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Abstract

The subject of this thesis is the bifurcation analysis of dynamical systems (ordinary

differential equations and iterated maps). A primary aim is to study the branch of homoclinic

solutions that emerges from a Bogdanov-Takens point. The problem of approximating such

branch has been studied intensively but neither an exact solution was ever found nor a

higher-order approximation has been obtained. We use the classical “blow-up” technique to

reduce an appropriate normal form near a Bogdanov-Takens bifurcation in a generic smooth

autonomous ordinary differential equations to a perturbed Hamiltonian system. With a

regular perturbation method and a generalization of the Lindstedt-Poincaré perturbation

method, we derive two explicit third-order corrections of the unperturbed homoclinic orbit

and parameter value. We prove that both methods lead to the same homoclinic parameter

value as the classical Melnikov technique and the branching method. We show that the

regular perturbation method leads to a “parasitic turn” near the saddle point while the

Lindstedt-Poincaré solution does not have this turn, making it more suitable for numerical

implementation. To obtain the normal form on the center manifold, we apply the standard

parameter dependent center manifold reduction combined with the normalization, using the

Fredholm solvability of the homological equation. By systematically solving all linear systems

appearing from the homological equation, we correct the parameter transformation existing

in the literature. The generic homoclinic predictors are applied to explicitly compute the

homoclinic solutions in the Gray-Scott kinetic model. The actual implementation of both

predictors in the MATLAB continuation package MatCont and five numerical examples

illustrating its efficiency are discussed. Besides, the thesis discusses the possibility to use

the derived homoclinic predictor of generic ordinary differential equations to continue the

branches of homoclinic tangencies in the Bogdanov-Takens map.
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The second part of this thesis is devoted to the application of bifurcation theory to analyze

the dynamic and chaotic behaviors of a nonlinear economic model. The thesis studies

the monopoly model with cubic price and quadratic marginal cost functions. We present

fundamental corrections to the earlier studies of the model and a complete discussion of the

existence of cycles of period 4. A numerical continuation method is used to compute branches

of solutions of period 5, 10, 13 and 17 and to determine the stability regions of these solu-

tions. General formulas for solutions of period 4 are derived analytically. We show that the

solutions of period 4 are never linearly asymptotically stable. A nonlinear stability criterion

is combined with basin of attraction analysis and simulation to determine the stability region

of the 4-cycles. This corrects the erroneous linear stability analysis in previous studies of the

model. The chaotic and periodic behavior of the monopoly model are further analyzed by

computing the largest Lyapunov exponents, and this confirms the above mentioned results.

The content of this thesis has been published in or submitted for publication, see [2], [3],

[107], [92] and [91].



Introduction

Dynamical systems theory is one of the classical topics in mathematics. It deals with

the continuous- and discrete-time behavior of mathematical objects, primarily differential

equations (ordinary and partial) and difference equations (maps). The theory mainly focuses

on analyzing the behavior of such objects and examining its dependence on the parameters.

The space in which the objects (states) live is called the state space (phase space) of the

dynamical system while the parameters live in the parameter space. In the case of autonomous

ordinary differential equations (ODEs), the solution starting at an initial point x defines a

curve in the phase space passing through x. The collection of all curves corresponding to

different initial conditions in the phase space forms the phase portrait. In general the phase

portrait provides a global qualitative picture of the dynamics of the dynamical systems

based on the value of the parameters. If we vary some of the parameters, the phase

portrait may change qualitatively. This phenomenon is called a bifurcation. The study

of dynamical systems so leads to the topic of bifurcation theory. In this field one studies

the qualitative changes in the phase portrait, e.g., the appearance or disappearance of

equilibria, periodic orbits or more complicated features such as chaos. Similar to dynamical

systems theory, bifurcation theory uses ideas and methods from the qualitative theory of

differential/difference equations, linear algebra theory, group theory, singularity theory and

computer-assisted study of differential/difference equations. Bifurcation theory is considered

as one of the richest interdisciplinary subjects in applied mathematics. The theory is used

not only in many traditional sciences like physics, astronomy, chemistry, biology, medicine

and engineering but also in economics, sociology and physiology.
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This thesis focuses on the study of the bifurcations in dynamical systems (ODEs and maps).

The main focus is on the dynamics near the Bogdanov-Takens (BT) bifurcation. This

bifurcation plays an important role in the study of dynamical systems since it implies global

(homoclinic) bifurcations as well as two local (limit point and Andronov-Hopf) bifurcations.

The approximation of the local bifurcations near the BT bifurcation point is standard. A

more interesting problem is to construct the homoclinic bifurcation curve along which the

homoclinic orbit shrinks to the BT point while tracing the homoclinic bifurcation curve. For

this problem, no exact analytic solution is possible. The present thesis provides not only a

novel construction of the homoclinic bifurcation near a BT point of a generic system of ODEs

but also a software implementation (MatCont) to study this type of bifurcation. Along this

we apply basic linear algebra theory, perturbation techniques, continuation techniques and

computer software packages (MATLAB R2015a, Maple 18 and Wolfram Mathematica 10).

Since the bifurcation structure near a fixed point of BT type of maps is similar to but more

complicated than the case of ODEs, the thesis also discusses the homoclinic structure in the

BT map, i.e., the normal form of the 1:1 resonance bifurcation.

It is known that a BT point is a regular point for the continuation problem of the fold

curve as well as of the Andronov-Hopf curve (if the Andronov-Hopf curve is defined by

requiring that there are two eigenvalues summing up to zero). So one can use the standard

continuation methods [70] to continue these curves in two parameters. The difficult case is

to continue homoclinic orbits starting from a BT point. In this case, the problem is regular

near the BT point but not at the BT point itself. So with a small nonzero step away, ε,

form the BT point, it should be possible to derive a special predictor based on asymptotics

for the bifurcating parameter values and the corresponding small homoclinic orbits in the

phase space. The idea of starting homoclinic orbits near a BT point in planar systems with

the help of Melnikov’s method was developed by Rodriguez et al. [114]. Beyn [15] treated

the general n-dimensional problem. He derived the first asymptotics, i.e., a homoclinic

predictor, of the homoclinic solutions near a generic BT point. If we assume that a generic

n-dimensional ODE has a BT point, then by the existence of the parameter-dependent

two-dimensional center manifold near the bifurcation, the problem of approximating the

homoclinic solution splits naturally into two sub-problems: (a) derive the asymptotics for the

smooth normal form on the two-dimensional center manifold; (b) transform the approximate

homoclinic orbit into the phase- and parameter-space of the original n-dimensional ODE.

The general first step in solving sub-problem (a) is to perform a singular rescaling (based on

a small non-zero step away from the BT point) that brings the two-dimensional normal

form into a Hamiltonian system (with known explicit homoclinic solution) plus a small

perturbation. Then one can use several methods to obtain an asymptotic expression for
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the parameter values corresponding to the perturbed homoclinic orbit. One possibility is

to apply the classical Melnikov technique [78] or the equivalent branching method [15] to

derive a first-order approximation for the homoclinic bifurcation curve in parameter space

and a zero-order approximation for the homoclinic orbit in phase space. The sub-problem (b)

can either be solved with a Lyapunov-Schmidt method [15], or using a parameter-dependent

center manifold reduction combined with the normalization and based on the Fredholm

solvability applied to the homological equation [16].

The present thesis revisits both sub-problems (in reversed order). For the sub problem (a),

we use the regular perturbation (R-P) method to derive the second-order approximation

to the homoclinic bifurcation curve and to obtain explicit first-, second- and third-order

corrections of the unperturbed homoclinic orbit, see also [91, 92]. This approximation

involves a “parasitic turn” in the homoclinic solution near the saddle point. Actually, as the

perturbation parameter ε increases, the higher-order corrections in ε quickly become larger

than the zero-order approximation and then the expansion breaks down for larger time-spans.

Therefore, we use a generalization of the Lindstedt-Poincaré perturbation (L-P) method to

derive an accurate third-order homoclinic approximation of the unperturbed homoclinic orbit

(see [2]). The predicted orbits based on the L-P method not only “nearly” coincide with the

actual homoclinic situation but also approach the saddle along the correct direction. It

is known that the standard L-P method for oscillators removes secular terms by a linear

time-rescaling dependent on a small parameter which allows to eliminate unbounded terms

and to obtain a solution valid for all time. In our case, we use a nonlinear time-rescaling

dependent on the perturbation parameter ε to remove the “parasitic turn” near the saddle-

point rather than secular terms. This improves the prediction in the phase space. For

the sub-problem (b), we correct the parameter transformation presented in [15, 16]. This

is achieved by systematically solving all linear systems appearing from the homological

equation. By collecting all these results, we formulate an accurate homoclinic predictor

at a generic BT bifurcation.

The old versions of MatCont [51, 52] use the incorrect homoclinic predictor given in [15, 16].

In practice, the initialization of the homoclinic continuation from a BT point often fails. So

the new predictors are implemented in MatCont and proved to be more robust than the

previous one. We show how to use the new predictors to explicitly (not only numerically)

derive an accurate approximation for the homoclinic solution in ODEs (as an example we

study the homoclinic solutions in the Gray-Scott kinetic model).

For maps things are different. In the maps case the parameters that correspond to the

transverse homoclinic orbits (or simply the homoclinic orbits) are located inside a sector,
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instead of forming a curve in the ODE case. This sector, i.e., the homoclinic zone [66],

is bounded by two curves, i.e., the homoclinic tangencies curves, where the homoclinic

trajectories intersect tangentially. The idea of continuing branches of homoclinic orbits and

homoclinic tangencies, given a good starting point, was developed in [17, 18]. To find such

a point, the algorithm in [85] can be used in the case of planar maps if an asymptotic

of the homoclinic parameters exists. This algorithm consists of finding a finite number of

intersection points of the stable and unstable manifolds of the saddle, i.e., the connecting

orbit, by computing the manifolds from a local approximation near the saddle [59]. These

points can be continued in one parameter until the limit point is detected, which corresponds

to a tangency of the stable and unstable manifolds. Continuation of such a limit point in

two parameters gives the homoclinic tangency structure. Therefore, if a good asymptotic of

the homoclinic parameter exists, then one can use the numerical method described above to

compute the homoclinic tangencies bifurcations.

It is known that the map is exactly (up to a certain order of terms) the time-1 flow of a

system of ODEs. Although the exact bifurcation structure is different for the map and its

approximating ODE, the usage of the ODE provides information that is hardly available

by the analysis of the map alone. The thesis describes two methods to approximate the

BT map by a system of ODEs, namely, the interpolating technique and the method of

Picard iteration. Using the homoclinic predictor in Chapter 3, we derive an asymptotic of

the homoclinic parameter of the approximating system. Further, we use this asymptotic

to predict the homoclinic bifurcation that appear in the BT map. The new asymptotic is

proved to be more accurate than the asymptotic of the homoclinic parameter presented in

[26, 34, 64, 126]. We show how to use the new asymptotic to compute the branches of the

homoclinic tangencies in the BT map.

In the second part of the thesis, we aim to apply bifurcation theory and difference equation

theory to study the dynamic behavior of a nonlinear market model (the monopoly model).

This model is based on cubic price and quadratic marginal functions [111, 112]. The recent

literature still deals with simplified versions of the monopoly model, cf. [1, 8, 98, 104],

and none of them analyzes the dynamic behavior of the monopoly model in detail. These

versions are far from reality since the market dynamics should be described by a higher-order

polynomials. A numerical continuation analysis, Lyapunov stability analysis and numerical

simulations are used to study the periodic and chaotic behaviors that arise in this model. In

this study, we use the continuation and bifurcation package MatContM and the computer

software packages MATLAB and Maple.
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T. Puu [111, 112] provides incomplete information on the existence of cycles of period 4 and

the chaotic behavior in his model. We reconsider the dynamic monopoly model. We present

fundamental corrections to the study presented in [112]. We prove the existence of solutions

of period 5, 10, 13, 17. A general formula for two cycles of period 4 is derived. We prove that

one of them is always unstable while the stability region of the second 4-cycle is larger than

the one obtained in [112] which is based on an incorrect linear stability analysis. The chaotic

behavior of the monopoly model is studied by computing the largest Lyapunov exponents.

Outline of thesis

This thesis is divided into two parts. The first part is dedicated to the study of the homoclinic

solutions rooted at a generic BT point of an ODE and the homoclinic structures of the BT

map. The second (smaller) part is an application of bifurcation theory to a monopoly model.

Chapter 1 recalls some basic concepts related to the qualitative theory of differential and

difference equations along with notions and terminology in dynamical systems (continuous

and discrete) and bifurcation theory. Basic results and definitions related to the linear

stability analysis, multivariate Taylor expansion, Jordan canonical form, center manifolds and

normal forms, local and global (homoclinic) bifurcations, Melnikov’s method for homoclinic

bifurcations, periodic orbits, chaotic behavior and Lyapunov exponents are discussed.

Chapter 2 provides a description of the bifurcation diagram of the BT bifurcation.

We describe the parameter-independent center manifold for a generic smooth family of

autonomous ODEs at the critical parameter value (i.e., at the BT point). Further, by normal

form theory, the dynamics in the parameter-dependent center manifold is transformed to

the critical BT normal form. However, the interesting dynamical behavior happens in the

neighborhood of the critical parameter value, so the parameter dependence is introduced

in the critical normal form (by constructing a versal deformation) such that we get the

so-called BT topological normal form. By adding the (usually ignored) cubic terms in the

BT topological normal form, we obtain the smooth BT normal form. This normal form will

be used to derive a correct second-order approximation for the homoclinic bifurcation rooted

at a generic BT point in Chapter 3. The complete bifurcation diagram of the topological

normal form is discussed. Using the standard parameter-dependent center manifold reduction

combined with the normalization, that is based on the Fredholm solvability of the homological

equation, we derive a quantitative relation between orbits of the smooth BT normal form

and of the original system. This relation will be used in Chapter 3 to transfer the homoclinic

approximation in the smooth BT normal form back to the original n-dimensional system.

Finally, we discuss the existence of the BT bifurcation in the Gray-Scott kinetic model.
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Chapter 3 contains the most important results of the thesis. Second-order homoclinic

predictors at a generic BT bifurcation are presented. We use the classical “blow-up” technique

to reduce the smooth BT normal form to a Hamiltonian system (with known explicit

homoclinic solution) plus a small perturbation. First, with the R-P method, we derive explicit

first-, second- and third-order corrections of the perturbed homoclinic orbit and parameter

value. We fix the phase of the solution by applying two different conditions (a point phase

condition and an integral phase condition). This leads to different approximations to the

homoclinic orbits in the phase space and the same homoclinic curve in parameter space.

An extensive numerical comparison in the state space is presented. However, in general

the R-P method leads to a “parasitic turn” near the saddle point. So we apply the L-P

method to approximate the homoclinic solution. We prove that the L-P method leads to

the same homoclinicity conditions as the classical Melnikov technique, the branching method

and the R-P method. A numerical comparison is presented to illustrate the accuracy of the

asymptotic for the L-P and R-P method. This proves that the homoclinic asymptotic based

on the L-P method does not have a “parasitic turn”, making it more suitable for numerical

implementation. By the parameter-dependent center manifold reduction that we derived in

Chapter 2, we provide the explicit computation formulas for the second-order homoclinic

predictor to a generic n-dimensional ODEs. The results of this Chapter are applied to derive

an explicit approximation to the homoclinic solutions in the Gray-Scott kinetic model.

Chapter 4 discusses the implementation and computational algorithms to continue the

homoclinic orbits in two free parameters. We show how to use the computed homoclinic

asymptotics in Chapter 3 to calculate the initial homoclinic cycle so as to continue homoclinic

orbits starting from a BT point. We derive an important relation between the geometric

amplitude of the homoclinic orbit and the initial choice of the perturbation parameter. We

also present an extra parameter that can be used to find a suitable finite time interval

where the continuation problem will converge. The new homoclinic predictors are

implemented in the MATLAB continuation package MatCont. This implementation includes

the computation of the smooth BT normal form coefficients. Five examples with multi-

dimensional state spaces are included, namely, the Morris-Lecar model, a predator-prey

model with constant rate harvesting, CO-oxidation in platinum model, an indirect field

oriented control model and the extended Lorenz-84 model.

Chapter 5 describes two methods to approximate the BT map by a system of ODEs,

namely, the interpolating technique and the method of Picard iteration. We present an

improved asymptotic for the homoclinic parameter in the BT map by (i) considering all the

second-order terms of the coordinates and parameter in the computation of the approximating

system using the method of Picard iteration, (ii) applying the results in Chapter 3 on the
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BT bifurcation of ODEs to obtain an improved asymptotic of the homoclinic bifurcation in

the approximating system. We show how to use the new asymptotic parameter to continue

branches of homoclinic tangencies in the BT map. In this way we obtain the whole homoclinic

structure of the BT map. We derive an asymptotic formula for the homoclinic parameter at

a generic BT point of maps by applying the standard parameter-dependent center manifold

reduction combined with the normalization, that is based on the Fredholm solvability of

the homological equation. By systemically solving all linear systems appearing from the

homological equation, we correct the parameter transformation existing in the literature.

Chapter 6 is a study of a dynamic monopoly model. Some preliminary results are presented

including corrections to the fixed point stability analysis presented in [112]. By simulations,

the existence of solutions of period 4, 5, 10, 13, 17 and the chaotic behavior are investigated.

Continuation and bifurcation analysis is used to get information about the stability of 5, 10,

13, 17-cycles under parameter variation. In all regions, further period-doubling bifurcations

are found which implies the existence of orbits with higher periods as well. A general formula

for solutions of period 4 is derived. Among other things, we discuss the symmetry properties

of these solutions. The analytical stability analysis for the 4-cycles proves that they are

never linearly asymptotically stable. Therefore, the stability of the 4-cycle is investigated by

studying the effect of small displacements in the direction of the eigenvector corresponding

to the eigenvalue located at the stability boundary. This work, combined with simulation

and the basin of attraction analysis for the 4-cycle allows us to determine the stability region

of the 4-cycle. This region is larger than the one obtained in [111, 112] which is based on an

incorrect linear stability analysis. Two methods to compute the largest Lyapunov exponent

are discussed. Further, we analyze the chaotic behavior of the monopoly model by the largest

Lyapunov exponents. This analysis confirms the results in the earlier sections.

Chapter 7 and 8 collect the conclusions of the previous chapters and suggestions for further

research, respectively.

The content of this thesis has been published or is submitted for publication, see [2], [3],

[107], [92] and [91].
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CHAPTER 1

Preliminaries

In this introductory chapter we provide the major definitions, notions and facts

of the dynamical system theory that will be used in the remainder of this thesis.

Most of the material cited in this chapter are based on [23, 41, 78, 88, 109].

1.1 Dynamical systems

Consider the following system of ODEs of the form







dx1

dt
= f1(x1, . . . , xn, α1, . . . , αp),

dx2

dt
= f2(x1, . . . , xn, α1, . . . , αp),

...

dxn

dt
= fn(x1, . . . , xn, α1, . . . , αp),

(1.1)

dependent on the parameters αi ∈ R, which describes a motion in an n-dimensional state

(phase) space R
n, where each fj is assumed to be sufficiently smooth. Introduce a phase

vector x ∈ R
n and a parameter vector α ∈ R

p with coordinates x = (x1, . . . , xn) and

α = (α1, . . . , αp). With an abuse of notation we write

fi(x, α) = fi (x1, . . . , xn, α1, . . . , αp) , i = 1, 2, . . . , n.
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Thus the system (1.1) can be written in the form







dx1

dt
= f1(x, α),

dx2

dt
= f2(x, α),

...

dxn

dt
= fn(x, α).

(1.2)

The function fi can be regarded as the ith component of the vector-valued function f(x, α)

defined by

f(x, α) = (f1(x, α), . . . , fn(x, α)) .

Then the system (1.2) can be written in compact form as

ẋ :=
dx

dt
= f(x, α). (1.3)

The unique solution x(t) of (1.3) with initial condition x(t0) = x0 for a fixed value of α,

α = α0, defines a Ck-mapping†

ϕt
α0

: Rn → R
n,

which transforms x0 ∈ R
n into some state x(t) ∈ R

n at time t:

ϕt
α0

(x0) = x(t).

This map is called the flow determined by (1.3). From now, we drop the subscript α0 to

simplify writing.

Definition 1.1. A continuous-time dynamical system is a triplet {R,Rn, ϕt}, where ϕt :

R
n → R

n is a local flow parametrized by t ∈ R and satisfying the properties

(1) For all x0 ∈ R
n the equation ϕ0 (x0) = x0 holds,

(2) For all x0 ∈ R
n and t, s ∈ R the relation ϕt+s(x0) = ϕtoϕs (x0) holds, where the

composition symbol “o” means

ϕtoϕs (x0) = ϕt (ϕs (x0)) .

Similarly, the notion of discrete-time dynamical systems can be introduced as follows

†Ck means that the map ϕt
α0

has the same smoothness as the R.H.S. of (1.3).
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Definition 1.2. A discrete dynamical system is a triplet {Z,Rn, ϕk}, where ϕk : Rn → R
n

is a local flow parametrized by k ∈ Z and satisfying the properties

(1) For all x0 ∈ R
n the equation ϕ0 (x0) = x0 holds,

(2) For all x0 ∈ R
n and k, m ∈ Z the relation ϕk+m(x0) = ϕkoϕm (x0) holds.

If we consider ϕt as the flow map of a continuous-time dynamical system, then the (time-1)

map ϕ1 defines an invertible discrete-time dynamical system. An example of discrete-time

dynamical system is an n-dimensional map which can be written in compact form as

xk+1 = f(xk, α), (1.4)

where xk = (xk,1, xk,2, . . . , xk,n) ∈ R
n, α ∈ R

p, k ∈ Z denotes the time and the vector-

valued function f : R
n × R

p → R
n is assumed to be sufficiently smooth. It thus follows

that

xk = fk(x0, α0)

where fk denotes a k-fold compositions of f to (x0, α0), fk = fofo . . . of
︸ ︷︷ ︸

k−times

.

Definition 1.3. A dynamical system {T,Rn, ϕt}, where T is a time set (T = R or T =

Z), is called topologically equivalent to a dynamical system {T,Rn, φt} if there is a homeo-

morphism†h : Rn → R
n mapping orbits of the first system onto orbits of the second system,

preserving the direction of time.

The orbit (or trajectory) of ϕt starting at x0 is an ordered subset of the state space X,

Or(x0) = {x ∈ X : x = ϕt(x0), for all t ∈ T}.

In the study of dynamical systems, we are mostly interested in a special class of orbits,

namely the invariant sets.

Definition 1.4. Let Ω ⊂ R
n be a set in the state space of a dynamical system {T,Rn, ϕt}.

Ω is said to be invariant under the dynamical system if for any x0 ∈ Ω we have ϕt (x0) ∈ Ω

for all t ∈ T .

An example of invariant sets is the equilibria.

†A continuous map with continuous inverse is called homeomorphism.
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Definition 1.5. A point x = x0 at α = α0 is called an equilibrium (a fixed point) if

ϕt (x0) = x0 for all t ∈ R (for all t ∈ Z).

Another example of invariant sets is a periodic orbits which is defined as follows

Definition 1.6. [88] A cycle or periodic orbit Γ is an orbit that for each point x0 ∈ Γ holds

that ϕt (x0) Ó= x0 and ϕt+T0(x0) = ϕt(x0) with some T0 > 0, for all t ∈ R. The minimal T0

with this property is called the period of the cycle Γ. A cycle of a continuous-time dynamical

system, in a neighborhood of which there are no other cycles, is called a limit cycle.

Note that, for a given equilibrium solution (x0, α0) one can always move it to the origin,

(0, 0), by a change of coordinates, so from now we assume (0, 0) to be an equilibrium for

(1.3).

1.2 Taylor expansion, linear stability analysis

At x = 0, α = 0 the Taylor expansion of (1.3) can be expressed as

f(x, α) = Ax + J1α +
1

2
B(x, x) + A1(x, α) +

1

2
J2(α, α) +

1

6
C(x, x, x) +

1

2
B1(x, x, α)

+ O
(
‖x‖‖α‖2 + ‖α‖3

)
+ O

(
‖(x, α)‖4

)
,

(1.5)

where A = fx(x, α)|0 denotes the Jacobian matrix evaluated at (0, 0), J1 = fα(x, α)|0 and

B, A1, J2, C, B1, . . . are vector-valued functions with n components. The ith component of

these functions are defined by







Bi(x, y) =

n∑

j,k=1

∂2fi(ξ, µ)

∂ξj∂ξk

∣
∣
∣
0
xjyk, A1,i(x, α) =

n∑

j=1

p
∑

k=1

∂2fi(ξ, µ)

∂ξj∂µk

∣
∣
∣
0
xjαk,

J2,i(α, δ) =

p
∑

j,k=1

∂2fi(ξ, µ)

∂µj∂µk

∣
∣
∣
0
αjδk, Ci(x, y, z) =

n∑

j,k,l=1

∂3fi(ξ, µ)

∂ξj∂ξk∂ξl

∣
∣
∣
0
xjykzl,

B1,i(x, y, α) =

n∑

j,k=1

p
∑

l=1

∂3fi(ξ, µ)

∂ξj∂ξk∂µl

∣
∣
∣
0
xjykαl, . . . .

(1.6)

For a fixed value of α, the terms J1, A1(x, α), J2(α, α), B1(x, x, α) . . . need not be considered

and we have,

ẋ = Ax + O(‖x‖2). (1.7)
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Near x = 0 the terms O(‖x‖2) are negligible so that we may try to approximate (1.7) by the

linear part, i.e., ẋ = Ax. It is possible to transform the matrix A to an “almost” diagonal

form. This form is known as the Jordan canonical form.

Theorem 1.1 (The Jordan Canonical form). Let A be a real matrix with k real eigen-

values and n − k complex eigenvalues. Then there exists a non-singular matrix P such that

the matrix J = P −1AP is a block diagonal matrix of the form J = diag [J1, . . . , Js]. The

elementary Jordan blocks J = Jr, r = 1, . . . s are either of the form J = diag [λ, . . . , λ] + N

for λ one of the real eigenvalues of A or of the form J = diag [D, . . . , D] + N2 for λ = a + ib

(complex eigenvalues of A), where N is the nilpotent matrix with ones on the super-diagonal

and zero elsewhere, D =

(

a −b

b a

)

and N2 is the nilpotent matrix with

(

1 0

0 1

)

on the

super-diagonal and zero elsewhere.

Hence, the general solution x(t) with an initial condition x0 is obviously given by

x(t) = x0 P
{

diag
[
etJj

]}
P −1,

where if λ is a real eigenvalue of A and Jj = J is an m × m matrix then

etJ = eλt










1 t . . . tm−1

(m−1)!

0 1 . . . tm−2

(m−2)!

...
...

. . .
...

0 0 1










.

Similarly, if λ = a + ib and Jj = J is a 2m × 2m matrix then

etJ = eat










R Rt . . . Rtm−1

(m−1)!

0 R . . . Rtm−2

(m−2)!

...
...

. . .
...

0 0 R










.

where R =

(

cos(bt) − sin(bt)

sin(bt) cos(bt)

)

. In general, it is clear that if ℜ(λ) is negative then every

element of etJ decays to zero and if ℜ(λ) > 0, then some elements of etJ diverge to ∞.
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Definition 1.7. An equilibrium point is said to be hyperbolic if the Jacobian matrix has no

eigenvalues on the imaginary axis.

Two invariant sets are associated to a hyperbolic equilibrium x = 0 at some fixed value

of α, namely the stable and unstable sets of 0 given by W s =
{

x
∣
∣ϕt (x) → 0, t → +∞

}
,

W u =
{

x
∣
∣ϕt (x) → 0, t → −∞

}
, respectively. Note that if we perturb the system (1.3)

slightly, then the hyperbolic equilibrium point cannot disappear, nor can another equilibrium

point be born near it. Indeed the following theorem holds:

Theorem 1.2. Consider a family of autonomous ODEs

ẋ =
dx

dt
= f(x, ε), 0 < ε ≪ 1,

such that at ε = 0 there exists a hyperbolic equilibrium point x = 0. Then the system has a

unique hyperbolic equilibrium xε in a small neighborhood of 0 for all small ε.

Definition 1.8. Two maps x Ô→ f(x) and y Ô→ g(y), f, g : Rn → R
n, are called topologically

conjugate if there is a homeomorphism y = h(x), h : Rn → R
n, such that f = h−1 ◦ g ◦ h(x)

for all x ∈ R
n.

We note that the conjugacy in the previous definition can be localized at some fixed point p

and q if there are an open neighborhoods U ⊂ R
n of p and V ⊂ R

n of q, and a homomorphism

h : U → V that satisfies f = h−1 ◦ g ◦ h(x) for all x ∈ U such that f(x) ∈ U and q = h(p).

Theorem 1.3 (Hartman and Grobman). Let x = 0 be a hyperbolic fixed point of (1.3)

at some fixed value of α, and ϕt denote the flow of (1.3). Then there is a neighborhood Ω

of 0 such that ϕt is locally topologically conjugate to the flow generated by the linear system

ẋ = Ax.

Therefore, the dynamics in the neighborhood of a hyperbolic equilibrium point are

guaranteed to be “simple”. Thus the stability of the hyperbolic equilibrium point is deter-

mined completely by the eigenvalues of the matrix A.

Lemma 1.4. An equilibrium of a continuous-time dynamical system is locally asymptotically

stable if for all eigenvalues λ of the Jacobian matrix holds that ℜ(λ) < 0. If for at least one

eigenvalue holds that ℜ(λ) > 0, the equilibrium is unstable.



1 Preliminaries | 7

As for the continuous-time dynamical systems, the following holds for a discrete-time

dynamical system.

Definition 1.9. A fixed point is said to be hyperbolic if the Jacobian matrix has no eigen-

values with magnitude equal to one.

Lemma 1.5. A fixed point of a discrete-time dynamical system is locally asymptotically

stable if all eigenvalues µ of the Jacobian matrix have magnitude smaller than one. If for at

least one eigenvalue holds that the magnitude is larger than one, the fixed point is unstable.

1.3 Center manifold and normal forms

The Hartman-Grobman theory shows that the local behavior of the flow near a hyperbolic

equilibrium point is determined by the linearized flow. In this section we discuss a results

for determining the stability and qualitative behavior in a neighborhood of a nonhyperbolic

equilibria. Assume that (1.7) has a nonhyperbolic equilbrium at x = 0, and further assume

that there are n− eigenvalues with ℜ(λ) < 0, n0 with ℜ(λ) = 0, and no eigenvalues with

ℜ(λ) > 0 † (n− + n0 = n). Let T be a non-singular matrix such that

J = T −1AT =

(

Jc 0

0 Js

)

,

where Jc and Js are the blocks in the diagonal matrix whose diagonals contain the eigenvalues

with ℜ(λ) = 0 and ℜ(λ) < 0, respectively.

Write

x = T

(

u

v

)

, u ∈ R
n0 , v ∈ R

n− .

Thus (1.7) becomes
(

u̇

v̇

)

= J

(

u

v

)

+

(

g1(u, v)

g2(u, v)

)

.

where g1(u, v) and g2(u, v) are the first n0 and last n− components, respectively, of the vector

T −1O(‖T (u, v) ‖2).

†If the matrix A has n+-eigenvalues with positive real part, then x = 0 is unstable with an n+-dimensional
unstable manifold.
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Theorem 1.6 (Center manifold theorem). There exists an invariant Ck-center manifold

W c(0) = { (u, v) ∈ R
n0 × R

n− | v = H(u), ‖u‖ < δ, H(0) = 0,
∂

∂u
H(0) = 0},

for δ sufficiently small, which satisfies

∂

∂u
H(u) (Jcu + g1(u, H(u))) = JsH(u) + g2(u, H(u)).

Once H(u) is determined, the system describing the dynamics on the center manifold is given

by the following n0-dimensional system

u̇ = Jcu + g1(u, H(u)). (1.8)

The center manifold is exponentially attractive. So, to understand what happens to the

system around the non-hyperbolic equilibrium point, it is sufficient to investigate what

happens in the center manifold. In this way, the study of a high-dimensional dynamical

system can be reduced to the study of a low-dimensional center manifold.

To write (1.8) in the simplest form, i.e., the critical normal form, that is easier to analyze,

we first rearrange terms in (1.8),

u̇ = Jcu + g2
1(u) + O(‖u‖3), (1.9)

where g2
1(u) is a real n0-dimension vector whose components are homogenous polynomials of

degree 2 in u, i.e., g2
1(u) ∈ H2. Then we apply a near-identity transformation of coordinates†

u = w + z2(w), z2(w) ∈ H2, (1.10)

where the coefficients of z2(w) are unknown and to be determined. Substituting (1.10) into

(1.9) gives
(

I +
∂

∂w
z2(w)

)

ẇ = Jcw + Jcz2(w) + g2
1(w) + O(‖w‖3) (1.11)

For sufficiently small w,
(
I + ∂

∂w
z2(w)

)−1
exists. By the binomial theorem we have

(

I +
∂

∂w
z2(w)

)−1

= I − ∂

∂w
z2(w) +

(
∂

∂w
z2(w)

)2

+ . . . .

†This method originated in the Ph.D thesis of Poincaré [110].



1 Preliminaries | 9

Thus (1.11) becomes

ẇ = Jcw + Jcz2(w) −
(

∂

∂w
z2(w)

)

Jcw + g2
1(w) + O(‖w‖3) (1.12)

The second-order terms Jcz2(w) −
(

∂
∂w

z2(w)
)

Jcw + g2
1(w) can be simplified (or, in the ideal

case, removed) by solving the homological equation,

(
∂

∂w
z2(w)

)

Jcw − Jcz2(w) = g2
1(w), (1.13)

for the unknown coefficients of z2(w). After possible elimination of terms, we can write (1.9)

in the critical normal form,

ẇ = Jcw + S2(w) + O(‖w‖3).

If S2(w) Ó= 0 then it is referred to as the resonance vector which contains the second-order

terms that cannot be eliminated by the nonlinear transformation (1.10). As we mentioned

before, in the ideal case S2(w) = 0. In general it is possible to generalize this method to

simplify the gr
1(u) ∈ Hr terms of (1.8), see, for example, [6, 7, 25, 109, 131] for more detail.

1.4 Equilibria and their bifurcations

For a fixed value of α, assume that ϕt is a flow of (1.3) that is uniquely determined by an

initial condition x0. The collection of orbits corresponding to various initial conditions of (1.3)

in phase space forms the so-called phase portrait. The phase portrait provides information

about the qualitative behavior such as whether an attraction or a repeller present in (1.3). If

α is varied slightly, then it may happen that the new phase portrait is nonequivalent to the

original one. In this case the corresponding parameter value α = αc is called a bifurcation

point, where a bifurcation is said to occur.

Definition 1.10. The appearance of a topologically nonequivalent phase portrait under

variation of a parameter is called a bifurcation.

The bifurcation diagram shows the topologically nonequivalent strata in parameter space,

together with their corresponding phase portraits. The minimal number of parameters that

have to be varied for the detection of the bifurcation is called the codimension of a bifurcation

(codim). Bifurcations are said to be local if they occur in an arbitrary small neighborhood
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of the equilibrium; otherwise they are said to be global. To study what happens to (1.3) as

α varies near the bifurcation value α = αc, the standard approach is used. This approach

has several steps (see for example [6, 88] for further details):

(1) Reduction: Restrict (1.3) at the bifurcation parameter α = αc to the appropriate

center manifold (the parameter-independent center manifold).

(2) Normalization: Simplify the dynamics in the center manifold by computing the

critical normal form for the bifurcation.

(3) Unfolding: Introduce small terms (linear and possibly nonlinear) into the critical

normal form for the bifurcation to describe the effects of varying α away from αc. This

yields the model system for the bifurcation.

(4) Equating: Prove that (1.3) is locally (near α = αc) topological equivalent to the

model system. The model system then is called the topological normal form.

Codimension 1 bifurcations of equilibria

In particular, we are interested in the local bifurcation that occurs when one parameter

change causes the stability of an equilibrium to change.

Definition 1.11. The bifurcation associated with the appearance of a simple real eigenvalue

λ = 0 is called a limit point bifurcation (LP) (or fold or saddle-node bifurcation).

The limit point bifurcation corresponds with a collision and disappearance of two equilibria,

a stable and an unstable one, when crossing the bifurcation parameter value α = αc. At

the bifurcation value a saddle-node equilibrium appears. The topological normal form at the

limit point bifurcation is given by the one-dimensional system

ẇ = β + aLPw2, w ∈ R.

where aLP Ó= 0 is the normal form coefficient and β is the unfolding parameter.

Definition 1.12. The bifurcation corresponding to the presence of a simple conjugate pair

of eigenvalues satisfying ℜ(λ) = 0 (λ = ±iω0) is called an Andronov-Hopf bifurcation (H).
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The topological normal form at the Hopf bifurcation is given by the two-dimensional system

ż = (iω0 + β) z + l1z|z|2, z ∈ C,

where β is the unfolding parameter and l1 Ó= 0†. At the Andronov-Hopf point a periodic orbit

is born and there is an exchange of stability of the equilibrium. A stable periodic orbit is

born from a stable equilibrium if l1 is negative, in which case the Andronov-Hopf bifurcation

is supercritical or soft. Otherwise, the periodic orbit is unstable and coexists with the stable

equilibrium, which corresponds with a subcritical or hard bifurcation.

Codimension 2 bifurcations of equilibria

Codim-2 bifurcation points are points where curves corresponding to codim-1 bifurcations

intersect transversally or tangentially. In generic system (1.3) only five codim-2 bifurcations

of equilibria are possible [88]. We list them in Table 1.1. Note that the coefficients aLP and l1

appear in the normal forms of the limit point and Andronov-Hopf bifurcation, respectively.

The eigenvalues mentioned in the table are assumed to be the only ones for which ℜ(λ) = 0.

