the design and finally reaches to the output. Design issues
such as long critical path, long interconnections, and bad hardware description have a
proportional effect on Pd along with the Pio. As previously explained, a high-order FIR
filter has the potential to carry all the mentioned design issues which proportionally
increase the overall power consumption of the design.

2.8 Experimental Results with Further Discussion

The explained synchronizer block was described using VHDL description language; it
was simulated using ModelSim software and synthesized using Quartus II 12.1 and 15.1
environments. Eventually, the synthesized design was implemented on Stratix V FPGA
device speed grade 2 series. We achieved a preliminary result for each configuration
and, then, we tried to improve the candidates by imposing some optimization techniques
explained in next subsection. The preliminary results are reported by Quartus II 12.1,
whereas the final results are achieved by Quartus 15.1.

2.8.1 Preliminary Results
Table 2.1 shows the preliminary results after synthesizing the multicorrelator configured
with specifically mentioned FIR filter structures in terms of employing Adaptive Logic
Modules (ALMs), DSP blocks, and registers, as well as the maximum achieved operating
frequencies. The TDF configuration shows satisfactory results for the multicorrelator
configured with a 256-tap FIR filter. The DF architecture requires almost the same amount
of hardware resources as TDF, but the maximum operating frequency is not acceptable.
Although the PDF architecture requires only about half of the resource elements and
registers compared to the mentioned architectures, it seems that the long interconnection
in binary adder tree does not allow this architecture to achieve better results than DF.

2.8. Experimental Results with Further Discussion 21

Table 2.1: Preliminary results for the multicorrelator with different configurations [P. II] ©
Elsevier, 2016.

TDF DF PDF PPDF ML
Logic Utilization (ALMs) 12,483 12,490 7504 14,611 1876
Total DSP Blocks 512 512 512 512 0
Total Registers 16,378 16,883 8873 28,037 2886
Max. Freq. [MHz] 237 68 88 240 257

Table 2.2: Power Consumption Analysis (mW) [P. II] © Elsevier, 2016.

TDF DF PDF PPDF ML
I/O Power 22.58 2108.14 33.92 22.86 26.20
Dynamic Power 344.17 200.59 265.89 160.10 9.42
Static Power 1070.06 1062.71 987.12 955.80 951.50
Total Power 1436.82 3371.43 1286.92 1138.75 937.13

The PPDF configuration requires slightly more logic than the TDF and DF, while the
total number of registers is massively increased. Eventually, a multicorrelator with the
ML-based FIR filters shows that it can be the best candidate to perform autocorrelation
function.

Power dissipation analysis is reported based on the results generated by "PowerPlay
Power Analyzer" tool in Quartus II environment. The analyzer reads the Value Change
Dump (VCD) file, which contains signal transaction activities, generated by the ModelSim
software.

Table 2.2 reports the total power consumption for each configuration. The TDF architec-
ture has a higher dynamic power consumption than the other configurations. The DF has
a massive power consumption on its I/O path due to the long critical path. The PDF
architecture was successful to resolve the massive I/O power consumption observed in
the DF structure. The PPDF is the greenest architecture among the MAC-based designs
from the power consumptions point of view. Eventually, the ML architecture once again
shows that it is also a good candidate to perform autocorrelation function in terms of
overall power consumption.

2.8.2 Optimization Techniques and Final Results
In this subsection, we will not study the DF architecture due to showing unacceptable
preliminary results, as well as the ML approach since it is not a robust algorithm
for computing crosscorrelation function. It is worth to recall that since computing
crosscorrelation is computationally much more intensive than the autocorrelation, we try
to minimize the logic utilization, register usage, and power consumption while increasing
the maximum operating frequency in other MAC-based candidates. We employed some
optimization techniques to improve the final results as follows. Henceforth, we will consider
Optimized Transposed Direct Form (OTDF), Optimized Parallel Direct Form (OPDF)
and Optimized Pipelined-Parallel Direct Form (OPPDF) as the optimized version of their

22 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

previously studied architectures, respectively.

HDL Modification: The HDL modification is the foremost step of optimizing a design.
We start modifying the codes to mitigate unnecessary registers, shortening the critical
path, employing parallelism where applicable, etc.

Using Synthesis Tool Advisors: The Quartus II offers a set of advisors (such as tim-
ing optimization advisor, and resource optimization advisor) to the designer to synthesize
the design in the most optimized way. For example, if the designer needs to optimize
the design from power consumption point of view, the Power Optimization Advisor
recommends several ways that may lead the same design to consume less power. We put
our best effort towards the time optimization while keeping the resource optimization
alongside the power optimization at a fair level. Table 2.3 summarizes the maximum
achieved optimizations offered by the previously mentioned advisors.

Using Ternary Adders: In 2005, Altera corporation encouraged digital designers to
employ a ternary adder (3-input adder) structures instead of using binary ones (2-input
adder) in their hardware implementations. According to a whitepaper published by
Altera, exploiting ternary adders not only utilize fewer resource elements but also increase
the maximum operating frequency [43]. Perhaps, in 2005 the synthesis tools were not
mature enough to automatically replace and reroute binary adders with ternary adders.
We also investigate this issue with different configurations of the MAC-based FIR filters.
Although the hardware description of all configurations had been described to employ
binary adders, the Quartus II 15.1 was automatically exploiting ternary adders whenever
it was feasible. In order to discover this issue, we considered the Technology Map Viewer
tools of the Quartus II. Figure 2.12a shows a part of the OPDF architecture where the
ternary adders are employed whereas the Figure 2.12b shows a portion of the OTDF
where the synthesis tool could not replace ternary adders with the binary one. The main
reason that Quartus II failed to use ternary adders is the architectural formation in which
each adder is surrounded by a delay element. The same scenario is valid for OPPDF
architecture. The synthesis tool has become smart enough to replace ternary adders with
binary adders. Describing ternary adders in a binary tree structure (as it is used in PDF
and PPDF architecture) is a very complex and time-consuming task from the hardware
designer’s point of view.

Table 2.3: Summary of the maximum optimization gained by the synthesis tool [P. II] ©
Elsevier, 2016.

TDF OTDF PDF OPDF PPDF OPPDF
ALMs 12,483 8417 7504 7336 14611 9856

Saving +32.57% +2.24% +32.54%
Total Registers 16,378 16,407 8873 8925 28,037 21,197

Saving –0.18% –0.59% +24.4%
Max. Freq. [MHz] 237 258 88 94 240 268

Speed-up +8.86% +6.62% +11.66%
1.09× 1.06× 1.11×

2.8. Experimental Results with Further Discussion 23

(a) The OPDF architecture mainly exploits ternary adder
structure. However, there are still a few binary adders
which could not be implemented as ternary ones

(b) The OTDF architecture can only employ binary adders

Figure 2.12: A snapshot from Technology Map Viewer [P. II] © Elsevier, 2016.

DSP Packing and Intermediate Registers: When we were running timing analysis
on each design, we discovered that not fully utilizing the DSPs is one of the main factors
which jeopardizes the timing optimization. Meanwhile, we found out that each DSP
block employs an embedded output register on the Stratix V board. These registers exist
whether the designer uses them or not. Hence, we modified the HDL code in a way to
exhaust the DSPs as much as possible, including using the free embedded register. Having
utilized the DSPs, which is also known as DSP packing, not only magnificently improved
the timing performance, also significantly affected the logic utilization, along with the
register usages.

Furthermore, we took intermediate register insertion method into account in OPDF
architecture. The OTDF, as well as the OPPTF, could not benefit from this method since
the register elements were distributed between the adders. Hence, some intermediate

24 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

x x

+
+ +

++

+

Y(n)

DR

+
IR

D

DR
x x

+
DRDR

x x

+
DRDR

x x

+
DRDR

IR

+

Complex Multiplications

n lvl
th

3 lvl
rd

4 lvl
th

2 lvl
nd

1 lvl
st

Complex Multiplications

IR: Intermediate Register
DR: DSP Register
D: Delay (Register)

Figure 2.13: How the optimized PDF architecture benefits from DSP packing along with the
intermediate register insertion method [P. II] © Elsevier, 2016.

registers were introduced to the OPDF architecture at certain levels. We discovered
that the best locations for register insertion are at each 3rd level, e.g. 1st level, 4th level,
7th level, etc. Figure 2.13 shows how the OPDF architecture could benefit from both
register insertion and DSP packing to achieve the maximum possible operating frequency.
However, the OTDF and OPPDF architectures are the only ones that could benefit from
the register packing method.

Table 2.4 presents each architecture after considering all the mentioned optimization
techniques to achieve the highest operating frequencies at different temperatures. As the
table shows, the final results are available for all architectures, while the preliminary results
are only considered for the slow model at 85 ℃. Unfortunately, the other modes were not
available for presentation. However, designs in the slow model at 85℃ can be considered
as the most practical situation. Furthermore, it can be observed from the same table that
the OPDF architecture obtained the most benefit from the optimization techniques by
achieving 2.83× speed-up compared to the non-optimized architecture. Following by, the
OPPDF and OTDF could obtain 1.22× and 1.18× speed-ups, respectively, by considering
all optimization techniques.

Table 2.5 reports the power consumption in each cell alongside the total power consumption
figures for each optimized MAC-based architecture in detail. The table depicts that

Table 2.4: The Maximum Operating Frequency Gained for Optimized MAC-Based Architectures

Maximum Frequency [MHz]
OTDF OPDF OPPDF

Preliminary Final Preliminary Final Preliminary Final

Slow Model (SM)
85℃ 237 280 88 249 240 293
0℃ – 289 – 258 – 315

Fast Model (FM)
85℃ – 378 – 347 – 387
0℃ – 404 – 373 – 419

Speed-up at SM 85℃ 1.18× 2.83× 1.22×

2.8. Experimental Results with Further Discussion 25

Table 2.5: The power consumption of each cell after the optimization (mW)

Power Arch. Mem. DSP Comb. Clock Reg. I/O Total
Block Block Cell Enable Cell Power

Dynamic
OTDF 0.61 257.81 2.75 0 5.17 1.43 267.77
OPDF 0.62 143.99 3.22 0 5.87 2.15 155.85
OPPDF 0.62 143.99 3.34 0 7.57 3.91 159.43

Static
OTDF – – – – – 1.11 1.11
OPDF – – – – – 1.11 1.11
OPPDF – – – – – 1.11 1.11

Routing
OTDF 0.01 0.46 23.46 24.84 11.54 19.95 80.26
OPDF 0.02 1.71 2.19 23.83 30.47 0.54 58.76
OPPDF 0.02 4.24 1.60 29.47 34.44 0.50 70.27

Total
OTDF 0.62 258.27 26.21 24.84 16.72 22.49 349.15
OPDF 0.64 145.70 5.41 23.83 36.35 3.80 215.73
OPPDF 0.64 148.23 4.94 29.47 42.01 5.52 230.81

the OPDF architecture achieved the lowest power consumption design with distinction
compared to its counterpart configuration, OTDF, which is the most power-hungry
architecture. Indeed, the power consumption of the OPDF form is drastically increased in
DSP blocks, combinational cells, along with the I/O. Perhaps, the long interconnection,
as well as the lack of exploiting ternary adders are two potential candidates to increase
the overall power dissipation of the OTDF architecture. The reported power dissipation
for the OPPDF architecture is slightly larger than the OPDF one in most of the cases.
Nevertheless, we can categorize OPDF, OPPDF and OTDF architectures as the greenest,
moderate and highest power consumers, respectively.

Figure 2.14 visualized all the achieved results in some bar charts. Figure 2.14a compares
all the MAC-based architectures together in terms of power consumption. As previously
discussed, the OPDF achieved the minimum power consumption within the MAC-based
architectures from dynamic, routing and total powers point of view. Hence, the OPDF
is the best candidate in systems where the power consumption is the limiting factor. In
contrast to OPDF, the OTDF architecture dissipates around 350mW (about 61.85%) more
than the lowest power consumer (OPDF) configuration. Additionally, the OPPDF-based
filter dissipates slightly more power than the OPDF-based one.

Figure 2.14b compares the mentioned architectures together from the resource usage
point of view. Based on the figures, the OPDF architecture requires fewer ALMs, as well
as registers, than the other configurations. Nevertheless, again, the OPDF architecture
is the best choice when the limiting factor is the hardware costs and silicon area. The
OTDF along with the OPPDF architectures introduce a moderate hardware cost to the
system. Hence, there is a trade-off between using either OPPDF or OTDF since OPPDF
is a better choice in terms of ALMs, while the OTDF requires fewer registers.

Figure 2.14c assesses the mentioned configurations from operating frequency point of view
before and after applying optimization techniques. Although the OPDF configuration
was improved the most after applying optimization techniques by reaching to a 2.83×

26 Chapter 2. Reconfigurable IP-Based NC-OFDM Synchronizer Module

Dynamic Power Routing Power Total Power
0

50

100

150

200

250

300

350

P
ow

er
 A

na
ly

si
s

(m
W

)

OTDF
OPDF
OPPDF

(a) Power dissipations
ALMs Registers

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

OTDF
OPDF
OPPDF

(b) Resource usages

Preliminary Results Optimized Results Speed−up
0

50

100

150

200

250

300

M
ax

im
um

 O
pe

ra
tin

g
F

re
qu

en
cy

 (
M

H
z)

TDF
PDF
PPDF

3.0x

2.0x

2.5x

1.0x

0.5x

0.0x

1.5x

(c) Maximum frequencies

Figure 2.14: The hardware costs for each architecture [P. II] © Elsevier, 2016.

speed-up, it could not obtain the maximum operating frequencies achieved by the two
other candidates. Therefore, the OPPDF is the best choice in systems where reaching to
the maximum available operating frequency is a very critical issue.

Table 2.6 presents a fair comparison between the candidates by ranking from 1st one to 3rd

place. The comparison is based on the results which have been discussed so far. Based on
the table, the best candidate for limited silicon area, along with the lowest possible power
consumption is the OPDF form, while the best candidate in a speed-limited environment
is the OPPDF. Eventually, the candidates are prioritized after an overall evaluation.

2.9. Concluding Remarks 27

Table 2.6: MAC-based FIR filter from the designer’s point of view

OTDF OPDF OPPDF
Rank Diff. Rank Diff. Rank Diff.

Silicon Area ALMs 3nd +50.22% 1st 2nd +11.88%
Registers 2nd +44.88% 1st 3nd +51.93%

Total Power 3rd +61.85% 1st 2nd +7.00%
Speed 2nd 0.96× 3rd 0.85× 1st

Overall Evaluation 1st OPDF, 2nd OPPDF, 3rd OTDF

2.9 Concluding Remarks

In this chapter, we mainly described a new architecture for the synchronizer suitable
for Non-Contiguous Orthogonal Frequency Division Multiplexer (NC-OFDM)-based
Cognitive Radio (CR) receiver. In addition, we discussed some fundamental requirements
in NC-OFDM system, as well as the current obstacles and challenges. The contribution
to the state-of-the-art in synchronizer was to employ a multicorrelator to perform both
autocorrelation (for secondary user detection) and crosscorrelation (for packet detection)
functions on demand. Therefore, the multicorrelator had to reconfigure its parameters
during the run-time. In order to do so, we employed Partial Reconfiguration (PR) feature
to reconfigure a particular portion of the hardware on-the-fly, while the rest of the
circuit is operating. Furthermore, the infrastructure of the synchronizer was studied.
Moreover, a wide study on the architecture of the multicorrelator was provided. The
major component of the multicorrelator was constructed based on the Finite Impulse
Response (FIR) filters. Next, the idea behind using the MultiplierLess (ML) approach (to
perform autocorrelation function) was explained. We further presented other Multiply-
Accumulate (MAC)-based configurations to perform crosscorrelation function including
Direct Form (DF), Transposed Direct Form (TDF), Pipeline Direct Form (PDF), and
Parallel-Pipeline Direct Form (PPDF). Then a preliminary synthesis on each configuration
was performed. Subsequently, excluding the DF due to presenting unacceptable results,
we tried to optimize other MAC-based architectures to reach to the maximum possible
operating frequencies, while keeping the overall hardware costs at the minimum level.
Next, a fair comparison before and after applying the optimization techniques, alongside
a wide study on all optimized architecture was presented. Eventually, we discovered that
the Optimized PDF (OPDF) architecture is potentially the most suitable candidate in
various environments, e.g. resource-limited systems. However, based on the designer’s
choice, the environments, as well as the hardware consideration, other candidates had the
potential to be used in hardware description of the multicorrelator.

3 Reconfigurable IP-Based Memory
Management Unit

The content of this chapter is mainly retrieved from publications [P. IV] and [P. V]. In
this chapter, we discuss about design and hardware implementation of a reconfigurable
IP-based MMU. The proposed MMU employs three Translation-Lookaside Buffers (TLBs)
in two levels of hierarchy. The first level is composed of two micro-TLBs, an 8-entry Data
Translation Look-aside Buffer (DTLB) for Data address translations operating in parallel
with a 4-entry Instruction Translation Look-aside Buffer (ITLB) for instruction address
translations. In the second level, an Unified Translation Look-aside Buffer (UTLB) exists
to store the Least Recently Used (LRU) instruction page translations, as well as the
data ones. All the TLBs are scalable during the synthesis time. Moreover, the MMU
can reconfigure itself to operate on different page sizes during the run-time. Similar to
Chapter 2, the hardware implementation issues, as well as some optimization techniques
are widely discussed in this chapter, as well. Furthermore, the overall effect of scaling
the UTLB with different configurations, along with the critical path analysis is inspected.
Next, the integration issues of the developed MMU with a standard RISC processor is
investigated. The case study which the MMU is tightly-coupled with the COFFEE RISC
processor developed by our group.

3.1 The Virtual Memory

Decades ago, one of the major problems of the programmers was to properly fit each
program to the main memory size. Hence, programs larger than the main memory
should be manually fitted to the main memory by the programmer which required extra
efforts. Conceptually, with the introduction of the Virtual Memory (VM), the mentioned
problem was solved to some extent. Having exploited the VM mechanism, the Operating
System (OS) takes responsibility to fit all the programs in the main memory. The VM is
an unreal extension to the main memory in which various applications share the main
memory, even though they are larger than the physical size of the main memory. In
principle, the VM keeps the active portions of a program in the main memory, while
transferring the remaining inactive parts into a secondary storage (such as hard disk) in
the form of several page files. When the program requires access to an inactive portion
stored on the hard disk, the VM provides some hardware-software approaches to relocate
the required page files into the main memory. Indeed, the main memory looks like a cache
for the secondary storage in the concept of VM. [44]

29

30 Chapter 3. Reconfigurable IP-Based Memory Management Unit

3.2 The Virtual Address

Today’s processors operate in two different modes known as Real/Physical mode or Virtual
mode. In real mode, the address produced by the processor refers to an exact location in
the physical memory. Hence, when the processor requires referring to the main memory,
the real/physical address is used. In the virtual mode, the processor produces a virtual
address generated by the OS. The virtual address is intuitively larger than the physical
address. Although the virtual address does not refer to any specific location on the main
memory, the OS provides a hardware-software approach for translating the virtual address
into the physical one.

3.3 How the OS Manages Virtual Addresses

The operating system maintains the page files of a program in a form of a page table
residing in the main memory. Each program has its own page table active on the main
memory. The page table maintains the corresponding physical addresses of the given
virtual ones. When a program requires to access to an inactive portion stored on the
hard disk, the OS searches through the page table to relocate required page files into
the main memory. A page fault occurs when a referenced virtual page is not available
in the page table, meaning that the indexed virtual address does not exist in the main
memory. Consequently, the OS takes control and find the required page in the secondary
storage. Next, the operating system decides where to place the requested page in the
main memory. In general, the OS employs the LRU replacement policy, assuming that a
page which has not been referenced for a while will less likely to be referenced in near
future than a page which has been recently used. A page fault introduces an expensive
penalty for the system since it will take millions of clock cycles to be addressed. [44]

3.4 Memory Management Unit

Technically, the MMU is a piece of hardware which can be implemented either as a part
of the processor or a separate Integrated Circuit (IC). All the memory accesses are passed
through the MMU. The primary feature of the MMU is to provide the procedure of
virtual-to-physical address translation [45]. However, address translation is not the only
application of the MMU. Memory protection, cache control, and fast address translation
are just a few more advantages of a system which employs an MMU. Each MMU contains
a special purpose cache to keep track of the most frequent page translations, known as
Translation-Lookaside Buffer (TLB). It is recommended to explain what the TLB is and
why it is important to employ the TLB, before going further into detail regarding the
infrastructure of the MMU.

In the virtual mode, a program requires to index to the memory twice since the page tables
are maintained in main memory. The first access occurs to obtain the physical address
and the second attempt is to grab the required data. On the other hand, accessing the
main memory, such as load and store, is one of the slowest instructions from the processor
point of view. Searching through the memory blocks, as well as the characteristic of
the main memory are two prominent reasons explaining that. In this situation, a key
to improve the overall performance is to minimize accesses to the main memory. The
first time access to the page table in the main memory is inevitable in order to get the
physical address. But if we store the retrieved physical address in a cache, in the case
of second attempt to the same physical address which is also known as the principle of

3.4. Memory Management Unit 31

locality, the second reference will be addressed by the cache (instead of the memory).
Indeed, the processor does not necessarily require to make the second reference to the
main memory, since the physical address is available in the cache. This special address
translation cache is traditionally called as the TLB.

3.4.1 Related Works

There have been wide studies on the memory management unit due to its versatility.
There are similar works regarding the implementation of an MMU on different FPGA
platforms. In [46], the authors replace the TBL with a 16 million Address Translation
Table (ATT) in a 128MB DRAM memory. The DRAM is resided on a Network Interface
Controller (NIC). Similar to the TLB, the ATT stores a large number of virtual-to-
physical page address translations. Each word of the ATT is 8 byte (64 bits) long. The
NIC is responsible for mapping all the virtual addresses to the physical memory through
a driver. Virtual-to-physical address translation is these systems are potentially energy
expensive since DRAMs are the main candidates in total power consumption [47].

The implementation of an MMU on a Xilinx Vertex 5 FPGA board is studied in [48]. The
mentioned MMU employs a 16-entry TLB, which uses the LRU replacement policy, to
store virtual-to-physical page address translations. Furthermore, the authors observe that
employing a small size TLB with only 4-entry would improve the overall performance of
the system. The TLB returns the physical address in two clock cycles in the case of a
successive translation. Moreover, updating an entry of the TLB will take 16 clock cycles.
The miss penalty in the same design is heavily depended on the status of the OS. The
best case, as well as the worst case miss penalty is reported as 600 and 227,000 clock
cycles, respectively.

In [49], a reconfigurable architecture is proposed which takes into account a TLB with
512 entries, along with a Direct Memory Access (DMA) to perform virtual-to-physical
address translation mechanism. A TLB hit would take place in 4 clock cycles whereas
a miss penalty would take thousands clock cycles. In the case of a miss, the TLB
is deactivated, while an interrupt is immediately issued to the processor. Once the
operating system resolves the miss, the TLB will return to normal mode to address page
translations mechanism. The authors claim that the hardware implementation of the
mentioned TLB improves the overall performance up to 5 times faster than the pure
software implementation of the same design.

3.4.2 The Proposed MMU

In this work, we concentrate on developing a reconfigurable IP-based MMU which can be
integrated to any standard RISC processor. The term "reconfigurability" is referring to a
portion of the MMU which can reconfigure itself to operate on different page sizes. In
addition, the developed MMU employs three TLBs in two levels of hierarchy similar to
the theory of caches. Scalability is another feature offered by the MMU to the system
designer. All the TLBs are simply scalable during the design-time which introduces the
maximum flexibility to the system. Another motivation behind this work is to integrate
the developed MMU with the COFFEE RISC processor. One of the primary disadvantages
of the COFFEE core was the lack of a memory management unit for the OS [50]. The
integration issues are explained step by step in the following sections.

32 Chapter 3. Reconfigurable IP-Based Memory Management Unit

31240

Effective Page Number (EPN) Offset

31N0

EPN Offset

39N+80 8

PID

Translation Look-Aside
Buffer (TLB)

Real Page Number (RPN) Offset

31N0

MMU

Process ID Register

Effective Address

Virtual
Address

Physical
 Address

Process ID (PID)Reserved

Virtual Page Number (VPN)

Figure 3.1: The address translation mechanism in the virtual mode [P. IV] © IEEE, 2015.

3.4.3 How the MMU Operates

Depending on the processor mode, the MMU operates either in real or virtual mode. In
the real mode, as previously discussed, the 32-bit Effective Address (EA) is considered
as a physical address which requires no translation. Nevertheless, the MMU does not
process anything and bypasses the EA to the main memory. In contrast to the real mode,
in the virtual mode, the MMU needs to translate the EA generated by the processor.

Figure 3.1 illustrates the virtual address translation mechanism step by step. The EA
consists of two segments known as Effective Page Number (EPN) followed by an offset.
During the translation, the MMU employs a combination of the EPN with an 8-bit Process
ID (PID) field to form the Virtual Page Number (VPN). The PID is a non-negative
identification number, uniquely assigned to each active process. The PID is driven from
the PID register to resolve the overlapped area between several processes in virtual
space. The MMU indexes to the TLBs with recently generated VPN. In the case of a
successive hit in any TLBs, the Real Page Number (RPN) number is extracted from the
corresponding TLB. Then, it is concatenated with the offset to form the physical address.
The processor can now refer to the main memory using the physical address generated by
the MMU.

In the EA, the boundary of the EPN and the offset fields are distinguished by the value N
(see Figure 3.1). The magnitude of N is embedded in 3 specific bits within the EPN field
known as the page size. We will further investigate the bit fields of the EPN, including the
page size, in the following sections. Indeed, the MMU has no prior information regarding
the page size of the virtual address before extracting the bits in the page size field. Once
the page size bit field is revealed, the MMU reconfigures itself to operate relatively on a
particular page size. Next, the MMU separates the offset field from the EA, considering
the remaining bits consist the EPN field. In this implementation, the MMU is capable of

3.5. The Infrastructure of the MMU 33

64- Entry UTLB

4-Entry ITLB 8-Entry DTLB

Hardware-Managed
 Interfaces

Software-Managed
Interface

Main Memory

Page Table

MMU

Processor

Figure 3.2: The basic organization of the page table residing in main memory along with the
MMU.

reconfiguring itself to map 8 different page sizes, including 1, 4, 16, 64, and 256KB, as
well as 1, 4, and 16MB, from the virtual space into the physical one.

3.5 The Infrastructure of the MMU

Figure 3.2 illustrates a basic scheme of the MMU and how it interacts with the page
table. As previously explained, the page table residing in the main memory is completely
managed by the software (the OS). Furthermore, the software manages the UTLB with 64
entries (the default format), however, it is located very close to the processor. Indeed, any
modification to the UTLB, including initialization, validation, and entry replacements,
is completely performed by the operating system. In addition to the UTLB, the MMU
employs two micro-TLBs. By default, the MMU is configured with a 4-entry ITLB along
with an 8-entry DTLB to cache the latest instruction and data address translations,
respectively. Only the hardware (MMU) manages both micro-TLBs; initialization, entry
replacement and validation is performed by the MMU. The fundamental idea behind using
micro-TLBs is discussed in [51] in detail. Principally, the MMU exploits micro-TLBs to
minimize the access conflicts of both data and instruction page translations, as well as
speeding up the overall performance of the system.

3.5.1 TLB Organization
Figure 3.3 depicts the infrastructure of the MMU in more detail. In the real mode, the
MMU just forwards the EA to the main memory assuming that the addressing is in real
mode. In the virtual mode, the MMU first generates the VPN by concatenating the
PID with the EA[EPN]. Next, the MMU inspects the corresponding micro-TLB to find a
match with the generated VPN. In the case of a match, the MMU combines the RPN
extracted by the micro-TLB with the offset to form the physical address. If a match was
not found in the micro-TLB, subsequently, the MMU examines the UTLB. In the case
of a hit, the physical address is produced in the same way to that of micro-TLBs. If a
match was not found in the UTLB either, the MMU makes an exception to the operating
system in order to report the cause. The entire translation process is carefully monitored
by a controller. Moreover, the controller manages both hardware and software sides to
modify the content of the TLBs. As a recall, each TLB has the following attributes:

The UTLB: The default configuration for the UTLB is 64-entries with a fully associative
scheme. It is scalable during the synthesis time. The UTLB is fully managed by the
operating system.

34 Chapter 3. Reconfigurable IP-Based Memory Management Unit

ITLB
Inst.
RPN

0

EA: Effective Address
EPN: Effective Page Number
RPN: Real Page Number

DTLB
1

 Data EA
(EPN + Offset)

1

0

UTLB

 Inst. EA
(EPN + Offset)

Data
RPN

1

0

0

1

MMU

Miss

Miss

Update

Inst. Miss

Data Miss

Update

Ctrl Miss

OS Link

Update

Figure 3.3: The infrastructure of the MMU with more details [P. IV] © IEEE, 2015.

The micro-TLBs: The ITLB/DTLB contains 4/8 entries to cache the most frequent
instruction/data page translations. Same as the UTLB, the micro-TLBs are scalable
during the synthesis time. Both micro-TLBs are managed by the MMU (hardware).

3.5.2 TLB Entry Organization
As Figure 3.4 presents, each entry in a TLB contains necessary information with respect
to the virtual attributes, as well as the physical ones. Hence, each entry is divided into
two sections, TLBHI which contains information about the virtual space alongside the
TLBLO which contains the physical address attributes of the corresponding page. Each
entry consists of 68 bits of which the first 36 bits are assigned to the TLBHI, and the
remaining 32 bits are considered as the TLBLO. Technically, some of the bit fields which
in both TLBHI and TLBLO (including U0, W, I, and M) are ignored in the virtual mode.
Nevertheless, the most important bit fields are briefly explained as follows:

• TAG: The 22-bit "TAG" field is compared with the VPN[EPN]. The length of the
comparison is defined by the page size.

• Page size: The 3-bit "page size" specifies the boundary between the offset and the
EPN. It also clarifies how many bits in the TAG field should be compared with the
given EPN. In this field, the value 0b000-0b111 respectively defines the range of the
page size from 1KB to 16MB.

3.5. The Infrastructure of the MMU 35

02122242526272835

0212224 2329 27 2831 30

U0TID E V Page Size TAG

Real Page Number (RPN)EXWRZPRWIMG

TLBLO (Mostly Physical Attributes)

TLBHI (Mostly Virtual Attributes)

Figure 3.4: The organization of each entry in a TLB [P. IV] © IEEE, 2015.

• V: The single-bit "V" specifies whether the current page is valid in the main memory.

• E: The single-bit "E" defines the ordering of the bytes whether the page is accessed
as little-endian or big-endian.

• TID: The 8-bit "TID" field is compared with the PID field of the current VPN.

• RPN: The 22-bit "RPN" represents the real page number of the corresponding VPN.
The MMU generates the physical address using the RPN field.

• EX: The single-bit "EX" defines whether the instruction is executable (access
control).

• WR: The single-bit "WR" indicates whether the page is read-only or writable (access
control).

• ZPR: The 4-bit "ZPR" field selects one of the 16 different zone fields in the Zone
Protection Register (ZPR) (access control).

• G: The single-bit "G" investigates if the current page is guarded. The term "guard"
refers to a situation in which the speculative memory access such as instruction
pre-fetch is prohibited.

3.5.3 Index Examination
As Figure 3.5 presents, an index to each TLB is examined in several steps to generate the
physical address. Irrespective to the type of the TLB, all the entries are examined to find
a match. In brief, a hit will occur when the index passes all the following examinations:

1. The TLB first investigates whether the corresponding entry is valid in the main
memory before comparing other bit fields.

2. Then, the comparison between TLBHI[TID] and VPN[PID] is performed.

3. Next, the TLBHI[TAG] of the TLB is examined with the VPN[EPN] field of the
index. The length of the comparison is based on the value given by the TLBHI[page
size].

36 Chapter 3. Reconfigurable IP-Based Memory Management Unit

TLBHI[V] = 1

TLBHI[TID] = 0x00

YES

TLBHI[TID] = VPN[PID]

NO

TLBHI[TAG] = VPN[EPN]
Based on TLBHI[SIZE]

YES

 YES

Checking Access
Violations

YES

Checking Storage
Violations

 Inst.

Obtaining
TLBLO[RPN]

Not Guarded

 Not Allowed

 NO

 NO

 NO

Storage Violation

Access Violation

Entry Miss

Entry Miss

Entry Miss

Guarded

Generate Physical
Address

TLBLO[RPN] + Offset
TLB Hit

TLB
 M

ISS

 Register insertion point 1

Register insertion point 2

R
eg

is
te

r
in

se
rt

io
n

po
in

t
3

 The Critical Path

Start

Data

Granted

In
terru

p
t

Figure 3.5: How an index examines the TLB. The longest critical path starts from checking
TLB Entry to Generate Physical Address which is more visible in the UTLB. Register Insertion
Points are the most suitable locations for inserting intermediate registers to minimize the critical
path.

4. Eventually, the access violations followed by the storage violations are investigated.

In addition, TLBHI[TID] = 0x00 (see Figure 3.5) defines the current entry is a process-
independent page translation, meaning that the page is accessible by all processes from
the OS point of view. Hence, the comparison with the VPN[PID] is mitigated for these
type of pages. In case a match between TLBHI[TAG] and VPN[EPN] was found, the
corresponding TLB will check the access control bit fields. Next, the instruction VPNs
should also be further examined to check whether the current page is not guarded, whereas
the data VPNs bypass this stage. Moreover, Figure 3.5 presents the longest critical path,
along with the register insertion technique exploited to minimize the critical path. We
will further discuss about the timing analysis in the following Section 3.6.

3.6. FPGA Implementations 37

Examining
ITLB

ITLB hit?

MSR[DR]= 1

YES

Examining
DTLB

DTLB hit?

MSR[IR]= 1

YES

Examining
UTLB

No
Translation

NO

NO

Data EA

Instruction EA

Extract RPN UTLB hit?

Instruction/Data
Exception

NO

Update
ITLB/DTLB

YES

YES

NO

NO

Extract RPNYES

Th
e

M
M

U
 is

 R
e

co
n

fi
gu

re
d

to
 G

en
er

at
e

th
e

 V
PN

Figure 3.6: The virtual address translation flowchart

3.6 FPGA Implementations

The MMU is an IP module capable of reconfiguring itself on-the-fly to generate the
appropriate VPN address under the control of the page size bit field of the EA[EPN].
Furthermore, all the TLBs are configurable and scalable during the synthesis time. We
further investigate how scaling the UTLB would affect the overall performance. Therefore,
we consider various configurations for the UTLB including 16, 32 and 64 entries.

3.6.1 Instruction/Data Page Translation Flow
Figure 3.6 illustrates how the MMU translates a virtual address into the physical one.
The processor references to the MMU with both instruction and data virtual addresses.
In the real mode, the MMU just bypasses both instruction and data addresses, being sure
that both references are physical addresses which do not require translation mechanism.
In the virtual mode, the MMU first distinguishes the offset and the EPN, followed by
reconfiguring itself to operate on a proper page size. The MMU employs two specific
bits (IR and DR) from the Machine State Register (MSR) to know in which mode the
processor is running. Next, the MMU examines the appropriate micro-TLB to find a
match with the corresponding VPN. It means that the MMU redirects the instruction
address to the ITLB, whereas a data instruction is redirecting to the DTLB. In the case
of a match, the RPN is extracted from the corresponding micro-TLB. In the other case,
there is a miss occurred in the micro-TLB, meaning that the MMU should now investigate
the UTLB to find the match. Additional delays are introduced to the system in the case
of a micro-TLB miss. Similar to the hit in a micro-TLB, a successive RPN is generated
after the UTLB hit. Meanwhile, the MMU is updating the micro-TLB in which the
miss has occurred. In the case of a UTLB miss, the MMU reports an exception to the
operating system via the interrupt handler. Accordingly, the MMU determines for what
reason the miss was occurred, i.e. UTLB miss due to a missing entry, access violations,
or storage violations (only for instruction pages).

In this implementation, we consider that the data address translation has priority over
the instruction address translations. For example, in the case of simultaneous micro-TLB
misses, the UTLB will address the DTLB miss, followed by the ITLB miss. We anticipate
that the missing data would block the pipeline for the later instruction. Hence, the
instruction fetch is not so urgent compared to the data.

38 Chapter 3. Reconfigurable IP-Based Memory Management Unit

Table 3.1: Minimum cycle counts for each virtual-to-physical address translation in an ideal
case [P. IV] © IEEE, 2015.

Data Instruction
Micro-TLB hit 2 2
Micro-TLB miss, UTLB hit 5 5-7
Micro-TLB miss, UTLB miss 11 11-13

Table 3.1 reports the minimum clock cycle counts in each instruction/data address
translation. A micro-TLB hit (real page extraction) occurs only in 2 clock cycles. In the
case of a micro-TLB miss→UTLB hit, the physical address is generated within 5 clock
cycles for the DTLB, and 5 to 7 clock cycles for the ITLB in the case of a simultaneous
miss with the DTLB. If a miss also occurs in the UTLB, the fastest time that the OS
can resolve the cause is 11 clock cycles for data and 11-13 clock cycles for instruction
virtual addresses in an ideal case. The ideal case refers to a situation where the OS has
the ability to instantly update the MMU. However, how the operating system resolves the
cause is entirely depended on the status of the OS. Typically, today’s operating systems
can handle the situation in hundreds or even thousands clock cycles. Perhaps, future
technologies, such as prediction, might lead to a point that the OS can update the MMU
in a faster way.

When a miss is reported by the UTLB, the MMU issues an interrupt to the interrupt
handler module. Consequently, the processor enters the real mode, while it informs the
MMU by clearing the appropriate bit fields in the MSR. During the interrupt handling
process, the MMU is disabled since all the references to the MMU are physical addresses.
Once the operating system updates the MMU with the required instruction/data page
address, the processor shall (re)enter the virtual mode. Having updated the UTLB, the
MMU invalidates micro-TLBs by clearing the TLBHI[V] bit at each entry to protect
instruction/data consistency between micro-TLBs and the UTLB.

3.6.2 The Critical Path Reduction
The default configuration for the UTLB in the MMU is 64 entries. As earlier explained,
we experienced scaling the UTLB with three design-time configurations of 16, 32 and 64
entries. What we discovered was the fact that the performance of the MMU configured
with 64-entry UTLB was drastically lower than other configurations. It is mainly caused
due to a large number of entries. As a rule of thumb, the larger the number of entries,
the longer the inspection time. Indeed, the hardware circuit is always bounded by the
slowest operation of the design. Hence, we exploited two techniques to minimize the
critical path, as well as breaking large computational tasks into several subtasks: Register
Insertion (RI) and Parallel Computing, respectively.

The Register Insertion technique is quite similar to the one earlier discussed in Chapter
2.8.2 and is shown in Figure 2.13. The Register Insertion technique is one of the most
promising solutions to cope with long critical paths in a design. The most recommended
location for Register Insertion is visible in Figure 3.5.

The Parallel Computing is a technique exploited in computationally intensive tasks in
which most of the calculations are executed concurrently. In Parallel Computing, a large
computational task is divided into two or more subtasks which are inherently independent.

3.6. FPGA Implementations 39

 1 to

 (+1) to N

+ (N/2)

Row_Number_1

Row_Number_2

Index_Hit_1

Index_Hit_2

Index_Hit

Row_NumberN

N
2

N
2

1
2
3

Figure 3.7: How to minimize the complexity of searching an index in the UTLB using Parallel
Computing technique [P. IV] © IEEE, 2015.

Back to the UTLB implementation, Figure 3.7 presents how the UTLB exploits Parallel
Computing to minimize the complexity of searching an index through the N number of
entries. In this figure, an N -entry TLB is split into two sub-TLBs. During the index
examination, the corresponding TLB searches for a matched entry in both sub-TLBs
simultaneously. Once a hit occurs in either of the sub-TLBs, the corresponding physical
attributes of the matched entry are simply extracted by the MMU. This method is
very similar to unfolding technique widely used in DSP implementations. It is worth

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Number of References

H
it

R
at

io
(%

)

64-entry
32-entry
16-entry
Max
Max
Max

99.35%

57.42%

9.17%

Figure 3.8: The hit rate with different number of entries in the UTLB for 200 random
references after the boot-up. The curves are the smoothed version of original ones for intervals
of 10 references [P. IV] © IEEE, 2015.

40 Chapter 3. Reconfigurable IP-Based Memory Management Unit

mentioning that parallelization has the potential to increase resource usage to some extent.
Nevertheless, we only break the examination task at the UTLB into only two levels of
parallelization in order to reach to the target operating frequency, while maintaining
the hardware cost at an acceptable level. Indeed, the MMU could achieve the target
operating frequency of 200MHz with 2 levels of parallelization. In that respect, further
information is provided in section 3.8.

3.6.3 The Effect of Scaling the UTLB
As earlier mentioned , the MMU is configured with 16/32/64-entry UTLB in order to
observe the effect of scaling the UTLB on the overall performance. Figure 3.8 depicts how
the UTLB with different configurations responds to a subset of 200 stochastic numbers
(including repetitive sequence) after the boot-up. The stochastic numbers present the
worst-case scenario for the MMU, while better results are expected in real applications.
Furthermore, we assume that all the references to the MMU have 1KB in page size and
all the references are accessible. The random number generator is designed based on
the specifications given in [52]. Primarily, we used random numbers to demonstrate the
behavior of the overall system.

As Figure 3.8 illustrates, roughly the first 15 references to the UTLB are not returned by
any hit due to the presence of compulsory misses. It seems that the operating system fills
the UTLB with different references for approximately the first 15 references. Thereafter,
future references have the potential to be returned with a hit since the UTLB is loaded
with several entries. Based on the curves in the same figure, the 16-entry UTLB does not
present acceptable result due to a large number of capacity misses. The 32-entry UTLB

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

Number of References

H
it

R
at

io
(%

)

DTLB
ITLB
Max
Max

48.9%

63.2%

Figure 3.9: The effect of employing micro-TLBs for the same 200 random data/instruction
patterns after the boot-up. The curves are the smoothed version of original ones for intervals of
10 references, as well [P. IV] © IEEE, 2015.

3.7. Integration Issues 41

Ext_handler

Instruction
Cache

Data
Cache

PCB

Bus
Controller

Interrupt
Handler

Ext_interrupt : (7:0)

Offset : (7:0)

Int_done

Int_ack

Bus_req

Bus_ack

clk

i_addr : (31:0)

i_word : (31:0)

i_cache_miss

d_cache_rd

d_cache_wr

d_cache_miss

data : (31:0)

d_addr : (31:0)

pcb_rd
pcb_wr

reset_x_out

stall
rst_x

boot_sel

Boot
Controller

Coprocessor_1 Coprocessor_2 Coprocessor_3 Coprocessor_4

cop_port : (40:0)cop_exe : (3:0)

COFFEE
RISC
CORE

Figure 3.10: The integration of the COFFEE RISC core [P. V] © Springer, 2016.

seems more responsive to the same test vector, however, the approximately 57% hit rate
is still not acceptable. We anticipate that the 32-entry UTLB has the potential to be
employed in some real applications. The UTLB configured with 64 entries seems very
promising to respond to the same test vector with 99% hit rate. In addition to that, the
64-entry UTLB shows a very stable hit rate after approximately 130th reference onwards.
It implies that the same hit rate is expected for larger test vectors.

3.6.4 The Effect of Employing Micro-TLBs
We applied the same test vector, that we used to examine the UTLB, to evaluate whether
using micro-TLBs would be beneficial for the MMU. As Figure 3.9 illustrates, both DTLB
and ITLB respond to the worst-case scenario (random numbers) to some extent. However,
quite many compulsory and capacity misses do not allow the micro-TLBs to offer hit rate
more than 63% and 48% in DTLB and ITLB, respectively.

3.7 Integration Issues

This section provides some essential information how the developed IP-based MMU can
be integrated to any standard RISC computer. The case study is the COFFEE RISC
processor which is described in Appendix A. Figure 3.10 presents a black box view of the
COFFEE processor in which the main components required for integrating the MMU are

42 Chapter 3. Reconfigurable IP-Based Memory Management Unit

more visible. Technically, there are two alternatives to integrate the MMU with the target
processor. One possible solution is to integrate the MMU via the co-processor interface.
Architecturally, the COFFEE references to the data of each co-processor within a 64-entry
shared register bank of which each co-processor accesses to 16 (32-bit) registers. However,
the address space in each co-processor is adequately wide to address all the required
registers at the MMU. One of the primary drawbacks of the co-processor interface is the
complicated timing issues which potentially occur in case the MMU is integrated with
the core over the co-processor bus. Another constraint is the fact that the core cannot
simultaneously reference to a co-processor to request for both data and instruction virtual
address translations. It means that both data and instruction address translations can
not be concurrently referenced.

The other alternative is to integrate the IP-based MMU via the Peripheral Control
Block (PCB) interface. The PCB interface offers some advantages over the co-processor
bus. The foremost one is that no timing issue will be arisen during the translation process.
The main reason is that the PCB interface is directly integrated to the shared memory
bus. Another advantage is the faster access to the required data, specially when the OS
updates the MMU. In addition, the fundamental idea in the design of the COFFEE core
is to integrate peripheral modules such as the MMU via the memory-mapped shared data
bus. Nevertheless, we will explain how to create a wrapper to integrate the MMU with
the COFFEE processor via the PCB interface in the next subsection.

3.7.1 Hardware/Software Interconnections

Figure 3.11a illustrates the IP-based MMU as a black box. The most of the I/O ports
are named with appropriate labels in order to improve the readability. The input port
user_mode indicates whether the current state of the processor is in either user mode or
super-user mode. The super-user mode, also known as privileged mode, is a specific mode
typically used by the operating system. In super-user mode, the OS can manipulate all
the registers (such as ZPR) alongside overriding access and storage controls. The user
mode refers to a situation when the processor is executing other applications. Indeed, not
all the registers are accessible in this mode. As a recall, since the TLBHI consists of 36
bits, we broke the TLBHI field in two segments TLBHI_1 and TLBHI_2. Moreover, the
operating system informs the MMU to replace the new entry at the UTLB through the
TLBSX input signal. In addition, all the OS links in the same figure are 32 bits wide.

The MMU requires all the input ports shown in Figure 3.11a to successfully translate
a virtual page into the physical one. However, several input ports, in particular the
ones related to the OS, are not physically provided by the core. Indeed, there is no
physical connection between the OS and the processor. In general, one possible way to
exchange data between the processor and the OS is to use a set of specific registers in
the processor accessible by the operating system. Hence, the OS reads/writes from/to
some of those specific locations in the processor and, subsequently, the processor hands
over the latest updates to the MMU. Finally, the MMU updates the UTLB with recently
achieved information from the processor. In order to provide the above-mentioned links,
we need to use a wrapper to mimic some missing inputs for the MMU, along with the
processor’s specific registers.

Figure 3.11b presents the wrapper (infrastructure of the PCB block) surrounding the
MMU. In addition, a register bank is included in the wrapper which resembles the specific
register of the processor where the OS can communicate with. The wrapper also includes

3.7. Integration Issues 43

clk
rst_n
user_mode
UTLB_wr_en
MSR[IR]
MSR[DR]

i_real_addr
d_real_addr

ZPR
PID
TLBSX
TLBLO
TLBHI_1
TLBHI_2

Control Signals

MMU
Black Box

no_access
guarded

i_addr_miss
d_addr_miss

i_addr
d_addr

H
ar

d
w

ar
e

Li
n

ks
O

S
Li

n
ks

(a) The MMU as a black box

i_real_addr

d_addr : (31:0)

i_addr : (31:0)

d_real_addr

i_addr_miss

d_addr_miss

data_in : (31:0)

pcb_rd

pcb_wr

ZPR

PID

TLBSX

TLBLO

TLBHI_1

TLBHI_2

 Controller

PCB Block (wrapper)

MMU

Register Bank

Address
Decoder

user_mode

Control
Signals

Control
Signals

no_access

guarded

(b) The infrastructure of the PCB block

Figure 3.11: How a wrapper integrates the MMU with the COFFEE core. The OS links
are presented as a register bank in which the TLBLO, TLBHI_1 and TLBHI_2 are atomic
operations. The status of the processor is indicated through the signal user_mode [P. V] ©
Springer, 2016.

a controller to monitor all the transactions. In the following, the infrastructure of the
wrapper is explained in detail.

