76 research outputs found

    On Realization of Cinema Hall Fire Simulation Using Fire Dynamics Simulator

    Get PDF
    Currently known fire models are capable to describe fire dynamics in complex environments incorporating a wide variety of fire-related physical and chemical phenomena and utilizing large computational power of contemporary computers. In this paper, some issues related to realization of the simulation of fire in a cinema hall with sloping floor and curved ceiling furnished by upholstered seats modelled by FDS (Fire Dynamics Simulator) are discussed. The paper concentrates particularly on the impact of a computational meshes choice on resolving flow field and turbulence in the simulation and indicates problems related to parallelization of the calculation illustrated comparing sequential and parallel MPI calculation using 6 CPU cores. Results of the simulation described and their discussion demonstrate the ability of FDS simulation to capture main tendencies of smoke spread and to forecast the related safety risks realistically

    Analysis of Fire and Smoke Spread in Ki Hajar Dewantara Auditorium, State University of Jakarta, Using Fire Dynamics Simulator

    Get PDF
    Fire behavior and smoke spread are influenced by various factors, including the amount and condition of combustible material, ventilation openings, and ceiling height. A high amount of combustible material in the auditorium poses a significant fire hazard, hence, efforts need to be made to minimize the risk. One approach is to use Computational Fluid Dynamic software, such as Fire Dynamics Simulator (FDS), to model fire combustion. In this research, it provides an overview of the heat release rate (HRR) of fires that occur as well as the effect of differences in ceiling height and the effect of ventilation on fire spread. This research employed Polyurethane foam, commonly used for auditorium seats, as the sample material. Furthermore, it modeled two fire points, one on the 9th floor and the other on the 10th floor, in the middle of seat rows. The development of fire in the modeling was described by the results of visualization, HRR, burning rate, and temperature rise. These results provided insight into the speed at which fire and smoke spread. The starting point on the 9th floor had the highest flame spread rate due to the ceiling jet phenomenon, where a high amount of combustible material caused the ceiling temperature to increase, producing a heat flux that could burn surrounding seats. In both scenarios, the smoke spread rapidly toward the ventilation openings. However, it was denser on the 9th floor as the starting point was farther from the ventilation openings, and the smoke on the 10th floor was less dense

    Analysis Evacuation Route for KM Zahro Express on Fire Condition using Agent Based Modeling and Fire Dynamics Simulatior

    Get PDF
    Safety is the thing that needs to be preferred by users of transport, passengers should also understand about safety procedures and evacuation procedures in the means of transport. There have been many accidents that happen in the world of transport, particularly in the shipping world, from 2010 to 2016 is no more than 50 accidents of ships in accordance with the cause recorded by KNKT (Komisi Nasional Keselamatan Transportasi). On this research was discussed the evacuation time on the ship KM Zahro express that occurred earlier in the year 2017 in the Kepulauan Seribu, DKI Jakarta. Almost all passenger dead caused by fire from power source in engine room. This thesis will explaine about evacuation time and dangers from fire that interfere the process of evacuation. The methods used are Agent Based Modeling and Simulation (ABMS) and Fire Dynamics Simulator (FDS) for modeling fire simulation. Agent-Based Modeling software (pathfinder) and Fire Dynamics Simulator software (pyrosim) are used to calculate time evacuation in normal condition and fire condition of KM Zahro Express. Agent-Based Modeling and Simulator (ABMS) is a modeling method that aims to model complex problems based on real cases. Agent-Based Modeling and Simulator (ABMS) is designed to model a place that has a seat, path, exit door, humans, and others. Pyrosim is a graphical user interface for the Fire Dynamics Simulator (FDS). FDS models can predict smoke, temperature, carbon monoxide, and other substances during fires.  In this case the existing models can be used to plan and prepare an emergency if unwanted things happen. As well as using basic rules which refer to the Safety Of Life At Sea (SOLAS) and International Maritime Organization (IMO). Result of Evacuation simulation calculation on emergency conditions (two rear exit doors will be closed) that match at actually condition is 29,783 minutes (respon is not taken in this simulation), calculation results obtained from simulation of evacuation (Traveling Time) and at the count expanded feet according to the IMO formula (performance standard). From fire simulation could be analyzed the time and the amount of smoke on deck. It can be seen that in the 1800 seconds smoke levels produced in the relatively high place so disturbing in the evacuation process