1.5 Homoclinicity in two-dimensional vector-field

In this section, we discuss the existence of homoclinic bifurcation ‡ in two-dimensional

systems (as in the BT normal form for ODEs and maps). So we restrict to the study of

existence of a homoclinic orbit in (1.3) when n = 2 and the parameter α is assumed to be

fixed.

Definition 1.13. An orbit Γ starting at a point x ∈ R
n is called a homoclinic orbit to the

equilibrium point x = 0 of system (1.3) if for some parameter values ϕtx → 0 as t → ±∞.

In general, there are two invariant sets related to homoclinic orbits, namely the stable and un-

stable manifolds. These manifolds are tangent to the stable (generalized) eigenspace, corres-

ponding to the union of all eigenvalues λ of A with ℜ(λ) < 0, and the unstable (generalized)

eigenspace, corresponding to the union of all eigenvalues λ of A with ℜ(λ) > 0, respectively.

Depending on the type of equilibrium and the correspond invariant sets there are many kinds

of homoclinic orbits (for further details, see for example [16, 32, 33, 47]):

†l1 is called the first Lyapunov coefficient.
‡Homoclinic bifurcation is a global bifurcation.
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Name Properties The model systema

Cusp (C) λ = 0, aLP = 0 ẇ = β1 + β2w + cw3, c ∈ R,

Bogdanov-Takens (BT) λ1,2 = 0

(

ẇ0

ẇ1

)

=

(

w1

β1 + β2w1 + aw2
0 + bw0w1

)

, (a, b) ∈ R
2,

Generalized-Hopf (GH) λ1,2 = ±iω0, l1 = 0 ż = (β1 + iω0)z + β2z|z|2 + l2z|z|4, l2 ∈ R,

Zero-Hopf (ZH) λ1 = 0, λ2,3 = ±iω0

(

ẇ

ż

)

=

(

β1 + b(β)w2 + c(β)|z|2

(β2 + iω(β))z + d(β)wz + e(β)w2z

)

+ O(‖(w, z, z̄)‖4),

b, c, ω, e are real functions, d is a complex function.

Hopf-Hopf (HH) λ1,2 = ±iω1, λ3,4 = ±iω2

(

ż0

ż1

)

=

(

(β1 + iω1)z0 + P12z0|z1|2 + 1

2
P11z0|z0|2 + 1

4
S1z0|z1|4 + iR1z0|z0|4

(β2 + iω2)z1 + P21z1|z0|2 + 1

2
P22z1|z1|2 + 1

4
S2z1|z0|4 + iR2z1|z1|4

)

O(‖(z0, z̄0, z1, z̄1)‖6),

Pjk, Sk are complex, Rk are real.

Table 1.1: Codim-2 bifurcations of equilibria. See [16, 87, 88] for background information and notation used.

aFor the cusp, Bogdanov-Takens and generalized-Hopf bifurcations, the model system is the topological normal form. In the model systems: w ∈ R,
(w0, w1) ∈ R2, z ∈ C, (z0, z1) ∈ C2 and β = (β1, β2) ∈ R2 are the unfolding parameters.
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Codimension 1 homoclinic bifurcations:

Homoclinic to hyperbolic-saddle, Homoclinic to saddle-node.

Codimension 2 homoclinic bifurcations:

Non-central Homoclinic to saddle-node, Neutral saddle, Neutral saddle-focus, Neutral bi-

focus, Shilnikov-Hopf, Double real stable leading eigenvalue, Double real unstable lead-

ing eigenvalue, Neutrally-divergent saddle-focus (stable), Neutrally-divergent saddle-focus

(unstable), Three leading eigenvalues (stable), Three leading eigenvalues (unstable), Orbit-

flip with respect to the stable manifold, Orbit-flip with respect to the unstable manifold,

Inclination-flip with respect to the stable manifold, Inclination-flip with respect to the un-

stable manifold.

1.5.1 Melnikov’s method for homoclinic orbits

Consider the following two-dimensional system of ODEs of the form

(

ẋ

ẏ

)

=

(

y

f(x)

)

+ ε

(

g1(x, y)

g2(x, y, τ)

)

, 0 < ε ≪ 1,

or, equivalently, in a vector-field form:

X = Xh + εXp, (1.14)

where

Xh = y ∂x + f(x) ∂y, Xp = g1(x, y) ∂x + g2(x, y, τ) ∂y,

f , g1, g2 are sufficiently smooth and τ is referred to as a homoclinic bifurcation parameter.

Assume that

(1) There exists k ∈ R such that h(x, y) := 1
2 y2 −

∫ x

0
f(z) dz − k = 0 defines a homoclinic

loop to a hyperbolic saddle point ρ0. This loop is explicitly known and it is defined by

L0(t) = (x0(t), y0(t)).

(2) For ε small, the vector-field (1.14) possesses a homoclinic orbit at the critical value

τ = τc(ε).

To obtain information about the homoclinic solution of (1.14) when ε Ó= 0, one needs to

approximate it by perturbation (asymptotic) techniques. According to these techniques, the

homoclinic solution can be approximated by the first few terms of an asymptotic expansion in

the phase space, (x, y) = (x0, y0) + ε(x1, y1) + ε2(x2, y2) + O(ε3), together with an expansion
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of the homoclinic bifurcation parameter, τ = τ0 + ετ1 + ε2τ2 + O(ε3). A detailed discussion

of different perturbation approaches to find asymptotics for the homoclinic solution of (1.14)

-with explicitly given f, g1, g2- will be presented in Chapter 3.

We start with basic perturbation results. Since the fixed point ρ0 is hyperbolic it will

continue to exist in the vector-field (1.14) for ε small, say ρε. However, the stable and

unstable manifolds W s(ρε), W u(ρε) of ρε will in general not coincide and hence there is

no homoclinic orbit to ρε. The distance between W s(ρε), W u(ρε) can be approximated by

the Melnikov method [78, 106, 131]. Further we can use this approximation to compute

the critical homoclinic parameter τc(ε) ≈ τ0 where the distance between the stable and

unstable manifolds vanishes. Let Ls
ε(t), Lu

ε (t) be the trajectories lying in W s(ρε), W u(ρε),

respectively, which can be expressed as follows (see [78, Lemma 4.5.2])







Ls
ε(t) = L0(t) + εLs

1(t) + O(ε2), t ∈ [0, ∞) ,

Lu
ε (t) = L0(t) + εLu

1 (t) + O(ε2), t ∈ (−∞, 0] ,

(1.15)

where L
s,u
i (t) = (xs,u

i (t), y
s,u
i (t)) are uniformly bounded in the indicate intervals. As shown

in Figure 1.1, we assume that the saddle point ρ0 to be at the origin. Then for fixed

t = 0 (i.e., at γ0 = L0(0)) the displacement vector d between W s(ρε), W u(ρε) is given by:

d(0) = γ+
0 − γ−

0 and hence

d(0) = Lu
ε (0) − Ls

ε(0) = ε (Lu
1 (0) − Ls

1(0)) + O(ε2). (1.16)

On the other hand, the unit normal vector v to the unperturbed homoclinic orbit at γ0 is

given by

v =

(
∂h
∂x

, ∂h
∂y

)

√
(

∂h
∂x

)2
+

(
∂h
∂y

)2
=

(
− f(x0(0)), y0(0)

)

√

f2(x0(0)) + y2
0(0)

. (1.17)

By projecting the distance vector d(0) onto the unit normal vector v, we obtain the following

distance function between the stable and unstable separatists of the flow generated by (1.14):

∆(0) = ε 〈v, d(0)〉 + O(ε2). (1.18)

Hence,

∆(0) = ε

(

∆u(0) − ∆s(0)
√

f2(x0(0)) + y2
0(0)

)

+ O(ε2), (1.19)

where ∆u,s(0) = y0(0)yu,s
1 (0) − f(x0(0))xu,s

1 (0). Note that, the ε-term of (1.19) vanishes if

∆u(0) = ∆s(0). We define the Melnikov function as
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M(0) = ∆u(0) − ∆s(0). (1.20)

If the time t is no longer assumed to be 0, we can rewrite (1.20) as a function of time t,

M(t) = ∆u(t) − ∆s(t), (1.21)

where ∆u,s(t) = y0(t)yu,s
1 (t) − f(x0(t))xu,s

1 (t). To simplify (1.20), differentiate (1.21) with

respect to t to obtain

d

dt
∆u,s(t) = y0(t)ẏu,s

1 (t) + ẏ0(t)yu,s
1 (t) − f(x0(t))ẋu,s

1 (t) − f ′(x0(t))ẋ0(t)xu,s
1 (t). (1.22)

The components ẋ
u,s
1 (t), ẏ

u,s
1 (t) can be computed as follows. Substituting (1.15) into (1.14)

with the expansions for

f(xu,s
ε (t)) = f(x0(t)) + εf ′(x0(t))xu,s

1 (t) + O(ε2), (1.23)

g1(xu,s
ε (t), yu,s

ε (t)) = g1(x0(t), y0(t)) + O(ε), (1.24)

g2(xu,s
ε (t), yu,s

ε (t), τ) = g2(x0(t), y0(t), τ0) + O(ε), (1.25)

then equating the coefficient of equal ε gives







ẋ
u,s
1 (t) = y

u,s
1 (t) + g1(x0(t), y0(t)),

ẏ
u,s
1 (t) = f ′(x0(t))xu,s

1 (t) + g2(x0(t), y0(t), τ0).

(1.26)

Substitute (1.26) into (1.22) to get

d

dt
∆u,s(t, τ0) = y0(t)g2(x0(t), y0(t), τ0) − f(x0(t))g1(x0(t), y0(t)),

or simply
d

dt
∆u,s(t, τ0) = (Xph)|

L0(t) .

Finally, we integrate from −∞ to 0 and 0 to ∞ to obtain

∆u(0, τ0) − ∆u(−∞, τ0) =

∫ 0

−∞
(Xph)|

L0(t) dt,

∆s(∞, τ0) − ∆s(0, τ0) =

∫ ∞

0

(Xph)|
L0(t) dt.
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Note that ∆u(−∞, τ0) = 0 and ∆s(∞, τ0) = 0 because lim
t→±∞

(f(x0(t)), y0(t)) = (0, 0), and

x
u,s
1 (t), y

u,s
1 (t) are bounded. Thus, the Melnikov function (1.20) becomes

M(τ0) = ∆u(0, τ0) − ∆s(0, τ0),

or

M(τ0) =

∫ ∞

−∞
(Xph)|

L0(t) dt. (1.27)

This function vanishes along the curve M(τ0) = 0 which gives a zero-order asymptotic

formula of the actual homoclinic bifurcation parameter τ = τc(ε), i.e., τ ≈ τc(0).

x

y

ρε

ρ0

γ−

0

γ+
0

d(0)

γ0

v

Figure 1.1: Construction of the distance function d(0). The dashed curve is the un-
perturbed homoclinic orbit to ρ0. The solid curves are the stable and unstable manifolds
W s(ρε), W u(ρε) of the perturbation of the saddle ρ0 (i.e., ρε). The points γ−

0 , γ+

0 represent
the points on each of the stable and unstable manifolds, respectively, closest to the point
γ0 = L0(0) on the unperturbed homoclinic orbit.

Example 1.1. Consider the following vector-field

V = V1 + V2, (1.28)

where V1 = v∂u +
(
−4 + u2

)
∂v and V2 =

(
ε b

a
v (τ + u)

)
∂v, which results from applying the

singular rescaling (3.1) to the BT normal form (2.23). The vector-field V1 is a Hamiltonian

system with the first integral

h(u, v) :=
v2

2
+ 4u − u3

3
− k = 0 k ∈ R. (1.29)
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The phase portrait of (1.29) is presented in Figure 1.2. Every closed orbit of (1.29) surround-

ing (−2, 0) corresponds to a level curve: Γh =
{

(u, v) | h(u, v) = 0, −16
3 < k < 16

3

}
, Γh

shrinks to the equilibrium (−2, 0) as k → −16
3 and tends to a homoclinic solution as k → 16

3 .

The Hamiltonian system has a well-known explicit homoclinic solution L0(s) = (u0(s), v0(s))

given by (see for example [16, p.213]): L0(s) =
(
2 − 6 sech2(s), 12 sech2(s) tanh(s)

)
. The

Melnikov integral (1.27) is given by

M(τ0) =

∫ −∞

∞
(V2h)|L0(s) ds = ε

b

a

∫ ∞

−∞
v2

0(s) (τ0 + u0(s)) ds = ε
192

35

b

a
(7τ0 − 10) .

This function vanishes when τ0 = 10
7 , and hence the homoclinicity of (1.28) occurs at

τ =
10

7
+ O(ε). (1.30)

−5 −1 3 7
−7

0

7

u

v

k =
16

3

k =
32

3

k =
4

15

k = −4

k = −

32

3

k = −

16

3

Figure 1.2: The phase curves of (1.29) for k = { −32

3
, −16

3
, −4, 4

15
, 16

3
, 32

3
}

A collision criterion of the limit cycle with a homoclinic orbit

Assume that at τ = τc(ε) the homoclinic orbit of (1.14) exists by the (dis)appearance of

an isolated periodic orbit (limit cycle) C. Suppose that for ε small, C survives in the

neighborhood of the homoclinic orbit of the unperturbed vector-field Xh. Let c0 be a point

on C and the line that connects the perturbed hyperbolic saddle ρε to the focus F , see Figure

1.3. It is clear that as τ → τc we have c0 → ρε. Thus, the homoclinicity condition τ = τc(ε)

is satisfied if a collision occurs between the limit cycle and the saddle, i.e,:

c0 = ρε. (1.31)
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In [13, 14], it was shown that if the kth-order approximation of the limit cycle (x̂, ŷ),

(

x̂

ŷ

)

=

(

x0

y0

)

+ ε

(

x̂1

ŷ1

)

+ . . . + εk

(

x̂k

ŷk,

)

that bifurcates near the unperturbed homoclinic orbit exists, then one can use condition

(1.31) to derive a higher-order approximation for the homoclinicity condition

τc(ε) =

k−1∑

n=0

εnτn + O(εk).

ρε c0

F

x

y

Figure 1.3: The collision of the periodic orbit C and the perturbation saddle ρε.

In Chapter 3, we derive a second-order approximation for the homoclinic bifurcation

parameter of (1.28) by using a generalization of the Lindstedt-Poincaré perturbation method

based on the criterion (1.31) †. This parameter is

τ =
10

7
+ ε2 288

2401

b2

a2
+ O(ε3). (1.32)

For (a, b) = (−1, 1), we integrate (1.28) using the built-in MATLAB function ode45. The

initial point is set to (x, y) = (1.99999, 0). We use the homoclinic bifurcation parameter as

given in (1.30) and (1.32) with different ε values. As a result, the Melnikov method fails

in predicting the homoclinic orbits for ε moderate, see Figure 1.4a. On the other hand,

†In Chapter 3, we use hyperbolic functions rather than the Jacobian elliptic functions were used in [13].
This allows to approximate the actual homoclinic situation. In [13], the Jacobian elliptic functions was used
to approximate the limit cycle of period T close to the homoclinicity. However, both functions lead to the
same homoclinicity condition τc(ε).
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the solution based on the collision criterion (1.31) leads to a good approximation to the

bifurcation parameter τ even for ε small where the computed orbits always converge to the

actual homoclinic situation, see Figure 1.4b.

−6 3
−5

7

x

y

(a)

−6 3
−5

7

x

y

(b)

Figure 1.4: Forward and backward numerical integration of (1.28) starting at (x, y) =
(1.99999, 0) for ε=0.3 and (a, b) = (−1, 1). (a) τ = 10

7
, (b) τ = 10

7
+ ε2 288

2401
.

Homoclinicity using Mathematica

This section discusses a numerical method to approximate the homoclinic bifurcation

parameter τ = τc(ε) in (1.28). The simple idea is based on using the interactive command

Manipulate of the software package Mathematica. Consider again the vector-field (1.28). We

can numerically integrate the invariant manifolds of the saddle point (2, 0) for fixed values of

ε and τ . However, to obtain the homoclinic solution, we need a suitable choice (a homoclinic

choice) of these variables†. In fact, we can use the command Manipulate to control these

variables via an interactive interface and then to handle them until the homoclinicity occurs.

To do so, we assume that τ ∈ [ 10
7 , 1.55] (where τ steps through this interval with step 10−6)

and ε ∈ [0, 1] (with step equal to 0.05). Evaluating the following command

1 Clear [u, s, tau , T, eps]

Manipulate [ Module [{ sol= NDSolve [{u’’[s]+4 -u[s ]^2== eps*u ’[s]*( tau+u[s]) ,

3 u [0]== p[[1]] , u ’[0]== p[[2]]} ,u ,{s,0,T}]} ,

ParametricPlot [ Evaluate [{u[s],u ’[s]}/. sol ],{s,0,T},

5 PlotRange - >{{ -5 ,3} ,{ -10 , 5}}]] ,{{p ,{1.9999999 ,0.0000001}} , Locator },

{{T , -20} , -500 ,500} ,{{ tau ,10/7} ,10/7 ,1.55 ,1*10^ -6} ,{{ eps ,0} ,0 ,1 ,0.05}]

returns the interactive window presented in Figure 1.5. We gradually increase ε with step

size 0.05. At each ε we find the corresponding value of τ where the homoclinicity occurs,

i.e., the stable and unstable manifolds connect again at the saddle point (2, 0). Figure 1.6a

†One option is to use (1.32). However, here we do not assume any information about the homoclinicity
in (1.28).
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shows the situation when ε = 0.6 and τ = 10
7 , it is clear that there is no homoclinic orbit.

We increase τ until the homoclinicity occurs which happens at τ = 10296541
7000000 , see Figure 1.6b.

By computing the value of τ at each ε, we obtain the following list of homoclinic sets {ε, τ}:

hom = {{0 ,10/7} , {0.05 ,5001057/3500000} , {0.1 ,10009429/7000000} ,

2 {0.15 ,10018879/7000000} ,{0.2 ,10033607/7000000} , {0.25 ,2010507/1400000} ,

{0.3 ,2015113/1400000} , {0.35 ,315699/218750} , {0.4 ,101337/70000} ,

4 {0.45 ,635521/437500} , {0.5 , 10207277/7000000} ,{0.55 , 256251/175000} ,

{0.6 , 10296541/7000000} ,{0.65 ,5173341/3500000} , {0.7 , 10400323/7000000} ,

6 {0.75 ,5228669/3500000} , {0.8 , 10517573/7000000} ,{0.85 ,10580867/7000000} ,

{0.9 , 5323519/3500000} , {0.95 ,1071589/700000} , {1 ,10787213/7000000}}

Next, we fit these pairs with a curve:

1 tau= Rationalize [Fit[hom ,{1 , eps ^2, eps ^4} , eps ] ,10^ -4]

The result of this is

τ =
10

7
+

7

58
ε2 − 1

122
ε4. (1.33)

Compared to the homoclinicity condition (1.32), equation (1.33) gives a better prediction to

the actual homoclinic situation for large ε. This can be easily checked by plugging (1.32) and

(1.33) back into the first Mathematica command. For ε = 1.4, Figure 1.7 plots the solution

of (1.28) based on (1.32) (Figure 1.7a) and based on (1.33) (Figure 1.7b).

Figure 1.5: Mathematica interactive window of the command Manipulate. The un-
perturbed homoclinic orbit of (1.28) is shown. Note that the unperturbed part is in-
dependent of the choice of τ .
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(a) (b)

Figure 1.6: Mathematica interactive window of the command Manipulate. For ε = 0.6, (a)
the invariant manifolds of the saddle (2, 0) for τ = 10

7
, (b) homoclinic orbit to the saddle

(2, 0) for τ = 10296541

7000000
.

(a) (b)

Figure 1.7: Mathematica interactive window of the command Manipulate. For ε = 1.4,
(a) the invariant manifolds of the saddle point (2, 0) based on (1.32), (b) homoclinic orbit
to the saddle (2, 0) based on (1.33).



22 | 1.6 Chaos and the logistic map

1.6 Chaos and the logistic map

In this section we introduce some concepts and lemmas, which will be used in Chapter 6. As

an illustration, we briefly study the logistic map. The standard form of this map is

xn+1 = f(xn), n = 1, 2, 3, . . . (1.34)

where f(x) := µx(1 − x) and µ > 0 is a parameter. The logistic map was first introduced by

the Belgian sociologist and mathematician, Pierre-François Verhulst (1804-1849), see [129],

to describe the population growth with limited resource from time n to n + 1. The variable

x represents the population and µ represents the growth rate. For all x > 1 and x < 0,

fn(x) → −∞ as n → ∞ [50, Proposition 5.2]. So the interesting behaviors occur in the

unit interval [0, 1].

Existence and stability of 2-,3-cycles

Definition 1.14. Consider the map (1.4). For a fixed value of α, α = α0, a point x0 is

said to be a period-k point of f if fk(x0, α0) = x0 and f j(x0, α0) Ó= x0 for 1 ≤ j ≤ k − 1.

The k-tuple {xj}k−1
j=0 is then said to be a k-cycle or cycle of period k, where xj+1 = f(xj , α0)

for 0 ≤ j ≤ k − 2.

A point x ∈ [0, 1] is a period-1 point (a fixed point) of (1.34) if f(x) = x. This occurs for

x = 1 − 1
µ

and x = 0. The first point x = 1 − 1
µ

∈ [0, 1) is asymptotically stable if µ ∈ [1, 3)

and unstable if µ > 3. On the other hand, the point x = 0 is unstable for all µ > 1. If

f2(x) = x and f(x) Ó= x then x ∈ [0, 1] is a period-2 point. Thus, the points of period-2

can be found by computing the discriminant of
f2(x) − x

f(x) − x
= 0, which is

(1 + µ)(3 − µ)

µ2
. So,

at µ = 3, a 2-cycle emerges (i.e., µ is a period-doubling bifurcation†). The stability of this

2-cycle is given by the following Lemma.

Lemma 1.7. Let x0 be a k-periodic point of f . Assume that λi are the eigenvalues of the

Jacobian matrix Dfk(x0). Then the following statements holds

(1) x0 is asymptotically stable if |λi| < 1 for all i,

(2) x0 is unstable if |λi| > 1 for some i.

†A period-doubling bifurcation occurs when the Jacobian has only one eigenvalue λ for which |λ| = 1,
namely λ = −1, and some non-degeneracy conditions are satisfied, see [88].



1 Preliminaries | 23

Note that, if {x0, x1, . . . , xk−1} denotes a cycle of period k. Then by the chain rule, the

stability of x0 can be obtained from

Dfk(x0) = Df(xk−1)Df(xk−2) . . . Df(x0). (1.35)

In general, the stability at any point xr, r = 0, 1, . . . , k − 1, in the cycle can be defined from

Dfk(xr) = Df(xr−1)Df(xr−2) . . . Df(x0)Df(xk−1) . . . Df(xr). (1.36)

Remark 1.1. The eigenvalues of (1.35) and (1.36) are identical.

Definition 1.15. A cycle Γ of period k, Γ := {x0, x1, . . . , xk−1}, is stable if x0 is a stable

fixed point of fk.

By Lemma 1.7, the 2-cycles of (1.34) are asymptotically stable for µ ∈ (µ2, µ4], µ2 := 3,

µ4 := 1 +
√

6, and unstable for µ > µ4. Further, at µ = µ4 a stable 22-cycle emerges (µ4 is

a period-doubling bifurcation point). The process of period-doubling bifurcations continue

which indicates the existence of cycles of period 23, 24, . . . , 2n, . . ..

Similarly, a 3-cycle can be computed by solving
f3(x) − x

f(x) − x
= 0. This equation has six roots

which may be complex. Myrberg [103] proved that µ = µ3, µ3 = 1 +
√

8 allows a real

solution. Saha and Strotgatz [115] simplified the proof by expressing the solution in terms

of three points (see also [12, 69]),

x → y → z → x.

So the value of µ corresponding to the 3-cycle satisfies

df(z)

dz

df(y)

dy

df(x)

dx
= 1 ⇒ µ3 (1 − 2z) (1 − 2y) (1 − 2x) = 1.

Therefore, the 3-cycle is given by a system of four equations with four unknowns (x, y, z, µ):

y = f(x), z = f(y), x = f(z), µ3 (1 − 2z) (1 − 2y) (1 − 2x) = 1.

They solved this system to obtain the solution µ = µ3. Later, Shi and Yu [120] proved that

there exist two 3-cycles when µ > µ3.
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Bifurcation diagram

The bifurcation diagram of (1.34) is presented in Figure 1.8. The period-doubling cascade

starting at µ = µ2 coexists with other “windows” of periodic cycles even in the chaotic region,

see Figure 1.8a. The largest region starts at µ = µ3 where we have a window of 3-cycles,

which undergoes period-doubling with periods 6, 12, 24, ... until one enters again into the

chaotic regime, see Figure 1.8b. The most important parts of the bifurcation diagram are as

follows (for computational background see [12, 50, 57, 115, 120, 124]):

(1) Cycles of period 2 emerge at µ = µ2 (µ2 is a period-doubling bifurcation point).

(2) 22-cycles emerge at µ = µ4 (µ4 is a period-doubling bifurcation point) and are asymp-

totically stable for µ ∈ (µ4, µ8), µ8 ≈ 3.54409, but unstable for µ > µ8.

(3) The process of period-doubling bifurcation continues to period 23, 24, . . . (period-

doubling cascade) and finally gives rise to chaos at µ∞ ≈ 3.569946. This is the famous

period-doubling scenario leading to chaos. This is only confirmed by numerical simu-

lation and not proved yet.

(4) For µ ∈ (µ∞, µ3), the system alternates between periodic and chaotic behavior.

(5) For µ ∈ (µ3, µ6), µ6 ≈ 3.8415, cycles of period 3 appear.

(6) For µ ∈ (µ6, 4], the system exhibits only chaotic behavior.

(a) (b)

Figure 1.8: Bifurcation diagram of the logistic map with (a) 0 ≤ µ ≤ 4, (b) 3.5 ≤ µ ≤ 4
(5,000 points, uniformly distributed). For each µ the initial points were reset to x0 = 0.01,
10, 000 map iterations were performed and 9, 900 iterations were discarded.
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Chaos and Lyapunov exponents

There is no universal mathematical definition of “chaos” in dynamical systems. The use of

the word “chaos” was introduced by Li and Yorke in [95]. Brown and Chua [28] review the

different mathematical definitions of chaos. Many authors call the system chaotic when, for

example:

• It has a positive Lyapunov exponent [79].

• It has a Smale horseshoe [43].

• It has sensitive dependence on initial conditions and is topologically transitive† [130].

• It has sensitive dependence on the initial conditions, has a dense set of periodic orbits

and is topologically transitive [50].

The “sensitive dependence on initial conditions” plays a central role in the idea of chaos;

it is simply the classical notion of Lyapunov instability [50]. The quantitative measure of

sensitive dependence on initial conditions is the Lyapunov exponent, which measures the

exponential separation of nearby orbits. A positive Lyapunov exponent can be considered

as an indicator of chaos. Since the sign of the Lyapunov exponent of maps can be computed

numerically, we will use in this thesis the following notion of chaos that mainly depends on

the Lyapunov exponents:

Definition 1.16. [122] Chaos is aperiodic long-term behavior‡ in a deterministic system§

that exhibits sensitive dependence on initial conditions.

Now consider a one-dimensional map. Also, consider a small displacement ∆0 applied to the

initial point x0 and let ∆n be the resulting displacement from fn(x0) after n iterations. If

this displacement evolves approximately as

|∆n| ≈ |∆0|enσ, (1.37)

then σ is the Lyapunov exponent.

†There are two definitions of topological transitivity which are the following (see [86]): Consider the metric
space X and the continuous map f : X → X. We say that f is topologically transitive if:

– for every pair of non-empty open (nopen) sets U and V in X there exists a positive integer k such that
fk(U) ∩ V Ó= ∅.

– there exists x ∈ X such that its orbit { fn(x) | n ≥ 0} is dense in X (i.e., { fn(x) | n ≥ 0} = X ).

Note that these definitions are not equivalent.
‡Aperiodic long-term behavior means that there are orbits which do not settle down to fixed points,

periodic orbits, or quasi-periodic orbits as n → ∞.
§A system is deterministic if for each state in the phase space there is a unique future.
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Taking logarithms of both sides of (1.37) and noticing that

∆n = fn(x0 + ∆0) − fn(x0),

we obtain

σ ≈ 1

n
ln

|∆n|
|∆0| =

1

n
ln

|fn(x0 + ∆0) − fn(x0)|
|∆0| . (1.38)

Taking the limit ∆0 → 0 for (1.38) gives

σ =
1

n
ln

∣
∣(fn)

′
(x0)

∣
∣.

Then using (1.35) in the term inside the logarithm leads to

σ =
1

n
ln |

n−1∏

i=0

f ′(xi)| =
1

n

n−1∑

i=0

ln |f ′(xi)|. (1.39)

Figure 1.9 shows the Lyapunov exponent of (1.34). A negative Lyapunov exponent indicates

a stable periodic solution. The Lyapunov exponents approach zero at the points where stable

fixed points or cycles are born (at µ = 1 the stable fixed point emerges, at µ = µ2 the stable

2-cycle emerges, ...). The first rise for σ is around µ∞ due to the chaotic behavior which is

clear in Figure 1.8b. The dips for µ > µ∞ are caused by stable periodic cycles (at µ = µ3 a

stable 3-cycle emerges, ...).

0 1 2 3 4
−0.01

0

0.01

µ

σ

(a)

3.5 3.6 3.7 3.8 3.9 4
−0.01

0

0.01

µ

σ

(b)

Figure 1.9: Lyapunov exponents for the logistic map when (a) 0 ≤ µ ≤ 4, (b) 3.5 ≤ µ ≤ 4.
Note that there are intervals of stability in the chaotic region corresponding to periodic
cycles.
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1.7 MatCont

MatCont is a MATLAB interactive toolbox for the numerical study of continuous-time

dynamical systems †. The software development started in 2000 [100, 113] and the first

publication appeared in 2003 [51]. For a historical overview and recent development of

MatCont, see [45, 52, 72]. The numerical analysis of equilibria, cycles and connecting orbits

as well as their stability and bifurcations can partly be reduced to the continuation of curves

parametrized by parameter(s) in some space R
m, for background information, see [16, 88].

The aim of MatCont is to provide a continuation toolbox which is compatible with the stand-

ard MATLAB ODE representation of differential equations. In MatCont, most curves are

computed with the same prediction-correction continuation algorithm based on the Moore-

Penrose matrix pseudo-inverse, see [16, 70, 82, 88]. The continuation of bifurcation points of

equilibria and limit cycles, in one and two parameters, is based on bordering methods [73, 82]

and minimally extended systems [16]. The limit cycles are computed by an approach based

on the discretization via piecewise polynomial approximation with orthogonal collocation of

the corresponding boundary value problems. The sparsity of the discretized systems for the

computation of limit cycles and their bifurcation points is exploited by using the standard

MATLAB sparse matrix methods. The same approach is applied for homoclinic orbits, in

combination with the continuation of invariant subspaces for the equilibrium end point of the

homoclinic orbit, see [49, 61]. MatCont uses test functions that have regular zeroes at the

bifurcation points to detect and accurately locate bifurcations along the computed curve; for

details see for example [88, Chapter 10] or [70]. Moreover, MatCont provides the normal form

coefficients for all codim-1 and -2 bifurcations of equilibria as well as periodic normal-form

coefficients for all codim-1 and 2 bifurcations of limit cycles. The necessary expansions of

the unfolding parameters to switch to (some) limit cycle and (some) homoclinic bifurcation

curves rooted there are also obtained. See [2, 46, 88, 90] for further details and notation

used. The relationships between objects of codim-0, 1 and 2 computed by MatCont are pre-

sented in Figure 1.10. The symbols and their meaning are summarized in the Table below

the figure, where the labels based on standard terminology are given in [88]. An arrow in

the figures from an object of type A to an object of type B means that the object of type B

can be detected (either automatically or by inspecting the output during the computation of

a curve of objects of type A). Each object of codim-0 and 1 can be continued in one or two

system parameters, respectively. We note that generically a curve of HHS emanates from a

BT point, as well as (under some conditions on the normal form coefficients) two such curves

from a Zero-Hopf bifurcation point (ZH). The current version of MatCont fully supports,

however, only one such connection: BT to HHS, which is not presented in Figure 1.10.

†The computational core of MatCont is called CL_MatCont. It can be used independently as a general-
purpose non-interactive continuation toolbox in MATLAB.
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Figure 1.10: Relationships between objects of codim-0, 1 and 2 computed by MatCont. The symbols and their meaning are
summarized in the Table below, where the labels are based on standard terminology given in [88]. An arrow in the figures from an
object of type A to an object of type B means that that object of type B can be detected during the computation of a curve of
objects of type A. Each object of codim-0 and 1 can be continued in one or two system parameters, respectively.

Label Type of object Label Type of object Label Type of object Label Type of object

O Orbit EP Equilibrium LC Limit cycle LP Limit point

H Andronov-Hopf LPC LP bifurcation of cycles NS Neimark-Sacker PD Period-doubling (flip)

HHS Homoclinic to Hyperbolic Saddle HSN Homoclinic to Saddle-Node BP Branch point CP Cusp point

BT Bogdanov-Takens ZH Zero-Hopf HH Double Hopf GH Generalized Hopf (Bautin)

CPC Cusp bifurcation of cycles BPC Branch Point of Cycles LPNC LP-NS R1 1:1 Resonance

R3 1:3 Resonance R4 1:4 Resonance PDNS PD-NS CH Chenciner

LPPD Fold-Flip R2 1:2 Resonance NSNS Double NS GPD Generalized Period-doubling

NSS Neutral saddle NSF Neutral saddle-focus NFF Neutral Bi-Focus DR
∗ † Double Real S/U leading eigenvalue

ND
∗ Neutrally-Divergent saddle-focus S/U TL

∗ Three Leading eigenvalues S/U SH Shilnikov-Hopf OF
∗ Orbit-Flip with respect to the S/U manifold

IF
∗ Inclination-Flip with respect to the S/U manifold NCH Non-Central Homoclinic to saddle-node

†The symbol “∗” stands for either S or U, depending on whether a Stable or an Unstable invariant manifold is involved.



CHAPTER 2

The Bogdanov-Takens

bifurcation

In this chapter we introduce the smooth BT normal form and the complete

bifurcation diagram near the BT point. We compute the critical normal form

on the two-dimensional center manifold of a generic n-dimensional system that

has a BT point at its equilibrium. Using the homological equation technique,

we derive a quantitative relation between orbits of the smooth BT normal form

and of the generic n-dimensional system. By solving all linear systems appearing

from the homological equation, we correct the parameter transformation exiting

in the literature. Finally, we discuss the existence of the BT bifurcation in the

Gray-Scott model.

2.1 The smooth normal form

Consider the continuous-time dynamical system

ẋ = f(x, α), (2.1)

where f : Rn ×R
2 → R

n is generic and sufficiently smooth. The BT bifurcation occurs in the

two-parameter system (2.1) when for some parameter values, the equilibrium of (2.1) has a
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double-zero eigenvalue with the Jordan block

J =

(

0 1

0 0

)

.

Assume that (2.1) has a BT point at (0, 0). Then the Taylor expansion of (2.1) at the fixed

α = 0 can be written as

ẋ = Ax +
1

2
B(x, x) + O(‖x‖3), (2.2)

where A and B are given as in (1.5). The matrix A has a double (but not semi-simple)

zero eigenvalue. Then there exist two real linearly independent (generalized) eigenvectors

q0,1 ∈ R
n, of A, and two adjoint eigenvectors p0,1 ∈ R

n, of AT , such that

(

A 0

−In A

) (

q0

q1

)

= 0,

(

AT 0

−In AT

) (

p1

p0

)

= 0, (2.3)

where In is the n × n unit matrix. We can assume that these vectors satisfy

pT
0 q0 = pT

1 q1 = 1, pT
0 q1 = pT

1 q0 = 0, qT
0 q0 = 1, qT

1 q0 = 0, (2.4)

and this defines them uniquely up to a common ± signs. Define the center eigenspace (Ec) of

A as the space spanned by q0 and q1; and the stable eigenspace (Es) as the space spanned by

the eigenvectors corresponding to the eigenvalues with negative real part. So for any y1 ∈ Ec

there is (u1, u2) ∈ R
2 so that

y1 = u1q0 + u2q1.

Assume that R
n is spanned by Es and Ec only (i.e., there are no eigenvalues with positive

real part). Then any vector x ∈ R
n can be written in a unique way as

x = y1 + y2, y2 ∈ Es, (2.5)

By (2.4) the new coordinates (u1, u2) are given by

{

u1 = pT
0 x,

u2 = pT
1 x,

(2.6)

The vectors (y1, y2) can be represented as

{

y1 = πcx,

y2 = (In − πc) x,
(2.7)
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where πc is a projection of Rn onto Ec. Substituting (2.6) and (2.7) into (2.2) together with

(2.5), we obtain the following system

u̇ = Ju +







1

2
pT

0 R2(u, y2)

1

2
pT

1 R2(u, y2)







+ O(‖(u, y2)‖3), (2.8a)

ẏ2 = Ay2 +
1

2
(I − πc)R2(u, y2) + O(‖(u, y2)‖3), (2.8b)

where u = (u1, u2) and

R2(u, y2) = u2
1B(q0, q0) + 2u1u2B(q0, q1) + u2

2B(q1, q1)

+ 2B(u1q0, y2) + 2B(u2q1, y2) + B(y2, y2).