In the first step, the COFFEE processor does not provide the user_mode signal for the
MMU. Hence, one integration challenge is to find a way to update the MMU with the
current status of the processor. The COFFEE core has an 8-bit read-only register known
as Processor Status Register (PSR) in which the first bit, PSR[0] or PSR[UM], provides
the user with the current status of the processor. Fortunately, the required information

44 Chapter 3. Reconfigurable IP-Based Memory Management Unit

can be obtained by digging into the hardware description of the core. Hence, the user is
permitted to modify the hardware description of the core to suit their interest due to the
open-source nature of the COFFEE core.

The input signal pcb_rd driven from the processor indicates the addressing mode. When
the processor logically sets the pcb_rd = ’0’, the current addressing mode of the core
is real. Hence, no translation is required and, consequently, the input i_addr/d_addr
is redirected to the corresponding output port i_real_addr/d_real_addr. The logical
value ’1’ on the pcb_rd informs the controller that the current addressing mode is virtual.
Thus, the controller sets the MSR[IR]/MSR[DR] to the logic ’1’, informing the MMU to
translate the references.

In the virtual mode, once the MMU fails to translate the given address due to a miss,
the corresponding miss signal (instruction, data or both) is set. The COFFEE core
is informed about the cause through the i_addr_miss/d_addr_miss output ports. In
other cases, i.e. access and storage violations, the PCB block interrupts the core via the
external interrupt ports (no_access and guarded signals in Figure 3.11b). We will further
explain how the PCB block can interrupt the core later on. In any case of failure, the
PCB informs the core, meaning that the operating system should resolve the issue. Next,
the core acts as follows:

• The port user_mode is cleared to logic ’0’ to give the control to the operating
system.

• The port pcb_rd is immediately cleared to turn off the address translation.

• The port pcb_wr is set to ’1’, as soon as the operating system is ready to update
the MMU.

As earlier studied in subsection 3.7.1, the operating system can communicate with the
processor via a set of specific registers of the processor. The COFFEE RISC core
exploits some specific register banks such as Core Configuration Block (CCB) and PCB
(see Appendix A). The OS can communicate with the processor via the CCB register
bank. The address range of the CCB is 256 subsequent addresses starting from "0001
0000h" ending to "0001 00FFh". At this stage, CCB registers that the operating system
communicates with is not a concern of the MMU.

The next 256 consecutive addresses are employed by the COFFEE core to reference to
the PCB block. Nevertheless, the base address of the PCB is initially set by Hexadecimal
value "0001 0100h" after the boot-up, followed by the next 256 consecutive addresses (up
to "0001 01FFh"). We can roughly state that the operating system can communicate with
the PCB block through the core in that way. In this implementation, we assumed that the
OS references to the register bank in the wrapper (ZPR, PID, TLBSX, TLBLO, TLBHI_1
and TLBHI_2) via the address range "0001 0100h" to "0001 0105h", respectively. Once the
input signal pcb_wr is set to logic ’1’, the controller is informed that the operating system
is willing to communicate with the MMU. Nevertheless, the controller employs the address
decoder block to update the appropriated block of the register bank. The eight least
significant bits of the d_addr indicate which field of the register bank is being updated.
For example, the value "0001 0102h" on the d_addr bus indicates that the operating
system is willing to update the contents of the TLBSX register. The only exceptional
condition during the updating process is that the operating system should update the
TLBLO, TLBHI_1 and TLBHI_2 together in an atomic operation. Atomic operations

3.7. Integration Issues 45

PCB

ext_interrupt : (7:0)

i_addr : (31:0)

i_word : (31:0)

i_cache_miss

d_cache_miss

data : (31:0)

pcb_rd
pcb_wr

COFFEE
RISC
CORE d_addr : (31:0)

d_addr : (31:0)

data : (31:0)

i_word : (31:0)

Instruction Cache

Data Cache

d_cache_rd

d_cache_wr

i_cache_miss

i_addr : (31:0)

d_cache_miss

not_valid

user_mode

d_cache_rd

d_cache_wr

d_real_addr

d_addr_miss

i_addr_miss

i_real_addr

guarded

Figure 3.12: PCB integration with COFFEE RISC core. The PCB employs two bits of the
Ext_interrupt signal to interrupt the core. Adding two OR gates requires to modify the hardware
description of the core interfaces [P. V] © Springer, 2016.

are not permitted to be suspended by any means. Once the OS finishes updating the
register bank, the pcb_wr signal is cleared and the controller subsequently applies the
changes in the register bank to the MMU via the UTLB_wr_en (see Figure 3.11a).

3.7.2 Integrating the MMU With the COFFEE Core
As previously mentioned, the PCB interface has priority over the co-processor interface
to integrate the MMU with the COFFEE. Figure 3.12 shows a block diagram how the
MMU can be integrated with the core via the PCB interface. The data address bus
d_addr, as well as the instruction address bus i_addr, are connected to the data and
instruction caches via the PCB block. The core manages the behavior of the MMU
via the pcb_rd and pcb_wr ports in order to prohibit unintentional read and write to
the MMU. When the MMU experiences an access/storage violation, it can interrupt
the core via the not_valid/guarded external port. Technically, the MMU reports the
violation causes to the core via the last two available slots of the ext_interrupt interface.
Unfortunately, there was no available signal to integrate the instruction miss, alongside
the data miss via the ext_interrupt port. Hence, a new method should be implemented to
inform the core about the missing virtual pages. Once again, we modified the hardware
description of the core, this time the interfaces. We employed the instruction/data cache
miss ports to inform the core that there is a missing page in the MMU. However, the
i_cache_miss, alongside the d_cache_miss interface is reserved for the real cache misses.
Hence, two simple OR gates (as Figure 3.12 shows) could resolve the conflict between the
external outputs of the caches and the MMU. At this stage, the new challenge is how the
processor can distinguish, e.g., whether the asserted miss is relevant to the cache or the

46 Chapter 3. Reconfigurable IP-Based Memory Management Unit

Table 3.2: How the Register Insertion, as well as Parallel Computing improves the overall
performance of the 64-bit UTLB [P. V] © Springer, 2016.

Baseline Register Parallel
MMU Insertion Computing

Worst Critical Path (ns) 6.164 5.154 4.935
Clock Skew (ns) –0.054 –0.130 –0.020
Maximum Freq. (MHz) 163.59 193.09 200.80
Speed-up – 1.18× 1.23×

MMU. In this situation, we assume that the processor refers to the ext_interrupt port.
If both guard and no_access signals are asserted, the incoming miss is asserted by the
MMU. Otherwise, the miss is reported by the corresponding cache. Indeed, the controller
overrides both guard and no_access signals to inform the processor about the miss. This
scenario requires a heavy modification to the hardware description of the core. Hence,
we have already postponed the mentioned assumption for the future when the operating
system is completely provided for the core.

3.8 Synthesis Results

The following results are based on the same specifications and environment explained in
Chapter 2, section 2.8. Table 3.2 presents the critical path analysis of the MMU configured
with 64-entry UTLB. The RI technique increased the maximum operating frequency to
193MHz (about 18% speed-up). However, the RI introduces few extra delays during the
translation process. The second level of the optimization, parallel computing, could rise
the operating frequency above 200MHz (23% speed-up), meaning that the design could
meet the ultimate operating frequency target. Hence, the MMU configured with 64-entry
UTLB is the main interest in our design. The negative clock skew reveals that the MMU
can potentially operate slightly slower than the introduced timing constraints.

Table 3.3 compares different configurations of the MMU with each other. The maximum
operating frequency achieved by each configuration is about to 200MHz, 229MHz, and
267MHz, respectively for the MMU configured with 64-,32- and 16-entry UTLB. Although
the MMU with 16-entry UTLB is the lightest implementation and the fastest design,
the massive number of misses (compulsory and capacity misses) degrade the overall
performance to the point that we do not recommend this architecture. The MMU
configured with 32-entry UTLB has a decent potential to be employed in some practical
applications. The MMU configured with 64-entry UTLB is the main target of our
interest since it has a high performance and it could meet our target operating frequency
(+200MHz).

Table 3.4 compares all architectures together in terms of energy consumption. All the
configurations have almost the same figure for the static energy consumption, as well as
the I/O one. The static energy is a characteristic of the FPGA chip, not the design. The
dynamic energy consumption of the 32-entry UTLB is trivially more than the 16-entry
UTLB, while the 64-entry UTLB almost doubles the dynamic energy consumption in
comparison with 32-entry UTLB. It is interesting that the overall energy consumption
of the 32-entry UTLB is lower than the 16-entry UTLB. Moreover, the total energy

3.8. Synthesis Results 47

Table 3.3: Summary of implementing MMU with different configurations [P. V] © Springer,
2016.

Memory Management Unit
UTLB_64 UTLB_32 UTLB_16

Logic Utilization (ALMs) 3,459 2,092 1,373
Total Registers 5,263 3,221 2,213
Maximum Freq. (MHz) 200.80 228.57 267.38

consumption of the 64-entry UTLB is slightly more than the other two candidates.

Table 3.4: Energy consumption analysis for the first 200 references (µJ) [P. V] © Springer,
2016.

Thermal Energy
Memory Management Unit

UTLB_64 UTLB_32 UTLB_16
Static 14291.10 14278.20 14275.95
Dynamic 326.25 167.85 145.65
I/O 431.55 427.20 454.80
Total 15048.90 14873.25 14876.25

Table 3.5 reports the total energy consumption in each module with more detail. Since the
result for the static energy in all configurations was quite similar and it is a characteristic
of the FPGA chip, we exclude those results in this correspondence. Overall, the statistics
show that both micro-TLBs consume very trivial energy compared to the rest of the
components. The UTLB with 64 entries has a large impact on overall energy consumption
of the system.

Table 3.5: Energy consumption of each component for the first 200 references (µJ) [P. V] ©
Springer, 2016.

Dynamic Energy Routing Energy Total Energy
64 32 16 64 32 16 64 32 16

MMU 78.45 73.95 100.65 120.90 81.90 70.50 199.35 155.85 171.15
ITLB 7.80 7.95 7.50 4.65 4.20 4.65 12.45 12.15 12.15
DTLB 13.95 14.55 15.40 8.10 8.85 9.15 22.05 23.40 24.55
UTLB 81.15 29.10 18.45 75.30 11.10 11.85 156.45 40.20 30.30
Ctrl. 0.60 0.75 0.75 9.00 4.95 3.45 9.60 5.70 4.20
Total 181.95 126.30 142.75 217.95 111.00 99.60 399.90 237.30 242.35

Table 3.6 depicts the final summary of the system after integrating the COFFEE processor
with the MMU configured with 64-UTLB. The final implementation requires 8403 ALMs
of which about 55% is the hardware cost of implementing the core, 43% is employed by
the MMU, while the remaining 2% ALMs is used in other components such as memory

48 Chapter 3. Reconfigurable IP-Based Memory Management Unit

interfaces and tri-state buffers. In addition, the overall system requires 10,884 registers of
which about 50.5% are used by the COFFEE, while the remaining 49.5% are employed
by the MMU. Moreover, the COFFEE RISC processor requires 57% of the combinational
Adaptive Look-Up Tables (ALUTs), while about 40% is needed by the MMU. It is worth
mentioning that integrating an MMU configured with 64-entry UTLB is as hardware
expensive as the COFFEE core itself.

Table 3.6: Summary of the hardware implementation of the COFFEE processor integrated
with the MMU [P. V] © Springer, 2016.

ALMs
Total Combinational

Registers ALUTs
COFFEE 4,635 (55.16%) 5,493 (50.47%) 6,425 (57.25%)
MMU 3,594 (42.77%) 5,382 (49.45%) 4,535 (40.41%)
Other Blocks 174 (2.07%) 9 (0.08%) 263 (2.34%)
Total Design 8,403 10,884 11,223

Table 3.7 summarizes the maximum achieved operating frequency separately for the
COFFEE, MMU and the integration of both. It is significantly important that the
COFFEE core could successfully achieve the same operating frequency after the integration
in the most practical environment (slow model at 85℃). The speed-optimized version of
the COFFEE could run at 180MHz operating frequency, while this frequency is degraded
by 2MHz, to 178MHz, after the integration. Moreover, the same table presents the worst
critical path analysis of the COFFEE, MMU and the integration of both components in
detail. It seems that the critical path of the design is propagated through the processor
elements rather than the MMU. The 0.366ns positive slack in the core implies that the
post-fit netlist can potentially meet the timing constraints introduced to the analyzer. On
the other hand, the MMU alongside the COFFEE+MMU could roughly meet the timing
requirements. Overall, the most speed-optimized version of the processor integrated with
the MMU offers a negligible degradation in performance.

3.9 Concluding Remarks

This chapter presented developing an IP-based reconfigurable Memory Management Unit
(MMU) on FPGA. The MMU was capable of reconfiguring itself to operate on different
virtual page sizes, including 1, 4, 16, 64, 256KB, 1, 4, and 16MB. In addition, the MMU
employed several Translation-Lookaside Buffers (TLBs) in two levels of hierarchy. In the
first level, there were two hardware managed micro-TLBs working in parallel to cache
a subset of latest instruction and data virtual page translations, respectively. In the
second level, a software managed Unified TLB (UTLB) existed to cache the most recently
used instruction and data address translations. All the mentioned TLBs were design-
time configurable to offer the maximum flexibility to the MMU. Next, we experienced
the effect of scaling the UTLB in different sizes (with 16, 32 and 64 entries) on the
overall performance including hit rate, maximum operating frequency, resource usage,
and energy consumption. We further investigated the critical path analysis, as well as
some optimization methods such as concurrency and register insertion to minimize the
critical path in order to reach to the target operating frequency. The MMU configured
with 64-entries UTLB showed satisfactory results making it the preferred choice. In the

3.9. Concluding Remarks 49

Table 3.7: Maximum operating frequencies as well as the worst critical path analyses of the
COFFEE, MMU and their respective integration [P. V] © Springer, 2016.

COFFEE MMU
COFFEE+

MMU

Maximum
Slow 85℃ 180 200 178

Frequency
Model 0℃ 188 214 182

(MHz)
Fast 85℃ 267 295 253
Model 0℃ 289 318 271

Worst Data Delay 5.604 4.935 5.716
Critical Interconn. Delay 4.077 3.623 4.313
Path Cell Delay 1.527 1.312 1.403

Analysis Clock Skew -0.035 -0.020 -0.007
(ns) Time Slack 0.366 0.020 0.072

next step, we investigated how to integrate the MMU to our target RISC processor, the
COFFEE core. The integration required to modify the hardware description of the core
to extract some crucial information such as processor status. In addition, a wrapper was
needed to incorporate software accessible registers in the COFFEE core. Integrating
the MMU with the COFFEE RISC core did not degrade the overall performance of the
processor in terms of operating frequency. The 2MHz loss in the operating frequency
was the only degradation of the core in the most practical environment. Eventually, the
hardware implementation results after the synthesis were presented with respect to the
hardware costs, energy consumption, etc.

4 Reconfigurable IP-Based Controller
Area Network Module

The content of this chapter is extracted from the Publication [P. VI]. In this chapter,
we mainly emphasize on developing a reconfigurable Controller Area Network (CAN)
module. The CAN module is developed as an IP block integrable to any RISC processor,
in particular, the COFFEE core. The synthesis results show that the CAN module is a
very low-cost component which also consumes very low energy to operate. Later on, we
will employ the CAN module as a co-processor loosely-coupled with the COFFEE core.
This integration increases the versatility of the COFFEE core, even for the industrial
purposes.

4.1 Background

The Controller Area Network (CAN) is an in-vehicle serial communication protocol
developed by Bosch in mid-1980s [53]. The CAN protocol is an asynchronous serial
communication system based on the principle of Carrier Sense Multiple Access/Collision
Resolution (CSMA/CR) media access control [54]. The CAN protocol has a simple and
robust bus architecture which is capable of operating up to 1Mbps rate. The CAN
protocol is very practical in microcontroller-based systems where two (and more) nodes
can communicate with each other without the supervision of a master node. Prior to the
invention of the CAN, electronic devices used point-to-point wiring system to transfer
data, which significantly increased the overall cost of the system. Potentially, the CAN
protocol reduces the cost of a system by a factor of thousands. For example, a high-end
luxury vehicle consumes 5km wires which is weighted over 100kg [55]. With the advent
of the CAN protocol, point-to-point wiring system is simply replaced by a twisted pair
medium to provide an efficient solution to the long and heavy wiring problems posed in
modern vehicles. Figure 4.1 illustrates a system in which all the nodes are connected
together via the CAN protocol.

4.2 Motivation

As discussed in previous chapters, the COFFEE RISC core is an open-source embedded
processor. The processor has proved its versatility in embedded computing tasks, including
telecommunication, embedded computing, etc. The ultimate goal is to make the core
more versatile even for industrial purposes. For example, imagine an environment where
the life of the technician steering a heavy industrial machinery is being jeopardized. We
are intending to deploy the system in such a way that the technician can remotely control
the truck through an industrial joystick, while the COFFEE processor maintains the

51

52 Chapter 4. Reconfigurable IP-Based Controller Area Network Module

Micro-
controller

CAN
Controller

Transceiver

Micro-
controller

CAN
Controller

Transceiver

Micro-
controller

CAN
Controller

Transceiver

Node 1 Node 2 Node N

High

Low

CAN Bus

Figure 4.1: A CAN-based system. Reconstructed from [56].

machinery by detecting, receiving, and extracting the issued command. The technician
can be either in a cockpit close to the machinery (using physical media) or the machine
can be remotely controlled via the wireless media. In that respect, Bayilmis et al. have
developed a platform in which the CAN2.0A was segmented over the IEEE 802.11b
wireless Local Area Network (LAN) [57]. In another study, Shin et al. have proposed a
hybrid network composed of a CAN protocol and ISA100.11a (industrial wireless standard)
[58].

4.3 CAN Protocol Specification

Early in the 1990s, CAN protocol was standardized as an alternative solution to replace
in-vehicle point-to-point wiring system. Nowadays, the CAN protocol is used in other
devices such as aircraft engines, medical equipment, and cameras. CAN protocol enables
real-time control mechanism in the system while maintaining the security at the highest
level. The CAN protocol has many advantages of which a few of them are listed as follows
[59]:

• Low Cost: CAN provides an inexpensive communication channel, so that each node
has a single interface instead of several inputs.

• Lightweight Network: The CAN bus consists of a simple twisted pair with almost
unlimited number of nodes attached to it.

• Broadcast Communication: All the nodes can see the transmitted message on the
bus; many of them drop the message, while few of them decide to process the data.

• Prioritized Messages: All the CAN-based nodes are prioritized. Therefore, each
message has its own priority, meaning that a node with higher priority transmits
the data on the shared bus.

• Robust Error Handling: The CAN protocol employs the Cyclic Redundancy Check
(CRC) to perform error handling. In addition, when a node detects an error, it will
broadcast an error frame over the bus to inform other nodes.

• Easy to Maintain: Nodes can simply be added/removed from the network without
introducing additional cost and complexity to the system.

4.4. The Structure of a CAN Frame 53

• Bit Overriding Mechanism: Messages on the CAN bus are broadcast either as
a recessive bit (logic ’1’) or dominant bit (logic ’0’) where the dominant bit can
override the recessive bit.

4.4 The Structure of a CAN Frame

In general, four types of the frame can be broadcast in a CAN-based system. These four
types are categorized as follows:

- Data Frame: is used to transmit the message of a node to another one.

- Remote Frame: is transmitted by any node which requires data from another node.

- Error Frame: is broadcast by any node over the CAN network to all nodes in the
case of detecting an error.

- Overload Frame: is used when the receiving node cannot process all the receiving
information being sent to it.

In this correspondence, we mostly emphasize on data frames since extracting messages
is the first priority of the system. However, readers interested to discover more about
other CAN frames are advised to refer to [60] in which Lawrenz has provided a wealthy
reference.

4.4.1 Standard Data Frame
Figure 4.2a depicts the standard format of a data CAN frame. The first segment of each
CAN frame is a single bit Start-of-Frame (SOF). Following the SOF, an 11-bit arbitration
field is represented. This field is also known as identifier and it is unique for each node.
The identifier reveals the identity of the node, priority of the message, and the logical
address of the node. The 7-bit control field indicates information with respect to the
type of the frame, whether it is a remote frame (Remote Transmission Request (RTR)),
and if the identifier field is extended (Identifier Extension (IDE)). There is also a bit
reserved for future extension. The next following 4 bits (Data Length Code (DLC)) in
the control field determine the data length. The length of the data field varies between
0-8 bytes for each packet. The 16-bit CRC field is transmitted following the data. The
CRC field confirms the integrity of the entire frame against different type of errors. The
next three bits are CRC delimiter, Acknowledge (ACK), along with the ACK delimiter,
respectively. The last 7 bits in a standard data CAN frame are the End-of-Frame (EOF)
which reports the transmission is terminated. It is worth mentioning that the EOF, as
well as the delimiters, is presented as a sequence of recessive bits.

4.4.2 Extended Data Frame
Figure 4.2b illustrates the extended data frame. The overall structure of this frame
is quite similar to the standard one, except the identifier field. In the extended mode,
the arbitration field is extended to 29 bits. Hence, the extended frame is capable of
addressing up to 229 = 536,870,912 nodes. The CAN module identifies an extended
frame when it receives a recessive IDE (IDE=’1’), and the standard frame when the IDE
is sent as dominant (IDE = ’0’). In this implementation, the CAN module is able to

54 Chapter 4. Reconfigurable IP-Based Controller Area Network Module
SO

F

11-bit R
TR

ID
E

=
 ’0

'

R
B

0 4-bit
DLC

0 Byte to 8 Bytes 15-bit

C
R

C
 D

e
l.

A
C

K

7 bits, all ’1'

Identifier Control Data CRC End of Frame

A
C

K
 D

e
l.

(a) Standard data frame can support up to 211
= 2048 number of nodes.

Identifier Control Data CRC End of Frame

SO
F

11-bit SR
R

ID
E

=
 ’1

'

R
B

1 4-bit
DLC

0 Byte to 8 Bytes 15-bit

C
R

C
 D

el
.

A
C

K

7 bits, all ’1'

A
C

K
 D

e
l.

18-bit R
TR

R
B

0

Data Control

(b) Extended data frame can support up to 229
= 536,870,912 number of nodes.

Figure 4.2: Data frames: standard frame as well as the extended frame

reconfigure itself to operate either on standard frames or extended frames during the
run-time. However, the default configuration of the module is to operate on standard
data frames. In addition, the extended frame employs an additional bit in the control
field known as Substitute Remote Request (SRR). This bit is always set as recessive
to prioritize the standard frame over the extended one in the case of two simultaneous
arbitrations.

4.4.3 Bit Stuffing

In essence, any sequence of 5 consecutive bits of the same level should be followed by
an opposite bit level. This procedure is called bit stuffing. The only exception is in the
EOF field in which 7 recessive bits are transmitted at the end of the frame. Otherwise, a
bit stuffing error is reported by the receiving node. The receiving node ignores the bit
stuffing error, while the EOF is being transmitted.

4.5 Design Considerations

Decades ago, one could integrate a CAN-based product using either a standard controller
chip, a standard microcontroller with a built-in CAN interface, or even an ASIC with
CAN interface. Today, a better solution is added to the ones mentioned above which are
the FPGA-based CAN modules [61]. So far, there have been many studies on IP-based
CAN interfaces, however, researchers are still finding new solutions to improve the overall
performance of the CAN interface module. We also developed our CAN-module as an
IP block for a variety of reasons of which full compatibility with our target processor
(COFFEE) is one of the most prominent ones. The main reason is that the COFFEE
processor is made by our research group, hence, we know how the core behaves in different
situations. We will further investigate the compatibilities later on. Nevertheless, designing
a fully compatible CAN interface is one of the main interests. In addition to that,
integrating the IP-based CAN module is not only limited to the COFFEE core. It is
integrable with any other standard RISC processor, as well. Another advantage of the
CAN module is that it can be (loosely) coupled with the COFFEE core via a dedicated
co-processor slot. Therefore, there will be no additional overhead on the memory-mapped
data bus since the co-processors are connected to the core via the co-processor bus.
Henceforth, we refer to the CAN module by using the term "CAN co-processor".

4.5. Design Considerations 55

SOF Arbitration Field RTR

Control Data

Node 1
ID: 11100101XXX

Node 2
ID: 11100100100

Node 3,
ID: 1110011XXXX

Node 4,
ID: 111001001XX

CAN Bus Level
11100100100

10 9 8 7 6 5 4 3 2 1 0

Figure 4.3: How the CAN nodes are prioritized to access the media.

4.5.1 Arbitration
In a CAN system, each node can simultaneously transmit data while listening to the media.
Figure 4.3 presents how each node accesses the shared media based on the prioritized
arbitration field. The identifications of the nodes are assigned by the system designer.
The highest priority is defined in the LSB bits of the arbitration field. It means that a
node with a dominant bit in the LSBs has the priority over the other ones with recessive
bits. For example, consider the ID of the Node 2 "11100100100", alongside the Node 1
"11100101XXX" in the same figure. Since Node 2 transfers a dominant bit in the fourth
LSB (ID[3]), it overrides Node 1 whose ID[3] is a recessive bit. Accordingly, Node 1
learns that another node with higher priority is transmitting at the same time, hence,
it immediately stops its transmission. Henceforth, nodes with lower priorities, as well
as the silent ones are the receivers of the message. The CAN bus is always granted to a
node with the highest priority message.

4.5.2 Data Management
The COFFEE processor exploits four co-processors which share 64 numbers of 32-bit
registers (4×16). In addition, we studied that the length of a CAN message varies between
0 to 8 bytes. In this implementation, the co-processor always provides the core with
8-byte data (64 bits), irrespective to the data length. Hence, the processor should refer
to the co-processor in two consecutive attempts to obtain the entire data. On the other
hand, there is a possibility that the processor is interrupted between the first and second
attempts to the corresponding co-processor. Therefore, the co-processor is designed to
enter the standby mode to prevent register overwriting in case the core is interrupted.
Hence, the second reference from the processor to the co-processor is returned with the
appropriate portion of the data. Data coherency is guaranteed by the co-processor as
follows.

When the processor refers to the co-processor to fetch the data, it should read two specific
registers from the co-processor shared register bank. Hence, the processor keeps the signal
cop_rd set for two consecutive clock cycles. In case the processor is exactly interrupted at

56 Chapter 4. Reconfigurable IP-Based Controller Area Network Module

Farid Shamani

Shared

RegisterBank

clk

rst_n

cop_rd

cop_wr

r_index (4:0)

cop_exe (3:0)

data (31:0)

C

O

F

F

E

E

CAN_clk

data_bus

ack

error

C

A

Nc_index (1:0)
CAN

Co-Processor

ack

error

Figure 4.4: The integration of the co-processor with the COFFEE core, as well as the CAN
system [P. VI] © IEEE, 2016.

the second reference, the processor will clear cop_rd. Instantly, the co-processor is alerted
about the cause and it changes the state to standby mode. In this mode, any permission
to write to the destination registers in the register bank is denied by the co-processor.
Instead, the co-processor starts buffering the incoming packet. Once the internal buffer
of the co-processor is about to overflow, the co-processor immediately interrupts the core
in case the processor has not referenced the co-processor yet.

4.5.3 Error Handling
There are four types of errors that can occur in a CAN-based transmission. The co-
processor is designed to detect and broadcast to all nodes when one of the following fault
containments occurs.

• bit error : happens when the transmitted bit differs from what the receiving node
expects, e.g. the data length is more than 8 bytes.

• form error : When the general format of the frame is altered (e.g. wrong logic value
in delimiters).

• bit stuffing error : occurs when 6 consecutive bits of the same type have been found
by the receiver (excluding the EOF).

• Acknowledge error : happens when the transmitter never receives an acknowledge
from the receiver.

• CRC error : is detected by the receiver when the computed value in the CRC field
is different from the received CRC.

The transmitter is able to detect the bit error, along with the acknowledge error, whereas
the receiver detects the form error, bit stuffing error, and CRC error. As soon as an error
is found by a node, an error frame is broadcast to the network, thus, all other nodes will
be notified about the cause.

4.6. The FPGA Implementation and Integration 57

4.6 The FPGA Implementation and Integration

Despite the MMU, the CAN co-processor is simply integrated with the COFFEE processor
without introducing any additional complexity. In addition, the core provides all the
necessary signals to read/write from/to the co-processor. Figure 4.4 depicts how the
co-processor is integrated with the COFFEE core, as well as to the CAN system. The
co-processor operates with two different clock domains, one is driven from the core (clk)
and the other one is globally driven from the CAN system (CAN_clk). The processor
can read/write from/to the co-processor using the co-processor data bus. The processor
communicates with the co-processor by using cop_rd and cop_wr signals. From the
instruction set point of view, the communication between the processor and co-processors
is performed with movtc and movfc instructions. Moreover, the processor refers to the
shared co-processor registers by using signal r_index. The 2-bit c_index selects one
of the four available co-processors. In this implementation, we employed the fourth
co-processor slot to integrate the CAN module with the COFFEE processor. Hence, the
logical value "11" on the c_index signal refers to the fourth co-processor slot. Furthermore,
the co-processor interrupts the core via the cop_exe interface, e.g. in case the internal
buffer is overflowing. On the other side of the co-processor entity, the CAN module
can communicate with the rest of the nodes via the shared CAN bus. Furthermore, we
extracted the ack, along side the error signal for the future use.

4.7 Synthesis Results

Similar to the MMU and NC-OFDM synchronizer, the same setting and environments are
used to analyze the hardware implementation costs of the CAN co-processor. Table 4.1
provides the maximum achieved operating frequency of the co-processor in two different
temperatures when the design is running on either slow or fast mode. As studied in
previous chapter, the most practical environment is the slow model at 85℃. The co-
processor has the potential to operate at about 490MHz, while this figure is changed to
825MHz in the fast mode at the lower temperature. However, the circuit is restricted to
the maximum operating frequency of 713MHz due to the limited toggling rate in the clock
tree. It means that the FPGA board cannot offer more operating frequency than 713MHz
in this design. Moreover, long interconnections are the main sources of introducing delays
to the circuit.

Table 4.2 illustrates the hardware costs introduced by the co-processor, alongside the
energy consumption of receiving and decoding one standard data frame. Implementing the
co-processor on FPGA adds only 321 ALMs (7.12% additional cost) and 441 (8%) registers
more to the system where the COFFEE is running. In terms of energy consumption, the
co-processor has a very low energy consumption to receive, decode and extract the data
of a standard data frame. It is worth mentioning that the co-processor consumes about
6% of the total energy for dynamic and I/O activities.

4.8 Concluding Remarks

In this chapter, the FPGA implementation of a run-time reconfigurable module capable
of communicating over the Controller Area Network (CAN) protocol was discussed.
Moreover, the developed module was integrated with the COFFEE RISC core as a
loosely-coupled co-processor. The co-processor reconfigures itself during the run-time to
operate on different data packets, i.e., standard and extended packets. The co-processor

58 Chapter 4. Reconfigurable IP-Based Controller Area Network Module

Table 4.1: The maximum operating frequencies, along with the worst critical path analysis [P.
VI] © IEEE, 2016.

Co-processor
Slow 85℃ 493 (MHz)

Maximum model 0℃ 523 (MHz)
Frequency Fast 85℃ 733 (MHz) restricted to 673 (MHz)

model 0℃ 825 (MHz) restricted to 713 (MHz)
Worst Cell Delay 0.825 – 40.54%
Critical Interconn. Delay 1.210 – 59.46%
Path Data Delay 2.035 – 100%
Analysis Clock Skew -0.019
(ns) Time Slack 0.071

Table 4.2: Summary of the implementation in detail [P. VI] © IEEE, 2016.

COFFEE Co-processor Info
ALMs 4503 321 7.12% overhead
Total Registers 5439 441 8% overhead
Static Energy – 327.33 (µJ) 93.82%
Dynamic Energy – 11.19 (µJ) 3.21%
I/O Energy – 10.36 (µJ) 2.97%
Total Energy – 348.88 (µJ) 100%

guarantees the integrity of the data in some exceptional situations such as two non-
consecutive references from the processor. In that case, the co-processor changes the state
to the standby mode to prevent the data registers being overwritten. Another advantage
of this integration is that since the co-processor communicates with the core over the
co-processor bus, no additional overhead is introduced to the memory-mapped data bus.
Hence, the data bus stays as idle as possible. The synthesis results were presented in terms
of hardware costs, maximum operating frequency, as well as the energy consumption.
The co-processor introduced 7%-8% overhead to the hardware costs, along with a trivial
increase in energy consumption. The main achievement of this implementation is the new
ability of the COFFEE core to communicate with CAN-based peripheral devices. The
integration increased the versatility of the target processor even in industrial usages.

5 Conclusion

The main contribution of the author of this thesis was to research hardware acceleration
and develop different Intellectual Property (IP)-based modules integrable to any standard
Reduced Instruction Set Computer (RISC)-based processor. The ultimate goal of this
thesis was to improve the versatility of a particular processor named the COFFEE RISC
core developed by the same research group at Tampere University of Technology.

The overall structure of this thesis was based on the research on hardware acceleration
methodology. The design, implementation, and integration of several IP-blocks which were
loosely/tightly-coupled with the COFFEE processor were carried out as the case study.
Each IP block improved the versatility of the COFFEE core in embedded applications.
In addition, the author made his best effort to provide valuable references for future
extensions for the COFFEE processor.

5.1 Main Results

There were several achievements obtained in this research work. On the hardware
acceleration methodology and architectures, one achievement was the state-of-the-art
in developing a synchronizer block suitable for future wireless communications. The
synchronizer was able to reconfigure itself on-the-fly using Partial Reconfiguration (PR)
feature. The COFFEE RISC processor is now capable of employing the developed
synchronizer to detect, receive and extract the data segment of a wireless packet in
a Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-OFDM) system.
However, the synchronizer is mainly practical in a complete receiver framework. For
example, the COFFEE can exploit the NC-OFDM synchronizer in parallel with other
components such as Fast Fourier Transform (FFT) block to act as a receiver for future
wireless technology. Such blocks have also been developed by the research group.

The second achievement of this work was the development of a configurable Memory
Management Unit (MMU). The MMU enabled the virtual-to-physical address translation
mechanism for the COFFEE. Moreover, the MMU employed several Translation Look-
aside Buffers (TLBs) in two levels of hierarchies to speed up the address translation
mechanism. Prior to this integration, the COFFEE was not able to manage any operating
system, however, it is now possible to port an operating system (such as Linux) on the
target processor. Porting an operating system is one of the absolute targets in the future.

The third achievement in this work was the development of an IP module as the Controller
Area Network (CAN) protocol. The CAN module had the ability to reconfigure itself
during the run-time to operate on the different type of the CAN-based data frames.
Technically, the CAN module had a very light design with trivial energy consumption.

59

60 Chapter 5. Conclusion

The CAN protocol is widely known as an in-vehicle protocol. Having integrated the CAN
module, the COFFEE processor has become more versatile even for industrial purposes.

5.2 Future Developments

As stated earlier, there are still open research opportunities remaining to be resolved. One
of the main contributions of the future research is developing and porting an operating
system (such as Linux) for the target processor. This might be slightly challenging since
developing an embedded operating system requires both hardware and software skills
to understand the overall behavior of the system. Another future extension to the core
is to develop the entire receiver architecture on one FPGA. This development is also
very challenging since resource allocation is very critical in that system. Due to the
complexity of synchronization in NC-OFDM systems, the synchronizer itself requires a
lot of hardware resources to operate appropriately. Perhaps the PR feature could be an
alternative solution to alleviate this problem.

Bibliography

[1] C. Brunelli, “Design of Hardware Accelerators for Embedded Multimedia Applica-
tions,” Ph.D. dissertation, Tampere University of Technology, 2008.

[2] M. Platzner, “Reconfigurable computer architectures,” e&i Elektrotechnik und
Informationstechnik, vol. 115, no. 3, pp. 143–148, 1998. [Online]. Available:
http://dx.doi.org/10.1007/BF03159565

[3] K. Compton and S. Hauck, “Reconfigurable computing: A survey of systems and
software,” ACM Comput. Surv., vol. 34, no. 2, pp. 171–210, Jun. 2002. [Online].
Available: http://doi.acm.org/10.1145/508352.508353

[4] G. Estrin, “Organization of computer systems: The fixed plus variable
structure computer,” in Western Joint IRE-AIEE-ACM Computer Conference, ser.
IRE-AIEE-ACM ’60 (Western). New York, NY, USA: ACM, 1960, pp. 33–40.
[Online]. Available: http://doi.acm.org/10.1145/1460361.1460365

[5] C. Bobda, Introduction to Reconfigurable Computing: Architectures, Algorithms, and
Applications, 1st ed. Springer Publishing Company, Incorporated, 2007.

[6] R. Tessier, K. Pocek, and A. DeHon, “Reconfigurable computing architectures,”
Proceedings of the IEEE, vol. 103, no. 3, pp. 332–354, March 2015.

[7] C. Brunelli, F. Campi, J. Kylliäinen, and J. Nurmi, “A Reconfigurable FPU as IP
Component for SoCs,” in Proceedings International Symposium on System-on-Chip,
Nov 2004, pp. 103–106.

[8] L. Harju, “Programmable Receiver Architectures for Multimode Mobile Terminals,”
Ph.D. dissertation, Tampere University of Technology, 2006.

[9] R. Airoldi, “Design and Implementation of Software Defined Radios on a Homo-
geneous Multi-Processor Architecture,” Ph.D. dissertation, Tampere University of
Technology, 2013.

[10] F. Garzia, “From run-Time Reconfigurable Coarse-Grain Arrays to Application-
Specific Accelerator Design,” Ph.D. dissertation, Tampere University of Technology,
2009.

[11] J. Kylliäinen, T. Ahonen, and J. Nurmi, “General-Purpose Embedded Processor
Cores – The COFFEE RISC Example,” in Processor Design: System-On-Chip
Computing for ASICs and FPGAs, 1st ed., J. Nurmi, Ed. Springer Publishing
Company, 2007, pp. 83–100.

61

http://dx.doi.org/10.1007/BF03159565
http://doi.acm.org/10.1145/508352.508353
http://doi.acm.org/10.1145/1460361.1460365

62 Bibliography

[12] J. Acharya, H. Viswanathan, and S. Venkatesan, “Timing Acquisition for Non
Contiguous OFDM Based Dynamic Spectrum Access,” in 3rd IEEE Symposium on
New Frontiers in Dynamic Spectrum Access Networks, Oct 2008, pp. 1–10.

[13] A. F. Molisch, “Cognitive Radio,” in Wireless Communications. John Wiley &
Sons, 2012, ch. 21, pp. 501–520.

[14] J. Gao, X. Li, W. Wang, and Y. Bai, “Non-Contiguous Channel Bonding for TVWhite
Space Usage With NC-OFDM Transmission,” Wireless Personal Communications,
vol. 86, no. 2, pp. 385–401, 2016.

[15] Y. Xing, H. Kushwaha, K. P. Subbalakshmi, and R. Chandramouli, “Codes
and games for dynamic spectrum access,” in Cognitive Radio, Software
Defined Radio, and Adaptive Wireless Systems, H. Arslan, Ed. Dordrecht:
Springer Netherlands, 2007, ch. 6, pp. 161–187. [Online]. Available: http:
//dx.doi.org/10.1007/978-1-4020-5542-3_6

[16] Z. Kollar and P. Horvath, “Physical Layer Considerations for Cognitive Radio:
Modulation Techniques,” in IEEE 73rd Vehicular Technology Conference (VTC
Spring), May 2011, pp. 1–5.

[17] I. Budiarjo, H. Nikookar, and L. P. Ligthart, “Cognitive Radio Modulation Tech-
niques,” IEEE Signal Processing Magazine, vol. 25, no. 6, pp. 24–34, November
2008.

[18] S. Feng, H. Zheng, H. Wang, J. Liu, and P. Zhang, “Preamble Design for Non-
Contiguous Spectrum Usage in Cognitive Radio Networks,” in IEEE Wireless Com-
munications and Networking Conference, April 2009, pp. 1–6.

[19] R. Chávez-Santiago, M. Szydełko, A. Kliks, F. Foukalas, Y. Haddad, K. E. Nolan,
M. Y. Kelly, M. T. Masonta, and I. Balasingham, “5G: The Convergence of Wireless
Communications,” Wireless Personal Communications, vol. 83, no. 3, pp. 1617–1642,
2015.

[20] J. Liu, S. Feng, and H. Wang, “Comb-Type Pilot Aided Channel Estimation in Non-
Contiguous OFDM Systems for Cognitive Radio,” in 5th International Conference
on Wireless Communications, Networking and Mobile Computing, Sept 2009, pp.
1–4.

[21] X. Zhou and R. Qiu, “An adaptive ssnchronization algorithm for non-contiguous
ofdm cognitive radio systems,” in IET International Communication Conference on
Wireless Mobile and Computing (CCWMC 2011).

[22] A. M. Wyglinski, “Effects of Bit Allocation on Non-Contiguous Multicarrier-Based
Cognitive Radio Transceivers,” in IEEE Vehicular Technology Conference, Sept 2006,
pp. 1–5.

[23] R. Rajbanshi, A. M. Wyglinski, and G. J. Minden, “An Efficient Implementation of
NC-OFDM Transceivers for Cognitive Radios,” in 1st International Conference on
Cognitive Radio Oriented Wireless Networks and Communications, June 2006, pp.
1–5.

[24] Z. Yuan, S. Pagadarai, and A. M. Wyglinski, “Feasibility of NC-OFDM Transmis-
sion in Dynamic Spectrum Access Networks,” in IEEE Military Communications
Conference (MILCOM), Oct 2009, pp. 1–5.

http://dx.doi.org/10.1007/978-1-4020-5542-3_6
http://dx.doi.org/10.1007/978-1-4020-5542-3_6

Bibliography 63

[25] D. Qu, J. Ding, T. Jiang, and X. Sun, “Detection of Non-Contiguous OFDM Symbols
for Cognitive Radio Systems without Out-of-Band Spectrum Synchronization,” IEEE
Transactions on Wireless Communications, vol. 10, no. 2, pp. 693–701, February
2011.

[26] J. Y. Won, H. G. Kang, Y. H. Kim, L. Song, and M. S. Song, “Fractional Bandwidth
Mode Detection and Synchronization for OFDM-Based Cognitive Radio Systems,”
in IEEE Vehicular Technology Conference (VTC), May 2008, pp. 1599–1603.

[27] B. Huang, J. Wang, W. Tang, and S. Li, “An Effective Synchronization Scheme for
NC-OFDM Systems in Cognitive Radio Context,” in IEEE International Conference
on Wireless Information Technology and Systems, Aug 2010, pp. 1–4.

[28] L. Li, D. Qu, T. Jiang, and J. Ding, “Design of LDPC Codes for non-Contiguous
OFDM-Based Communication Systems,” in IEEE International Conference on Com-
munications (ICC). IEEE, 2012, pp. 4712–4716.

[29] A. Dutta, D. Saha, D. Grunwald, and D. Sicker, “Practical Implementation of Blind
Synchronization in NC-OFDM Based Cognitive Radio Networks,” in Proceedings of
the 2010 ACM workshop on Cognitive radio networks. ACM, 2010, pp. 1–6.

[30] D. Saha, A. Dutta, D. Grunwald, and D. Sicker, “Blind Synchronization for NC-
OFDM—When “Channels” are Conventions, not Mandates,” in IEEE Symposium
on New Frontiers in Dynamic Spectrum Access Networks (DySPAN). IEEE, 2011,
pp. 552–563.

[31] “Unlicensed Operation in the TV Broadcast Bands,” https://apps.fcc.gov/edocs
_public/attachmatch/FCC-08-260A1.pdf, Federal Communications Commission, p.
130, November 2008, Accessed on 10.02.2017.

[32] R. Airoldi and J. Nurmi, “Design of a Matched Filter for Timing Synchronization,”
in Conference on Design and Architectures for Signal and Image Processing, Oct
2013, pp. 247–251.

[33] N. Khouja, K. Grati, B. L. Gal, and A. Ghazel, “Power consumption estimation
models for fir decimation filters in multi-standard receivers,” in IEEE GCC Conference
and Exhibition (GCC), Feb 2011, pp. 617–620.

[34] J. Heiskala and J. Terry, “Synchronization,” in OFDM Wireless LANs: A Theoretical
and Practical Guide. Sams, 2001, ch. 21, pp. 51–90.

[35] E. Perahia and R. Stacey, “PHY Interoperability With 11a/g Legacy OFDM Devices,”
in Next Generation Wireless LANs: 802.11n and 802.11ac. Cambridge University
Press, 2013, ch. 4.

[36] A. Karatsuba and Y. Ofman, “Multiplication of Multidigit Numbers on Automata,”
in Soviet physics doklady, vol. 7, 1963, p. 595.

[37] J. W. Hartwell, “A Procedure for Implementing the Fast Fourier Transform on Small
Computers,” IBM Journal of Research and Development, vol. 15, no. 5, pp. 355–363,
Sep 1971.

https://apps.fcc.gov/edocs_public/attachmatch/FCC-08-260A1.pdf
https://apps.fcc.gov/edocs_public/attachmatch/FCC-08-260A1.pdf

64 Bibliography

[38] R. Airoldi, F. Campi, and J. Nurmi, “Approximate computing for complexity
reduction in timing synchronization,” EURASIP Journal on Advances in Signal
Processing, vol. 2014, no. 1, p. 155, 2014. [Online]. Available: http:
//dx.doi.org/10.1186/1687-6180-2014-155

[39] N. Palladino, “Investigating data throughput and partial dynamic reconfiguration
in a commodity fpga cluster framework,” Master’s thesis, Rochester Institute of
Technology, 2011.

[40] D. McGrath, “Altera to Offer Partial Reconfiguration at 28-nm,” http://www.eeti
mes.com/document.asp?doc_id=1313649, Febuary 2010, Accessed on 06.02.2017.

[41] Altera, “Advanced Synthesis Cookbook,” https://www.altera.com/content/dam/alt
era-www/global/en_US/pdfs/literature/manual/stx_cookbook.pdf, pp. 2–13, July
2011, Accessed on 16.02.2017.

[42] Altera, “Stratix V Device Handbook Volume 1: Device Interfaces and Integra-
tion,” https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/liter
ature/hb/stratix-v/stx5_core.pdf, pp. 3–16, December 2016, Accessed on 16.02.2017.

[43] Altera, “Stratix II DSP Performance,” https://www.altera.com/content/dam/alter
a-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf, January 2005,
Accessed on 17.02.2017.

[44] D. A. Patterson and J. L. Hennessy, “Large and Fast: Exploiting Memory Hierarchy,”
in Computer Organization and Design: the Hardware/Software Interface. Morgan
Kaufmann Publishers, 2009, ch. 5, pp. 492–517.

[45] B. Cohen and R. McGarity, “The Design and Implementation of the MC68851 Paged
Memory Management Unit,” Micro, IEEE, vol. 6, no. 2, pp. 13–28, 1986.

[46] W. Yongqing and Z. Minxuan, “Fully Memory Based Address Translation in User-
Level Network Interface,” in IEEE 3rd International Conference on Communication
Software and Networks (ICCSN), 2011, pp. 351–355.

[47] D. Schmidt and N. Wehn, “DRAM Power Management and Energy Consumption: a
Critical Assessment,” in Proceedings of the 22nd Annual Symposium on Integrated
Circuits and System Design: Chip on the Dunes. ACM, 2009, p. 32.

[48] H.-C. Ng, Y.-M. Choi, and H. K.-H. So, “Direct Virtual Memory Access From FPGA
for High-Productivity Heterogeneous Computing,” in International Conference on
Field-Programmable Technology (FPT). IEEE, 2013, pp. 458–461.