    Computing Aspects of Simulation Based on Conservation Laws Conducted on HPC Cluster

    Get PDF
    The large amount of computing resources required for the simulation of complex natural processes demands a thorough analysis of the efficiency of the calculations and the conditions that influence it. This study investigates computing aspects of fire simulation conducted on a compute cluster. Current fire simulators based on principles of computational fluid dynamics are capable to realistically model majority of complex phenomena related to fire. Fire simulations are highly computationally demanding itself, however, they often lead to extensive parametrical studies requiring high performance computing systems. Smoke stratification and visibility during fire in a road tunnel with two emergency lay-bys are investigated by parametrical study comprising of 24 fire scenarios with the tunnel geometry modifications and various heat release rates and fire locations. Main tendencies of smoke spread in the downstream lay-by are identified and their mutual interactions are analysed. The simulation efficiency of particular simulations is analysed and the reasons of their varied elapsed times are investigated. The analysis indicates that the main reason of this variability are different jet fans velocities influenced by simulation scenario settings

    Innovations for smoke management in passenger trains

    Get PDF
    Spanish manufacturer Construcciones y Auxiliar de Ferrocarriles developed an innovative alternative for compartmentation, based on a smoke extraction system, to guarantee safe conditions during evacuation processes in a passenger unit. To demonstrate its performance in a train unit, a real-scale experimental programme, supported by the application of fire computer modelling, was applied in a new Construcciones y Auxiliar de Ferrocarriles' rolling stock. The new smoke exhaust system aims to extract the smoke generated during a fire in the passenger area by exhaust fans of the heating, ventilation, and air conditioning system, allowing the ingress of fresh exterior air in the lower part of the rear ends of the car. These key elements create an air flow that evacuates the smoke to prevent people from being exposed to it. Full-scale fire tests were developed in the train unit following the Australian standard AS 4391-1999. A fire of 140kW was used, and the smoke was generated by a clean smoke machine. Measurement points included six thermocouple trees, 10 gas flow velocity probes and two GoPro HD video cameras (for the estimation of the visibility). The system performance was successful with the tenability criteria, since the value of visibility at the non-fire car was greater than 30 m and the temperature was lower than 30°C during all the tests at a height of 1.7m above the floor. Experimental results were used to validate the computational model. The computational model results show a good accuracy compared with the tests

    Parallel Computer Simulation of Fire in Road Tunnel and People Evacuation

    Get PDF
    Advances in CFD (Computational Fluid Dynamics) and significant increase of computational power of current computers have led to widespread use of CFD in aerodynamics, fluid dynamics, combustion engineering and other academic disciplines. One of such disciplines is computer modelling and simulation of fire in human structures. Fire is a very complicated and complex phenomenon. Fire research deals with such processes as combustion, radiation, heat transfer, turbulence, fluid dynamics, and other physical and chemical processes. Several advanced fire and smoke simulation systems have been developed to solve various aspects of fire safety in various conditions and environments. In this paper, the use of parallel version of the CFD simulator FDS (Fire Dynamics Simulator) for the simulation of fire spread and smoke development in a short road tunnel is described. In order to study the impact of the computational domain decomposition on the accuracy and reliability of simulation results, several simulations of a chosen fire scenario ran on the HP blade cluster utilizing different numbers of processors. The obtained parameters of fire and smoke were used to investigate the influence of the fire on people evacuation in the tunnel with active ventilation for a given traffic situation

    Analysis evacuation Route for KM Zahro Express on fire condition using agent-based modeling and fire dynamics simulation