On the center manifold W c(0) we have (see Theorem 1.6),

y2 = H2(u) + O(‖u‖3), H2 : Ec → Es, (2.9)

where the component H2(u) takes the form

H2(u) =
1

2
H20u2

1 + H11u1u2 +
1

2
H02u2

2, (2.10)

and Hij ⊂ Ec ∈ R
n are unknown vectors to be determined. This allows us to write system

(2.8a), on the center manifold, for the center eigenspace variables (u1, u2) only,

u̇ = Ju +








1

2
pT

0

(

u2
1B(q0, q0) + 2u1u2B(q0, q1) + u2

2B(q1, q1)
)

1

2
pT

1

(

u2
1B(q0, q0) + 2u1u2B(q0, q1) + u2

2B(q1, q1)
)








+ O(‖u‖3). (2.11)

Differentiating both sides of (2.9) gives

ẏ2 =
∂H2

∂u1
u̇1 +

∂H2

∂u2
u̇2. (2.12)

Then by substituting (2.11) and (2.10) into (2.12), we obtain

ẏ2 = H20u1u2 + H11u2
2 + O(‖u‖3). (2.13)
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Since the center manifold W c(0) is invariant, equation (2.9) should satisfy (2.8b), and hence

ẏ2 can be expressed as

ẏ2 =
1

2
(AH20 + (I − πc)B(q0, q0))u2

1 + (AH11 + (I − πc)B(q0, q1))u1u2

+
1

2
(AH02 + (I − πc)B(q1, q1))u2

2 + O(‖u‖3).

(2.14)

Comparing the coefficients of corresponding terms of (2.14) and (2.13), we obtain







H20 = −AINV((I − πc)B(q0, q0)),

H11 = −AINV((I − πc)B(q0, q1) − H20),

H02 = −AINV((I − πc)B(q1, q1) − 2H11),

(2.15)

where the expression h = AINVr is defined as solving the non-singular border system

(

A p1

qT
0 0

) (

h

s

)

=

(

r

0

)

,

where r is in the range of A. This uniquely defines the local center manifold system (2.9) up

to quadratic terms.

As in Section 1.3, the two-dimensional center manifold system (2.11) can be simplified by

introducing a near-identity coordinate transformation of the form

u = w + z2(w), z2(w) ∈ H2, (2.16)

whose coefficients are to be determined, i.e,

z2(w) =






a20w2
0 + a11w0w1 + a02w2

1

b20w2
0 + b11w0w1 + b02w2

1




 .

Substituting (2.16) into (2.11) gives

(

I +
∂

∂w
z2(w)

)

ẇ = Jw + Jz2(w) + g2
1(w) + O(‖w‖3), (2.17)

where

g2
1(w) =






1
2 pT

0 B(q0, q0)w2
0 + pT

0 B(q0, q1)w0w1 + 1
2 pT

0 B(q1, q1)w2
1

1
2 pT

1 B(q0, q0)w2
0 + pT

1 B(q0, q1)w0w1 + 1
2 pT

1 B(q1, q1)w2
1





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Therefore, after the change of variables (2.16) system (2.11) takes the form (see also system

(1.12))

ẇ = Jw + Jz2(w) −
(

∂

∂w
z2(w)

)

Jw + g2
1(w) + O(‖w‖3) = Jw + µ2(w) + O(‖w‖3), (2.18)

where

µ2(w) =

(
1
2 pT

0 B(q0, q0) + b20

1
2 pT

1 B(q0, q0)

)

w2
0 +

(

pT
0 B(q0, q1) − 2a20 + b11

pT
1 B(q0, q1) − 2b20

)

w0w1

+

(
1
2 pT

0 B(q1, q1) − a11 + b02

1
2 pT

1 B(q1, q1) − b11

)

w2
1.

Substituting

b11 = 1
2 pT

1 B(q1, q1), a20 = 1
2 pT

0 B(q0, q1) + 1
4 pT

1 B(q1, q1),

b20 = − 1
2 pT

0 B(q0, q0), a11 − b02 := 1
2 pT

0 B(q1, q1),

into (2.18) gives†

ẇ = Jw +

(

0

aw2
0 + bw0w1

)

+ O(‖w‖3), (2.19)

where {

a = 1
2 pT

1 B(q0, q0),

b = pT
1 B(q0, q1) + pT

0 B(q0, q0).
(2.20)

It is clear that the term w2
0 is a resonance term where we cannot eliminate it by the nonlinear

transformation (2.16). Further, by a change of coordinates

{

w0 → w0,

w1 → w1 + O(‖w‖3),

system (2.19) transforms to

{

ẇ0 = w1,

ẇ1 = aw2
0 + bw0w1 + O(‖w‖3),

(2.21)

The following theorem is a direct consequence of the previous computations

†It is clear that the choice of b20 is not unique. By the choice of b20 = 1

2
pT

1
B(q0, q1) we obtain the critical

normal form ẇ = Jw +

(
1

2
bw2

0

aw2
0

)

+ O(‖w‖3). However this form and (2.19) are completely equivalent, see

[7, Proposition 2.4.3].
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Theorem 2.1. At the critical parameter value α = 0, system (2.2) is locally Ck-equivalent

near x = 0 to a parameter-independent system given by

ẇ =




w1

aw2
0 + bw0w1



 + O(‖w‖3). (2.22)

The normal form (2.22) is called the critical normal form because it is computed by

substituting the critical parameter value, α = 0, into the original system (2.2). However, the

interesting dynamical behaviors of (2.2) happen in a neighborhood of the critical parameter

value, i.e., when α Ó= 0, |α| ≪ 1. In order to study these behaviors, we need to re-construct the

parameter-dependence in the normal form (2.22). Theoretically, this is done by constructing

a versal deformation (also called unfolding) of the linear part of (2.22). A universal unfolding

of the critical BT normal form, i.e., the topological normal form, is (see, e.g. [6, 78])

ẇ =




w1

β1 + β2w1 + aw2
0 + bw0w1



 , (2.23)

where β = (β1, β2) ∈ R
2 are the unfolding parameters. This was proved independently by

Takens [123] and Bogdanov [20]†. System (2.23) contains all possible qualitative dynamics

behavior that occurs near the critical parameter value of the original system (2.1).

The present thesis uses the smooth BT normal form

ẇ = G(w, β) =




w1

β1 + β2w1 + aw2
0 + bw0w1 + g(w, β2)





+ O
(
|β1|‖w‖2 + |β2|w2

1

)
+ O

(
‖β‖2‖w‖2 + ‖β‖‖w‖3 + ‖w‖4

)
,

(2.24)

where g(w, β2) := a1β2w2
0 + b1β2w0w1 + dw3

0 + ew2
0w1. Truncating the O-terms and omitting

g(w, β2) gives the topological normal form for the BT bifurcation. We emphasize that it is

essential to include the term g(w, β2) in addition to the topological normal form to achieve

an accurate second-order approximation for the homoclinic solution of (2.1) which depends

on the term g(w, β2) [92]. This term was ignored in earlier studies [15, 91]. Details of the

effect of this term on the second-order correction to the homoclinic solution near a generic

BT point will be presented in Chapter 3.

†This normal form is slightly but equivalent to that used in [20, 123], where the second unfolding term
was β2w0.
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2.2 The bifurcation diagram near a BT point

In this section, we study the bifurcation diagram of the topological normal form system

(2.23). Assume that a > 0 †, then the system (2.23) has two hyperbolic equilibrium points

which are given by

(
s±, 0

)
=

(

±
√

−β1

a
, 0

)

, β1 < 0

and there are no equilibria if β1 > 0. The Jacobian evaluated at these equilibria is

A =






0 1

2as± β2 + bs±




 .

The eigenvalues associated with these equilibria therefore are given by

λ1,2 =
1

2

( (
β2 + bs±)

±
√

(β2 + bs±)
2

+ 8as±
)
.

(1) For β1 < 0, β2 Ó= 0, the quantity under the square root for s+ is greater (in absolute

value) than (β2 + bs+)
2. So the eigenvalues have opposite signs, and hence (s+, 0) is a

saddle for all β2. On the other hand, the second equilibrium point (s−, 0) has purely

imaginary eigenvalues for β2 = b

√

− β1

a
. This point is a source for β2 > b

√

− β1

a
and a

sink for β2 < b

√

− β1

a
. The generic phase portrait for β1 < 0, β2 Ó= 0 is presented in

Figure 2.1.

(a) (b)

Figure 2.1: Generic phase portrait of (2.23) for a > 0, β1 slightly negative and (a) β2 >

b

√

− β1

a
(b) β2 < b

√

− β1

a
.

†A similar analysis can be carried out for a < 0.
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(2) For β1 = β2 = 0, the system (2.23) has a nonhyperbolic equilibrium point at the origin.

It follows from [5, Theorem 67, p.362] that system (2.23) has a “cusp” at the origin,

see Figure 2.2.

Figure 2.2: Generic phase portrait of (2.23) for β1 = β2 = 0.

(3) For β1 = 0, β2 Ó= 0, the system (2.23) has a nonhyperbolic equilibrium at (0, 0) with

the eigenvalues

λ0,1 = 0, β2. (2.25)

The eigenvectors {q0, q1} corresponding to the eigenvalues (2.25), respectively, are given

by q0 = (1, 0), q1 = (1, β2). To investigate the nature of the flow on the one-dimensional

center manifold system, we apply the linear transformation

w = [q0, q1] v, v = (v1, v2) ∈ R
2,

which transforms (2.23) into

v̇1 = −β1

β2
− a

β2
v2

1 −
(

b +
2a

β2

)

v1v2 −
(

b +
a

β2

)

v2
2 ,

v̇2 =
β1

β2
+ β2v2 +

a

β2
v2

1 +

(

b +
2a

β2

)

v1v2 +

(

b +
a

β2

)

v2
2 .

The center manifold can be approximated by considering the tangent plane approxi-

mation, i.e., v2 = 0,

v̇1 = − 1

β2

(
β1 + av2

1

)
. (2.26)

For β2 < 0, the flow on the center manifold system (2.26) is given in Figure 2.3. Notice

that the position of the stable and unstable manifolds of the saddle will be reversed for

β2 > 0. It is clear that system (2.26) exhibits a limit point bifurcation, see Figure 2.4.
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v1

β1

√

−β1

a

−

√

−β1

a

Figure 2.3: The bifurcation diagram of (2.26) for a > 0 and β2 < 0.

Given the information we have collected, we conclude that limit point bifurcations occur on

the line

LP: β1 = 0, β2 Ó= 0, (2.27)

while

H: β2 (β1) = b

√

−β1

a
, β1 < 0, (2.28)

is a bifurcation curve on which (s−, 0) undergoes a (nondegenerate) Andronov-Hopf bifur-

cation, i.e., the equilibrium (s−, 0) has a pair of eigenvalues with zero sum. Along the

Andronov-Hopf curve, the eigenvalues are given by

(

λ (β1) , λ (β1)
)

= (iω, −iω) , (2.29)

where ω =
√

2
√

−aβ1. If b > 0 then the Andronov-Hopf curve is located in the second

quadrant of the (β1, β2)-plane; this curve is located in the third quadrant if b < 0. To study

the stability of the Andronov-Hopf bifurcation and the existence of the limit cycle bifurcation,

we use a method described in [88, Section 3.5]. Firstly, we fix β2 = b

√

− β1

a
and then we

apply the following linear change of the coordinates

(

w0

w1

)

→
(

w0 − s−

w1

)

,
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(a) (b)

Figure 2.4: Generic phase portrait of (2.23) for a > 0, β1 = 0 and (a) β2 > 0. (b) β2 < 0.

which places the equilibrium at the origin. This transforms (2.23) into

ẇ = A (β1) w + F (w, β1) , (2.30)

where

A (β1) =

(

0 1

−ω2 0

)

, F (w, β1) =

(

0

aw2
0 + bw0w1

)

.

For small |β1|, the matrix A (β1) has the eigenvalues (2.29). Then there exist an eigenvector

q (β1) ∈ C
2, of A (β1), and an eigenvector p (β1) ∈ C

2, of AT (β1), corresponding to the

eigenvalues λ (β1) and λ (β1), respectively, such that

A (β1) q (β1) = λ (β1) q (β1) , AT (β1) p (β1) = λ (β1) p (β1) , 〈p (β1) , q (β1)〉 = 1, (2.31)

where 〈p, q〉 = pTq. The vectors

q (β1) =

(

1

iω

)

, p (β1) =
1

2ω

(

ω

i

)

,

satisfy (2.31). Using these vectors we can uniquely represent w for small |β1| as

w = zq (β1) + z q (β1) =
(
z + z , iω (z − z)

)
, (2.32)

for some complex z. Taking the scalar product with p (β1) of both side of (2.32) and using

the fact that
〈

p (β1) , q (β1)
〉

= 0, we obtain
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ż = 〈p (β1) , ẇ〉 = λ (β1) z + p (β1)F
(

(z + z, iω (z − z)) , β1

)
, (2.33)

or

ż = 2iωz + g11 (β1) zz +
1

2
g20 (β1) z2 +

1

2
g02 (β1) z2,

where

g11 (β1) = −i
a

ω
, g20 (β1) = −i

a

ω
+ b, g02 (β1) = −i

a

ω
− b.

Hence the first Lyapunov coefficient ℓ1 along the Andronov-Hopf curve in the BT normal

form (2.23) is given by

ℓ1 (β1) =
1

2ω2
Re

(
i g20g11

)
= −

(
b

8β1

)

ω, β1 < 0.

It is clear that ℓ1(β1) < 0 for all b < 0. This indicates a supercritical Andronov-Hopf

bifurcation. This bifurcation gives rise to a unique stable limit cycle (LC) as β2 increases

from β2 =
√

− β1

a
(the uniqueness of the limit cycle was proved for instant in [94]). On

the other hand, for b > 0 we have a subcritical Andronov-Hopf bifurcation in which an

unstable limit cycle bifurcates from s− as β2 decreases from β2 =
√

− β1

a
for each β1 < 0.

The generic unstable limit cycle is presented in Figure 2.5a. The unstable (stable) limit

cycle generated in the Andronov-Hopf bifurcation expands monotonically as β2 decreases

(increases) from
√

− β1

a
until it intersects the saddle at s+ and forms a homoclinic loop at

some parameter value β2(β1) [21], see Figure 2.5b. It follows from Chapter 3 (see also [91])

that this homoclinic loop bifurcation curve in (β1, β2)-plane is given by

HHS: β2 = − 72b3

2401a2
β1 +

5b

7a

√

−aβ1 + O
(

|β1| 5
4

)

(2.34)

As conclusion, for system (2.23) we have the following theorem

(a) (b)

Figure 2.5: Generic phase portrait of (2.23) (a) For b > 0, a unique unstable limit cycle

emerges from the Andronov-Hopf curve (2.28) as β2 decreases from β2 =

√

− β1

a
. (b) The

homoclinic orbits corresponding to the parameter value (2.34).
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Theorem 2.2. For a > 0, b > 0 the five bifurcations occur near the BT point of (2.23) are

(1) LP+ =
{

(β1, β2)
∣
∣ β2 > 0, β1 = 0

}
,

(2) LP− =
{

(β1, β2)
∣
∣ β2 < 0, β1 = 0

}
,

(3) H =

{

(β1, β2)
∣
∣ β2 = b

√

−β1

a
, β1 < 0

}

,

(4) HHS =

{

(β1, β2)
∣
∣ β2 = − 72b3

2401a2
β1 +

5b

7a

√

−aβ1 + O
(

|β1| 5
4

)

, β1 < 0

}

,

(5) a unique LC when β2 lies between H and HHS for β1 < 0.

To summarize we plot the full bifurcation diagram of system (2.23) for a > 0, b > 0, see

Figure 2.6.

β1

β2

Figure 2.6: The bifurcation diagram of (2.23) for a > 0 and b > 0.
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2.3 Smooth normal form in the parameter-dependent

center manifold

Suppose that an explicit formula giving an emanating codim-1 bifurcation for the normal

form (2.24) is available. In order to transfer this back to the original system (2.1) we need a

relation

α = K(β), K : R2 → R
2 (2.35)

between the unfolding parameters β and the system parameter α. Moreover, we need to

parametrize the center manifold of (2.1) with respect to (w, β),

x = H(w, β), H : R2 × R
2 → R

n. (2.36)

Taking (2.36) and (2.35) together as (x, α) = (H(w, β), K(β)) yields the center manifold for

the suspended system 





ẋ = f(x, α),

α̇ = 0.
(2.37)

The invariance of the center manifold implies the homological equation [42, 58, 87]:

Hw (w, β) G (w, β) = f(H(w, β), K(β)). (2.38)

We write the Taylor expansions of K, H and f as

f(x, α) = Ax + J1α +
1

2
B(x, x) + A1(x, α) +

1

2
J2(α, α) +

1

6
C(x, x, x) +

1

2
B1(x, x, α)

+ O
(
‖x‖‖α‖2 + ‖α‖3

)
+ O

(
‖(x, α)‖4

)
, (2.39a)

H(w, β) = q0w0 + q1w1 + H0010β1 + H0001β2 +
1

2
H2000w2

0 + H1100w0w1 +
1

2
H0200w2

1

+ H1010β1w0 + H1001β2w0 + H0110β1w1 + H0101β2w1 +
1

2
H0002β2

2 +
1

6
H3000w3

0

+
1

2
H2100w2

0w1 +
1

2
H2001β2w2

0 + H1101β2w0w1 + O
(
β2

1 + |β1β2|
)

+ O
(

|w1|3

+ |w0w2
1| + |β2w2

1| + |β1|‖w‖2 + ‖β‖2‖w‖ + ‖β‖3
)

+ O
(
‖(w, β)‖4

)
, (2.39b)

K(β) = K1,0β1 + K1,1β2 +
1

2
K2β2

2 + O
(
β2

1 + |β1β2|
)

+ O(‖β‖3), (2.39c)

where A, J1, B, A1, J2, C, B1 are given as in (1.5). We insert the expansions (2.39a)-(2.39c)

into (2.38) together with the smooth normal form (2.24). Then the resulting equations

for terms of the same order in w and β can be solved by a recursive procedure based on
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Fredholm’s solvability condition that gives the Taylor coefficients of H and K. Collecting

the terms with equal components in w and β up to the second order in the homological

equation leads to the following systems†

w0 : Aq0 = 0, (2.40a)

w1 : Aq1 = q0, (2.40b)

β1 : AH0010 + J1K1,0 = q1, (2.40c)

β2 : AH0001 + J1K1,1 = 0, (2.40d)

w2
0 : AH2000 + B(q0, q0) = 2aq1, (2.40e)

w0w1 : AH1100 + B(q0, q1) = H2000 + bq1, (2.40f)

w2
1 : AH0200 + B(q1, q1) = 2H1100, (2.40g)

w0β1 : AH1010 + B(q0, H0010) + A1(q0, K1,0) = H1100, (2.40h)

w0β2 : AH1001 + B(q0, H0001) + A1(q0, K1,1) = 0, (2.40i)

w1β1 : AH0110 + B(q1, H0010) + A1(q1, K1,0) = H0200 + H1010, (2.40j)

w1β2 : AH0101 + B(q1, H0001) + A1(q1, K1,1) = H1001 + q1, (2.40k)

β2
2 : AH0002 + J1K2 + B(H0001, H0001) + 2A1(H0001, K1,1) + J2(K1,1, K1,1) = 0. (2.40l)

The solvability condition for (2.40e),

pT
1 A

︸︷︷︸
0

H2000 + pT
1 B(q0, q0) = 2a pT

1 q1
︸︷︷︸

1

,

gives

a =
1

2
pT

1 B(q0, q0). (2.41)

Taking the scalar product of both sides of (2.40e) with pT
0 yields

pT
1 H2000 = −pT

0 B(q0, q0). (2.42)

The solvability condition for (2.40f) gives

b = pT
1 B(q0, q1) − pT

1 H2000. (2.43)

†The systems are computed with Maple, see Appendix A.1.
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Taking into account (2.42), we get

b = pT
1 B(q0, q1) + pT

0 B(q0, q0). (2.44)

The coefficients (a, b) are known and given in (2.20). However, given a and b, the solutions

to the singular linear systems (2.40e)-(2.40g) are not unique. The uniqueness of the solutions

can be guaranteed by requiring that (2.40g) is solvable for H0200 (see [88, Section 8.7]). The

solvability condition for (2.40g) requires that

2pT
1 H1100 − pT

1 B(q1, q1) = 0 (2.45)

Multiplying both sides of (2.40f) by pT
0 gives

pT
1 H1100 = pT

0 H2000 − pT
0 B(q0, q1).

Substituting this into (2.45) yields

2pT
0 H2000 − 2pT

0 B(q0, q1) − pT
1 B(q1, q1) = 0. (2.46)

Using the substitution H2000 Ô→ H2000 + rq0, with

r :=
1

2

(
−2pT

0 H2000 + 2pT
0 B(q0, q1) + pT

1 B(q1, q1)
)

, (2.47)

makes the L.H.S of (2.46) equal to zero. So this substitution implies that (2.40g) is solvable

for H0200. Thus, from (2.40e), (2.40f) and (2.40g) the vectors H2000, H1100 and H0200 can

be uniquely determined by solving the non-singular (n + 1)−dimensional systems,







H2000 = AINV (2aq1 − B(q0, q0)) , H2000 Ô→ H2000 + rq0

H1100 = AINV (bq1 − B(q0, q1) + H2000) ,

H0200 = AINV (2H1100 − B(q1, q1)) .

(2.48)

Rewrite system (2.40c) and (2.40d) into the following vector form

AH01 + J1K1 = [q1, 0], (2.49)

where H01 = [H0010, H0001], K1 = [K1,0, K1,1]. The solvability condition for (2.40h) and

(2.40i) gives

pT
1 B(q0, H01) + pT

1 A1(q0, K1) = [pT
1 H1100, 0]. (2.50)
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The solvability condition for (2.40g) gives

pT
1 H1100 =

1

2
pT

1 B(q1, q1), (2.51)

while the scalar product of both sides with pT
0 gives

pT
1 H0200 = −pT

0 B(q1, q1) + 2pT
0 H1100. (2.52)

Substituting (2.51) into (2.50) then yields

pT
1 B(q0, H01) + pT

1 A1(q0, K1) =
1

2
[pT

1 B(q1, q1), 0]. (2.53)

The solvability conditions for (2.40j) and (2.40k) yield the following equations







pT
1 B(q0, H0010) + pT

1 A1(q1, K1,0) = pT
1 H1010 + pT

1 H0200,

pT
1 B(q0, H0001) + pT

1 A1(q1, K1,1) = pT
1 H1001 + 1.

(2.54)

On the other hand, taking the scalar product of both sides of system (2.40h) and (2.40i) with

pT
0 gives







pT
1 H1010 = −(pT

0 B(q0, H0010) + pT
0 A1(q1, K1,0)) + pT

0 H1100,

pT
1 H1001 = −(pT

0 B(q0, H0001) + pT
0 A1(q1, K1,1)).

(2.55)

Substituting the formula of pT
1 H1010 and pT

1 H1001 into (2.54) gives







pT
1 B(q0, H0010) + pT

1 A1(q1, K1,0) =

− (pT
0 B(q0, H0010) + pT

0 A1(q1, K1,0)) + pT
0 H1100 + pT

1 H0200,

pT
1 B(q0, H0001) + pT

1 A1(q1, K1,1) = −(pT
0 B(q0, H0001) + pT

0 A1(q1, K1,1)) + 1,

(2.56)

or in vector form

pT
0 B(q0, H01) + pT

0 A1(q1, K1) + pT
1 B(q0, H01) + pT

1 A1(q1, K1) =
[
pT

0 H1100 + pT
1 H0200, 1

]
.

(2.57)

With additional information from (2.52) about pT
1 H0200, (2.57) becomes

pT
0 B(q0, H01)+pT

0 A1(q1, K1)+pT
1 B(q0, H01)+pT

1 A1(q1, K1) =
[
−pT

0 B(q1, q1) + 3pT
0 H1100, 1

]
.

(2.58)
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Taking (2.49), (2.53) and (2.58) together, one computes K1 and H01 by solving the (n + 2)-

dimensional system







A J1

pT
1 Bq0 pT

1 A1q0

pT
0 Bq0 + pT

1 Bq1 pT
0 A1q0 + pT

1 A1q1










H01

K1



 =







q1 0

1
2 pT

1 B(q1, q1) 0

c 1







, (2.59)

where c := 3pT
0 H1100 − pT

0 B(q1, q1) and the expressions with matrix B, A1 have natural

interpretations. We note that the existence and uniqueness of the solution to (2.59) requires

that the (n + 2) × (n + 2) matrix

M =







A J1

pT
1 Bq0 pT

1 A1q0

pT
0 Bq0 + pT

1 Bq1 pT
0 A1q0 + pT

1 A1q1







(2.60)

is non-singular. The left (n + 2) × n block has full rank n since the null vector q0 of A is

not orthogonal to the row vectors in the (2, 1) and (3, 1) block entries of M if a Ó= 0 and

b Ó= 0. Since the right block column of M contains parameter derivatives in all entries, the

non-singularity of M is the transversality condition for the BT point.

To prove that K1 is non-singular we proceed by contradiction. Suppose that there exist real

variables γ and η not both zero, such that K1 (γ, η) = 0. Then

M







ξ

0

0







=







γq1

γ
2 pT

1 B(q1, q1)

−γpT
0 B(q1, q1) + 3γpT

0 H1100 + η







with ξ ∈ R
n. This implies that Aξ = γq1, hence 0 = pT

1 Aξ = γpT
1 q1 = γ. Hence

M (ξ, 0, 0) = (0, 0, η) ,

with η Ó= 0. This, in turn, implies that ξ = µq0 for a scalar µ Ó= 0. From the second block

row in M we then have µpT
1 B(q0, q0) = 0, which contradicts a Ó= 0. The system (2.59) above

corrects [15, 16], where a wrong formula to compute K1 is suggested based on the assumption

that K1 satisfies the equation (2.49) only. The terms K2 is immediately obtained from (2.40l)

K2 = −pT
1 (B(H0001, H0001) + 2A1(H0001, K1,1) + J2(K1,1, K1,1)) K1,0. (2.61)
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Using (2.40l), (2.40i) and (2.40k), one obtains







H0002 = −AINV (B(H0001, H0001) + 2A1(H0001, K1,1) + J2(K1,1, K1,1) + A1K2) ,

H1001 = −AINV (B(q0, H0001) + B(q0, K1,1)) ,

H0101 = −AINV (B(q1, H0001) + B(q1, K1,1) − H1001 − q1) .

(2.62)

Collecting the terms with equal components in w and β of order three at the homological

equation lead to

w3
0 : AH3000 + C(q0, q0, q0) + 3B(q0, H2000) = 6aH1100 + 6dq1, (2.63a)

w2
0w1 : AH2100 + C(q0, q0, q1) + 2B(q0, H1100) + B(q1, H2000)

= 2bH1100 + 2aH0200 + H3000 + 2eq1 (2.63b)

w2
0β2 : AH2001 + C(q0, q0, H0001) + B1(q0, q0, K1,1) + 2B(q0, H1001)

+ B(H0001, H2000) + A1(H2000, K1,1) = 2aH0101 + 2a1q1, (2.63c)

w0w1β2 : AH1101 + C(q0, q1, H0001) + B1(q0, q1, K1,1) + B(q1, H1001) + B(H0001, H1100)

+ B(q0, H0101) + A1(H1100, K1,1) = bH0101 + H1100 + H2001 + b1q1. (2.63d)

The solvability condition gives the following expressions for the cubic coefficients:

d =
1

6
pT

1 (C(q0, q0, q0) + 3B(q0, H2000) − 6aH1100) , (2.64)

H3000 = −AINV (C(q0, q0, q0) + 3B(q0, H2000) − 6aH1100 − 6dq1) , (2.65)

e =
1

2
pT

1 (C(q0, q0, q1) + 2B(q0, H1100) + B(q1, H2000)

− 2bH1100 − 2aH0200 − H3000) , (2.66)

a1 =
1

2
pT

1 (C(q0, q0, H0001) + B1(q0, q0, K1,1) + 2B(q0, H1001) + B(H0001, H2000)

+ A1(H2000, K1,1) − 2aH0101) , (2.67)

H2001 = −AINV (C(q0, q0, H0001) + B1(q0, q0, K1,1) + 2B(q0, H1001)

+ B(H0001, H2000) + A1(H2000, K1,1) − 2aH0101 − 2a1q1) . (2.68)

b1 = pT
1 (C(q0, q1, H0001) + B1(q0, q1, K1,1) + B(q1, H1001) + B(H0001, H1100)

+ B(q0, H0101) + A1(H1100, K1,1) − bH0101 − H1100 − H2001) . (2.69)
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In formulas (2.48), (2.62), (2.65) and (2.68), we define the expression x = AINVy as solving

the non-singular border system

(

A p1

qT
0 0

) (

x

s

)

=

(

y

0

)

,

where y is in the range of A.

2.4 Bogdanov-Takens point in the Gray-Scott model

In this section, we study the BT bifurcation of the Gray-Scott kinetic model







dU

dt
= −UV 2 + F (1 − U),

dV

dt
= UV 2 − (F + k)V,

(2.70)

(see [99, 125]). The model (2.70) describes cubic autocatalytic chemical or biochemical

reactions. This model serves as a reaction part of the reaction diffusion system describ-

ing various pattern formation phenomena [75–77]. The analysis of (2.70) shows that points

(1, 0) and
(

2(k + F )2

F ± ρ
,

(F ± ρ)

2 (k + F )

)

,

where

ρ =
√

F 2 (1 − 4F ) − 4Fk (k + 2F ),

are the equilibria. The trivial point (1, 0) always exists and it is stable for all k and F . The

Jacobian matrix of (2.70) at an equilibrium point (Uc, Vc) is

A =




−V 2

c − F −2UcVc

V 2
c 2UcVc − F − k



 . (2.71)

The BT bifurcation conditions, i.e., Determinate(A)=Trace(A)=0, imply that

−2FUcVc + FV 2
c + kV 2

c + F 2 + Fk = 0,

2UcVc − V 2
c − 2F − k = 0.

(2.72)

Substituting any of the nontrivial steady states into (2.72), and then solving this system for

(k, F ) gives the critical parameter value (kc, Fc) = ( 1
16 , 1

16 ) with (Uc, Vc) = ( 1
2 , 1

4 ). Therefore,

system (2.70) exhibits a BT bifurcation at (kc, Fc).
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Theorem 2.3. At the parameter values (kc, Fc), system (2.70) is locally C∞- equivalent

near (Uc, Vc) to






ẇ0 = w1,

ẇ1 =
1

16
w2

0 + w0w1 + O(‖w‖3).
(2.73)

Proof. Under the change of variables

(U, V ) = (Uc + x1, Vc + x2) , (F, k) = (Fc + α1, kc + α2) , (2.74)

the system (2.70) takes the form







ẋ1 = −1

8
x1 − 1

4
x2 +

1

2
α2 − 1

2
(x1x2 + x2

2) − x1α2 − x1x2
2,

ẋ2 =
1

16
x1 +

1

8
x2 − 1

4
(α1 + α2) +

1

2
(x1x2 + x2

2) − x2(α1 + α2) + x1x2
2,

(2.75)

which has the BT-equilibrium x = (x1, x2) = (0, 0) at α = (α1, α2) = (0, 0). The system

(2.75) can be represented at α = (0, 0) as (2.2) where

A =






−1

8
−1

4
1

16

1

8




 , B(x, y) =






−1

2
(x1y2 + x2y1) − x2y2

1

2
(x1y2 + x2y1) − x2y2




 , (2.76)

The normal form coefficients a, b can be computed using the homological equation technique

as we described in Section 2.3. The vectors

q0 =
1

2
m (2, −1) , q1 = −1

2
m (−2n, n + 8m) , p1 = r (1, 2) , p0 = (s, 16r + 2s) ,

where {m, n, r, s} ∈ R, satisfy (2.3). We can select these vectors to satisfy (2.4) so that we

obtain the following numerical value for the vectors q0,1, p0,1

q0 = ±
√

5

5
(−2, 1) , q1 = ±16

√
5

25
(1, 2) , p0 = q0, p1 = ±

√
5

16
(1, 2) .

Using these vectors with B as we defined in (2.76), we can compute a, b as

(a, b) = ∓
√

5

10

(
1

16
, 1

)

. (2.77)

Since the critical normal form coefficients (a, b) can be simultaneously divided by ∓
√

5
10 by

applying an appropriate scaling of the phase coordinates (w0, w1) in (2.22), we arrive at

(2.73).



CHAPTER 3

Homoclinic orbits near a

Bogdanov-Takens point of a

vector-field

With a regular perturbation (R-P) method and a generalization of the Lindstedt-

Poincaré (L-P) perturbation method, we derive the explicit computational

formulas for the second-order homoclinic predictor to a generic n-dimensional

ODE. The generic homoclinic predictors are applied to explicitly compute the

homoclinic solutions in the Gray-Scott kinetic model.

3.1 Blowing-up the smooth normal form

To construct an approximation for the homoclinic solution of (2.24), one first performs a

blow-up transformation. We take the normal form (2.24) and apply the rescaling

β1 = −4

a
ε4 †, β2 =

b

a
ε2τ, w0 =

ε2

a
u, w1 =

ε3

a
v, εt = s. (3.1)

†We use − 4

a
ε4 rather than − 1

a
ε4 as used in [78]. This simplifies the final result. The minus sign in the

expression of β1 comes from the fact that the equilibria are

(

±
√

−β1

a
, 0

)

. This requires sign(β1) = −sign(a).
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This gives







u̇ = v

v̇ = −4 + u2 + ε b
a
v (τ + u) + ε2 1

a2 u2 (τba1 + du) + ε3 1
a2 uv (τbb1 + eu) + O(ε4),

or

ü − u2 + 4 = ε
b

a
u̇ (τ + u) + ε2 1

a2
u2 (τba1 + du) + ε3 1

a2
uu̇ (τbb1 + eu) + O(ε4), (3.2)

where 0 < ε ≪ 1 and τ are the new parameters. The dot now indicates the derivative with

respect to s. For ε = 0, (3.2) is a Hamiltonian system with the homoclinic solution (see, for

example, [16])







u0(s) = 2
(
1 − 3sech2(s)

)
,

v0(s) = 12sech2(s) tanh(s).

(3.3)

3.2 The regular perturbation method

The regular perturbation method can be used to compute the homoclinic orbits to (3.2), cf.

[91, 92]. Assume that the homoclinic solution of (3.2) is parametrized by ε and approximated

by










u(s)

v(s)

τ










=










u0(s)

v0(s)

τ0










+ ε










u1(s)

v1(s)

τ1










+ ε2










u2(s)

v2(s)

τ2










+ ε3










u3(s)

v3(s)

τ3










+ O
(
ε4

)
. (3.4)

Inserting (3.4) into (3.2) and equating equal powers of ε leads to the following systems

Order
(
ε0

)
: ü0 − u2

0 + 4 = 0, (3.5)

Order
(
εi

)
: üi − 2u0ui = zi(u, v, τ), i = 1, 2, 3, . . . (3.6)

where
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z1(u, v, τ) =
b

a
u̇0 (τ0 + u0) ,

z2(u, v, τ) =
b

a
u̇0 (τ1 + u1) +

b

a
u̇1 (τ0 + u0) +

1

a2
u2

0 (a1bτ0 + du0) + u2
1,

z3(u, v, τ) =
b

a
u̇0 (τ2 + u2) +

b

a
u̇1 (τ1 + u1) +

b

a
u̇2 (τ0 + u0) + 2u1u2

+
2

a2
u0u1 (a1bτ0 + du0) +

1

a2
u0u̇0 (bb1τ0 + eu0) +

1

a2
u2

0 (a1bτ1 + du1) ,

...

The ε0-terms yield the Hamiltonian system with solution (3.3). Differentiating (3.5) with

respect to s we find that ϕ1(s) = u̇0(s) solves the homogeneous problem of (3.6), i.e.,

ϕ̈ − 2u0ϕ = 0. (3.7)

Then there exists a second solution to (3.7) in the form

ϕ2 = ϕ1θ, (3.8)

for some differentiable function θ. Substituting (3.8) into (3.7) gives

✟
✟ϕ̈1θ + 2ϕ̇1θ̇ + ϕ1θ̈ −✘✘✘✘2u0ϕ1θ = 0. (3.9)

If we define ρ = θ̇, (3.9) becomes

2ϕ̇1ρ + ϕ1ρ̇ = 0 (3.10)

with solution ρ =
2 cosh6(s)

3 sinh2(s)
. Therefore, a second solution for the homogeneous problem

(3.7) is

ϕ2 = ϕ1

∫

ρ ds = 2 cosh2(s) + 15 sech2(s) (s tanh(s) − 1) + 5. (3.11)

As we have two linearly independent solutions {ϕ1, ϕ2} for the homogeneous problem (3.7),

it is straightforward to solve the inhomogeneous problems of (3.6). The general solution for

these problems can be written as

ui(s) =







C2(i−1)+1 −

gi
︷ ︸︸ ︷∫

ϕ2zi

W (ϕ1, ϕ2)
dx







ϕ1 +







C2(i−1)+2 +

fi
︷ ︸︸ ︷∫

ϕ1zi

W (ϕ1, ϕ2)
dx







ϕ2, (3.12)
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i = 1, 2, 3, . . ., where W (ϕ1, ϕ2) is the Wronskian of {ϕ1, ϕ2}, C2(i−1)+1, C2(i−1)+2 are

undetermined integration constants and fi(0) = gi(0) = 0 must hold. The description of

the homoclinic solution (3.4) to the saddle of (3.2) requires that u and v are bounded, i.e.,

lim
s→±∞

|u(s)| Ó= ∞ and lim
s→±∞

|v(s)| Ó= ∞, and as s → ±∞ the solution must approach the

saddle. This implies

lim
s→±∞

|ul(s)| Ó= ∞, for l ≥ 1.