[49] A. Brandon, I. Sourdis, and G. N. Gaydadjiev, “General Purpose Computing with
Reconfigurable Acceleration,” in International Conference on Field Programmable
Logic and Applications, Aug 2010, pp. 588–591.

[50] J. Nurmi, “Introduction,” in Processor Design: System-On-Chip Computing for
ASICs and FPGAs, 1st ed., J. Nurmi, Ed. Springer Publishing Company, 2007, pp.
1–6.

[51] J. Ball, “Designing Soft-Core Processors for FPGAs,” in Processor Design: System-
On-Chip Computing for ASICs and FPGAs, 1st ed., J. Nurmi, Ed. Springer
Publishing Company, 2007, ch. 11, pp. 229–256.

http://dx.doi.org/10.1186/1687-6180-2014-155
http://dx.doi.org/10.1186/1687-6180-2014-155
http://www.eetimes.com/document.asp?doc_id=1313649
http://www.eetimes.com/document.asp?doc_id=1313649
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/stx_cookbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/manual/stx_cookbook.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/stratix-v/stx5_core.pdf

Bibliography 65

[52] W. Wijesinghe, M. Jayananda, and D. Sonnadara, “Hardware implementation of
random number generators,” in Proceedings of the Technical Sessions, vol. 22, 2006,
pp. 28–38.

[53] K. H. Johansson, M. Törngren, and L. Nielsen, “Vehicle Applications of
Controller Area Network,” in Handbook of Networked and Embedded Control Systems,
D. Hristu-Varsakelis and W. S. Levine, Eds. Boston, MA: Birkhäuser Boston, 2005,
pp. 741–765. [Online]. Available: http://dx.doi.org/10.1007/0-8176-4404-0_32

[54] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) Schedulability Analysis: Refuted, Revisited and Revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s11241-007-9012-7

[55] M. Khanapurkar, P. Bajaj, and S. D. H. Wandhare, “Design Approach for VHDL
and FPGA Implementation of Automotive Black Box Using CAN Protocol,” IJCSNS,
vol. 8, no. 9, p. 214, 2008.

[56] J. Diaz, E. Rodriguez, L. Hurtado, H. Cacique, N. Vazquez, and A. Ramirez,
“CAN bus Embedded System for Lighting Network Applications,” in 51st Midwest
Symposium on Circuits and Systems, Aug 2008, pp. 531–534.

[57] C. Bayilmis, I. Erturk, C. Ceken, and I. Ozcelik, “A CAN/IEEE 802.11 b Wireless
LAN Local Bridge Design,” Computer Standards & Interfaces, vol. 30, no. 3, pp.
200–212, 2008.

[58] S. Y. Shin and F. P. Rezha, “Extending CAN Protocol With ISA100.11a Wireless
Network,” in International Conference on ICT Convergence (ICTC). IEEE, 2012,
pp. 472–476.

[59] M. Farsi, K. Ratcliff, and M. Barbosa, “An overview of controller area network,”
Computing & Control Engineering Journal, vol. 10, no. 3, pp. 113–120, 1999.

[60] L. Wolfhard, Can System Engineering: From Theory to Practical Application.
Springer Verlag, New York, NY, 1997.

[61] D. Leu, “FPGA-Based CAN Solutions,” http://www.inicore.com/____pdf/fpga_b
ased_can_solutions.pdf, p. 6, 2005, Accessed on 16.03.2017.

[62] J. Kylliäinen, J. Nurmi, and M. Kuulusa, “COFFEE - a Core for Free,” in Proceedings
International Symposium on System-on-Chip,, Nov 2003, pp. 17–22.

[63] T. Ahonen and J. Nurmi, “Hierarchically Heterogeneous Network-on-Chip,” in
EUROCON, The International Conference on" Computer as a Tool". IEEE, 2007,
pp. 2580–2586.

[64] “COFFEE RISC core - a COre For FrEE,” http://coffee.tut.fi, Tampere University
of Technology, Accessed on 07.02.2017.

[65] “COFFEE Core User Manual,” http://coffee.tut.fi/docs/COFFEE_Core_USER_
MANUAL.pdf, p. 85, 2007, Accessed on 02.03.2016.

http://dx.doi.org/10.1007/0-8176-4404-0_32
http://dx.doi.org/10.1007/s11241-007-9012-7
http://www.inicore.com/____pdf/fpga_based_can_solutions.pdf
http://www.inicore.com/____pdf/fpga_based_can_solutions.pdf
http://coffee.tut.fi
http://coffee.tut.fi/docs/COFFEE_Core_USER_MANUAL.pdf
http://coffee.tut.fi/docs/COFFEE_Core_USER_MANUAL.pdf

Appendix A

The Architecture of the Platform

Some of the contents of this chapter are extracted from the Publications [P. V] and [P.
VI]. The primary purpose of the following discussion is to illustrate an insight to the
hardware platform which has been widely used in the rest of this correspondence. In
addition, some fundamental background with respect to the importance of reconfigurable
computing is presented, as well.

Embedded Processors

The term Embedded Processor refers to a microprocessor suitable to perform specific
applications in an embedded system. An embedded processor is usually smaller in size and
consumes less power compared to a GPP. Indeed, an embedded processor is dedicated to
execute specific tasks in the, e.g., game consoles, washing machines, and mobile phones.
Hence, low cost, small size, and low power consumption are some prominent characteristics
of an embedded processor [50]. These types of the processor have a variety of architectures
since they are specifically designed for the work they are intended to do. However, most of
the architectures are based on the Harvard design which employs separate buses to access
the instruction and data memories. In terms of Instruction Set Architecture (ISA), RISC,
Complex Instruction Set Computer (CISC) and DSP are commonly used in embedded
processors. The RISC, CISC, and DSP ISAs are mainly built for the compiler, human,
and application specific devices, respectively [11].

COFFEE, a General-Purpose Embedded Processor

The COre For FrEE (COFFEE) processor is one of such embedded processors developed
by our group at Tampere University of Technology [62]. The COFFEE processor has a
single-core architecture which is a versatile general-purpose embedded processor suitable
for embedded systems for telecommunications and multimedia applications. However,
the multi-core version of the COFFEE has been developed under the name NineSilica
[63], as well. COFFEE has a Harvard RISC-based architecture to fulfills compiler’s
requirements. The hardware description of the core is based on the VHDL, thus, it is
portable on different technologies. Since the COFFEE core is an open-source processor,
it is permitted to use, explore and modify the hardware description of the core to fulfill
the system requirements.

The software development tools have also been developed at Tampere University of
Technology. Software tools are primarily developed for Linux/Unix operating system,
however, Microsoft Window-based users have the possibility to exploit the core using
Cygwin to have a virtual Unix environment on Windows. All the required materials,

69

70 The Architecture of the Platform

ext_handler

Instruction
Cache

Data
Cache

PCB

Bus
Controller

Interrupt
Handler

ext_interrupt : (7:0)

offset : (7:0)

int_done

int_ack

bus_req

bus_ack

clk

i_addr : (31:0)

i_word : (31:0)

i_cache_miss

d_cache_rd

d_cache_wr

d_cache_miss

data : (31:0)

d_addr : (31:0)

pcb_rd
pcb_wr

reset_x_out

stall
rst_x

boot_sel

Boot
Controller

Coprocessor_1 Coprocessor_2 Coprocessor_3 Coprocessor_4

cop_port : (40:0)cop_exe : (3:0)

COFFEE RISC Core
Figure 1: The interface of the COFFEE core [P. VI © IEEE, 2016.]

including the VHDL codes, user guide, compiler, etc. are available on the official website
of the COFFEE core in [64].

General Characteristics

Figure 1 presents the interface of the COFFEE RISC processor. The core exploits separate
interfaces to refer to data and instruction memories due to its Harvard architectural
structure. Besides the scalability and extendibility, reusability, as well as configurability
are the two major characteristics of the COFFEE core. The interface of the COFFEE
core is explained in the following subsections.

Co-processor

The COFFEE processor exploits four co-processor slots with 64 number of registers in a
shared register bank. Each register in the register bank is a 32-bit word. In addition, all
the four co-processors are attached to a separate data bus to communicate with the core.
Moreover, each co-processor is able to interrupt the core via a dedicated signal. Each
co-processor takes advantage of being operated in different clock domains.

An Insight to the Architecture of the Core 71

Instruction/Data Cache
It is up to the designer to implement caches, as they are not parts of the core. Instead,
the core employs scalable memories to suit different applications. In addition, the core
supports multi-cycle access to manage large and slow memories.

PCB
Peripheral devices are supposed to be integrated with the processor via the PCB interface.
The PCB is directly attached to the memory-mapped data bus. Hence, the COFFEE core
accesses the PCB instead of the data memory by asserting pcb_rd and pcb_wr signals.
The data memory is accessible via a dedicated rd and wr interfaces.

Shared Data Bus
The COFFEE core permits sharing the memory-mapped data bus with peripheral devices.
Accordingly, a multiprocessor system with shared data memory can be created. However,
connecting a large number of peripheral devices has the potential to decrease the overall
performance of the core since the processor will be stalled each time the data bus is being
used by other devices.

Boot Control
This component assists the core during the boot-up to appropriately configure itself. The
output port stall is primarily used in battery-powered systems to save more power. When
the core is stalled all the registers are frozen, while only the system clock will remain
enabled.

Bus Control
An external device has to send a bus request (bus_req) to the core before accessing the
main bus. This procedure is done using bus controller/arbitrator. The permission is
granted by the core via the bus_ack interface.

Interrupt Handler
COFFEE processor is configured with an internal interrupt handler which is applicable
for most of the applications. The internal interrupt handler has the possibility to support
eight external interrupt resources. Moreover, the COFFEE can exploits four additional
interrupt requests of the co-processor slots if those are not being used by any component.

An Insight to the Architecture of the Core

The COFFEE processor can operate in either 16-bit mode or 32-bit instruction mode.
COFFEE is able to execute 66 different instructions in a 6-stage pipeline structure. The
Execute stage is extendable to 3 stages to perform multiplication more efficiently.

The core exploits different registers in two sets, SET_1 for user applications and SET_2
for privileged software (such as operating system). The second set, SET_2, is not
accessible by the user applications at all, while the operating system can access both
sets. Each set contains a total number of 32 registers of both Special Purpose Registers

72 The Architecture of the Platform

Table 1: Synthesis results for the most speed-optimized version of the COFFEE core on different
FPGA Families [11].

Stratix II Stratix V Virtex-4
EP2S130F1020C4 5SGSMD5K2F40C2 XC4VLX160FF1148-11

Registers 5472 5533 5273
Logics 6267 4586 7030
DSP Blocks 2 12 16
Frequency (MHz) 106.25 179.21 69.24
Logic depth 14 17 13
Interconnection Delay 71.97% 77.33% 71.60%
(%of cycle)

(SPRs) and General Purpose Registers (GPRs). In addition, COFFEE employs eight
Condition Registers (CRs) in order to monitor and control the execution of conditional
instructions. Furthermore, the core has another register set, CCB, accessible by the load
and store instructions. The CCB register bank offers the software configurability to the
core. Finally, the COFFEE processor employs an eight-bit read-only PSR which mainly
indicates the current mode of the processor, if the interrupt is enabled, the length of
the instruction word, etc. In this thesis, we exploit some of the mentioned registers for
integrating IP blocks. Readers are advised to read the user guide of the core in [65] for
more information about the infrastructure of the core.

Hardware Implementation Costs and Details

The COFFEE RISC core is a VHDL-based processor which can potentially be implemented
on any FPGA target device. In that respect, we synthesized the core on Altera Stratix II
& V, as well as the Xilinx Virtex-4 FPGA devices. The used synthesis tools were Quartus
II 5.0, Quartus II 15.1, and ISE 7.1i, respectively. In addition, the synthesis results of a

Table 2: Synthesis results of the COFFEE core on 90nm low-power ASIC technology [11].

COFFEE (small) COFFEE (fast)
Equivalent Gates 60,665 88,074
Actual STD Cells 20,511 28,901
Leakage Power 2.136µW 3.916µW
Number of Nets 22,109 29,915
Average fanout 2.465 2.217

Critical Path Information
Register Setup 0.513ns 0.251ns
Propagation Time 27.541ns 6.430ns
Clock Frequency 35MHz 150MHz
Logic Depth 46 33

Hardware Implementation Costs and Details 73

90nm low-power ASIC implementation is also provided for the resource-optimized version
of the COFFEE, alongside the speed-optimized one.

Table 1 compares above-mentioned FPGA families together for the most speed-optimized
version of the core. Figures in the table show that the Altera FPGAs concentrate more on
higher operating frequency, while the Xilinx FPGA focuses more on power consumption
[11]. It is worth mentioning that the Stratix II, along with the Virtex-4 are 90nm
technology, whereas the Stratix V belongs to the 28nm technology node. Since the Stratix
V is a very much newer technology, we only used the COFFEE processor on this FPGA
family in the rest of this thesis.

Table 2 presents the synthesis results of implementing the COFFEE core on a 90nm
low-power ASIC technology. The table compares the resource-optimized (small) version
of the core versus the speed-optimized (fast) version. The figures are reported for the
worst-case behavior of the processor, assuming a low supply voltage (0.95V) at high
temperature (125℃). However, the fast version of the COFFEE in a more practical
condition (1.4V at 25℃) has the potential to operate about three times faster, at an
operating frequency around 500MHz.

Publications

Publication I

© 2014.

Reprinted with permission from the Proceedings of the Conference on Design and Archi-
tectures for Signal and Image Processing (DASIP), Madrid, Spain, pp. 1–8, Oct. 2014,
F. Shamani, R. Airoldi, T. Ahonen, and J. Nurmi, "FPGA Implementation of a Flexible
Synchronizer for Cognitive Radio Applications".

FPGA Implementation of a Flexible Synchronizer
for Cognitive Radio Applications

Farid Shamani, Roberto Airoldi, Tapani Ahonen, Jari Nurmi
Department of Electronics and Communications Engineering

Tampere University of Technology
P.O.Box 553, FIN-33101, Tampere, Finland

{firstname.lastname}@tut.fi

Abstract—This paper presents a flexible timing synchroniza-
tion scheme implemented on an Altera Stratix-V Field Pro-
grammable Gate Array (FPGA) device. The core content of
the synchronizer is based on a reconfigurable Finite Impulse
Response (FIR) filter which performs as a multicorrelator on
demand. In concept of flexibility, the synchronizer is able to
reconfigure its FIR filter block with Partial Reconfiguration
(PR) feature, while the rest of the design is operating. Different
synchronization architectures have been evaluated for the design,
including MultiplierLess(ML)-based multicorrelator as well as
Transposed, Sequential, Parallel and Pipelined-Parallel direct
form FIR filters. All the developed architectures are compared to
each other in terms of power consumption, chip area, maximum
frequency. Synthesis results show that the ML-based multicor-
relator achieves 93% better performance in terms of dynamic
thermal power dissipation. The ML algorithm also decreases the
logic utilization down to 1% of the chip area while the MAC-
based architectures utilize almost 7% of the device.

I. INTRODUCTION

Advancements in wireless technology have increased the
demand for higher data rate access, which cause spectrum
scarcity problem to come more into picture day by day [1]. One
solution to cope with spectrum scarcity is to use white spaces
between frequencies occupied by the primary users. This can
be done using Dynamic Spectrum Access (DSA) method. DSA
is an opportunistic approach that not only provides available
spectrum to the secondary users, but also significantly im-
proves spectrum utilization [2]. Devices capable of employing
DSA are known as Cognitive Radio (CR). CR is an alternative
solution to mitigate spectrum scarcity problem by enabling
reuse of the licensed spectrum for the secondary users without
disrupting the operations of incumbent primary users [3]. Non-
Contiguous Orthogonal Frequency Division Multiplexing (NC-
OFDM)-based CRs are new emerged promising technology
capable of using spectrum more efficiently by continuously
sensing the spectrum, employing white spaces for secondary
transmission and having the ability to dynamically adopt their
radio parameters [4]. An NC-OFDM-based CR is capable of
deactivating unused subcarriers during the transmission. If the
primary user does not use the entire spectrum, the secondary
users could occupy those white spaces as long as they are not
interfering with primary subbands. In a similar manner, when
an offline primary user comes online, the secondary users must
terminate their transmissions in frequency bands which might
cause any interference with the primary user. Although CRs
can mitigate spectrum scarcity to some extent, a variety of
challenges have emerged where synchronization is the most

prominent one [5]. The receiver has no information about
frequency bands occupied by the secondary user due to the
change in primary user location in the spectrum. Furthermore,
according to primary user activities, the location of preamble,
pilot and data carriers are varied over time. The issues men-
tioned above enforce the receiver to be always compromised
about the existence of secondary users.

In order to establish the spectrum synchronization be-
tween receiver and transmitter in NC-OFDM systems, a few
solutions have been proposed in [6]− [10]. These methods
are considered for an Out-Of-Band (OOB) channel condition.
In OOB systems, particular channels are dedicated to sec-
ondary transceivers where new information about the spectrum
occupancies in terms of active and deactivated subchannels
are transferred. Therefore, the receiver is always alert about
secondary users activities with the payoff of having a special-
purposed channel assigned to secondary transmitters meaning
additional cost as well as wasting of bandwidth. Hence,
OOB channels are not optimal candidates in some practical
situations [13]. Irrespective of OOB transmission, up to the
best knowledge of the authors of this paper, there are only a
couple of researches in concept of in-band synchronization.
The prerequisite synchronization data, for an in-band system,
are embedded into the incoming signal itself.

In [11], a fractional bandwidth model has been proposed.
Apart from OFDM based synchronization scheme, a specif-
ically designed pseudo-noise (PN) sequence is generated in
frequency domain. In time domain, preamble is represented
with two identical halves whose sign bits are varied, while
the interferences caused by the primary user have not been
considered. Theoretically, this algorithm is based on the as-
sumption that the power strength of the primary user signal is
lower than secondary transmitter while in reality the secondary
transmitter always keeps its transmission power lower than the
primary user to mitigate interfering with primary band due to
the sidelobe leakages [12].

In [13], the interference caused by primary user has been
considered. Therefore, an A Posterior Probability (APP) al-
gorithm is used to distinguish which subchannels are active.
When an active subchannel is detected, a Hard Decision-
based Detection (HDD) scheme is performed to detect NC-
OFDM symbols. However, in subchannels far from primary
user band the HDD performs properly, for those subchannels
close to primary user band the performance is degraded
drastically. Since HDD performance is degraded in noisy
environments, another algorithm named Soft Decision-based

Detection (SDD) is performed to increase accuracy on those
subchannels close to the primary user band. Therefore, the
performance of the proposed method is strongly dependent on
primary user activities.

According to [5], the system code rate of the algorithm
proposed in [13] is 1/4 while only half of the subcarriers are
active. Therefore, the authors try to improve the performance
by employing an APP algorithm to identify active subcarri-
ers and, then, use a Low-Density Parity-Check (LDPC) to
improve system code rate. However, the authors emphasized
more on how to create LDPC code, they did not explain the
synchronization process. Furthermore, the proposed method
requires additional hardware to decode received LDPC with
iteration bound of maximum 80 times meaning more power
consumption as well as increasing chip area.

Saha et al in [14] proposed a blind synchronization method
where the receiver is able to regenerate time-domain preamble
locally at the receiver by employing frequency-domain rep-
resentation of the preamble. In this article, instead of per-
forming a full 16-bit Multiply-Accumulate (MAC) operations
in frequency-domain, the idea of using multiplier-less corre-
lator has been investigated. The authors considered primary
user activities and, hence, a binary mask extracts secondary
transmission from incoming signal. As a result, primary user
existence is eliminated after Fast Fourier Transform (FFT) is
done. Thereafter, the rest of the synchronization process is
similar to the one of OFDM.

In this paper, a flexible timing synchronizer for NC-
OFDM-based CR is implemented on an Altera Stratix-V series
(5SGSMD5K2F40C2N) FPGA board. The core content of the
synchronizer consists of a multicorrelator which is able to
perform both autocorrelation and crosscorrelation functions on
demand. The synchronizer core is implemented using different
architectures as a core. Therefore, in various situations differ-
ent implementations can be considered. Moreover, with PR
feature, synchronizer is able to reconfigure some portion of
itself while the rest of the design is operating. In this paper, a
novel implementation technique by availing the PR feature of
Altera FPGA is proposed in an efficient manner, while a com-
parison study of employing various algorithms are considered
as well. Therefore, a multi-standards synchronization scheme
is presented on FPGA.

The rest of this paper is organized as follows. In Section II
synchronization regarding to NC-OFDM-based CR systems are
described. Improved synchronization algorithm is discussed in
Section III. In Section IV implementation of the proposed
synchronization scheme on FPGA is investigated in detail.
Synthesis results with respect to different implementations are
presented in Section V, followed by conclusions in Section VI.

II. NC-OFDM SYNCHRONIZATION

In all digital communication systems, synchronization is
an essential mechanism in order to fetch useful data from the
received signal. Synchronization is the process in which the
receiver firstly detects any incoming data from the received
signal and secondly distinguishes both the beginning and the
end of the received packet. So far, designing a robust and
accurate synchronization algorithm for NC-OFDM systems has
been one of the major challenges for design engineers.

Fig. 1. NC-OFDM synchronization scheme

Synchronization in Orthogonal Frequency Division Multi-
plexing (OFDM) systems can be done either in time-domain,
frequency-domain or both. In reality, the reason why most
of the OFDM systems prefer to perform synchronization in
time-domain is lack of time due to the packet-based system
nature. Each packet starts with a known sequence named
preamble which facilitates the synchronization process due to
its repetitive nature [15]. Symbol timing is extracted using
a correlator whose coefficients are exactly the same samples
of the preamble in time-domain representation. What makes
the NC-OFDM receiver fail at this stage is an alteration in
time-domain representation of the predefined preamble due
to the non-continuity of the encoded signal. In other words,
any activity by the primary user enforces the transmitter to
alter its transmitting frequencies which results in a change in
time-domain waveform representation of the preamble. Gen-
erally, NC-OFDM receivers are encountered with two major
challenges. Firstly, only a part of subcarriers are available
and the rest are occupied by licensed user which makes
many traditional synchronization techniques which are used
for OFDM systems to be disabled. Secondly, secondary users
must reduce their transmission power to mitigate interference
with the licensed user due to the sidelobe leakages which
makes secondary transmission strength to be weakened [12].
Therefore, CR receiver should be able to adopt its radio
parameters with new environment conditions to re-establish the
synchronization process in lower Signal-to-Noise Ratio (SNR)
regions as well as subcarriers deficiency.

According to [14], Fig. 1 shows the synchronization
pipeline for NC-OFDM-based CRs. As it is shown, synchro-
nization is done in two major steps: Subcarrier Detection and
Preamble Regeneration and Correlation. Since the CR receiver
has no information about subcarriers employed by secondary
transmitter, all subcarriers must be gathered at the receiving
signal. Then, the whole spectrum is sensed using one of
spectrum sensing methods. Next, the results are compared to a
threshold to decide which subcarriers contain information. The
spectrum sensing procedure is performed in a pipeline struc-
ture. The pipeline process will be stalled with any detection of
an incoming packet. According to [16], secondary users willing
to transmit over the licensed spectrum might have useful
knowledge about the signal structure, power and location of the
primary user. Therefore, it can be assumed that the secondary

Fig. 2. Improved NC-OFDM synchronization scheme

receiver is eligible to filter out the primary user by having
fundamental information about licensed spectrum. Following
by the secondary transmission detection, time-domain coef-
ficients of the correlator can be generated at the receiver
using frequency-domain representation of the preamble. This is
usually done using a low-cost Inverse Fast Fourier Transform
(IFFT) unit. Once the time-domain correlator is initialized by
new generated coefficients, the incoming waveform can be
implied similar to OFDM and is synchronized using related
synchronization techniques. However, a copy of the received
signal must be buffered in advance to extract time samples
from the beginning of the packet. Spectrum sensing unit shall
be turned off to save energy as long as the correlation shows
satisfactory results. If the correlator fails to detect secondary
user’s incoming packet, spectrum sensing unit must resume
sensing the entire spectrum to provide preamble re-generator
with the new secondary user information.

III. IMPROVED SYNCHRONIZATION ALGORITHM

In this paper, a reconfigurable multicorrelator is proposed
to perform both sensing the spectrum along with detecting
the preamble. In order to speed up the system, several multi-
correlator are used in a parallel manner. As Fig. 2 shows, a
multicorrelator is employed in order to perform both sensing
the spectrum based on signal energy detection as well as
correlating time-domain regenerated preamble with the orig-
inal signal. Multicorrelator performs autocorrelation between
incoming signal and a delayed version of itself as long as the
particular subcarriers are inferred as inactive. The autocorrela-
tion results are compared to a threshold in parallel structure. As
soon as a result exceeds the threshold, an active subcarrier is
inferred to be detected and the controller will immediately be
informed. Henceforth, other multicorrelators are discarded and
the preamble regenerator unit regenerates the time-domain rep-
resentation version of the frequency-domain preamble. Then,
the buffered version of the In-Phase/Quadrature (I/Q) signals
are fed to the active multicorrelator as the input signals
and, similarly, the time-domain representation of the preamble
(which is created by the re-generator) are fed to the coefficients
of the multicorrelator. Thereafter, the controller issues the
correlation command to the multicorrelator to compute the
maximum similarity between the noisy incoming signal and

Fig. 3. The internal integration between the controller block and the
multicorrelator

the clean version of the time-domain preamble. The obtained
results are compared with another threshold to set the second
peak, meaning that the preamble boundaries are found at the
received signal. Thereafter, the entire packet is delivered to
the packet decoding unit while the multicorrelator is stalled in
order to save energy. As soon as the packet is decoded, the
controller is informed and makes the proper action.

IV. FPGA IMPLEMENTATION OF THE MULTICORRELATOR

Synchronization in NC-OFDM is done in frequency do-
main by performing a crosscorrelation between predefined
coefficients and received signal, followed by an autocorrelation
between the received sequence and a delayed version of itself.
Fig. 3 shows an inner overview of the synchronization block
structure. Synchronization block is composed of several sub-
blocks integrated together to form the entire design in which
the major ones are described in following.

A. Memory Block

The memory block considered for this design is an SRAM
initialized by frequency-domain representation of the pream-
ble. Thus, the values stored at the memory are used for
performing crosscorrelation. The SRAM has a 32-bit data
width output port. It is assumed that the 16 Least Significant
Bits (LSB) half includes the Real part of the preamble and,
consecutively, the 16 Most Significant Bits (MSB) half con-
tains the Imaginary part of the preamble. The memory block
is able to store new values of the re-generated preamble as
well.

B. Threshold Detection Block

There is one input and two output ports for Threshold
Detection block. The input to this unit is a 16-bit signal
includes the final result calculated by FIR filter. The decision
is made based on a comparison between the signal energy
with a 2-step predefined threshold level proposed in [17]. As
Fig. 4 depicts, there are two threshold levels considered for
the threshold block. The preliminary threshold Thr1 and the
original threshold Thr2. Conceptually, the correlation of the
first half of the incoming signal is calculated and compared
with the value Thr1. If the comparison exceeds the Thr1, then,
the second half will be calculated and compared with Thr2.
Otherwise, the computation is considered as undetected. As
soon as the magnitude of the incoming signal energy exceeds
Thr2, a peak is inferred to be found and the threshold detection
block informs the controller immediately to perform the proper
action. Thereafter, the threshold detection block is looking for
the second peak in a similar way which indicates a peak in
crosscorrelation of the buffered version of the noisy signal with
predefined/regenerated preamble. There are two output ports
to the controller where the first one detects autocorrelation
peak and the second one indicates the crosscorrelation peak,
respectively. The choice of correct value for both Thr1, Thr2
have a impressive impact on proper detection in low SNR
regions. Although a high value will improve the algorithm
robustness, on the other hand, it might result in missing low
power frames. On the opposite side, a low value might result
in false detection of the frame and noise due to the lower SNR.
As an instance, a good approximation for Thr1 value could
be 45% of Thr2 for 2-step algorithm [17].

C. Controller Block

The Controller block is the most intelligent block in the
design. One of the important responsibilities of this block
is to make proper action based on received information by
continuously monitoring the behavior of other blocks. At the
start of the transmission, the synchronizer should perform auto-
correlation between the incoming signal with a delayed version
of itself. Therefore, the controller issues the autocorrelation
command to the FIR filter and routes the input signal to the
coefficients of the FIR filter with the delay length of D. It can
be done using a multiplexer with two inputs where the first
one is the incoming signal and the second one is the signal
coming from memory. The controller sets the multiplexer to
logic ’0’ and ’1’ in order to perform autocorrelation and
crosscorrelation, respectively. As soon as the coefficients of the
FIR filter are fed by the incoming signal, the controller issues
the stall command to the FIR filter to freeze the input to the
coefficients in order to avoid coefficients overloading. There-
after, the controller waits for any response from Threshold
Detection block. As soon as the autocorrelation peak is found,
the controller will get alerted by its corresponding input. Then,
the controller immediately changes the functionality of the
multicorrelator to perform crosscorrelation between a buffered
version of the incoming signal and the regenerated time-
domain preamble. Crosscorrelation is performed in a similar
way to autocorrelation. This time, the coefficients of the FIR
filter are filled by the signal coming from memory, instead
of being filled with the incoming signal. Then, the controller
issues the read command to the memory block by issuing
the corresponding address. Hence, the proper coefficient is

Fig. 4. 2-step threshold detection flowchart. [17]

loaded from the memory and is fed to the multicorrelator per
clock cycle. When the multicorrelator is filled with the proper
coefficients, the controller freezes the coefficient input to the
multicorrelator and orders the FIR filter to perform proper
action. Again, the controller waits for any alteration in its
crosscorrelation input. Whenever the second peak is found,
the controller disables the FIR filter and, consequently, any
incoming packet will be discarded afterwards. The current
packet is handed to the Packet Decoding unit to extract
useful data. However, the IFFT and Packet Decoding units
are postponed to the future work. When the data is decoded,
the corresponding unit informs the controller to restart the
synchronization process. Furthermore, the controller block is
capable of reconfiguring the number of taps of the FIR filter
at run time in terms of reconfigurability. This assists the FIR
filter to reconfigure its taps based on the information provided
by the controller.

D. FIR Filter Block

In concept of CR technology, reconfigurability is referred
to FIR filters due to the basic idea of the CR which is how to
enable a single hardware platform to support multi-standards
communication on a single chip by replacing analog signal
processing with digital signal processing. Due to the nature of
NC-OFDM-based CR, highest order of the filter, for example
4096-tap FIR filter, is required for performing synchronization.
Therefore, power consumption of the receiver is increased
along with the chip area [18]. According to Equation (1), a
FIR filter periodically calculates y(n) as the complex products

(a)

(b)

(c)

(d)

Fig. 5. Different FIR filter architectures, (a) SDF architecture, (b) TDF
architecture, (c) PDF architecture and (d) PPDF architecture

of conjugated coefficients c(k) with incoming signal x(n− k)
on a window whose length is N , which is also known as the
number of filter taps or filter order. This operation is called
MAC operation [19]. Conjugation is done by inversing the
sign bit of the coefficients to the FIR filter.

y(n) = c(n) ∗ x(n) =

N−1∑

k=0

c(k)x(n− k) (1)

1) MAC-Based Multicorrelator: Basically, FIR filters are
composed of three fundamental functional units. These three
major parts are adders, multipliers and delay elements inte-
grated and arranged in different ways to form different FIR
architectures. Mostly, N-tap FIR filter consists of N delay

elements, N multipliers and N-1 adders. Generally, there are
two basic architectures for implementing FIR filters known
as Sequential Direct Form (SDF) and Transposed Direct Form
(TDF), each of which is able to obtain y(n) [20]. In this paper,
similar structures such as Parallel Direct Form (PDF) and
Pipelined-Parallel Direct Form (PPDF) are investigated and im-
plemented as well. Fig. 5 illustrates different architectures for
FIR filter. As it is shown, in TDF architecture all coefficients
C(k), including (C0, C1, . . . , Ck), must be multiplied with the
input signal X(n) simultaneously at time interval n while in
other architectures a particular coefficient must be multiplied
with the corresponding input samples. Therefore, excluding
TDF architecture, an input chain registers as well as coefficient
registers are required. Both coefficient and incoming signal
inputs to the FIR filter are 32-bit signal vectors where we
stipulated that the first part (including 16 LSB bits) is the
Real part and, subsequently, the remaining 16 bits (MSB half)
contains the Imaginary part of the corresponding input. Note
that the multiplication block performs a complex multiplication
which is more complex and power consuming in comparison
with the simple one from the hardware point of view. In this
work, we used Fixed-width truncation in which only 16 MSBs
of 32-bit product are used as the output. FIR filters are inten-
sive parts of a CR due to the massive workload of complex
computations as well as operating at high speed to achieve
highest sampling rate from power consumption point of view.
In section V, resource allocation and power consumptions for
different FIR filter architectures are described in detail.

2) ML-Based Multicorrelator: In a ML-based multicorrela-
tor, the size of the correlator as well as the number of registers
is depending on the number of input samples. According to
[21], instead of performing 16-bit multiplication, a sign bit
correlation between coefficients and input signal is done which
can be simplified by either XNOR or XOR gate. Similarly,
in [22] coefficients are represented in the form of summed
powers of 2. In both cases, a massive number of registers and
multiplications, which are the most power-hungry operations
in FIR filters due to their dynamic power consumption, are
mitigated. Although the multicorrelator uses only 1-bit instead
of 16-bit, simulation results given by ModelSim software show
that the performance of the FIR filter is still at a satisfactory
level for this application. Authors in [14] acknowledged that
the sign based correlator has satisfactory result in low SNR
regions. Intuitively, it works better in higher SNRs regions.
By implementing both multiplier-based correlator and sign-
based correlator in MATLAB and testing both with 802.11g
packets, the results were satisfactory. Based on that, in this
work, a ML based multicorrelator implemented in hardware
was fed by a random input. The results are given in terms
of implementation summary, maximum frequency and power
consumption in section V.

E. Partial Reconfiguration (PR)

PR is the ability in which a portion of FPGA is recon-
figured while the rest of the design is operating. In other
words, a particular region of the design might have multiple
personas while everything outside of this region is normally
operating. PR has several applications and, generally, is used in
designs required to operate continuously while some particular
regions can be reconfigured without disrupting the operating
parts [23]. Since in this work only the synchronization block

Fig. 6. How the controller is able to control, load and unload the desired
multicorrelator

is emphasized, while the rest of the receiver parts are left
for the future work, it has been assumed that the PR host is
implemented internally. As soon as the PR host sends the PR
request to the hard controller block inside the FPGA, when the
device is ready to perform PR, the controller acknowledges the
host through a ”ready” signal. Thereafter, the host transmits
the configuration bitstreams, which have been generated by
the Quartus-II software beforehand, and waits for acknowl-
edge from FPGA PR controller block. In case of any error
occurrence, the controller warns the host. Similarly, if the PR
process is performed successfully, the controller informs the
host again. With PR feature, different IEEE standards can be
easily uploaded to the system while it is operating. Therefore,
a single synchronizer is able to reconfigure its radio parameters
based on required standard.

Fig. 6 illustrates the integration of the controller with four
multicorrelators. The controller controls each multicorrelator
via several controlling signals including freezing, enabling,
crosscorrelation, autocorrelation signals. The controller con-
secutively monitors the multicorrelators behavior along with
the given threshold results. As soon as the controller finds
a desired result, it will keep the corresponding multicorre-
lator active while discarding other multicorrelators using PR
ability. This is done using above-mentioned procedure. The
PR host issues the PR request command to discard other
multicorrelators. If no error occurs, the FPGA will unload
the other multicorrelators and, thereafter, plenty of Adaptive
Lookup Modules (ALMs) will be free to be employed for
other purposes. If the corresponding multicorrelator fails to
determine satisfactory results, PR host requests to load all
four multicorrelators to the FPGA again and restart sensing
the incoming signal.

V. SYNTHESIS RESULTS

In this section, the proposed algorithm is written in
Very-high-speed integrated circuit Hardware Description Lan-
guage (VHDL), simulated using ModelSim software, com-

TABLE I. SUMMARY OF DIFFERENT IMPLEMENTATIONS FOR THE
MULTICORRELATOR

TDF SDF PDF PPDF ML

Logic Utilization (ALMs) 12,483 12,490 12,597 14,611 1,876

Total DSP Blocks 512 512 512 512 0

Total Registers 16,378 16,883 19,764 28,037 2,886

Max. Freq. (MHz) 237.19 67.93 237.64 240.27 257.33

TABLE II. POWER CONSUMPTION ANALYSIS (mW)

TDF SDF PDF PPDF ML

Total Thermal Power 1436.82 3371.43 1132.33 1138.75 937.13

Core Dynamic Thermal
Power 344.17 200.59 153.86 160.10 9.42

Core Static Thermal
Power 1070.06 1062.71 955.62 955.80 951.50

I/O Thermal Power 22.58 2108.14 22.86 22.86 26.20

piled and synthesized by Quartus-II version 12.1 environment
and implemented on Altera family targeting Stratix-V series
5SGSMD5K2F40C2N FPGA device. Synthesis results for a
256-tap FIR filter are reported in Table I in terms of logic
utilization, total DSP blocks, total registers and maximum
frequency. The results show that ML architecture is the best ar-
chitecture in all aspects whereas SDF, as it has been expected,
is the worst one. Table I reveals that PPDF utilizes more logic
in terms of registers in comparison with other architectures
due to its pipeline structure. In ML design, logic utilization
is decreased drastically due to the avoidance of a variety of
DSP blocks, registers, signals, etc. which preserve more than
82% chip area. The MAC structure FIR filters use 512 DSP
blocks (32% of the total) because of multiplication blocks
while in the ML-based designs none of the DSP blocks are
used. Excluding SDF architecture, the maximum frequency,
which is reported after place and route in Quartus-II software,
is approximately similar for other architectures. However, the
ML design achieves the highest frequency. Power dissipation
analysis is reported based on the results given by PowerPlay
Power Analyzer Tool in Quartus-II software. The analyzer
directly reads the waveforms generated by the ModelSim
running at 50 MHz. Static probability and toggle rate for
each signal are calculated based on reported VCD file. Table
II summarized the estimated results. SDF architecture has
the most power dissipation among the other implementations
due to its long critical path. As it is shown, core dynamic
thermal power is drastically decreased in ML architecture due
to avoiding a number of power-hungry multipliers and adders.
The ML-based design saves more than 93% of dynamic power
consumption in comparison with PDF form (the lowest power
consumer architecture in MAC designs). Dynamic thermal
power dissipation by hierarchy for various architectures are
reported in Table III. As it is obviously clear, FIR filter is the
most power-hungry block for MAC-based architecture, while
the controller block as well as the threshold block are the
least energy consumers. In ML architecture the power dissi-
pation problem related to FIR filter block is solved by using
a sign bit correlation instead of 16-bit multiply-accumulate
operations. Table IV shows power dissipation for each cell in
detail. The results show that ML architecture achieves the best
result, almost in all aspects, in comparison with MAC-based
architectures. The reason why the SDF has a massive power

TABLE III. THERMAL POWER DISSIPATION BY HIERARCHY (mW)

TDF SDF PDF PPDF ML

Memory Block 0.78 0.81 0.79 0.80 0.79

Threshold Block 0.01 0.01 0.01 0.01 0.01

Controller Block 0.02 0.02 0.02 0.02 0.02

FIR Filter Block 230.20 165.57 125.38 128.80 4.18

TABLE IV. CELL POWER CONSUMPTION (mW)

TDF SDF PDF PPDF ML

DSP Block 216.48 130.40 95.20 95.20 0

Combinational Cell 76.58 10.78 1.28 1.30 1.87

Register Cell 2.09 30.31 29.24 32.63 2.45

I/O 25.15 2090.09 4.31 4.23 7.44

dissipation can be explained due to the long critical path. When
a signal is flowing from the input, it should traverse a multiplier
and 255 adders to the output.

VI. CONCLUSION

In this paper, a flexible timing synchronization scheme
for Cognitive Radio application was developed. The proposed
synchronizer is capable of performing multicorrelation on
demand. The core content of the synchronizer, in terms of
architecture, was based on FIR filters. With the same random
input signals along with the same coefficient sets, simulation
results showed that multicorrelator had the same results ir-
respective of different architectures. Synthesis results inferred
that the best architecture to be employed for FIR filter would be
ML-based algorithm in terms of maximum frequency of 257.33
MHz, logic utilization of 1,876 Stratix V ALMs, thermal
dynamic power consumption of 9.42 mW, in comparison with
MAC-based architectures. As experiences showed, ML-based
design has the simplest implementation as well as saving
significantly dynamic power (more than 93%) by sacrificing
little in terms of accuracy. In MAC-based architectures, the
simplest architecture in terms of implementation belonged to
TDF and SDF architectures, whereas the most complex ones
were PDF and PPDF, respectively. However, there is always
a trade-off between employing MAC architectures, excluding
SDF, in environments where implementing ML architecture is
not possible.

VII. ACKNOWLEDGMENT

This work was funded by the Academy of Finland under
contract #258506 (DEFT: Design of a Highly-parallel Hetero-
geneous MP-SoC Architecture for Future Wireless Technolo-
gies). Portions of the work were also funded by CRAFTERS
(ConstRaint and Application driven Framework for Tailoring
Embedded Real-time Systems) project under contract #295371
in ARTEMIS program.

REFERENCES

[1] Acharya, J.; Viswanathan, H.; Venkatesan, S., ”Timing Acquisition for
Non Contiguous OFDM Based Dynamic Spectrum Access”, 3rd IEEE
Symposium on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), pp.1,10, 14-17 Oct. 2008

[2] A. Dutta, D. Saha, D. Grunwald, D. Sicker. ”Practical Implementation of
Blind Synchronization in NC-OFDM based Cognitive Radio Networks”,
Proceedings of the 2010 ACM workshop on Cognitive radio networks,
pp. 1-6, 2010

[3] Shulan Feng; Zheng, H.; Haiguang Wang; Jinnan Liu; Zhang, P., ”Pream-
ble Design for Non-Contiguous Spectrum Usage in Cognitive Radio
Networks”, IEEE Wireless Communications and Networking Conference
(WCNC), pp.1-6, April 2009

[4] Rajbanshi, R.; Wyglinski, Alexander M.; Minden, G.J., ”An Efficient
Implementation of NC-OFDM Transceivers for Cognitive Radios”, 1st
International Conference on Cognitive Radio Oriented Wireless Networks
and Communications, pp.1,5, 8-10 June 2006

[5] Li Li; Daiming Qu; Tao Jiang; Jie Ding, ”Design of LDPC codes for non-
contiguous OFDM-based communication systems”, IEEE International
Conference on Communications (ICC), pp.4712,4716, 10-15 June 2012

[6] Jinnan Liu; Shulan Feng; Haiguang Wang, ”Comb-Type Pilot Aided
Channel Estimation in Non-Contiguous OFDM Systems for Cognitive
Radio”, 5th International Conference on Wireless Communications,
Networking and Mobile Computing (WiCom), pp.1,4, 24-26 Sept. 2009

[7] Xiao Zhou; Runhe Qiu, ”An adaptive synchronization algorithm for Non-
Contiguous OFDM cognitive radio systems”, IET International Com-
munication Conference on Wireless Mobile and Computing (CCWMC
2011), pp.102,106, 14-16 Nov. 2011

[8] Wyglinski, Alexander M., ”Effects of Bit Allocation on Non-Contiguous
Multicarrier-Based Cognitive Radio Transceivers”, IEEE 64th Vehicular
Technology Conference, pp.1,5, 25-28 Sept. 2006

[9] Rajbanshi, R.; Wyglinski, Alexander M.; Minden, G.J., ”An Efficient
Implementation of NC-OFDM Transceivers for Cognitive Radios”, 1st
International Conference on Cognitive Radio Oriented Wireless Networks
and Communications, pp.1,5, 8-10 June 2006

[10] Zhou Yuan; Pagadarai, S.; Wyglinski, Alexander M., ”Feasibility of
NC-OFDM transmission in dynamic spectrum access networks”, IEEE
Military Communications Conference (MILCOM), pp.1,5, 18-21 Oct.
2009

[11] Jae Yeon Won; Hyun Gu Kang; Yun Hee Kim; Iickho Song; Myung-Sun
Song, ”Fractional Bandwidth Mode Detection and Synchronization for
OFDM-Based Cognitive Radio Systems”, IEEE Vehicular Technology
Conference (VTC), pp.1599,1603, 11-14 May 2008

[12] Biao Huang; Jun Wang; Wanbin Tang; Shaoqian Li, ”An effective syn-
chronization scheme for NC-OFDM systems in cognitive radio context”,
IEEE International Conference on Wireless Information Technology and
Systems (ICWITS), pp.1,4, Aug. 28 2010-Sept. 3 2010

[13] Daiming Qu; Jie Ding; Tao Jiang; XiaoJun Sun, ”Detection of Non-
Contiguous OFDM Symbols for Cognitive Radio Systems without Out-
of-Band Spectrum Synchronization”, IEEE Transactions on Wireless
Communications, vol.10, no.2, pp.693,701, February 2011

[14] Saha, D.; Dutta, A.; Grunwald, D.; Sicker, D., ”Blind synchronization
for NC-OFDM - When ”channels” are conventions, not mandates”, IEEE
Symposium on New Frontiers in Dynamic Spectrum Access Networks
(DySPAN), pp.552,563, 3-6 May 2011

[15] T. Chiueh, P. Tsai, I. Lai, ”Baseband Receiver Design for Wireless
MIMO-OFDM Communications”, 2nd Edition, 2012, Wiley-IEEE Press,
346 p.

[16] ”White Space Database Administrators Guide”, [WWW], Federal
Communications Commission, [Accessed on 29.10.2013], Available
at http://www.fcc.gov/encyclopedia/white-space-database-administrators-
guide

[17] R. Airoldi; J. Nurmi, ”Design of a matched filter for timing synchro-
nization”, Conference on Design and Architectures for Signal and Image
Processing (DASIP), 2013, pp.247,251, 8-10 Oct. 2013

[18] Mahesh, R.; Vinod, A.P., ”New Reconfigurable Architectures for Im-
plementing FIR Filters With Low Complexity”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.29, no.2,
pp.275,288, Feb. 2010

[19] Ghosh, D.; Sharma, Deepak; Aziz, A., ”A Novel Low Area and High
Performance Programmable FIR Filter Design Using Dynamic Random
Access Memory”, 48th Midwest Symposium on Circuits and Systems,
pp.1477,1480 Vol. 2, 7-10 Aug. 2005

[20] Shen-Fu Hsiao; Jun-Hong Zhang Jian; Ming-Chih Chen, ”Low-Cost
FIR Filter Designs Based on Faithfully Rounded Truncated Multiple

Constant Multiplication/Accumulation”, IEEE Transactions on Circuits
and Systems II: Express Briefs,vol.60, no.5, pp.287,291, May 2013

[21] Diaz, I.; Wilhelmsson, L.; Rodrigues, J.; Lofgren, J.; Olsson, T.; Owall,
V., ”A Sign-Bit Auto-Correlation Architecture For Fractional Frequency
Offset Estimation in OFDM”, Proceedings of 2010 IEEE International
Symposium on Circuits and Systems (ISCAS), pp.3765,3768, May 30
2010-June 2 2010

[22] Pham, T.H.; Fahmy, S.A.; McLoughlin, I.V., ”Low-Power Correlation
for IEEE 802.16 OFDM Synchronization on FPGA”, IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol.21, no.8,
pp.1549,1553, Aug. 2013

[23] ”Design Planning for Partial Reconfiguration Quartus-II Handbook
Version 13.0”, Vol. , May 2013, Altera Corporation, 46 p.

Publication II

© 2016.

