47 research outputs found

    Performance improvement of a SOA-based coherent optical-OFDM transmission system via nonlinear companding transforms

    No full text
    International audienceCoherent-Optical OFDM systems are known to be sensitive to large peak-to-average power ratio (PAPR) at the transmitter output, due to nonlinear properties of some components involved in the transmission link. In this paper, we investigate the impact of an amplification of such signals via a semiconductor optical amplifier (SOA), considering some recent experimental results. An efficient tradeoff between BER performance, computational complexity and power efficiency is performed by a proper design of Wang's nonlinear companding function, considered for the first time in an optical communication context. A BER advantage of around 3 dB can hence be obtained over a standard system implementation not using PAPR reduction. The designed function also proves to be more efficient than µ-law function, considered in the literature as an efficient companding scheme

    A simple nonlinear companding transform for nonlinear compensation of direct-detection optical OFDM systems

    Get PDF
    In direct-detection OFDM systems, the nonlinear effects caused by optical modulation and fiber transmission can degrade the system performance severely. In this study, we propose a new nonlinear companding transform to improve the performance of direct detection optical OFDM transmission systems. The demonstration is realized by Monte-Carlo simulation of the intensity modulation and direct-detection DCO-OFDM optical transmission system at 40 Gbps over a 80 km of standard single mode fiber link. The influence of the companding parameters on the performance of system in different nonlinear transmission conditions has been investigated via simulation

    Nonlinear effects in OFDM signal transmission over radio over fibre links

    Get PDF
    The dynamic range limitations that arise from nonlinearity in low-cost and low complexity directly modulated radio over fibre (RoF) links are examined. Statistical non linear models are presented and applied to the case of a RoF link with a low biased laser diode. The effects of distortion on the Error Vector Magnitude (EVM) performance of Orthogonal Frequency-Division Multiplexing (OFDM) signals with different numbers of subcarriers and the connection to the Peak-ta-Average Power Ratio (PAPR) of the signals are investigated. Statistical distributions of the EVM over a large number of transmitted OFDM frames are gained from experimental measurements and analyses of idealized processes. The measurement results show that as the number of subcarriers is reduced the distribution means are not dependent in the expected way on the statistical PAPR of the transmitted OFDM signals. Instead, it is shown that in regions of moderate distortion the median of the EVM is more closely related to the statistical PAPR and to the required back-off for signals with different numbers of subcarriers. Through the employed statistical analysis, the asymptotic convergence of the EVM result to that expected in the idealized case is observed. The results of this analysis also show, how, including the EVM variance in estimations for back-off might be useful, how, in a measurement, the number of transmitted OFDM frames affects the estimated mean EVM. Differing EVM results for subcarriers at the edge and middle of the signal band show that distortion affects the subcarriers at the middle of the band to a stronger degree and that their behaviour is correlated "to the statistical PAPR of the individual signals. Then, a laser model validated against measured performance is designed arid used for simulating the performance of a subcarrier multiplexed 4th generation mobile/wireless RoF transmission system. Predictions indicate that the architecture provides adequate performance in terms of EVM, for different IFFT sizes and modulation levels of up to 256 QAM (at leastL and a combined raw data rate of up to 3.2 Gbps. Based on a 1.5% EVM transmitter requirement with 256 QAM, a system dynamic range of approximately 5.1 dB is predicted. Finally, the use of companding in a directly modulated RaF link, with the aim of reducing the amplification (and isolation) requirements in the remote antenna unit, is demonstrated, quantified through EVM measurements. The resulting improvements in output power are approximately 4.7 dB at an EVM transmitter requirement of 5.6 %, while in terms of the point of onset of distortion-induced EVM increase, the improvement is approximately 7.6 dB

    An investigation into the use of orthogonal frequency division multiplexing in packet radio

    Get PDF
    Bibliography: leaves 56-58.The concept of Orthogonal Frequency Division Multiplexing has been around since the 1960s. It has resurfaced over the last decade as being the modulation scheme of choice in some newer technologies like Digital Video Broadcasting (DVB) and Asynchronous Digital Subscriber lines (ADSL). Amateur packet radio started in 1978 and has attracted thousands of enthusiasts from around the world. The interest in packet radio has waned over the years due advances in the data transmission capabilities oflandline systems and also more widespread access to the Internet. The purpose of this thesis was to develop a simple software simulation model to determine whether or not OFDM could be used to increase the data rates currently available in packet radio systems. The thesis starts out with an introduction to packet radio and OFDM in Chapter 1. A slightly more detailed discussion on OFDM is given in Chapter 2 in order to develop a basic specification for the proposed OFDM model. Chapters 2,3 and 4 discuss the development of the Transmitter model, the Receiver model and the Channel model respectively using the Simulink software package. Chapter 6 discusses the problem of Peak-to-Average Power Ratios (PAPR) in OFDM and explores the use of A-law companding to reduce this problem. In Chapter 7, the developed models are simulated and their performance compared to theoretical expectations. The full system is also simulated in this chapter in order to ascertain the possible data rate through the modelled packet radio channel. Conclusions regarding the application of OFDM to packet radio are presented in Chapter 8