Thus, the first-order correction to the Hamiltonian homoclinic solution can be written as

u1(s) = (C1 − g1(s)) ϕ1(s) + (C2 + f1(s)) ϕ2(s),

where

f1(s) =
b

35a

sinh3(s)(7τ0 − 10)

cosh3(s)
+

3b

70a

sinh3(s)(7τ0 − 10)

cosh5(s)
− 9b

7a

sinh3(s)

cosh7(s)
,

g1(s) =
6b

7a
log(2 cosh(s)) + s

b

28a

sinh(s)(7τ0 − 10)

cosh(s)
+

b

28a

(−7τ0 + 1)

cosh2(s)

+ s
b

56a

sinh(s)(7τ0 − 10)

cosh3(s)
+

3b

56a

(7τ0 + 30)

cosh4(s)
+ s

3b

56a

sinh(s)(−7τ0 − 20)

cosh5(s)

− 45b

28a

(
1

cosh6(s)
− s

sinh(s)

cosh7(s)

)

− b

a

(
τ0

8
+

1

28
+

6

7
log(2)

)

.

Now we check the limits of u1(s) for s → ±∞. First we see that

lim
s→±∞

g1(s)ϕ1(s) = lim
s→±∞

ϕ1(s) = 0.

So we focus on the other terms. We find

lim
s→±∞

(C2 + f(s)) = C2 ± b

a

7τ0 − 10

35
.

Thus we recover

τ0 =
10

7
(3.13)

together with C2 = 0. We point out that (3.13) coincides with the result of the Melnikov

method in (1.30). Therefore, we obtain the following first-order correction to the Hamiltonian

homoclinic solution







u1(s) = −72

7

b

a

sinh(s) log(cosh(s))

cosh3(s)
+ C1ϕ1(s),

v1(s) = u̇1(s).

(3.14)
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The constant C1 can be determined by adding an extra condition that fixes the solution

phase. This condition can be used to determine all C2(i−1)+1, i = 2, 3, ... and hence to obtain

a unique description for the homoclinic solution (3.4). Next we discuss two approaches to

define such a unique solution.

3.2.1 A point phase condition

By fixing the solution phase by requiring that [15]:

vi(0) = u̇i(0) = 0, i = 1, 2, 3, . . . (3.15)

one can obtain a (unique) ith-order correction for the homoclinic solution (u(s), v(s), τ).

The condition (3.15) requires that C1 = 0. Thus, we get







u1(s) = −72

7

b

a

sinh(s) log(cosh(s))

cosh3(s)
,

v1(s) = −72b

7a

sinh2(s) +
(
1 − 2 sinh2(s)

)
log(cosh(s))

cosh4(s)
,

(3.16)

as first reported in [91]. Applying the previous procedure to (3.6) for i = 2 gives

τ1 = 0, C3 = 0, C4 =
18b2 − 140a1b + 245d

392a2
,

and hence







u2(s) = −216

49

b2

a2

log2(cosh(s))(cosh(2s) − 2)

cosh4(s)
− 216

49

b2

a2

log(cosh(s))(1 − cosh(2s))

cosh4(s)

+

(
30
7 ba1 − 30d

)

cosh2(s)a2
− 18

49

b2

a2

(6s sinh(2s) − 7 cosh(2s) + 8)

cosh4(s)
− 2 (5ba1 + 7d)

7a2

+
s

(
30
7 ba1 + 12d

)
sinh(s)

cosh3(s)a2
+

27d

cosh4(s)a2
,

v2(s) = u̇2(s).

(3.17)

We notice that the same value of the homoclinic parameter τ1 was derived in [15, 16] using

different methods. By solving equation (3.6) for i = 3, we obtain







τ2 =
4

a

(
25

49
b1 − e

b

)

+
2

49a2

(
144

49
b2 − 25ba1 + 73d

)

,

C5 = C6 = 0,

(3.18)
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with the third-order correction (u3(s), v3(s)) to the Hamiltonian homoclinic solution explic-

itly given by







u3(s) =

((
3

cosh2(s)
− 2

)

log(cosh(s)) + tanh2(s)

)
sc1

cosh2(s)
+

c2 tanh3(s)

cosh2(s)

−
(

1728b3

343a3

(
log(cosh(s))2 − 3 log(cosh(s))

)
+ c3

)
sinh(s) log(cosh(s))

cosh3(s)

+

(
1296b3

343a3

(
4 log(cosh(s))2 − 7 log(cosh(s))

)
+ c4

)
sinh(s) log(cosh(s))

cosh5(s)
,

v3(s) = u̇3(s).

(3.19)

where

c1 =
36

343a3

(
36b3 − 35a1b2 − 98bd

)
, c2 = − 6

7a3

(
234

49
b3 − 28ae + 3bd

)

,

c3 =
36b

49a3

(

20b1a − 25a1b + 60d − 312

49
b2

)

, c4 =
648

7a3

(

bd − 6

49
b3

)

.

Note that we will use {ui, vi, τi}, i = 0, 1, 2 to derive a second-order homoclinic predictor

for the n-dimensional system (2.1) (See Section 3.5). However, as shown above, we need

to compute u3, v3 to obtain the value of τ2. Since the actual homoclinic curve in the two

parameter space of (2.1) could be nonlinear, deriving (at least) a second-order predictor arises

naturally. Also, it is clear that the above {u2, v2, τ2} depend on the terms g(w, β2) in the

smooth normal form (2.24). So a wrong second-order homoclinic solution will be derived if

we use the topological normal form (2.23). The correct second-order solution was presented

in [2, 92], while the third-order approximation (3.19) was reported in [2]. A part of the

Maple commands that we have used to make the previous explicit computations is shown in

Appendix A.2.

Substituting {u0, v0, ui, vi, τi−1}, i = 1, 2, 3 into (3.4) and then plugging the substitution

back into (3.1), we obtain the third-order approximation for the homoclinic solution of the

BT normal form system (2.24):







w0(t) =
ε2

a

(
3∑

i=0

εiui(εt)

)

+ O(ε6),

w1(t) =
ε3

a

(
3∑

i=0

εivi(εt)

)

+ O(ε7),

β1 = −4

a
ε4,

β2 =
b

a
ε2

(
τ0 + ε2τ2

)
+ O(ε5).

(3.20)
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3.2.2 An integral phase condition

The phase condition (3.15) can be replaced by a different one that uses an integral phase

condition as in [33, 47, 55]. The expansion of u(s) in (3.4) can be grouped as

u(s) − u0(s) =

3∑

i=1

εiui(s) + O
(
ε4

)
. (3.21)

Then we can fix the phase of u(s) by requiring its minimal L2-distance to the Hamiltonian

solution u0(s), i.e.,

∫ +∞

−∞
ũ(s) ds =

∫ +∞

−∞

( 3∑

i=1

εiũi(s) + O
(
ε4

) )

ds = 0. (3.22)

where 





ũ(s) = 〈u(s) − u0(s), u̇0(s)〉 ,

ũi(s) = 〈ui(s), u̇0(s)〉 , i = 1, 2, 3.

Dividing both sides in (3.22) by ε, we get

✘✘✘✘✘✘✿
0∫ +∞

−∞ ũ(s)ds

ε
=

∫ +∞

−∞
ũ1(s)ds + ε

∫ +∞

−∞
ũ2(s)ds + ε2

∫ +∞

−∞
ũ3(s)ds + O

(
ε3

)
. (3.23)

For ε → 0, the following phase condition

∫ +∞

−∞
ũ1(s)ds =

∫ +∞

−∞
〈u1(s), u̇0(s)〉ds = 0 (3.24)

holds for (3.14) if

C1 =
11b

10a
− 3b

14a
(1 + 4 log(2)).

This implies 





ũ1(s) = − 12b

35a

sinh(s)(−31 + 30 log(2 cosh(s)))

cosh3(s)
,

ṽ1(s) = ˙̃u1(s).

(3.25)

Similarly, if we divide both sides of (3.22) by ε2 and take (3.24) into account, we obtain

∫ +∞

−∞
ũ2(s)ds =

∫ +∞

−∞
〈u2(s), u̇0(s)〉ds = 0. (3.26)
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The phase condition (3.26) with (3.25) leads to







τ1 = 0, C3 = 0,

C4 = − b2

a2

(
9 log(2) (15 log(2) + 31)

245
− 1329

2450

)

− 1

a2

(
5ba1

14a2
− 5d

8

)

,

(3.27)

and hence we get the following second-order correction for the Hamiltonian homoclinic

solution







ũ2(s) =
(
35ba1 − 36b2 + 98d

) 6s sinh(s)

49a2 cosh3(s)
+

27
(
804b2 + 1225d

)

1225a2 cosh4(s)

+ 216

(
3

cosh2(s)
− 2

)
b2 log(2 cosh(s))2

49a2 cosh2(s)
− 6

(
2732b2 + 6125d

)

1225a2 cosh2(s)

− 72

5

(
123

cosh2(s)
− 92

)
b2 log(2 cosh(s))

49a2 cosh2(s)
+

30ba1

7a2 cosh4(s)
− 2 (5a1b + 7d)

7a2
,

ṽ2(s) = ˙̃u2(s).

(3.28)

3.2.3 Analysis of the homoclinic asymptotics

In Figure 3.1a–Figure 3.1d, we plot the homoclinic solution†







u(s) = u0(s) + εũ1(s) + ε2ũ2(s),

v(s) = v0(s) + εṽ1(s) + ε2ṽ2(s),

for several values of ε and with a = −1, b = 1, a1 = b1 = e = d = 0. It is remarkable, see

also the close-up, that the orbits for ε Ó= 0 approach the saddle along the “wrong” direction,

making a “parasitic turn” when s → +∞ or s → −∞. Indeed, the difference

2 − (u0(s) + εũ1(s))

asymptotically behaves for s → ±∞ as

288

7

b

a
εse∓2s,

†Similar results were obtained in [91] by using (3.16) and (3.17).
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and, therefore, is negative for s → −∞ if ab > 0 or for s → +∞ if ab < 0 (provided that

ε > 0). On any finite time interval [−T, T ] the tangent predictor, i.e., u(s) = u0(s) + εũ1(s),

with sufficiently small ε does approximate the “true” homoclinic solution better than the

Hamiltonian predictor with ε = 0. In particular, while the Hamiltonian homoclinic orbit (3.3)

is symmetric w.r.t. the u-axis, the tangent predictor defines a non-symmetric approximate

orbit, better corresponding to the non-symmetric true homoclinic orbit in (3.2) and in the

normal form (2.24) (see Figure (3.2b) for a graphical illustration). Figure 3.1e and Figure 3.1f

show a comparison between the different solutions using (3.16), (3.17) and (3.25), (3.28). It

is clear that the second-order predictor with (3.25) and (3.28) has a smaller “parasitic loop”.

3.2.4 A comparison in the topological normal form

Consider the topological BT normal form, i.e., the system (2.23). We want to compare

the predicted homoclinic solutions with those obtained via the high-accuracy numerical

continuation in MatCont [47]. From (3.20) we obtain that ε = 4
√

− a
4 β1. Substituting this

into the expression of β2 in (3.20), we obtain the following second-order approximation for

the homoclinic bifurcation curve in the parameter plane (β1, β2) of (2.23):

β2 = − 72b3

2401a2
β1 +

5b

7a

√

−aβ1 + O
(

|β1| 5
4

)

, sign(β1) = −sign(a). (3.29)

For a = −1 and b = 1, this approximation is shown as the red curve HomP red in Figure

3.2a. We use MatCont to start a continuation of equilibria with initial parameter values (β1,

β2) = (1, −2) and the equilibrium point (w0, w1) = (1, 0); β2 is the free parameter. We find

two bifurcation points along the curve of equilibria, limit point and Andronov-Hopf. The limit

point continuation is now carried out to detect the BT-bifurcation point at (β1, β2) = (0, 0).

We start the homoclinic continuation with ε = 0.08. This yields the dashed blue curve

HomCom in Figure 3.2a and the blue orbits in Figure 3.2b. The predicted orbits (red orbits

in Figure 3.2b) are computed by taking the computed homoclinic orbits from the numerical

continuation. This gives the values of β1 which yield the values for ε in the predictor. The

predictors are then compared with the computed solution using the time points of the fine

mesh in the numerical continuation, after a time shift so that the computed and predicted

curves coincide for t = 0. We see that the improved predictors perform better than the one

based on the Hamiltonian solution since the homoclinic orbit is indeed non-symmetric w.r.t.

w0 (as is correctly predicted by (3.20)).
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Figure 3.1: Homoclinic solution for a = −1, b = 1, a1 = b1 = e = d = 0 and ε = 0
(red), 0.2 (green), 0.4 (blue), 0.6 (black). (a) Tangent predictors using (3.25); (b) Zoom
of the tangent predictors near the saddle: the “parasitic turn” is clearly visible; (c) The
second-order predictors using (3.25) and (3.28); (d) Zoom of the second-order predictors
near the saddle: the “parasitic loop” is not clear but will appear for large ε, (e) Homoclinic
solution for a = −1, b = 1, a1 = b1 = e = d = 0 and ε = 0 (blue), 0.3 tangent predictors
(red using (3.16), green using (3.25)) and second-order predictors (black using (3.16) and
(3.17) , brown using (3.25) and (3.28)). (f) Zoom of the same curves near the saddle: the
second-order predictor where we fix the solution phase by requiring the “minimal distance”
is the best one approaching the zero order predictor near the saddle.
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Figure 3.2: (a) Predicted using (3.29) (red) and computed (dashed blue) homoclinic
bifurcation curves in parameter space, (b) The comparison of homoclinic orbits in phase
space between computed (blue) and predicted (red) using the second-order correction with
(3.16), (3.17) for 10 log(β1) = −3.755, −2.313, −1.647, −1.267, −1.005, −0.801, −0.638.
(c) and (d) The time shift so that the predicted (red) and computed (blue) curves consider
at t = 0 for 10 log(β1) = −1.005.



60 | 3.3 The Lindstedt-Poincaré method

3.3 The Lindstedt-Poincaré method

In this section, we apply a generalization of the Lindstedt-Poincaré (L-P) method combined

with hyperbolic functions instead of the Jacobian elliptic functions used in [13, 37]. We

prove that this method gives the same homoclinicity conditions and the same predictor in the

parameter space. Chen et. al. [35, 36, 38–40] used the L-P method to study the homoclinic

solution to a family of nonlinear oscillators. They applied a non-linear transformation of

time instead of the linear one used in the original L-P method for periodic solutions (see,

e.g. [105]). Belhaq et al. [13] proved that the generalized L-P method combined with a

special criterion leads to the same results as the classical Melnikov method. This criterion

is based on a collision between the bifurcating limit cycle near the homoclinic orbits with

a saddle equilibrium point. We should also point out that yet another approach based on

periodic time transformations exists in the literature [30]. However, the L-P method has

a clear advantage since it provides an explicit time-parametrization which is necessary for

numerical continuation.

First, we introduce the non-linear transformation of time,

dξ

ds
= ω(ξ), (3.30)

where ω(ξ) is a bounded positive function for all ξ. Then







d

ds
=

dξ

ds

d

dξ
= ω(ξ)

d

dξ
,

d2

ds2
= ω(ξ)

d

dξ

(

ω(ξ)
d

dξ

)

.

The new parametrization of time transforms (3.2) into

ω
d

dξ
(ωû′)−û2 +4 = ε

b

a
ωû′ (τ + û)+ε2 1

a2
û2 (τba1 + dû)+ε3 1

a2
û ωû′ (τbb1 + eû)+O

(
ε4

)
.

(3.31)

The hat is used to distinguish the solution of the L-P method from the R-P solution while the

prime denotes the derivative of û with respect to the new independent variable ξ. As before,

we assume that the homoclinic solution of (3.31) is parametrized by ε and approximated by










û(ξ)

v̂(ξ)

ω(ξ)

τ










=










û0(ξ)

v̂0(ξ)

ω0(ξ)

τ0










+ ε










û1(ξ)

v̂1(ξ)

ω1(ξ)

τ1










+ ε2










û2(ξ)

v̂2(ξ)

ω2(ξ)

τ2










+ ε3










û3(ξ)

v̂3(ξ)

ω3(ξ)

τ3










+ O
(
ε4

)
. (3.32)
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Substituting the series expansions (3.32) into equation (3.31) with ω0(ξ) = 1 †; and then

successively collecting the terms with equal power in ε leads to the following systems:

Order
(
ε0

)
: û′′

0 − û2
0 + 4 = 0, (3.33)

Order
(
ε1

)
: Φ̂1

1 =
b

a
û′

0 (τ0 + û0) , (3.34)

Order
(
ε2

)
: Φ̂2

2 + Ψ̂1
1 − û2

1 =
b

a
û′

0 (τ1 + û1) + Γ̂1, (3.35)

Order
(
ε3

)
: Φ̂3

3 + Ψ̂2
1 + Ψ̂1

2 − 2û2û1 + ω2
d

dξ
(ω1û′

0) =
b

a
û′

0 (û2 + τ2) + Γ̂2 + Ω̂, (3.36)

where

Φ̂j
i =

d

dξ
(ωj û′

0) + ωj û′′
0 + û′′

i − 2û0ûi,

Ψ̂j
i =

d

dξ
(ωj û′

i) + ωj û′′
i + ω1

d

dξ

(
ωj û′

i−1

)
,

Γ̂i =
b

a
(ω1û′

0 + û′
1) (τi−1 + ûi−1) +

1

a2
û2

0 (ba1τi−1 + ûi−1d) ,

Ω̂ =
2

a2
û0û1 (ba1τ0 + dû0) +

1

a2
û′

0û0 (bb1τ0 + eû0) +
b

a
(ω2û′

0 + ω1û′
1 + û′

2) (τ0 + û0) .

Equation (3.33) is identical to (3.2) with ε = 0. So it has the exact homoclinic solution







û0(ξ) = −6sech2(ξ) + 2,

v̂0(ξ) = 12sech2(ξ) tanh(ξ).

(3.37)

For ε Ó= 0, we assume that the homoclinic solution of (3.31) is still given by (see, for example

[37]):






û(ξ) = σsech2(ξ) + δ,

v̂(ξ) = û′(ξ) = −1

6
σω(ξ)v̂0(ξ),

(3.38)

where σ and δ are parameters that depend on ε,







σ = σ0 + εσ1 + ε2σ2 + ε3σ3 + O
(
ε4

)
,

δ = δ0 + εδ1 + ε2δ2 + ε3δ3 + O
(
ε4

)
.

(3.39)

†If we keep ω0(ξ) free then the homoclinic solution to (3.33) requires that ω0(ξ) = 1.
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Substituting (3.39) into (3.38) and then equating each of the coefficients of εi to (3.32) yields

that σ0 = −6, δ0 = 2 and

ûi(ξ) = σisech2(ξ) + δi, i = 1, 2, 3, (3.40)

v̂1(ξ) =
(

ω1(ξ) − σ1

6

)

v̂0(ξ), (3.41)

v̂2(ξ) =
(

ω2(ξ) − σ1

6
ω1(ξ) − σ2

6

)

v̂0(ξ), (3.42)

v̂3(ξ) =
(

ω3(ξ) − σ1

6
ω2(ξ) − σ2

6
ω1(ξ) − σ3

6

)

v̂0(ξ). (3.43)

Using the assumptions (3.40)-(3.43), we solve the linear equations (3.34)-(3.36) for ûi(ξ), one

by one to determine τi−1, δi, σi and ωi(ξ) for i = 1, 2, 3.

We multiply both sides of (3.34) by û′
0 and then integrate both sides from ξ0 to ξ, and get

∫ ξ

ξ0

û′
0

d

dx
(ω1û′

0) dx +

∫ ξ

ξ0

û′
0ω1û′′

0 dx

︸ ︷︷ ︸

I

+

∫ ξ

ξ0

û′
0û′′

1 dx − 2

∫ ξ

ξ0

û′
0û0û1 dx

︸ ︷︷ ︸

II

=
b

a

∫ ξ

ξ0

û′2
0 (τ0 + û0) dx

(3.44)

Differentiating (3.33) with respect to ξ, we obtain

û′′′
0 = 2û0û′

0 ⇒
∫ ξ

ξ0

û1û′′′
0 dx = 2

∫ ξ

ξ0

û1û0û′
0 dx. (3.45)

The terms I and II of (3.44) can be simplified by

I = ω1û′2
0

∣
∣
ξ

ξ0
−
✟

✟
✟
✟

✟
✟✟∫ ξ

ξ0

ω1û′
0û′′

0 dx +

✟
✟
✟
✟

✟
✟✟∫ ξ

ξ0

ω1û′
0û′′

0 dx = ω1û′2
0

∣
∣
ξ

ξ0
,

II = (û′
0û′

1 − û1û′′
0)|ξξ0

+
✟
✟
✟
✟
✟✟

∫ ξ

ξ0

û1û′′′
0 dx −

✟
✟
✟

✟
✟
✟
✟

2

∫ ξ

ξ0

û′
0û0û1 dx

︸ ︷︷ ︸

Using (3.45)

= (û′
0û′

1 − û1û′′
0)|ξξ0

.

Therefore, (3.44) can be written as

(

ω1û′2
0 + û′

0û′
1 − û1û′′

0

)∣
∣
∣

ξ

ξ0

=
b

a

∫ ξ

ξ0

û′2
0 (τ0 + û0) dx. (3.46)
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Setting ξ0 = −∞ and ξ = ∞ in (3.46) yields the following condition for the bifurcation of

homoclinic orbit:
b

a

∫ ∞

−∞
û′2

0 (τ0 + û0) dx = 0. (3.47)

and hence
b

a

192 (7τ0 − 10)

35
= 0 ⇒ τ0 =

10

7
. (3.48)

Note that the same condition was derived using the classical Melnikov technique (see (1.30)).

By setting ξ0 = 0, ξ = ∞, we find that

σ1 = −δ1. (3.49)

We change the integration boundaries to 0 and ξ, and get

12ω1(ξ) + δ1 cosh(2ξ) = −72b

7a
tanh(ξ). (3.50)

Since ω(ξ) is bounded function, we can choose the parameter δ1 such that

lim
ξ→±∞

|ω1(ξ)| Ó= ∞.

This condition implies that

δ1 = 0.

Thus, ω1(ξ) is given by

ω1(ξ) = − 6b

7a
tanh(ξ). (3.51)

Substituting the values of δ1, σ1, ω1(ξ) into (3.40) and (3.41) gives the first-order correction

to the initial homoclinic solution (û0(ξ), v̂0(ξ))







û1(ξ) = 0,

v̂1(ξ) = − 6b

7a
tanh(ξ)v̂0(ξ).

(3.52)

We multiply both sides of (3.35) by û′
0 and then integrate both sides from ξ0 to ξ. Then we

simplify to

(

ω2û′2
0 + ω1û′2

1 + û′
0û′

2 − û2û′′
0

)∣
∣
∣

ξ

ξ0

+
2592b2

49a2

sinh4(x)

cosh8(x)

∣
∣
∣
∣

ξ

ξ0

=

∫ ξ

ξ0

û′
0

(

R.H.S. of (3.35)
)

dx

(3.53)
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We repeat the last procedure of changing the integration variables to equation (3.53) and get







τ1 = 0,

δ2 = −2 (5a1b + 7d)

7a2
,

σ2 = − 3

49a2

(
6b2 − 70ba1 + 49d

)
,

ω2(ξ) =
1

7a2

(
18

7
b2 +

5

2
ba1 + 7d

)

− 9

4a2

(
6

49
b2 + d

)

sech2(ξ),

(3.54)

with






û2(ξ) = − 3

49a2

(
6b2 − 70ba1 + 49d

)
sech2(ξ) − 2 (5a1b + 7d)

7a2
,

v̂2(ξ) =
1

a2

((
3

7
b2 − 5

14
ba1 +

3

2
d

)

− 9

4

(
6

49
b2 + d

)

sech2(ξ)

)

v̂0(ξ).
(3.55)

Similarly, we multiply both sides of (3.36) by û′
0 and then integrate both sides from ξ0 to ξ.

Then we simplify to

(

ω3û′2
0 + ω2û′2

1 + ω1û′2
2 + û′

0û′
3 − û3û′′

0

)∣
∣
∣

ξ

ξ0

+
1944b

7a3

(
6

49
b2 + d

)
sinh3(x)

cosh9(x)

∣
∣
∣
∣

ξ

ξ0

− 432b

7a3

(

2d +
5

7
ba1 +

36

49
b2

)
sinh3(x)

cosh7(x)

∣
∣
∣
∣

ξ

ξ0

=

∫ ξ

ξ0

û′
0

(

R.H.S. of (3.36)
)

dx

(3.56)

The last procedure of changing the integration variables is used to obtain







τ2 =
4

a

(
25

49
b1 − e

b

)

+
2

49a2

(
144

49
b2 − 25ba1 + 73d

)

,

δ3 = 0,

σ3 = 0,

ω3(ξ) =

(

c5sech2(ξ) − 3

49a3

(
66

49
b3 − 20b2a1 + 11bd

)

+ c6

)

tanh(ξ),

(3.57)

where

c5 =
4

a2
e − 3

7a3

(

bd +
6

49
b3

)

,

c6 = − 60

49a2
bb1 +

3

7a5

(
1

2
bd2 − 10

7
b2a1d +

50

49
b3a2

1 +
6

49
b3d − 60

343
b4a1 +

18

2401
b5

)

,

with
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





û3(ξ) = 0,

v̂3(ξ) =

(

c5sech2(ξ) − 18

49a3

(
18

49
b3 − 5b2a1 + 3bd

)

+ c6

)

tanh(ξ)v̂0(ξ).

(3.58)

We notice that the same values of the homoclinic bifurcation parameters {τ0, τ1, τ2} were

derived in Section 3.1 using the regular perturbation method. A part of the Maple commands

that we have used to perform the previous explicit computations is shown in Appendix A.3.

Finally, the third-order approximation to the homoclinic orbit of the smooth BT normal

form system (2.24) is given by







w0(t) =
ε2

a

(
3∑

i=0

εiûi(ξ)

)

+ O(ε6),

w1(t) =
ε3

a

(
3∑

i=0

εiv̂i(ξ)

)

+ O(ε7),

(3.59)

where β1, β2 are the unfolding parameter as in (3.20).

Notice that the small displacement ε2δ2 in the saddle point (2, 0) can be determined just

using the boundedness assumption and the equation (3.31). Indeed, the saddle point is given

by

lim
ξ→±∞

(û(ξ), v̂(ξ)) = (δ, 0).

Since û′(ξ) = v(ξ) and ω(ξ) is a bounded function, taking the limit of both sides in equation

(3.31) leads to

−δ2 + 4 = ε2 1

a2
δ2 (τba1 + dδ) .

Substituting the expansions for τ and δ in this and collecting powers of ε, we get

Order
(
ε0

)
: −δ2

0 + 4 = 0

Order
(
ε1

)
: −2δ0δ1 = 0

Order
(
ε2

)
: −2δ0δ2 − δ2

1 =
δ2

0 (a1bτ0 + dδ0)

a2
.

We then solve at each order to get

δ0 = 2, δ1 = 0, δ2 = − (a1bτ0 + 2d)

a2
.

Note that it is only necessary to compute τ0 to determine the ε2-shift of the saddle.
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3.4 A comparison in the topological normal form

Consider again the topological normal form (2.24). It is required that the homoclinic orbits of

(2.24) satisfy w1(0) = 0 and approach the w0-axis at the saddle from both sides as t → ±∞.

Before we proceed, we check if the solutions (3.4) and (3.32) satisfy these requirements.

Consider the point c = (u(s0), v(s0)), s0 ∈ (−∞, +∞) on the homoclinic orbit (replace s

by ξ and (u, v) by (û, v̂) when we consider the homoclinic solution (3.32)), see Figure 3.3.

The slope of the homoclinic orbit at a time s = s0 is given by S(s0) =
v̇(s0)

u̇(s0)
. The correct

homoclinic orbit (the blue curve in Figure 3.3) can only have one vertical asymptote at time

s0 = 0 (i.e., where v(0) = 0 or equivalently, the denominator of S(0) vanishes). We can

use this criterion to check whether the homoclinic solutions (3.4) and (3.32) approach the

saddle along the correct direction. Since we discuss the normal form system (2.24), we set

a1 = b1 = e = d = 0. The homoclinic solution (3.32) has only one vertical asymptote because

û′(ξ0) = cosh4(ξ0) sinh(ξ0)
(
3b2a3ε2 + 49a5

)
= 0,

has only the trivial solution ξ0 = 0 for all ε > 0. Moreover, the component v̂(ξ) =

3∑

i=0

εiv̂i(ξ)

of (3.32) can be written as v̂(ξ) = l(ξ)v̂0(ξ), where

l(ξ) = 1 − ε
6b

7a
tanh(ξ) + ε

2 3b2

7a2

(

1 − 9

14
sech2(ξ)

)

− ε
3 18b3

343a3

(

3
(
42a2 − b2

)

49a2
+ sech2(ξ)

)

tanh(ξ).

Then for a given (a, b), we can always define an ε-interval such that l(ξ) > 0. This interval can

be found by solving the inequalities lim
ξ→±∞

l(ξ) > 0 for ε (e.g., for a = b = 1, the function l(ξ)

is positive for all ε ∈ [0, 1.9927)). Thus for this ε-interval the homoclinic solution (û(ξ), v̂(ξ))

intersects the û-axis only once at ξ = 0 and approaches the saddle point (−2, 0) from both

sides as ξ → ±∞ along the correct direction. On the other hand, for the first-order solution

of (3.4), i.e., u(s) = u0(s) + εu1(s), the homoclinic orbit has two vertical asymptotes, at

s0 = 0 and at the solution s0 to

7

6
sinh(s0) cosh(s0)a + ε

( (
2 cosh2(s0)b − 3b

)
log(cosh(s0)) − cosh2(s0) + b

)

= 0. (3.60)

Figure 3.4a plots the left-hand side of (3.60) as a function of time s0 for a = b = 1 and

ε = 0.01. It is clear that this function has a nontrivial solution at s0 ≈ −59.52285. This

solution corresponds to the appearance of the “parasitic turn” near the saddle (as “globally”

presented in the red curve in Figure 3.3). Figures 3.4b plots (3.60) for ε = 0.1. We notice
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that as ε increases, the “parasitic turn” is expanding away from the saddle and the nontrivial

zero of (3.60) gets closer to 0 (In general, as ε → 0, the nontrivial zero of (3.60) → −∞ and

the “parasitic turn” shrinks to the saddle point. On the other hand, as ε → 1, the nontrivial

zero of (3.60) → 0 and the “parasitic turn” grows till the homoclinic orbit breaks down).

The corresponding “parasitic turn” to the numerically computed s0 Ó= 0 in Figure 3.4b is

presented in Figure 3.5a. This Figure plots (3.4) for s ∈ [−16, −12.5] and 100, 000 points,

uniformly distributed. Figure 3.5a and 3.5b show the “parasitic turn” in the first- and third-

order solution of (3.4), respectively. Note that, the visualization of the “parasitic turn” for

both solutions requires a different scale. This indicates that the third-order solution provides

a much more accurate solution in comparison to the first-order one. To summarize, we plot

Figure 3.5c.

We switch back to the original problem of finding the homoclinic solution to (2.24). Figure

3.6 plots the homoclinic orbits of (2.24) computed with a continuation method (blue) for

a = b = 1 and (β1, β2) free. At each orbit, a value of ε can be computed by taking the

computed β1 from the numerical continuation data and then solving the third equation of

(3.20) for ε. This gives: ε = 0.139, 0.230, 0.326, 0.401, 0.470, 0.531, 0.589, 0.647, 0.707,

0.767. Using these values of ε, we plot the corresponding homoclinic orbits obtained by

(3.20) (red), (3.59) (green). Since the bounded O(ε)-terms in ω(ξ) are small, see Figure 3.7,

we approximate ω(ξ) by 1. This allows to approximate ξ by εt. It is clear that, the L-P

solution (i.e., (3.59)) has accurate orbits which nearly coincide with the computed orbits.

These orbits approach the saddle along the correct direction as t → ±∞, i.e., near the saddle

the strange “parasitic turn” does not appear, see Figure 3.6b.

Figure 3.3: The “parasitic turn” near the saddle of the homoclinic orbit (red) predicted
by (3.4).
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(a) (b)

Figure 3.4: The asymptotes of equation (3.60) for a = b = 1 and (a) ε = 0.01, (b) ε = 0.1.
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Figure 3.5: The “parasitic turn” for ε = 0.1. (a) The first-order solution of (3.4), (b) The
third-order solution of (3.4). The “parasitic turn” of the third-order solution is very small
so that we cannot compare it with the one of the first-order solution. (c) For ε = 0.3,
the “parasitic turn” in the first-order (red), the second-order (blue) and the third-order
(green) solutions of (3.4). The black curve denotes the third-order solution of (3.32)

3.5 Homoclinic asymptotics in n-dimensional systems

In this section, we provide two explicit asymptotics for the bifurcating homoclinic orbits of

(2.1). Following the procedure described in Section 2.3, we transfer the smooth BT normal

form (2.24) with the homoclinic approximation (3.20), and (3.59) back to the original system

(2.1).

With data collected in (2.41), (2.44), (2.48), (2.59), (2.61), (2.62), (2.64)-(2.69), we get two

second-order homoclinic predictors xR (i.e., the regular homoclinic asymptotic) and xL (i.e.,

Lindstedt-Poincaré homoclinic asymptotic) for the original system (2.1). Thus, we obtain

the following second-order homoclinic predictions in phase space for the the original system

(2.1) (see also Appendix A.4):
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Figure 3.6: (a) Homoclinic orbits in phase space of (2.24) for a = b = 1 and ε= 0.139,
0.230, 0.326, 0.401, 0.470, 0.531, 0.589, 0.647, 0.707, 0.767. Blue orbits are computed with
a continuation method, red orbits denote the homoclinic orbits obtained by (3.20), while
the green orbits denote the homoclinic orbits obtained by (3.59). (b) Zoom of Figure
3.6a. For ε Ó= 0, the approximate orbits obtained by (3.20) approach the saddle along
the “wrong” direction making a “parasitic turn”. This turn does not appear in the orbits
obtained by (3.59).

α =
ε2

a

10b

7
K1,1 +

ε4

a

(

−4K1,0 +
50b2

49a
K2 + bτ2K1,1

)

+ O(ε5), (3.61)

xR(t) =
ε2

a

(
10b

7
H0001 + u0(s)q0

)

+
ε3

a

(

v0(s)q1 + u1(s)q0

)

+
ε4

a

(

−4H0010 +
50b2

49a
H0002

+ bτ2H0001 + u2(s)q0 + v1(s)q1 +
1

2a
u2

0(s)H2000 +
10b

7a
u0(s)H1001

)

+ O(ε5), (3.62)

xL(t) =
ε2

a

(
10b

7
H0001 + û0(ξ)q0

)

+
ε3

a

(

v̂0(ξ)q1 + û1(ξ)q0

)

+
ε4

a

(

−4H0010 +
50b2

49a
H0002

+ bτ2H0001 + û2(ξ)q0 + v̂1(ξ)q1 +
1

2a
û2

0(ξ)H2000 +
10b

7a
û0(ξ)H1001

)

+ O(ε5), (3.63)

where τ2 is given in (3.18); (u0, v0), (u1, v1) and u2 are specified by (3.3), (3.16) and

(3.17), respectively; and (û0, v̂0), (û1, v̂1) and û2 are specified by (3.37), (3.52), and (3.55),

respectively. Notice that ξ in (3.63) is related to s = εt by the differential equation (3.30).

However, as explained before, we can approximate ω(ξ) by 1 and replace ξ by εt.
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Figure 3.7: The bounded function ω(ξ) − 1 for (a, b) = (1, 1) and ε=0.01, 0.05, 0.1, 0.2.

3.6 The homoclinic solutions of the Gray-Scott model

In this section, we use the second-order predictors (3.61) and (3.63) to explicitly derive

an accurate approximation for the homoclinic solution in the Gray-Scott kinetic model

(2.70). We compare these solutions with the homoclinic solutions computed by a numerical

continuation method to illustrate the accuracy.

Theorem 3.1. The parameters (F, k) unfold the BT singularity generically and for

parameter values near (Fc, kc) system (2.70) has a homoclinic orbit, provided k < kc and

F − Fc = − 5

148

√

−74(k − kc) +
8952

9065
(k − kc) + O(|k − kc| 5

4 ). (3.64)

Proof. As discussed in Section 2.4, the change of variables (2.74) transforms the system (2.70)

into (2.75). This system has a BT-equilibrium x = (x1, x2) = (0, 0) and α = (α1, α2) = (0, 0).

Therefore, the system (2.75) can be recast as system (2.1) with f(x, α) as in (2.39a) where

A =

(

− 1
8 − 1

4

1
16

1
8

)

, J1 =

(
1
2 0

− 1
4 − 1

4

)

, B(x, y) =

(

− 1
2 (x1y2 + x2y1) − x2y2

1
2 (x1y2 + x2y1) + x2y2

)

,

A1(x, α) =

(

−x1α2

−x2α1 − x2α2

)

, C(x, y, z) =

(

−2(x1y2z2 + x2y1z2 + x2y2z1)

2(x1y2z2 + x2y1z2 + x2y2z1)

)

,

and J2 = B1 = (0, 0). The vectors

q0 =

√
5

5

(

− 2, 1
)

, q1 =
16

√
5

25

(

1, 2
)

, p0 =

√
5

5

(

− 2, 1
)

, p1 =

√
5

16

(

1, 2
)

,
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satisfy (2.3) and (2.4). The normal form coefficients a and b are given in (2.77), i.e.,

a = −
√

5

160
, b = −

√
5

10
.

To find an explicit formula for the homoclinic solutions of (2.70), we compute the coefficients

of (2.48), (2.59), (2.61), (2.62) and (2.64)-(2.69) to get







H2000 =
96

125

(

−1

2

)

, H1100 =
768

625

(

1

2

)

, H0200 = −73728

3125

(

1

2

)

,

H0010 =
64

√
5

125

(

−26
219

5

)

, H0001 =

(

0

−2

)

, K1,0 =
32

√
5

5

(
179
125

−1

)

,

K1,1 =

(

−1

0

)

, K2 = 8

(
179
125

−1

)

, H0002 =
1728

625

(

1

2

)

,

H1001 = −16
√

5

25

(

1

2

)

, H0101 =
768

√
5

125

(

1

2

)

, d = − 1

40
,

H3000 =
21312

√
5

15625

(

1

2

)

, e = −679

625
, a1 =

7
√

5

50
,

H2001 = −384

125

(

1

2

)

, b1 =
36

√
5

25
.