Reprinted with permission from Elsevier Journal of Systems Architecture (SYSARC),
Nov. 2016, F. Shamani, R. Airoldi, V. F. Sevom, T. Ahonen, and J. Nurmi, "FPGA
Implementation Issues of a Flexible Synchronizer Suitable for NC-OFDM-Based Cognitive
Radios".

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Journal of Systems Architecture 0 0 0 (2016) 1–15

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

FPGA implementation issues of a flexible synchronizer suitable for

NC-OFDM-based cognitive radios

Farid Shamani a , ∗, Roberto Airoldi b , Vida Fakour Sevom

a , Tapani Ahonen

a , Jari Nurmi a

a Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, Finland
b Nokia Solutions and Networks, Espoo, Finland

a r t i c l e i n f o

Article history:

Received 30 January 2016

Revised 20 October 2016

Accepted 15 November 2016

Available online xxx

Keywords:

NC-OFDM

Synchronization

Partial Reconfiguration

Cognitive Radio

FIR filter

FPGA implementation

a b s t r a c t

This paper presents a flexible timing synchronization scheme alongside the hardware implementation

issues on an Altera Stratix-V Field Programmable Gate Array (FPGA) device. The core content of the syn-

chronizer is based on Finite Impulse Response (FIR) filter which operates as a multicorrelator on demand.

The term “flexibility” refers to a specific part of the synchronizer where the multicorrelator reconfigures

its FIR filter block on-the-fly by employing Partial Reconfiguration (PR) feature. Moreover, different im-

plementations have been evaluated for the multicorrelator, including MultiplierLess (ML) approach (an

approximate computing technique only for autocorrelation purpose) along with the Direct From as well

as the Transposed, Parallel, and Pipelined-Parallel Direct Form FIR filters. All the developed architectures

are compared to each other in terms of power consumption, silicon area, and maximum frequency. Pre-

liminary synthesis results show that the ML approach achieves better performance (including 94% less

power dissipation, 75% less logic utilization as well as 67% fewer registers) than other architectures when

performing autocorrelation function. Furthermore, the critical path is analyzed and appropriate optimiza-

tion techniques (such as DSP register packing and intermediate register insertion) are applied to the best

candidates of the architectures mentioned. As the best results, 2.83 × speed-up, 56.57% less logic utiliza-

tion along with 38.86% fewer registers are achieved for different architectures. Accordingly, we discover

that the parallel form, as well as the pipelined-parallel one, achieve more interesting results than the

transposed version in most of the cases.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Advancements in wireless technology have increased the de-

mand for higher data rate access which leads to spectrum scarcity

problem [1] . The prime spectrum is become scarcer and scarcer

each day. One possible solution to cope with spectrum scarcity is

to use available white spaces between frequency bands occupied

by the primary users. Fig 1 illustrates a real measurement taken

in downtown Berkeley which shows that the licensed users occu-

pied most of the spectrum while do not utilize it efficiently [2] .

This can be done using Dynamic Spectrum Access (DSA) method.

The DSA is an opportunistic approach which not only provides

available spectrum to the secondary users, but also significantly

improves spectrum utilization [3] . Devices capable of employing

DSA technique are known as Cognitive Radio (CR). The CR is an

∗ Corresponding author.

E-mail addresses: farid.shamani@tut.fi (F. Shamani), roberto.airoldi@nokia.com

(R. Airoldi), vida.fakoursevom@tut.fi (V. Fakour Sevom), tapani.ahonen@tut.fi (T.

Ahonen), jari.nurmi@tut.fi (J. Nurmi).

alternative solution to mitigate spectrum scarcity problem by mak-

ing the licensed spectrum reusable for the secondary users with-

out disrupting the operations of incumbent primary users [4] .

Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-

OFDM)-based CRs are a newly emerged promising technology ca-

pable of using spectrum more efficiently by continuously sensing

the spectrum and utilizing white spaces for secondary transmit-

ters. CRs have the ability to dynamically adopt their radio param-

eters depending on the new characteristics of the supreme spec-

trum [5] . An NC-OFDM-based CR is capable of deactivating un-

used subcarriers during the transmission. If the primary user does

not use the entire spectrum, the secondary users could occupy

those white spaces as long as they are not interfering with primary

user’s subbands. In a similar manner, when an offline primary user

comes online, the secondary users must terminate their transmis-

sions in frequency bands which might cause any interference with

the primary user. Although CRs can mitigate spectrum scarcity to

some extent, a variety of challenges have emerged where synchro-

nization is the most prominent one [6] . In brief, the receiver has

no prior information of which frequency band the secondary trans-

http://dx.doi.org/10.1016/j.sysarc.2016.11.006

1383-7621/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

2 F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Fig. 1. A snapshot taken at Berkley. The primary user(s) mainly utilizes the first

2GHz of the prime spectrum [2] .

mitter has dedicated to itself. Furthermore, based on the primary

user’s activities, the location of the preamble, pilot and data car-

riers of the secondary transmitter are varied over the time. The

above-mentioned issues compromise the receiver with the exis-

tence of secondary users.

This paper is based on our previous work in [7] where a flexi-

ble timing synchronizer for NC-OFDM-based CR was implemented

on an Altera Stratix-V FPGA board. The synchronizer is based on a

reconfigurable multicorrelator which is able to perform both auto-

correlation and crosscorrelation functions on-the-fly using Partial

Reconfiguration (PR) feature. We take different architectures into

account to implement the multicorrelator. Thus, the user has the

ability to select the most profitable implementation which is es-

sentially suitable for their applications. In addition, the synchro-

nizer is able to reconfigure some portion of itself while the rest of

the design are being operated by taking PR feature into considera-

tion. Moreover, a novel implementation scheme for an NC-OFDM-

based CR synchronizer is proposed by exploiting PR feature on an

Altera FPGA board. Unlike the other studies in the same field which

have more concentrated on system level architecture, we mainly

focus on hardware implementation issues, restrictions, and limita-

tions which have the most impact on the overall cost. However,

some good references are provided in system level architecture, as

well. Eventually, we choose the most suitable candidate that out-

performs other architectures in our application. The main contri-

butions of this work are as follows:

• Explaining the State-of-the-art of employing a multicorrelator

using PR feature.

• Providing a wide study on hardware implementation costs (in-

cluding power dissipation, logic utilization, etc.) for each archi-

tecture.

• Describing some optimization techniques to improve the per-

formance while minimizing the hardware cost.

• Discussing about different situations where each architecture is

applicable and beneficial as well as the situations where partic-

ular architecture(s) should be avoided.

The rest of this paper is organized as follows. Section 2 presents

some related researches in this field. In Section 3 synchronization

in NC-OFDM-based systems are described. The state-of-the-art in

synchronization is discussed in Section 4 . In Section 5 implemen-

tation of the proposed scheme on FPGA is investigated in detail.

Section 6 provides a number of constraints in FPGA implementa-

tion. Experimental results (before and after optimization) as well

as further discussion with respect to the hardware costs for differ-

ent implementations are presented in Section 7 in detail, followed

by conclusion in Section 8 .

2. Related works

In principle, in order to establish the spectrum synchroniza-

tion between receiver and transmitter in NC-OFDM systems, a few

solutions have been proposed in [8–12] . These methods are con-

sidered for an Out-Of-Band (OOB) channel condition. In OOB sys-

tems, particular channels are dedicated to secondary transceivers

where new information about the spectrum occupancies with re-

spect to active subchannels along with the deactivated ones are

transferred. Therefore, the receiver always knows about the activ-

ities of the secondary users with the payoff of having a special-

purposed channel. Adopting a secondary channel has the poten-

tial to introduce additional cost as well as wasting of bandwidth.

Hence, OOB channels are not optimal candidates in some practical

situations [13] . In contrary to the OOB transmission, there are only

a couple of researches on the concept of in-band synchronization

to the best knowledge of the authors of this paper. In an in-band

system, the prerequisite synchronization data are embedded into

the incoming signal itself.

In [14] , a fractional bandwidth model has been proposed. Apart

from the OFDM-based synchronization scheme, a specifically de-

signed pseudo-noise (PN) sequence is generated in frequency do-

main. In time domain, the preamble is represented with two iden-

tical halves whose sign bits are varied, while the interferences

caused by the primary user have not been considered. Theoreti-

cally, this algorithm is based on the assumption that the power

level of the primary user signal is lower than secondary trans-

mitter while in reality the secondary transmitter always keeps its

transmission power lower than the primary user to mitigate inter-

fering with primary band due to the sidelobe leakages [15] .

In [13] , the interference caused by the primary user has been

considered. Therefore, an A Posterior Probability (APP) algorithm is

used to distinguish which subchannels are active. When an active

subchannel is detected, a Hard Decision-based Detection (HDD)

scheme is performed to detect NC-OFDM symbols. However, the

HDD performs properly in subchannels far from the primary user

band, but for those subchannels close to the primary user band the

performance is degraded drastically. Since the performance of the

HDD is degraded in noisy environments, another algorithm named

Soft Decision-based Detection (SDD) is performed to increase ac-

curacy on those subchannels close to the primary user band.

According to Li et al. in [6] , the system code rate of the algo-

rithm proposed in [13] is 1/4 while only half of the subcarriers

are active. Therefore, the authors try to improve the performance

by employing an APP algorithm to identify active subcarriers and,

then, use a Low-Density Parity-Check (LDPC) to improve system

code rate. However, the authors emphasized more on how to cre-

ate LDPC code, they did not provide any explanation with respect

to the synchronization process.

Saha et al.in [16] proposed a blind synchronization method

where the receiver is able to regenerate time-domain preamble

locally at the receiver by employing a frequency-domain repre-

sentation of the preamble. In this article, instead of performing

a full 16-bit Multiply-Accumulate (MAC) operations in frequency-

domain, the idea of using multiplierless correlator has been inves-

tigated. The authors considered primary user activities and, hence,

a binary mask extracts secondary transmission from incoming sig-

nal. As a result, after performing the Fast Fourier Transform (FFT),

the primary user is filtered out. Thereafter, the rest of the synchro-

nization process is similar to the one of OFDM.

3. NC-OFDM synchronization

In all digital communication systems, synchronization is an es-

sential mechanism in order to extract useful data from the received

signal. Synchronization is the process in which the receiver detects

the incoming data and, subsequently, distinguishes the boundaries

of the received packet. So far, designing a robust and accurate syn-

chronization algorithm for NC-OFDM systems has been one of the

major challenges for design engineers. Synchronization in Orthogo-

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 3

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Fig. 2. NC-OFDM synchronization scheme.

nal Frequency Division Multiplexing (OFDM) systems is done either

in time-domain, frequency-domain or both. In reality, the reason

why most of the OFDM systems prefer to perform synchronization

in time-domain is the lack of time. This is due to the fact that syn-

chronization in frequency-domain is a time-consuming task in the

receiver side. Each packet starts with a known sequence named

preamble which facilitates the synchronization process due to its

repetitive nature [17] . Symbol timing is extracted using a correlator

whose coefficients are exactly the same samples of the preamble

in time-domain representation. What makes the NC-OFDM receiver

failed at this stage is the alteration in the time-domain represen-

tation of the predefined preamble due to the non-continuity of the

signal. Indeed, a new activity by the primary user enforces the sec-

ondary transmitter to alter its transmitting frequencies which re-

sults in a change in the time-domain representation of the pream-

ble waveform. Generally, NC-OFDM receivers are encountered with

two major challenges. First, only a part of subcarriers is available

for secondary transmission while the remaining subcarriers are oc-

cupied by the licensed user. This issue disables many traditional

synchronization techniques which are used in OFDM systems. Sec-

ond, secondary users must reduce their transmission power as low

as possible to avoid interference with the primary user due to the

sidelobe leakages. In this case, the secondary transmission power

strength is weakened which has the potential to be overwhelmed

by noise in some low Signal-to-Noise Ratio (SNR) environments

[15] . Therefore, a CR receiver should be able to adopt its radio pa-

rameters with new environment conditions to re-establish the syn-

chronization process in lower SNR regions as well as subcarriers

deficiency.

Fig. 2 shows the synchronization pipeline for NC-OFDM-based

CRs [16] . As it is shown, synchronization is performed in two major

steps: Subcarrier Detection and Preamble Regeneration and Corre-

lation. Since the CR receiver has no information about subcarri-

ers employed by the secondary transmitter, all subcarriers must

be gathered at the receiving signal. Then, the whole spectrum

is sensed using one of the spectrum sensing methods. Next, the

results are compared to a threshold to decide which subcarri-

ers contain information. The spectrum sensing procedure is per-

formed in a pipeline structure. The pipeline process will be stalled

with any detection of an incoming packet. Fortunately, secondary

users willing to transmit over the licensed spectrum might have

useful knowledge about the signal structure, power and location

of the primary user [18] . Therefore, it can be assumed that the

secondary receiver is eligible to filter out the primary user by

having fundamental information about licensed spectrum. Follow-

ing by the secondary transmission detection, time-domain coef-

ficients of the correlator can be generated at the receiver using

the frequency-domain representation of the preamble. This is usu-

Fig. 3. Proposed NC-OFDM synchronization scheme.

ally done using a low-cost Inverse Fast Fourier Transform (IFFT)

unit. Once the time-domain correlator is initialized by newly gen-

erated coefficients, the incoming waveform can be implied similar

to OFDM and is synchronized using related synchronization tech-

niques. However, a copy of the received signal must be buffered in

advance to extract time samples from the beginning of the packet.

Spectrum sensing unit shall be turned off to save energy as long as

the correlation shows satisfactory results. If the correlator fails to

detect a secondary user’s incoming packet, spectrum sensing unit

must resume monitoring the entire spectrum to provide preamble

regenerator with the new information with respect to secondary

user activities.

4. Proposed synchronization scheme

In this paper, a reconfigurable multicorrelator is proposed to

perform both sensing the spectrum along with detecting the

preamble. In order to speed up the system, several multicorrelators

are used in a parallel manner. As Fig. 3 shows, a multicorrelator

is employed in order to perform both sensing the spectrum based

on signal energy detection as well as correlating time-domain re-

generated preamble with the original signal. Multicorrelator per-

forms autocorrelation between the incoming signal and a delayed

version of itself as long as the particular subcarriers are inferred

as inactive. The autocorrelation results are compared to a thresh-

old in parallel structure. As soon as a result exceeds the thresh-

old, an active subcarrier is inferred to be detected and the con-

troller will immediately be informed. Henceforth, other multicor-

relators are discarded and the preamble regenerator unit regen-

erates the time-domain representation of the frequency-domain

preamble. Then, the buffered versions of the In-Phase/Quadrature

(I/Q) signals are fed to the active multicorrelator as the input sig-

nals and, similarly, the time-domain representation of the pream-

ble (which is created by the regenerator) are fed to the coefficients

of the multicorrelator. Thereafter, the controller issues the corre-

lation command to the multicorrelator to compute the maximum

similarity between the noisy incoming signal and the clean version

of the time-domain preamble. The obtained results are compared

with another threshold to set the second peak, meaning that the

preamble boundaries are found in the received signal. Thereafter,

the entire packet is delivered to the packet decoding unit while

the multicorrelator is stalled in order to save energy. The decoding

module will inform the controller as soon as the packet is decoded.

Thereafter, the controller takes the action and prepares the multi-

correlator to wait for the next packet.

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

4 F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Fig. 4. The internal integration between the controller block and the

multicorrelator.

5. FPGA implementation of the multicorrelator

Synchronization in NC-OFDM is established in the frequency-

domain by performing a crosscorrelation between predefined co-

efficients and received signal, followed by an autocorrelation be-

tween the received sequence and a delayed version of itself. Fig. 4

shows the infrastructural overview of the synchronization block

structure. Synchronization block is composed of several sub-blocks

integrated together to form the entire design in which the major

ones are described in following.

5.1. Memory block

The memory block considered for this design is an SRAM ini-

tialized by the frequency-domain representation of the preamble.

Thus, the values stored in the memory are used for performing

crosscorrelation. Furthermore, the SRAM is capable of keeping re-

generated time-domain preamble, as well. The data output of the

SRAM is 32-bit wide where we take into assumption that the 16

Least Significant Bits (LSB) half includes the Real part of the pream-

ble and the 16 Most Significant Bits (MSB) half contains the Imagi-

nary part. Authors in [19] estimate that using 16-bit inputs provide

sufficient accuracy for the receiver. In this case study, we used an

unsynthesizable VHDL-based SRAM (for simulation purpose only)

which was initiated by the frequency-domain representation of the

preamble in hexadecimal format. Since the 32-bit data driven by

the SRAM contains both real and imaginary parts of the pream-

ble, the precision of each part of the signal is sacrificed by mit-

igating the corresponding LSB part of that signal. For example, if

we assume that the value 0x3BFCAB36 is the real part of the sig-

nal, the SRAM only provides the value 0x3BFC for the synchronizer.

The imaginary part of the signal is obtained from the memory in

the same manner. We also employed a synthesizable Intellectual

Property (IP)-based SRAM provided by Quartus-II design software

for synthesis purpose [20] .

5.2. Threshold detection block

The main task of the Threshold Detection block is to compare

computed results calculated by the FIR filter with some thresh-

Fig. 5. 2-step threshold detection flowchart [21] .

old. In initial estimation for packet detection stage, the decision

is made based on a comparison between the similarity between

the incoming signal with a delayed version of itself (autocorrela-

tion). The threshold detector performs a 2-step predefined thresh-

old level proposed in [21] for precise timing acquisition (crosscor-

relation). Fig. 5 depicts two threshold levels Thr 1 and Thr 2 used by

the threshold detection block when the synchronizer is performing

crosscorrelation function. Conceptually, the correlation of the first

half of the incoming signal is calculated and compared with the

value Thr 1 . If the comparison result exceeds the Thr 1 , the second

half of the correlation function will be executed and subsequently

the given result is compared to Thr 2 . A crosscorrelation peak is

found and reported to the controller, as soon as the similarity of

the buffered version of the noisy signal with the clear version of

the predefined preamble arises over the Thr 2 value. Otherwise, the

overall computation is considered as undetected even though the

Thr 1 was met. The controller takes control of the rest of the syn-

chronization when the crosscorrelation peak is received. Therefore,

two output ports of the threshold detection block indicate a peak

in autocorrelation peak as well as a peak in crosscorrelation, re-

spectively. Choosing an appropriate value for both Thr 1 , Thr 2 has an

impressive impact on a precise detection even in low SNR regions.

Although a high value will improve the algorithm robustness, on

the other hand, it might result in missing low-power frames. On

the opposite side, a low value might result in false detection of the

frame with the noise in lower SNR regions. For instance, a good

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 5

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

approximation for Thr 1 value could be 45% of Thr 2 for a 2-step al-

gorithm [21] .

5.3. Controller block

The Controller block has the highest responsibility in the de-

sign. The most prominent objective of the controller is to make a

proper action based on received information by continuously mon-

itoring the behavior of other blocks. At the start of the transmis-

sion, the synchronizer should perform autocorrelation between the

incoming signal with a delayed version of itself. Therefore, the con-

troller configures the synchronizer in such a way to perform auto-

correlation function. It is simply done by routing the input signal

to the coefficient registers of the FIR filter with a delay length of

D (which in this case study is D = 16). This can be simply done

using a multiplexer with two inputs where the first input is the

incoming signal and the second one is the signal driving by the

memory. The controller sets the multiplexer to logic ‘0’ and ‘1’ in

order to perform autocorrelation and crosscorrelation, respectively.

As soon as the coefficients of the FIR filter are fed by the incom-

ing signal, the controller freezes the coefficient register bank of

the FIR filter to avoid overloading coefficients overloading. There-

after, the controller waits for receiving a response from Thresh-

old Detection block. As soon as the autocorrelation peak is found,

the threshold detector will inform the controller by setting the

corresponding autocorrelation peak input. Then, the controller im-

mediately changes the functionality of the multicorrelator to per-

form crosscorrelation between a buffered version of the incoming

signal and the regenerated time-domain preamble. The Crosscor-

relation function is executed in a similar way to autocorrelation.

This time, the coefficients of the FIR filter are filled by the data

driven by the memory, instead of being filled with the incoming

signal. Then, the controller issues the read command to the mem-

ory block by issuing the corresponding address. Hence, the proper

coefficient is loaded from the memory and is fed to the multicor-

relator per clock cycle. When the multicorrelator is filled with the

proper coefficients, the controller freezes the coefficient input to

the multicorrelator and orders the FIR filter to perform the proper

action. Once again, the controller waits for threshold detector to

detect if there exists any crosscorrelation peak. Whenever the sec-

ond peak is found, the controller disables the FIR filter and, con-

sequently, any incoming packet will be discarded afterward. The

current packet is handed to the Packet Decoding unit to extract

the useful data. However, since the ultimate goal of the synchro-

nizer is only packet detection, the Packet Decoder unit is not a con-

cern. When the data is decoded, the corresponding unit informs

the controller to restart the synchronization process. Furthermore,

the controller block is capable of reconfiguring the number of taps

of the FIR filter at run time in terms of reconfigurability. This as-

sists the FIR filter to reconfigure its taps based on the information

provided by the controller.

5.4. FIR filter block

Conceptually, the reconfigurability is referred to the FIR Filter

section of the synchronizer. Moreover, the basic idea of the CR

technology is how to enable a single hardware platform to sup-

port multi-standard communications on a single chip. This can be

achieved by replacing analog signal processing with digital signal

processing. Due to the nature of NC-OFDM-based CR, the high-

est order of the filter, e.g. 4096-tap, is required on the receiver

side to detect secondary users within the spectrum. Technically,

the power dissipation along with the silicon area of a secondary

NC-OFDM-based receiver are two major concerns in such a sys-

tem [22] . These problems are mainly emerged due to the power-

hungry MAC operations performed by the FIR filter. Therefore, an

appropriate hardware implementation of an FIR filter has the po-

tential to have a massive impact on the overall performance of the

receiver. Based on Eq. (1) , a complex FIR filter continuously calcu-

lates y (n) as complex products of conjugated coefficients c (k) with

the signal x (n − k) on a window whose length is N which is also

known as the MAC operation [23] . The window N is also referred

to as the number of filter taps or filter order and the conjugation

is performed by inverting the sign bit of the imaginary part of the

coefficients of the FIR filter.

y (n) = c(n) ∗ x (n) =

N−1 ∑

k =0

c(k) x (n − k) (1)

By taking Eq. (2) into consideration, a complex multiplication is

derived as

(R 1 + I 1 i) × (R 2 − I 2 i) = R 1 (R 2 − I 2 i) + I 1 i (R 2 − I 2 i)

= R 1 R 2 − R 1 I 2 i + R 2 I 1 i − I 1 I 2 i
2

= R 1 R 2 + I 1 I 2 + (R 2 I 1 − R 1 I 2) i

(2)

where R and I are the Real and Imaginary input signals, respec-

tively. Please note that the (R 2 − I 2 i) is the conjugated version of

the signal. Therefore, each complex FIR filter computes both the

Real and the Imaginary input signals by using four multipliers

alongside two adders. In addition to that, the hardware implemen-

tation of a multiplier is much more area expensive and slower than

implementing an adder [24] .

There are other solutions to replace a multiplier with the cost

of introducing few adders. For example, a complex multiplier

can be replaced by three adders in Golub’s method [25] . In this

method, a complex multiplication is calculated as Eq. (3) :

(R 1 + I 1 i) × (R 2 + I 2 i) = [(R 1 + I 1)(R 2 − I 2) + R 1 I 2 − R 2 I 1]

+ (R 1 I 2 + R 2 I 1) i (3)

where the Eq. (4) is the conjugated version of the Eq. (3) is:

(R 1 + I 1 i) × (R 2 − I 2 i) = [(R 1 + I 1)(R 2 + I 2) − R 1 I 2 − R 2 I 1]

+ (R 2 I 1 − R 1 I 2) i (4)

By taking Golub’s method into consideration, each complex mul-

tiplication is performed by using three multiplication along with

five addition. Potentially, complex multiplications not only alter the

critical path, but also they have the potential to increase hard-

ware resource usage two times more than a simple multiplication.

Hence, resource utilization is significantly important when design-

ing such a large complex FIR filter.

Karatsuba introduced a very similar method, which also known

as Karatsuba MuLtiplication (KML), in which a multiplier can be

replaced by few adders [26,27] . If we expand the KML to the com-

plex multiplication in the example, Eq. (5) will be derived as:

(R 1 + I 1 i) × (R 2 − I 2 i) = (R 1 R 2 + I 1 I 2) + (R 2 I 1 − R 1 I 2) i (5)

If we assume P = (R 1 + I 1) × (R 2 − I 2) , R = R 1 R 2 and I = I 1 I 2 , then

we will have:

P = R 1 R 2 + R 2 I 1 − R 2 I 1 − I 1 I 2

= R + R 2 I 1 − R 2 I 1 − I

R 2 I 1 − R 2 I 1 = P − R + I (6)

Ultimately, Eq. (7) will be derived as:

(R 1 + I 1 i) × (R 2 − I 2 i) = (R − I) + (P − R + I) i

= R 1 R 2 + I 1 I 2

+ [(R 1 + I 1)(R 2 − I 2) − R 1 R 2 + I 1 I 2] i

(7)

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

6 F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

So far, we have introduced three different methods to calcu-

late any complex multiplication. In general, complex multiplica-

tions not only alter the critical path, but also they have the po-

tential to increase hardware resource usage up to four times more

than a simple real multiplication. Hence, resource utilization is sig-

nificantly important when designing such a large complex FIR fil-

ter. Later in Subsection 6.1 , we will further explain which approach

is the most suitable candidate in our design, based on the specific

FPGA device.

Technically, the proposed multicorrelator operates in two differ-

ent modes as follows:

5.4.1. MAC-based multicorrelator

In principle, FIR filters are composed of three fundamental

functional units. These three major parts are adders, multipliers

and delay elements integrated and arranged in different ways to

form different FIR architectures. In general, an N-tap FIR filter con-

sists of N delay elements, N multipliers, and N − 1 adders. FIR

filters are mostly represented as two well-known architectures

known as Direct Form (DF) and Transposed Direct Form (TDF), each

of which is capable of computing y (n) [28] .

Fig. 6 a illustrates the DF architecture where the input signal are

propagated through the delay elements in the input path. Intu-

itively, this architecture employs a long serial adder tree, as well.

Therefore, a DF FIR filter with a large number of taps introduces

a long critical path started from the input to the output. If we

take into account that each multiplication introduces T m

delay and

each addition takes T a units of time, the critical path of the DF is

equal to T crit = T m

+ 255 T a for a 256-tap FIR filter. Thus, the DF ar-

chitecture is not a good candidate for high-order FIR filter designs

and, henceforth, we will not study this architecture in the rest of

this paper. However, we have provided some synthesis results in

Section 7 which reveal why this architecture is not recommend-

able.

Fig. 6 b shows an optimized version of the DF known as TDF

configuration. In this architecture, since the delay elements are

placed between adders, the critical path of the design is limited

by T crit = T m

+ T a , irrespective of the number of filter taps. This

alteration requires the reversed order of the coefficients C (k) , i.e.

(C k , C k −1 , . . . , C 0) , to be fed to the system. Thus, the TDF does not

include any register on the input path. However, a large TDF-based

FIR filter has the potential to introduce a long interconnection on

the input path [29] . In addition, this well-known architecture suf-

fers from exploiting 3-input adders due to its architectural nature.

We will investigate this issue later in Section 7.2 in detail.

In this work, similar structures such as Parallel Direct Form

(PDF) and Pipelined-Parallel Direct Form (PPDF) are investigated

and implemented, as well. Fig. 6 c shows the PDF configuration

where instead of implementing a serial chain adder, a binary adder

tree is implemented. The idea behind this architecture is to cope

with the long interconnection in the input path of the TDF model

as well as the critical path introduced in the DF architecture to

some extent. The number of required adder levels are proportional

to the � log 2 N� where N is the number of taps. Consequently, the

critical path of a design is dependent on N . For example, the criti-

cal path of a 256-tap FIR filter is reported as T crit = T m

+ (� log 2 N� ×
T a) = T m

+ 8 T a . The hardware implementation procedure of this ar-

chitecture is more complex than the DF and TDF forms.

The PPDF architecture shown in Fig. 6 d is the pipelined version

of the PDF model where the critical path is more limited than the

one in PDF. The inserted registers maintain the critical path at its

minimum level (T crit = T m

+ T a) by the cost of introducing a vari-

ety of register elements to the system. Moreover, the PPDF archi-

tecture has the same complexity as the PDF form. Section 7 pro-

vides more information relevant to the hardware cost with respect

to the above-mentioned architectures. Although these architectures

Fig. 6. Different architectures for MAC operator unit.

(PDF and PPDF) are quite similar to the binary adder tree proposed

in [30] , bear in mind that we are dealing with complex FIR filter

structures in this work.

In this work, irrespective to the architecture, coefficient inputs,

as well as the incoming signal, are 32-bit signal vectors where we

stipulated that the first half (including 16 LSB bits) is the Real part

and, subsequently, the remaining 16 bits (MSB half) contains the

Imaginary part of the corresponding input. Note that the multi-

plication block performs a complex multiplication which is more

complex and power-hungry in comparison with the real-valued

multiplication from the hardware point of view. In this work, we

used fixed-width truncation in which only 16 MSBs of 32-bit prod-

ucts are assigned to the output. FIR filters are intensive parts of

a CR due to the massive workload of complex computations as

well as operating at high speed to achieve highest sampling rate

in power consumption point of view. In Section 7 , resource allo-

cation and power consumption for different FIR filter architectures

are described in detail.

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 7

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

5.4.2. ML-based multicorrelator

The Multiplier-Less (ML) technique is an approximate comput-

ing approach in order to exploit an energy efficient design by

omitting computation of some less significant bits [31] . In an ML-

based multicorrelator, the size of the correlator, as well as the

number of registers, is depending on the number of input sam-

ples. According to [32] , instead of performing 16-bit multiplica-

tion, a sign bit correlation between the coefficients and input sig-

nal is done which can be simplified to either an XNOR or XOR

gate. Similarly, in [33] coefficients are represented in the form of

summed powers of 2. In both cases, a massive number of registers

and multiplications, which are the most power-hungry operations

in FIR filters due to their dynamic power consumption, are miti-

gated. Although the multicorrelator uses only 1-bit word instead

of 16-bit word, simulation results given by the ModelSim software

show that the performance of the FIR filter is still at a satisfac-

tory level for this application. Authors in [16] acknowledged that

the sign-based correlator has reasonable result in low SNR regions,

as well. Intuitively, it works better in higher SNRs regions. They

have also claimed, by implementing both multiplier-based corre-

lator and sign-based correlator in MATLAB and testing both with

802.11a/g packets, the results were still satisfactory. Based on that,

we implemented the ML-based multicorrelator for autocorrelation

purpose in hardware. Our observation of performing autocorrela-

tion function based on ML approach has the potential to overcome

the conventional MAC approaches. The implementation results of

the ML-based along with the MAC-based multicorrelator are pre-

sented in Section 7 in terms of implementation summary, maxi-

mum frequency, power consumption, etc. However, the ML-based

approach still requires more practical studies in the field of com-

munications due to presenting an approximate computation [34] .

5.5. Partial reconfiguration (PR)

The partial reconfiguration is an ability in which a portion of

FPGA is reconfigured while the rest of the design is operating. This

feature enables a particular region of the design to have multiple

configurations while everything outside of this region is operating

normally. Although the PR has several applications, in general, it is

used in designs which require operating continuously while some

particular regions can be reconfigured without disrupting the op-

erating parts [35] . In this work, the PR host is implemented as an

internal host, meaning that the core has the potential to execute

the PR itself. When the device is ready to perform PR, the PR host

sends the PR request to the hard controller block inside the FPGA.

The controller acknowledges the PR host through a “Ready” sig-

nal. Thereafter, the host transmits the configuration bitstreams and

waits for an acknowledge from the PR controller block. The config-

uration bitstreams are generated by the Quartus-II software during

the synthesis time. Similar to other communication systems, if an

error occurs, the controller informs the host immediately. In the

same way, if the PR is successfully performed, the controller in-

forms the host again.

Reconfiguring portions of the FPGA on-the-fly is the main ad-

vantage of using PR feature. Fig. 7 illustrates how multicorrela-

tors perform autocorrelation functions over the wide spectrum.

The controller controls each multicorrelator via several control sig-

nals including freezing, enabling, crosscorrelation, autocorrelation,

etc. signals. Initially, each multicorrelator performs autocorrelation

functions over a subset of subcarriers. As earlier studied in this pa-

per, the ML-based approach achieves acceptable performance for

autocorrelation function by replacing the conventional MAC oper-

ation with an inexpensive XOR/XNOR gate. instead of the conven-

tional MAC operation. On the other hand, there are a huge amount

of hardware resources dedicated to each multicorrelator in order

to compute crosscorrelation function of a maximum 256-tap FIR

Fig. 7. How multicorrelators perform autocorrelation function using ML-based

method. In this case, regenerated preamble ports are dummy interfaces.

Fig. 8. How multicorrelators are reconfigured to perform crosscorrelation function

using MAC-based method.

filter. Therefore, each multicorrelator has the potential to compute

autocorrelation results over a large portion of the spectrum. At the

same time, the controller consecutively monitors the results of the

threshold detector unit of each multicorrelator. As soon as the con-

troller detects the presence of the secondary user, it will send the

appropriate command to the PR host to perform reconfiguration

process. When the multicorrelators are configured to perform au-

tocorrelation function, the “regenerated preamble” interfaces are

considered as dummy ports. It means that the actual ports do exist

although they are not connected to the multicorrelator.

Partial reconfiguration is a special feature which is not available

on all FPGA boards. It also requires an additional license on top of

the one needed for performing the synthesis. Please make sure if

your target FPGA board has the capability to run PR before trying

to use this feature.

Fig. 8 presents the situation when the presence of the sec-

ondary user is detected in two different frequency bands. In this

case, the PR host reconfigures the PR region with two multicorre-

lators to compute 256-tap crosscorrelation function, while it dis-

cards the third multicorrelator. Therefore, there will be some free

hardware resources which can be taken into other uses, e.g., as

hardware accelerators. Once the data transmission is disrupted for

any reason, such as the secondary user completed its transmission

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

8 F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Fig. 9. The DSP architecture of the Stratix V in 18 × 18 complex mode. The archi-

tectural structure is suitable for traditional complex MAC operation. Adopted from

[39] .

or the multicorrelators fail to determine acceptable results, the PR

host reconfigures the PR region in a way to start sensing the spec-

trum again. In this figure, we only show three multicorrelators due

to the design choice as well as the constraints of the target FPGA

board. In next section, we investigate these issues more in detail.

Another advantage of employing PR feature is the capability of

uploading different IEEE standards to the same receiver on-the-

fly. For example, one multicorrelator is configured to receive IEEE

802.11x standard whereas another one can receive and decode IEEE

802.22 packets. A CR receiver is more versatile due to using such

an impressive feature.

6. FPGA implementation constraints

As previously explained, an NC-OFDM-based CR receiver has to

collect all the available subcarriers in the spectrum to perform

a synchronization procedure. Therefore, the FIR filter section of

the multicorrelator should employ the highest possible filter or-

der, e.g., 4096-tap filter. In contrast to the software perspective

where implementing a 4096-tap FIR filter is feasible, our experi-

ence revealed various limitations when the design is implemented

on FPGA. In the following, a few of such constraints are listed:

6.1. Insufficient DSP blocks

Generally speaking, the Digital Signal Processing (DSP) blocks

are suitable for implementing chain adders, multiplier and a com-

bination of both. Technically, the main applications of the DSPs

are in computationally intensive tasks such as digital filtering al-

gorithms where a massive number of MAC operation are required.

Depend on the target FPGA device, each DSP block is suitable to

perform the MAC operation in the best efficient way. For example,

Stratix II and Stratix III device families employ extremely efficient

DSP blocks to compute Karatsuba algorithm [36] . Therefore, it is

the best to exhaust the DSP block as much as possible before go-

ing to perform MAC operations in logic cells.

Our target FPGA device, Stratix V, provides variable-precision

as well as fixed-precision DSP blocks. In the fixed-precision mode,

each DSP block can operate various configurations of a MAC op-

eration including three 9 × 9 multipliers, two 16 × 16 or one

18 × 18/27 × 27 multipliers. For example, Fig. 9 depicts the inter-

nal architecture of the Stratix V FPGA device in 18 × 18 complex

mode. Furthermore, multiple DSP blocks can be cascaded together

to perform complex computations [37] . Fig. 10 illustrates how the

complex multiplication is done by cascading two DSPs.

As in earlier sections mentioned, there are different alternatives

to calculate a complex multiplication. The multiplication algorithm

Fig. 10. How the synthesis tool cascades two DSP blocks to perform complex mul-

tiplication. The combination of using two DSP is suitable for performing complex

multiplication based on traditional algorithm. Adopted from [39] .

that we take into account is the traditional method which requires

4 multipliers alongside 2 adders. Although other mentioned algo-

rithms, Golub’s and KML, take advantage of employing one mul-

tiplier less than the conventional method with the cost of insert-

ing few adders, the Stratix V DSP block provides a specific mode

exactly for computing complex multiplications as the traditional

method [38] . Hence, the traditional complex multiplication algo-

rithm seems to be the best candidate to fit into the DSP blocks.

Moreover, we investigated the effect of employing both Golub’s al-

gorithm and KML method, instead of the traditional algorithm. Sur-

prisingly, the hardware costs, including resource utilization, num-

ber of used registers, DSP blocks, etc., drastically increased. This is

due to the fact that the DSP blocks cannot fully be utilized. When

we further investigated, we discovered that the synthesis tool em-

ploys 3 DSP blocks to compute none-traditional complex multipli-

cation algorithms. We anticipate that, perhaps, one reason could

be that the synthesis tool utilizes two DSPs in medium-precision

mode and the other one in high-precision mode. Further informa-

tion with respect to the precision modes can be found in [39] . It

is crucial to know the FPGA platform in detail prior to writing the

hardware description of the design. The traditional complex mul-

tiplication method is suitable for Stratix V families. Perhaps, none-

traditional algorithms (such as Golub’s and KML) would be more

efficient than the traditional algorithm in other platforms such as

Stratix II families.

In our application, the I/Q signals (which are the real/imaginary

part of the original signal) are 16-bit wide, each of which requires

one DSP block to compute a complex MAC function. For example,

a complex 256-tap FIR filter exploits 512 DSP blocks. The Altera’s

Stratix V FPGA board that we used provides only 1590 DSP blocks.

It means the highest order for such a filter cannot exceed 795 taps.

Since FIR filters are generally implemented as powers-of-two, i.e.

128-tap/256-tap, the FPGA board could only support complex FIR

filter with up to 512 taps. Insufficient DSP blocks are the main lim-

itation of the platform from the hardware point of view.

There are two approaches to cope with DSP limitation. One so-

lution is to force the compiler not to use DSP blocks automati-

cally. The synthesis tool will then implement the MAC operations

as combinatorial logic using the FPGA look-up tables. This is poten-

tially 10 times more expensive than exploiting existing DSP blocks.

Another alternative is to sacrifice the precision of the filter. For

instance, instead of having three 256-tap filters, we can exploit

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 9

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Table 1

Preliminary results for different implementations of the multicorrela-

tor.

TDF DF PDF PPDF ML

Logic Utilization 12 ,483 12 ,490 7504 14 ,611 1876

(ALMs)

Total DSP Blocks 512 512 512 512 0

Total Registers 16 ,378 16 ,883 8873 28 ,037 2886

Max. Freq. [MHz] 237 68 88 240 257

twelve 64-tap filters with approximately the same amount of hard-

ware resources. This strategy entirely depends on the application

as well as the environment in which the CR receiver is being used.

6.2. Silicon area

The FIR filter is the major component of the multicorrelator

which employs a large number of resources. Having an N -tap com-

plex FIR filter not only requires 2 × N DSP blocks, but also in-

creases the total number of fundamental components such as shift

registers, register bank, adders, etc. A large complex filter, e.g.

4096, has the potential to employ most of the available resources

of the target FPGA.

6.3. Power consumption

The total power consumption of each configuration is depen-

dent on three components: total static power, total dynamic power

as well as the total I/O power of which the dynamic power along

with the I/O power dominate the total FPGA power dissipation

[40] . Static power refers to the power consumed when there is no

circuit activity. Hence, the static power is approximately the same

for all configurations. Dynamic power consumption is the power

consumed by the FPGA when the transistors toggle and capacitive

loads are charged and discharged, respectively. The I/O power of an

FPGA includes the power consumed for the signal starting from the

input, traversing the circuit and ending at the output. In our case

study, one of the main resources of dynamic power dissipation is

the massive workload of the large complex computations of a com-

plex FIR filter. On the other hand, as the order of the complex filter

grows, long interconnections are introduced to the system which

have the potential to increase the I/O power consumption.

7. Experimental results and further discussion

In this section, the proposed multicorrelator described using

Very-high-speed integrated circuit Hardware Description Language

(VHDL), simulated by ModelSim software, compiled and synthe-

sized by Quartus-II 12.1 and 15.1 environments and eventually im-

plemented on Altera FPGA device targeting Stratix-V speed grade 2

family. It is worth mentioning that the target FPGA board has the

capability to perform partial reconfiguration on demand.

7.1. Preliminary results

Synthesis results for a multicorrelator configured to a 256-tap

FIR filter are reported in Table 1 in terms of logic utilization, to-

tal DSP blocks, total registers and maximum frequency. The results

are purely presented based on the information obtained by the

Quartus-II version 12.1 software without using any optimization

technique. Unfortunately, the presented results for the PDF con-

figuration in [7] are not the correct (as Fig. 6 c depicts) due to a

design error made in the HDL. Therefore, the updated results are

presented in this section.

The results show that the ML architecture is the preferable con-

figuration among the implemented architectures, whereas the DF

Table 2

Power consumption analysis (mW).

TDF DF PDF PPDF ML

I/O Power 22 .58 2108 .14 33 .92 22 .86 26 .20

Dynamic Power 344 .17 200 .59 265 .89 160 .10 9 .42

Static Power 1070 .06 1062 .71 987 .12 955 .80 951 .50

Total Power 1436 .82 3371 .43 1286 .92 1138 .75 937 .13

Table 3

Power dissipation by hierarchy (mW).

TDF DF PDF PPDF ML

Memory Block 0 .78 0 .81 1 .21 0 .80 0 .79

Threshold Block 0 .01 0 .01 0 .01 0 .01 0 .01

Controller Block 0 .02 0 .02 0 .02 0 .02 0 .02

FIR Filter Block 230 .20 165 .57 192 .38 128 .80 4 .18

configuration holds the worst records. Moreover, the PPDF archi-

tecture employs more registers in comparison with other archi-

tectures due to its pipeline-parallel-based structure. However, the

PPDF architecture does not yield an impressive advantage by using

extra registers. In ML design, logic utilization is decreased dras-

tically since a large number of DSP blocks, as well as registers,

are mitigated while the MAC-based architectures exploit 512 DSP

blocks with more registers. Therefore, ML architecture preserves

more than 82% silicon area in comparison with other architec-

tures. However, the ML-based multicorrelator is a better candidate

to perform autocorrelation function rather than the crosscorrela-

tion. Although the PDF configuration does not yield acceptable re-

sults in terms of maximum frequency, it employs the least number

of ALMs along with total used registers within MAC-based archi-

tectures. Excluding DF and PDF models, the maximum frequency

in other architectures is approximately similar to each other. Tech-

nically, it seems that the TDF architecture is the preferable MAC-

based configuration based on the given results.

Power dissipation analysis is reported based on the results

given by PowerPlay Power Analyzer Tool in Quartus-II software.

The analyzer directly reads the waveforms generated by the Mod-

elSim running at 50 MHz. Static probability and toggle rate for

each signal are calculated based on reported VCD file. Table 2 sum-

marizes the estimated results. The DF architecture has the most

power dissipation among the other implementations due to the

long critical path existing in the I/O. As it is shown, the dynamic

power is drastically decreased in ML architecture due to avoiding

a number of power-hungry multipliers and adders. The ML-based

design saves more than 94% of dynamic power consumption in

comparison with PPDF form (the lowest power consumer in MAC-

based architecture). PPDF architecture has the lowest power con-

sumption among the MAC-based architectures by exploiting sev-

eral levels of registers. Although the PDF model did not yield satis-

factory operating frequency, it is an acceptable candidate in terms

of power dissipation. The TDF configuration has the most power

dissipation within the MAC-based architectures.

The Dynamic power dissipation by hierarchy for different archi-

tectures are reported in Table 3 . As it is obviously clear, the FIR

filter is the most power-hungry component in MAC-based archi-

tecture while the controller block, as well as the threshold block,

is the least energy consumer. In the ML architecture, the power

dissipation problem relative to the FIR filter block is resolved by

using a sign bit correlation instead of 16-bit multiply-accumulate

operations. Table 4 shows power dissipation for each cell in detail.

The results show that ML architecture achieves the best result, al-

most in all aspects, in comparison with MAC-based architectures.

The reason why the DF has a massive I/O power dissipation can

be explained as the existence of the long critical path made in the

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

10 F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Table 4

Total power consumption for each cell(mW).

TDF DF PDF PPDF ML

DSP Block 216 .48 130 .40 157 .76 95 .20 0

Combinational Cell 76 .58 10 .78 51 .81 1 .30 1 .87

Register Cell 2 .09 30 .31 10 .66 32 .63 2 .45

I/O 25 .15 2090 .09 15 .79 4 .23 7 .44

Table 5

Summary of the maximum optimization gained by the synthesis

tool.

ITDF IPDF IPPDF

Logic Utilization (ALMs) 8417 7336 9856

Improvement 32.57% 2.24% 32.54%

Total Registers 16 ,407 8925 21 ,197

Improvement −0.18% −0.59% 24.4%

Max. Freq. [MHz] 258 94 268

Speed-up 8.86% 6.62% 11.66%

1.09 × 1.06 × 1.11 ×

design. The signal should have adequate energy to be able to tra-

verse the critical path made by a multiplier and 255 adders. Hence,

the DF architecture, which had the minimum operating frequency,

is not a wise configuration from the power consumption point of

view, as well. Next section provides useful information with re-

spect to the refinement techniques we used to improve the given

results in the tables above.

7.2. Improved results

As previously discussed, we would avoid further studying the

DF architecture due to its unacceptable results. Furthermore, the

ML architecture is not a reliable candidate to perform crosscorre-

lation function. Hence, we tried to make our best effort to mini-

mize the logic utilization as well as the power consumption, while

increasing the maximum frequency of the other aptly named MAC

architectures. It is worth mentioning that the FIR filters should per-

form more intensive computation to calculate the crosscorrelation

function rather than the autocorrelation. Thus, the hardware cost

of performing crosscorrelation is significantly more expensive than

in autocorrelation. Therefore, we mainly concentrated on optimiz-

ing MAC-based architectures at this stage. The optimization proce-

dures are as following:

HDL Modification . Typically, the optimization techniques start

with revising the HDL code. Modifications such as eliminating un-

necessary registers, shortening the critical path using more paral-

lelism, etc., assist in obtaining better performance. At this stage,

we also found a bug in the architectural description of the PDF

model where the preliminary MAC results were registered at the

first level of the chained adders. Hence, the critical path was short-

ened by taking advantage of additional registers.

Optimization Techniques Offered by Synthesis Tool . Quartus-II

provides a set of recommendations (including timing optimization,

resource optimization, power optimization, etc. recommendations)

to improve the overall performance of the design. At this stage,

we pushed more towards the timing optimization, while minimiz-

ing the logic utilizations along with the power dissipation. Table 5

presents the maximum optimization gained by taking advantage

of recommendations offered by the synthesis tool. Although the

Quartus-II was successful to improve the logic utilization as well as

the maximum frequency to some extent, it had a negative impact

on employing total registers in Improved TDF (ITDF) along with

the Improved PDF (IPDF) configurations. Furthermore, optimizing

design using synthesis tool approach was quite successful for Im-

proved PPDF (IPPDF) architecture. As a result, the IPPDF configura-

tion gained 11.66% speed-up (1.11 ×), 24.4% less registers alongside

32.54% less logic utilization. On the other hand, the synthesis tool

approach was not very successful for IPDF architecture in compar-

ison to other models. Overall, Quartus-II optimization recommen-

dations have the potential to improve some part of the design to

some extent.