    Get PDF
    Keselamatan adalah hal utama yang perlu diperhatikan oleh pengguna transportasi, namun penumpang juga harus paham mengenai prosedur keselamatan dan prosedur evakuasi pada alat transportasi tersebut. Sudah banyak kecelakaan yang terjadi di dunia transportasi, khususnya di dunia pelayaran, dari tahun 2010 hingga 2016 sudah tercatat ada lebih dari 50 kecelakaan kapal sesuai dengan penyebabnya yang tercatat oleh KNKT. Pada penelitian ini membahas mengenai waktu evakuasi pada kapal KM Zahro express yang terjadi pada awal tahun 2017 di kepulauan seribu. DKI Jakarta. Kebakaran kapal yang mengakibatkan hampir semua penumpang meninggal dunia itu diakibatkan karena terbakarnya sumber listrik pada engine room. Permasalahan yang akan dibahas adalah mengenai waktu evakuasi dan bahaya dari kebakaran yang menganggu proses evakuasi. Metode yang digunakan adalah Agent Based Modeling and Simulation (ABMS) dan Fire Dynamics Simulation (FDS) untuk permodelan simulasi kebakaran. Serta mengunakan aturan dasar yang mengacu kepada International Maritime Organization (IMO). Perhitungan hasil simulasi evakuasi pada kondisi normal atau siang hari yang sesuai pada kejadian sebenarnya adalah 29.783 menit (tidak mengambil data respon penumpang), perhitungan didapatkan dari hasil simulasi evakuasi (Traveling Time) dan di hitung susuai dengan rumus yang berlaku. ============================================================================= Sefety is the thing that needs to be preferred by users of transport, passengers should also understand about safety procedures and evacuation procedures in the means of transport. There have been many accidents that happen in the world of transport, particularly in the shipping world, from 2010 to 2016 is no more than 50 accidents of ships in accordance with the cause recorded by KNKT (Komisi Nasional Keselamatan Transportasi). On this research was discussed the evacuation time on the ship KM Zahro express that occurred earlier in the year 2017 in the Kepulauan Seribu, DKI Jakerta. Fire accident caused almost all the passengers died was caused due to the burning power source in the engine room.The issue will be discussed about the time of the evacuation and the danger of fires that interfere the process of evacuation. The methods used are Agent Based Modeling and Simulation (ABMS) and Fire Dynamics Simulation (FDS) for modeling fire simulation. As well as using basic rules which refer to the International Maritime Organization (IMO). Result of Evacuation simulation calculation on normal conditions that match at actual condition is 29,783 minutes (respon in not taken in this simulation), calculation results obtained from simulation of evacuation (Traveling Time) and at the count expanded feet according with the formula

    Risk analysis of LPG tanks at the wildland-urban interface

    Get PDF
    In areas of wildland-urban interface (WUI), especially residential developments, it is very common to see liquefied petroleum gas (LPG) tanks, particularly with a higher ratio of propane, in surface installations serving homes. The most common tanks are between 1 and 5 m3 of capacity, but smaller ones of less than 1 m3 are more frequent. In case of accident, installations may be subject to fires and explosions, especially in those circumstances where legal and normative requirements allow very close exposure to flames from vegetable fuel near LPG tanks. In this project, it is intended to do a comprehensive diagnosis of the problem, addressing the compilation of information on real risk scenarios in historical fires. First, a preliminary presentation of the properties and characteristics of liquefied petroleum gas will be exposed. Its physical and chemical properties, production methodology, pressure and temperature diagrams and important considerations will be defined when using this type of substances in a storage tank of a certain volume. Next, a review of the situation of the existence of LPG tanks in the urban forest interfaces will be exposed. In this case, the main accidents caused by problems with the storage of LPG will be analyzed taking into account the relevance of BLEVE events in this type of incidents. To do this, the main scenarios that could take place in the event of a fire will be presented. Next, the existing legislation on the storage of LPG in these environments in some Mediterranean countries will be studied. In order to develop a comprehensive analysis, the main safety measures and distances will be considered, as well as the awareness of the possibility of vegetation material in the vicinity of LPG storage tanks, which is the main problem that will arise in a possible BLEVE scenario in case of fire. To finalize and facilitate understanding, a comparative table will be included with the aim of visualizing the main advantages and legislative deficiencies between the different countries. Following, the state of the art in terms of modelling LPG accidents at the WUI will be reviewed. Trying to simulate and predict this type of scenarios, it will see the models normally chosen to obtain the tolerable values selected and the answers obtained in each case. Finally, several fire scenarios will be simulated by means of a CFD tool (FDS, Fire Dynamics Simulator). In these simulations, the wind velocity and the distance of the combustible vegetal mass to the tank will be controlled in a WUI fire in which there is a tank of fixed dimensions. The temperature and the heat flow in each of the scenarios will be obtained, and the differences among the location of the sensors and the characteristics of the scenario will be analyzed. As a conclusion, it has been observed that there is a great amount of variables that are not contemplated by the regulatory organisms and that the existing legislation does not guarantee the safety of the population in this type of environment. From the simulations results, variables as temperature should be studied for further characterizations