(3.65)

Substituting these values into (3.61) and (3.63) gives the following second-order predictor for

the homoclinic solution of (2.75),






α1

α2




 = −ε2






160

7

0




 − ε4







73334784

12005

303104

49







+ O
(
ε5

)
, (3.66)






x1

x2




 = ε2






64û0

−32û0 − 320

7




 + ε3







64û1 − 512

5
v̂0

−32û1 − 1024

5
v̂0







+ ε4







16384

7
û0 − 49152

25
û2

0 − 512

5
v̂1 + 64û2 − 9551872

1225

32768

7
û0 +

86016

25
û2

0 − 1024

5
v̂1 − 32û2 − 848551936

60025







+ O
(
ε5

)
, (3.67)

where û0, v̂0, û1, v̂1 and û2 are explicit functions of εt given by (3.37), (3.52), and (3.55),

respectively. Using
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ε ≈ 4

√

− 49

303104
α2,

we obtain the second-order approximation for the homoclinic bifurcation curve of (2.75) in

the (α1, α2)-space that implies (3.64). The formulas (3.66)-(3.67) are computed using Maple.

The full commands can be found in Appendix A.5.

The homoclinic curve and the corresponding orbits are shown in Figure 3.8. The BT point

is ( 1
2 , 1

4 ) in the phase space and ( 1
16 , 1

16 ) in the parameter space. In Figure 3.8a, the dashed

black curve is obtained by predictor (3.64). The blue curve is obtained by a continuation

method [47, 51, 52]. It is clear that the predictor (3.64) gives a good approximation to the

computed homoclinic curve based on a continuation method for the saddle point as well as for

the homoclinic curve, see Figures 3.8a and 3.8b. The normal form (2.73) predicts the birth

of an unstable limit cycle via a subcritical Andronov-Hopf bifurcation near the BT point.

However, this bifurcation becomes supercritical away from the BT point at the Generalized

Hopf point at (k, F ) ≈ (0.0352, 0.0117). Here a curve of limit points of cycles emerges. This

curve (solid black) and the homoclinic seem to extend to the origin, see Figure 3.8c.
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Figure 3.8: (a) Bifurcation diagram of (2.70) near the BT point: The blue curve is the saddle

homoclinic curve computed by a continuation method, the dashed black curve corresponds to

the predictor (3.64), the limit point and Andronov-Hopf bifurcation curves are green and red,

respectively; (b) The predicted homoclinic orbits using the predictor (3.67) in the phase space

for ε=0.0052, 0.0066, 0.0084, 0.0109, 0.0142, 0.0173 and the numerical solutions (blue) obtained

for the corresponding values of k; (c) Andronov-Hopf (red), homoclinic (blue), and limit points of

cycles (black) bifurcation curves in the (F −FH , k)-plane, where FH = 1

2

√
k(1−

√

1 − 4
√

k−2
√

k)

is the Andronov-Hopf bifurcation value of parameter F at a given k.



CHAPTER 4

Initialization of a homoclinic

solution

In this chapter we discuss the implementation of the derived homoclinic

asymptotics in the MATLAB continuation package MatCont. Five numerical

examples illustrating its efficiency are presented.

4.1 Initialization issue

From a numerical point of view, the continuation problem of homoclinic orbits is well defined

near but not at the BT point. So, a small nonzero step away form the BT point (essentially

determined by the perturbation parameter ε) should be chosen so that the initial prediction

is sufficiently close to the actual homoclinic solution. The continuation problem itself should

be defined in a finite time interval instead of an infinite one. In the present chapter, we

derive an important relation between the geometric amplitude of the homoclinic orbit and

the initial perturbation parameter ε, see Step 2 in Section 4.1.1. We also present an extra

parameter that can be used by the user to find a suitable finite time interval where the

continuation problem will converge, see Figure 4.1 and Step 3 in Section 4.1.1.
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In general, to continue the homoclinic orbits in two free parameters, MatCont uses an

extended defining system that consists of several components (see [47, 61]).

First, the infinite time interval [−∞, ∞] is truncated to a finite interval with suitable

boundary conditions, say [−T, +T ], where T is the half-return time. So, after applying this

truncation of time, system (2.1) becomes

ẋ − 2Tf(x(t), α) = 0. (4.1)

The interval [−T, +T ] is rescaled to [0, 1] and divided into mesh intervals where the solution

is approximated by a vector polynomial of degree m (typically, m = 4), a linear combination

of the rescaled Lagrange basis polynomials. The mesh is non-uniform and adaptive. Each

mesh interval is further subdivided by (m + 1) equidistant fine mesh points and contains m

collocation (Gauss) points. These points are the rescaled roots of the mth−degree Legendre

polynomials [44, 88]. The numbers ntst of mesh intervals and ncol = m of collocation points

are part of the continuation data chosen by the user. Equation (4.1) must be satisfied at

each collocation point.

The second part is the equilibrium condition

f(x0, α) = 0. (4.2)

Third, if two homoclinic parameters are free, then the following integral phase condition is

added ∫ 1

0

〈
x(t) − x̃(t), ˙̃x(t)

〉
dt = 1, (4.3)

where x̃ is the homoclinic solution obtained at previously found point on the curve.

Fourth, the equations (4.1), (4.2) and (4.3) must be complemented with projection boundary

conditions at 0 and 1: 





QS(x(0) − x0) = 0,

QU (x(1) − x0) = 0,

(4.4)

where QS and QU are matrices whose rows form a basis for the stable (S) and unstable (U)

eigenspaces respectively of AT(x0, α). The projection boundary conditions place the solution

at the two end points in the unstable and stable eigenspaces of A(x0, α) respectively [33].

MatCont uses a specific algorithm that depends on the real Schur factorization and a Riccati

equation to construct and update QS , QU , for more details see [19, 47, 49, 53, 54, 61].
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Finally, the distance between x(0) (respectively, x(1)) and x0 must be small enough, i.e.







ε0 = ‖x(0) − x0‖,

ε1 = ‖x(1) − x0‖.
(4.5)

The half-return time T , ε0 and ε1 are called the homoclinic parameters. We note that either

one or two homoclinic parameters can be free.

MatCont calculates the initial homoclinic solution, the initial T , ε0 and ε1 by the homoclinic

predictor (3.63) (or (3.62) in MatCont 6.2 and older earlier versions). This is done by calling

the initializer init_BT_Hom.m that implements the Lindstedt-Poincaré predictor (3.63); then

MatCont uses the initial data to start up the homoclinic continuation by calling the continuer

cont.m which itself calls homoclinic.m.

4.1.1 The initializer init_BT_Hom.m

The algorithm to initialize the homoclinic continuation data proceeds as follows:

Assume that system (2.1) has a BT point at (x0, α0).

Step 0. Introduce new variables, (x, α) → (x − x0, α − α0), that move the BT point of (2.1)

to the origin, (0, 0).

Step 1. Compute the matrices and multilinear forms A, J1, B, A1, J2, C and B1. Then

define the non-singular bordered system (BS) by

BS =




A w

vT 0



 ∈ R
(n+1)×(n+1).

The vectors w, v ∈ R
n are chosen such that BS is non-singular. To compute the

eigenvectors

{q0, q1, p1, p0} ∈ R
n

one starts by solving

BS (q0, s) = (0, 1) , BS (q1, s) = (q0, 0) , BST (p1, s) = (0, 1) , BST (p0, s) = (p1, 0) .
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Following [89], these vectors are normalized by

µ =
√

|qT
0 q0|, q0 :=

1

µ
q0, q1 :=

1

µ
q1, q1 := q1 − (qT

0 q1)q0,

ν = qT
0 p0, p1 :=

1

ν
p1, p0 := p0 − (pT

0 q1)p1, p0 :=
1

ν
p0,

and hence BS can be redefined as

BS =

(

A p1

qT
0 0

)

∈ R
(n+1)×(n+1),

Step 2. Compute a,b, H2000, H1100, H0200, K1,0, K1,1, H0010, H0001, K2, H0002, H1001,

H0101, d, H3000, e, a1, H2001, b1.

Step 3. Substituting these values into (3.61) and (3.63) gives an approximation of the homo-

clinic solution (x(t, ε), α(ε)). Therefore the asymptotic homoclinic of the solution in the

parameter and state space of (2.1) is given by (x(t, ε), α(ε)) → (x(t, ε) + x0, α(ε) + α0).

Step 4. Let

A0 := ‖x(±∞, ε) − x(0, ε)‖

be the size of the initial homoclinic orbit (see Figure 4.1). Using (3.63) we approximate

A0 for small ε by

A0 =

∥
∥
∥
∥
ε2

(
2

a

)

q0 − ε2

(−4

a

)

q0

∥
∥
∥
∥

= ε2

(
6

|a|

)

.

The amplitude A0 is chosen by the user, so we get

ε =

√

A0
|a|
6

. (4.6)

This defines the initial perturbation parameter ε.

Step 5. We choose the initial T such that, at the end points, the distance

k := ‖x(±∞, ε) − x(±T, ε)‖ (4.7)

is sufficiently small [15], see Figure 4.1. For small ε, we approximate k using (3.63) as

k = ε2

(
6‖q0‖

|a|

)

sech2(±εT ). (4.8)
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Hence, the half-return time T can be estimated by solving

sech(εT ) =
1

ε

√

k|a|
6

,

or, equivalently,

sech(εT ) =

√

k

A0
. (4.9)

The tolerance k should be small; by default it is set to 1 × 10−5. However, in the

case where a is small, we sometimes need to adjust k to find a suitable T to initialize

the continuation of homoclinic orbits. This takes some trial-and-error to set k, as well

as A0. It is possible for users to change the default values if needed in the GUI input

window of MatCont (i.e., in the Starter window, see Figure 4.2), where the parameters

k and A0 are denoted by Tolerance and Amplitude, respectively. Examples will be

discussed in Section 4.2.

x(0, ε)
A0

x(+T, ε)

x(−T, ε)

k

k

x(±∞, ε)

Figure 4.1: The initial homoclinic solution.

Step 6. Compute the initial cycle by discretizing the interval [0, 1] into equidistant points

fi (the fine mesh) and then evaluate (3.63) at each t where t is given by

t = (2fi − 1)T, fi ∈ [0, 1].

The initial saddle point x∗ (i.e., x(±∞, ε)) is approximated by

x∗ = x0 + ε2

(
10b

7a
H0001 +

2

a
q0

)

.
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Step 7. From data collected in Step 3, it is now easy to compute the initial values of ε0

and ε1. It is worth pointing out that ε0,1 are computed from (3.63) with terms up to

ε3. On the other hand, the value of k is computed by truncating the O(ε3) form (3.63).

So, in general k is greater than ε0,1.

Figure 4.2: MatCont window during the homoclinic orbits continuation from a BT point.

Step 8. Since all curves in MatCont are computed by a prediction-correction continuation

method applied to a defining system in an appropriate discretization space R
N+1 [51],

the homoclinic orbits continuation involves a calculation of the tangent vector to predict

and correct the next point. If the initial point Xi ∈ R
N+1 is sufficiently close to the

homoclinic curve, then the next point in the homoclinic curve can be predicted using

the initial tangent prediction

Xi+1 = Xi + hiV
i, (4.10)
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where hi is the current step size and V i ∈ R
N+1 is the normalized tangent vector at

the homoclinic curve at point Xi. The tangent vector at Xi is computed by solving

J(Xi)V i = 0, (4.11)

where J(Xi) ∈ R
N×(N+1) is the Jacobian matrix of the defining system evaluated at

Xi. The initial point can be obtained from predictor (3.63). Compute|Forward

and Compute|Backward select the appropriate sign of V 0 without any additional

computation.

4.2 Examples

In this section we use MatCont to start homoclinic orbits that emanate from BT points in

several models†. Recall that in the GUI of MatCont k is denoted as TTolerance. In all

examples, we will set TTolerance=10−5. As a rule, the Amplitude should always be larger

than TTolerance given the geometric meaning of both variables, cf. Figure 4.1. In all cases,

ε0 and ε1 are the free homoclinic parameters since this appears to be the most stable choice.

As another rule, the BT point itself should be computed to a geometric precision significantly

smaller than TTolerance. This can be achieved in MatCont by decreasing the tolerances

VarTolerance and TestTolerance for the curve on which the BT points are detected.

4.2.1 Morris-Lecar model

Every cell in our body has a membrane that controls the movement of ions in and out of the

cell. Cell membranes have specific channels that allow ions to move across the membrane.

In the Morris-Lecar model (see [102]) we have calcium (Ca2+) and potassium (K1+) voltage

channels and a leak (L) channel. The resulting system is







CV̇ = Iapp − Iion,

ẇ =
φ(w∞ − w)

τ
,

(4.12)

†The examples require MatCont 6.2 or higher
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where
Iion = gCam∞(V − VCa) + gKw(V − VK) + gL(V − VL),

m∞ = 0.5

(

1 + tanh(
V − v1

v2
)

)

,

w∞ = 0.5

(

1 + tanh(
V − v3

v4
)

)

,

and

τ =
1

cosh( V −v3

2v4
)
.

In these equations, C is the membrane capacitance; Iapp is the applied current; Iion collects

the Ca2+, K1+ and L currents; gL, gCa and gK are the maximal conductance’s for L, Ca2+

and K1+ channels, respectively. V is the membrane potential; VL, VCa and VK are the

equilibrium potentials corresponding to L,Ca2+ and K1+ conductance’s, respectively; w is

the fraction of open K1+ channels; m∞ and w∞ are the fractions of open Ca2+ and K1+

channels at steady state respectively; τ
φ

determines the activation time for the K1+ current.

Note that v1,v2,v3 and v4 are parameters chosen to fit the model data.

We fix the parameter values as follows, C = 20, VL = −60, VCa = 120, VK = −84, gL = 2,

gCa = 4.4, gK = 8, v1 = −1.2, v2 = 18, v3 = 2, v4 = 30, φ = 1
25 . Then we compute

the equilibrium curve with free parameter Iapp, starting with initial values Iapp = 0, V =

−60.854568 and w = 0.014914. Two Andronov-Hopf points are detected. In the Continuer

window we set MaxStepSize = 1. We start from any Andronov-Hopf point and compute the

Andronov-Hopf curve passing through it with (Iapp, v3) free parameters. Four BT points are

detected, see Table 4.1 and 4.2. We compute the homoclinic to saddle curve from each BT

point with: (Iapp, v3) free system parameters, (eps0,eps1) as free homoclinic parameters,

TTolerance = 1 × 10−5, ntst = 80, Adapt = 1 and initial numerical data as in Table 4.3,

see Figure 4.3 and Figure 4.4.

Label Iapp v3 State variables

BT1 519.625363 −63.401900 (−11.152829, 0.970208)

BT2 487.997701 −51.777427 ( 2.815616, 0.974408)

BT3 −227.131893 69.755741 ( 13.611167, 0.023136)

BT4 48.225883 21.734195 (−27.149905, 0.037007)

Table 4.1: Parameter, state values at the bifurcation points in Figure 4.3.
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Label a b d e a1 b1

BT1 0.000738 0.022894 −0.000007 −0.000837 −0.002540 −0.053071

BT2 −0.000749 −0.029614 −0.000040 −0.001595 0.005192 0.070564

BT3 −0.001120 −0.033012 0.000026 0.000779 −0.000223 −0.058309

BT4 0.000277 0.015131 0.000004 0.000602 −0.000554 0.065855

Table 4.2: BT normal form coefficient {a, b, d, e, a1, b1} values at the bifurcation points
in Figure 4.3.

Label Amplitude Initial T Initial ε Compute|
BT1 3.2 × 10−5 22046.73 6.28 × 10−5 Backward

BT2 1.5 × 10−5 12599.94 4.33 × 10−5 Forward

BT3 1.5 × 10−5 10301.45 5.29 × 10−5 Backward

BT4 1.5 × 10−5 20727.74 2.63 × 10−5 Forward

Table 4.3: The initial continuation data at each BT point defined as in Table.4.1.

4.2.2 Predator-prey model with constant rate harvesting

Consider the following predator-prey system with constant rate predator harvesting (see

[24]):






ẋ = rx(1 − x

k
) − y

x

e + x
,

ẏ = y(−d +
x

e + x
) − h,

(4.13)

where k is the carrying capacity of the prey population, d is the death rate of the predator,

r is the intrinsic growth rate of the prey population, and h is the harvesting rate. The

function x
e+x

is often called the functional response of Holling type II. Xiao and Ruan [133]

show the existence of a BT bifurcation in (4.13) and sketch the global bifurcation diagram

including the homoclinic curve which emanates from the BT point. We study the occurrence

of homoclinic orbits that emanate from the computed BT point using MatCont. We fix the

parameter values as follows: r = 1, e = 1, k = 2, h = 0.5, then we compute the equilibria

with free parameter d (initially d = 0) and initial value for state variables x = 1 and y = 1.

A limit point is detected. We compute the limit point curve passing through it with (d, h)

as free parameters. One BT point is detected (see Table 4.4). The smooth BT normal form

coefficients at the BT point are shown in Table 4.5. To initialize the homoclinic orbit from

the BT point with (d, h) as free system parameters, we input the following numerical data

in the MatCont Starter window: Amplitude = 10−3, TTolerance = 10−5 and ntst = 40.
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Figure 4.3: (a) and (b) Homoclinic orbits in parameter space (Iapp, v3). The dashed blue
curves are homoclinic curves. The green line is the limit point curve. The red line is the
Andronov-Hopf curve. (c) and (d) The same curves as in Figure 4.3a and Figure 4.3b,
respectively, zoomed near the BT2,4 points. The non-central-homoclinic-to-saddle-node
orbit on the limit point curve is circled, where the homoclinic curve ends.

In the Continuer window we set Adapt = 1. Activate eps0 and eps1 as free homoclinic

parameters and then Compute|Backward. The result is shown in Figure 4.5. The initial ε

is 5.475×10−3 and during continuation T = 856.934. Note that by computing the Hopf curve

passing through the BT point, a degenerate BT point† is detected. This point is labeled by

BT0 in Figure 4.5. The critical BT normal form coefficients, the state and parameter values

at this BT point are: (a, b) = (0, −1), (x, y, d, h) = (0, 1, 0, 0). Recall that the homoclinic

asymptotics (3.61)-(3.63) can be used only in the case of the nondegenerat BT points.

†Degenerate because the critical normal form coefficients (a, b) satisfies ab = 0.
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Figure 4.4: Homoclinic orbits (blue curves) in the Morris-Lecar model in state space (V, w).
The green line is the limit point curve; the red line is the Andronov-Hopf curve.

Label d h State variables

BT 0.198909 0.307265 (1.124149, 0.930219)

Table 4.4: Parameter and state values at the bifurcation point in Figure 4.5.

Label a b d e a1 b1

BT −0.179826 0.378287 0.063886 -0.479004 −0.169755 −0.157654

Table 4.5: BT normal form coefficient {a, b, d, e, a1, b1} values at the bifurcation point
in Figure 4.5.

4.2.3 CO-oxidation in a platinum model.

Consider the following chemical model which describes CO-oxidation in platinum (see

[15, 29, 83])






ẋ = 2k1z2 − 2k−1x2 − k3xy,

ẏ = k2z − k−2y − k3xy,

ṡ = k4(z − λs).

(4.14)

where z := 1 − x − y − s and λ = k−4

k4
. The underlying reaction scheme is studied in [29] and

we notice that a factor 2 is missing in front of k1z2 in [83].
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Figure 4.5: (a) The homoclinic orbits in state space for system (4.13), (b) The homoclinic
orbits in parameter space. The dashed blue curve is the homoclinic curve. The red is the
Andronov-Hopf curve and the green is the limit point curve.

We fix the reaction rates (constants) above as follows k1 = 2.5, k−1 = 1, k3 = 10, k−2 = 0.1,

k4 = 0.0675, k2 = 1.4707, λ = 0.4. We compute the equilibria curve with free k2 and initial

state variables x = 0.002954, y = 0.762104, s = 0.167816. Two limit points are detected.

We start the limit point continuation from the first computed limit point-point with (λ, k2)

free system parameters. Two BT points are detected, see Table 4.6. The smooth BT normal

form coefficients at the BT points are listed in Table 4.7.

From BT1 and with (k2, λ) as free system parameters we start the homoclinic

curve continuation using Amplitude = 2 × 10−5, TTolerance = 1 × 10−5 and ntst =

40. In the Continuer window we set InitStepsize = 1 × 10−3, Adapt = 1. Then

Compute|Backward with (eps0,eps1) as free homoclinic parameters. It turns out that

the initial ε is 5.28 × 10−4 and T = 1667.78. For BT2 we set InitStepsize = 1 × 10−2,

Amplitude = 1.2 × 10−6, TTolerance = 1 × 10−8, ntst = 40, Adapt = 1 then we use

Compute|Backward. Notice that the initial ε is 9.821 × 10−5 and during continuation

T = 49559.486. The results are presented in Figure 4.6

Label k2 λ State variables

BT1 1.417629 0.971400 (0.115909, 0.315467, 0.288436)

BT2 1.161198 0.722334 (0.016337, 0.638408, 0.200457)

Table 4.6: Parameter and state values at the BT points in Figure 4.6.
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Label a b d e a1 b1

BT1 −0.083785 −2.136283 −0.177758 −7.142211 0.861775 7.117579

BT2 −0.048225 −1.937610 −0.074466 9.236539 0.660272 13.446324

Table 4.7: BT normal form coefficient {a, b, d, e, a1, b1} values at the BT points in Figure
4.6.
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Figure 4.6: (a) Homoclinic orbits in (x, s)-space for the CO−oxidation model, (c)
Homoclinic orbits in parameter space. The dashed blue curve is the homoclinic curve.
The green curve is the limit point curve and the red is the Andronov-Hopf curve.

4.2.4 Indirect field oriented control model

The indirect field oriented control (IFOC) system of an induction motor can be mathemati-

cally described as in [10, 116] by the following ODEs:







ẋ1 = −c1x1 + c2x4 − kc1

u0
2

x2x4,

ẋ2 = −c1x2 + c2u0
2 +

kc1

u0
2

x1x4,

ẋ3 = −c3x3 − c4c5

(
x2x4 − u0

2x1

)
+ (c4Tm + c3wref ) ,

ẋ4 = −(ki − kpc3)x3 − kpc4c5

(
x2x4 − u0

2x1

)
+ kp (c4Tm + c3wref ) .

(4.15)

Here x1, x2, x3 and x4 are the state variables, where x1 and x2 denote direct and quadrature

components of the rotor flux; x3 is the rotor speed error (i.e., the difference between the
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reference and the real mechanical speeds of the rotor); and x4 denotes the quadrature axis

component of the stator current. We also define the following constants and parameters: u0
2

is a constant reference for the rotor flux magnitude; c1 to c5 are machine parameters; kp

and ki are the proportional (P) and the integral (I) control gains, respectively; wref is the

speed reference; Tm the load torque; k the measure of rotor time constant mismatches. The

occurrence of limit points and Andronov-Hopf points in IFOC has been characterized as a

result of rotor time constant mismatches (see, for example, [11, 68] and [101]). The first

results on the occurrence of a BT bifurcation in the IFOC model were presented in [117]. A

detailed analytical study for the codim-2 bifurcations of (4.15) can be found in [116].

By continuation of equilibria with free k (initially k = 17) and fixed parameters Tm = 5,

c1 = 4.4868, c2 = 0.3567, c3 = 0, c4 = 9.743, c5 = 1.911, u0
2 = 11.3, kp = 4.5, ki = 500,

wref = 0, and initial point (x1, x2, x3, x4) = (−0.207486, 0.107263, 0.0, 2.534337), MatCont

detects a limit point and an Andronov-Hopf point. Further, we continue of the limit point

with (k, Tm) free, a BT point is detected (in Table 4.8 this point is labeled by BT1). We

select BT1 and we compute the the Andronov-Hopf curve passing through it with (k, Tm)

free, an extra BT point is detected (labeled by BT2). The smooth BT normal form at the

BT points are listed in Table 4.9. From the BT2 point we start the continuation of the

homoclinic curve, using k and Tm as free system parameters, (eps0,eps1) as free homoclinic

parameters, initial Amplitude = 2 × 10−5, TTolerance = 1 × 10−5, ntst = 40, Adapt =

1. Then Compute|Forward, noticing that during continuation T = 91.221. For BT1

we use the same procedure then Compute|Backward, noticing that during continuation

T = 91.221. In both cases, the initial ε is 0.01, see Figure 4.7.

Label k Tm State variables

BT1 4.538573 8.109670 (−0.163289, 0.238334, 0.0, 10.063675)

BT2 4.538585 −8.109652 ( 0.163288, 0.238333, 0.0, −10.063682)

Table 4.8: Parameter and state values at the bifurcation points in Figure 4.7.

Label a b d e a1 b1

BT1 28.005817 −0.911013 −4.468334 −0.435057 4.388082 0.066363

BT2 28.006045 −0.911099 −4.468354 −0.435062 4.388129 0.066366

Table 4.9: BT normal form coefficient {a, b, d, e, a1, b1} values at the bifurcation points
in Figure 4.7.
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Figure 4.7: (a) Homoclinic orbits emanating from the BT points of the IFOC model in
parameter space (k, Tm). The blue dashed curve is the homoclinic orbit. The green is the
limit point curve and the red is the Andronov-Hopf curve. (b) The homoclinic orbits in
state space (x1, x2).

4.2.5 The extended Lorenz-84 model

This example is an extended version of the Lorenz-84 model. In this model we can find all

codim-2 points of equilibria (i.e., BT, CP, GH, ZH and HH) [93, 121, 127]. Here, we discuss

the switching from the BT points to the homoclinic branches.

The extended Lorenz-84 model has the form






Ẋ = −Y 2 − Z2 − αX + αF − ξU2,

Ẏ = XY − βXZ − Y + G,

Ż = βXY + XZ − Z,

U̇ = −δU + ξUX + S.

(4.16)

In this system, X models the intensity of a baroclinic wave, Y and Z the sin and cos

coefficients of the wave respectively, the variable U is added to study the influence of external

parameters such as temperature.

We fix the parameters as follows α = 0.25, β = 1, G = 0.25, δ = 1.04, ξ = 0.987 and

F = 2.61. We start the equilibria continuation with free S (initially S = 0) and with initial

state variable values X = 1.053698, Y = −0.012060, Z = 0.236645, U = −0.580787. Two
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limit points are detected. From any limit point we can compute the limit point curve passing

through it with (F, S) as free system parameters to find two BT points (see Table 4.10). The

smooth BT points are listed in Table 4.11. From BT1 we start the homoclinic continuation

with (F, S) free, Amplitude = 4 × 10−5, TTolerance = 1 × 10−5, ntst = 40, Adapt = 3 and

we choose (eps0, eps1) as the free homoclinic parameters then Compute|Forward. In the

resulting continuation T = 1346.112 is fixed and the initial ε is 1.2 × 10−3. The obtained

homoclinic orbits are as in Figure 4.8. For BT2 the same procedure works with Amplitude

= 4 × 10−5 and then Compute|Backward leads to a continuation with T = 1346.112 as

well. The initial ε is 1.2 × 10−3.

Label F S State variables

BT1 1.446717 0.020940 (1.225641, −0.036321, 0.197288, −0.123390)

BT2 1.446722 −0.020941 (1.225646, −0.036321, 0.197287, 0.123392)

Table 4.10: Parameter and state values at the bifurcation points in Figure 4.8.

Label a b d e a1 b1

BT1 0.214424 0.606515 −0.2381464 −2.815244 0.588486 1.238143

BT2 0.214426 0.606525 −0.2381432 −2.815177 0.588481 1.238118

Table 4.11: BT normal form coefficient {a, b, d, e, a1, b1} values at the bifurcation points
in Figure 4.8.
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Figure 4.8: (a) Homoclinic orbits in parameter space for the Lorenz-84 model. The blue
curve is the homoclinic curve. The red is the Andronov-Hopf curve and the green is the
limit point curve, (b) Homoclinic orbits in (X, U)−space.



CHAPTER 5

Homoclinic structure in the

Bogdanov-Takens map

In this chapter we derive an accurate asymptotic expression for the homoclinic

parameter of the BT map. We show how to use the derived homoclinic parameter

to continue branches of homoclinic tangencies in the BT map. By a reduction to

the parameter-dependent center manifold at the BT point, we derive an asymp-

totic expression for the homoclinic parameter at a generic BT point of maps.

5.1 Bogdanov-Takens map

A fixed point of an n-dimensional smooth map

x Ô→ f(x, α), f : Rn × R
2 −→ R

n, (5.1)

with double-unit eigenvalue is said to be a fixed point of BT type† if the only Jordan block

of the Jacobian matrix of (5.1) corresponding to the unit eigenvalue is

(

1 1

0 1

)

.

†also known as 1:1 resonance point, see [88].
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Similar to the theory of the BT bifurcation of ODEs (see Chapter 2), there is a change of

coordinates and parameters that transforms such map into a two-parameter normal form

family,

(

u0

u1

)

→
(

1 1

0 1

) (

u0

u1

)

+

(

0

ν1 + ν2u1 + ãu2
0 + b̃u0u1

)

+ O(‖(u, ν)‖3),

where (ã, b̃) ∈ R
2 are the normal form coefficients, u = (u0, u1) ∈ R

2 parametrizes the two-

dimensional parameter-dependent center manifold of (5.1) and ν = (ν1, ν2) ∈ R
2 are the

unfolding parameters. The truncated map,

G :

(

u0

u1

)

→
(

1 1

0 1

) (

u0

u1

)

+

(

0

ν1 + ν2u1 + ãu2
0 + b̃u0u1

)

, (5.2)

(or simply the BT map) coincides with the time-1 flow (up to a certain order of terms) of a

system of ODEs which exhibits a BT point at its equilibrium (the same fixed point of the

map (5.2)). This system is called the approximating system†. The dynamic behavior of (5.2)

is different form the approximating system. In the approximating system, the parameters

that correspond to the homoclinic bifurcation form a curve in the plane, while a homoclinic

region bounded by two curves corresponding to homoclinic tangencies is possible in system

(5.2), see Figure 5.1. If a parameter (ν1, ν2) is located in the homoclinic region, then the

BT map possesses transverse homoclinic trajectories. On the curves of the tangencies, the

homoclinic trajectories become nontransverse.

Definition 5.1. For a fixed value of α, let x∗ be a hyperbolic saddle fixed point of (5.1).

Suppose that the stable and unstable manifolds W s (x∗), W u (x∗) of x∗ intersect transversally

at a point x0 Ó= x∗. Let {xk}∞
k=−∞ be the orbit through x0. {xk} is called a transversal homo-

clinic orbit (or simply homoclinic orbit) and each xk is called a homoclinic point. Since x0

lies in both the stable and unstable manifolds, so does the homoclinic orbit {xk}. The homo-

clinic orbit {xk} is referred to as tangential if W s (x∗) and W u (x∗) intersect tangentially at

{xk}.

Although the exact bifurcation structure is different for the map (5.2) and the approximating

ODE, the usage of the ODE provides information that is hardly available by the analysis

of the map alone. The approximating system allows to predict the homoclinic structure

that appears in the map. This structure occurs near the homoclinic bifurcation of the

†By the theory presented in Chapter 2, we can further express the approximating system near the BT
point as the normal form (2.24).
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approximating system. Our main concern throughout this chapter is to present an accurate

asymptotic of the homoclinic solution of the BT map in order to continue the branches of

homoclinic tangencies. Then we can transfer this asymptotic into the parameter space of

the generic n-dimensional map (5.1). It is worth noting that J. Chávez [34] attempted to

construct an asymptotic for the homoclinic orbits near a generic BT point of (5.1). However,

neither the asymptotic of the homoclinic solution nor the parameter transformation is correct

since it is based on flawed assumptions inherited from earlier studies.

In this chapter, we improve the asymptotics of the homoclinic parameter that are presented

in [26, 34, 64, 66] by

(a) considering all the second-order terms of the coordinates and parameters in the

approximating system that results from the method of Picard iteration.

(b) using the accurate homoclinic asymptotic derived in Chapter 3 to derive an asymptotic

of the homoclinic parameter in the approximating system.

Moreover, by systemically solving all linear systems appearing from the homological equation,

we correct the parameter transformation presented in [34].

ν1

ν2

ν2 (ν1)

(a)

ν1

ν2

ν2 (ν1)
+

ν2 (ν1)
−

(b)

Figure 5.1: The bifurcation diagram in the unfolding parameter space of the BT map.
(a) The homoclinic curve ν2(ν1) of the approximating ODE. (b) The homoclinic structure
of the BT map. The points (ν1, ν2) situated between the lower and upper curves (i.e.,
ν2(ν1)+ and ν2(ν1)−) are the (transverse) homoclinic points. These points collide on the
curves of tangencies ν2(ν1)+, ν2(ν1)−.
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5.2 The parameter-dependent center manifold

We use the homological equation technique described in Section 2.3 to obtain the coefficients

(ã, b̃) of (5.2) on the parameter-dependent center manifold of (5.1), as well as to derive an

explicit relation between the orbits of (5.2) and those of the original system (5.1). Since the

Jacobian matrix, A, of (5.1) at the BT point has a double unit eigenvalue, there exist two

real independent eigenvectors q0,1 ∈ R
n, of A, and two adjoint eigenvectors p0,1 ∈ R

n, of AT,

such that

(

A − In 0

−In A − In

) (

q0

q1

)

=

(

0

0

)

,

(

AT − In 0

−In AT − In

) (

p1

p0

)

=

(

0

0

)

.

We assume that the vectors satisfy

pT
0 q0 = pT

1 q1 = 1, pT
0 q1 = pT

1 q0 = 0, qT
0 q0 = 1, qT

1 q0 = 0.

Further, we define a relation

α = K(ν), K : R2 → R
2, (5.3)

between the unfolding parameter ν and the original system parameter α. The local parameter

-dependent center manifold for (5.1) can be parametrized by (u, ν),

x = H(u, ν), H : R2 × R
2 → R

n. (5.4)

Since the center manifold is invariant, we obtain the following homological equation:

H(G(u, ν), ν) = f(H(u, ν), K(ν)). (5.5)

We can solve the homological equation by the same recursive procedure based on Fredholm’s

solvability condition that we have described in Section 2.3. We insert the Taylor expansions

of K, H and f

f(x, α) = Ax + J1α +
1

2
B(x, x) + A1(x, α) + O

(
‖α‖2 + ‖ (x, α) ‖3

)
, (5.6)

K(ν) = K1,0ν1 + K1,1ν2 +
1

2
K2ν2

2 + O
(
ν2

1 + |ν1ν2|
)

+ O
(
‖ν‖3

)
, (5.7)

H(u, ν) = H0010ν1 + H0001ν2 + q0u0 + q1u1 + H1010ν1u0 + H1001ν2u0 + H0110ν1u1

+ H0101ν2u1 +
1

2
H2000u2

0 + H1100u0u1 + O
(
u2

1 + ‖ν‖2 + ‖ (u, ν) ‖3
)

. (5.8)

into (5.5) together with the BT map (5.2).
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From linear and quadratic u-terms in the homological equation, we obtain

ã =
1

2
pT

1 B(q0, q0), (5.9)

b̃ = pT
1 B(q0, q1) + pT

0 B(q0, q0), (5.10)

H2000 = (A − In)INV(2ãq1 − B(q0, q0)) H2000 Ô→ H2000 + rq0, (5.11)

H1100 = (A − In)INV(b̃q1 − B(q0, q1) + H2000). (5.12)

where r is given in (2.47). Moreover, the vectors K1,0, K1,1, H0010 and H0001 can be computed

by solving the (n + 2)-dimensional system






A − In J1

pT
1 Bq0 pT

1 A1q0

pT
0 Bq0 + pT

1 Bq1 pT
0 A1q0 + pT

1 B1q1






(

H0010 H0001

K1,0 K1,1

)

=






q1 0

pT
1 H1100 0

c 1




 , (5.13)

where c := 3pT
0 H1100 + pT

0 H2000 + pT
1 H1100 − pT

0 B(q1, q1). We define x = (A − In)
INV

y by

solving the (n + 1) × (n + 1) non-singular bordered system

(

A − In p1

qT
0 0

) (

x

s

)

=

(

y

0

)

,

where y is in the range of A − In. As soon as K1,0, K1,1, H0010 and H0001 are determined,

we can compute the quadratic term

K2 = (−pT
1 z)K1,0, (5.14)

where

z := B(H0001, H0001) + 2A1(H0001, K1,1) + J2(K1,1, K1,1).

5.3 Approximation by a flow

In this section we describe two methods known in the literature to approximate the map

(5.2) by a system of ODEs, namely, the interpolating technique and the method of Picard

iteration. For each system we derive an asymptotic of the homoclinic orbits. In Section

5.4, we will compare these asymptotics with the homoclinic structure of (5.2) to show the

accuracy.
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5.3.1 Interpolation by a flow

It is possible to formally interpolate the map G by an autonomous system of ODEs

u̇0 = P (u, ν),

u̇1 = Q(u, ν),

or in the vector-field form:

Uν = P∂u0 + Q∂u1, (5.15)

where P and Q are formal power series in u0, u1, ν1 and ν2. Generally speaking, we say that

Uν is the approximating vector-field of the map

G = eUν (u0, u1) ,

if the series eUν (u0, u1) coincides with the time-1 shift along trajectories of Uν . Following

[64], we say that the order of the monomial uk
0 ul

1 νm
1 νn

2 is given by†

δ(uk
0 ul

1 νm
1 νn

2 ) = 2k + 3l + 4m + 2n. (5.16)

Thus the formal series P and Q can be expressed as







P =
∑

i≥3

pi(u0, u1, ν1, ν2),

Q =
∑

j≥4

qj(u0, u1, ν1, ν2),
(5.17)

where pi and qj are δ-homogenous polynomials of order i and j respectively, i.e.,







pi =
∑

2k+3l+4m+2n=i

cklmn uk
0 ul

1 νm
1 νn

2 ,

qj =
∑

2k+3l+4m+2n=j

dklmn uk
0 ul

1 νm
1 νn

2 .
(5.18)

with coefficients cklmn, dklmn ∈ R to be determined. We ignore the convergence question.