Exploiting Ternary Adders . In 2005, Altera corporation published

a white paper which encouraged digital designers to exploit 3-

input adders (also known as ternary adder structure) instead of

2-input ones (binary adder) [41] . It means, in order to utilize an

adder in an efficient way, the designer should explicitly design the

code, e.g., d = a + b + c. Back to that time, perhaps, the synthe-

sis tools were not smart enough to put their effort s on replacing

ternary adders with binary ones. We also investigate this issue to

verify how today’s synthesis tools manage it. Therefore, we took

into consideration the generated netlist after place and route using

the Technology Map Viewer offered by the Quartus tool. As Fig. 11 a

shows, the synthesis tool was not able to exploit ternary adders

due to the nature of the ITDF architecture. Similarly, the IPPDF ar-

chitecture suffers from the same problem. Fig. 11 b illustrates a por-

tion of the IPDF netlist. It seems that the synthesis tool changes the

design in a way to exploit ternary adders whenever it is possible.

However, a few binary adders exist in the netlist. The algorithm

being used by the synthesis tool might be similar to [42,43] . The

hardware description of a large adder tree which employs 3-input

adders is a complicated task from the hardware designer’s point of

view.

Intermediate Register Insertion . In this stage, the slowest archi-

tecture (PDF model due to reporting the worst-case maximum fre-

quency of 94 MHz) was the first target which required maximum

optimization to reach the maximum possible frequency. After ana-

lyzing the critical path, we discovered that although the adder tree

is limited to 8 levels (in this study), the design mainly suffers from

the long combinational path produced by the chained adders. In-

serting Intermediate Register (IR) is an alternative solution to mini-

mize the critical path by the cost of using more registers. However,

inserting IR at each level is exactly what we applied to implement

PPDF architecture. Hence, the critical path was investigated more

in detail to discover the best suitable locations for IR insertion.

We investigated that inserting IR at 1st, 4th and 7th levels would

increase the frequency to 240 MHz by introducing 19,051 regis-

ters alongside 8777 ALMS meaning that the achieved speed-up was

2.55 × (155.32% faster) with the cost of 113.46% (2.13 ×) more reg-

isters as well as 19.54% (1.2 ×) more logic elements. Furthermore,

we inspected that the design was also suffering from the critical

path made by DSP blocks due to not being fully utilized. It means

unregistered data path which goes through a DSP block does not

fully utilize the embedded DSP block which drastically degrades

the overall performance. Therefore, we exploited the free embed-

ded register available inside the DSP block. The main advantage of

such embedded register is providing a free register element which

significantly helped us to remove the 1st level of IR. Hence, with

the new conditions we had to move IRs one step backward. Even-

tually, the IPDF architecture could achieve the maximum frequency

of 249 MHz (2.65 × speed-up) by employing 11,282 (26.41%) more

registers while employing 5671 (22.7%) fewer ALMs. Fig. 12 illus-

trates the above-mentioned scenario where we exploit DSP regis-

ters with no additional cost while distributing IRs in appropriate

locations at every 3rd level.

The PPDF architecture could not benefit from intermediate reg-

ister insertion technique due to the nature of its architectural

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 11

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Fig. 11. A snapshot from technology map viewer.

Fig. 12. Improved PDF architecture shows how the design takes advantage of DRs

as well as distributed IRs to achieve the maximum possible frequency.

Table 6

Synthesis summary for of the maximum improvement appli-

cable to the MAC-based architectures.

ITDF IPDF IPPDF

Logic Utilization (ALMs) 8519 5671 6345

Improvement 31.75% 24.43% 56.57%

Total Registers 16,345 11,282 17,141

Improvement 0.20% −27.15% 38.86%

Table 7

The maximum operating frequency gained for improved MAC-

based architectures.

Maximum Frequency [MHz]

ITDF IPDF IPPDF

Slow Model (SM) 85 °C 280 249 293

0 °C 289 258 315

Fast Model (FM) 85 °C 378 347 387

0 °C 404 373 419

Speed-up at SM 85 °C 1 .18 × 2 .83 × 1 .22 ×

structure. Hence, the PPDF could only take advantage of DSP reg-

ister packing. In order to do that, we eliminated all the registers

located at the first level of the adder tree (visible in Fig. 12) while

employing DSP register packing technique. This infers that the first

level of the registers is shifted one step backward. As a result, a

significant amount of logic modules along with a massive number

of registers are released while the maximum operating frequency

increased to 293 MHz.

Similar to PPDF, the TDF architecture could not take advantage

of register insertion technique either. Therefore, we could not re-

fine the TDF design by applying intermediate registers. What we

could do to further optimize these designs was employing avail-

able DSP register technique. The TDF architecture takes advantage

of employing DSP registers with no further structural alteration

as well as the hardware cost. As a result, the TDF architecture

could achieve the maximum operating frequency of 280 MHz on

the slow model at 85 °C. The next drawback of this architecture is

the architectural problem which cannot exploit 3-input adders.

Table 6 summarizes the maximum achieved optimization by

applying previously stated optimization techniques on selected

MAC-based architectures. The presented results are based on the

information obtained from the Quartus-II version 15.1 software.

The results reveal that the IPPDF configuration takes the most ad-

vantages of applied improvement techniques by achieving 56.67%

and 38.86% better results in terms of logic utilization and total

registers, respectively. The IPDF model requires 24.43% fewer logic

modules by the cost of employing 27.15% more registers to achieve

acceptable results. The ITDF architecture achieves 24.43% fewer

logic modules while the total used registers have a trivial refine-

ment. Overall, the refinement techniques were partially successful

in achieving less logic utilization as well as total used registers.

Table 7 presents the maximum frequency achieved after ap-

plying refinement techniques on namely MAC-based FIR filters. As

it is shown, the IPDF configuration achieved the most speed-up

of 2.83 × compared to the PDF configuration in the slow model

at 85 °C. However, the IPDF architecture employed more regis-

ters to target the speed-up. Moreover, 1.22 × and 1.18 × higher op-

erating frequency could be achieved for IPPDF and ITDF, respec-

tively. The multicorrelator configured with the IPPDF architecture

is the fastest design (293 MHz), the second option is ITDF model

(280 MHz) while the slowest configuration is IPDF (249 MHz).

Table 8 shows the total power dissipation in each cell of the

mentioned architectures after the refinements in detail. It can be

seen that the IPDF architecture along with the IPPDF has achieved

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

12 F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Table 8

Power consumption of each cell after optimization.

Dynamic Power (mW) Static Power (mW) Routing Power (mW) Total Power (mW)

ITDF IPDF PPDF ITDF IPDF PPDF ITDF IPDF PPDF ITDF IPDF PPDF

Memory Block 0.61 0.62 0.62 — — — 0.01 0.02 0.02 0.62 0.64 0.64

DSP Block 257.81 143.99 143.99 — — — 0.46 1.71 4.24 258.27 145.70 148.23

Combinational cell 2.75 3.22 3.34 — — — 23.46 2.19 1.60 26.21 5.41 4.94

Clock enable 0 0 0 — — — 24.84 23.83 29.47 24.84 23.83 29.47

Register Cell 5.17 5.87 7.57 — — — 11.54 30.47 34.44 16.72 36.35 42.01

I/O 1.43 2.15 3.91 1.11 1.11 1.11 19.95 0.54 0.50 22.49 3.80 5.52

Total Power 267.77 155.85 159.43 1.11 1.11 1.11 80.26 58.76 70.27 349.15 215.73 230.81

Fig. 13. Differences in hardware cost for each architecture.

less power consumption rather than the ITDF model in most of the

cases. The ITDF architecture has an excessive power dissipations in

comparison with mentioned candidates due to the massive power

consumption on DSP blocks, routing as well as the I/O. The main

reason for such a large difference is the existence of a long inter-

connection on the input path which not only affects the maximum

frequency but also degrades the performance in terms of dynamic

power dissipation. Based on given results, the greenest architecture

from the power dissipation point of view is the IPDF model with

216 mW power, followed by the IPPDF and ITDF with 231 mW and

350 mW power consumptions, respectively.

Fig. 13 a provides information for the designs where the limiting

factor is mainly the power dissipation. In that case, the ITDF has

the most power dissipation architecture, IPPDF model has a mod-

erated power consumption while the IPDF has the least power dis-

sipation. Fig. 13 b presents information suitable for designs which

are mainly constraint by silicon area. For such a design, the IPDF

model is the most economic candidate while employing either

ITDF or IPPDF have their own trade-offs. Fig. 13 c compares above-

mentioned architectures with each other in terms of maximum op-

erating frequency. In addition, each architecture is compared to its

preliminary version, as well. The IPPDF configuration provides the

fastest available speed for the designs where the limiting factor

is the speed. The ITDF architecture and IPDF model stand as the

second and third candidates, respectively. In our case study, the

ideal choice is the IPDF model by considering all above-mentioned

trade-offs. As the second choice, we choose IPPDF model over

the ITDF one, since it requires 25.52% fewer ALMs along with

33.9% less power dissipation while provides 4.64% higher oper-

ating frequency with the payoff 4.64% more registers. Eventually,

ITDF (which was the most suitable architecture before the opti-

mization) is now the third option. By taking Table 8 along with

the Fig. 13 into consideration, we can conclude that the transposed

direct architecture does not yield very acceptable results for high-

order FIR filters from hardware costs point of view.

8. Conclusion

In this correspondence, a flexible synchronizer suitable for

Non-Contiguous Orthogonal Frequency Division Multiplexing (NC-

OFDM)-based Cognitive Radio (CR) systems was developed on an

FPGA board. In this work, we mainly tried to study more about

hardware implementation issues of the synchronizer. Apart from

synchronization problems which exist in NC-OFDM modulation (at

a higher level), we tried to reveal obstacles along with challenges

in the hardware implementation of such a CR, as well. The syn-

chronizer employed a multicorrelator to perform both autocorre-

lation and crosscorrelation functions on demand. The core content

of the synchronizer was based on FIR filters. Several architectures,

including Direct Form (DF), Transposed Direct Form (TDF), Pipeline

Direct Form (PDF), Parallel-Pipeline Direct Form (PPDF) and Mul-

tiplierLess (ML), with respect to the FIR filters were implemented

and analyzed. The DF architecture demonstrated the worst results

almost in all cases and, hence, we did not study this architecture.

Preliminary synthesis results inferred that the best architecture for

performing autocorrelation function would be the ML-based FIR fil-

ter in terms of maximum frequency of 257.33 MHz, logic utilization

of 1876 ALMs and dynamic power consumption of 9.42 mW, in

comparison with MAC-based architectures. However, the ML archi-

tecture still requires more practical studies in the field of commu-

nications. In MAC-based designs, the fastest architecture was PPDF

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 13

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

(240 MHz) by employing a large set of registers. Thereafter, the

PDF architecture did not reach to an acceptable frequency while

employing the least logic modules as well as total registers. The

preliminary results also show that the TDF configuration would be

the most suitable candidate while its dynamic power consumption

has the potential to be an issue. Next, we put our best afford to

optimize the MAC-based architectures to reach to the maximum

available frequency while minimizing the hardware costs including

power consumption, less logic utilization, etc. In addition, we stud-

ied the effect of employing traditional complex multiplication algo-

rithm (using 4 multipliers), Golub’s method as well as Karatsuba (3

multipliers). The traditional algorithm utilized the DSP blocks more

than other studied algorithms. Furthermore, we took advantage of

optimization techniques such as DSP register packing and interme-

diate register insertion if applicable. Based on the results after the

optimization, all mentioned architectures reached to speed-ups of

1.18 ×, 2.83 × and 1.22 × in improved version of TDF, PDF and PPDF,

respectively. The synthesis results after optimizing the designs re-

vealed something else. Although the improved PPDF architecture

had an impressive resource reduction in terms of logic utilization

(56.57%) as well as registers (38.86%), the improved PDF model

could achieve the most economic design from hardware cost point

of view while it maintained the maximum frequency at a satisfac-

tory level (249 MHz, 2.83 × speed-up). Hence, this architecture is

the most suitable candidate in our application. The improved TDF

architecture could not win the best design in any category and,

nevertheless, there are other alternatives as the best solution in

practical applications. Technically, improved PDF model by a triv-

ial sacrifice in frequency would be the best candidate in environ-

ments where the silicon area alongside the power consumption is

the limiting factor. Similarly, when the limiting factor is the max-

imum frequency, improved PPDF has the best performance among

the MAC-based structures. Therefore, there is not a certain answer

which configuration is the best candidate, since a trade-off always

exists when employing the aptly named MAC-based architectures.

As the final words, the achieved results were obtained based on

the mentioned FPGA device. Although implementation on other

platforms might lead to achieving different results, the overall fig-

ures should remain the same.

Acknowledgment

This work was funded by the Academy of Finland under con-

tract # 258506 (DEFT: Design of a Highly-parallel Heterogeneous

MP-SoC Architecture for Future Wireless Technologies). A portion

of this work has been supported by the Jane and Aatos Erkko Foun-

dation, Finland, under the project Biological Neuronal Communica-

tions and Computing with ICT.

References

[1] J. Acharya, H. Viswanathan, S. Venkatesan, Timing acquisition for non contigu-

ous OFDM based dynamic spectrum access, in: 3rd IEEE Symposium on New

Frontiers in Dynamic Spectrum Access Networks (DySPAN), 14–17, Chicago, IL,

2008, pp. 1–10, doi: 10.1109/DYSPAN.2008.57 .

[2] Y. Xing , H. Kushwaha , K.P. Subbalakshmi , R. Chandramouli , Codes and games
for dynamic spectrum access, in: H. Arsalan (Ed.), Cognitive Radio, Software

Defined Radio, and Adaptive Wireless Systems, Ch. 6, Springer, 2007, p. 163 .
[3] A. Dutta , D. Saha , D. Grunwald , D. Sicker , Practical implementation of blind

synchronization in NC-OFDM based cognitive radio networks, in: Proceedings
of the 2010 ACM Workshop on Cognitive Radio Networks, 2010, pp. 1–6 .

[4] S. Feng, H. Zheng, H. Wang, J. Liu, P. Zhang, Preamble design for non-
contiguous spectrum usage in cognitive radio networks, in: IEEE Wireless

Communications and Networking Conference (WCNC, 2009, pp. 1–6, doi: 10.

1109/WCNC.2009.4917916 .
[5] R. Rajbanshi, A.M. Wyglinski, G.J. Minden, An efficient implementation of NC-

OFDM transceivers for cognitive radios, in: 1st International Conference on
Cognitive Radio Oriented Wireless Networks and Communications, 8–10, 2006,

pp. 1–5, doi: 10.1109/CROWNCOM.2006.363452 .

[6] L. Li, D. Qu, T. Jiang, J. Ding, Design of LDPC codes for non-contiguous OFDM-
based communication systems, in: IEEE International Conference on Commu-

nications (ICC), 10–15, 2012, pp. 4712–4716, doi: 10.1109/ICC.2012.6363932 .
[7] F. Shamani, R. Airoldi, T. Ahonen, J. Nurmi, FPGA implementation of a flex-

ible synchronizer for cognitive radio applications, in: Conference on Design
and Architectures for Signal and Image Processing (DASIP), 8–10, 2014, pp. 1–8,

doi: 10.1109/DASIP.2014.7115603 .
[8] J. Liu, S. Feng, H. Wang, Comb-type pilot aided channel estimation in non-

contiguous OFDM systems for cognitive radio, in: 5th International Conference

on Wireless Communications, Networking and Mobile Computing (WiCom),
24–26, 2009, pp. 1–4, doi: 10.1109/WICOM.2009.5303081 .

[9] X. Zhou, R. Qiu, An adaptive synchronization algorithm for non-contiguous
OFDM cognitive radio systems, in: IET International Communication Confer-

ence on Wireless Mobile and Computing (CCWMC), 14–16, 2011, pp. 102–106,
doi: 10.1049/cp.2011.0856 .

[10] A.M. Wyglinski, Effects of bit allocation on non-contiguous multicarrier-based

cognitive radio transceivers, in: IEEE 64th Vehicular Technology Conference,
25–28, 2006, pp. 1–5, doi: 10.1109/VTCF.2006.159 .

[11] R. Rajbanshi, A.M. Wyglinski, G.J. Minden, An efficient implementation of NC-
OFDM transceivers for cognitive radios, in: 1st International Conference on

Cognitive Radio Oriented Wireless Networks and Communications, 8–10, 2006,
pp. 1–5, doi: 10.1109/CROWNCOM.2006.363452 .

[12] Z. Yuan, S. Pagadarai, A.M. Wyglinski, Feasibility of NC-OFDM transmission in

dynamic spectrum access networks, in: IEEE Military Communications Confer-
ence (MILCOM), 18–21, 2009, pp. 1–5, doi: 10.1109/MILCOM.2009.5379824 .

[13] D. Qu, J. Ding, T. Jiang, X. Sun, Detection of non-contiguous OFDM symbols
for cognitive radio systems without out-of-band spectrum synchronization, in:

IEEE Transactions on Wireless Communications, volume 10, 2011, pp. 693–701,
doi: 10.1109/TWC.2011.120810.101324 .

[14] J.Y. Won, H.G. Kang, Y.H. Kim, I. Song, M. Song, Fractional bandwidth mode

detection and synchronization for OFDM-based cognitive radio systems, in:
IEEE Vehicular Technology Conference (VTC), 11–14, 2008, pp. 1599–1603,

doi: 10.1109/VETECS.2008.371 .
[15] B. Huang, J. Wang, W. Tang, S. Li, An effective synchronization scheme for NC-

OFDM systems in cognitive radio context, In IEEE International Conference on
Wireless Information Technology and Systems (ICWITS), Aug. 28 2010-Sept. 3

2010, pp. 1–4, doi: 10.1109/ICWITS.2010.5611980 .

[16] D. Saha, A. Dutta, D. Grunwald, D. Sicker, Blind synchronization for NC-OFDM -
when “channels” are conventions, not mandates, in: IEEE Symposium on New

Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2011, pp. 552–563,
doi: 10.1109/DYSPAN.2011.5936246 .

[17] T. Chiueh , P. Tsai , I. Lai , Baseband Receiver Design for Wireless MIMO-OFDM

Communications, 2nd, Wiley-IEEE Press, 2012, p. 346 .

[18] White space database administrators guide, [WWW], Federal Communica-

tions Commission, [Accessed on 29.10.2013], Available at http://www.fcc.gov/
encyclopedia/white- space- database- administrators- guide .

[19] K. Grati, N. Khouja, B.L. Gal, A. Ghazel, Power consumption models for decima-
tion FIR filters in multistandard receivers, in: VLSI Design, Article ID 870546,

Hindawi Publishing Corporation, 2012, p. 15, doi: 10.1155/2012/870546 .
[20] , Embedded Memory (RAM: 1-PORT, RAM:2-PORT, ROM: 1-PORT, and ROM:

2-PORT) User Guide, Altera Corporation, 2014 .
[21] R. Airoldi , J. Nurmi , Design of a matched filter for timing synchronization,

in: Conference on Design and Architectures for Signal and Image Processing

(DASIP), 2013, 2013, pp. 247–251 .
[22] R. Mahesh, A.P. Vinod, New reconfigurable architectures for implementing FIR

filters with low complexity, in: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, volume 29, 2010, pp. 275–288, doi: 10.1109/

ICCCI.2014.6921804 .
[23] D. Ghosh, D. Sharma, A. Aziz, A novel low area and high performance pro-

grammable FIR filter design using dynamic random access memory, in: 48th

Midwest Symposium on Circuits and Systems, volume 2, 2005, pp. 1477–1480,
doi: 10.1109/MWSCAS.2005.1594392 .

[24] S. Pontarelli, P. Reviriego, C.J. Bleakley, J.A. Maestro, Low complexity concurrent
error detection for complex multiplication, in: IEEE Transactions on Comput-

ers, volume 62, 2013, pp. 1899–1903, doi: 10.1109/TC.2012.246 .
[25] J.W. Hartwell, A procedure for implementing the fast fourier transform on

small computers, in: IBM Journal of Research and Development 15.5, 1971,

pp. 355–363, doi: 10.1147/rd.155.0355 .
[26] A .A . Karatsuba , Y. Ofman , Multiplication of multidigit numbers on au-

tomata, Soviet physics-Doklady 7, 1963, pp. 595–596, translated from, Doklady
Akademii Nauk SSSR 145 (2) (1962) 293–294 .

[27] A .A . Karatsuba , The complexity of computations, in: Proceedings of the
Steklov Institute of Mathematics, vol. 211, 1995, pp. 169–183, Translated from

Trudy Matematicheskogo Instituta Imeni V. A. Steklova, 211, 1995, pp. 186–

202 .
[28] M. Faust, C.H. Chang, Optimization of structural adders in fixed coefficient

transposed direct form FIR filters, in: IEEE International Symposium on Circuits
and Systems, Taipei, 2009, pp. 2185–2188, doi: 10.1109/ISCAS.2009.5118230 .

[29] R. Nanda , B. Nikolid , Digital filters, in: D. Markovic, R.W. Brodersen (Eds.), DSP
Architecture Design Essentials, Springer, New York, 2012, p. 351 .

[30] E. Jamro, K. Wiatr, FPGA implementation of addition as a part of the convo-

lution, in: Proceedings Euromicro Symposium on Digital Systems Design, War-
saw, 2001, pp. 458–465, doi: 10.1109/DSD.2001.952368 .

[31] J. Han, M. Orshansky, Approximate computing: an emerging paradigm for
energy-efficient design, in: 18th IEEE European Test Symposium (ETS), Avi-

gnon, 2013, pp. 1–6, doi: 10.1109/ETS.2013.6569370 .

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

14 F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

[32] I. Diaz, L. Wilhelmsson, J. Rodrigues, J. Lofgren, T. Olsson, V. Owall, A sign-
bit auto-correlation architecture for fractional frequency offset estimation in

OFDM, In Proceedings of 2010 IEEE International Symposium on Circuits and
Systems (ISCAS), May 30 2010–June 2, 2010, pp. 3765–3768, DOI: 10.1109/

ISCAS.2010.5537730 .
[33] T.H. Pham, S.A. Fahmy, I.V. McLoughlin, Low-power correlation for IEEE 802.16

OFDM synchronization on FPGA, in: IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, volume 21, 2013, pp. 1549–1553, doi: 10.1109/TVLSI.

2012.2210917 .

[34] A. Chandra, S. Chattopadhyay, Design of hardware efficient FIR filter: a review

of the state-of-the-art approaches, Available online, Engineering Science and

Technology an International Journal, [Accessed on 11.01.2016](2015).
[35] Design planning for partial reconfiguration quartus-II handbook version 13.0,

2013, Altera Corporation, San Jose, CA, 46,
[36] Arithmetic, ch. 2, in: “Advanced Synthesis Cookbook”, Altera Corporation, San

Jose, CA, July, 2011, pp. 2–13 . available at https://www.altera.com/content/dam/

altera-www/global/en _ US/pdfs/literature/manual/stx _ cookbook.pdf .
[37] J. McAllister , FPGA-based DSP, in: S.S. Bhattacharyya, F. Deprettere, R. Leupers,

J. Takala (Eds.), Handbook of Signal Processing Systems, 2nd, Springer New

York, 2013, pp. 707–739 . 1399 p.

[38] Stratix V device handbook, volume1: device interfaces and integration,
[WWW], Altera Corporation, San Jose, CA, June 2016, [Accessed on 11.10.2016],

available at https://www.altera.com/content/dam/altera-www/global/en _ US/

pdfs/literature/hb/stratix-v/stx5 _ core.pdf .

[39] Enabling high-performance DSP applications with stratix v variable-precision
DSP blocks, [WWW], white paper, Altera Corporation, San Jose, CA, May 2011,

[Accessed on 11.10.2016], available at https://www.altera.com/content/dam/
altera-www/global/en _ US/pdfs/literature/wp/wp- 01131- stxv- dsp- architecture.

pdf .
[40] Reducing power consumption and increasing bandwidth on 28-nm FP-

GAs, [WWW], Altera Corporation, San Jose, CA, March 2012, [Accessed
on 19.1.2016], available at https://www.altera.com/en _ US/pdfs/literature/wp/

wp- 01148- stxv- power- consumption.pdf .

[41] Stratix II DSP performance, [WWW], white paper, Altera Corporation, San Jose,
CA, [Accessed on 25.07.2016, available at] https://www.altera.com/content/

dam/altera-www/global/en _ US/pdfs/literature/wp/wpstxiidsp.pdf .
[42] S. Jang , B. Chan , K. Chung , A. Mishchenko , Wiremap: FPGA technology mapping

for improved routability, in: Proceedings of the 16th International ACM/SIGDA
Symposium on Field Programmable Gate Arrays, New York, NY, USA, 2008,

pp. 47–55 .

[43] J. Cong, Y. Ding, Flowmap: an optimal technology mapping algorithm for de-
lay optimization in lookup-table based FPGA designs, in: IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, volume 13, 1994,
pp. 1–12, doi: 10.1109/43.273754 .

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

F. Shamani et al. / Journal of Systems Architecture 0 0 0 (2016) 1–15 15

ARTICLE IN PRESS

JID: SYSARC [m5G; November 26, 2016;8:49]

Farid Shamani was born in Tehran, Iran, in 1983. He received his Bachelor’s degree in Computer-Hardware Engineering from Islamic Azad

University-Central Tehran Branch (IAUCTB), Iran, in 2007. Shamani received his Master’s degree with distinction from the Department of Digital
and Computer Electronics from Tampere University of Technology (TUT), Finland, in 2013. In 2013, he joined Professor Jari Nurmi’s research group

in the Department of Electronics and Communications Engineering at TUT. He is currently a Ph.D. student in the Department of Electronics and

Communication Engineering at Tampere University of Technology under the supervision of Prof. Jari Nurmi. His research interests primarily include
Processor Design, Computer Architecture, Multicore/Manycore System-on-Chips, Digital Electronic Designs, FPGA and DSP Implementations.

Roberto Airoldi received his M.Sc. degree in Microelectronics in 2009 from University of Bologna (Bologna, Italy). Since 2008 he has been working

at Tampere University of Technology (Tampere, Finland), initially as research assistant and then as researcher. Since 2009 he has been carrying out
his Ph.D. studies at Tampere University of Technology under the supervision of Prof. Jari Nurmi. Currently Airoldi is the vice-chairman of the IEEE

GOLD Finland/Tampere section and the IEEE Student Branch at Tampere University of Technology. His main research interests are Multi-Processor
Systems-on-Chip, Software Defined Radio, Cognitive Radio and Wireless communications.

Vida Fakour Sevom was born in Mashhad, Iran, 1989. She received her B.Sc. in Biomedical Engineering majoring Bioelectric at Islamic Azad Uni-

versity of Mashhad, 2011. She received her M.Sc. degree in bioengineering from Tampere University of Technology (TUT), Tampere, Finland, in 2015.
She is currently working toward the Ph.D. degree with the Department of Electronics and Communication Engineering, TUT. Her main research

interests include computer vision, image and video processing, hardware software co-design and digital electronics design.

Tapani Ahonen is a Senior Research Fellow (Vanhempi tutkija) at Tampere University of Technology (TUT) in Tampere, Finland, where he has held
various positions since 20 0 0. Since 20 04 he has been co-managing a group of about 30 researchers. He is a part-time Lecturer (Nebenberuflicher

Lektor) at Carinthia Tech Institute (CTI) - University of Applied Sciences in Villach, Austria since 2007. In 2009 2010 Ahonen was a Visiting Re-

searcher (Chercheur Invité) at Université Libre de Bruxelles (ULB) in Bruxelles, Belgium. His work is focused on proof-of-concept driven computer
systems design with emphasis on many-core processing environments. Ahonen has an M.Sc. in Electrical Engineering and a Ph.D. in Information

Technology from TUT. Positions of trust recently held by Dr. Ahonen include technical board member of the EU co-funded project Cutting edge
Reconfigurable ICs for Stream Processing (CRISP), Finance Chair of the 2009 IEEE Workshop on Signal Processing Systems (SiPS), editorial board

member and Guest Editor of the International Journal of Embedded and Real-Time Communication Systems (IJERTCS), and Program Co-Chair of the
2010 Conference on Design and Architectures for Signal and Image Processing (DASIP), He performs reviews for various international journals and

participates in program committees of many high-quality conferences on a regular basis. Ahonen has an extensive international publication record
including edited books and journals, written book chapters and journal articles, invited talks in high-quality conferences, as well as full-length

papers and paper abstracts in conference proceedings.

Jari Nurmi is a professor of Computer Systems at Tampere University of Technology (TUT). He has held various research, education and manage-
ment positions at TUT and in the industry since 1987. He got a Ph.D. degree from TUT in 1994. His current research interests include System-

on-Chip integration, on-chip communication, embedded and application-specific processor architectures, and circuit implementations of digital
communication, positioning and DSP systems. He is leading a group of about 20 researchers. Dr. Nurmi is the general chairman of the annual

International Symposium on System-on-Chip (SoC) and its predecessor SoC Seminar in Tampere since 1999, and a board member of SoC, FPL,
and NORCHIP conference series. He was also the general chair of FPL 2005 and SiPS 2009 conferences. He was the head of the national TELESOC

graduate school 2001 2005. He is the author or co-author of about 250 international papers, editor of Springer book Processor Design: System-

onChip Computing for ASICs and FPGAs, co-editor of Kluwer book Interconnect-centric Design for Advanced SoC and NoC, associate editor of the
International Journal of Embedded and Real-Time Communication Systems, and has supervised over 100 MSc and Licentiate theses and 12 Doctoral

theses. He is a senior member in IEEE Circuits and Systems Society, Computer Society, Signal Processing Society, Solid-State Circuits Society and
Communications Society. In 2004, he was one of the recipients of Nokia Educational Award, and the recipient of Tampere Congress Award 2005.

He was awarded one of the Academy of Finland Research Fellow grants for 2007 2008.

Please cite this article as: F. Shamani et al., FPGA implementation issues of a flexible synchronizer suitable for NC-OFDM-based cognitive

radios, Journal of Systems Architecture (2016), http://dx.doi.org/10.1016/j.sysarc.2016.11.006

Publication III

© 2017.

Reprinted with permission from Springer International Publishing, pp. 189–207, 2017,
F. Shamani, T. Ahonen, and J. Nurmi, "Synchronization in NC-OFDM-Based Cognitive
Radio Platforms", in W. Hussain et al. "Computing Platforms for Software-Defined
Radio".

Chapter 10
Synchronization in NC-OFDM-Based
Cognitive Radio Platforms

Farid Shamani, Tapani Ahonen, and Jari Nurmi

10.1 Introduction

With advancements in wireless technology, applications demand higher data rates.
On the other hand, spectrum scarcity is becoming a major problem due to the incre-
ment of the spectrum users [1]. As Fig. 10.1 illustrates, a real measurement taken
in downtown Berkeley shows that licensed users (also known as primary users)
occupied most of the prime spectrum while do not utilize it efficiently. The Dynamic
Spectrum Access (DSA) is a promising solution to cope with spectrum scarcity
problem. Conceptually, DSA exploits the white spaces between frequencies occu-
pied by several licensed users. Figure 10.2 depicts how DSA enables the secondary
usage of the white spaces within a licensed spectrum without interfering primary
user’s activities. DSA approach also improves spectrum utilization significantly [6].

With the advent of the Software Defined Radio (SDR) in 1991, transceiver could
carry out the entire baseband processing in software. Indeed, the SDR is a platform
in which, at least, a portion of the implementation is held in software [24]. A more
intelligent and advanced version of the SDR known as Cognitive Radio (CR) which
was proposed by Joseph Mitola in 1999 [13]. The CR is a radio platform which is
always aware of its environment and can rapidly change its operating parameters by
considering new characteristics of the spectrum. The user is not even notified when
the CR is changing its corresponding parameters. The CR is an alternative solution
to mitigate spectrum scarcity problem by reusing the portion of the spectrum

F. Shamani (�)
Tampere University of Technology, Korkeakoulunkatu 1, 33720, Tampere, Finland
e-mail: farid.shamani@tut.fi

T. Ahonen • J. Nurmi
Department of Electronics and Communications Engineering, Tampere University of Technology,
Tampere, Finland
e-mail: ukaata@gmail.com; jari.nurmi@tut.fi

© Springer International Publishing Switzerland 2017
W. Hussain et al. (eds.), Computing Platforms for Software-Defined Radio,
DOI 10.1007/978-3-319-49679-5_10

189

190 F. Shamani et al.

Fig. 10.1 Spectrum utilization snapshot at downtown Berkeley [25]

Frequency

Spectral White Spaces Occupied by
Secondary Users

Spectral White Spaces Occupied by Primary Users

Fig. 10.2 Spectrum utilization using DSA technology [24, p. 151]

assigned to the licensed user for secondary users without disrupting the operations of
any nearby primary user [7]. At first glance, the above-mentioned approaches look
simple. However, a simple alteration in frequency-domain arises several challenges
in the transceiver of which the synchronization is one of the prominent ones. Briefly,
the receiver has no idea that the transmitter sends the data in which frequency band.

10.2 Synchronization Issues in NC-OFDM Systems

Synchronization is an essential issue in all digital communication systems in order
to extract the data out of the received signal. Therefore, one of the main challenges
for digital design engineers is to establish a reliable, robust, and accurate synchro-
nization. Synchronization is a process in which the receiver detects the existence of
an incoming packet and then distinguishes the boundaries of the received packet.

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 191

Cyclic Prefix

(1 + δ)TsTs Td

Fig. 10.3 The effect of a bad synchronizer in an ideal channel [20]

Synchronization errors yield in either time, frequency, or both. Conceptually, the
receiver must run the sampling process on the incoming wave stream in certain time
intervals. Any alteration in sampling time misleads the receiver to properly extract
the data. Figure 10.3 illustrates the picture when the receiver is not able to execute
the sampling process on time. As it can be seen, sampling at a period of .1 C ı/Ts

causes a ı shift in time which leads to an incorrect sampling.

10.2.1 OFDM Versus NC-OFDM

NC-OFDM is an extension of the conventional OFDM modulation where unused
subcarriers are deactivated to eliminate interference made by the secondary user
with adjacent licensed users. Therefore, understanding the architecture of an OFDM
transceiver is strongly required before stepping forward to NC-OFDM systems. As
Fig. 10.4 shows, a high-speed data stream X.n/ is demultiplexed into Nu parallel
ones x.k/.n/; k D 0; : : : ; Nu. This procedure is usually performed by using a serial-
to-parallel converter to form a set of data subcarriers. Then each subcarrier is
individually modulated using either QAM or PSK modulation technique to produce
y.k/.n/; k D 0; : : : ; Nu [24]. Typically, as long as the receiver knows the modulation
pattern, each subcarrier is modulated with the same constellation [3]. Thereafter,
the baseband OFDM waveform s.`/.n/; ` D 0; : : : ; N is constructed as an N-input
IDFT unit with N � Nu defined as Eq. (10.1). The remaining N � Nu unused inputs

192 F. Shamani et al.

Modulation
Serial

To
Parallel

Inverse
Discrete
Fourier

Transform
(IFFT)

y(1)
y(0)

y(n)

Parallel
To

Serial

S(1)
S(0)

S(m)

Cyclic
Prefix

Channel

S(t)

Fast
Fourier

Transform
(FFT)

Serial
To

Parallel

Cyclic
Prefix

r(t)

r(0)
r(1)

r(m)

Synchronization

y'(0)
y^(1)

y^(n)

Equalizer
Parallel

To
Serial

Interference

AWGN

X(n)

X’(n)

Virtual
Carriers

Virtual
Carriers

Demodolation

w(0)
w(1)

w(n)

r(t)

x(1)
x(0)

x(n)

x^(0)
x^(1)

x^(n)

+

Fig. 10.4 OFDM transceiver architecture [19]

(Also known as VR) are set to zero. VCs are employed as guard bands to cope with
the Inter-Symbol Interference (ISI) problem. ISI is imposed to the system due to the
interferences caused by transmission power of the adjacent subcarriers. Typically,
IDFT is implemented using an IFFT function. Eventually, the transmitter inserts a
CP before converting all the subcarriers to the composite signal s.n/ [15].

s.`/.n/ D 1

N

N�1X

kD0

y.k/.n/ej2�k`=N (10.1)

The receiver performs the inverse procedure to the received signal. The first step
is to remove the CP from the received signal r.n/. Next, considering Eq. (10.2), a
serial-to-parallel demultiplexer converts the serial stream to parallel ones. There-
after, the information is extracted by performing DFT function on the received
parallel waveforms r.`/.n/. DFT is performed using an FFT function to produce
Oy.k/.n/. Next step is to compensate channel distortion imposed to the subcarriers
using an equalizer. The equalized subcarriers !.n/ are demodulated and, subse-
quently, the serial steam x0.n/ is fetched by employing a parallel-to-serial converter
on parallel streams x.k/.n/ [15].

Oy.`/.n/ D
N�1X

`D0

r.`/.n/e.�j2�k`=N/ (10.2)

Figure 10.5 presents the architecture of an NC-OFDM transceiver. By taking into
consideration both Figs. 10.4 and 10.5, the fundamental difference in both architec-
tures is the synchronizer. In contrast to the OFDM where the synchronization was

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 193

Modulation
Serial

To
Parallel

Inverse
Fast

Fourier
Transform

(IFFT)

y(1)
y(0)

y(n)

Parallel
To

Serial

S(1)
S(0)

S(m)

Cyclic
Prefix

Channel

S(t)

Fast
Fourier

Transform
(FFT)

Serial
To

Parallel

Cyclic
Prefix

r(t)

r(0)
r(1)

r(m)

y^(0)
y^(1)

y^(n)

Synch.
And

Equalizer

Parallel
To

Serial

Interference

AWGN

X(n)

X’(n)

Virtual
Carriers

Virtual
Carriers

Demodolation

w(0)
w(1)

w(n)

x(1)
x(0)

x(n)

x^(0)
x^(1)

x^(n)

+

Unused
Subcarrier

Deactivator

y(1)
y(0)

y(n)

Deactive
Subcarriers
Information

Fig. 10.5 NC-OFDM transceiver architecture [19]

done prior to the Fast Fourier Transform (FFT) (synchronization in time-domain),
an NC-OFDM receiver performs the synchronization following the FFT (synchro-
nization in frequency-domain). The main reason which enforces the receiver to
perform synchronization in frequency-domain is a simple change in time-domain
representation of the signal. This is mainly due to the time-domain stochastic
alteration of the preamble, pilot, and data carriers of the secondary user based
on primary user activities. In addition, all secondary users must reduce their
transmission power to avoid interfering with the licensed user due to the sidelobe
leakages caused by the OFDM nature.

10.2.2 Synchronization Methods

As previously discussed, contrary to OFDM, in NC-OFDM systems a precise
location for signal carriers are not guaranteed. Moreover, the location of the licensed
user is changed across the spectrum over the time. Therefore, an NC-OFDM
receiver has no prior information about the subcarriers employed by the secondary
transmitter. This is one of the key challenges emerged from synchronization point
of view. Some researches proposed Out-Of-Band (OOB) architecture to inform the
receiver about the new characteristics of the spectrum [11, 17, 23, 26, 27]. In this
methodology, a special-purpose pre-dedicated channel is established between the
transmitter and receiver to reveal information with regard to the active subchannels
using by the secondary user as well as inactive ones. However, OOB methodology
seems not to be a suitable solution since the dedicated channel may not be available
in some practical situations [16].

194 F. Shamani et al.

Conceptually, in contrast to OOB mechanism, the prerequisite synchronization
information of a secondary transmitter is embedded to the incoming packet itself.
However, the secondary receiver still has the problem to detect a secondary
transmission. Fortunately, the Federal Communication Commision (FCC) provides
secondary users willing to transmit over the licensed spectrum with transmission
information of the primary user, including the structure of the signal, power, location
of the primary user, etc. [21]. Having substantial information about the primary
user’s activities enables the secondary receiver to filter out subcarriers occupied by
the primary user. Following discusses few proposed method with regard to in-band
communication in NC-OFDM systems.

In [16], the existence of the primary user as well as the corresponding inter-
ferences is discussed. Authors explain an A Posterior Probability (APP) algorithm
to discover active subchannels. A threshold-based Hard Decision-based Detection
(HDD) scheme is used to detect NC-OFDM symbols as soon as an active sub-
channel is detected. However, the HDD operates quite confident for the subset of
subchannels far away from primary user band while the performance is drastically
degraded for subchannels closed to the primary user band. In order to mitigate the
performance degradation to some extent, a Soft Decision-based Detection (SDD)
is performed to increase accuracy for (noisy) subchannels adjacent to the primary
user. However, the existence of the primary user still causes severe synchronization
problems. Eventually, the performance of the proposed method is heavily dependent
on the primary user activities, power, etc.

In [10], authors claim that the system code rate of the proposed algorithm in
[16] is 1/4 when only half of the subcarriers are active. Hence, in order to improve
the system code rate, they proposed a Low-Density Parity-Check (LDPC) after
performing the APP algorithm. The authors emphasized more on how to create
the LDPC code while a perfect spectrum synchronization is taken into assumption.
Since the obtained results are based on simulations, in hardware perspective the
proposed method requires additional hardware element to decode the received
LDPC. In addition, employing more hardware element might increase the energy
consumption as well as the silicon area.

In [22], a fractional bandwidth model has been proposed in which a different
preamble pattern is designed. The information of the active subbands generated by a
Pseudo-Noise (PN) sequence is transmitted over the channel. Therefore, the receiver
identifies and detects the active subbands in the frequency-domain. In time-domain,
the preamble is represented with two identical halves whose sign bits are inverted.
However, the proposed method is based on considering only contiguous subbands
(OFDM-based CR system) which is not practical in NC-OFDM systems. Moreover,
in reality the NC-OFDM secondary transmitter always keeps its transmission power
lower than the licensed user to mitigate interfering with the primary band due to the
sidelobe leakages [9].

Saha et al. [6, 18] proposed a blind synchronization method where the receiver is
capable of regenerating time-domain preamble of the frequency-domain represen-
tation of the same preamble. Furthermore, they considered the idea of employing
multiplier-less correlator instead of performing a full 16-bit Multiplier-Accumulate

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 195

(MAC) operation in frequency-domain. Furthermore, the primary user’s activities
are taken into account and, consequently, subchannels occupied by the primary
user are filtered using a binary mask. As a result, the existence of the primary
user is eliminated right after performing the FFT. Henceforward, the rest of the
synchronization process is similar to the one of OFDM.

In OFDM systems, synchronization can be performed either in time-domain,
frequency-domain, or both. Since synchronization in frequency-domain requires
many cycles to compute, an OFDM receiver prefers to perform synchronization
in time-domain [4]. Furthermore, each packet starts with the so-called preamble.
The preamble is repetitive sequence known for both transmitter and receiver. Due to
the repetitive nature of the preamble, time-domain representation of the preamble
has a good autocorrelation property. Nevertheless, any change in time-domain
representation of the preamble will cause the NC-OFDM receiver to fail detecting
a packet. On the other hand, a secondary transmitter has to alter its transmitting
frequencies over the time (in the frequency-domain) depending on the licensed
user’s activities. A simple change in frequency-domain results in a complete change
of the time-domain waveform of the preamble. This is the reason why an NC-
OFDM receiver has no idea about the time-domain representation of the preamble.
Therefore, synchronization based on preamble detection should be performed in
frequency-domain in NC-OFDM-based systems. In addition, NC-OFDM receivers
are compromised with two main challenges, as well. First, only a portion of the
subcarriers are available (the rest are occupied by the licensed user). Second, they
should face a low SNR region due to the low transmission power of the secondary
user (to mitigate interferences with the licensed user) [9]. The above-mentioned
obstacles disable conventional synchronization methods which were feasible in
OFDM systems. Figure 10.6 depicts the architecture of an NC-OFDM receiver. By
taking into account the block diagram, synchronization is performed in several steps
explained in the following [18].

I/Q
samples

Spectrum
Sensing

Secondary
User

Present?

Primary
User

Information

Generate
New

Preamble

No

Yes

CorrelationCorrelation
Peak?

No

Packet
Decoding

Bits
Extraction

Yes

Packet
Decoaded

Fig. 10.6 NC-OFDM synchronization scheme [20]

196 F. Shamani et al.

10.2.3 Active Subcarrier Detection

The first step is to filter those subcarriers occupied by the licensed user. Since
characteristics of the licensed user are known for the secondary receiver [21],
it can be simply done by excluding primary user’s subcarriers when collecting
all the subcarriers (after the FFT). The hardware circuit of such a filter can be
a simple XOR gate. Henceforth, a set of collected subcarriers implies the entire
spectrum where the secondary user might have been active. At this stage, all
subcarriers are employed for spectrum sensing in a pipeline manner using one
of the spectrum sensing methods. The corresponding spectrum sensing results of
all subcarriers are reported to a decision maker unit. The decision maker unit
compares computed results with an approximate threshold. The threshold can be
approximately calculated as follows: when there is no incoming signal or during the
inter-packet duration, the output of the FFT is the magnitude of the noise level. The
decision maker unit is able to dynamically approximate a threshold by subtracting
the noise level from the FFT output. The last step in this phase is to stop spectrum
sensing as soon as the decision maker unit detects the results that have risen over
the threshold. Note that a copy of the incoming packet is also buffered to extract
time-domain samples in the next step.

10.2.4 Preamble Regeneration in Time-Domain

The time-domain representation of the frequency-domain coefficients are gen-
erated by employing a low-cost IFFT unit. Once the time-domain preamble is
generated, the coefficients of the correlator are re-initialized by new samples.
Henceforward, the synchronization mechanism is quite similar to OFDM. The
similarity of the new coefficients with the buffered version of the incoming packet
(which stored in previous step) is computed to detect the boundary of the signal.
As soon as a peak is found, the correlation is inferred to be successful. The last step
is to call decoding unit to extract the data out of the received bits.

10.2.5 Failure in Correlation

When the correlation computations do not yield appropriate results, for whatever
reason, the spectrum sensing mechanism is started to obtain a new set of subcarriers
which is occupied by the secondary transmitter. There are several reasons which
might desynchronize the receiver with the transmitter. A low secondary signal SNR
is one of the main reasons. This happens due to the fact that a secondary user
near to a primary user should minimize its transmission power as low as possible.
A high power primary user has the potential to overwhelm any adjacent secondary

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 197

transmitter. Furthermore, a secondary transmitter might have been using a white
space spectrum which belonged to a turned-off primary. When the primary user
shows an activity on the white space band, the secondary user should immediately
disrupt its transmission. In such circumstances, the receiver must be intelligent and
agile enough to start sensing the channel from the beginning.

10.3 Proposed Synchronization Dataflow

In this section, we propose a reconfigurable platform for sensing the spectrum
as well as the preamble detection/generation. The term “reconfigurability” mainly
refers to the correlator architecture to perform autocorrelation and cross-correlation
on demand. In addition, instead of using wide-input multicorrelator (e.g., 4096-tap),
we employ several smaller ones in parallel. Figure 10.7 illustrates the block diagram
of the proposed receiver architecture. However in order to keep the figure clean,
only one multicorrelator is shown in the figure. In this design, a controller unit
monitors the behavior of the whole system. At the instantiation, multicorrelators
are set up by the controller to perform spectrum sensing. Spectrum sensing is
done by executing the autocorrelation function of the incoming signal with a
delayed version of itself. Each multicorrelator is assigned to compute a particular
portion of the spectrum. Computation results obtained by all the multicorrelators
are compared to an approximate threshold. As soon as the computation results of
a multicorrelator are exceeded over the threshold, the decision maker unit reports
the event to the controller. Next, the controller issues the command to preamble
regenerator unit to generate time-domain representation of the frequency-domain

I/Q
samples

Multi-
Correlator

Primary
User

Information

Preamble
Regenerator

Packet
Decoding

Bits
Extraction

Autocorr/
Cross corr

Peak?