    The development of a full probabilistic risk assessment model for quantifying the life safety risk in buildings in case of fire

    Get PDF
    In het kader van dit onderzoek is een probabilistisch model ontwikkeld dat het brandveiligheidsniveau van een gebouwontwerp kan kwantificeren en dit berekende veiligheidsniveau kan evalueren aan de hand van een vooraf gedefinieerd aanvaardbaar risicocriterium. De ontwikkelde methodiek kan zowel prescriptieve als op prestatie-gebaseerde ontwerpmethoden objectiveren door rekening te houden met de onzekerheid van ontwerpparameters en de betrouwbaarheid van veiligheidssystemen. Het model bestaat uit zowel een deterministisch als een probabilistisch gedeelte. Het deterministische kader is opgebouwd uit verschillende deelmodellen om zowel de verspreiding van brand en rook, als de interactie met evacuerende personen te simuleren. Verschillende deelmodellen zijn ontwikkeld om het effect van geïmplementeerde veiligheidsmaatregelen zoals detectie, sprinklers , rook- en warmteafvoersystemen, enz. mee in rekening te brengen. Het probabilistische kader is opgebouwd uit modellering van responsoppervlakken, steekproeftechnieken en ontwerp van grenstoestanden. De methodiek maakt gebruik van deze technieken om de nodige rekenkracht te beperken. Het uiteindelijke resultaat wordt vertaald naar een kans op sterfte, een individueel risico en een groepsrisico. De grote meerwaarde van de ontwikkelde methodiek is dat het mogelijk wordt om verschillende ontwerpmethodieken objectief met elkaar te vergelijken en het positieve effect van verbeterde veiligheidstechnieken en redundantie mee in rekening te brengen in het eindresultaat

    Structural analysis of the steel column exposed to a localised fire : Master's Thesis

    Get PDF
    U ovom diplomskom radu prikazana je analiza nosivosti čeličnog stupa izloženog djelovanju lokaliziranog požara. Budući da EN 1991-1-2(2002) ne propisuje pojednostavljeni postupak proračuna provođenja topline za vertikalne elemente, izrađen je CFD model na temelju prethodno provedenih požarnih eksperimenata. Na temelju CFD modela izrađen je model provođenja topline za lokalizirani požar kao i za ISO krivulju temperature-vrijeme. Naposlijetku, nelinearnim statičkim proračunom prikazana je analiza nosivosti čeličnog stupa u uvjetima lokaliziranog požara kao i pod djelovanjem visokih temperatura u obliku standardne požarne krivulje. Usporedba između lokaliziranog požara i model standardnog požara pokazuje da lokalizirani požar, ovisno o veličini opterećenja, može dovesti do ranijeg otkazivanja stupa.This thesis presents structural analysis of the steel column exposed to a localised fire. Since EN 1991-1-2(2002) doesn’t provide simplified method to calculate heat transfer to the vertical elements, the CFD model of a localised fire is made, based on previously conducted experiments. Furthermore, heat transfer was calculated based on CFD model so as for ISO temperature-time curve respectively. Finally, nonlinear structural analysis of the steel column has been carried out for the localised fire scenario, as well as for the ISO temperature time curve. The comparison between the localised fire and ISO fire exposure points put that localised fire, depending on the level of external load, can lead to earlier failure of the column
    corecore