Then the vector-field Uν can be expanded into a sum of δ-homogenous polynomial vector-

fields,

Uν =
∑

i≥1

Ui, Ui = pi+2∂u0 + qi+3∂u1. (5.19)

†The idea of ordering the terms this way is to arrive at a vector-field with terms ordered according to
(3.1).
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We note that when we apply Ui to a δ-homogenous polynomial of δ-order n we obtain a

δ-homogenous polynomial of δ-order n + i. Using the assumptions above, we are ready to

prove the following proposition (cf. [65]):

Lemma 5.1. For all sufficiently small ‖ν‖, there is a unique formal vector-field Z such that

(G, ν)
T

= eZ (u, ν)
T

. (5.20)

Proof. Assume that the vector-field Z can be expressed as

Z = P∂u0 + Q∂u1 + R∂ν1 + S∂ν2,

where P , Q, R and S are formal power series in u0, u1, ν1, ν2. Expand the vector-field Z into

a sum of δ-homogenous polynomial vector-fields

Z =
∑

i≥1

Zi.

Let πi denote the projection of a formal series onto the subspace of δ-homogenous polynomials

of δ-order i and assume that







pi+2 = πi+2

(
u0 + u1 − eZu0

)
,

qi+3 = πi+3

(
u1 + g(u, ν) − eZu1

)
,

ri+4 = πi+4

(
ν1 − eZν1

)
,

si+2 = πi+2

(
ν2 − eZν2

)
. i ≥ 1,

(5.21)

where g(u, ν) := ν1 + ν2u1 + ãu2
0 + b̃u0u1. The right hand side of (5.21) are finite sums and

depend on pn1
with 3 ≤ n1 ≤ i − 2, qn2

with 4 ≤ n2 ≤ i − 1, rn3
with 5 ≤ n3 ≤ i and sn4

with 3 ≤ n4 ≤ i − 2 as well as on the coefficients of the terms of (G, ν). Define the exponent,

eZ = I +
∑

n≥1

1

n!
Zn, (5.22)

where Zn stands for the vector-field Z applied n-times, and the equality

Zu0 =
∑

i≥3

pi, Zu1 =
∑

i≥4

qi, Zν1 =
∑

i≥5

ri, Zν2 =
∑

i≥3

si. (5.23)
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Then by taking the leading order in (5.21), we obtain

Z1 (u, ν)
T

= (p3, q4, r5, s3) =
(
u1, ν1 + ãhu2

0, 0, 0
)

. (5.24)

The polynomials p3, q4, r5 and s3 are uniquely defined and hence the recurrent polynomials

pi+2, qi+3, ri+4 and si+2, i ≥ 2 are also uniquely defined. Also, it is clear that the polynomials

ri+4, si+2 are equal to zero for all i ≥ 2. Thus we can write the δ-homogenous polynomials

vector-field Zi, i ≥ 2 found in the form

Zi = (Ui, 0) ,

where

Ui = pi+2∂u0 + qi+3∂u1, i ≥ 2. (5.25)

With a suitable number of terms in (5.22) and solving (5.21) for i ≥ 2, we obtain

U1 = u1∂u0 +
(
ν1 + ãu2

0

)
∂u1,

U2 = −1

2

(
ν1 + ãu2

0

)
∂u0 +

(
ν2u1 +

(
b̃ − ã

)
u0u1

)
∂u1,

U3 =

(

−1

2
ν2u1 +

(
2

3
ã − 1

2
b̃

)

u0u1

)

∂u0+

(

−1

2

(
ν1ν2 + ãν2u2

0

)
+

1

2

(
1

3
ã − b̃

)

u2
1 +

(
2

3
ã − 1

2
b̃

)

ν1u0 +

(
2

3
ã2 − 1

2
ãb̃

)

u3
0

)

∂u1,

...

It follows from Lemma 5.1 that the map (5.2) can be formally interpolated by the autonomous

vector-field

Uν = U1 + U2 + U3 + . . . . (5.26)

The first order vector-field U1 defines a Hamiltonian system with

h :=
1

2
u̇2

0 + V (u0, ν1) − k = 0, k ∈ R, (5.27)

where u̇0 = u1 and the function V (u0, ν1) is given by

V (u0, ν1) = −
∫ u0

0

(
ν1 + ãu2

)
du = −

(

ν1u0 +
ãu3

0

3

)

.
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If −ν1

ã
≥ 0 then equation (5.27) has a homoclinic loop defined by k = 2

3

√
(−ν1)3

ã
. The

function V (u0, ν1) and the phase portrait of the homoclinic solution of (5.27) are shown in

Figure 5.2. The solution curve in the (u0, u1)-plane satisfies the homoclinic condition i.e.,

the phase point (u0, u1) approaches the saddle point

(us
0, us

1) =

(√

−ν1

ã
, 0

)

, sign(ν1) = −sign(ã), (5.28)

as t → ±∞. The related homoclinic solution can be found explicitly

L0(t) = (u0(t), u1(t)) =

(√

−ν1

ã

(

1 − 3 sech2

(

t
4
√−ãν1√

2

))

,
d

dt
u0(t)

)

. (5.29)

This solution persists for Uν ≈ U1 + U2 + U3 if the Melnikov integral (1.27) vanishes:

M(ν) =

∫ ∞

−∞

(

U2h + U3h
)∣

∣
∣
L0(t)

dt

=
24

35
ν1

(
5ν1 − 5 4

√
−ν1

)
+

24

7

(−ν1)
5
4

ã
+

24

5

(−ν1)
3
2 ν2√

ã
.

(5.30)

The function M(ν) vanishes along the curve

ν0
2 =

5

7

ν1ã − 4
√−ν1

(
ã − b̃

)

√−ν1ã
(5.31)

which gives an asymptotic for the homoclinic curve in the parameter space.

u0

V (u0, ν1)

u1

√

−ν1

ã

−2
√

−ν1

ã

c

Figure 5.2: The function V (u0, ν1) and the phase portrait of equation (5.27).
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5.3.2 The method of Picard iteration

Following [88], we start with writing system (5.2) at the fixed point as a 4-dimensional system

(G, ν) : (u, ν)
T Ô→ A (u, ν)

T
+

(
F 2

ν , 0
)T

, (5.32)

where

A =









1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1









, F 2
ν :=

(

0

ν2u1 + ãu2
0 + bu0u1

)

.

Assume that the approximating system to (5.32) having the same equilibrium (i.e., the fixed

point of (5.2)) can be written as

(u̇, ν̇)
T

= Λ (u, ν)
T

+
(
f2

ν (u), 0
)T

, (5.33)

where Λ is a 4×4 matrix and the components of the two-dimensional vector f2
ν (u) are smooth

polynomials of order 2 in u0, u1, ν1 and ν2 with coefficients to be determined, i.e.,

f2
ν (u) =





1
2 f2000u2

0 + f1100u0u1 + 1
2 f0200u2

1

1
2 g2000u2

0 + g1100u0u1 + 1
2 g0200u2

1



 +





1
2 f0020ν2

1 + f0011ν1ν2 + 1
2 f0002ν2

2

1
2 g0020ν2

1 + g0011ν1ν0 + 1
2 g0002ν2

2





+




f1010u0ν1 + f1001u0ν2 + f0110u1ν1 + f0101u1ν2

g1010u0ν1 + g1001u0ν2 + g0110u1ν1 + g0101u1ν2



 . (5.34)

The flow ϕt
ν(u) generated from the component (u̇0, u̇1) in (5.33) can be seen as the first two

components of the generalized flow

(u, ν)
T Ô→ φt

ν(u) (5.35)

generated by (5.33), i.e., φt
ν(u) := (ϕt

ν(u), ν)
T. The method of Picard iteration can be used

to generate the flow map (5.35). If the corresponding terms in the generated time-1 flow

(i.e., φ1
ν(u)) and (5.32) coincide then system (5.33) is said to be the approximating system

of the map (5.32). The solution of the linear part of (5.33) can be used as initial data to

generate the Picard iterate. Therefore, we set

U0(t) = eΛt (u, ν)
T

. (5.36)
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Since we seek a flow whose time-1 orbits coincide with (5.32), we have

eΛ = A.

Solving for Λ gives

Λ =









0 1 −1
2 0

0 0 1 0

0 0 0 0

0 0 0 0









.

Now, we perform a Picard iteration to compute the second order terms to φ1:

U1(t) = eΛt (u, ν)
T

+

∫ t

0

eΛ(t−τ)
(
f2

ν

(
U1(τ)

))
dτ. (5.37)

By comparing the coefficients of the similar terms in (5.37) for t = 1 and (5.32), we arrive

at the following systems

u2
0 :







1
2 f2000 + 1

4 g2000 = 0,

1
2 g2000 = ã,

, u0u1 :







1
2 f2000 + f1100 + 1

6 g2000 + 1
2 g1100 = 0,

g1100 + 1
2 g2000 = b̃,

u2
1 :







1
2 f1100 + 1

6 g1100 + 1
24 g2000 + 1

6 f2000 + 1
2 f0200 + 1

4 g0200 = 0,

1
2 g1100 + 1

6 g2000 + 1
2 g0200 = 0,

u0ν1 :







1
2 f1100 − 1

12 f2000 + f1010 − 1
24 g2000 + 1

2 g1010 + 1
6 g1100 = 0,

1
2 g1100 − 1

12 g2000 + g1010 = 0,

u0ν2 :







f1001 + 1
2 g1001 = 0,

g1001 = 0,

u1ν1 :







1
4 f1100 + 1

24 g1100 + 1
2 f1010 + f0110 + 1

2 f0200+
1
6 g0200 + 1

6 g1010 − 1
24 f2000 − 1

60 g2000 + 1
2 g0110 = 0,

1
2 g0200 − 1

24 g2000 + g0110 + 1
4 g1100 + 1

2 g1010 = 0,

u1ν2 :







1
2 g0101 + f0101 + 1

2 f1001 + 1
6 g1001 = 0,

1
2 g1001 + g0101 = 1,
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ν2
1 :







1
480 g2000 + 1

24 g0200 − 1
12 f1010 − 1

60 g1100 + 1
6 g0110+

1
240 f2000 − 1

24 f1100 + 1
2 f0110 − 1

24 g1010 + 1
6 f0200 + 1

2 f0020 + 1
4 g0020 = 0,

1
2 g0110 + 1

6 g0200 + 1
240 g2000 − 1

24 g1100 − 1
12 g1010 + 1

2 g0020 = 0,

ν1ν2 :

{
1
2 f0101 + 1

6 g0101 + f0011 + 1
2 g0011 = 0,

1
2 g0101 + g0011 = 0,

, ν2
2 :

{
1
2 g0002 + 1

2 f0002 = 0,

1
2 g0002 = 0.

Solving for these systems will specify the components of (5.34). The unique solution for these

systems is given as follows

g1001 = 0, f1001 = 0, g0002 = 0,

f0002 = 0, g2000 = 2ã,

f2000 = −1

2
g2000, g1100 = −1

2
g2000 + b̃,

g0200 = −
(

g1100 +
1

3
g2000

)

, f1100 = −
(

1

6
g2000 +

1

2
g1100 +

1

2
f2000

)

,

f0200 = −
(

1

3
f2000 +

1

3
g1100 + f1100 +

1

2
g0200 +

1

12
g2000

)

,

g1010 = −
(

1

2
g1100 − 1

6
g2000

)

,

f1010 = −
(

−1

6
f2000 +

1

2
g1010 +

1

2
f1100 − 1

24
g2000 +

1

6
g1100

)

,

g0101 = 1, f0101 = −1

2
g0101, g0110 = −

(
1

4
g1100 +

1

2
g0200 − 1

24
g2000 +

1

2
g1010

)

,

f0110 = −
(

1

2
f1010 +

1

6
g0200 − 1

24
f2000 − 1

60
g2000 +

1

6
g1010

+
1

24
g1100 +

1

2
g0110 +

1

4
f1100 +

1

2
f0200

)

,

g0020 = −
(

1

3
g0200 − 1

3
g1010 + g0110 − 1

12
g1100 +

1

120
g2000

)

,

f0020 = −
(

f0110 − 1

12
f1100 +

1

240
g2000 − 1

12
g1010 +

1

3
g0110

− 1

30
g1100 +

1

2
g0020 +

1

120
f2000 +

1

3
f0200 − 1

3
f1010 +

1

12
g0200

)

,

g0011 = −1

2
g0101, f0011 = −

(
1

2
f0101 +

1

6
g0101 +

1

2
g0011

)

.

Thus, we have the following Lemma (cf. [126],[88, Sec.9.5.2]):
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Lemma 5.2. For all sufficiently small ‖ν‖, the map (5.2) can be represented as

uT Ô→ ϕ1
ν(u) + O

(
‖(u, ν)‖3

)
, (5.38)

where ϕt
ν(u) is the flow of a planer system

u̇T =




0 1

0 0



 uT +




−1

2
ν1

ν1



 + f2
ν (u), (5.39)

where

f2
ν (u) =




ξ00(ν)

ζ00(ν)



 +




ξ10(ν)u0 + ξ01(ν)u1

ζ10(ν)u0 + ζ01(ν)u1



 +






1

2
ξ20u2

0 + ξ11u0u1 +
1

2
ξ02u2

1

1

2
ζ20u2

0 + ζ11u0u1 +
1

2
ζ02u2

1






and

ξ00(ν) =
1

20

(
2b̃ − ã

)
ν2

1 +
1

3
ν1ν2, ζ00(ν) =

(
1

30
ã − 1

12
b̃

)

ν2
1 − 1

2
ν1ν2,

ξ10(ν) =

(
1

3
b̃ − 1

2
ã

)

ν1, ζ10 (ν) =

(
2

3
ã − 1

2
b̃

)

ν1

ξ01 (ν) =

(
1

5
ã − 5

12
b̃

)

ν1 − 1

2
ν2, ζ01 (ν) =

(
1

2
b̃ − 1

6
ã

)

ν1 + ν2,

ξ20 = −ã, ζ20 = 2ã,

ξ11 =

(
2

3
ã − 1

2
b̃

)

, ζ11 =
(
b̃ − ã

)
,

ξ02 =

(
2

3
b̃ − 1

3
ã

)

, ζ02 =
1

3
ã − b̃,

Note that, if we reorder the terms of (5.39) according to (5.16), then up to the quadratic

terms in (u, ν), the similar terms of the systems (5.26) and (5.39) are equivalent. On the

other hand, the cubic term
(

2
3 ã2 − 1

2 ãb̃
)

u3
0 in U3 will be present in (5.39) if we perform

two Picard’s iterations to (5.32) and add the polynomial vector
(
f3

ν (u), 0
)T

to (5.33). Also

solving (5.25) for U4 will give the terms for u0ν2, u1ν2 and ν1ν2 exactly as in (5.39). Thus

the interpolating technique and the method of Picard iteration are equivalent, i.e.,

∞∑

i=1

Ui ≡
(

0 1

0 0

)

uT +




−1

2
ν1

ν1



 +

∞∑

i=2

f i
ν(u).
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Next we compute the homoclinic solution of (5.39) following the procedure described in

Section 2.3 and 3.5 (see also Section 3.6). It is clear that system (5.39) has a BT point u = 0

at ν = 0. The Jacobian matrix of (5.39) evaluated at the BT point is

A =

(

0 1

0 0

)

.

This matrix has a double-zero eigenvalue with the generalized eigenvectors q0 = (1, 0), q1 =

(0, 1) and p1 = (0, 1), p0 = (1, 0) which satisfy (2.3) and (2.4). At the BT point, the R.H.S.

of (5.39) can be expressed as (2.39a),

u̇T = Au + J1ν +
1

2
B(u, u) + A1(u, ν) +

1

2
J2(ν, ν) +

1

6
C(u, u, u) +

1

2
B1(u, u, ν) + . . . .

where

J1 =

(

− 1
2 0

1 0

)

, B(u, v) =

((
2
3 ã − 1

2 b̃
)

(u1v0 + u0v1) +
(

2
3 b̃ − 1

3 ã
)

u1v1 − ãu0v0
(
b̃ − ã

)
(u1v0 + u0v1) +

(
1
3 ã − b̃

)
u1v1 + 2ãu0v0

)

,

A1(u, ν) =

((
1
3 b̃ − 1

2 ã
)

u0ν1 +
(

1
5 ã − 5

12 b̃
)

u1ν1 − 1
2 u1ν2

(
2
3 ã − 1

2 b̃
)

u0ν1 +
(

1
2 b̃ − 1

6 ã
)

u1ν1 + u1ν2

)

,

J2(ν, µ) =

((
1
5 b̃ − 1

10 ã
)

ν1µ1 + 1
3 ν2µ1 + 1

3 ν1µ2
(

1
15 ã − 1

6 b̃
)

ν1µ1 − 1
2 ν2µ1 − 1

2 ν1µ2

)

, B1 = C =

(

0

0

)

.

We compute the coefficients of (2.41), (2.43), (2.48), (2.59), (2.61), (2.62) and (2.64)-(2.69)

using the MAPLE commands in Appendix A.5. These coefficients are found as follows

a = ã, b = b̃ − 2ã, H2000 =





5

6
ã − b̃

ã



 , H1100 =
1

2

(

0
1
3 ã − b̃

)

,

H0200 =
1

3

(

0

ã − 2b̃

)

H0010 =
1

2




− b̃

2ã
1



 , H0001 =

(

0

0

)

,

K1,0 =





1

2ã2 − 5ãb̃ + b̃2

4ã



 , K1,1 =

(

0

1

)

, K2 =

(

0

0

)

, H0002 =

(

0

0

)

,

H1001 =

(

0

0

)

, H0101 =

(

0
1
2

)

, d =
1

6
ã2, H3000 =

1

2

(

0

ã2 − 3ãb̃

)

,

e =
4

3
ãb̃ − 2

3
ã2 − 1

2
b̃2, a1 = 0, H2001 =

1

2

(

0

ã

)

, b1 = 0.
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Substituting these values into (3.61) and (3.63) gives the following asymptotic for the homo-

clinic solution of (5.39),




u0(t)

u1(t)



 =






ε2

ã

(
2 − 6 sech2(εt)

)

ε3

ã

(
12 tanh(εt) sech2(εt)

)




 +

ε4

ã
H(t, ε) + O

(
ε5

)
, (5.40)




ν1

ν2



 =
ε2

ã






0

10

7

(
b̃ − 2ã

)




 − ε4

ã




4

δ



 + O
(
ε5

)
, (5.41)

where

H(t, ε) =






(

5 − 6b̃

ã

)
3

cosh4(εt)
+

(
220b̃

ã
− 6b̃2

ã2
− 391

2

)
3

49 cosh2(εt)
− b̃

ã
+

4

3

2
(
1 − 3 sech2(εt)

)2 − 72

7ã

(
b̃ − 2ã

)
tanh2(εt) sech2(εt) − 2




 (5.42)

and

δ :=
1

2401ã2

(
b̃ − 2ã

) (
857ã2 − 3650ãb̃ − 288b̃2

)
+

2ã2 − 5ãb̃ + b̃2

ã
. (5.43)

Using ε ≈ 4

√
ã(−ν1)

4 , we obtain the following approximation for the homoclinic bifurcation

curve of (5.39) in the parameter space (ν1, ν2):

ν2 =
10

√−ν1

7
√

2ã

(
b̃ − 2ã

)
+

1

4
δν1 + O

(

|ν1| 5
4

)

. (5.44)

5.4 The homoclinic zone of the Bogdanov-Takens map

To check whether the homoclinic asymptotic parameters (5.31) and (5.44) are located inside

the homoclinic zone of (5.2), we use the MATLAB interactive toolbox for numerical study

of smooth maps MatContM to compute the stable and unstable manifolds of the saddle at

the approximated homoclinic parameter. MatContM uses an algorithm originally adopted

from [59] (for details on the algorithm used see [84]). We set ã = b̃ = 1 and ν1 = −0.15.

Then we use the saddle point (5.28) and the asymptotics of the homoclinic parameter (5.31),

(5.44) to obtain (us
0, us

1) = (0.387298, 0) and ν2 = −0.249762, ν0
2 = −0.276642. The growing

of the stable and unstable manifolds of the saddle (us
0, us

1) at (ν1, ν0
2) and (ν1, ν2) is shown

in Figure 5.3a and Figure 5.3b, respectively. For ν1 = −0.15, it is clear that the predicted

homoclinic parameter based on (5.31) is located outside the homoclinic zone of (5.2).
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The result is not surprising because (5.31) is derived by the Melnikov method which gives

the zero-order approximation for the homoclinic parameter. In Figure 5.3b the stable and

unstable manifolds of the saddle (us
0, us

1) intersect transversally. This proves the usefulness

of the new asymptotic (5.44).

−1 0.7
−0.5

0.7

u0

u
1

(a)

−1 0.7
−0.5

0.7

u0

u
1

(b)

Figure 5.3: The growing of the stable and unstable manifolds of (5.1) for ã = b̃ = 1,
ν1 = −0.15, (us

0, us
1) = (0.387298, 0) and (a) ν0

2 = −0.276642, (b) ν2 = −0.249762.

The idea of continuing branches of homoclinic orbits and homoclinic tangencies, given a good

starting point, was developed in [17, 18]. The algorithm implemented in MatContM can be

used in the case of planar maps if an asymptotic of the homoclinic parameters exist. This

algorithm is based on the existence of a finite number of intersection points of the stable and

unstable manifolds of the saddle (i.e., the homoclinic points) (see [84]). Using MatContM we

compute the intersection points of the manifolds presented in Figure 5.3b. These points are

continued in one parameter (ν1 freed while ν2 is fixed) until two limit points are detected,

which correspond to tangencies of the stable and unstable manifolds, see Figure 5.4a. Figure

5.4b and 5.4c show the corresponding tangential homoclinic orbit in the state space at the

limit points LP1 and LP2 in Figure 5.4a, respectively. Continuation of such limit points in

two parameters (ν1, ν2) gives the full homoclinic tangencies structure shown in Figure 5.4d.

Since we now have the whole homoclinic structure in the BT map, we can compare the

numerically computed tangency branches with the asymptotic of the homoclinic curve (5.44)

and the homoclinic curve obtained by (5.31) (see also [26, 66]), see Figure 5.5. This compar-

ison demonstrates the accuracy of the present asymptotic (5.44). However the predicted

curve is not always located in the homoclinic zone (i.e., between the homoclinic tangencies)

so the homoclinic parameter should be carefully chosen.
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Figure 5.4: (a) The limit points are computed by continuing the homoclinic points in
Figure 5.3b. During continuation, ν1 is freed while ν2 is fixed, (b) Stable and unstable
manifolds along the first homoclinic tangential point (i.e., LP1), (c) Stable and unstable
manifolds along the second homoclinic tangential point (i.e., LP2), (d) Two branches of
the tangential homoclinic orbits are computed by continuing both of the LP’s on Figure
5.4a with ν1 and ν2 free.

5.5 Homoclinic parameter in n-dimensional maps

For the BT map, we obtain an asymptotic for the homoclinic parameter at (ν1, ν2) which

is given in (5.41). With the data collected in (5.7) and (5.9)-(5.14) we arrive at a generic

asymptotic of the homoclinic parameter at the Bogdanov-Taken point of maps

α(ε) =
ε2

ã

10

7

(
b̃ − 2ã

)
K1,1 − ε4

ã

(

4K1,0 + δK1,1 − 50

49

(
b̃ − 2ã

)2

ã
K2

)

+ O(ε5). (5.45)

where δ is given in (5.43).
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Figure 5.5: (a) The limit points are computed by continuing the homoclinic points in
Figure 5.3b. During continuation, ν1 is freed while ν2 is fixed, (b) Stable and unstable
manifolds along the first homoclinic tangential point (i.e., LP1), (c) Stable and unstable
manifolds along the second homoclinic tangential point (i.e., LP2), (d) Two branches of
the tangential homoclinic orbits are computed by continuing both of the LP’s on Figure
5.4a with ν1 and ν2 free, (e) Branches of homoclinic tangencies (solid curves) of (5.2) are
compared with: the asymptotic of the homoclinic curve (5.44) (dashed curve) and the
homoclinic curve (5.31) (dotted curve) (see also [26, 64, 66]) to demonstrate the accuracy
of the present asymptotic.



CHAPTER 6

The monopoly model

In this chapter we study the monopoly model with cubic price and quadratic

marginal cost functions. A numerical continuation method is used to compute

branches of solutions of period 5, 10, 13 and 17 and to determine the stability

regions of these solutions. General formulas for solutions of period 4 are derived

analytically. We show that the solutions of period 4 are never linearly asymptot-

ically stable. A nonlinear stability criterion is combined with basin of attrac-

tion analysis and simulation to determine the stability region of the 4-cycles.

This corrects the erroneous linear stability analysis in previous studies of the

model. The chaotic and periodic behavior of the monopoly model is further

analyzed by computing the largest Lyapunov exponents, and this confirms the

above mentioned results.

6.1 Model description

During the last two decades increasing attention has been paid to the analysis of nonlinear

dynamics of economic models using difference equations [74, 96, 112, 119, 134]. In particular,

the monopoly model is well documented in [9, 111, 112]. Baumel and Quantdt [9] analyzed

a cost-free monopoly model. They examined in both discrete and continuous systems the

problem of maximizing the profit function.
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T. Puu [111] assumes a cubic price and quadratic marginal cost function when the monopoly

firm maximizes the profit using as strategic variable the produced quantity. In [111] the price

p for a good is represented as a monotonically decreasing function

p(x) = A − Bx + Cx2 − Dx3, (6.1)

of the produced quantity x. Decreasing is implied by requiring that A, B, C, D > 0 and

C2 < 3BD. The revenue of the monopolist is

R(x) = p(x)x. (6.2)

The marginal revenue is then given by

MR :=
dR

dx
= p + x

dp

dx
. (6.3)

Also in [111], the marginal cost curve is assumed to be

MC = E − 2Fx + 3Gx2, (6.4)

where E, F and G are positive constants. A standard result of economic theory is that the

profit is maximized at a point where MR = MC. The profit function is

Π(x) = (A − E)x − (B − F )x2 + (C − G)x3 − Dx4 (6.5)

up to a constant term. A simple algorithm to find the maximum of the not explicitly known

function (6.5) is to evaluate (6.5) in the last two visited points x and y, and use a Newton-like

iteration with step size δ. We get the next point as

y + δ
Π(y) − Π(x)

y − x
= y + δ

(

(A − E) − (B − F )(x + y) + (C − G)(x2 + xy + y2)

− D(x3 + x2y + xy2 + y3)
)

.

(6.6)

The iteration of this procedure may lead to any of the profit maxima, to an oscillating

process, or to chaos depending on the coefficients A through G and the step size δ. Following

[111], we assume A = 5.6, B = 2.7, C = 0.62, D = 0.05, E = 2, F = 0.3 and G = 0.02. With

these parameter values, the profit function (6.5) is symmetric about (3, 3), i.e.,

Π(3 + x) = Π(3 − x), (6.7)
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for all x. The updating process (6.6) can be interpreted as the two-dimensional mapping

M :

(

xt

yt

)

Ô→
(

xt+1

yt+1

)

=

(

yt

yt + δP (xt, yt)

)

, (6.8)

where

P (x, y) = 3.6 − 2.4(x + y) + 0.6(x2 + xy + y2) − 0.05(x3 + x2y + xy2 + y3). (6.9)

The map has three steady states, which are extrema for the profit function, namely a local

minimum and two local maxima. Puu [111, 112] provides incomplete information on the

existence of cycles of period 4 and the chaotic behavior of (6.8). Most of the recent literature

deals with simplified versions of the Puu model (6.8), cf. [1, 8, 98, 104], and none of them

analyzes the dynamic behavior of the Puu model in detail. Naimzada and Ricchiuti [104]

propose to use a demand function (6.1) without inflection point to achieve a one-dimensional

map. Their model was generalized by Askar [8] and further by Matsumoto and Szidarovszky

[98]. In these models the chaotic dynamic arises via a cascade of period-doubling bifurcations.

6.2 Dynamic analysis by simulation

A fixed point of (6.8) satisfies the equations

x = y, (6.10)

y = y + δP (x, y). (6.11)

Substituting (6.10) into (6.11), we find that

P (x, x) = 3.6 − 4.8x + 1.8x2 − 0.2x3 = 0, (6.12)

with solutions x = 3 ±
√

3 and x = 3. In fact, Π(3 ±
√

3) are the maxima of Π(x) and Π(3)

is the local minimum. To determine the stability of these points, we calculate the Jacobian

matrix of (6.8)

J =

(

0 1

δ ∂P
∂x

1 + δ ∂P
∂y

)

. (6.13)

The characteristic equation is

ρ(λ) = λ2 − (1 + δ
∂P

∂y
)λ +

(

−δ
∂P

∂x

)

= 0. (6.14)
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We use the Jury test [81] to determine whether all roots of (6.14) lie in the open unit disk

(i.e., |λ| < 1). The three conditions (Jury’s stability criterion) are given by

ρ(1) = −δ
∂P

∂y
− δ

∂P

∂x
> 0, (6.15)

ρ(−1) = 2 + δ
∂P

∂y
− δ

∂P

∂x
> 0, (6.16)

−δ
∂P

∂x
< 1. (6.17)

The first condition is not satisfied for x = 3 since δ ∂P
∂x

|(3,3) = δ ∂P
∂y

|(3,3) = 0.3δ, hence ρ(1) < 0

for all δ > 0. Both fixed points x = 3 ±
√

3 satisfy (6.15) and (6.16) since

δ
∂P

∂x
|(3±

√
3,3±

√
3) = δ

∂P

∂y
|(3±

√
3,3±

√
3) = −0.6δ.

The fixed points x = 3 ±
√

3 are therefore asymptotically stable if (6.17) is satisfied. This

is the case iff δ ∈
(
0, 5

3

)
. For δ = 5

3 we have λ1,2 = e±i π
2 . So we have a (non-generic) 1:4

resonant Neimark-Sacker (NS) bifurcation. The same results were derived in [111] using a

different method.

Figure 6.1a plots the bifurcation diagram of (6.8) with δ ∈ [1.5, 4]†.. For each δ the initial

points were reset to (x0, y0) = {(3 ± ε, 3 ± ε), (3, 3)}, ε =
√

3 − 10−5, 105 map iterations were

performed and transients were discarded. This leads to a crude bifurcation diagram that will

be refined by a continuation method in Section 6.3. It is remarkable that as we exceed the

NS value δ = 5
3 a cycle of period-4 is born. The fixed point x = 3 forms the middle line.

We see that for δ ∈]0, 5
3 [, (xn, yn) converges to a nonzero steady state and for δ > 5

3 cycles

of period 4 are born. These cycles are indicated by three upper branches and three lower

branches in Figure 6.1a. The middle upper and lower branches in Figure 6.1a are visited

twice. Two typical 4-cycles are presented in Figure 6.2 for δ = 2.44. In Section 6.4.3 we will

see that the 4-cycles lose stability only for δ > − 5
2 + 25

18

√
21 ≈ 3.8647 but for δ > 2.62 the

radius of attraction is very small.

For δ around 2.45 a stable cycle of period 17 exists, see Figure 6.3a and Figure 6.3b.

For δ = 2.62, the radius of convergence of the stable 4-cycle is very small and there is a

nearby chaotic attractor in which a ”ghost of 4-cycle” is still present, see Figure 6.4a.

†The Figure was produced using the MATLAB code in Appendix B.1
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For δ around 2.63, a stable cycle of period 5 exists, see Figure 6.5a. At δ around 2.7, a stable

cycle of period-10 exists, see Figure 6.5b.

For δ around 2.83 we find a stable cycle of period 13, see Figure 6.6 and Figure 6.1c.
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Figure 6.1: Bifurcation diagram of (6.8). For each δ the initial points were reset to
(x0, y0) = {(3 ± ε, 3 ± ε), (3, 3)}, ε =

√
3 − 10−5 and transients were discarded. (a)

δ ∈ [1.5, 2.8] with step size 1 × 10−2 and 1 × 105 map iterations were performed, (b)
δ ∈ [2.5, 2.8] with step size 1 × 10−5 and 2 × 105 map iterations were performed, (c)
δ ∈ [2.829816, 2.829820] with step size 1×10−7 and 5×105 map iterations were performed.
The bifurcation diagrams show the existence of solutions of period 4, 5, 10, 13 and 17.
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Figure 6.2: Two cycles of period-4 for δ = 2.44. The cycles are point-symmetric around
(3, 3).
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Figure 6.3: (a) Two cycles of period-17 for δ = 2.45 as a time series of xn vs n. (b) The
same cycles of period-17 in (xn, yn)-plane. The 5-cycles are point-symmetric around (3, 3).

6.3 Analysis by numerical continuation

We perform a numerical stability analysis for the cycles of period 5, 10, 13 and 17 of (6.8).

The stability analysis is based on a continuation method and uses the MATLAB package

MatContM, see [71, 84]. For the cycles of period 5, 10, 13 and 17, and using the initial data

in Table 6.1, we continue each cycle with free parameter δ. The continuation of each cycle

leads to a closed curve of cycles. Limit point (LP), branch point (BP) and period-doubling

(PD) bifurcations are found along these curves, see Figure 6.7.



6 The monopoly model | 113

0 50 100 150 200 250 300 350 400 450 500
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

δ = 2.62

n

x

(a)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

δ = 2.62

x

y

(b)

Figure 6.4: (a) and (b) A chaotic attractor for δ = 2.62. Note that this coexists with a 4
cycle.
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Figure 6.5: (a) A cycle of period-5 for δ = 2.63. (b) A cycle of period-10 for δ = 2.7. It
obviously arises from a period-doubling of a 5-cycle.

The computed bifurcation points on the computed curves are summarized in Table 6.2. The

stability regions of the 5, 10, 13 and 17-cycles are bounded by the LP and PD points. The

10-cycles are stable in the regions bounded by the BP and PD points. The 5, 10, 13 and

17-cycles are unstable between two successive LP points or two successive PD points. Table

6.3 shows the stability regions for each cycle.
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Figure 6.6: A cycle of period-13 for δ = 2.83.

A branch point (BP2) on the 10-cycle curve is given by (x, y) = (3.687975, 4.210773) and

δ = 3.525215732. Clearly the stable 10-cycles arise from a period-doubling of 5-cycles. The

10-cycle presented in Figure 6.7b arises from the PD2 point with x = 3.687975 on the 5-

cycle curve. The same point is labeled as BP2 at the 10-cycle curve. The existence of PD

bifurcations on the 10, 13, and 17-cycles indicates the existence of cycles of higher periods

as well.

5-Cycle 10-Cycle 13-Cycle 17-Cycle

δ 2.63 2.7 2.83 2.45

x 5.39438 3.99216 5.47699 4.24294

y 3.38445 4.86040 4.26739 5.16145

Table 6.1: One point on the 5,10,13,17-cycles.

LP1 BP1 PD1 PD2 PD3 LP2 PD4 BP2

5-Cycle 2.62813 2.69111 3.52522 3.52573

10-Cycle 2.80134 2.69111 2.70485 2.80214 3.12750 3.12753 3.52149 3.52522

13-Cycle 2.47864 2.48136 2.82987 2.83005

17-Cycle 2.44977 2.45042 2.76425 2.76432

Table 6.2: The bifurcation points on the continuation curves of the 5,10,13,17-cycles with
the corresponding value of δ.



6 The monopoly model | 115

2.5 2.7 2.9 3.1 3.3 3.5 3.7
2.6

5.8

δ

x

LP1
PD2 LP2PD1

(a)

2.6 2.8 3 3.2 3.4 3.6
3.5

4.2

δ

x

PD1 PD3 LP2LP1 PD2 PD4 BP2
BP1

(b)

2.4 2.5 2.6 2.7 2.8 2.9
3

5.7

δ

x

LP2
PD2LP1 PD1

(c)

2.4 2.5 2.6 2.7 2.8
3

5.8

δ

x
LP2

PD2PD1LP1

(d)

Figure 6.7: Bifurcation diagram in (δ, x)-plane of period-5 (a), period-10 (b), period-13
(c) and period-17 (d) cycles.

6.4 The existence of period-4 solutions

We now explore the existence of period-4 cycles in (6.8). We introduce the following general

cycle notation





x

y




 →






y

z




 →






z

w




 →






w

x




 →






x

y




 . (6.18)
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Stable for δ in

5-Cycle (2.62813, 2.69111) ∪ (3.52522, 3.52573)

10-Cycle (2.69817, 2.70485) ∪ (2.80134, 2.80214) ∪ (3.12750, 3.12753) ∪ (3.52149, 3.52522)

13-Cycle (2.47864, 2.48136) ∪ (2.82987, 2.83005)

17-Cycle (2.44977, 2.45042) ∪ (2.76425, 2.76432)

Table 6.3: Stability regions of the 5,10,13 and 17-cycles of the monopoly model.