Autocorr
Yes

No Peak

Controller

Crosscorr
Yes

Autocorr/Corr

Fig. 10.7 Proposed NC-OFDM synchronization scheme [20]

198 F. Shamani et al.

preamble. In the meantime, the controller sets up the corresponding multicorrelator
to compute cross-correlation function while dismisses the other multicorrelators.
Once the time-domain version of the preamble is generated, the coefficients of
the active multicorrelator are set by the time-domain coefficient of the generated
preamble while the buffered version of the In-Phase/Quadrature (I/Q) signals is
fed as the input signal. When the multicorrelator is re-initiated, the maximum
similarity between the noisy buffered signal and the clean version of the time-
domain preamble is computed. Again, the obtained result is compared to a second
threshold by the decision maker unit. Once the second peak is detected, the
controller infers that the packet is detected and it is ready to be handed to the decoder
unit. When the decoder unit extracts the data bits, it reports to the controller to make
the proper action.

10.4 FPGA Implementation of the Multicorrelator

Figure 10.8 presents an overview of the proposed NC-OFDM synchronizer. The
core content of the multicorrelator is based on a Memory Block to store predefined
preambles as well as the regenerated preambles, a MAC Operator for computing
complex Sum-of-Products (SoPs), a Decision Maker unit to compare obtained
results with a threshold, followed by a Controller to monitor the entire system; each
block is described in the following in detail.

10.4.1 Memory Block

In this design, the considered memory block is inferred as an SRAM initialized
by frequency-domain representation of the preamble. The SRAM is used to
store predefined preamble values in frequency-domain representation as well as
the regenerated preambles. The SRAM data are mainly used as a sequence of
coefficients for cross-correlation purposes. The SRAM has a 32-bit data width
output port where the first half (16 least significant bits) includes Real part of the
preamble and, consecutively, the second half (16 most significant bits) contains the
Imaginary part. One coefficient is inserted to the FIR structure unit per clock cycle.

10.4.2 Decision Maker Unit

The main objective of the Decision Maker unit is to compare results computed by
the MAC operator with a threshold. The decision maker employs different threshold
for autocorrelation and cross-correlation purposes. When the multicorrelator is set
to perform autocorrelation function, the decision maker estimates the noise level

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 199

Coeff
Register

Bank

Input Register
Chain

MAC
Units Result

Decision
Maker

M
E
M
O
R
Y

Autocorr.
peak

Corr./
Autocorr.

Freeze

Corr.
Peak

MAC Operator

Enable

Packet Decoded

INPUT

Ready

Multicorrelator

Controller

Regenerated
Preamble

Thr2

Thr1

Buffered
Version

Fig. 10.8 The infrastructure of the proposed NC-OFDM synchronizer

during the silent time and, based on that, an approximate threshold is set. When there
is an incoming packet, the noise level is subtracted from the FFT output and the final
16-bit result is compared to the approximate threshold. When the result exceeds the
threshold, an autocorrelation peak is found, meaning that the transmitter is sending
a packet. In cross-correlation mode, the decision maker unit makes the decision
based on a comparison between the results given by the MAC operator with a 2-step
threshold level. The main idea of employing 2-step threshold level is explained in
[2] in detail. Figure 10.9 shows how the decision maker unit decides whether a peak
is found. There are two threshold level: a preliminary threshold Thr1 alongside an
original threshold Thr2. When the first half of the incoming signal exceeds Thr1, the
decision maker unit issues a command to the MAC operator to compute the rest of
the calculation. This is generally made to minimize unnecessary calculations of the
MAC operations. Indeed, MAC operations are the most power-hungry operation in
this design. If the first half of the MAC operations meets the Thr1, the second half
of the MAC operations are executed. The packet is detected if the MAC operation
result exceeds the Thr2. Otherwise, the decision maker unit infers that the packet

200 F. Shamani et al.

Fig. 10.9 2-step threshold detection flowchart [20].

was not detected and, consequently, inform the controller to discard undergoing
procedures. The decision maker unit informs the controller with two separate signals
each of which indicates a particular peak that is found either in autocorrelation or
cross-correlation. Choosing a proper value for both Thr1 and Thr2 has an impressive
impact on correct packet detection even in low SNR regions. A high-value threshold
will improve the algorithm robustness, however, it might result in missing frames
with lower energy. On the opposite side, a low value might mislead the decision to
detect the noise in lower SNR regions. For instance, a good approximation for Thr1

value could be 45 % of the original Thr2 in 2-step algorithm [2].

10.4.3 Controller Block

The controller block is the most responsible block in the design. The main task of
this block is to make proper action by continuously monitoring the behavior of the
system. When the receiver is waiting for a packet, the synchronizer continuously
performs autocorrelation function between the incoming signals with a delayed
version of itself. Therefore, the controller sets the MAC operator to perform auto-
correlation function. In order to perform the autocorrelation function, the controller
routes the incoming signal with the delay length of D to the coefficient register
bank through a multiplexer. Whenever the coefficient register bank is appropriately
loaded, the controller freezes the register bank to avoid register overloading.
Henceforward, the controller waits on the decision maker unit to respond. Once the
autocorrelation peak is confirmed by the decision maker, the controller prepares the
environment for the multicorrelator to perform cross-correlation function between a
buffered version of the packet and regenerated time-domain preambles. The cross-
correlation function is executed in the same way as the autocorrelation function.
This time, the coefficient register bank is loaded by the regenerated preambles
which are stored in the memory. Only one coefficient can be loaded to the register
bank per clock cycle. Based on the MAC operator architecture, the multicorrelator
performs cross-correlation function at the same time the coefficients are being

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 201

loaded. The functionality of the MAC operator is explained in next subsection.
When the coefficients of the multicorrelator are fed by proper values, the controller
freezes the register bank and waits for any prompt from decision maker unit. Once
the second peak is confirmed, the controller disables the MAC operator and hands
the packet to the decoding unit to extract the data. When the data is extracted, the
decoding unit informs the controller to restart the synchronization process.

10.4.4 MAC Operator Unit

Due to the nature of the NC-OFDM, the highest order of the tap, e.g. 4096-tap, is
required to perform synchronization over the entire spectrum. Therefore, an NC-
OFDM receiver has a massive power dissipation along with a huge silicon usage
[12]. The MAC operator unit is quite similar to Finite Impulse Response (FIR)
filters from infrastructure point of view. As Eq. (10.3) presents, an FIR filter of
order N calculates y.n/ as the SoP of coefficients h.k/ with the input x.n � k/. The
hardware implementation of the MAC operator unit also calculates y.n/ as the SoP
of complex conjugate coefficients c.k/ with incoming signal x.n � k/ on a window
whose length is N [8]. The Conjugation is simply done by inverting the sign bit
of the imaginary part of the coefficients. As previously discussed, both coefficient
and incoming signal are 32 bits long where we stipulated that the first half is the
Real part and the remaining 16 bits are the Imaginary part. It is also worth taking
into consideration that the products are complex are complex multiplications which
have the potential to double resource usage resource usage from the hardware point
of view. Furthermore, we considered fixed-width truncation method where only 16
most significant bits are taken into consideration as the final result of the MAC
operation. The MAC operator unit is the most intensive block of the multicorrelator
due to the massive workload of complex computations. The infrastructure of the
MAC operator is described in the following subsections.

y.n/ D c.n/ � x.n/ D
N�1X

kD0

c.k/x.n � k/ (10.3)

10.4.4.1 MAC-Based Operator

In general, the MAC operator is composed of three fundamental functional units
aptly named adders, multipliers, and delay elements. An N-tap MAC operator is
consisted of N delay elements, N multipliers, as well as N � 1 adders. Furthermore,
different architectures are obtained by different arrangements of these functional
units. Technically, there are two well-known architectures for implementing MAC
operator known as Direct Form (DF) and Transposed Direct Form (TDF), each of
which is capable of calculating y.n/. We also experience different structures namely

202 F. Shamani et al.

Parallel Direct Form (PDF) as well as Pipelined-Parallel Direct Form (PPDF).
Figure 10.10 pictures the above-mentioned architectures with their pros and cons.
Figure 10.10a presents the DF architecture where the delay elements are located
through the input path. A large N-tap DF introduces a long critical path due to
the nature of its architecture. If we assume that each addition takes Ta and each
multiplication takes Tm unit of time and number of taps are equal to 256 (as
it is in this implementation), the critical path of the DF architecture is equal to
Tcrit D Tm C 255Ta. Therefore, it is not a wise choice for large MAC operator
designs at all.

Figure 10.10b shows the TDF architecture which is the optimized version of
the DF form. In this architecture, since the delay elements are located between the
adders, the critical path is bounded by Tcrit D Tm C Ta irrespective to the number
of taps. In the TDF version, the inverse version of the coefficient chain C.k/, e.i.
.Ck; Ck�1; : : : ; C0/, is multiplied with the input signal X.n/. Thus, this architecture
does not require a register chain in its input path (see Fig. 10.8). However, the TDF
version has the potential to introduce a long interconnection on its input path.

Figure 10.10c illustrates the PDF form where at the first glance it looks similar
to the DF version. The idea behind the PDF architecture is to cope with long
interconnection input as well as the critical path to some extent. Despite the DF
form, PDF distributes the adders in several parallel levels (hierarchy levels). The
number of required levels is proportional to the dlogN

2 e where N is the number
of taps. In this case study, since N D 256, 8 levels of adders are required.
Consequently, the critical path of a 256-tap MAC operator is equal to Tcrit D
Tm C �dlogN

2 e � Ta
� D Tm C 8Ta. The hardware implementation procedure of this

architecture is more complex than the DF and TDF forms.
Figure 10.10d depicts the pipelined version of the PDF form where a register

is inserted between each two adders. Although the inserted registers maintain
the critical path at its minimum level (Tcrit D Tm C Ta) while preventing long
interconnections, a variety of register elements are introduced to the system.
Moreover, the PPDF architecture has the same complexity as the PDF form.

10.4.4.2 Multiplier-less-Based Operator

A study in [5, 14] shows that the M-L-based multicorrelator design offers com-
parable synchronization performance. In this approach, a sign bit correlation
between coefficients and input signal is considered instead of performing 16-bit
multiplication. The sign bit correlation can be implemented in hardware by a simple
XOR gate. The M-L form reduces a substantial number of registers as well as the
DSP blocks. Although the M-L-based multicorrelator takes only 1-bit into account,
simulation results obtained by the ModelSim software show that the performance
of the MAC operator is at a satisfactory level in our case study. Furthermore, Saha
et al. [18] acknowledged that the sign-based correlator has satisfactory performance
even in low SNR regions, as well. Based on these evidences, we can claim that the

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 203

x x x x

++ +

X(n)

C(0) C(1) C(2) C(k)

Y(n)

D D D

a

x x x x

D D ++ +

X(n)

C(k) C(k – 1) C(k-2) C(0)

Y(n)

b

x x x x
+

X(n)

C(0) C(1) C(k – 1) C(k)

D D D

+
x x

+
C(2) C(3)

DD

+ +
++

+
Y(n)

c

x x x x

+

X(n)

C(0) C(1) C(k – 1) C(k)

D D D

+
x x

+

C(2) C(3)

DD

+ +
++

+

D D

D D

DD

DD

D

D

D

Y(n)

d

Fig. 10.10 Different architectures for MAC operator unit [20]. (a) Direct Form (DF). (b)
Transposed Direct Form (TDF). (c) Parallel Direct Form (PDF). (d) Pipelined-Parallel Direct Form
(PPDF)

204 F. Shamani et al.

M-L-based multicorrelator is the best choice in our case study. More discussion with
regard to the synthesis results of the multicorrelator with different architectures are
addressed in Sect. 10.5.

10.5 Synthesis Results

This section discusses with respect to the proposed multicorrelator configured
with different architectures. We used VHDL description language to implement
the multicorrelator, ModelSim software for simulation, and verification progresses,
Quartus-II environment to synthesize the design and generate the netlist. We also
took into account the Altera family FPGA targeting Stratix-V speed grade 2 series to
prototype the design. Table 10.1 shows synthesis results in terms of logic utilization,
DSP blocks, total registers, and maximum frequency. The results show that the
M-L-based multicorrelator achieved the best results in most cases whereas the DF
can be considered as the worst design approach. As previously explained, the PPDF
architecture consumes more resources due to the use of more register elements. The
M-L approach drastically reduces logic utilization due to mitigating substantial DSP
blocks, registers, etc. In this case study, the M-L-based multicorrelator preserved
more than 75 % logic elements as well as 78 % reduction in total registers in
comparison with MAC-based architectures. All MAC-based architectures use 512
DSP blocks (32 % of the total) because of the multiplication purposes whereas
the M-L-based design does not require any DSP block. The maximum frequency
is approximately similar in all architectures, excluding the DF architecture. The
M-L-based design achieved the highest frequency between all configurations. Power
dissipation analysis is reported based on the results given by Quartus-II PowerPlay
Power Analyzer Tool. The analyzer directly reads the SAIF generated by the
ModelSim for the multicorrelator running at 50 MHz. The static probability and
toggle rate are calculated based on the generated VCD file for detecting a packet

Table 10.1 Synchronizer synthesis results

TDF DF PDF PPDF ML

Logic utilization (ALMs) 12,483 12,490 7504 14,611 1876

Total DSP blocks 512 512 512 512 0

Total registers 16,378 16,883 8873 28,037 2886

Max. freq. (MHz) 238 68 88 240 257

Table 10.2 Thermal power dissipation (mW)

TDF DF PDF PPDF ML

Total 1436.82 3371.45 1286.90 1138.75 937.15

Dynamic 344.15 200.60 265.90 160.10 9.40

Static 1070.05 1062.70 987.10 955.80 951.50

I/O 22.60 2108.15 33.90 22.85 26.20

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 205

Table 10.3 Thermal power dissipation by hierarchy (mW)

TDF DF PDF PPDF ML

Memory block 0.78 0.81 1.21 0.80 0.79

Threshold block 0.01 0.01 0.01 0.01 0.01

Controller block 0.02 0.02 0.02 0.02 0.02

FIR filter block 230.20 165.55 192.40 128.80 4.20

Table 10.4 Cell power consumption (mW)

TDF DF PDF PPDF ML

DSP block 216.50 130.4 157.75 95.2 0

Combinational cell 76.60 10.80 51.80 1.3 1.85

Register cell 2.10 30.30 10.65 32.65 2.45

I/O 25.1 2090.10 15.80 4.25 7.45

after the boot-up. Table 10.2 summarized the estimated results. The DF architecture
has the most power dissipation rather than the other implementations due to the long
critical path through its I/O. The dynamic thermal power is noticeably decreased
in M-L-based approach. It is generally due to the fact that the M-L architecture
mitigates massive number of complex multiplications. Furthermore, the M-L-based
design saves more than 94 % of the dynamic power consumption in comparison with
the PPDF form. The PPDF architecture is the lowest power-hungry architecture in
MAC-based designs.

Dynamic power dissipation by hierarchy is reported in Table 10.3 for different
architectures. The MAC operator unit is the most power-hungry block in MAC-
based architecture while the controller block as well as the decision maker are
the least power consumer, respectively. The power dissipation was reduced due to
employing a sign bit correlation instead of 16-bit multiply accumulate operations.
Table 10.4 depicts the power dissipation in each cell. The results show that the
M-L-based multicorrelator achieves a better result in comparison with MAC-based
architectures. The reason why the DF has a massive power dissipation can be
explained due to the long critical path which exist in the I/O.

10.6 Conclusion

This chapter discussed about fundamental principles with regard to synchro-
nization issues in Non-Contiguous Orthogonal Frequency Division Multiplexing
(NC-OFDM) systems. The architecture of an OFDM transceiver as well as an
NC-OFDM transceiver were explored. In contrast to the OFDM system where the
synchronization is based on time-domain preamble, an NC-OFDM receiver should
regenerate the time-domain representation of the preamble in frequency-domain.
Following by, the proposed synchronization data flow as well as the state of the art

206 F. Shamani et al.

in synchronizer explained. The main idea was to perform spectrum sensing along
with packet detection by a single multicorrelator. The second idea was to segment
the supreme spectrum into several subchannels and employ several multicorrelator
(instead of searching a wide spectrum). The core content of the synchronizer
was based on MAC operations which were quite similar to FIR filters. The
MAC operator unit implemented with different structures including Direct Form,
Transposed Direct Form, Parallel Direct Form, Pipelined-Parallel Direct Form,
Multiplier-Less architectures. The synthesis results inferred that the Multiplier-
Less-based multicorrelator had better performance in terms of maximum frequency,
silicon area, dynamic power consumption, etc., compared to other configurations.
On the other hand, the worst case architecture was Direct Form in all aspects in our
case study while there was a trade-off for remaining architectures. As experiences
showed, the simplest MAC-based architecture in terms of implementation belonged
to Transposed Direct Form and Direct Form, whereas the most complex ones were
Pipelined-Parallel Direct Form and Pipelined Direct Form, respectively.

References

1. Acharya, J., Viswanathan, H., Venkatesan, S.: Timing acquisition for non-contiguous OFDM-
based dynamic spectrum access. In: 3rd IEEE Symposium on New Frontiers in Dynamic
Spectrum Access Networks (DySPAN), Chicago, IL, pp. 1–10 (2008)

2. Airoldi, R., Nurmi, J.: Design of a matched filter for timing synchronization. In: Conference
on Design and Architectures for Signal and Image Processing (DASIP), pp. 247–251, 8–10
October 2013

3. Bobrowksi, K.M.: Practical implementation consideration for spectrally agile waveforms in
cognitive radio. Ph.D. thesis, Worcester Polytechnic Institute (2009)

4. Chiueh, T., Tsai, P., Lai, I.: Baseband Receiver Design for Wireless MIMO-OFDM Communi-
cations, 2nd edn., p. 346. Wiley-IEEE Press, Singapore (2012)

5. Diaz, I., Wilhelmsson, L., Rodrigues, J., Lofgren, J., Olsson, T., Owall, V.: A sign-bit auto-
correlation architecture for fractional frequency offset estimation in OFDM. In: Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3765–3768, 30 May–02
June 2010

6. Dutta, A., Saha, D., Grunwald, D., Sicker, D.: Practical implementation of blind synchro-
nization in NC-OFDM based cognitive radio networks. In: Proceedings of the 2010 ACM
Workshop on Cognitive Radio Networks, pp. 1–6 (2010)

7. Feng, S., Zheng, H., Haiguang, W.; Jinnan, L., Zhang, P.: Preamble design for non-contiguous
spectrum usage in cognitive radio networks. In: IEEE Wireless Communications and Network-
ing Conference (WCNC), pp. 1–6, April 2009

8. Ghosh, D., Sharma, D., Aziz, A.: A novel low area and high performance programmable FIR
filter design using dynamic random access memory. In: 48th Midwest Symposium on Circuits
and Systems, vol. 2, pp. 1477–1480, 7–10 August 2005

9. Huang, B., Wang, J., Tang, W., Li, S.: An effective synchronization scheme for NC-OFDM
systems in cognitive radio context. In: IEEE International Conference on Wireless Information
Technology and Systems (ICWITS), pp. 1–4, 28 August–03 September 2010

10. Li, L., Qu, D., Jiang, T., Ding, J.: Design of LDPC codes for non-contiguous OFDM-
based communication systems. In: IEEE International Conference on Communications (ICC),
pp. 4712–4716, 10–15 June 2012

10 Synchronization in NC-OFDM-Based Cognitive Radio Platforms 207

11. Liu, J., Feng, S., Wang, H.: Comb-type pilot aided channel estimation in non-contiguous
OFDM systems for cognitive radio. In: 5th International Conference on Wireless Commu-
nications, Networking and Mobile Computing (WiCom), pp. 1–4, 24–26 September 2009

12. Mahesh, R., Vinod, A.P.: New reconfigurable architectures for implementing FIR filters with
low complexity. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(2), 275–288 (2010)

13. Mitola, J.: Cognitive radio for flexible mobile multimedia communications. In: IEEE Interna-
tional Workshop on Mobile Multimedia Communications (MoMuC ’99), pp. 3–10 (1999)

14. Pham, T.H., Fahmy, S.A., McLoughlin, I.V.: Low-power correlation for IEEE 802.16 OFDM
synchronization on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(8),
1549–1553 (2013)

15. Pun, M., Morelli, M., Jay Kuo, C.-C.: Multi-Carrier Techniques for Broadband Wireless
Communications. A Signal Processing Perspective, vol. 3, p. 257. Imperial College Press,
London

16. Qu, D., Ding, J., Jiang, T., Sun, X.J.: Detection of non-contiguous OFDM symbols for cognitive
radio systems without out-of-band spectrum synchronization. IEEE Trans. Wirel. Commun.
10(2), 693–701 (2011)

17. Rajbanshi, R., Wyglinski, A.M., Minden, G.J.: An efficient implementation of NC-OFDM
transceivers for cognitive radios. In: 1st International Conference on Cognitive Radio Oriented
Wireless Networks and Communications, pp. 1–5, 8–10 June 2006

18. Saha, D., Dutta, A., Grunwald, D., Sicker, D.: Blind synchronization for NC-OFDM - when
“Channels” are conventions, not mandates. In: IEEE Symposium on New Frontiers in Dynamic
Spectrum Access Networks (DySPAN), pp. 552–563, 3–6 May 2011

19. Shamani, F.: Design of a flexible timing synchronization scheme for cognitive radio applica-
tions. M.Sc. thesis, Tampere University of Technology, p. 75 (2013)

20. Shamani, F., Airoldi, R.; Ahonen, T.; Nurmi, J.: FPGA implementation of a flexible synchro-
nizer for cognitive radio applications. In: Conference on Design and Architectures for Signal
and Image Processing (DASIP), Madrid, pp. 1–8 (2014)

21. White Space Database Administrators Guide, [WWW]: Federal Communications Commission
(2013). Available at http://www.fcc.gov/encyclopedia/white-space-database-administrators-
guide. Accessed on 29 October 2013

22. Won, J.Y., Kang, H.G., Kim, Y.H., Song, I., Song, M.S.: Fractional bandwidth mode detection
and synchronization for OFDM-based cognitive radio systems. In: IEEE Vehicular Technology
Conference (VTC), pp. 1599–1603, 11–14 May 2008

23. Wyglinski, A.M.: Effects of bit allocation on non-contiguous multicarrier-based cognitive radio
transceivers. In: 64th IEEE Vehicular Technology Conference, pp. 1–5, 25–28 September 2006

24. Wyglinski, A.M., Nekoyee, M., Houauthor, T.: Cognitive Radio Communications and Net-
works, p. 714 . Academic, Oxford (2010)

25. Xing, Y., Kushwaha, H., Subbalakshmi, K.P., Chandramouli, R.: Codes and games for dynamic
spectrum access. In: Arsalan, H. (ed.), Cognitive Radio, Software Defined Radio, and Adaptive
Wireless Systems, chap. 6, p. 163. Springer, Dordrecht (2007)

26. Zhou, X., Qiu, R.: An adaptive synchronization algorithm for non-contiguous OFDM cognitive
radio systems. In: International Communication Conference on Wireless Mobile and Comput-
ing (CCWMC), pp. 102–106, 14–16 November 2011

27. Zhou, Y., Pagadarai, S., Wyglinski, A.M.: Feasibility of NC-OFDM transmission in dynamic
spectrum access networks. In: IEEE Military Communications Conference (MILCOM),
pp. 1–5, 18–21 October 2009

Publication IV

© 2015.

Reprinted with permission from IEEE Nordic Circuits and Systems Conference (NOR-
CAS): NORCHIP & International Symposium on System-on-Chip (SoC), Oslo, Norway,
pp. 1–8, Oct. 2015, F. Shamani, V. F. Sevom, J. Nurmi, and T. Ahonen, "Design,
Implementation and Analysis of a run-Time Configurable Memory Management Unit on
FPGA".

Design, Implementation and Analysis of a
Run-Time Configurable Memory Management Unit

on FPGA
Farid Shamani, Vida Fakour Sevom, Jari Nurmi, Tapani Ahonen

Department of Electronics and Communications Engineering
Tampere University of Technology

P.O.Box 553, FIN-33101, Tampere, Finland
{firstname.lastname}@tut.fi

Abstract—In this paper, we describe the design of a config-
urable Memory Management Unit (MMU) and its prototype
implementation on a Field Programmable Gate Array (FPGA).
We present analytical results of scaling the size of the second level
software-managed Unified Translation Lookaside Buffer (UTLB)
in terms of effect on the overall hit rate. Three design-time
configurations with 16, 32, and 64 entries were used for this
study. Critical path analysis of the logical design running on
Altera Stratix-V FPGA is presented together with a description
of optimization techniques employed in order to improve static
timing performance. These optimization techniques assist in
reaching 22.75% speed-up compared to non-optimized design.
Moreover, maximum operating frequencies of 265, 225 and
200 MHz were achieved for UTLB sizes of 16, 32, and 64
entries, respectively. We quote worst case energy consumption
figures with random input stimuli together with FPGA resource
utilization characteristics for the above mentioned configurations.
For resource-constrained or speed-critical hardware designs the
32-entry UTLB configuration provides a decent trade-off while
the 16-entry configuration poses unsatisfactory performance.
However, our target operating frequency of 200 MHz was
eventually reached also for the 64-entry UTLB and hence it is
our preferred option for most instantiations.

Keywords: FPGA Implementation, Memory Management Unit,
Virtual-to-Physical Address Translation, Run-Time Configurable
MMU.

I. INTRODUCTION

In sophisticated embedded systems, main memory access
has the potential to cause some extra delays. Even the fastest
processors should wait on an access to a slow memory. Hence,
speeding up main memory accesses are one of the important
concerns of processor designers [1]. Just like caches provide
fast access to the active portions of the programs, the main
memory can have the potential to act as a cache for Virtual
Memory (VM). An investigation in [2] shows that exploiting
an L2 cache in parallel with an L1 cache which offers a hit
rate of 90%, brings the hit rate up to 95%. Although the hit
rate is only improved by a factor of 5% (in two-level cache
system), the miss rate is reduced to half in comparison to the
single-level cache system (decreased from 10% to 5%). If this
fact can be expanded to the VM, instructions will be executed

faster.

A. Motivation

One of the main applications of the virtual memory is to
share the main memory among multiple programs. The VM
allows each program to reference to a particular part of the
main memory while avoids the same program to access to the
rest of the memory dedicated to other programs. Many years
ago, programmers were responsible to manually fit programs
which were larger than the main memory storage. Virtual
memory eliminated substantial burden on programmers by
moving inactive portion of the program out of the physical
memory. As soon as other active programs require some space
in the main memory, the inactive portion of the running pro-
grams are stored in a secondary storage using virtual memory
mechanism. Therefore, virtual memory enables multitasking
by relocation over the main memory [3].

Conceptually, in virtual mode, the processor produces a
virtual address which is convertible to the physical one using
a combination of hardware and software approaches. Fig.
1 shows address translation procedure. This mechanism is
usually performed by the Memory Management Unit (MMU).
The primary function of the MMU, also can be denoted
as the most important one, is to translate virtual addresses
into physical addresses [4]. The MMU should guarantee the
protection of each program as well. On the other hand, the
MMU is sufficiently rapid to enable all transactions to the
main memory [5]. Theoretically, any VM access takes at least
twice longer than the main memory access. It requires one
memory access to obtain the physical address and a second
attempt to get the data. Therefore, by keeping these accesses
in a special cache, successive memory access will be executed
much faster than the first one. Accordingly, the most frequent
page translations are kept in a special cache which is referred
to as a Translation Look-aside Buffer (TLB). In virtual mode,
the MMU examines its contents to find a matched Virtual Page
Number (VPN). When a desired entry is found, the appropriate
physical page number is extracted from the corresponding
entry and, then, combined with the offset to form the physical

978-1-4673-6576-5/15/$31.00 c©2015 IEEE

Fig. 1. How virtual memory is mapped to the main memory [3].

address. The processor employs the obtained physical address
to reference to a specific location in the memory.

B. Related Works

There are similar works on the same topic implementing an
MMU on different FPGA families. In [6], authors proposed a
method based on Network Interface Controller (NIC) which
includes a bulk memory. A 128MB DRAM memory stores 16
millions of Address Translation Table (ATT) entries (instead
of TLB) which include information with regard to virtual-to-
physical address translations. Each entry of the ATT is com-
posed of 64 bits. After the first run, the NIC driver maps all
the virtual memories to the physical memories. Subsequently,
the ATT is maintained only by the driver. However, since
DRAMs (along with the CPU) are the major candidates for
total system energy consumption [7], the address translation in
such systems in an expensive mechanism in terms of energy
consumption.

Hu-Cheung Ng et al. implemented an MMU on Xilinx
Virtex 5 FPGA board in [8]. The MMU has a TLB which
includes virtual to physical address translations. The TLB
has 16 entries and employs Least Recently Used (LRU)
replacement policy. They also claimed that another small cache
which contains 4 entries improved the speed of the memory
accesses. The implemented MMU only supports 4kB memory
page size. A successful translation takes 2 cycles whereas any
update to the TLB takes 16 cycles. A TLB miss penalty is
greatly varied between 600 to 227,000 cycles depending on
the status of the Operating System (OS).

In [9], a reconfigurable architecture which employs a single
512-entry TLB for address translation mechanism alongside
a Direct Memory Access (DMA) unit is proposed. In case
of a miss occurrence, the TLB is locked and the FPGA will
be interrupted. Consequently, the FPGA will update the TLB
with the corresponding missed entry. Thereafter, the TLB is
unlocked and the page translation mechanism will be con-

tinued. The authors acknowledged that any TLB miss would
take thousands of FPGA cycles whereas an address translation
with a TLB hit would take 4 cycles. They also claimed that the
hardware implementation (on Xilinx Virtex 5 FPGA device)
significantly speed-up the performance (approximately five
times) over the pure software implementation. However, they
have not mentioned the amount of virtual page space supported
by the TLB.

Authors in [10] introduced a specialized TLB design which
includes a Buffer Search Ram Cache (BSRC) along with
a Virtual-to-Physical (V2P) unit where the V2P is mainly
responsible for the address translation mechanism. A complete
V2P block composed of eight 32-bit entries was integrated
by Content Addressable Memories (CAMs) as a specialized
memory to act as a hardware search engine. It takes different
patterns as search keys and returns the corresponding addresses
where the patterns are stored. This architecture, due to the
use of tightly coupled RAM structures, returns a translated
address in 1 or 2 cycles while deleting or updating a new
entry is a complex operation which requires several steps.
Analysis results as well as hardware costs are given based on
the implementation on Stratix IV FPGA family specification.
Of course exploiting a CAM module instead of a simple RAM
will result in a very complex implementation (by a factor of
32) which is a very limiting factor in scarce memory resource
designs [10].

In this paper, in contrast to the mentioned related works,
since the process of address translation is quite similar to
the cache mechanism, the implemented MMU employs two
levels of TLBs. On the first level, a 4-entry micro TLB for
instruction memory references operates alongside an 8-entry
micro TLB for data memory references. Both of these micro
TLBs are hardware managed. On the second level there is a
unified software-managed TLB for both instruction and data
page address translations. Run-time configurability allows the
MMU to operate on eight different page sizes from 1 KB to
16 MB. The MMU is implemented on Altera Stratix-V series
FPGA DSP board [11] based on the specification given in [12]
in absolute terms.

The rest of this paper is organized as follows. In Section II
an overview to the address translation mechanism by memory
management unit is given. In Section III Implementation of
the MMU is discussed in detail. Section IV explains analysis
results, followed by conclusions in Section V.

II. AN OVERVIEW TO THE MMU

Fig. 2 shows how the MMU operates in two different modes
known as real and virtual modes. In the real mode, the 32-
bit Effective Address (EA), calculated by the processor, is
recognized as the physical address which is used to directly ac-
cess the physical memory (no address translation is required).
In virtual mode, the address translation mechanism is more
complex compared to the real mode. Fig. 3 illustrates the
virtual address translation procedure. The EA obtained from
the processor is segmented into two fields of Effective Page
Number (EPN) and the offset. The value N is the boundary

Fig. 2. The MMU behavior with respect to the real mode and virtual mode

to distinguish the EPN segment from the offset one. The
value of N is calculated based on 3 specific bits within the
EPN segment known as page size (further information in
section III-A). The resulting page size is equal to the logn2
where n is the number of bits dedicated to the offset field
and, consequently, N = 31 − n. For instance, in order to
address a 16 KB (214) page size, n = 14 shows that 14
bits are dedicated to the offset field while the remaining 18
bits (N = 17) are assigned to the page number field. Virtual
Address is a concatenation of the EA (address calculated by
the processor) and the Process ID (PID) driven from the PID
register. The PID is a unique ID for each process which is used
to resolve the overlapped area between different processes in
virtual space. Therefore, the PID field along with the EPN
segment of the virtual address contain information with regard
to the virtual address space. Nevertheless, the MMU employs
PID and EPN fields, as the Virtual Page Number (VPN),
to extract the Real Page Number (RPN). The concatenation
of the RPN and the offset (which has not been a part of
the translation process) is the physical address by which the
processor references the memory. Moreover, the MMU is
capable of mapping eight different fixed page sizes, including
1, 4, 16, 64, 256 KB, 1, 4, and 16 MB, from the virtual space
into physical space via a page table. The operating system
maintains the page table.

III. FPGA IMPLEMENTATION

In this implementation, we experiment with the effect of
using UTLB with different configurations, i.e. 16-, 32- and
64-entry, to cache a subset of instruction and data page trans-
lations. However, the 64-entry UTLB is mostly emphasized
in this case study. On the other hand, UTLB is completely
maintained by the OS. Modifications to the UTLB such as
initialization, entry validation and entry replacement (in case

Fig. 3. Address translation procedure in virtual mode

Fig. 4. System memory and processor organization

of a UTLB miss) are only handled by OS. In addition, all of the
entries are accessible by the MMU. The MMU also consists of
a 4-entry Instruction TLB (ITLB) along with an 8-entry Data
TLB (DTLB) to cache the most frequent instruction and data
page translations, respectively. These micro TLBs are managed
completely by hardware meaning that the MMU is responsible
to initialize, replace and validate the contents of each micro
TLB. The basic idea of exploiting micro TLBs is explained
in [13] in detail. Micro TLBs are employed to minimize
access conflicts with the UTLB as well as speeding up the
translation process. Fig. 4 shows how TLBs are organized by
the operating system and the processor. The following explains
each TLB attribute in brief:

• Unified TLB: The UTLB contains 64 entries. It is fully
associative, meaning that the instruction and data page
translations can be stored in any location. The instan-
tiation and modification of the UTLB are completely

Fig. 5. TLB entry organization

managed by the OS.
• Micro TLBs: The ITLB/DTLB contains four/eight instruc-

tion/data translation entries. They are fully associative.
They store the four/eight most frequently accessed in-
structions/data from the UTLB. The micro TLBS are used
to minimize contention between instruction/data transla-
tion and UTLB update operations. The instantiation and
modification of the micro TLBs are completely managed
by the hardware.

A. TLB Entry Organization

When the processor is running in virtual mode, the MMU
exploits its TLBs for address translation mechanism. Each
TLB entry contains necessary information to identify a virtual
page, specify its physical page, and determine the protection
as well as the storage characteristics of the page. As Fig.
5 illustrates, each TLB entry consists of 68 bits split into
two sections. The first 36 bits (TLBHI) mostly contain useful
information about virtual address attributes. Subsequently, the
remaining 32 bits (TLBLO) mostly contain information with
respect to physical address attributes. The most important bit
fields within TLBHI and TLBLO in this implementation are
described as following:

• The most important TLBHI bits in this implementation:
– TAG: (22 bits) TAG field is compared with the EPN

portion of the EA based on the corresponding page
size field.

– Page Size: (3 bits) Specifies the page size used to
define how many bit ranges of the TAG field should
be compared with EPN. The size value 0b000 up to
0b111 represents page sizes of 1KB up to 16 MB,
consecutively.

– V: Determines whether the current entry is valid.
– TID: (8 bits) This field is compared with the corre-

sponding PID field.
• The most important TLBLO bits in this implementation:

– RPN: (22 bits) This field determines the correspond-
ing physical address in case of a TLB hit.

– ZPR: (4 bits) This field selects one of the 16 different
zone fields of the Zone Protection Register (ZPR).

– G: Determines whether the current entry is guarded.

Fig. 6. How each TLB entry responds to a reference. For the UTLB, thicker
arrows show the longest critical path propagated through the design. Suitable
places for register insertion are represented as well.

B. TLB Index Examination

As Fig. 6 illustrates, when examining a page translation
entry in either of TLBs, all valid entries in the corresponding
TLB are checked simultaneously. A TLB hit will occur if all
the following criteria are met:

• The entry is valid.
• The TAG field is identical to EA[EPN] under the control

of the page size field.
• The TID field is identical to PID.
• Access to the page is granted and the page is not guarded.
If one of the above conditions is not met, a TLB miss occurs

which results in an exception. It is worth mentioning that a
TID value of 0x00 represents a process-independent translation
from operating system point of view. Therefore, the MMU
ignores comparing TID field with the PID. In this case, only
the TAG and EA[EPN] are compared. Moreover, A PID value
of 0x00 identifies a process which can not access any page.
Obviously, the consequence of such a PID is an entry miss.

When a hit occurs, the MMU investigates access control bits
of the corresponding TLB entry prior to accessing physical
address. Similarly, the MMU inspects the storage attribute
fields as well to determine whether the access to the page
is allowed. Eventually, if all the criteria are met, a TLB hit
will take place.

Fig. 6 shows how each TLB entry is verified during the
address translation process. It is promising that a hit will occur

Fig. 7. How to break large loops into two smaller ones

when the incoming EPN passes five consecutive examination
stages. Subsequently, a TLB miss is occurred when at least
one of the following criteria is met:

- A matching TLB entry is not found.
- A matching TLB entry is found, but the contents are not

valid.
- A matching TLB entry is found, but the access to the

page is denied.
- A matching TLB entry is found, but the page is guarded.

In the presence of a UTLB miss (irrespective of the miss
type), a failure is detected by the MMU and, consequently,
an interrupt is issued which reports the cause to the interrupt
handler. Thereafter, the interrupt handler mechanism is exe-
cuted to resolve the corresponding problem. In the meantime,
the processor enters in the real mode by clearing both IR
and DR bits in the Machine State Register (MSR). When
the necessary updates have been loaded into the UTLB, the
processor will turn back to operate in virtual mode. Therefore,
during the interrupt handling process, the MMU is disabled
until the UTLB is reloaded with proper entries. Any update
to an entry in the UTLB forces the MMU to invalidate all
entries in both micro TLBs. Instruction and data consistency
between micro TLBs and UTLB will be guaranteed in such
a way. Furthermore, Fig. 6 presents the longest critical path
propagated through the design with thicker arrows. After
monitoring and analyzing the design, the longest critical path
belongs to the UTLB due to the relatively large amount of loop
iterations. In order to shorten the long critical path as much as
possible, we took advantage of two well-known optimization
techniques: register insertion and large loops mitigation. Fig. 6
also illustrates the most suitable locations for register insertion.
These points are discovered after performing timing analysis
intently.

Fig. 7 depicts how searching through the entire N-entry
TLB can be split into several smaller loops (in this figure
two smaller ones). For instance, in order to search an index
through the 64-entry UTLB, a large 64-iteration loop is
divided into two 32-iteration ones. In case of an entry hit,
each loop provides useful information relative to whether a
matched entry is found in the corresponding loop by setting
Index Hit 1/2 flag as well as the respective matched entry row

Fig. 8. MMU address translation flow

number (Row Number 1/2). If the VPN address to the UTLB
is found at the 20th entry (location is within the first loop),
the Index Hit 1 flag is set and consequently Row Number 1
= 20 is assigned to the Row Number value. If the desired
VPN address is found at the 50th entry (second loop), the
Index Hit 2 is set and consequently Row Number 2 = 18 +
32 (=50) is assigned to the Row Number value. The effect of
using such optimization techniques in order to minimize the
critical path will be discussed in Section IV.

C. MMU Address Translation Flow

Fig. 8 shows the address translation flow through TLBs.
When the virtual mode is activated for either instruction or
data side, the MMU translates a combination of PID and
EA into the physical address. Thus, it first examines the
appropriate micro TLB to find a matched VPN. If a valid
entry is found, it is used to access the physical memory. A
micro TLB hit will take place in two cycles. If no entry is
found, the MMU examines the UTLB for the corresponding
virtual address. Additional delays are presented each time the
UTLB is accessed due to a micro TLB miss. If both micro
TLBs experience simultaneous misses, the DTLB has priority
over the ITLB to access the UTLB. In such a situation, the
UTLB will first address the data side by searching all the
entries for a matched data page translation and then evaluates
the instruction EPN. Therefore, in this implementation, the

TABLE I
MINIMUM AND MAXIMUM CYCLE COUNTS FOR EACH

VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION IN AN IDEAL CASE

Data Instruction
Micro TLB hit 2 2
Micro TLB miss, UTLB hit 5 5-7
Micro TLB miss, UTLB miss 11 11-13

DTLB miss penalty is 5 cycles while the miss penalty for ITLB
varies between 5 to 7 cycles (7 cycles in case of a simultaneous
miss with DTLB). Thereafter, the physical address is fetched
from the UTLB. In the meantime, the appropriate micro TLB
entry is updated with the new entry as well. As earlier stated,
in case of a UTLB miss an exception is reported to the
operating system via the interrupt handler. How each exception
is typically addressed depends on the operating system status,
it will take six clock cycles to be resolved in an ideal case.
Table I summarizes total cycle counts for each virtual-to-
physical address translation in an ideal case.

The Least Recently Used (LRU) replacement policy is
considered for both micro TLBs. Each micro TLB employs
a specific counter which counts each reference to the TLB.
In case of a TLB hit, the LRU counter of the corresponding
entry is reset while the remaining LRU counters are advanced
by one. When a TLB miss occurs, the entry with the highest
LRU counter number is the best candidate to be replaced by
the new entry fetched from the UTLB. Lifetime of each LRU
counter within the TLB is equivalent to 2 × number of entries
assigned to the same TLB minus one. For example, DTLB (in
this implementation) has eight entries; hence, the maximum
number achieved by the LRU counter is 2 × 8 − 1 = 15. The
entries with the highest LRU counter have not been referenced
for a while. Thus, they are assumed to be good candidates for
replacement. In order to keep micro TLBs coherent with the
UTLB, the controller (see Fig 2) will immediately invalidate
the contents of both micro TLBs. Invalidation is simply
performed by clearing the valid bit (TLBHI[25] in Fig. 5) of
all entries right after encountering the UTLB miss. The UTLB
miss will disable MMU address translation flow as well. As
soon as the operating system completes updating the UTLB,
MMU is unlocked and virtual address translation flow can be
restarted if needed.

IV. SYNTHESIS RESULTS

The described MMU was written in Very-high-speed inte-
grated circuit Hardware Description Language (VHDL), sim-
ulated using ModelSim software, compiled and synthesized
by Quartus-II version 13.1.1 environment and finally imple-
mented on Altera family targeting Stratix-V GS mainstream
speed grade 2 FPGA device. Table II summarizes the effect
of a long critical path before and after the optimization
techniques discussed in Section III-B when the UTLB is
configured for 64 entries. The longest critical path (6.164 ns) is
recorded when no optimization technique is performed. The
optimization Level 1 presents new results when the register

Fig. 9. The hit rate with different number of entries in the UTLB for 200
random references after the boot-up. The curves are smoothed version of the
original ones for intervals of 10 references.

insertion strategy is considered. Although inserting registers
in the middle of entry verification process has the potential
to introduce additional delay, the critical path was reduced
more than 1 ns (5.154 ns). In optimization Level 2, breaking
a large loop into smaller ones technique is used in addition
to register insertion strategy. However, splitting a large loop
into two smaller ones (in this case study, 64 iteration to 2×32
ones) has a negligible impact on shortening the critical path
in comparison with register insertion technique.

TABLE II
CRITICAL PATH ANALYSIS. LEVEL 1 INDICATES THE REGISTER

INSERTION STRATEGY AND LEVEL 2 REPRESENTS LOOP SPLITTING
TECHNIQUE

No Optimization Level 1 Level 2
Worst Critical Path (ns) 6.164 5.154 4.935
Clock Skew (ns) -0.054 -0.130 -0.020
Maximum Freq. (MHz) 163.59 193.09 200.80
Speed up — 18.03% 22.75%

Fig. 9 illustrates the UTLB hit rate for the first 200 random
accesses after the boot-up when the UTLB is configured with
64, 32 and 16 entries, respectively. Random accesses are con-
sidered to enable the worst-case scenario for the implemented
MMU. The random number generator is quite similar to the
specification given in [14]. It is obvious that the first indexes to
the UTLB, regardless of how many entries it has, should result
in misses since the UTLB is empty (compulsory misses). All
curves are smoothed each 10 references to the corresponding
TLB to present a more visible shot in the figure. The curves
show that the 64-entry UTLB has the best hit rate (up to
99%) while 32-entry UTLB has the hit rate of maximum 57%.
The hit rate is degraded due to the variety of capacity misses

Fig. 10. The DTLB/ITLB hit rate with 64-entry UTLB for 200 random
data/instruction references after the boot-up. The curves are smoothed version
of the original ones for intervals of 10 references.

TABLE III
SUMMARY OF THE IMPLEMENTATION ANALYSIS

Memory Management Unit
UTLB 64 UTLB 32 UTLB 16

Logic Utilization (ALMs) 3,459 2,092 1,373
Total Registers 5,263 3,221 2,213
Maximum Freq. (MHz) 200.80 228.57 267.38

occurring in 32-entry UTLB. Capacity misses are drastically
affected by the design, when the UTLB is configured for 16
entries. A 16-entry UTLB does not respond to more than 9%
of the references. The 16-entry UTLB seems to be useless in
this case. Since our target is to maximize the MMU hit rate,
64-entry UTLB is the first choice of the interest.

Fig. 10 shows how DTLB and ITLB response to the first 200
corresponding references after the boot-up. Although micro
TLB hit rates are not ideal, it is worth mentioning to recall
that the investigation is based on random instruction/data
references to the micro TLBs to make the worst-case happen.
The smoothed curves (accumulating hits for intervals of 10
random references) illustrate both compulsory and capacity
misses occurring in ITLB as well as DTLB. Nevertheless, it
seems that the MMU takes advantage of micro TLBs to some
extent.

In this implementation, we also exploit using UTLB with
different number of entries including 16, 32 and 64 entries.
Analysis results are reported in Table III in terms of logic
utilization, total registers and maximum operating frequency
for the described MMU composed of two micro TLBs operat-
ing in parallel with a 16-/32-/64-entry UTLB. The maximum
operating frequencies of approximately 200, 225 and 265 MHz
are achieved with different UTLB configurations. As the rule
of thumb of all caches, the larger the UTLB, the slower

TABLE IV
ENERGY CONSUMPTION ANALYSIS FOR THE FIRST 200 REFERENCES (μJ)

Thermal Energy Memory Management Unit
UTLB 64 UTLB 32 UTLB 16

Static 14291.10 14278.20 14275.95
Dynamic 326.25 167.85 145.65
I/O 431.55 427.20 454.80
Total 15048.90 14873.25 14876.25

operating frequency. Furthermore, 64-entry UTLB employs
more resources and registers for its implementation. In our
case study, 64-entry UTLB shows satisfactory results while
16-entry UTLB is a kind of wasting resources in total. There
is a trade-off between using UTLB with either 32 or 64 entries.
If, for example, there is no restriction on resources usage, 64-
entry is the best candidate to be implemented for UTLB for
the sake of higher hit rate.