    On Companding and Optimization of OFDM Signals for Mitigating Impulsive Noise in Power-line Communication Systems

    Get PDF
    Generally, the probability density function (PDF) of orthogonal frequency division multiplexing (OFDM) signal amplitudes follow the Rayleigh distribution, thus, it is difficult to correctly predict the existence of impulsive noise (IN) in powerline communication (PLC) systems. Compressing and expanding the amplitudes of some of these OFDM signals, usually referred to as companding, is a peak-to-average power ratio (PAPR) reduction technique that distorts the amplitudes of OFDM signals towards a uniform distribution. We suggest its application in PLC systems such as IEEE 1901 powerline standard (which uses OFDM) to reduce the impacts of IN. This is because the PLC channel picks up impulsive interference that the conventional OFDM driver cannot combat. We explore, therefore, five widely used companding schemes that convert the OFDM signal amplitude distribution to uniform distribution to avail the mitigation of IN in PLC system receivers by blanking, clipping and their hybrid (clipping-blanking). We also apply nonlinear optimization search to find the optimal mitigation thresholds and results show significant improvement in the output signal-to-noise ratio (SNR) for all companding transforms considered of up to 4 dB SNR gain. It follows that the conventional PDF leads to false IN detection which diminishes the output SNR when any of the above three nonlinear memoryless mitigation schemes is applied

    Waveforms and channel coding for 5G

    Get PDF
    Abstract. The fifth generation (5G) communication systems are required to perform significantly better than the existing fourth generation (4G) systems in data rate, capacity, coverage, latency, energy consumption and cost. Hence, 5G needs to achieve considerable enhancements in the areas of bandwidth, spectral, energy, and signaling efficiencies and cost per bit. The new radio access technology (RAT) of 5G physical layer needs to utilize an efficient waveform to meet the demands of 5G. Orthogonal frequency division multiplexing (OFDM) is considered as a baseline for up to 30 GHz. However, a major drawback of OFDM systems is their large peak to average power ratio (PAPR). Here in this thesis, a simple selective-mapping (SLM) technique using scrambling is proposed to reduce the PAPR of OFDM signals. This technique selects symbol sequences with high PAPR and scrambles them until a PAPR sequence below a specific threshold is generated. The computational complexity of the proposed scheme is considerably lower than that of the traditional SLM. Also, performance of the system is investigated through simulations and more than 4.5 dB PAPR reduction is achieved. In addition, performance of single carrier waveforms is analyzed in multiple-input multiple-output (MIMO) systems as an alternative to OFDM. Performance of a single carrier massive MIMO system is presented for both uplink and downlink with single user and multiple user cases and the effect of pre-coding on the PAPR is studied. A variety of channel configurations were investigated such as correlated channels, practical channels and the channels with errors in channel estimate. Furthermore, the candidate coding schemes are investigated for the new RAT in the 5G standard corresponding the activities in the third generation partnership project (3GPP). The schemes are evaluated in terms of block error rate (BLER), bit error rate (BER), computational complexity, and flexibility. These parameters comprise a suitable set to assess the performance of different services and applications. Turbo, low density parity check (LDPC), and polar codes are considered as the candidate schemes. These are investigated in terms of obtaining suitable rates, block lengths by proper design for a fair comparison. The simulations have been carried out in order to obtain BLER / BER performance for various code rates and block lengths, in additive white Gaussian noise (AWGN) channel. Although polar codes perform well at short block lengths, LDPC has a relatively good performance at all the block lengths and code rates. In addition, complexity of the LDPC codes is relatively low. Furthermore, BLER/BER performances of the coding schemes in Rayleigh fading channels are investigated and found that the fading channel performance follows a similar trend as the performance in the AWGN channel

    LOW-PAPR ANALYSIS OF OFDM-BASED AND OWDM-BASED RADIO-OVER-FIBER SYSTEMS

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is used in many wired and wireless communication systems because of the ability to combat with intersymbol interference (ISI) and multipath distortion. Recently, OFDM has been focused on in optical communication systems. But the High Peak-to-Average Power Ratio (PAPR) is one of the main obstacles to limit the application. Because of the non-linear of the power amplifiers, the modulator and optical fiber, the high PAPR cause the distorted signal and reduce the efficiency of the optical Orthogonal Frequency Division Multiplexing systems. In this paper the impact of a Radio-over- Fiber (RoF) optical subsystem on the sensitivity to the phase noise of an Orthogonal Frequency Division Multiplexing (OFDM) system using Discrete Fourier Transform (DFT) and Discrete Wavelet Transform (DWT) are evaluated and compared by computer simulation. The study investigates the effect of phase jitter on the system Bit Error Rate (BER) of the DFT/DWT-based OFDM for different modulation schemes in the presence of optical sub-system's nonlinearities in AWGN channel
    corecore