It follows from (6.10) and (6.11) that

z = y + δP (x, y), (6.19)

w = z + δP (y, z), (6.20)

x = w + δP (z, w), (6.21)

y = x + δP (w, x). (6.22)

6.4.1 The solutions

To investigate the case where one of the ordered pairs in (6.18) has two equal components,

i.e., x = y or y = z or z = w or w = x, we solve system (6.19) - (6.22) for z = w (the other

cases follow by cyclicity). Substituting z = w into (6.19) - (6.22) gives

z − y = δP (x, y), (6.23)

0 = δP (y, z), (6.24)

x − z = δP (z, z), (6.25)

y − x = δP (z, x). (6.26)

or

(z − y)(y − x) = δ(y − x)P (x, y), (6.27)

0 = δ(z − y)P (y, z), (6.28)

(x − z) = δP (z, z), (6.29)

(y − x)(x − z) = δ(x − z)P (z, x). (6.30)
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Adding (6.27) to (6.28), we get

(z − y)(y − x) = −δ(x − z)P (z, x). (6.31)

From (6.30) it now follows that x = y. Plugging x = y into (6.23)-(6.26), we obtain

z − y = δP (y, y), (6.32)

y − z = δP (z, z), (6.33)

0 = δP (y, z). (6.34)

The set of equations (6.32)-(6.34) has the solutions

(y, z) =







(3, 3),
(
3 ±

√
3, 3 ±

√
3
)

if δ > 0,
(

3 ±
√

3δ2+10δ
δ

, 3 ∓
√

3δ2+10δ
δ

)

if δ ≥ 5
3 .

(6.35)

The solutions for which y = z are the fixed points of (6.8) and can be ignored. So, the general

solution of period 4 for which two successive ordered pairs of cycle (6.18) have the same first

component is given by








x

y

z

w









=









3 ±
√

3δ2+10δ
δ

,

x

3 ∓
√

3δ2+10δ
δ

z









. (6.36)

Figure 6.8 shows a plot of (6.36) for δ = 2.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

δ = 2

1122

33 44

x

y

1122

33 44

Figure 6.8: A cycle of period 4 for δ = 2.
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Now suppose that x Ó= y, y Ó= z, z Ó= w and w Ó= x in (6.18). Thus, system (6.19)-(6.22) is

equivalent to

(z − y)(y − x) = δ(y − x)P (x, y), (6.37)

(w − z)(z − y) = δ(z − y)P (y, z), (6.38)

(x − w)(w − z) = δ(w − z)P (z, w), (6.39)

(y − x)(x − w) = δ(x − w)P (w, x). (6.40)

Adding (6.37) to (6.38), (6.38) to (6.39), (6.39) to (6.40), (6.40) to (6.37), we get

(z − y)(y − x + w − z) = δ(z − x)P (x, z), (6.41)

−(w − z)(y − x + w − z) = δ(w − y)P (y, w), (6.42)

(x − w)(y − x + w − z) = δ(x − z)P (x, z), (6.43)

−(y − x)(y − x + w − z) = δ(y − w)P (y, w). (6.44)

We now distinguish two cases:

6.4.1.1 Case 1: x = z

If x = z, we can solve system (6.41)-(6.44) for {y, z, w} and obtain two solutions:

















x

y

z

w











=












0.2(15δ+r)
δ

−0.2(15δ+r+2
√

15δ2−25δ)
δ

+ 0.4(15δ+r)
δ

x

0.2(15δ+r+2
√

15δ2−25δ)
δ












,











x

y

z

w











=












0.2(15δ−r)
δ

−0.2(15δ−r−2
√

15δ2−25δ)
δ

+ 0.4(15δ−r)
δ

x

0.2(15δ−r−2
√

15δ2−25δ)
δ












,

(6.45)

where r =
√

15δ2 + 100δ. This case has been studied by J. Vandenameele [128]. She derived

the first 4-cycle in (6.45).
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6.4.1.2 Case 2: x Ó= z

If x Ó= z, we have
(x − w)

(x − z)
=

(z − y)

(z − x)
, (6.46)

i.e.,

x = w − z + y. (6.47)

Plugging (6.47) for x in (6.41)-(6.44) and solving this system for {y, z, w}, we get another

formula for two-cycles of period-4:

















x

y

z

w











=













27δ2−120δ+ 4
5

s
√

δ(20s+75δ)−3
√

δ(20s+75δ)δ

(9δ−40)δ

27δ2−120δ+ 2
5

s
√

δ(20s+75δ)− 3
5

√
δ(20s+75δ)δ−4

√
δ(20s+75δ)

(9δ−40)δ

3 + 1
5

√
δ(20s+75δ)

δ

y













,











x

y

z

w











=













27δ2−120δ− 4
5

s
√

δ(20s+75δ)+3
√

δ(20s+75δ)δ

(9δ−40)δ

27δ2−120δ− 2
5

s
√

δ(20s+75δ)+ 3
5

√
δ(20s+75δ)δ+4

√
δ(20s+75δ)

(9δ−40)δ

3 − 1
5

√
δ(20s+75δ)

δ

y













,

(6.48)

where s =
√

9δ2 + 45δ − 100.

6.4.2 The symmetry property

The 4-cycles (6.36) (the stars), (6.45) (the black points) and (6.48) (the black points) are

shown in Figure 6.9. The 4-cycles (6.45), (6.48) differ only in the choice of the first point

of the cycle. Figure 6.9 possesses a point symmetry around (3, 3) i.e., the upper 4-cycle is

obtained by a rotation of the lower one over 180o.

The vertices of each 4-cycle form a perfect square. The points c1 =
(

0.2(15δ+r)
δ

,
0.2(15δ+r)

δ

)

and c2 =
(

0.2(15δ−r)
δ

,
0.2(15δ−r)

δ

)

are the center points of the upper and lower square respec-

tively; c = (3, 3) is the center point for the big square.
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Figure 6.9: The general diagram for the 4-cycle (6.36) (the stars), (6.45) and (6.48) (the
black points). The 4-cycles (6.45), (6.48) differ only in the choice of the first point of the
cycle.

6.4.3 Stability analysis

The next step is to determine the stability of the cycles in Section 6.4.1.

Consider the 4-cycle (6.36). The Jacobian of the 4-cycle is the product of the Jacobians

evaluated at each point of the cycle (6.36), i.e.,

J4,1 = J(w, x)J(z, w)J(y, z)J(x, y), (6.49)

where

J(x, y) =

(

0 1

δ ∂
∂x

P (x, y) 1 + δ ∂
∂y

P (x, y)

)

and the other Jacobians follow by cyclicity.

After some computations we find

J4,1 =

(

0.36δ2 + 3.6δ + 9 0.36δ2 + 3.6δ + 8

0 1

)

, (6.50)

with eigenvalues

λ1,2 = {1, 0.36δ2 + 3.6δ + 9}. (6.51)

The second eigenvalue is always greater than 1 for δ ≥ 5
3 . So the 4-cycle system (6.36) is

unstable.
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On the other hand, for the first 4-cycle in (6.45) (the same results hold for the second 4-cycle)

the Jacobian matrix is given by

J4,2 =

(

A B

C D

)

, (6.52)

where

A = − 144

15625
σψδ +

36

3125
δ2 − 216

15625
δ3 +

348

625
δ − 84

3125
σψ +

13

125
+

44

625

σψ

δ
,

B = − 216

15625
σψδ − 36

125
δ2 − 276

3125
σψ − 36

25
δ +

116

625

σψ

δ
+

16

5
,

C =
432

390625
σψδ2 +

3024

78125
δ3 +

2592

390625
δ4 − 252

15625
δ2 − 792

78125
σψδ

+
276

3125
δ − 1116

15625
σψ − 208

625
+

444

3125

σψ

δ
,

D =
3888

390625
δ4 +

8856

78125
δ3 +

144

15625
σψδ − 3348

15625
δ2 +

84

3125
σψ − 8796

3125
δ − 44

625

σψ

δ
+

3553

625
,

and ψ =
√

3δ2 − 5δ, σ =
√

3δ2 + 20δ. The characteristic equation is

ρ4,2(λ) = λ2 − (k + 1)λ + k = 0. (6.53)

where

k =
3888

390625
δ4 +

7776

78125
δ3 − 3168

15625
δ2 − 7056

3125
δ +

2993

625
.

At any point (ξ, η) of the 4-cycle (6.45), there are two eigenvalues

λ1,2 = {1, k}. (6.54)

From (6.54) we infer the following results on the stability and bifurcations of the 4-cycle

system (6.45):

• For 5
3 < δ < −5

2 + 25
18

√
21, there are two eigenvalues λ1 = 1 and |λ2| < 1.

• At δ = −5
2 + 25

18

√
21 a resonant 1:1 NS bifurcation occurs at

(x, y) =

(

3 +
3
√

26 + 2
√

21

−9 + 5
√

21
, 3 +

3
√

26 + 2
√

21 − 12
√

11 − 2
√

21

−9 + 5
√

21

)

.

• For δ > −5
2 + 25

18

√
21, there are two real eigenvalues λ1 = 1 and |λ2| > 1, and hence,

the 4-cycle is unstable.
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Since there is always an eigenvalue 1, the 4-cycle is never linearly asymptotically stable.The

stability and the existence of bifurcation points for 5
3 < δ < −5

2 + 25
18

√
21 are determined by

the stability analysis in the direction of the eigenvector corresponding to λ1 = 1. Let (x, y)T

be a fixed point of the fourth iterate of (6.8). For 0 < ε ≪ 1, let εv be a small perturbation

of (x, y)T where v is the unit right eigenvector corresponding to the eigenvalue one. We

decompose

M4
(

(x, y)
T

+ εv
)

= αεv + βεw + (x, y)
T

, (6.55)

where αε, βε are scalars and w is an eigenvector corresponding to λ2. Taking inner products

of (6.55) with the left eigenvector vl corresponding to the eigenvalue one, we get

αε =
(vl)T

[

M4
(

(x, y)
T

+ εv
)

− (x, y)T
]

(vl)Tv
, (6.56)

In the sense of the definition of the stability on a specific eigenvector of the linearized system

at the fixed point (see for example [97, Chapter 2]), the 4-cycle at the fixed point (x, y)T

is stable in the direction v if |αε| < ε for all sufficiently small ε. Moreover, the fixed point

(x, y)T of the 4-cycle is unstable in the direction of v if |αε| > ε for all small enough values

of ε. The vectors v and vl are given by:

v =




− 375δ2 + 18δσψ + 2500δ + 145σψ

18δ3 + 15δ2 + 12δσψ − 700δ + 55σψ

1



 , (6.57)

vl =





36
25 σψδ2 + 216

25 δ4 − 54
5 σψδ + 324

5 δ3 − 111σψ + 87δ2 + 260δ

18δ3 + 15δ2 + 12δσψ − 700δ + 55σψ

1



 . (6.58)

Using MATLAB, we compute numerically the value αε for a large number of values of δ ∈] 5
3 , 5[

(33, 324 points, uniformly distributed) for ε = 10−2 and 10−6. The results are presented in

Figure 6.10. The 4-cycles where |αε| < ε are plotted in green. The 4-cycles where |αε| > ε

are plotted in blue. The first labeled points are those where |α|−ε changes sign. The second

labeled points indicate the resonant 1:1 NS point for which δ = −5
2 + 25

18

√
21. We see that the

change of sign happens for increasing values of δ if ε tends to zero. By numerical simulation

for a large number of initial points computed by (6.45) for different values of δ in the range

[2.71, 3.9] we find that the 4-cycle is stable for all values of δ smaller than the value of the

bifurcation point (i.e., the resonant 1:1 NS point) but with a very small domain of attraction.

Figure 6.11b shows what happens if we round the initial point in Figure 6.11a to 8 digits:

the initial point is no longer in the domain of attraction of the 4-cycle. For all δ greater than

the value of the bifurcation point the 4-cycle is unstable, see Figure 6.11c.
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1 5
4.1

4.9

2.6514500

3.8646500

ε = 0.01

δ

x

(a)

1 5
4.1

4.9

2.7083500

3.8646500

ε = 1× 10
−6

δ

x

(b)

Figure 6.10: (a) Stability analysis for the 4-cycle (6.45) using δ ∈ [1.7, 5] with step size
10−4. Solid curve where points |αε| < ǫ; Dashed curve where points |αε| > ǫ. In the first
labeled points |αε| − ǫ changes sign.

2 6
2

6

δ = 3.85, n = 50, 000

x

y

(a)

2 6
2

6

δ = 3.85, n = 21080

x

y

(b)

0 6
0

6

δ = 3.88, n = 1770

x

y

(c)

Figure 6.11: (a) Stable 4-cycle for δ = 3.85 where the initial point is computed by (6.45),
exact to machine precision. (b) Behavior if the initial point in (a) is rounded to 8 digits
[(x0, y0) = (4.28021914, 3.11358339)]: the point is no longer in the domain of attraction of
the 4-cycle, (c) Unstable 4-cycle for δ = 3.88 with initial point exact to machine precision.

To further corroborate this result, we explore the “basin of attraction”.

Definition 6.1. [4] Let f be a smooth map on R
n and let xi be a point or periodic orbit

for f . Then basin of attraction of xi, or just basin of xi, is the set of points x such that

|fk(x) − fk(xi)| → 0, as k → ∞.

The basin of attraction of the 4-cycles (6.45) is computed by performing 105 map iterations

at 40, 000 different initial points located in the range [−1, 7] × [−1, 7]. Figure 6.12 shows the
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basins of attraction of the 4-cycles (6.45) for four values of δ. The points in the attraction

domain of the first 4-cycle in (6.45) are colored red, in the second 4-cycle green. The yellow

points are these where no convergence was established after 105 iterations. For δ ≤ 2.6 the

basin of attraction is connected, then it shrinks and contains holes. Already for δ = 2.615

there are points very close to the 4-cycle which are not in its domain of attraction. However,

numerical simulations show that even for values of δ slightly smaller than −5
2 + 25

18

√
21 the

4-cycle has a small radius of attraction, which is not the case for values slightly larger than
−5
2 + 25

18

√
21. So the loss of stability of the 4-cycle is, in fact, caused by a 1:1 resonant

Neimark-Sacker bifurcation.
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6

δ = 2.6
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1

2

3

4

5

6

7

δ = 2.62

x

y

(b)

4.36 4.38 4.4 4.42 4.44 4.46 4.48 4.5 4.52 4.54 4.56
3.42

3.44

3.46

3.48

3.5

3.52

3.54

3.56

3.58

3.6

3.62

δ = 2.615

x

y

(c)

4.36 4.38 4.4 4.42 4.44 4.46 4.48 4.5 4.52 4.54 4.56
3.42

3.44

3.46

3.48

3.5

3.52

3.54

3.56

3.58

3.6

3.62

δ = 2.616

x

y

(d)

Figure 6.12: The basins of attraction of the 4-cycles (6.45) (a) for δ = 2.6; (b) for δ = 2.62;
(c) for δ = 2.615 and the initial points located in the range [4.36, 4.56] × [3.42, 3.62] and
(d) for δ = 2.616 and the initial points located in the same range as in (c).
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6.5 Analysis by Lyapunov exponents

Consider the two-dimensional map

Xn+1 = F (Xn), Xn = (xn, yn), n = 0, 1, 2, 3, . . . ,

where F : R2 → R
2. To monitor how a small error applied to the initial condition evolves

after N iterations, we use the following algorithm:

Step 1. Iterate the initial point X0, say, for k times† to obtain Xk. Initialize an accumulator

to the value zero.

Step 2. For an arbitrary angle φ, we perturb Xk by a small finite displacement (error)

0 < ε0 ≪ 1 in the direction V = (cos(φ), sin(φ)). Compute the perturbed point

X̂k = Xk + ε0V .

Step 3. Iterate both points Xk , X̂k and compute the distance ε1 between them, i.e., the

new error.

Step 4. The error ε0 increases by the factor
∣
∣
∣

ε1

ε0

∣
∣
∣, we add the logarithm of this factor to the

accumulator.

Step 5. Renormalize the distance between Xk+1 and X̂k+1 so that the distance between

them becomes equal to ε0, see Figure 6.13. This is done by setting

X̂0
k+1 = Xk+1 +

ε0

ε1

(

X̂k+1 − Xk+1

)

.

Step 6. Iterate steps 3-5 until N iterations have been performed.

Step 7. Divide the accumulator by N .

The average logarithmic growth of the relative error per iteration can be considered as the

largest Lyapunov exponent ‡ in the direction V ,

σ = lim
N→∞

1

N

N∑

i=1

∣
∣
∣
∣

εi

ε0

∣
∣
∣
∣
.

†To let the transient die out.
‡The formal definition of Lyapunov exponents is given in [78, Definition 5.8.2]. It is worth pointing out

that, in the case of a two-dimensional map, there is a second Lyapunov exponent which indicates how much
points near Xk are attracted after N iterations. See [22, 63, 108, 118, 132] for more details.



126 | 6.5 Analysis by Lyapunov exponents

Xk

X̂k

ε0

X̂k+1

X̂
0
k+1

Xk+1

ε0

ε1

X̂
0
k+2

X̂
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Figure 6.13: The renormalization step in the calculation of the largest Lyapunov exponent.

We apply this algorithm to calculate the largest Lyapunov exponent of the monopoly model

(6.8) for δ ∈ [0.01, 4]. For each δ we reset the initial data to ε0 = 0.00001, φ = π
2 , (x0, y0) =

(3 +
√

3 − 10−5, 3 +
√

3 − 10−5) and 105 map iterations are performed. This is done by

evaluating the MATLAB code in Appendix B.2. The end result of this code is presented in

Figure 6.14. The first problem with the preceding algorithm is that different error directions

could produce different factors
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† and thus different Lyapunov exponents.
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Figure 6.14: The largest Lyapunov exponent for δ ∈ [0.01, 4]. Negative values correspond
to stable cycles, zero corresponds to 4-cycles with one eigenvalue equal to one and positive
values indicate chaotic behavior.
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For the monopoly model, we did the following numerical test. For a fixed value of δ, δ = 3,

we compute the largest Lyapunov exponent using four directions, namely φ0 = 0, π
2 , π, 3π

2 ,

with ε0 = 0.00001. The numerical result is shown in Table 6.4. It is clear that as the number

of iterations N increases, the computed exponents converge to the same value no matter

what initial error direction is used. So the direction of the error is not really important

in our model. However this is not the only problem since we still need to know how the

Lyapunov exponent is affected by the choice of the initial error ε0 to which we normalize

after each iteration. To arrive at a well defined exponent we must let the size of the initial

error to go to zero,

σ = lim
ε0→0

lim
N→∞

1

N

N∑

i=1

∣
∣
∣
∣

εi

ε0

∣
∣
∣
∣
,

which is not possible in the previous algorithm. To solve the limit problem, we can use the

Jacobian matrix. This matrix can be used to project forward the initial displacement vector

V0 = (cos(φ), sin(φ)) to monitor the directions of stretching and shrinking at each iteration.

To describe the new algorithm, let us consider the displacement from X0 in the direction of

the vector V0, then the vector after N iterations given by

VN = DF (XN−1)VN−1, (6.59)

will determine the displacement of the orbit for XN−1, where DF (XN−1) is the Jacobian

matrix evaluated at XN−1. Then the ratio

‖VN ‖
‖V0‖ , ‖V0‖ = 1

shows whether the displacement grows or shrinks. Therefor, the largest Lyapunov exponent

N φ0 = 0 φ0 =
π

2
φ0 = π φ0 =

3π

2

10 0.5806 0.6555 0.5806 0.6555

100 0.3914 0.3989 0.3914 0.3989

1000 0.3650 0.3658 0.3649 0.3657

10, 000 0.3896 0.3897 0.3896 0.3897

100, 000 0.3907 0.3907 0.3907 0.3907

Table 6.4: The largest Lyapunov exponent for δ = 3 and using different error direc-
tions with ε = 0.00001 and increasing iteration numbers N . As the number of iterations
increases, the computed exponents converge to the same value no matter what initial error
direction is used.
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for initial X0 in the direction of the vector V0 is given by

σ(X0, V0) = lim
N−→∞

1

N
ln (‖VN ‖). (6.60)

From (6.59) we have

VN = DF (XN−1)DF (XN−2)VN−2

= DF (XN−1)DF (XN−2) . . . DF (X0)V0

= DF N (X0)V0.

(6.61)

Hence, the Lyapunov exponent is given by

σ(X0, V0) = lim
N−→∞

1

N
ln

(
‖DF N (X0)V0‖

)
.

Using (6.59) and (6.60) the algorithm to estimate the Lyapunov exponents in this case is as

follows [108]:

Step 1. Iterate the initial point X0 k-times to arrive at Xk. Initialize an accumulator to

zero.

Step 2. Chose an initial direction of error φ0
†.

Step 3. Compute the direction vector of error Ek+1 using the Jacobian matrix:

Ek+1 = J(Xk) (cos(φ0), sin(φ0)) .

Step 4. The error has increased (or decreased) by the factor d = ‖Ek+1‖. Compute ln (d)

and add it to the accumulator.

Step 5. Normalize the new error direction (Êk+1 = Ek+1

d
) and then replace the error direc-

tion (cos(φ0), sin(φ0)) by the vector Êk+1.

Step 6. Compute the next point of the map Xk+1 and then go back to step (3) using Xk+1

and the new error direction Êk+1.

Step 7. After N iterations, divide the content of the accumulator by N .

The computed Lyapunov exponent of the monopoly model for δ ∈ [1.5, 4] using the second

algorithm is shown in Figure 6.15a (see Appendix B.3 for the corresponding MATLAB code).

The result looks exactly the same as in Figure 6.14. Table 6.5 shows the Lyapunov exponent

†This can be done by solving (cos(φ0), sin(φ0)) =
Xk

‖Xk‖
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Figure 6.15: (a) The largest Lyapunov exponents for δ ∈ [1.5, 4], (b) Convergence of the
Lyapunov exponent for δ = 3

of the monopoly model at δ = 3 based on the first algorithm with different sizes of error (the

first 3 columns) and base on the second algorithm (last column). It is clear that for ε > 0

the exponents of the first algorithm slowly converge to the actual exponent whose computed

by the second algorithm.

N ε0 = 0.1 ε0 = 0.01 ε0 = 0.001 ε0 → 0

10 0.550702 0.578336 0.580343 0.592340

100 0.402211 0.385633 0.390898 0.393341

1000 0.374649 0.368181 0.366863 0.365137

10, 000 0.384310 0.389172 0.389916 0.389626

100, 000 0.388071 0.390482 0.390772 0.390703

Table 6.5: The largest Lyapunov exponent for δ = 3 and using φ = π with different errors
ε0 for increasing number of iterations N .

6.6 Lyapunov exponents versus bifurcation diagram

Comparing the Lyapunov exponent diagram with the bifurcation diagram in Figure 6.16 and

the cycle diagrams (Figure 6.3 - Figure 6.6), we notice that:
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(1) For δ ∈
[
0.01, 5

3

)
, σ is negative; it approaches zero at the 1:4 resonant NS bifurcation

point δ = 5
3 where the cycles of period 4 are born. The Lyapunov exponent remains

zero for 5
3 < δ < 2.615 except for the dip around δ = 2.45 caused by stable cycles of

period 17.

(2) The first rise for σ is around δ = 2.62 due to the chaotic behavior which is clear in

Figure 6.4a and Figure 6.4b.

(3) The second dip between δ = 2.62 and δ = 2.7 is due to the stable period 5 cycles in

Figure 6.5a. As δ touches zero around δ = 2.7 a cycle of period 10 is born.

(4) For δ > 2.7, the Lyapunov exponent increases and the system becomes more and more

chaotic, except for the big dip caused by the stable period 13 cycles around δ = 2.83,

see Figure 6.6.

The chaotic behavior of the monopoly model can now be better understood with the help of

the Lyapunov exponents analysis discussed above. Roughly speaking, the positive Lyapunov

exponent for δ ∈ {≈ 2.62} ∪ (2.7, ∞)\{≈ 2.83} confirms the predominance of a chaotic

attractor.
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Figure 6.16: Plotting of Lyapunov exponents versus bifurcation diagram for δ ∈ [1.5, 4].



CHAPTER 7

Conclusions

In the first part of the thesis, accurate homoclinic predictors at a generic codim-2 BT bifur-

cation were derived. The procedure that we have used mainly consists of two steps:

(1) derive asymptotics of the homoclinic orbits and parameters of the two-dimensional BT

normal form (the homoclinic predictor).

(2) transfer the derived predictors into the phase and parameter space of a given generic

n-dimensional ODE.

For the first step we used an appropriate BT normal form (we called it the smooth BT

normal form) to derive the explicit third-order homoclinic predictors by applying both the

R-P and the L-P perturbation methods. Both methods give the same asymptotic for the

homoclinic parameter values. However, the L-P predictor has a clear advantage, since it

does not suffer from the “parasitic turn” in the asymptotic for the homoclinic orbit in the

phase space. While doing so, we reported for the first time the explicit first-, second- and

third-order homoclinic predictors for both R-P and L-P methods. We recall that the order

of the predictor refers to the maximal order in the ε-expansion of the homoclinic solution in

the perturbed Hamiltonian systems, and not the truncation ε-order in the final predictors.

The L-P method for standard oscillators removes secular terms, i.e. a linear time-rescaling

depending on the small parameter ε, yields a choice to eliminate unbounded terms and allows



132 |

to obtain a solution valid for all time. Then an expansion in ε recovers the unbounded term.

Here we argue that our homoclinic predictor obtained from the L-P method is related in a

similar way to the predictor from the R-P method. The difference though is that here we

remove the parasitic turns rather than secular terms. Our claim is that if we expand the

L-P predictor including the ε-dependent rescaled time, we recover the R-P predictor in the

corresponding order. This implies that the geometry of the predictor is correct in phase

space. We will restrict ourselves to first-order in ε. First of all, from (3.51) we have

dξ

ds
= 1 − ε

6b

7a
tanh(ξ) + O(ε2) =⇒ ds

dξ
= 1 + ε

6b

7a
tanh(ξ) + O(ε2),

which can be integrated and inverted to yield

s = ξ + ε
6b

7a
log(cosh(ξ)) + O(ε2) =⇒ ξ = s − ε

6b

7a
log(cosh(s)) + O(ε2).

Then it is easily checked that

u0,LP (ξ(s)) = u0,RP (s) + εu1,RP (s) + O(ε2)

and that

v0,LP (ξ(s)) + εv1,LP (ξ(s)) = v0,RP (s) + εv1,RP (s) + O(ε2).

The parasitic turn appears due to the log-term, so it is present in the R-P predictor. In the

L-P predictor, this is removed by a nonlinear time reparametrization along the homoclinic

orbit. We conjecture that this holds for higher order terms in ε as well. Note that for the

L-P method we prescribe the u-solution restricting the homoclinic excursion to one side of

the saddle. Then solvability requires additional freedom, provided by the time-rescaling. For

the R-P method the solution satisfies u̇ = v, which by the time-rescaling does not hold in

the L-P method. Also, for large values of ε, dξ
ds

may become negative marking the end of the

validity of the asymptotic.

The second step in the construction of generic homoclinic predictors was to obtain the smooth

normal form on the center manifold. So we applied the standard parameter dependent

center manifold reduction combined with the normalization, that is based on the Fredholm

solvability of the homological equation. By systematically solving all linear systems appearing

from the homological equation, we removed an ambiguity in the parameter transformation

existing in the literature. Also, we reported for the first time the computational formulas of

the coefficients (a1, b1, e, d) of the smooth BT normal form.
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By collecting the results from both steps, we formulate an accurate homoclinic predictor at a

generic codim-2 BT bifurcation. In Appendix A.5 we describe a sequence of Maple commands

that can be used to explicitly compute the homoclinic solution rooted at a generic BT point

of two-dimensional models. This solution is based on the L-P perturbation method. Using

these commands we illustrate the homoclinic solution in the Gray-Scott model. We have also

described an initializer implemented in MatCont to start homoclinic orbits from a generic BT

point based on the L-P perturbation predictor. The initializer allows to compute the initial

homoclinic solution and parameters so that the continuation of the homoclinic orbit can be

started. Then we used MatCont to start the homoclinic orbits that emanate from BT points

in several multidimensional models. In all examples, we set TTolerance=10−5. As a rule, the

Amplitude should always be larger than TTolerance given the geometric meaning of both

variables. As another rule, the BT point itself should be computed to a geometric precision

significantly smaller than TTolerance. This can be achieved in MatCont by decreasing

the tolerances VarTolerance and TestTolerance for the curve on which the BT points

are detected. We suggest to allow eps0 and eps1 to vary as homoclinic parameters. In the

MatCont continuer window set Adapt = 1. Then start to increase/decrease the Amplitude

value. This works for all studied models. However, this choice is not an absolute rule

and it takes some trial-and-error to set all parameters (including TTolerance, continuation

parameters and adaptation (Adapt)) for the successful continuation. Note that in each case

both Compute|Forward and Compute|Backward should be tried. We recall that the idea

of starting homoclinic orbit from BT point is based on applying a small nonzero step (ε) away

from the BT point. However choosing a suitable ε such that the initial homoclinic prediction

will be in the convergence domain of the homoclinic continuation problem is correlated, in

some way, to the value of the BT normal form coefficient a. In general, cases where a has

small (absolute) value are more difficult to handle than cases where a is moderate.

There is a similarity between the bifurcation structure in the BT normal form of an ODE

and the BT map. We investigated the possibility of applying our asymptotic to predict the

homoclinic parameter in the BT map with the aim to continue the branches of tangential

homoclinic orbits. As a first step, we derived the homoclinic asymptotic for the ODE whose

time-1 shift map coincides with orbits of the BT map. The result is a curve in the parameter

space. We showed that for a suitable choice of the parameter value this curve is located inside

the homoclinic zone in the BT map which means that the predicted homoclinic parameter can

be used to approximate the homoclinic structure in the BT map. It is worth to point out that

our predictor improves the existing one in the literature. Numerically, the derived asymptotic

of the homoclinic parameter was sufficient to grow the stable and unstable manifolds of the

saddle of the BT map. After numerically computing the (transversal) intersection points of
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these manifolds we used these points as initial data to continue the homoclinic tangencies

(the boundary of the homoclinic zone) so that we obtained the whole homoclinic structure

in the BT map. However, we still believe that using the derived homoclinic asymptotic it

could be possible to predict a finite number of intersection points of the stable and unstable

manifolds and hence the tangential homoclinic orbits can be continued without growing and

intersecting the stable and unstable manifolds which is time consuming.

In the second part of this thesis we studied the monopoly model. This study was motivated

by the erroneous claims in the analysis of the model in the existing literature. Also because

of the rich periodic behaviors, a part of this study was to apply the MATLAB interactive

toolbox for numerical study of smooth maps (MatContM) in the analysis of these periodic

behaviors and to study the stability regions. By numerical simulation, based on a crude

bifurcation diagram, it was not difficult to find periodic points of period 4, 5, 10, 13 and

17. Computing these points for a specific value of the bifurcation parameter δ (with high

accuracy) allows us to have good starting points to use MatContM to compute whole branches

of solutions of period 5, 10, 13 and 17 (parametrized by δ) and to determine the stability

regions of these solutions. The most interesting solutions were those of period 4. These

solutions have always an eigenvalue equal to one which contradicts the claims in previous

studies on the model where it is said this happens only for δ ≈ 2.488. We derived the explicit

formula for solutions of period 4. Then we proved that these solutions are never linearly

asymptotically stable. For δ > −5
2 + 25

18

√
21 the second eigenvalue of the 4-cycles is always

greater than one and hence the 4-cycles are unstable, so we focus our study in the interval
5
3 < δ < −5

2 + 25
18

√
21. A nonlinear stability criterion is combined with basin of attraction

analysis and simulation to show that the 4-cycles are stable in this interval. We also showed

that the 4-cycles have a small radius of attraction for δ slightly smaller than −5
2 + 25

18

√
21.

In agreement with the computed bifurcation points using MatContM, we exactly determined

the value of δ for which two NS bifurcation occur. These values were δ = 5
3 where stable

cycles of period 4 emerge and δ = −5
2 + 25

18

√
21 where the 4-cycles lose their stability. Further,

the chaotic and periodic behaviors of the monopoly model were analyzed by computing the

largest Lyapunov exponents. The most interesting result was for δ > 2.7 where the positive

Lyapunov exponent increases and the system becomes more and more chaotic. The positive

Lyapunov exponent for δ ∈ {≈ 2.62} ∪ (2.7, ∞)\{≈ 2.83} confirmed the predominance of

a chaotic attractor. This corrects the previous literature where the chaotic behaviors was

assumed to exist for δ > 2.48.



CHAPTER 8

Future work

In the first part of the thesis we discussed the initialization of a branch of homoclinic orbits

starting from a generic BT point in multidimensional ODEs. Homoclinic orbits are also

known to emanate from Zero-Hopf (ZH) and Hopf-Hopf (HH) codim-2 bifurcation points.

However, the initialization of these orbits starting from ZH and HH bifurcations is still an

open problem. Some important results are obtained in [27, 31, 56, 62]. In the ZH case it

is possible to derive an asymptotic of the homoclinic parameter and also the corresponding

parameter-dependent center manifold reduction (see for example [93]). So a future research

direction is to construct a suitable initial solution in the state space. Once the homoclinic

asymptotics is derived, the next step should be to propose an initializer to start up homoclinic

orbits from a generic ZH point and to introduce it into MatCont. The case of HH points is

mathematically as well as computationally quite difficult.

In the map case, we derived a predictor for the homoclinic parameter at a generic BT

point of maps. The problem of deriving such predictor in state space is first to construct

an asymptotic of the homoclinic points in the BT map and then generalize the derived

asymptotic. In general if a two-dimensional map consists of an area-preserving system (with

explicitly known homoclinic solution) with a small perturbation part, then one can apply

the Melnikov’s method for maps to approximate the homoclinic points (see [48, 60, 67, 80]).

In [67, 126], it was shown that the Melnikov method gives a fairly good approximation for

the transverse intersection points of the homoclinic trajectories in the Hénon Map. However,

the BT map neither possesses an area-preserving system with a known explicit homoclinic

solution nor a perturbation part. In [126], it was claimed that it is possible to derive a small
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perturbation part to the BT map by performing two Picard’s iterations to the approximating

system (the approximating system itself is constructed by performing one Picard’s step), so

that we get a map of the form F = G + P , where G is the BT map and P is the rest of the

remaining higher-order terms. Thus G = F − P , meaning that P is a perturbation of the

map F . If we assume that the orbits of F are close to those of G (for ‖P‖ small), then at

the derived homoclinic parameter of G, one can use the Melnikov method by considering F

as “unperturbed map” and P as “perturbation” to find an approximation for the homoclinic

points of the map G. However, using all quadratic and cubic terms in F and P does not lead

us to the expected result. So more thinking on the construction of the perturbation part

should be done. If the problem of constructing a suitable perturbation part such that the

Melnikov method gives the desired result (i.e., an asymptotic to the homoclinic points) is

solved, then because of the existence of the parameter dependent center manifold, the result

should be extended to the n-dimensional case, and further an initializer to the tangential

homoclinic orbit starting from a generic BT point of maps should be implemented into

MatCont.

Another direction for further research is the stability of the 4-cycle in the monopoly model. In

Section 6.4 we show (without rigorous proof) that the 4-cycle is stable for δ ∈ ( 5
3 , −5

2 + 25
18

√
21)

and unstable otherwise. However there is a small region before the NS bifurcation point, i.e.,

δ = −5
2 + 25

18

√
21, where the stability criterion indicates an unstable region. By simulations

and basin of attraction analysis, we showed that the 4-cycle is still (locally) stable but

coexists with other attractors in this region, so the real loss of the stability is caused by the

NS bifurcation point. We recall that the idea of the stability criterion was based on studying a

small displacement in the direction of the eigenvector corresponding to the eigenvalue located

at the stability boundary. Since the basins of attraction are highly intermingled, even starting

extremely close to the 4-cycle can lead to convergence to the coexisting attractor. So our

stability criterion (6.56) is strongly affected by the choice of the size of the displacement ε (we

clarified that in Figure 6.10). So for future research, the idea of the stability criterion should

be reconsidered such that it becomes independent of the choice of ε. One idea is to expand

M4
(
(x, y)T + εv

)
in (6.56) in terms of ε. The zero-order term will cancel and the first-order

term will be equal to 1. So we would obtain a criterion of the form αε = ε(1+Aε+Bε2 + . . .).

Since ε should be allowed to be either positive or negative, the stability condition would

require that A = 0 and B < 0. A symbolic computation of A and B looks challenging but

some work in this direction is currently under development.

Besides the mathematical work, future directions of development of the MatCont software

are in order. This work could include: (a) updating and improving the GUI of MatCont

to make it more flexible; (b) introduce vector variables as MatCont input; (c) improve the

graphical representation in two-dimensional and three-dimensional plots.



APPENDIX A

Homoclinic solutions using

Maple

This appendix provides a part of the Maple commands that were used in our

study of the homoclinic solution near a generic Bogdanov-Takens point.

A.1 The homological equation

The following sequence of MAPLE commands can be used to solve the homological equation

(2.38):

1 >readlib ( mtaylor ):

>readlib ( coeftayl ):

The first two commands help us to compute the truncated multivariate Taylor series expan-

sion and its individual coefficients.

>define (B, ’orderless ’, multilinear ): define (A[1],’ orderless ’, multilinear ):

2 >define (J[2],’ orderless ’, multilinear ): define (C, ’orderless ’, multilinear ):

>define (B1 , ’orderless ’, multilinear ):

Using these commands we define the multilinear forms B, A1, J2, C, B1.

1 >CM := mtaylor (sum(sum(sum(sum(H[i,j,k,l]*‘w[0] ‘^i*‘w [1] ‘^j*‘beta [1] ‘^k*‘beta [2] ‘^l/(

factorial (i)* factorial (j)* factorial (k)* factorial (l)),i =0..4) ,j =0..4) ,k =0..4) ,l =0..4)

,[‘w[0]‘,‘w[1]‘,‘ beta [1]‘, ‘beta [2] ‘] ,4):

>H[0 ,0 ,0 ,0]:= 0: H[1 ,0 ,0 ,0]:= q[0]: H[0 ,1 ,0 ,0]:= q[1]:

The above commands compose the Taylor series expansion of (2.39b).
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>PS := mtaylor (sum(sum( Kappa [n,m]*‘ beta [1] ‘^n*‘beta [2] ‘^m/( factorial (m)* factorial (n)),n

=0..4) ,m =0..4) ,[‘beta [1]‘, ‘beta [2] ‘] ,4):

2 >Kappa [0 ,0]:= 0:

>Kappa [1 ,0]:= Kappa [ ‘1 ,0 ‘]: Kappa [0 ,1]:= Kappa [ ‘1 ,1 ‘]: Kappa [0 ,2]:= Kappa [ ‘2 ‘]:

The above commands compose the Taylor series expansions of (2.39c).