Energy consumption analysis is reported based on the re-
sults achieved by PowerPlay Power Analyzer tool in Quartus-II
software. The analyzer directly reads the Switching Activity
Interchange Format (SAIF) generated by ModelSim for the
MMU design running at 50 MHz. Static probability and toggle
rate for each signal are calculated based on generated VCD file
for the first 200 random address translations after the boot-up
which can be considered as the worst-case scenario. Random
numbers force most of the transistors to toggle per clock
cycle. Table IV summarizes the estimation results based on
different UTLB configurations. Based on the energy consump-
tion analysis report, dynamic energy is drastically increased
while the MMU is configured with 64-entry UTLB due to
triggering more transistors. The trade-off between configuring
UTLB with 32 entries or 64 entries is still established here.
It seems that a 32-entry UTLB might be a good candidate in
low-power designs where the hit rate can be sacrificed. The 16-
entry UTLB is not recommended from the energy consumption
point of view as well.

Dynamic energy consumption for each cell regarding to the
MMU block and its sub-blocks are reported in Table V. Statis-
tics show that the MMU itself consumes most of the energy
(273, 229.5 and 244.8μJ with respect to 64-, 32- and 16-entry
UTLB) to manage the address translation flow for the first 200
references. Followed by, UTLB, DTLB and ITLB feature the
highest energy consumptions, respectively. However, DTLB,
ITLB and controller blocks consume approximately the same
energy regardless of the UTLB configuration. Moreover, the
MMU can take advantage of exploiting micro TLBs to speed
up the translation mechanism by consuming a trivial amount
of energy. Choosing a proper configuration for UTLB has
an impressive impact on dynamic as well as routing energy
consumption. The 64-entry UTLB consumes a large amount
of energy in comparison with other configurations.

V. CONCLUSION

In this paper, an FPGA implementation of a run-time config-
urable Memory Management Unit (MMU) was described. This

TABLE V
ENERGY CONSUMPTION OF EACH CELL FOR THE FIRST 200 REFERENCES (μJ)

Dynamic Energy Static Energy Routing Energy Design Total Energy
UTLB Entries 64 32 16 64 32 16 64 32 16 64 32 16
MMU 78.45 73.95 100.65 73.65 73.65 73.65 120.90 81.90 70.50 273.00 229.50 244.80
ITLB 7.80 7.95 7.50 0 0 0 4.65 4.20 4.65 12.45 12.15 12.15
DTLB 13.95 14.55 15.40 0 0 0 8.10 8.85 9.15 22.05 23.40 24.55
UTLB 81.15 29.10 18.45 0 0 0 75.30 11.10 11.85 156.45 40.20 30.30
Controller 0.60 0.75 0.75 0 0 0 9.00 4.95 3.45 9.60 5.70 4.20
Total Energy 181.95 126.30 142.75 73.65 73.65 73.65 217.95 111.00 99.60 473.55 310.95 316.00

MMU employs two levels of Translation Look-aside Buffers
(TLBs). On the first level, a 4-entry micro TLB operates
alongside an 8-entry micro TLB to keep track of the most
recently used instruction and data address translations, respec-
tively. Both of these micro TLBs are hardware managed. A
software-managed Unified TLB (UTLB) exists on the second
level to store both instruction and data address translations.
The MMU supports eight different page sizes from 1 KB
to 16 MB in virtual mode. Micro TLBs were observed to
speed up address translation with a low energy overhead. Three
UTLB configurations of 16, 32, and 64 entries were studied
with respect to overall hit rate, operating speed, energy usage,
and resource utilization. The critical path of the logic design
was optimized by introducing explicit concurrency as well
as retiming through register-to-register logic balancing. Max-
imum operating frequencies of 265, 225 and 200 MHz were
achieved for the 16-, 32-, and 64-entry UTLB configurations,
respectively. Using worst-case, i.e., random stimuli, the 64-
entry UTLB provides the best worst-case hit rate of up to
99%. The 32-entry UTLB cuts down on resource utilization
and energy usage of the MMU design. However, with worst
case hit rate of up to 57% only, system-wide energy utilization
and performance will be sacrificed by the frequent misses.
While a 16-entry UTLB could operate at a somewhat higher
speed, its worst case hit rate of up to 9% translates into system
wide drawbacks on performance and energy usage. We met
our target frequency of 200MHz on Altera Stratix V family of
devices for all the studied configurations, making the 64-entry
UTLB our preferred choice, while a 32-entry configuration
remains a viable option for resource constrained systems.

FUTURE WORK

The MMU is currently being integrated with the COF-
FEE RISC processor developed at Tampere University of
Technology [15]. In order to better serve multi-core systems,
we will further modify and expand the MMU for sharing
over a Network-on-Chip (NoC). In this work we will also
adapt the design to take advantage of the extreme bandwidth
obtainable through a memory on top of logic organization of
3D Stacked Integrated Circuits (3DSIC). This configuration is
often referred to as 2.5D and is the most likely candidate for
successful mass production in the near future, while prototype
chips have been available for some time now.

ACKNOWLEDGMENT

The research leading to these results has received fund-
ing from the ARTEMIS JU under grant agreement num-
ber 295371. Portions of the work were also funded by the
Academy of Finland under contract # 258506 (DEFT: Design
of a Highly-parallel Heterogeneous MP-SoC Architecture for
Future Wireless Technologies)

REFERENCES

[1] K. Hwang, N. Jotwani, ”Advanced Computer Architecture, 2nd Edition,
Teta McGraw Hill, 2000, 725 p.

[2] J. Handy, ”The Cache Memory Book”, 2nd Edition, Academic Press Inc.,
1998, United Kingdom, 229 p.

[3] D.A. Patterson; J.L. Hennessy, ”Computer Organization and Design”, 4th
edition, Morgan Kaufmann Publishers, 2009, 703 p.

[4] B. Cohen; R. McGarity, ”The Design And Implementation of the
MC68851 Paged Memory Management Unit”, in IEEE Micro, vol.6, no.2,
pp.13,28, April 1986

[5] G. Stefan; F. Draghici, ”Memory management unit-a new principle for
LRU implementation”, in 6th Proceedings on Mediterranean Electrotech-
nical Conference, vol.2, pp.989-992, 1991.

[6] Wang Yongqing; Zhang Minxuan, ”Fully memory based address transla-
tion in user-level network interface”, in 3rd International Conference on
Communication Software and Networks (ICCSN), pp.351-355, 2011.

[7] D. Schmidt; N. Wehn, ”DRAM Power Management and Energy Con-
sumption: a Critical Assessment”, in Proceedings of the 22nd Annual
Symposium on Integrated Circuits and System Design: Chip on the Dunes
(SBCCI), pp.32, 2009.

[8] Ho-Cheung Ng; Yuk-Ming Choi; So, H.K.-H., ”Direct virtual memory
access from FPGA for high-productivity heterogeneous computing”, in In-
ternational Conference on Field-Programmable Technology (FPT), pp.458-
461, 2013.

[9] Brandon, A.; Sourdis, I.; Gaydadjiev, G.N., ”General Purpose Computing
with Reconfigurable Acceleration”, in International Conference on Field
Programmable Logic and Applications (FPL), pp.588-591, 2010.

[10] R. Ammendola; A. Biagioni; O. Frezza,; F. L. Cicero; A. Lonardo; P.
S. Paolucci; D. Rossetti; F. Simula; L. Tosoratto; P. Vicini, ”Virtual-to-
Physical address translation for an FPGA-based interconnect with host
and GPU remote DMA capabilities”, in International Conference on Field-
Programmable Technology (FPT), pp.58-65, 2013.

[11] ”Stratix V Device Handbook Volume 1: Device Interfaces and In-
tegration”, [WWW], Altera, [Accessed on: 25.Nov.2014], Available
at http://www.altera.com/literature/hb/stratix-v/stratix5 handbook.pdf, July
2014.

[12] ”PowerPC Processor Reference Guide Embedded Development Kit”,
EDK 6.1, September 2003, Xilinx, 570 p.

[13] J. Ball, ”Designing Soft-Core Processors for FPGAs” in: J. Nurmi,
”Processor Design: System-On-Chip Computing for ASICs and FPGAs”,
1st ed., Springer Publishing Company, pp. 229-256, 2007, 513 p.

[14] W. A. S. Wijesinghe; M. K. Jayananda; D. U. J. Sonnadara, ”Hardware
Implementation of Random Number Generators”, in Proceedings of the
Technical Sessions, vol. 22, pp. 28-38, 2006.

[15] J. Kylliäinen; J. Nurmi; M. Kuulusa, ”COFFEE - a core for free”, in
Proceedings of International Symposium on System-on-Chip, pp.17-22,
19-21 Nov. 2003.

Publication V

© 2016.

Reprinted with permission from Elsevier Journal of Microprocessors and Microsystems
(MICPRO), Dec. 2016, F. Shamani, V. F. Sevom, T. Ahonen, and J. Nurmi, "Integration
Issues of a run-Time Configurable Memory Management Unit to a RISC Processor on
FPGA".

133

Microprocessors and Microsystems 49 (2017) 179–191

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

Integration issues of a run-time configurable memory management

unit to a RISC processor on FPGA

Farid Shamani ∗, Vida Fakour Sevom , Tapani Ahonen , Jari Nurmi

Department of Electronics and Communications Engineering, Tampere University of Technology, Tampere, P.O. Box 553, FIN-33101, Finland

a r t i c l e i n f o

Article history:

Received 13 April 2016

Revised 16 September 2016

Accepted 2 December 2016

Available online 5 December 2016

Keywords:

FPGA implementation

Memory management unit

Virtual-to-physical address translation

Run-time configurable MMU

RISC processor

a b s t r a c t

This paper presents the integration issues of a proposed run-time configurable Memory Management

Unit (MMU) to the COFFEE processor developed by our group at Tampere University of Technology. The

MMU consists of three Translation Lookaside Buffers (TLBs) in two levels of hierarchy. The MMU and

its respective integration to the processor is prototyped on a Field Programmable Gate Array (FPGA) de-

vice. Furthermore, analytical results of scaling the second-level Unified TLB (UTLB) to three configurations

(with 16, 32, and 64 entries) with respect to the effect on overall hit rate as well as the energy consump-

tion are shown. The critical path analysis of the logical design running on the target FPGA is presented

together with a description of optimization techniques to improve static timing performance which leads

to gain 22.75% speed-up. We could reach to our target operating frequency of 200 MHz for the 64-entry

UTLB and, thus, it is our preferred option. The 32-entry UTLB configuration provides a decent trade-off for

resource-constrained or speed-critical hardware designs while the 16-entry configuration poses unsatis-

factory performance. Next, integration challenges and how to resolve each of them (such as employing a

wrapper around the MMU, modifying the hardware description of the COFFEE core, etc.) are investigated

in detail. This paper not only provides invaluable information with regard to the implementation and

integration phases of the MMU to a RISC processor, it opens a new horizon to our processor to provide

virtual memory for its running operating system without degrading the operating frequency. This work

also tends toward being a general reference for future integration to the COFFEE core as well as other

similar processor architectures.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In sophisticated embedded systems, main memory access has

the potential to cause some extra delays. Even the fastest proces-

sors should be stalled while accessing to the main memory. Hence,

speeding up the main memory accesses are one of the most impor-

tant concerns of the processor designers [1] . One of the main ap-

plications of the Virtual Memory (VM) is to share the main mem-

ory among multiple programs. The VM allows each program to ref-

erence a particular part of the main memory while it prevents the

same program accessing to the rest of the memory dedicated to

other programs. Technically, as the caches provide faster access to

the active portions of a program, the main memory can potentially

act as a cache for the VM. A wide research in [2] shows that ex-

ploiting an L2 cache in parallel with an L1 cache which offers a

hit rate of 90%, brings the hit rate up to 95%. Although the hit

∗ Correspondind author.

E-mail addresses: farid.shamani@tut.fi (F. Shamani), VidaFakour.Sevom@tut.fi (V.

Fakour Sevom), Tapani.Ahonen@tut.fi (T. Ahonen), Jari.Nurmi@tut.fi (J. Nurmi).

rate is only improved by a factor of 5% (in two-level cache system),

the miss rate is reduced to half in comparison to the single-level

cache system (decreased from 10% to 5%). This is the basic idea

that we took into consideration to expand the VM on several hier-

archal levels. Using this scenario, instructions have the potential to

be executed faster.

1.1. Motivation

Many years ago, programmers were responsible for manually

fitting programs which were larger than the main memory stor-

age. The virtual memory eliminated the substantial burden on pro-

grammers by moving inactive portions of the program out of the

physical memory. As soon as the other programs require more

main memory, the inactive portions of the running program(s) are

stored in a secondary storage using the virtual memory mecha-

nism. Therefore, the virtual memory enables multitasking by in-

stantly relocation over the main memory [3] .

Conceptually, in the virtual mode, the processor produces a vir-

tual address which is convertible to the physical one using a com-

bination of hardware and software approaches. Fig. 1 shows the

http://dx.doi.org/10.1016/j.micpro.2016.12.001

0141-9331/© 2016 Elsevier B.V. All rights reserved.

180 F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191

Fig. 1. How virtual memory is mapped to the main memory [3] .

address translation procedure. This mechanism is usually performed

by the Memory Management Unit (MMU). The primary function of

the MMU, which can also be denoted as the most important one,

is to translate the virtual addresses into the physical ones [4] . The

MMU should guarantee the protection of each program, as well. On

the other hand, the MMU is sufficiently rapid to enable all transac-

tions to the main memory [5] . Theoretically, any VM access takes

at least as twice long as the main memory access. It requires one

memory access to obtain the physical address and a second at-

tempt to get the data. Therefore, by keeping these accesses in a

special cache, subsequent memory access will be executed much

faster than the first one. Accordingly, the most frequent page trans-

lations are kept in a special cache which is referred to as a Trans-

lation Look-aside Buffer (TLB). In the virtual mode, the MMU ex-

amines its contents to find a matched Virtual Page Number (VPN).

When the desired entry is found, the appropriate physical page

number is extracted from the corresponding entry and, then, is

combined with the offset to form the physical address. The pro-

cessor employs the obtained physical address to reference a spe-

cific location in the memory. On the other hand, rapid technology

advancement has enabled digital system designers to design and

implement embedded processors capable of performing particular

functions [6] . One such embedded processor is the Core For FREE

(COFFEE) developed by our group at Tampere University of Tech-

nology. All the required materials to run the COFFEE processor (in-

cluding the latest source codes, the corresponding compiler, etc.)

as well as the instruction how to use the core can be found on

the university website in [7] . In this work, we used the most up-

dated version of the core released on 17-November, 2008. As the

name states, the developed processor is an open-source core which

is suitable for embedded computing. However, the processor lacks

the integration of an MMU to support a virtual-to-physical address

translation mechanism [8] . Indeed, configuring the COFFEE RISC

processor with a fully compatible MMU is one the main motiva-

tions for this work. Potentially, the developed MMU can be inte-

grated into other standard RISC-based platforms, as well.

1.2. Related works

There are other studies in which an MMU has been imple-

mented on the FPGA devices for different applications. In [9] , the

authors proposed a method based on a Network Interface Con-

troller (NIC) which includes a bulk memory. A 128 MB DRAM

memory stores 16 million of Address Translation Table (ATT) en-

tries (instead of TLBs) which include information with regard to

virtual-to-physical address translations. Each entry of the ATT is

composed of 64 bits. After the first run, the NIC driver maps all

the virtual memories to the physical ones. Subsequently, the ATT is

maintained only by the driver. However, since DRAMs (along with

the CPU) are the major candidates for total system energy con-

sumption [10] , the address translation in such systems is an ex-

pensive mechanism in terms of energy consumption.

Hu-Cheung Ng et al. implemented an MMU on a Xilinx Virtex

5 FPGA board in [11] . The MMU has a TLB which includes virtual-

to-physical address translations. The TLB has 16 entries and em-

ploys the Least Recently Used (LRU) replacement policy. They also

claimed that another small cache which contains 4 entries im-

proved the speed of the memory access. The implemented MMU

only supports a fixed page size of 4 KB. A successful translation

takes 2 cycles whereas any update to the TLB takes 16 cycles. A

TLB miss penalty is very varied between 600 to 227,000 cycles de-

pending on the status of the Operating System (OS).

In [12] , a reconfigurable architecture which employs a single

512-entry TLB for address translation mechanism alongside a Di-

rect Memory Access (DMA) unit is proposed. In the case of a miss

occurrence, the TLB is locked and the FPGA will be interrupted.

Consequently, the FPGA will update the TLB with the correspond-

ing missed entry. Thereafter, the TLB is unlocked and the page

translation mechanism will be continued. The authors acknowl-

edged that any TLB miss would take thousands of FPGA cycles

whereas an address translation with a TLB hit would only take 4

cycles. They also claimed that the hardware implementation (on

Xilinx Virtex 5 FPGA device) significantly sped up the performance

(approximately five times) over the pure software implementation.

However, they have not mentioned the size of the virtual page

space supported by the TLB.

The authors in [13] introduced a specialized TLB design which

includes a Buffer Search Ram Cache (BSRC) along with a Virtual-

to-Physical (V2P) unit where the V2P is mainly responsible for the

address translation mechanism. A complete V2P block composed

of eight 32-bit entries was integrated with Content Addressable

Memories (CAMs) as a specialized memory to act as a hardware

search engine. It takes different patterns as search keys and re-

turns the corresponding addresses where the patterns are stored.

This architecture, due to the use of tightly coupled RAM structures,

returns a translated address in 1 or 2 cycles whereas deleting or

updating a new entry is a complex operation which requires sev-

eral steps. Both the analysis results and the hardware costs are

given based on the implementation on Altera Stratix IV FPGA fam-

ily specification. Of course exploiting a CAM module instead of a

simple RAM will result in a very complex implementation (by a

factor of 32) which is a very limiting factor in designs with scarce

memory resources [13] .

This paper is based on our previous work in [14] . In our earlier

work, we developed our MMU on two levels of TLBs, since the pro-

cess of address translation was quite similar to the caching proce-

dure. On the first level, a 4-entry micro-TLB for instruction mem-

ory references operated alongside an 8-entry micro-TLB for data

memory references. Both of these micro-TLBs were hardware man-

aged. On the second level, there was a 64-entry unified software-

managed TLB to cache both instruction and data page address

translations. All employed TLBs were design-time configurable and

scalable. The MMU was able to configure itself (mainly it reconfig-

ured the TLBs) to operate on eight different page sizes from 1 KB

to 16 MB during the run-time. The MMU was implemented on a

28 nm Altera Stratix-V FPGA board [15] based on the specification

given in [16] in absolute terms. In this extended version, we try

F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191 181

to demonstrate how the MMU can be integrated into any standard

RISC processor as an IP block, what challenges are confronted and

how we can tackle each of them. Our case study is the COFFEE

RISC processor developed by our group. The main contributions of

this paper are briefly as follows:

• Employing two scalable micro-TLBs along side a scalable unified

TLB to speed up the overall performance.
• Configurability of the MMU to reconfigure its TLBs to operate

on different page sizes.
• Providing a wide study on hardware implementation costs (in-

cluding power dissipation, logic utilization, etc.)
• Describing some optimization techniques to improve the per-

formance.
• Presenting integration challenges such as providing a wrapper,

modifying the hardware description of the core, etc. in order to

integrate the IP-based MMU to a standard RISC processor (COF-

FEE core as the case study).

The rest of this paper is organized as follows. Section 2 de-

scribes the COFFEE core in brief. Section 3 presents an overview of

the address translation mechanism used by the memory manage-

ment unit. In Section 4 , the hardware implementation of the MMU

is discussed in detail. Section 5 explains the design issues which

have been considered prior to the integration phase. Next comes

Section 6 , which gives an insight how to integrate the MMU to

the COFFEE core as a peripheral device. Section 7 discusses about

synthesis results of the MMU and its respective integration to the

COFFEE core on the FPGA, followed by the conclusion in Section 8 .

2. The COFFEE core in brief

The COFFEE core is an embedded processor developed by our

group at Tampere University of Technology [17] . Technically, the

core is a Harvard RISC-based architecture suitable for System-on-

Chip (SoC) and embedded systems. Reusability and configurability

are the two main characteristics of the developed core. The COF-

FEE RISC core is capable of executing 66 different instructions in a

6-stage pipeline. Furthermore, 4 co-processors with different clock

domains are attached to the core via a third bus to assist the pro-

cessor in particular applications. In addition, the core also exploits

a Core Configuration Block (CCB) alongside a Peripheral Control

Block (PCB) to support software configurability and communica-

tion with peripheral devices, respectively. In typical applications,

the practical operating frequency of the best optimized implemen-

tation of the COFFEE (in all aspects) is in the range of 100 MHz

while the speed-optimized version operates at about 150 MHz for

a 90 nm low power technology [8] . Fig. 2 depicts how the COFFEE

RISC core is integrated with other blocks including the PCB. The

main input and output ports to integrate the MMU as a PCB block

are in bold while the rest of the components are transparent in

the figure. In Section 5 , we will completely explain how the previ-

ously developed MMU is integrated into the COFFEE core using PCB

block interface. We also discuss about the main intention of using

PCB block over other interfaces (e.g., co-processor bus). In addition,

some pros and cons of employing the PCB block are presented, as

well.

3. An overview of the MMU

Fig. 3 shows how the MMU operates in two different modes,

known as the real and the virtual modes. In the real mode, the

32-bit Effective Address (EA), calculated by the processor, is rec-

ognized as the physical address which is used to directly access

the physical memory (no address translation is required). In the

virtual mode, the address translation mechanism is more complex

than the real mode.

Fig. 2. The COFFEE RISC core integration. The highlighted components as well as

input/output ports are involved in the MMU integration as a PCB block.

Fig. 3. The MMU behavior with respect to the real mode and the virtual mode.

Fig. 4 illustrates the virtual address translation procedure. The

EA obtained from the processor is segmented into two fields of Ef-

fective Page Number (EPN) and the offset . The value N is the bound-

ary to distinguish the EPN segment from the offset one. The value

of N is calculated based on 3 specific bits within the EPN segment

known as page size (further information in Section 4.1). The result-

ing page size is equal to 2 n where n is the number of bits dedi-

cated to the offset field and, consequently, N = 31 − n . For instance,

in order to address a 16 KB (2 14) page size, n = 14 shows that 14

bits are dedicated to the offset field while the remaining 18 bits

(N = 17) are assigned to the page number field.

The virtual Address is a concatenation of the EA (address calcu-

lated by the processor) and the Process ID (PID) driven by the PID

182 F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191

Fig. 4. Address translation procedure in the virtual mode.

register. The PID is a unique ID for each process which is used to

resolve the overlapped area between different processes in the vir-

tual space. Therefore, the PID field along with the EPN segment of

the virtual address contains information with regard to the virtual

address space. Nevertheless, the MMU employs PID and EPN fields,

as the Virtual Page Number (VPN), to extract the Real Page Number

(RPN). The concatenation of the RPN and the offset (which has not

been a part of the translation process) is the physical address by

which the processor references the memory. Moreover, the MMU

is capable of mapping eight different fixed page sizes, including 1,

4, 16, 64, 256 KB, 1, 4, and 16 MB, from the virtual space into the

physical space via a page table. The operating system maintains the

page table.

4. FPGA Implementation of the MMU

In this implementation, we experimented with the effect of us-

ing the UTLB with different configurations, i.e. 16-, 32- and 64-

entry, to cache a subset of instruction and data page translations.

In our case study, in fact, the 64-entry UTLB is mostly emphasized

since it presents more interesting results than the two other con-

figurations. The UTLB is completely maintained by the OS. Mod-

ifications to the UTLB such as initialization, entry validation and

entry replacement (in the case of a UTLB miss) are only handled

by OS. In addition, all of the entries are accessible by the MMU.

The MMU also consists of a 4-entry Instruction TLB (ITLB) along

with an 8-entry Data TLB (DTLB) to cache the most frequent in-

struction and data page translations, respectively. These micro-TLBs

are managed completely by the hardware meaning that the MMU

is responsible for initializing, replacing and validating the contents

of each micro-TLB. The basic idea of exploiting micro-TLBs is ex-

plained in [6] . Micro-TLBs are employed to minimize access con-

flicts with the UTLB along with speeding up the address translation

process. Fig. 5 shows how TLBs are organized by the operating sys-

tem and the processor. The following explains each TLB attribute in

brief:

• Unified TLB : The UTLB contains 64 entries. It is fully associative,

meaning that the instruction and data page translations can be

stored in any location. The instantiation and modification of the

UTLB are completely managed by the OS.
• Micro-TLBs : The ITLB/DTLB contains four/eight instruction/data

translation entries. They are fully associative. They store the

four/eight most frequently accessed instructions/data from the

UTLB. The micro-TLBS are used to minimize contention between

Fig. 5. System memory and processor organization.

Fig. 6. TLB entry organization.

instruction/data translation and UTLB update operations. The

instantiation and modification of the micro-TLBs are completely

managed by the hardware.

4.1. TLB entry organization

When the processor is running in the virtual mode, the MMU

exploits its TLBs for the address translation mechanism. Each TLB

entry contains the necessary information to identify a virtual page,

specify its physical page, and determine the protection as well as

the storage characteristics of the page. As Fig. 6 illustrates, each

TLB entry consists of 68 bits split into two sections. The first 36

bits (TLBHI) mostly contain useful information about the virtual

address attributes. Subsequently, the remaining 32 bits (TLBLO)

mostly contain information with respect to the physical address at-

tributes. The most important bit fields within TLBHI and TLBLO in

this implementation are categorized in the following:

• TLBHI:

– TAG (22 bits). The TAG field is compared with the EPN por-

tion of the EA based on the corresponding page size field.

– Page Size (3 bits). This field specifies the page size used to

define how many bit ranges of the TAG field should be com-

pared with EPN. The size value 0b0 0 0 up to 0b111 repre-

sents page sizes of 1KB up to 16 MB, consecutively.

– V . This bit determines whether the current entry is valid.

– TID (8 bits). This field is compared with the corresponding

PID field.

• TLBLO:

– RPN (22 bits). This field determines the corresponding phys-

ical address in the case of a TLB hit.

F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191 183

Fig. 7. How each TLB entry responds to a reference. In the case of the UTLB, the

thicker arrows (shown in red) illustrate the longest critical path propagated through

the design. Suitable locations for register insertion are presented, as well. (For in-

terpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

– ZPR (4 bits). This field selects one of the 16 different zone

fields of the Zone Protection Register (ZPR).

– G . This bit determines whether the current entry is guarded.

The term “guard” is referred to the situation where the

speculative memory access, such as instruction pre-fetch, is

not permitted.

4.2. TLB index examination

As Fig. 7 illustrates, when examining a page translation entry

in either of TLBs, all valid entries in the corresponding TLB are

checked simultaneously. A TLB hit will occur if all the following

criteria are met:

• The entry is valid.
• The TAG field is identical to EA[EPN] under the control of the

page size field.
• The TID field is identical to PID.
• Access to the page is granted and the page is not guarded.

If one of the above conditions is not met, a TLB miss occurs

which results in an exception. It is worth mentioning that a TID

value of 0x00 represents a process-independent translation from

the operating system point of view. Therefore, the MMU ignores

comparing TID field with the PID. In this case, only the TAG and

EA[EPN] are compared. Moreover, A PID value of 0x00 identifies a

process which cannot access any page. Obviously, the consequence

of such a PID is an entry miss.

When a hit occurs, the MMU investigates the access control bits

of the corresponding TLB entry, prior to accessing the physical ad-

dress. Similarly, the MMU inspects the storage attribute fields to

Fig. 8. How to break large loops into two smaller ones.

determine whether the access to the page is allowed. Eventually, if

all the criteria are met, a TLB hit will take place.

Fig. 7 shows how each TLB entry is verified during the address

translation process. It is guaranteed that a hit will occur when the

incoming EPN passes five consecuti ve examination stages. Subse-

quently, a TLB miss is occurred when at least one of the following

criteria is met:

- A matching TLB entry is not found.

- A matching TLB entry is found, but the contents are not valid.

- A matching TLB entry is found, but the access to the page is

denied.

- A matching TLB entry is found, but the page is guarded.

In the presence of a UTLB miss (irrespective of the miss type),

a failure is detected by the MMU and, consequently, an interrupt is

issued which reports the cause to the interrupt handler . Thereafter,

the interrupt handler mechanism is executed to resolve the corre-

sponding problem. In the meantime, the processor enters in the

real mode by clearing both IR and DR bits in the Machine State

Register (MSR). When the necessary updates have been loaded

into the UTLB, the processor will return to operate in the virtual

mode. Therefore, during the interrupt handling process, the MMU

is disabled until the UTLB is reloaded with proper entries. Any up-

date to an entry in the UTLB forces the MMU to invalidate all en-

tries in both micro-TLBs. Instruction and data consistency between

micro-TLBs and UTLB will be guaranteed in this way. Furthermore,

Fig. 7 presents the longest critical path propagated through the de-

sign with thicker arrows shown in red. After monitoring and ana-

lyzing the design, the longest critical path belongs to the UTLB due

to the relatively large amount of loop iterations to investigate all

the entries, e.g., 64 times in the case of a 64-entry UTLB. Indeed,

the hardware circuit is always bounded by the worst-case scenario.

In order to shorten the long critical path as much as possible, we

took advantage of two well-known optimization techniques: reg-

ister insertion and large loops mitigation . Fig. 7 also illustrates the

most suitable locations for register insertion. These points are dis-

covered after performing timing analysis intently.

Fig. 8 depicts how searching through the entire N-entry TLB

can be split into several smaller loops. In this figure, a large 64-

iteration loop is divided into two 32-iteration ones in order to

search an index in the UTLB. In the case of an entry hit in either

of loops, the respective index flag (Index_Hit_1 or Index_Hit_2)

is set meaning that a matched entry is found. Accordingly, signal

Row_Number will reference to the exact row where the matched

entry is found (Row_Number_1 or Row_Number_2). For example, if a

match is found at the 20 th entry (location is within the first loop),

the Index_Hit_1 flag will be set and consequently Row_Number_1

= 20 will be assigned to the Row_Number value. If the desired VPN

address is found at the 50th entry (second loop), the Index_Hit_2 is

set and consequently Row_Number_2 = 18 + 32 (= 50) is assigned

184 F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191

Fig. 9. MMU address translation flow.

to the Row_Number value. In concept, this method is quite similar

to the unfolding technique which is known as loop unrolling in gen-

eral programs. The effect of using such optimization techniques in

order to minimize the critical path will be discussed in Section 7 .

4.3. MMU address translation flow

Fig. 9 shows the address translation flow through TLBs. When

the virtual mode is activated for either instruction or data side,

the MMU translates a combination of PID and EA into the phys-

ical address. Thus, it first examines the appropriate micro-TLB to

find a matched VPN. If a valid entry is found, it is used to ac-

cess the physical memory. A micro-TLB hit will take place in two

cycles. If no entry is found, the MMU examines the UTLB for

the corresponding virtual address. Additional delays are presented

each time the UTLB is accessed due to a micro-TLB miss. If both

micro-TLBs experience simultaneous misses, the DTLB has priority

over the ITLB to access the UTLB. In such a situation, the UTLB

will first address the data side by searching all the entries for a

matched data page translation and then evaluates the instruction

EPN. Therefore, in this implementation, the DTLB miss penalty is 5

cycles while the miss penalty for ITLB varies between 5 to 7 cycles

(7 cycles in the case of a simultaneous miss with DTLB). Thereafter,

the physical address is fetched from the UTLB. In the meantime,

the appropriate micro-TLB entry is updated with the new entry

as well. As stated earlier, in the case of a UTLB miss an excep-

tion is reported to the operating system via the interrupt handler.

Table 1

Minimum and maximum cycle counts for each

virtual-to-physical address translation in an ideal case.

Data Instruction

Micro-TLB hit 2 2

Micro-TLB miss, UTLB hit 5 5–7

Micro-TLB miss, UTLB miss 11 11–13

Fig. 10. The developed MMU as a black box.

How each exception is typically addressed depends on the operat-

ing system status, it will take six clock cycles to be resolved in an

ideal case and hundreds (even thousands) cycles in normal cases.

Table 1 summarizes total cycle counts for each virtual-to-physical

address translation in an ideal case. The ideal case is referred to

the situation where an UTLB miss can be instantly updated in the

fastest possible time. However, such these cases might not ever

happen with today’s available operating systems. The average time

when the operating system can resolve these issues are currently

being investigated in our research group.

The Least Recently Used (LRU) replacement policy is considered

for both micro-TLBs. Each micro-TLB employs a specific counter

which counts each reference to the TLB. In the case of a TLB hit,

the LRU counter of the corresponding entry is reset while the re-

maining LRU counters are advanced by one. When a TLB miss oc-

curs, the entry with the highest LRU counter number is the best

candidate to be replaced by the new entry fetched from the UTLB.

The lifetime of each LRU counter within the TLB is equivalent to 2

× number of entries assigned to the same TLB minus one. For ex-

ample, DTLB (in this implementation) has eight entries; hence, the

maximum number achieved by the LRU counter is 2 × 8 − 1 = 15 .

The entries with the highest LRU counter have not been referenced

for a while. Thus, they are assumed to be good candidates for re-

placement. In order to keep micro-TLBs coherent with the UTLB,

the controller (see Fig. 3) will immediately invalidate the contents

of both micro-TLBs. Invalidation is simply performed by clearing

the valid bit (TLBHI[25] in Fig. 6) of all entries right after encoun-

tering the UTLB miss. The UTLB miss will disable MMU address

translation flow, as well. As soon as the operating system com-

pletes updating the UTLB, the MMU is unlocked and the virtual

address translation flow is resumed.

5. Integration issues and facts

Fig. 10 illustrates the previously described MMU as a black box

where the most important ports are described in the following:

• user_mode: Indicates whether the processor is operating in

super-user mode (‘0’) or user mode (‘1’).

F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191 185

• UTLB_wr_en: When this bit is set, one of the UTLB entries is

planned to be updated or replaced by the operating system.
• IR_en/DR_en: Instruction/Data Relocation. These bits enable the

virtual address translation mechanism.
• i_addr/d_addr : Instruction/Data Address. These inputs are the

respective virtual addresses.
• ZPR: Zone Protection Register is used to override the access

protection in a TLB.
• PID: Process ID is a unique ID for each process to resolve the

overlapped area shared between processes in the virtual ad-

dress space.
• UTLB_index: Is the link between the operating system and the

UTLB.
• TLBLO: Updates the low part of a specific UTLB entry (the phys-

ical address attributes).
• TLBHI_1/2: Update the high part of a specific UTLB entry (the

virtual address attributes).
• no_access/guarded: Arise appropriate exceptions when the ac-

cess to the page is not permitted by any means.

Typically, when the IR_en/DR_en bit is set, the MMU enters the

virtual mode meaning that the current 32-bit i_addr/d_addr is con-

sidered as a virtual address. Hence, the appropriate physical ad-

dress can be fetched from corresponding i_real_addr/d_real_addr

as soon as the MMU has completed the translation process. In

contrast, when the IR_en/DR_en bit is clear, the MMU enters the

real mode and bypasses i_addr/d_addr to the corresponding output

i_real_addr/d_real_addr. The operating system uses the UTLB_index

to make a reference to a particular entry in UTLB in order to

make any modification or replacement. The appropriate modifi-

cations are applied to the UTLB through the TLBLO, TLBHI_1 and

TLBHI_2 signals. The only assumption taken into account is that

updating a UTLB entry has to be performed as an atomic operation.

It means the operating system must not suspend the execution of

instructions led to address TLBLO, TLBHI_1 and TLBHI_2 registers.

Moreover, it should be mentioned that none of the I/O ports of the

MMU can be left unassigned.

There are two possible ways to integrate a peripheral device

(such as the MMU) to the COFFEE RISC core. One method is to inte-

grate the MMU via the co-processor interface. A very good example

can be found in [18] where the authors presented the integration

of a design-time configurable Floating Point Unit (FPU) called Milk

co-processor to the COFFEE core through the co-processor bus in-

terface. The co-processor bus is a third 32-bit bus (in addition to

the instruction and data buses) which is connected to the COFFEE

core with a separate address space. One constraint is that the pro-

vided address space is limited to address only 64 addresses in total

(4 co-processors with up to 16 registers). Although the provided

address space would be sufficient to support all the required reg-

isters by the MMU, the basic idea behind the design of the COFFEE

core is to connect all peripheral devices over the memory-mapped

shared data bus. On the other hand, integrating a peripheral device

over the co-processor bus takes advantage of having access to the

data one pipeline stage earlier than the memory-mapped shared

data bus. This is due to the fact that there is no access right re-

striction on the co-processor bus while complicated timing issues

for the same design may occur. Unintentional timing issue is the

main limitation why we prefer not to use the co-processor bus for

integrating the MMU to the core.

Another alternative is to integrate the peripheral device via the

PCB block interface. The main advantage of this interface over the

co-processor bus is that there is no timing issue on the shared bus.

Another advantage of the PCB block is that it is directly attached to

the (shared) data bus interface of the COFFEE core. It enables faster

access to the required data, particularly when the operating system

needs to update the MMU. However, this reveals as a shortcoming

Fig. 11. The wrapper mimics CCB registers of the COFFEE RISC core through the

register bank. The blue square in Register Bank block depicts the atomic operative

registers. The processor has to indicate its status through the signal user_mode . (For

interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

that any unintentional transaction on the data memory bus may

results in PCB misbehavior. Therefore, COFFEE core controls the

PCB block by employing pcb_rd and pcb_wr signals (see Fig. 2). All

accesses to the memory block reserved for the peripheral device to

read from/write to the memory are granted by pcb_rd and pcb_wr

signals, respectively. It is obvious that these two signals can not

be activated simultaneously. Similarly, d_cache_rd and d_cache_wr

signals assert data memory accesses directly.

There are only four signals driven by the core to the PCB block

which are data, d_addr, pcb_rd and pcb_wr . However, the MMU still

requires a few more signals connected to its I/O ports of which clk

and rst_n signals are directly derived from the global clock and re-

set signals. The remaining ports should be supplied by a wrapper

from/to the core. Fig. 11 illustrates how the wrapper connects the

MMU to the COFFEE core via the PCB slot. As the figure shows,

some of the input ports to the MMU are provided by an inter-

nal register bank. Furthermore, a controller block tightly controls

the behavior of both register bank and the MMU through a set of

controlling signals. The following subsections explain each block as

well as the wrapper interconnections.

5.1. Controller block

Typically, the controller unit mainly takes care of the data flow

through the design. The controller employs two different sets of

control signals (control signals Fig. 11)to manage the register bank

as well as the MMU. The following explains how the controller

takes advantage of some input signals to moderate the behavior

of the MMU.

5.1.1. pcb_rd

This input is driven by the core and indicates whether the ad-

dress translation mechanism is required. Hence, the controller con-

nects the pcb_rd signal directly to both IR_en and DR_en ports of

the MMU via the control signals set. It infers that whenever the

MMU is enabled, both instruction and data addresses are receiving

from the virtual space. Otherwise, both addresses are considered

as the physical addresses. When the signal pcb_rd is asserted, the

physical instruction and data addresses will be sent to the core af-

ter a certain number of clock cycles. The minimum and maximum

latencies to obtain the appropriate physical addresses are investi-

gated in [14] .

186 F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191

5.1.2. pcb_wr

The input port pcb_wr is another control signal which indicates

whether an update or replacement to one of the UTLB entries is

planned by the operating system. In contrast to the signal pcb_rd,

pcb_wr is not directly connected to the MMU port. When the sig-

nal pcb_wr is asserted, it does not necessarily mean that the op-

erating system is modifying the content of the MMU. For example,

any modification to the register bank can only be applied when the

pcb_wr signal is set while it has nothing to do with the MMU. The

controller unit only enables UTLB_wr_en signal when the following

conditions are met: first, the signal pcb_wr is set and, second, an

atomic operation is executing. When the content of the TLBLO reg-

ister in the register bank is changed, the controller is informed of

the execution of an atomic operation.

5.1.3. user_mode

Signal user_mode is a tricky signal driven by the core. The con-

troller takes advantage of this signal to inform the MMU whether

the processor has the potential to operate on super-user mode or

user mode. Typically, operating system is the only software run in

super-user mode and other applications are only allowed to run

in user mode [16] . Since the super-user mode allows the program

to access all registers as well as executing all instructions, infor-

mation with regard to processor status is one of the most crit-

ical inputs to the MMU. As it is shown in Fig. 11 , input signal

user_mode is not provided by the COFFEE core by default. There-

fore, it should be dug out of the core. The Processor Status Register

(PSR) is an 8-bit read-only register of which bit number 1 (PSR[0]

or PSR[UM]) provides the exact information that we are looking for

[19] . Thanks to the open-source nature of the COFFEE core, the sig-

nal user_mode can be extracted directly from the PSR[UM] . Hence-

forth, any change to the status of the processor will inform the

MMU to alter its behavior when needed.

5.1.4. i_addr, d_addr

These input signals are directly connected to the corresponding

input ports of the MMU (similar to the pcb_rd). When the proces-

sor is running in real mode (pcb_rd = ’0’), the MMU bypasses these

two signals to the respective outputs assuming that these signals

are physical addresses.

5.2. Address decoder

As previously stated, the COFFEE RISC core exploits different

set of register banks of which CCB is the one that provides soft-

ware compatibilities. The initial value for the CCB base address

(ccb_base) is “0 0 01 0 0 0 0h” after the reset. The next 256 consec-

utive addresses are reserved for CCB register bank (address range

“0 0 01 0 0 0 0h” to “0 0 01 0 0FFh”). Thereafter, the next 256 subse-

quent addresses (address range “0 0 01 010 0h” to “0 0 01 01FFh”)

refer to the PCB block. In this implementation, we assume that

the operating system employs the address range “0 0 01 0100h” to

“0 0 01 0105h” to reference to ZPR, PID, TLBSX, TLBLO, TLBHI_1 and

TLBHI_2, respectively. When the signal pcb_wr is asserted, the ad-

dress decoder block examines the eight least significant bits to ex-

tract which block inside the register bank should be updated by

the content of the data_in bus (see Fig. 12). For example, when the

pcb_wr signal is set, the value “02h” on d_addr bus indicates that

the TLBSX register is the target which should be updated by the

content of the data_in bus. Therefore, the controller issues the ap-

propriate commands.

5.3. Register bank

The register bank block mimics CCB registers of the COFFEE

core for the MMU inside the wrapper. CCB registers are employed

Fig. 12. PCB integration with COFFEE RISC core. The PCB employs 2 bits of the

Ext_interrupt signal to interrupt the core.

by the operating system to communicate with the hardware. As

soon as the operating system updates CCB registers, the processor

will apply new changes to the PCB register bank by overwriting

the appropriate register. It is worth mentioning that the last three

registers shown in the blue square in Fig. 11 (TLBLO, TLBHI_1 and

TLBHI_2) have to be updated in an atomic operation. It means the

core can not suspend the execution of the instructions which are

meant to make any modification to the UTLB.

6. Integrating the MMU to the core via the PCB interface

Fig. 12 depicts how the PCB block (consisting of the MMU sur-

rounded by a wrapper) is integrated into the COFFEE RISC core. It

is obvious that the unidirectional instruction bus (i_addr) as well

as the bidirectional data bus (d_addr) are connected to the corre-

sponding caches via the PCB block. It means that there is no phys-

ical interconnection between the core and caches. That is why the

MMU forwards the instruction/data address to the corresponding

cache when the processor is operating in real mode. In the vir-

tual mode, the processor produces virtual addresses which are first

translated into the physical ones by the MMU and then forwarded

to the appropriate cache. In the case of a successful address trans-

lation, the relative cache provides the core with the instruction

word or the data via the direct physical interconnection between

core and the caches. The MMU has the capability to interrupt the

core when there is any violation during the translation mecha-

nism, e.g. the page is not accessible or the page is guarded, via

the not_valid and guarded signals. Therefore, the processor informs

the operating system to resolve the problem through the exception

handling mechanism. The MMU communicates to the processor

with respect to the page violations via the available ext_interrupt

interface of the core. Furthermore, the MMU informs the processor

with respect to the instruction/data address translation misses by

asserting i_addr_miss and d_addr_miss signals, respectively. These

signals are connected to the COFFEE through the i_cache_miss and

d_cache_miss interfaces of the core. Since these interfaces are re-

served for instruction and data cache misses, we used an OR gate

to resolve the conflicts. On the processor side, when either of the

cache miss interfaces are triggered, the processor can not distin-

guish whether the current miss is asserted by the cache or the

F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191 187

Table 2

Critical path analysis. Level_1 indicates the register insertion strategy

and Level_2 represents loop splitting technique.

No optimization Level_1 Level_2

Worst critical path (ns) 6 .164 5 .154 4 .935

Clock skew (ns) −0.054 −0.130 −0.020

Maximum freq. (MHz) 163 .59 193 .09 200 .80

Speed-up — 18 .03% 22 .75%

Fig. 13. The hit rate with different number of entries in the UTLB for 200 random

references after the boot-up. The curves are the smoothed version of original ones

for intervals of 10 references.

MMU. In such a situation, we assumed that the processor monitors

the corresponding ext_interrupt interfaces connected to the MMU.

If both guarded and not_valid signals have been set, the current

cache miss is related to the MMU. Otherwise, the cache miss is

asserted by the relative cache itself.

7. Synthesis results with respect to the MMU implementation

The described MMU was written in Very-high-speed integrated

circuit Hardware Description Language (VHDL), simulated using

ModelSim software, compiled and synthesized by Quartus-II 13.1.1

environment and finally implemented on a 28 nm Altera FPGA de-

vice targeting Stratix-V GS mainstream speed grade 2. Table 2 sum-

marizes the effect of a long critical path before and after the op-

timization techniques discussed in Section 4.2 when the UTLB is

configured for 64 entries. The longest critical path (6.164 ns) is

recorded when no optimization technique is performed. The opti-

mization Level_1 presents new results when the register insertion

strategy is considered. Although inserting registers in the middle of

entry verification process has the potential to introduce additional

delay, the critical path was reduced more than 1 ns (5.154 ns). In

optimization Level_2, breaking a large loop into smaller ones tech-

nique is used in addition to register insertion strategy. However,

splitting a large loop into two smaller ones (in this case study, 64

iteration to 2 × 32 ones) has a negligible impact on shortening

the critical path in comparison with register insertion technique.

Fig. 13 illustrates the UTLB hit rate for the first 200 random ac-

cesses (including repetitive numbers) after the boot-up when the

UTLB is configured with 64, 32 and 16 entries, respectively. Ran-

dom accesses are considered to represent the worst-case scenario

for the implemented MMU. However, we should expect better re-

sult for references to the TLB in real applications. In order to do so,

Fig. 14. The DTLB/ITLB hit rate for 200 random data/instruction references after the

boot-up. The curves are the smoothed version of original ones for intervals of 10

references.

we took into consideration that the MMU only deals with 1KB page

size where all the pages are accessible by any means. The random

number generator is quite similar to the specification given in [20] .

It is obvious that the first references to the UTLB, regardless to the

number of entries, should result in misses since the UTLB is empty

(compulsory misses). All curves are smoothed at each 10 references

to the corresponding TLB to present a more visible shot in the fig-

ure. The curves show that the 64-entry UTLB has the best hit rate

(up to 99%) while 32-entry UTLB has the hit rate of maximum 57%.

The hit rate is degraded due to the variety of capacity misses oc-

curring in 32-entry UTLB. Capacity misses are drastically affected

by the design, when the UTLB is configured for 16 entries. A 16-

entry UTLB does not respond to more than 9% of the references.

The 16-entry UTLB seems to be useless in this case. Since our tar-

get is to maximize the MMU hit rate, the 64-entry UTLB is the

first choice of the interest. Furthermore, the 64-entry UTLB shows

a very stable behavior after (approximately) 130 th reference on-

wards. It implies that we will have the same hit rate for the test

vectors more than 200 references. Therefore, 200 random numbers

are only considered to demonstrate the behavior of the overall sys-

tem.

Fig. 14 shows how DTLB and ITLB response to the first 200 cor-

responding references after the boot-up. Although micro-TLB hit

rates are not ideal, it is worth mentioning to recall that the in-

vestigation is based on random instruction/data references to the

micro-TLBs to make the worst-case happen. The smoothed curves

(accumulating hits for intervals of 10 random references) illustrate

both compulsory and capacity misses occurring in ITLB as well

as DTLB. Nevertheless, it seems that the MMU takes advantage of

micro-TLBs to some extent.

