50 research outputs found

    Numerical periodic normalization for codim 2 bifurcations of limit cycles : computational formulas, numerical implementation, and examples

    Get PDF
    Explicit computational formulas for the coefficients of the periodic normal forms for codimension 2 (codim 2) bifurcations of limit cycles in generic autonomous ODEs are derived. All cases (except the weak resonances) with no more than three Floquet multipliers on the unit circle are covered. The resulting formulas are independent of the dimension of the phase space and involve solutions of certain boundary-value problems on the interval [0, T], where T is the period of the critical cycle, as well as multilinear functions from the Taylor expansion of the ODE right-hand side near the cycle. The formulas allow one to distinguish between various bifurcation scenarios near codim 2 bifurcations of limit cycles. Our formulation makes it possible to use robust numerical boundary-value algorithms based on orthogonal collocation, rather than shooting techniques, which greatly expands its applicability. The implementation is described in detail with numerical examples, where numerous codim 2 bifurcations of limit cycles are analyzed for the first time

    Switching to nonhyperbolic cycles from codim 2 bifurcations of equilibria in ODEs

    Get PDF
    The paper provides full algorithmic details on switching to the continuation of all possible codim 1 cycle bifurcations from generic codim 2 equilibrium bifurcation points in n-dimensional ODEs. We discuss the implementation and the performance of the algorithm in several examples, including an extended Lorenz-84 model and a laser system.Comment: 17 pages, 7 figures, submitted to Physica

    Computational analysis of bifurcations of periodic orbits

    Get PDF

    Switching to nonhyperbolic cycles from codimension two bifurcations of equilibria of delay differential equations

    Get PDF
    In this paper we perform the parameter-dependent center manifold reduction near the generalized Hopf (Bautin), fold-Hopf, Hopf-Hopf and transcritical-Hopf bifurcations in delay differential equations (DDEs). This allows us to initialize the continuation of codimension one equilibria and cycle bifurcations emanating from these codimension two bifurcation points. The normal form coefficients are derived in the functional analytic perturbation framework for dual semigroups (sun-star calculus) using a normalization technique based on the Fredholm alternative. The obtained expressions give explicit formulas which have been implemented in the freely available numerical software package DDE-BifTool. While our theoretical results are proven to apply more generally, the software implementation and examples focus on DDEs with finitely many discrete delays. Together with the continuation capabilities of DDE-BifTool, this provides a powerful tool to study the dynamics near equilibria of such DDEs. The effectiveness is demonstrated on various models

    THE FOLD-FLIP BIFURCATION

    Get PDF
    International audienceThe fold-flip bifurcation occurs if a map has a fixed point with multipliers +1 and −1 simultaneously. In this paper the normal form of this singularity is calculated explicitly. Both local and global bifurcations of the unfolding are analyzed by exploring a close relationship between the derived normal form and the truncated amplitude system for the fold-Hopf bifurcation of ODEs. Two examples are presented, the generalized Hénon map and an extension of the Lorenz-84 model. In the latter example the first-, second- and third-order derivatives of the Poincaré map are computed using variational equations to find the normal form coefficients

    Computational dynamical systems analysis : Bogdanov-Takens points and an economic model

    Get PDF
    The subject of this thesis is the bifurcation analysis of dynamical systems (ordinary differential equations and iterated maps). A primary aim is to study the branch of homoclinic solutions that emerges from a Bogdanov-Takens point. The problem of approximating such branch has been studied intensively but neither an exact solution was ever found nor a higher-order approximation has been obtained. We use the classical ``blow-up'' technique to reduce an appropriate normal form near a Bogdanov-Takens bifurcation in a generic smooth autonomous ordinary differential equations to a perturbed Hamiltonian system. With a regular perturbation method and a generalization of the Lindstedt-Poincare' perturbation method, we derive two explicit third-order corrections of the unperturbed homoclinic orbit and parameter value. We prove that both methods lead to the same homoclinic parameter value as the classical Melnikov technique and the branching method. We show that the regular perturbation method leads to a ``parasitic turn'' near the saddle point while the Lindstedt-Poincare' solution does not have this turn, making it more suitable for numerical implementation. To obtain the normal form on the center manifold, we apply the standard parameter dependent center manifold reduction combined with the normalization, using the Fredholm solvability of the homological equation. By systematically solving all linear systems appearing from the homological equation, we correct the parameter transformation existing in the literature. The generic homoclinic predictors are applied to explicitly compute the homoclinic solutions in the Gray-Scott kinetic model. The actual implementation of both predictors in the MATLAB continuation package MatCont and five numerical examples illustrating its efficiency are discussed. Besides, the thesis discusses the possibility to use the derived homoclinic predictor of generic ordinary differential equations to continue the branches of homoclinic tangencies in the Bogdanov-Takens map. The second part of this thesis is devoted to the application of bifurcation theory to analyze the dynamic and chaotic behaviors of a nonlinear economic model. The thesis studies the monopoly model with cubic price and quadratic marginal cost functions. We present fundamental corrections to the earlier studies of the model and a complete discussion of the existence of cycles of period 4. A numerical continuation method is used to compute branches of solutions of period 5, 10, 13 and 17 and to determine the stability regions of these solutions. General formulas for solutions of period 4 are derived analytically. We show that the solutions of period 4 are never linearly asymptotically stable. A nonlinear stability criterion is combined with basin of attraction analysis and simulation to determine the stability region of the 4-cycles. This corrects the erroneous linear stability analysis in previous studies of the model. The chaotic and periodic behavior of the monopoly model are further analyzed by computing the largest Lyapunov exponents, and this confirms the above mentioned results
    corecore