1 >‘g[1] ‘:= ‘w[1] ‘:

>‘g[2] ‘:= ‘ beta [1] ‘+ ‘ beta [2] ‘* ‘w[1] ‘+( ‘ beta [2] ‘*a[1]+a)*‘w[0] ‘^2+ (‘beta [2] ‘*b[1]+b)*‘w

[0] ‘* ‘w[1] ‘+d*‘w[0] ‘^3+e*‘w[0] ‘^2* ‘w[1] ‘:

3 >LHS :=( diff(CM ,‘w[0] ‘))*‘g[1] ‘+( diff(CM ,‘w[1] ‘))*‘g [2] ‘:

By the commands above, we compute the LHS of (2.38).

1 >tmp := constants : constants := constants ,‘w[0]‘,‘w[1]‘, ‘ beta [1]‘,‘ beta [2] ‘:

>RHS := simplify (A*CM+J[1]* PS +(1/2) *B(CM ,CM)+A[1](CM ,PS) +(1/2) *J[2](PS ,PS) +(1/6) *C(CM ,CM ,CM

) +(1/2) *B1(CM ,CM ,PS)):

3 >constants := tmp:

The above commands compute the RHS of (2.38) where f(., .) is composed as in (2.39a).

1 >Hom :=RHS -LHS =0:

>sort( collect (Hom ,{‘ beta [1]‘,‘ beta [2]‘,‘w[0]‘,‘w[1] ‘} , distributed )):

The above command is used to evaluate (2.38).

>coeftayl (Hom ,[‘w[0]‘,‘w[1]‘,‘ beta [1]‘,‘ beta [2] ‘]=[0 ,0 ,0 ,0] ,[i1 ,i2 ,i3 ,i4 ]);

The final command can be used to compute a particular equation for terms of the same order

in w and β. For example, we set i1=1, i2=i3=i4=0 to find (2.40a). In the same way, we can

compute the equations (2.40b)-(2.40l) and (2.63a)-(2.63d).

A.2 R-P solution

The following sequence of MAPLE commands can be used to derive the first-order correction

to the Hamiltonian homoclinic solution of (2.24). This solution is based on the R-P method,

see Section 3.1.

1 >u0 :=t - >2 -6/ cosh(t)^2:

>v0 :=t - >12* tanh(t)/cosh(t)^2:

3 >phi1 :=t - >12* tanh(t)/cosh(t)^2:

>phi2 :=t - >2* cosh(t) ^2+5+15* t*sinh(t)/cosh(t)^3 -15/ cosh(t)^2:

5 >w:= simplify (phi1(t)*( diff(phi2(t),t)) -(diff(phi1(t),t))*phi2(t)):

>F1 :=t->b*v0(t)*( tau0+u0(t))/a:

7 >g:= integrate (phi2(s)*F1(s)/w,s=0..t):

>f:= integrate (phi1(s)*F1(s)/w,s=0..t):

9 >tu1 := simplify ( convert (phi1(t)*(c1 -g)+phi2(t)*( c2+f),exp)):

By the commands above, we define u1(s) using to the formula of the general solution (3.12).

1 >limit (tu1 ,t= infinity ):

>limit (tu1 ,t=- infinity ):
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The above commands are used to check the limits of u1(s). The results of these are

35ac2 + 7bτ0 − 10b

a
,

35ac2 − 7bτ0 + 10b

a
.

We solve these equations for c2 and τ0 by the following commands

>sol := solve ({(35* a*c2 +7*b*tau0 -10*b)/a, (35*a*c2 -7*b*tau0 +10*b)/a},{c2 ,tau0 }):

2 >assign (sol):

This gives (3.13) with C2 = 0.

>tu1 := collect ( simplify ( expand ( convert ( simplify (tu1),trigh ))) ,{ln(cosh (2*t)+sinh (2*t)+1) ,t

,ln (2) }):

2 >tu1 := collect ( expand (subs(ln(cosh (2*t)+sinh (2*t)+1) =( ln (2)+t+ln(cosh(t))),tu1)) ,{ln(cosh(

t))}):

These commands are used to obtain (3.14).

>tv1 := diff(tu1 ,t):

2 >c1 := solve (eval(tv1 ,t=0) ,c1):

Using these commands we compute the value of C1 based on condition (3.15).

>u1 :=t-> simplify (tu1):

2 >v1 :=t-> simplify (tv1):

>u1(t):

4 >collect (v1(t) ,{ln(cosh(t))});

The final commands are used to compute (3.16). The same procedure can be used to compute

the second-order as well as the third-order solutions.

A.3 L-P solution

The following sequence of MAPLE commands can be used to derive the first-order correction

to the Hamiltonian homoclinic solution of (2.24). This solution based on the L-P method,

see Section 3.2.

>readlib ( mtaylor );

2 >readlib ( coeftayl );

4 >BTsys2 := omega (mu)*diff( omega (mu)*diff(u(mu),mu),mu)+4-u(mu)^2= epsilon *( omega (mu)*b*diff(

u(mu),mu)*( Tau+u(mu))/a)+ epsilon ^2*u(mu)^2*( Tau*a1*b+u(mu)*d)/a^2+ epsilon ^3*u(mu)*

omega (mu)*diff(u(mu),mu)*( Tau*b*b1+u(mu)*e)/a^2:

>u:=’u ’:

6 >omega (mu):=1+ sum( epsilon ^i* omega [i]( mu),i =1..5) :

>Tau := sum( epsilon ^i*tau[i],i =0..5) :

8 >u(mu):= sum( epsilon ^i*u[i]( mu),i =0..5) :

>Sigma := sum( epsilon ^i* sigma [i],i =0..5) :

10 >Temp := BTsys2 :

The above commands are used to compose (3.31) while taking (3.32) into account.
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>EqEps0 := subs( epsilon = 0, Temp);

2 >EqEps1 := coeff (lhs(Temp),epsilon )= coeff (rhs(Temp),epsilon );

>EqEps2 := coeff (lhs(Temp),epsilon ^2)= coeff (rhs(Temp),epsilon ^2);

4 >EqEps3 := coeff (lhs(Temp),epsilon ^3)= coeff (rhs(Temp),epsilon ^3);

6 >u [0]:= mu -> sigma [0]* sech(mu)^2+ delta [0]:

>u [1]:= mu -> sigma [1]* sech(mu)^2+ delta [1]:

8 >u [2]:= mu -> sigma [2]* sech(mu)^2+ delta [2]:

>u [3]:= mu -> sigma [3]* sech(mu)^2+ delta [3]:

10 >v [0]:= diff(u[0]( mu),mu):

>v [1]:= coeff ( -1/6* Sigma * omega (mu),epsilon ,1)*v[0]:

12 >v [2]:= coeff ( -1/6* Sigma * omega (mu),epsilon ,2)*v[0]:

>v [3]:= coeff ( -1/6* Sigma * omega (mu),epsilon ,3)*v[0]:

14 >delta [0]:= 2:

>sigma [0]:= -6:

16 >simplify (lhs( EqEps0 ));

0

18 >rhs( EqEps0 );

0

By these commands we obtain (3.33)-(3.36) and (3.40)-(3.43). Also we set the initials

delta0=2, sigma[0]=-6 such that u[0] and v[0] are equivalent to (3.37).

1 >tau [0]:= solve (int(diff(u[0]( mu),mu)*rhs( EqEps1 ),mu=- infinity .. infinity ),tau [0]);

The above command computes (3.47)-(3.48).

1 >lhs1 := omega [1]( mu)*( diff(u[0]( mu),mu))^2+ diff(u[0]( mu),mu)*diff(u[1]( mu),mu)-u[1]( mu)*

diff(u[0]( mu),mu ,mu):

>L10 := simplify (subs(mu=infinity ,lhs1)-subs(mu=0, lhs1)):

3 >L11 := simplify (int(diff(u[0]( mu),mu)*rhs( EqEps1 ),mu =0.. infinity )):

>sigma [1]:= solve (L10=L11 , sigma [1]):

The above yields (3.49).

>L12 := simplify (subs(mu=x,lhs1)-subs(mu=0, lhs1)):

2 >L13 := int(diff(u[0]( mu),mu)*rhs( EqEps1 ),mu = 0 .. x):

>omega [1]:= solve (L12=L13 , omega [1]):

These commands compute the function ω1(ξ). Since ω1(ξ) should be bounded we compute

the limits by the following commands

1 >limit ( omega [1](t),t=+ infinity );

>limit ( omega [1](t),t=- infinity );

to get

-signum ( delta [1]) infinity

2 -signum ( delta [1]) infinity

So ω1(ξ) is bounded iff δ1 = 0. So we set

>delta [1]:=0:

The following commands are used to check if u1(ξ) is a bounded function and also to get the

simplified expressions (3.52):
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1 >limit (u[1](t),t= infinity );

>limit (u[1](t),t=- infinity );

3 >simplify (u[1](t));

>simplify (v[1]);

5 >omega [1](t);

The same procedure can be used to compute the second-order as well as the third-order

solutions.

A.4 Asymptotics in n-dimensional systems

The following commands are used to compute (3.61)-(3.62).

1 >readlib ( mtaylor ); readlib ( coeftayl );

>X:= mtaylor (sum(sum(sum(sum(Eta[i,j,k,l]*w[0]^i*w[1]^j*beta [1]^k*beta [2]^l/( factorial (i)*

factorial (j)* factorial (k)* factorial (l)),i =0..2) ,j =0..2) ,k =0..2) ,l =0..2) ,[w[0] ,w[1] ,

beta [1] , beta [2]] ,3);

3 >Eta [0 ,0 ,0 ,0]:=0;

>Eta [1 ,0 ,0 ,0]:=q[0];

5 >Eta [0 ,1 ,0 ,0]:=q[1];

>alpha := mtaylor (sum(sum( Kappa [m,n]* beta [1]^m*beta [2]^n/( factorial (m)* factorial (n)),n

=0..2) ,m =0..2) ,[beta [1] , beta [2]] ,3);

7 >Kappa [0 ,0]:=0;

>Kappa [1 ,0]:= Kappa [ ‘1 ,0 ‘]: Kappa [0 ,1]:= Kappa [ ‘1 ,1 ‘]: Kappa [0 ,2]:= Kappa [ ‘2 ‘]:

The above commands compose the Taylor series expansions of (2.36) and (2.35).

>w [0]:= epsilon ^2/a*(u[0]+ epsilon *u[1]+ epsilon ^2*u[2]):

2 >w [1]:= epsilon ^3/a*(v[0]+ epsilon *v[1]+ epsilon ^2*v[2]):

>beta [1]:= -4* epsilon ^4/a:

4 >beta [2]:= b* epsilon ^2/a*( tau [0]+ epsilon *tau [1]+ epsilon ^2* tau [2]):

The above commands define w0, w1, β1, β2 according to the singular rescaling (3.1).

>X:= mtaylor (X ,[ epsilon ] ,5);

2 >alpha := mtaylor (alpha ,[ epsilon ] ,5);

The final commands are used to obtain (3.61)-(3.62).

A.5 Computing homoclinic solutions in two-dimensional

systems

The following sequence of MAPLE commands can be used to compute the homoclinic

solutions rooted at a BT point of two-dimensional ODEs. We note that this code can be used

to explicitly derive the homoclinic expression of a two-dimensional system after replacing the

BT point (in the parameter as well as in the state space) at (0, 0) by an appropriate change
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of coordinates. In the following commands, the free parameters are assumed to be (r1, r2)

while the state parameters are (X1, X2)

> with( plots ):

2 > with( LinearAlgebra ):

> with( VectorCalculus ):

The first command allows us to use the MAPLE linear algebra and vector calculus packages.

1 > f [1]:= -(1/4) *X [2] -(1/2) *X [2]^2 -(1/8) *X [1] -(1/2) *X[1]*X[2] -X[1]*X [2]^2+(1/2) *r[1] -r[1]*X

[1]:

> f [2]:=(1/8) *X [2]+(1/2) *X [2]^2+(1/16) *X [1]+(1/2) *X[1]*X[2]+X[1]*X [2]^2 -(1/4) *r[1] -r[1]*X

[2] -(1/4) *r[2] -r[2]*X[2]:

These commands define the system (2.75) which results after we apply the change of variables

(2.74) to the Gray-Scott model (2.70).

> A:= Jacobian ([f[1] ,f[2]] ,[X[1] ,X [2]]) :

2 > AT :=A^(%T):

> J1 := Jacobian ([f[1] ,f[2]] ,[r[1] ,r [2]]) :

4 > B:= Matrix ([[ Hessian (f[1] ,[X[1] ,X [2]]) ],[ Hessian (f[2] ,[X[1] ,X [2]]) ]]):

> J2 := Matrix ([[ Hessian (f[1] ,[r[1] ,r [2]]) ],[ Hessian (f [2] ,[r[1] ,r [2]]) ]]):

6 > A1 := Matrix (2 ,4):

> for i from 1 to 2 do

8 > column :=0:

> for j from 1 to 2 do

10 > for k from 1 to 2 do

> column := column +1;

12 > A1[i, column ]:= diff(f[j],r[i],X[k]);

> end do:

14 > end do:

> end do:

16 > C:= Matrix (2 ,8):

> for i from 1 to 2 do

18 > column :=0:

> for j from 1 to 2 do

20 > for k from 1 to 2 do

> for l from 1 to 2 do

22 > column := column +1;

> C[i, column ]:= diff(f[i],X[j],X[k],X[l]);

24 > end do:

> end do:

26 > end do:

> end do:

28 > B1 := Matrix (2 ,8):

> for i from 1 to 2 do

30 > column :=0:

> for j from 1 to 2 do

32 > for k from 1 to 2 do

> for l from 1 to 2 do

34 > column := column +1;

> B1[i, column ]:= diff(f[i],X[j],X[k],r[l]);

36 > end do:

> end do:

38 > end do:

> end do:
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The above commands are used to compute the matrices and the multilinear forms A, AT ,

J1, B, A1, J2, C, B1.

1 > r [1]:=0:

> r [2]:=0:

3 > X [1]:=0:

> X [2]:=0:

The above commands evaluate the previous and the next commands at the Bogdanov-Takens

point, i.e.,, (X[1],X[2])=(0,0), (r[1],r[2])=(0,0).

Eg := evalf ( Eigenvectors (A)):

2 EgT := evalf ( Eigenvectors (AT)):

for i from 1 to 2 do

4 if (abs(Re(Eg [1][i])) <10^( -6)) and (not ( Equal (Re( Vector (Eg [2][() ..() ,i])) ,<0,0>)))

then c1 :=i end if;

if (abs(Re(EgT [1][i])) <10^( -6)) and (not ( Equal (Re( Vector (EgT [2][() ..() ,i])) ,<0,0>)))

then c2 :=i end if;

6 end do:

v:= Re(Eg [2][() ..() ,c1 ]):

8 w:= Re(EgT [2][() ..() ,c2 ]):

Bd1 := Matrix ([[A,w],[v^%T ,0]]) :

10 tq0 := LinearSolve (Bd1 , <0,0,1>):

tq0 := simplify (( Vector ([ tq0 [1] , tq0 [2]]) )):

12 tp1 := LinearSolve (Bd1 ^(%T), <0,0,1>):

tp1 := simplify (( Vector ([ tp1 [1] , tp1 [2]]) )):

14 Bd2 := Matrix ([[A,tp1 ],[ tq0 ^%T ,0]]) :

tq1 := LinearSolve (Bd2 , <tq0 ,0 >):

16 tq1 := simplify (( Vector ([ tq1 [1] , tq1 [2]]) )):

tp0 := LinearSolve (Bd2 ^(%T), <tp1 ,0 >):

18 tp0 := simplify (( Vector ([ tp0 [1] , tp0 [2]]) )):

N1 := sqrt(abs(tq0 ^(%T).tq0)):

20 q0 :=1/ N1*tq0:

q1 :=1/ N1*tq1: q1 :=q1 -( q0 ^(%T).q1)*q0:

22 N2 := q0 ^(%T).tp0:

p1 :=(1/ N2)*tp1:

24 p0 :=tp0 -( tp0 ^(%T).q1)*p1: p0 :=(1/ N2)*tp0:

A.q0;

26 0e[x]+0e[y]

A.q1 -q0;

28 0e[x]+0e[y]

AT.p1;

30 0e[x]+0e[y]

AT.p0 -p1;

32 0e[x]+0e[y]

The above commands are used to compute the vectors q0, q1, p0, p1. We note that these

vectors are computed in such a way that (2.3) and (2.4) are satisfied (see also Step 0 in

Section 4.1).

1 > BQ00 := Vector ([(B [1..2]. q0).q0 ,(B [3..4]. q0).q0 ]):

> BQ01 := Vector ([(B [1..2]. q0).q1 ,(B [3..4]. q0).q1 ]):

3 > BQ11 := Vector ([(B [1..2]. q1).q1 ,(B [3..4]. q1).q1 ]):

> a:= simplify ( expand ((1/2) *p1 ^%T.BQ00)):

5 > b:= simplify (p0 ^%T.BQ00+p1 ^%T.BQ01):
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The above commands are used to compute the normal form coefficients a and b of the

Bogdanov-Takens bifurcation.

1 > Bord := Matrix ([[A,p1],[q0 ^%T ,0]]) :

> RHS1 := simplify ( Vector ([2*a*q1 -BQ00 ,0])):

3 > H2000 := LinearSolve (Bord , RHS1):

> H2000 := simplify (( Vector ([ H2000 [1] , H2000 [2]]) )):

5 > H2000 := H2000 +1/2*( -2* p0. H2000 +2* p0.BQ01+p1.BQ11).q0;

> RHS2 := Vector ([b*q1 -BQ01+H2000 ,0]):

7 > H1100 := LinearSolve (Bord ,RHS2):

> H1100 := simplify ( Vector ([ H1100 [1] , H1100 [2]]) ):

9 > RHS3 := Vector ([2* H1100 -BQ11 ,0]):

> H0200 := LinearSolve (Bord ,RHS3):

11 > H0200 := simplify ( Vector ([ H0200 [1] , H0200 [2]]) ):

13 > p1 .(2* H1100 -BQ11);

0

The above commands are used to compute the vectors H2000, H1100 and H0200. See system

(2.48).

> BQ0 := Matrix ([[B [1..2]. q0 ,B [3..4]. q0 ]]) ^(%T):

2 > BQ1 := Matrix ([[B [1..2]. q1 ,B [3..4]. q1 ]]) ^(%T):

> A1q0 := Matrix ([ A1 [() ..() ,1..2].q0 ,A1 [() ..() ,3..4]. q0 ]) ^(%T):

4 > A1q1 := Matrix ([ A1 [() ..() ,1..2]. q1 ,A1 [() ..() ,3..4]. q1 ]) ^(%T):

> Blk1 := Matrix ([[ p1 ^%T.BQ0 ],[ evalm (p0 ^%T.BQ0+p1 ^%T.BQ1)]]):

6 > Blk2 := Matrix ([[ p1 ^%T.A1q0 ],[ evalm (p0 ^%T.A1q0+p1 ^%T.A1q1)]]):

> BigSys := Matrix ([[A,J1],[Blk1 ,Blk2 ]]):

8 > RHS4 := Vector ([q1 ,(1/2) *( p1 ^%T.BQ11) ,3*( p0 ^%T. H1100 )-p0 ^%T.BQ11 ]):

> RHS5 := Vector ([0 ,0 ,0 ,1]):

10 > HK := Matrix ([[ LinearSolve (BigSys ,RHS4),LinearSolve ( BigSys ,RHS5)]]):

> H1 := HK [1..2]: H0010 := H1 [() ..() ,1]: H0001 := H1 [() ..() ,2]:

12 > K1 := HK [3..4]: K10 := K1 [() ..() ,1]: K11 := K1 [() ..() ,2]:

By the above commands we solve (2.59) for H1000, H0100, K1,0, K1,1.

> z1 := Vector ([(B [1..2] . H0001 ).H0001 ,(B [3..4] . H0001 ). H0001 ]):

2 > z2 := Vector ([( A1 [() ..() ,1..2]. H0001 ).K11 ,(A1 [() ..() ,3..4]. H0001 ).K11] ):

> z3 := Vector ([( J2 [1..2]. K11 ).K11 ,(J2 [3..4]. K11 ).K11] ):

4 > z:= Vector ([ z1 +2* z2+z3 ]):

> K2 := simplify ( Vector ([ -( p1 ^(%T).z)*K10 ])):

6 > RHS6 :=- Vector ([z+ Vector (J1.K2) ,0]):

8 > H0002 := LinearSolve (Bord ,RHS6):

> H0002 := simplify ( Vector ([ H0002 [1] , H0002 [2]]) ):

10 > h1 := Vector ([(B [1..2]. q0).H0001 ,(B [3..4]. q0). H0001 ]):

> h2 := Vector ([( A1 [() ..() ,1..2]. q0).K11 ,( A1 [() ..() ,3..4]. q0).K11 ]):

12 > RHS7 := Vector ([-h1 -h2 ,0]):

14 > H1001 := LinearSolve (Bord ,RHS7):

> H1001 := simplify ( Vector ([ H1001 [1] , H1001 [2]]) ):

16 > h3 := Vector ([(B [1..2]. q1).H0001 ,(B [3..4]. q1). H0001 ]):

> h4 := Vector ([( A1 [() ..() ,1..2]. q1).K11 ,( A1 [() ..() ,3..4]. q1).K11 ]):

18 > RHS8 := Vector ([-h3 -h4+ H1001 +q1 ,0]):

> H0101 := LinearSolve (Bord ,RHS8):

20 > H0101 := simplify ( Vector ([ H0101 [1] , H0101 [2]]) ):
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The above commands are used to compute the vectors (2.61)-(2.62). The following commands

are used to compute the vectors (2.64)-(2.69).

> column :=0:

2

> V1 := Vector (8): V2 := Vector (8): V3 := Vector (8):

4 > V4 := Vector (8): V5 := Vector (8): V6 := Vector (8):

6 > for j from 1 to 2 do

> for k from 1 to 2 do

8 > for l from 1 to 2 do

> column := column +1;

10 > V1[ column ]:= q0[j]* q0[k]* q0[l];

> V2[ column ]:= q0[j]* q0[k]* q1[l];

12 > V3[ column ]:= q0[j]* q0[k]* H0001 [l];

> V4[ column ]:= q0[j]* q1[k]* H0001 [l];

14 > V5[ column ]:= q0[j]* q0[k]* K11[l];

> V6[ column ]:= q0[j]* q1[k]* K11[l];

16 > end do:

> end do:

18 > end do:

20 > Cq000 := Vector ([C [1]^(% T).V1 ,C [2]^(% T).V1 ]):

> Cq001 := Vector ([C [1]^(% T).V2 ,C [2]^(% T).V2 ]):

22 > Cq00H := Vector ([C [1]^(% T).V3 ,C [2]^(% T).V3 ]):

> Cq01H := Vector ([C [1]^(% T).V4 ,C [2]^(% T).V4 ]):

24 > Cq00K := Vector ([ B1 [1]^(% T).V5 ,B1 [2]^(% T).V5 ]):

> Cq01K := Vector ([ B1 [1]^(% T).V6 ,B1 [2]^(% T).V6 ]):

26

> h5 := Vector ([(B [1..2]. q0).H2000 ,(B [3..4]. q0). H2000 ]):

28 > d:= simplify (p1 ^%T .(1/6* Cq000 +1/2* h5 -a* H1100 )):

> RHS9 :=6* Vector ([ -1/6* Cq000 -1/2* h5+a* H1100 +d*q1 ,0]) :

30 > H3000 := LinearSolve (Bord ,RHS9):

> H3000 := Vector ([ H3000 [1] , H3000 [2]]) :

32 > h6 := Vector ([(B[1..2] , q0).H1100 ,(B [3..4]. q0). H1100 ]):

> h7 := Vector ([(B[1..2] , q1).H2000 ,(B [3..4]. q1). H2000 ]):

34 > e:= simplify (p1 ^%T .(1/2* Cq001 +h6 +1/2* h7 - H1100 *b- H0200 *a -1/2* H3000 )):

> h9 := Vector ([(B [1..2]. q0).H1001 ,(B [3..4]. q0). H1001 ]):

36 > h10 := Vector ([(B [1..2]. H0001 ).H2000 ,(B [3..4]. H0001 ). H2000 ]):

> h11 := Vector ([( A1 [() ..() ,1..2]. H2000 ).K11 ,( A1 [() ..() ,3..4]. H2000 ).K11 ]):

38 > a1 := simplify (p1 ^%T .(1/2* Cq00H +1/2* Cq00K +h9 +1/2* h10 +1/2* h11 - H0101 *a)):

> RHS11 :=2* Vector ([ -1/2* Cq00H -1/2* Cq00K -h9 -1/2* h10 -1/2* h11+ H0101 *a+q1*a1 ,0]):

40 > H2001 := LinearSolve (Bord , RHS11 ):

> H2001 := simplify ( Vector ([ H2001 [1] , H2001 [2]]) ):

42 > h12 := Vector ([(B [1..2]. q1).H1001 ,(B [3..4]. q1). H1001 ]):

> h13 := Vector ([(B [1..2]. H0001 ).H1100 ,(B [3..4]. H0001 ). H1100 ]):

44 > h14 := Vector ([(B [1..2]. q0).H0101 ,(B [3..4]. q0). H0101 ]):

> h15 := Vector ([( A1 [() ..() ,1..2]. H1100 ).K11 ,( A1 [() ..() ,3..4]. H1100 ).K11 ]):

46 > b1 := simplify (p1 ^%T.( Cq01H + Cq01K +h12+h13+h14+h15 - H0101 *b-H1100 - H2001 )):

To summarize, we use the following commands to obtain the concrete formulas (3.65).

> a; b; H2000 ; H1100 ; H0200 ; H0010 ;

2 > H0001 ; K10; K11; K2; H0002 ;

> H1001 ; H0101 ; d; H3000 ; e; a1;

4 > H2001 ; b1;
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The following commands are used to obtain (3.66) and (3.66).

> t0 :=10/7:

2 > t1 :=0:

> t2 := simplify ((2/2401) *(2450* a*b*b1 -1225* a1*b ^2+144* b^3 -4802*a*e +3577* b*d)/(a^2*b)):

4 > ALPHA := convert (K11*t0*b* epsilon ^2/a+K11*t1*b* epsilon ^3/a+( -4* K10/a+K11*t2*b/a +(1/2) *K2*

t0 ^2*b^2/a^2)* epsilon ^4, Vector ):

> ALPHA [1]:

6 > ALPHA [2]:

> XS := convert (( u0*q0/a+t0*b* H0001 /a)* epsilon ^2+( u1*q0/a+v0*q1/a+t1*b* H0001 /a)* epsilon ^3+(

t2*b* H0001 /a+t0*b*u0* H1001 /a ^2+(1/2) *u0 ^2* H2000 /a ^2+(1/2) *t0 ^2*b^2* H0002 /a^2+ v1*q1/a

-4* H0010 /a+u2*q0/a)* epsilon ^4, Vector ):

2 > collect (XS , epsilon ):

> u0 := 2 -6/ cosh(t)^2:

4 > v0 :=12* tanh(t)/cosh(t)^2:

> u1 :=0:

6 > v1 := -(6/7)*b*sinh(t)/(a*cosh(t))*v0:

> u2 := -(1/49) *( -210* a1*b+18*b ^2+147* d)*sech(t)^2/a^2 -(2/7) *(5* a1*b+7*d)/a^2:

8 > v2 :=((3/7) *b^2/a ^2+(3/2) *d/a ^2 -(5/14) *a1*b/a ^2+( -(9/4) *d/a ^2 -(27/98) *b^2/a^2)/cosh(t)

^2)*v0:

By the following commands we plot the homoclinic orbits, the result is shown in Figure A.1.

> with( plots ):

2 > for i to 10 do

> epsilon :=0.002* i;

4 > P[i] := plot ([ XS [1] , XS [2] ,t= -200..200] , numpoints =1000 , color = black );

> end do:

6 > display (seq(P[i],i =1..10) );

Figure A.1: Homoclinic orbits of (2.75). The Bogdanov-Takens point is (0, 0).
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APPENDIX B

Stability analysis using

MATLAB

This appendix provides a part of the MATLAB codes that were used to study

the monopoly model (6.11).

B.1 Bifurcation diagram Figure 6.1

The first MATLAB function defines the monopoly model

function M= monopoly (x,y, delta )

2 M1=y;

M2=y+ delta *(3.6 -2.4*( x+y) +0.6*( x^2+x*y+y^2) -0.05*(x ^3+x^2*y+x*y^2+y^3));

4

M=[M1 , M2 ];

To obtain Figure (6.1) we use the following commands

1 clc; clear all

3 d =[0:1e -2:4]; n=1 e5; e= sqrt (3) -1e -5; Xu0 =[3+e ,3+e]; Xm0 =[3 ,3]; Xl0 =[3 -e,3-e];

5 for j = 1: size(d ,2)

xu(j ,1)=Xu0 (1); yu(j ,1)=Xu0 (2); xm(j ,1)=Xm0 (1); ym(j ,1)=Xm0 (2);

7 xl(j ,1)=Xl0 (1); yl(j ,1)=Xl0 (2);
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for i = 2:n

9 Xu= monopoly (xu(j,i -1) ,yu(j,i -1) ,d(j)); Xm= monopoly (xm(j,i -1) ,ym(j,i -1) ,d(j));

Xl= monopoly (xl(j,i -1) ,yl(j,i -1) ,d(j));

11 xu(j,i)=Xu (1); yu(j,i)=Xu (2); xm(j,i)=Xm (1); ym(j,i)=Xm (2); xl(j,i)=Xl (1); yl(j,

i)=Xl (2);

end

13 end

hold on

15 plot(d(: ,:) ,xu (: ,(n -200) :n),’.b’,’MarkerSize ’ ,5);

plot(d(: ,:) ,xm (: ,(n -200) :n),’.g’,’MarkerSize ’ ,5);

17 plot(d(: ,:) ,xl (: ,(n -200) :n),’.r’,’MarkerSize ’ ,5);

axis ([0 4 0 6])

19 %set(gcf ,’Units ’,’inches ’); screenposition = get(gcf ,’ Position ’);

%set(gcf ,’ PaperPositionMode ’,’Auto ’,’ PaperUnits ’,’Inches ’,’ PaperSize ’,[ screenposition

(3:4) ])

B.2 Largest Lyapunov exponent (method: I)

2 clc; clear all

format long

4 %

X0 =[3+ sqrt (3) -1e -5 ,3+ sqrt (3) -1e -5];

6 delta =[1.7:0.01:4]; e =0.00001;

phi =0; %phi=pi /2; phi=pi; phi =3* pi /2;

8 %

k =100; N =100000;

10 for l=1: size(delta ,2)

X=X0;

12 for j=1:k

X= monopoly (X(1) ,X(2) ,delta (l));

14 end

Xh =[X(1)+e*cos(phi),X(2)+e*sin(phi)];

16 X= monopoly (X(1) ,X(2) ,delta (l));

Xh= monopoly (Xh (1) ,Xh (2) ,delta (l));

18 d(1)=norm(Xh -X);

for i=1:N

20 Xh =[X(1)+e*( Xh (1) -X(1))/d(i), X(2)+e*( Xh (2) -X(2))/d(i)]; % Renormalization

%

22 X= monopoly (X(1) ,X(2) ,delta (l));

Xh= monopoly (Xh (1) ,Xh (2) ,delta (l));

24 d(i+1)=norm(X-Xh);

end

26 %The greatest Lyapunov exponent

L0(l)=1/(N+1)*sum(log(d/e));

28 end

Lyapunov = [ delta ;L0 ];

30 %

hold on

32 plot( Lyapunov (1 ,:) ,Lyapunov (2 ,:) ,’-b’,’LineWidth ’ ,1.2);

line ([0 4], [0 0]);

34 % __________________________________________________________________________
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B.3 Largest Lyapunov exponent (method: II)

The first function defines the Jacobian matrix of the monopoly model.

function Mjac=Mjac(x,y, delta )

2 fx =0; fy =1;

gx =0+ delta *( -2.4+0.6*(2* x+y) -0.05*(3* x ^2+2* x*y+y^2) );

4 gy =1+ delta *( -2.4+0.6*( x+2*y) -0.05*(x ^2+2* x*y+3*y^2) );

Mjac =[fx ,fy; gx ,gy ];

The largest Lyapunov exponents can be computed by running the following commands

1

clc; clear all

3

X0 =[3+ sqrt (3) -1e -5 ,3+ sqrt (3) -1e -5];

5 delta = [0.01:0.01:4];

k =100;

7 N = 10000;

%

9 for j = 1: size(delta ,2)

X=X0;

11 for l=1:k

X= monopoly (X(1) ,X(2) ,delta (j));

13 end

phi= angle ( complex (X(1) ,X(2)));

15 for i = 1:N

J=Mjac(X(1) ,X(2) ,delta (j));

17 Dir =[ cos(phi);sin(phi)];

E=J*Dir;

19 d=norm(E);

s(i)=log(d);

21 T2(i,j)=sum(s)/i;

T1(i)=i;

23 % Renormalization

X= monopoly (X(1) ,X(2) ,delta (j));

25 phi= angle ( complex (E(1)/d,E(2)/d));

end

27 %The greatest Lyapunov exponent

lya(j) = sum(s)/N;

29 end

% __________________________________________________________________________

31 Lyapunov = [ delta ;lya ];

%

33 hold on

line ([0 4], [0 0]);

35 plot( Lyapunov (1 ,:) ,Lyapunov (2 ,:) ,’-b’,’LineWidth ’ ,2);
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Het onderwerp van deze thesis is de bifurcatieanalyse van dynamische systemen, d.w.z.

stelsels van gewone differentiaalvergelijkingen en geïtereerde afbeeldingen. Een hoofddoel-

stelling is de studie van de tak van homoclinische oplossingen die zijn oorsprong vindt in een

generiek Bogdanov-Takens punt. Het probleem van de benadering van deze tak werd reeds

intensief bestudeerd in de literatuur maar tot nog toe werd geen exacte oplossing gevon-

den, noch een hogere-orde benadering. Wij gebruiken de klassieke “blow-up” techniek om

een gepaste normaalvorm in de buurt van een Bogdanov-Takens punt te herleiden tot een

geperturbeerd Hamiltoniaans systeem. Met een reguliere perturbatiemethode en een veral-

gemening van de Lindstedt-Poincaré methode bekomen we twee expliciete derde-orde correc-

ties van de niet-geperturbeerde homoclinische baan en parameterwaarde. We tonen aan dat

beide methoden leiden tot dezelfde homoclinische parameterwaarde als de klassieke Melnikov

methode en de vertakkingsmethode. We tonen ook aan dat de reguliere perturbatiemethode

leidt tot een “parasitische kering” nabij het zadelpunt terwijl de Lindstedt-Poincaré oplos-

sing dit merkwaardige verschijnsel niet vertoont. Dit maakt de Lindstedt-Poincaré methode

beter geschikt voor numerieke implementatie. Om de normaalvorm in de centrale variëteit
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te bekomen, gebruiken we de standaard parameter-afhankelijke reductie gecombineerd met

een normalizatie, waarbij de Fredholm oplosbaarheid van de homologische vergelijking geëist

wordt. Door het systematisch oplossen van alle lineaire stelsels die verschijnen in de Tay-

lorontwikkeling van de homologische vergelijking corrigeren we een dubbelzinnigheid (fout)

in de transformatie van de parameters die standaard voorkomt in de bestaande literatuur.

We gebruiken verder de generieke homoclinische predictors om expliciet de homoclinische

oplossingen in het kinetische Gray-Scott model te bekomen. We bespreken ook de imple-

mentatie van beide predictors in de Matlab continuatiesoftware MatCont en hun gebruik in

vijf numerieke voorbeelden. Aansluitend hierop tonen we aan hoe de bekomen homoclinische

predictors voor generieke differentiaalvergelijkingen gebruikt kunnen worden om de takken

van homoclinische tangencies te continueren in de Bogdanov-Takens afbeelding.

In een tweede, korter deel van de thesis passen we bifurcatietheorie toe op het analyzeren

van het dynamisch periodiek en chaotisch gedrag van een niet-lineair economisch model. Het

gaat om een model voor een monopoliesituatie met kubische prijsfunctie en kwadratische

marginale kostfunctie. We stellen fundamentele correcties voor aan vroegere studies van dit

model en geven een volledige analytische beschrijving van alle cykels met periode 4. Met een

numerieke continuatiemethode berekenen we takken van cykels met periode 5, 10, 13, 17 en

bepalen de stabiliteitsgebieden van deze cykels.We tonen ook aan dat de 4-cykels weliswaar

stabiel zijn in een groot parameterdomein maar nooit lineair asymptotisch stabiel. We ge-

bruiken verder een niet-lineair criterium voor stabiliteit, analyse van het attractiedomein en

simulatie om het exacte stabiliteitsgebied van de 4-cykels te bepalen. We corrigeren hiermee

de incorrecte stabiliteitsanalyse in de literatuur die gebaseerd is op een (verkeerde) lineaire

analyse van de stabiliteit. De berekening van de Lyapunov exponent bevestigt de bekomen

resultaten.

De inhoud van deze thesis werd reeds gepubliceerd of is nu aangeboden voor publicatie, zie

[2], [3], [107], [92] en [91].
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