In this implementation, we also exploit using UTLB with differ-

ent number of entries including 16, 32 and 64 entries. Analysis re-

sults are reported in Table 3 in terms of logic utilization, total reg-

isters and maximum operating frequency for the described MMU

composed of two micro-TLBs operating in parallel with a 16-/32-

/64-entry UTLB. The maximum operating frequencies of approxi-

mately 200, 225 and 265 MHz are achieved with different UTLB

configurations. As the rule of thumb of all caches, the larger the

UTLB, the slower operating frequency. Furthermore, 64-entry UTLB

employs more resources and registers for its implementation. In

188 F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191

Table 3

Summary of the implementation analysis.

Memory management unit

UTLB_64 UTLB_32 UTLB_16

Logic utilization (ALMs) 3459 2092 1373

Total registers 5263 3221 2213

Maximum freq. (MHz) 200 .80 228 .57 267 .38

Table 4

Energy consumption analysis for the first 200 references

(μJ).

Thermal energy Memory management unit

UTLB_64 UTLB_32 UTLB_16

Static 14291 .10 14278 .20 14275 .95

Dynamic 326 .25 167 .85 145 .65

I/O 431 .55 427 .20 454 .80

Total 15048 .90 14873 .25 14876 .25

our case study, the 64-entry UTLB shows satisfactory results while

the 16-entry UTLB is a kind of wasting resources. There is a trade-

off between using UTLB with either 32 or 64 entries. If, for exam-

ple, there is no restriction on resources usage, 64-entry is the best

candidate to be implemented for UTLB for the sake of higher hit

rate.

Energy consumption analysis is reported based on the results

achieved by PowerPlay Power Analyzer tool in Quartus-II software.

The analyzer directly reads the Switching Activity Interchange For-

mat (SAIF) generated by ModelSim for the MMU design running at

50 MHz. Static probability and toggle rate for each signal are cal-

culated based on generated VCD file for the first 200 random ad-

dress translations after the boot-up which can be considered as the

worst-case scenario. Random numbers force most of the transistors

to toggle per clock cycle. Table 4 summarizes the estimation results

based on different UTLB configurations. Based on the energy con-

sumption analysis report, dynamic energy is drastically increased

while the MMU is configured with 64-entry UTLB due to trigger-

ing more transistors. The trade-off between configuring UTLB with

32 entries or 64 entries is still established here. It seems that a

32-entry UTLB might be a good candidate in low-power designs

where the hit rate can be sacrificed. The 16-entry UTLB is not rec-

ommended from the energy consumption point of view either.

Dynamic energy consumption for each cell regarding the MMU

block and its sub-blocks are reported in Table 5 . Statistics show

that the MMU itself consumes most of the energy (273, 229.5 and

244.8 μJ with respect to 64-, 32- and 16-entry UTLB) to manage

the address translation flow for the first 200 references. Followed

by, UTLB, DTLB and ITLB feature the highest energy consumptions,

respectively. However, DTLB, ITLB and controller blocks consume

approximately the same energy regardless of the UTLB configura-

tion. Moreover, the MMU can take advantage of exploiting micro-

TLBs to speed up the translation mechanism by consuming a trivial

amount of energy. Choosing a proper configuration for UTLB has

an impressive impact on dynamic as well as routing energy con-

sumption. The 64-entry UTLB consumes a large amount of energy

in comparison with other configurations.

Table 6 shows the synthesis results after integrating the men-

tioned MMU to the COFFEE RISC processor. As the table reveals, the

total design requires 8403 ALMs of which about 4635 (55%) is used

to implement the core, 3594 (43%) is employed by the MMU and

the remaining 174 (2%) is considered for intermediate components

such as memory blocks, three-state drivers, etc. Furthermore, the

total design requires 10,884 registers of which 50.5% is the pro-

cessor’s share and 49.5% is used by the MMU. Similarly, COFFEE

RISC processor roughly requires 6425 (57%) combinational Adop-

tive Look-Up Tables (ALUTs), while the MMU needs 4535 (40%)

of the total dedicated resources. It seems that implementing the

MMU (which is configured with 64-entry UTLB) is as hardware ex-

pensive as implementing our target processor.

Table 7 presents the maximum achievable operating frequen-

cies and their respective critical path analyses for the COFFEE core,

MMU and their integration. Maximum frequencies are measured

based on the speed-optimized version of all three designs at two

different tem perature in fast and slow timing models. However,

the most practical (worst possible case) operating frequency can be

considered as the slow model at 85 °C . Although the MMU is ca-

pable of operating around 200 MHz, the speed-optimized version

of the COFFEE processor could not achieve more than 180 MHz in

this case study. Therefore, the maximum affordable frequency of

the total design (COFFEE+MMU) is being restricted by the lowest

operating frequency which is around 178 MHz. The critical path

analysis reports the interconnection delays are the major sources

of lengthening the critical path in all implementations. In addi-

tion, the worst critical path is generated in the core itself, when

the COFFEE is integrated into the MMU. A negative clock skew

in all design reveals that the circuits have the potential to oper-

ate at lower frequencies, as well. The COFFEE processor has 0.366

positive slack value, meaning that the post-fit netlist can poten-

tially override the constraints we introduced to the analyzer, while

the MMU as well as the COFFEE+MMU architectures could roughly

meet the timing requirements. Overall, we could set up the most

speed-optimized version of the processor with the MMU with a

negligible degradation in performance. The integration of an MMU

configured with 64-entry TLB is potentially as hardware expensive

as our processor.

In order to compare the achieved results with an Application

Specific Integrated Circuit (ASIC) version of the design, Kuon et al.

have provided an investigation on the overall performance gap of

a particular design between a 90 nm FPGA and a 90 nm ASIC in

[21] . Accordingly, a 90 nm ASIC implementation is 35 × smaller and

3.4 × −4.6 × faster compare to the same design on a 90 nm FPGA.

In addition, the 90nm ASIC implementation consumes 14 × less dy-

namic power as well as 87 × less static power. According to Nouri

et al. in [22] , if we take 60% speed up into consideration, the same

gap ratios are expected for a design on a 28 nm ASIC and a 28 nm

FPGA.

8. Conclusions

In this paper, an FPGA implementation and integration of a run-

time configurable Memory Management Unit (MMU) to the COF-

FEE RISC processor which had been developed by our research

group at Tampere University of Technology was described. The

MMU employed two levels of Translation Look-aside Buffers (TLBs)

of which a 4-entry micro-TLB operated alongside an 8-entry micro-

TLB (both hardware-managed) on the first level to keep track of

the most recently used instruction and data address translations,

respectively. On the second level, a software-managed Unified TLB

(UTLB) stored both instruction and data address translations. The

MMU was capable to support eight different page sizes from 1 KB

to 16 MB in the virtual mode at the design time. Micro-TLBs were

observed to speed up address translation with a low energy over-

head. Three UTLB configurations of 16, 32, and 64 entries were

studied with respect to the overall hit rate, operating speed, en-

ergy usage and resource utilization. The critical path of the logic

design was optimized by introducing explicit concurrency as well

as retiming through register-to-register logic balancing. Maximum

operating frequencies of 265, 225 and 200 MHz were achieved for

the 16-, 32-, and 64-entry UTLB configurations, respectively. Us-

ing worst-case, i.e., random stimuli, the 64-entry UTLB provides

the best worst-case hit rate of up to 99%. The 32-entry UTLB cut

F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191 189

Table 5

Energy consumption of each component for the first 200 references (μJ).

Dynamic energy Static energy Routing energy Design total energy

UTLB Entries 64 32 16 64 32 16 64 32 16 64 32 16

MMU 78 .45 73 .95 100 .65 73 .65 73 .65 73 .65 120 .90 81 .90 70 .50 273 .00 229 .50 244 .80

ITLB 7 .80 7 .95 7 .50 0 0 0 4 .65 4 .20 4 .65 12 .45 12 .15 12 .15

DTLB 13 .95 14 .55 15 .40 0 0 0 8 .10 8 .85 9 .15 22 .05 23 .40 24 .55

UTLB 81 .15 29 .10 18 .45 0 0 0 75 .30 11 .10 11 .85 156 .45 40 .20 30 .30

Controller 0 .60 0 .75 0 .75 0 0 0 9 .00 4 .95 3 .45 9 .60 5 .70 4 .20

Total energy 181 .95 126 .30 142 .75 73 .65 73 .65 73 .65 217 .95 111 .00 99 .60 473 .55 310 .95 316 .00

Table 6

Summary of the hardware implementation of the COFFEE processor integrated with

the MMU.

Logic Total Combinational

utilization registers ALUTs

(ALMs)

COFFEE 4635 (55.16%) 5493 (50.47%) 6425 (57.25%)

MMU 3594 (42.77%) 5382 (49.45%) 4535 (40.41%)

Other blocks 174 (2 .07%) 9 (0 .08%) 263 (2 .34%)

Total design 8403 10 ,884 11 ,223

Table 7

Maximum operating frequencies as well as the worst critical path analyses of the COFFEE,

MMU and their respective integration.

COFFEE MMU COFFEE+

MMU

Maximum Frequency (MHz) Slow 85 °C 180 200 178

Model 0 °C 188 214 182

Fast 85 °C 267 295 253

Model 0 °C 289 318 271

Worst Critical Path Analysis (ns) Data delay 5 .604 4 .935 5 .716

Interconn. delay 4 .077 3 .623 4 .313

Cell delay 1 .527 1 .312 1 .403

Clock skew −0.035 −0.020 −0.007

Time slack 0 .366 0 .020 0 .072

down resource utilizations and energy usage of the MMU design.

However, with worst case hit rate of up to only 57%, system-wide

energy utilization and performance would be sacrificed by frequent

misses. While a 16-entry UTLB could operate at a somewhat higher

speed, its worst case hit rate of up to 9% translates into system-

wide drawbacks on performance and energy usage. We met our

target frequency of 200 MHz on Altera Stratix V speed grade 2

family device for all studied configurations, making the 64-entry

UTLB our preferred choice, while a 32-entry configuration remains

a viable option for resource constrained systems. Furthermore, the

MMU (configured with 64-entry UTLB) was integrated into the Pe-

ripheral Control Block (PCB) interface of our processor. Since a link

to the operating system had not been provided by the processor,

we had to explicitly modify the hardware description of the core to

extract required information such as current status of the proces-

sor. In addition, the MMU was surrounded by a wrapper to com-

pensate other operating-system-wise interfaces including process

ID, zone protection, etc. This integration had approximately the

same hardware cost as the processor had alone by introducing ad-

ditional 42.77% ALMs alongside 49.45% registers to the overall de-

sign, while preserving the same operating frequency for the most

speed-optimized version of the core. This integration enabled the

core to access the external memory as well as exploiting the vir-

tual address space for the operating system. Moreover, this paper

presented comprehensive information relative to the PCB integra-

tion. This would be a fine resource for future researches on inte-

grating any peripheral device to the target core as well as the other

standard RISC processors.

Future work

Currently, our software engineers are working to port the Linux

operating system on the COFFEE RISC processor integrated with

the MMU. This will provide us to experience the behavior of the

COFFEE+MMU in order to generate new real-time results. More-

over, we will further modify and expand the MMU for sharing over

a Network-on-Chip (NoC) in order to better serve multi-core sys-

tems. In this work we will also adapt the design to take advantage

of the extreme bandwidth obtainable through a memory on top of

logic organization of 3D Stacked Integrated Circuits (3DSIC). This

configuration is often referred to as 2.5D and is the most likely

candidate for successful mass production in the near future, while

the prototype chips have been available for some time now.

Acknowledgments

The research leading to these results has received funding from

the ARTEMIS JU under grant agreement number 295371. Portions

of the work were also funded by the Academy of Finland under

contract # 258506 (DEFT: Design of a Highly-parallel Heteroge-

neous MP-SoC Architecture for Future Wireless Technologies). The

first author gratefully acknowledges the grant support awarded by

Finnish Cultural Foundation as well as the Jane and Aatos Erkko

Foundation, under the project Biological Neuronal Communications

and Computing with ICT.

190 F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191

References

[1] N.J. K. Hwang , Advanced Computer Architecture, 2nd Edition, Teta McGraw

Hill, 20 0 0 .

[2] J. Handy , The Cache Memory Book, 2nd Edition, Academic Press Inc., 1998 .
[3] D. Patterson , J. Hennessy , Computer Organization and Design, 4th Edition, Mor-

gan Kaufmann Publishers, 2009 .
[4] B. Cohen , R. McGarity , The design and implementation of the MC68851 paged

memory management unit, Micro. IEEE 6 (2) (1986) 13–28 .
[5] G. Stefan , F. Āghici , Memory management unit-a new principle for LRU imple-

mentation, in: Proceedings on 6th Mediterranean Electrotechnical Conference,

IEEE, 1991, pp. 989–992 .
[6] J. Ball , Designing Soft-Core Processors for FPGAs, in: J. Nurmi (Ed.), Processor

Design: System-On-Chip Computing for ASICs and FPGAs, 1 st edition, Springer
Publishing Company, 2007, pp. 229–256 .

[7] T.U. of Technology, COFFEE RISC core - a COre For FrEE, Accessed on
02.Mar.2016, (http://coffee.tut.fi).

[8] J. Kylliäinen , T. Ahonen , J. Nurmi , General-Purpose Embedded Processor Cores
– The COFFEE RISC Example, in: J. Nurmi (Ed.), Processor Design: Sys-

tem-On-Chip Computing for ASICs and FPGAs, 1st ed. edition, Springer Pub-

lishing Company, 2007, pp. 83–100 .
[9] W. Yongqing , Z. Minxuan , Fully memory based address translation in user-level

network interface, in: IEEE 3rd International Conference on Communication
Software and Networks (ICCSN), 2011, pp. 351–355 .

[10] D. Schmidt , N. Wehn , Dram power management and energy consumption: a
critical assessment, in: Proceedings of the 22nd Annual Symposium on Inte-

grated Circuits and System Design: Chip on the Dunes, ACM, 2009, p. 32 .

[11] N. Ho-Cheung , C. Yuk-Ming , S.H. Kwok-Hay , Direct virtual memory access from

FPGA for high-productivity heterogeneous computing, in: International Confer-

ence on Field-Programmable Technology (FPT), IEEE, 2013, pp. 458–461 .
[12] A. Brandon , I. Sourdis , G. Gaydadjiev , General purpose computing with re-

configurable acceleration, in: International Conference on Field Programmable
Logic and Applications (FPL), IEEE, 2010, pp. 588–591 .

[13] R. Ammendola , A. Biagioni , O. Frezza , F. Cicero , A. Lonardo , P. Paolucci , D. Ros-
setti , F. Simula , L. Tosoratto , P. Vicini , Virtual-to-physical address translation for

an FPGA-based interconnect with host and GPU remote DMA capabilities, in:
International Conference on Field-Programmable Technology (FPT), IEEE, 2013,

pp. 58–65 .
[14] F. Shamani , V.F. Sevom , T. Ahonen , J. Nurmi , Design, implementation and analy-

sis of a run-time configurable memory management unit on FPGA, in: Interna-
tional Symposium on System-on-Chip (SoC) & Nordic Chip (NORCHIP): Nordic

Circuits and Systems Conference (NORCAS), 2015, pp. 1–8 .

[15] Altera, Stratix V Device Handbook Volume 1: Device Interfaces and Inte-
gration, 2015, (https://www.altera.com/en _ US/pdfs/literature/hb/stratix-v/stx5 _

core.pdf). Accessed on 07.06.2016.
[16] PowerPC Processor Reference Guide Embedded Development Kit, Xilinx, 2003,

p. 570 .
[17] J. Kylliäinen , J. Nurmi , M. Kuulusa , COFFEE - a core for free, in: Proceedings on

International Symposium on System-on-Chip, 2003, pp. 17–22 .

[18] C. Brunelli , F. Campi , J. Kylliäinen , J. Nurmi , A reconfigurable FPU as IP compo-
nent for SoCs, in: Proceedings on International Symposium on System-on-Chip,

2004, pp. 103–106 .
[19] COFFEE Core User Manual, 2007, (http://coffee.tut.fi/docs/COFFEE _ Core _ USER _

MANUAL.pdf). Accessed on 02.03.2016.
[20] W. Wijesinghe , M. Jayananda , D. Sonnadara , Hardware implementation of ran-

dom number generators, in: Proceedings of the Technical Sessions, vol. 22,

2006, pp. 28–38 .
[21] I. Kuon , J. Rose , Measuring the gap between FPGAs and ASICs, IEEE Transac.

Comput.-Aided Des. Integr. Circuits Syst. 26 (2) (2007) 203–215 .
[22] S. Nouri , W. Hussain , J. Nurmi , Design and evaluation of correlation accelera-

tor in IEEE-802.11a/g receiver using a template-based coarse-grained reconfig-
urable array, in: Nordic Circuits and Systems Conference (NORCAS): NORCHIP

International Symposium on System-on-Chip (SoC), 2015, pp. 1–6 .

F. Shamani et al. / Microprocessors and Microsystems 49 (2017) 179–191 191

Farid Shamani was born in Tehran, Iran, in 1983. He received his Bachelors degree in Computer-Hardware Engineering from Islamic Azad

University-Central Tehran Branch (IAUCTB), Iran, in 2007. Shamani received his Masters degree with distinction from the Department of Digital
and Computer Electronics from Tampere University of Technology (TUT), Finland, 2013. In 2013, he joined Professor Jari Nurmi’s research group

with the Department of Electronics and Communications Engineering at TUT. He is currently a Ph.D student with the Department of Electronics

and Communication Engineering at Tampere University of Technology under the supervision of Prof. Jari Nurmi. His research interests primarily
include Processor Design, Computer Architecture, Multicore/Manycore System-on-Chips and Digital Electronics Design, FPGA and DSP Implementa-

tions.

Vida Fakour Sevom was born in Mashhad, Iran, 1989. She received her B.Sc. in Biomedical Engineering majoring Bioelectric at Islamic Azad Uni-

versity of Mashhad, 2011. She received her M.Sc. degree in bioengineering from Tampere University of Technology (TUT), Tampere, Finland, in 2015.
She joined Professor Nurmi’s research group as a Research Scientist in 2014. Currently, she is working as a trainee in Nokia Technologies. At the

same time, she is pursuing her Ph.D degree with the Department of Signal Processing, TUT. Her main research interests include computer vision,
image and video processing, hardware software co-design and digital electronics design.

Tapani Ahonen is a Senior Research Fellow (Vanhempi tutkija) at Tampere University of Technology (TUT) in Tampere, Finland, where he has

held various positions since 20 0 0. Since 20 04 he has been co-managing a group of about 30 researchers. He is a part-time Lecturer (Nebenberu-
flicher Lektor) at Carinthia Tech Institute (CTI) - University of Applied Sciences in Villach, Austria since 2007. In 2009-2010 Ahonen was a Visiting

Researcher (Chercheur InvitÃ³e) at UniversitÃ³e Libre de Bruxelles (ULB) in Bruxelles, Belgium. His work is focused on proof-of-concept driven
computer systems design with emphasis on manycore processing environments. Ahonen has an MSc in Electrical Engineering and a Ph.D in Infor-

mation Technology from TUT. Positions of trust recently held by Dr. Ahonen include technical board member of the EU co-funded project Cutting
edge Reconfigurable ICs for Stream Processing (CRISP), Finance Chair of the 2009 IEEE Workshop on Signal Processing Systems (SiPS), editorial board

member and Guest Editor of the International Journal of Embedded and Real-Time Communication Systems (IJERTCS), and Program Co-Chair of the

2010 Conference on Design and Architectures for Signal and Image Processing (DASIP), He performs reviews for various international journals and
participates in program committees of many high-quality conferences on a regular basis. Ahonen has an extensive international publication record

including edited books and journals, written book chapters and journal articles, invited talks in high-quality conferences, as well as full-length
papers and paper abstracts in conference proceedings.

D.Sc.(Tech) Jari Nurmi works as a Professor at Tampere University of Technology, Finland since 1999, in the Faculty of Computing and Electrical
Engineering. He is working on embedded computing systems, wireless localization, positioning receiver prototyping, and software-defined radio.

He held various research, education and management positions at TUT since 1987 (e.g. Acting Associate Professor 1991–1994) and was the Vice

President of the SME VLSI Solution Oy 1995–1998. Since 2013 he is also a partner and co-founder of Ekin Labs Oy, a research spin-off company
commercializing technology for human presence detection, now headquartered in Silicon Valley as Radiomaze, Inc. He has supervised 19 Ph.D. and

over 130 M.Sc. theses at TUT, and been the opponent or reviewer of over 30 Ph.D. theses for other universities worldwide. He is a senior member
of IEEE, member of the technical committee on VLSI Systems and Applications at IEEE CAS, and board member of Tampere Convention Bureau. In

2004, he was one of the recipients of Nokia Educational Award, and the recipient of Tampere Congress Award 2005. He was awarded one of the
Academy of Finland Research Fellow grants for 20 07–20 08. In 2011 he received IIDA Innovation Award, and in 2013 the Scientific Congress Award

and HiPEAC Technology Transfer Award. He is a steering committee member of four international conferences (chairman in two), and participates
actively in organizing conferences, tutorials, workshops, and special sessions, and in editing special issues in international journals. He has edited

5 Springer books, and has published over 300 international conference and journal articles and book chapters.

Publication VI

© 2016.

Reprinted with permission from IEEE Nordic Circuits and Systems Conference (NOR-
CAS): NORCHIP & International Symposium on System-on-Chip (SoC), Copenhagen,
Denmark, pp. 1–6, Nov. 2016, F. Shamani, V. F. Sevom, T. Ahonen, and J. Nurmi,
"FPGA Implementation and Integration of a Reconfigurable CAN-Based co-Processor to
the COFFEE RISC Processor".

147

FPGA IMPLEMENTATION AND INTEGRATION OF A RECONFIGURABLE CAN-BASED
CO-PROCESSOR TO THE COFFEE RISC PROCESSOR

Farid Shamani, Vida Fakour Sevom, Tapani Ahonen, Jari Nurmi

Department of Electronics and Communications Engineering,
Tampere University of Technology

P.O.Box 553, FIN-33101, Tampere, Finland
firstname.lastname@tut.fi

ABSTRACT
This paper presents the design, implementation and in-
tegration of a reconfigurable Intellectual Property (IP)-
based co-processor for the COFFEE RISC processor on
a Field Programmable Gate Array (FPGA) device. The
co-processor is capable of communicating with periph-
eral devices through the Controller Area Network (CAN)
protocol. Although the main target of the co-processor is
standard CAN frames, it is able to reconfigure itself in
run-time to receive and decode the extended CAN frames.
One of the main advantages of the co-processor is full
compatibility with the COFFEE processor’s requirements.
Furthermore, the data transmission between the core and
co-processor introduces no workload on the main data bus.
In this implementation, the co-processor could achieve the
maximum operating frequencies of 493MHz up to 825MHz
in slow and fast timing models, respectively. As a result, the
implemented co-processor gains (at least) 2.8x speed-up in
comparison with the COFFEE processor by consuming a
trivial dynamic energy. The ultimate achievement of this
work is the new horizon expanded to the COFFEE proces-
sor to communicate with CAN-based peripheral devices
which makes the core more versatile even for industrial
purposes.

Keywords: FPGA Implementation, RISC Processor,
Reconfigurable Co-processor, Controller Area Network.

I. INTRODUCTION AND MOTIVATION

Field Programmable Gate Arrays (FPGAs) enable dig-
ital system designers to implement embedded processors
which are capable of executing specific functions [1].
The COFFEE RISC processor is one of such processors
developed in our research group at Tampere University
of Technology [2]. The COFFEE is a versatile embedded
processor suitable for a variety of use cases including
telecommunication, embedded computing, etc. Our new
intention is to verify the versatility of the core for industrial
purposes. In that sense, the first application is to control a
heavy industrial machinery in such a place that the human’s

life is being jeopardized. In this situation, the technician
controls the truck through an industrial joystick while the
COFFEE processor will maintain the issued commands. For
example, when the technician moves the joystick upward,
the COFFEE processor should receive the bitstream, ana-
lyzes the data and sends the appropriate command to move
the truck forward. Therefore, establishing a real-time and
robust communication channel between the COFFEE core
and the machine is an essential task. However, one of the
main shortcomings of the core is the lack of a reliable
protocol to communicate with such peripheral devices
similar to the mentioned joystick. This task is maintained
by a reconfigurable co-processor integrated to the COFFEE
core via a dedicated co-processor bus. The co-processor is
accounted to ensure data transmissions between the core
and peripheral device over the Controller Area Network
(CAN) protocol.

CAN is a serial communication in-vehicle protocol
which was originally developed by Bosch company in
1985 [3]. The CAN protocol has attracted many researchers
due to the innovation made in electronics communications.
Previous electronic devices were connected to each other by
point-to-point wiring system which significantly increases
the total cost of the system. For example, a high-end luxury
car has the potential to consume approximately 5 km of
wiring with nearly 100kg of weight [4]. The CAN com-
munication system replaced this wiring system by a simple
twisted-pair physical medium [5]. Communicating over the
CAN protocol also offers a real-time control system while
preserving the security at a high-level [6]. This attribute
fulfills the primary requirement of the COFFEE core.

Traditional methods to integrate a CAN-based product
to the system were either as a standard CAN chip, a
microprocessor with a built-in CAN interface or a custom
Application-Specific Integrated Circuit (ASIC) with a CAN
interface. Nowadays, with the advent of FPGAs, different
types of Intellectual Property (IP)-based CAN interfaces
can be integrated to the system on a single chip [7].

Although there are even open-source CAN controllers,

we developed our CAN module as a co-processor for plenty
of reasons of which full compatibility is the most appeal-
ing one. In addition, the target processor communicates
with peripheral CAN-based device without introducing any
additional workload on the main data bus, since the co-
processor is integrated to the core via a dedicated co-
processor bus. The main idea behind integrating over the
co-processor bus is to keep the data bus as idle as possible.

In this paper, we have mainly concentrated on hardware
considerations as well as the integration issues of the
proposed co-processor with our target processor named
COFFEE. Since COFFEE is a standard embedded RISC
processor, this work shall also be adoptable in other similar
platforms. The rest of this paper is organized as follows. In
Section II some features of the CAN protocol are explained.
Section III briefly describes the COFFEE RISC core. The
major characteristics of the proposed co-processor as well
as some fundamental knowledge about the CAN protocol
are discussed in detail in Section IV. Section V explains
hardware considerations alongside the FPGA implementa-
tion of the co-processor. Section VI presents the synthesis
results, followed by conclusions in Section VII.

II. CAN PROTOCOL FEATURES
The CAN protocol has different application ranges from

high speed networks to low cost wiring systems [8].
Although CAN protocol was first developed for vehicles,
nowadays it is applied in other applications such as fuel
systems, aircraft engines, medical equipment and cameras.
CAN is a message-based protocol in which each message
has its own prioritized address [9]. Modern CAN buses
are flexible in a way that a new node can be added to the
network without introducing additional cost to the system
[6]. Having employed the CAN protocol offers variety of
advantages to the system including: low-cost and light-
weight physical medium, fast transmission time for the
node, message priority, error detection and correction, etc
[10]. In these systems, the bus value is either recessive or
dominant where the dominant bit overrides the recessive
bit. In our case study, the recessive bit denotes the logic
value ’1’ and the dominant bit refers to the logic value ’0’.
More information with regard to the CAN-based systems
can be found in [11].

III. COFFEE RISC CORE IN BRIEF
The COFFEE core is an open-source 32-bit RISC-

based processor suitable for System-on-Chip (SoC) and
embedded systems. Furthermore, the core is applicable
to embedded computing in a wide range of applications
including multimedia processing and communication pur-
poses. Reusability and configurability are the two main
characteristics of the core. The COFFEE processor is
capable of executing 66 different instructions in a 6-
stage pipeline from instruction set architecture point of

ext_handler

Instruction
Cache

Data
Cache

PCB
(MMU)

Bus
Controller

Interrupt
Handler

ext_interrupt : (7:0)

offset : (7:0)

int_done

int_ack

bus_req

bus_ack

clk

i_addr : (31:0)

i_word : (31:0)

i_cache_miss

d_cache_rd

d_cache_wr

d_cache_miss

data : (31:0)

d_addr : (31:0)

pcb_rd
pcb_wr

reset_x_out

stall
rst_x

boot_sel

Boot
Controller

Coprocessor_1 Coprocessor_2 Coprocessor_3 Coprocessor_4

cop_port : (40:0)cop_exe : (3:0)

COFFEE RISC CORE

Fig. 1. The COFFEE RISC core integration

view. Instructions can be executed in either 16-bit or 32-
bit mode. Furthermore, four co-processors with different
clock domains, which exploit a shared register bank (up
to 32 registers), are attached to the core via a separate co-
processor bus. The practical operating frequency of the best
optimized implementation of the COFFEE is in the range
of 100MHz while the speed-optimized version operates
about 150MHz for a 90nm low power standard-cell tech-
nology [1]. Implementing COFFEE processor on a 28nm
Altera Stratix-V FPGA board (5SGSMD5K2F40C2) has
the cost of 4,503 Adaptive Logic Modules (ALMs), 5,439
registers with 172MHz maximum operating frequency. All
the required materials, including the hardware description
code, user manuals, the corresponding compiler, etc. can
be found at the official website of the Tampere University
of Technology in [12]. The latest version of the COFFEE
processor is integrated with a Memory Management Unit
(MMU) proposed in [13]. This version has not been fully
released by the time of writing this manuscript.

Fig. 1 depicts the interface of the COFFEE RISC core
and also how it is integrated with other blocks. As the
figure shows, there are four co-processor slots which are
connected to the core through a shared bus. In this work,
we employ the fourth co-processor slot to integrate our
module to the main core.

IV. GENERAL CHARACTERISTICS OF THE
CO-PROCESSOR

The developed co-processor is a reconfigurable IP-based
module integrated to the COFFEE processor in order to

provide communication facilities with peripheral devices
through the CAN protocol. The co-processor is able to
receive and transmit all the four type of frames used in
a CAN-based system listed in the following:

- Data Frame: the main type of frame which contains
the data.

- Remote Frame: the co-processor transmits this type of
frame if it requires data from a certain node.

- Error Frame: as soon as the co-processor recognizes
a misleading bit, it will broadcast the occurrence of
an error to all nodes.

- Overload Frame: provides extra delay(s) between two
successive data/remote frames (if required).

Fig. 2 presents the structure of a data CAN frame. Each
frame starts with start of frame (SOF) bit, followed by a 11-
bit arbitration field (also known as identifier). Arbitration
field is a unique sequence of bits for each node which
identifies the node, prioritizes the message and shows its
logical address. The control field contains 7 bits indicating
whether the frame is a remote frame, the arbitration field
is extended, the following bit is reserved for future use
and the last four bits contains the length of the data,
respectively. There are two arbitration formats of 11 and
29 bits long. The frame with the 11-bit arbitration field is
called Standard Frame, allows the system to address 211

(2,048) different nodes. In some applications, the arbitra-
tion field can be extended to 29 bits, which is also known
as Extended Frame, meaning that the system can handle
up to 229 (336,870,912) nodes. The data field contains 0
to 8 bytes of data, depending on the data length bits in
the control field. Next comes the 16-bit CRC field which
contains 15 bits Cyclic Redundancy Check (CRC) for
checking the frame integrity, followed by a CRC delimiter
bit. The acknowledge field contains two bits of which the
first bit is the ack slot and the second one is the delimiter.
The 7-bit end of frame (EOF) confirms that the frame has
successfully delivered.

In this case study, we assumed that the co-processor
only deals with standard frames. However, the co-processor
has the ability to reconfigure its parameters to receive and
transmit extended frames on demand. In addition, the co-
processor always provides 64 bits data for the processor
regardless of the data length. The extracted data is stored
in two consecutive registers of the register bank shared
with other co-processors. Therefore, the COFFEE proces-
sor should reference to the corresponding co-processor
twice in order to fetch the entire 64-bit data. On the
other hand, instructions referencing to any of the four co-
processors, which are integrated to the COFFEE core, are
not considered as an atomic instruction from the Instruction
Set Architecture (ISA) point of view. It means that the core
has the potential to refer to the co-processor in two non-
consecutive references, e.g., in the case of an interrupt.

Fig. 2. CAN data frame

Hence, we designed the co-processor to ensure that the
second non-consecutive reference to the register bank will
be returned with the proper portion of the data. In this
case, the co-processor not only ensures the data coherency,
but also provides data integrity by not overwriting new
values to the register bank. Furthermore, the co-processor
can interrupt the COFFEE core in some particular cases,
for instance, when its buffer is about to overflow. These
are only two examples of compatibility which are offered
by the proposed co-processor.

The co-processor is configured with the error manage-
ment mechanism to detect and broadcast different type of
errors which might have been happened to the frame during
the packet transmission. In this regard, the co-processor is
capable of identifying erroneous frames as follows:

• bit-logic error: which occurs when the transmitted bit
has not been received with the same value that it was
supposed to be received (e.g. the length of the data is
more than 8 bytes).

• form error: where the structure of the frame is violated
(e.g. wrong logic value for delimiters).

• bit stuffing error: happens when more than 5 con-
secutive bits of the same level have been detected
(excluding end of frame field).

• CRC error where the CRC calculation is different than
the received checksum.

Once the co-processor recognizes any type of above-
mentioned errors, it will broadcast the error message by
overwriting the bus with 6 consecutive dominant bits.

There are two strategies that the co-processor can choose
to perform CRC calculation. One scenario is that the
co-processor starts CRC calculation at once right after
receiving the last bit of the CRC field. In this case, the co-
processor will suffer from a massive computation workload,
since the CRC calculation should be acknowledged in
time (during the ACK slot). Another alternative is that the
co-processor starts CRC calculation right after receiving
the sixteenth bit. In this approach, CRC is calculated in
several clock cycles instead of being calculated at once. In
this implementation, the co-processor employs the second
approach to compute CRC calculation in time.

V. THE FPGA IMPLEMENTATION AND
INTEGRATION

Fig. 3 illustrates how the co-processor is integrated to the
COFFEE core. Overall, the I/O ports of the co-processor
are divided into two categories: the CAN-oriented ports at
the right side of the entity as well as the COFFEE-oriented

CAN
System

clk

rst_n

rd_cop

wr_cop

r_index (4:0)

c_index (1)

c_index (2)

cop_exe (3)

data (31:0)

system_clk

rst_n

cop_rd

cop_wr

reg_indx (4:0)

core_indx

core_int

data (31:0)

CAN_clk

CAN_bus

ack

err_det

COFFEE Core Coprocessor

Fig. 3. The interface of the co-processor

ports at the left side. The co-processor has two different
clock domains as well. The CAN clk is the global clock
derived by the CAN system. The co-processor negotiates
with the CAN-based nodes by this clock. In addition to
CAN clk, the co-processor writes the extracted data to the
appropriate registers where the processor communicates
with the co-processor by using system clk. Furthermore,
as previously stated, the co-processor has the potential to
detect the erroneous packet and broadcast the cause to other
nodes by overriding the CAN bus. Therefore, the output
ports ”ack” and ”err det” with respect to the acknowledge
slot and packet integrity violation are not physically used
in our case study. The main idea of extracting these two
output ports is for future use.

Technically, the COFFEE processor has been configured
with three 32-bit buses for accessing the instruction cache,
data cache and co-processors, respectively. From the ISA
point of view, the COFFEE processor refers to each co-
processor via movtc/movfc instructions for writing to and
reading from a particular co-processor. The processor ex-
changes data with the co-processor through the available
32-bit bidirectional co-processor data bus. Signals wr cop
and rd cop specify the direction of the data transmission.
The 5-bit r indx signal points to the specific register
in the co-processor’s register bank which is supposed to
be written/read by the processor. In this case study, we
stipulated that our target co-processor writes/reads its data
to/from the last two registers of the register bank (R30 and
R31). Furthermore, the processor references to each of the
four available co-processors with 2-bit c indx signal. Since
we integrated our co-processor to the COFFEE via the 4th

co-processor slot, COFFEE should set c indx to logic ”11”
to reach to the corresponding co-processor. Indeed, this
signal informs the co-processor that the main processor
is referencing to its registers. Therefore, the co-processor
can interrupt the core when, for example, the valid data
has not been written to the registers yet. The co-processor
interrupts the processor via the available interrupt signal
(cop exe(3)).

Table I. The maximum operating frequencies as well as
the worst critical path analysis

Co-processor
Slow 85 °C 493 (MHz)

Maximum model 0 °C 523 (MHz)
Frequency Fast 85 °C 733 (MHz) restricted to 673 (MHz)

model 0 °C 825 (MHz) restricted to 713 (MHz)

Worst Cell Delay 0.825 — 40.54%
Critical Interconn. Delay 1.210 — 59.46%
Path Data Delay 2.035 — 100%
Analysis Clock Skew -0.019
(ns) Time Slack 0.071

VI. SYNTHESIS RESULTS

The hardware implementation of the co-processor was
in Very-high-speed integrated circuit Hardware Description
Language (VHDL). The simulation tool used for prelimi-
nary verification was ModelSim software 10.2. We used
Quartus-II 15.1 environment to synthesize the design and
the target FPGA was an Altera Stratix V device of series
5SGSMD5K2F40C2.

Table I presents the worst critical path analysis as well
as the maximum operating frequencies achieved by the co-
processor at two different temperatures in fast and slow
timing models. Accordingly, the co-processor operates at
about 493MHz in slow model running at 85 °C and, con-
secutively, 523MHz at 0 °C. In fast model, the co-processor
operates at 733MHz and 825MHz at 85 °C and 0 °C, re-
spectively. However, both maximum operating frequencies
in fast model are respectively restricted to 673MHz and
713MHz due to the limited toggling rate in the clock tree.
The worst critical path analysis shows that about 60% of the
total propagation time are made by interconnection delays
whereas the remaining 40% are introduced by the cells
themselves. The negative clock skew reveals that the co-
processor can operate at slower frequencies. Eventually, co-
processor achieved 0.071 ns positive time slack, meaning
that the design could roughly meet the timing constraints
introduced to the analyzer. Overall, the co-processor not
only offers (at least) 2.8× speed-up in comparison with the
COFFEE core (only in terms of operating frequency), but
also it massively reduces the target processor’s workload
by receiving the packet, decoding it and extracting the
data in hardware. Otherwise, the software should take
care of decoding the packet. Furthermore, the co-processor
guarantees that the processor will reference to the correct
registers inside the co-processors’ register bank in some
specific cases (e.g. two non-consecutive accesses to fetch
the data).

Table II depicts the synthesis results in terms of logic
utilization, total used registers and energy consumption for
a successful data delivery to the COFFEE core. As pre-

Table II. Summary of the implementation details
Co-processor

Logic Utilization 321 (ALMs) — 7.12% overhead

Total Registers 441 — 8% overhead

Static Energy 327.33 (µJ)

Dynamic Energy 11.19 (µJ)

I/O Energy 10.36 (µJ)

Total Energy 348.88 (µJ)

viously mentioned, the baseline COFFEE implementation
employs 4,503 ALMs along with 5,439 registers. Based
on the achieved results, integrating the co-processor to the
COFFEE processor introduces 321 more ALMs, i.e. 7.12%
overhead, to the core along with 441 additional registers
(8%). Energy consumption is analyzed using PowerPlay
Power Analyzer tool in Quartus-II software. The analyzer
directly reads the Switching Activity Interchange Format
(SAIF) generated by the ModelSim for the co-processor
running at 450MHz. Static probability and toggle rate
for each signal were reported based on the generated
Value Change Dump (VCD) file for a successful packet
delivery composing of packet detection, frame integrity,
data extraction and handing over the data to the main
processor. From the Table II, it can be observed that the
main source of energy consumption is the static energy
(about to 328µJ) which is mainly dissipated within the
unused portions of the chip. On the other side, the dynamic
energy consumption, is only 11.2(µJ), i.e., 3.2% of the
total energy. In addition, the co-processor consumes about
10.4(µJ) energy in its inputs and outputs.

In order to compare the achieved results with an ASIC
model of the proposed co-processor, Kuon et al. have
provided a wide study which compares the performance
gap of a particular design between a 90nm ASIC and a
90nm FPGA in [14]. Base on their claims, the design on a
90nm ASIC implementation is 35× smaller and 3.4×-4.6×
faster compared to the same design on a 90nm FPGA.
Furthermore, the 90nm ASIC implementation consumes
14× less dynamic power alongside 87× less static power.
Nouri et al. in [15] claims if we take 60% speed up
into consideration, the same gap ratios are expected for a
design on a 28nm ASIC and a 28nm FPGA. By taking
above-mentioned scenario into account, we can have a
rough estimation on the hardware costs of the proposed
co-processor on a 28nm ASIC design.

VII. CONCLUSION

In this paper, we presented an FPGA implementation and
integration of a co-processor to the COFFEE RISC core
in order to establish a Controller Area Network (CAN)-
based communications channel between the processor and
peripheral devices. The peripheral device was an industrial

joystick in this study. The co-processor is an Intellectual
Property (IP)-based module which could reconfigure itself
to transmit and receive both standard and extended CAN
frames. The main advantage of the co-processor was full
compatibility with the COFFEE core’s requirements. For
instance, the co-processor could guarantee the data integrity
in the case of two non-consecutive references from the pro-
cessor to fetch the data. Another advantage of the proposed
co-processor (in comparison with other available IP cores)
was the fact that it could be integrated over the co-processor
bus of the COFFEE processor, instead of using the main
data bus. This would help to minimize the congestion on
the data bus as well as keeping the bus as idle as possible.
The synthesis results were presented in terms of hardware
costs, maximum frequency, energy consumption, etc. The
co-processor (operating at 493MHz) operated at least 2.8x
faster than the COFFEE processor while introducing 7%-
8% overhead to the hardware cost along with a trivial
energy consumption. The main achievement of presented
implementation was the new ability of the target processor
to communicate with CAN-based peripheral devices. This
integration improved the target processor’s versatility even
for industrial purposes.

ACKNOWLEDGMENT

This work was funded by the Academy of Finland
under contract number 258506 (DEFT: Design of a Highly-
parallel Heterogeneous MP-SoC Architecture for Future
Wireless Technologies). Portions of the work were also
funded by the ARTEMIS JU under grant agreement number
295371. The first author gratefully acknowledges the grant
support awarded by Finnish Cultural Foundation as well
as the grant support by Jane and Aatos Erkko Foundation
under the project Biological Neuronal Communications and
Computing with ICT.

REFERENCES
[1] J.P. Kylliäinen; T. Ahonen; J. Nurmi, ”General-Purpose Em-

bedded Processor Cores – The COFFEE RISC Example” in:
J. Nurmi, ”Processor Design: System-On-Chip Computing for
ASICs and FPGAs”, 1st ed., Springer Publishing Company,
pp. 83-100, 2007, 513 p.

[2] Kylliäinen, J.; Nurmi, J.; Kuulusa, M., ”COFFEE - a core for
free”, in Proceedings of International Symposium on System-
on-Chip, 19-21 Nov. 2003, pp. 17-22, DOI: 10.1109/IS-
SOC.2003.1267707.

[3] K.H. Johansson; M. Törngren; L. Nielsen, ”Vehicle Applica-
tions of Controller Area Network”, in: D. Hristu-Varsakelis;
W.s. Levine, ”Handbook of Networked and Embedded Con-
trol Systems”, Birkhäuser, Boston, pp. 741-765, 2008.

[4] M. Khanapurkar; P. Bajaj; S. Dahake; H. Wandhare, ”Design
Approach for VHDL and FPGA Implementation of Automo-
tive Black Box using CAN Protocol”, International Journal
of Computer Science and Network Security (IJCSNS’08),
VOL.8 No.9, September 2008.

[5] B. Donchev; M. Hristov, ”Implementation of CAN Controller
With FPGA Structures”, Proceedings of the 7th International
Conference The Experience of Designing and Application of

CAD Systems in Microelectronics (CADSM), 2003, pp. 577-
580, DOI: 10.1109/CADSM.2003.1255163

[6] ”Controller Area Network(CAN), Overview”, white
paper, National Instruments, 2014, Available at
http://www.ni.com/white-paper/2732/en/

[7] D. Leu, ”FPGA-Based CAN Solutions”, Inicore Inc, 2005, 6
p.

[8] ”Bosch CAN Specification”, Ver. 2.0, Robert Bosch GmbH,
Germany, 1991.

[9] R. I. Davis and N. Navet, ”Controller area network (CAN)
schedulability analysis for messages with arbitrary deadlines
in FIFO and work-conserving queues”, 9th IEEE International
Workshop on Factory Communication Systems (WFCS),
Lemgo, 2012, pp. 33-42. DOI: 10.1109/WFCS.2012.6242538

[10] M. Farsi; K. Ratcliff; M. Barbosa, ”An Overview of Con-
troller Area Network,” in Computing & Control Engineer-
ing Journal, vol. 10, no. 3, June 1999, pp. 113-120, DOI:
10.1049/cce:19990304

[11] W. Lawrenz, ”CAN System Engineering From Theory to
Practical Applications”, 2nd ed., Springer, 2013, 353 p, DOI:
10.1007/987-1-4471-5613-0.

[12] ”COFFEE™ RISC core - a COre For FrEE”, Tampere
University of Technology, Finland, [WWW], accessed on
02.Mar.2016, available at http://coffee.tut.fi.

[13] F. Shamani, V. F. Sevom, J. Nurmi and T. Ahonen, ”Design,
Implementation and Analysis of a run-Time Configurable
Memory Management Unit on FPGA,” Nordic Circuits and
Systems Conference (NORCAS): NORCHIP & International
Symposium on System-on-Chip (SoC), 2015, Oslo, 2015, pp.
1-8, DOI: 10.1109/NORCHIP.2015.7364375

[14] I. Kuon and J. Rose, ”Measuring the Gap Between FPGAs
and ASICs”, in IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 26, no. 2, Feb.
2007, pp. 203-215, DOI: 10.1109/TCAD.2006.884574

[15] S. Nouri, W. Hussain and J. Nurmi, ”Design and Eval-
uation of Correlation Accelerator in IEEE-802.11a/g Re-
ceiver Using a Template-Based Coarse-Grained Reconfig-
urable Array”, Nordic Circuits and Systems Conference
(NORCAS): NORCHIP & International Symposium on
System-on-Chip (SoC), 2015, Oslo, 2015, pp. 1-6, DOI:
10.1109/NORCHIP.2015.7364374

ISBN 978-952-15-4009-7
ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

	Abstract
	Preface
	Acronyms
	List of Publications
	Introduction
	Objective and Scope of the Research
	Author's Contribution to the Published Work
	Thesis Outline

	Reconfigurable IP-Based NC-OFDM Synchronizer Module
	Spectrum Scarcity Problem
	Cognitive Radio as a Solution
	Related Works
	The State-of-the-art in NC-OFDM Synchronization
	The Infrastructure of the Multicorrelator
	Partial Reconfiguration
	FPGA Constraints
	Experimental Results with Further Discussion
	Concluding Remarks

	Reconfigurable IP-Based Memory Management Unit
	The Virtual Memory
	The Virtual Address
	How the OS Manages Virtual Addresses
	Memory Management Unit
	The Infrastructure of the MMU
	FPGA Implementations
	Integration Issues
	Synthesis Results
	Concluding Remarks

	Reconfigurable IP-Based Controller Area Network Module
	Background
	Motivation
	CAN Protocol Specification
	The Structure of a CAN Frame
	Design Considerations
	The FPGA Implementation and Integration
	Synthesis Results
	Concluding Remarks

	Conclusion
	Main Results
	Future Developments

	Bibliography
	Appendix A
	The Architecture of the Platform
	Embedded Processors
	COFFEE, a General-Purpose Embedded Processor
	General Characteristics
	An Insight to the Architecture of the Core
	Hardware Implementation Costs and Details

	Publications
	Farid Shamani
	Design of Intellectual Property-Based Hardware Blocks Integrable with Embedded RISC Processors

