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1. Introduction

Consider a system of differential equations depending on two
parameters

ẋ = f (x, α), (x, α) ∈ Rn × R2, (1)

where f is smooth. In general, there are bifurcation curves in the
α-plane, at which the system exhibits codim 1 bifurcations, for
example, fold orHopf bifurcations of equilibriumpoints.Moreover,
generically, one expects points of codim 2 bifurcations, where
several curves corresponding to codim 1 bifurcations intersect
transversally or tangentially. A codim 2 point is of particular
interest if it is not only the origin of some equilibrium bifurcation
curves but also of some curves corresponding to bifurcations of
periodic orbits (cycles). Such points can be detected by purely local
analysis of equilibria and then be used to establish the existence
of limit cycle bifurcations and other global phenomena that could
hardly be proved otherwise. That is why codim 2 points are often
called the ‘‘organizing centers’’ in applied literature.
The theory of codim 2 bifurcations of equilibria in generic

systems (1) is well developed (see, for example, [1,11,17]). There
are five well-known codim 2 equilibrium bifurcations: cusp (CP),
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Bautin (generalizedHopf,GH), double zero (Bogdanov-Takens,BT),
zero-Hopf (ZH), anddoubleHopf (HH). It follows from their analysis
that branches of nonhyperbolic limit cycles can emanate from GH,
ZH and HH points only. More precisely, a codim 1 bifurcation curve
LPC, alongwhich a cycle with a nontrivial multiplierµ1 = 1 exists,
emanates from a generic GH point, while codim 1 bifurcation
curves NS, along which a cycle with a pair of multipliers µ1,2 =
e±iθ exists, are rooted at generic ZH and HH points. Notice that NS
is used to denote both Neimark–Sacker and neutral saddle cycles
whereµ1µ2 = 1 and that no period-doubling curves can emanate
from generic codim 2 equilibrium bifurcations.
Obviously, the application of these theoretical results to

realistic models (1) is impossible without numerical tools. The
numerical analysis of a codim 2 equilibrium bifurcation includes:

• detection and location of the point along a branch of a codim 1
bifurcation;
• computation of the coefficients of the normal form of the
restriction of (1) to the critical centermanifold at the bifurcation
parameter values and checking the nondegeneracy conditions;
• verification of the transversality of the given family (1)
to the codim 2 bifurcation manifold and establishing a
correspondence between the unfolding parameters of the
normal form and original system parameters α;
• computing accurate approximations of the codim 1 curves
in the α-space and the corresponding singular orbits in
the x-space near the bifurcation, sufficient to initialize the

0167-2789/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
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numerical continuation of these codim 1 curves using only local
information available at the codim 2 point.

While the first two problems were studied in detail (see [3]
and references therein) and have been implemented into the
standard bifurcation software content [19] and matcont [6], the
two last issues received much less attention in the numerical
analysis literature in the case of bifurcations of nonhyperbolic
cycles. The present paper is aimed at bridging this gap by providing
full algorithmic details on switching to all possible codim 1 cycle
bifurcations from generic GH, ZH and HH codim 2 points.
One way to set up a computational switching procedure is

to consider a smooth normal form for the codim 2 bifurcation
including the parameters β ∈ R2

ẇ = G(w, β), G : Rnc × R2 → Rnc . (2)

For all codim 2 equilibrium bifurcations these normal forms are
known. Suppose that an exact or approximate formula is available
that gives the emanating codim 1 bifurcations for the normal form
(2). In order to transfer this to the original equation (1) we need a
relation

α = V (β), V : R2 → R2, (3)

between the unfolding parameters β and the given parameters α.
In our context, V will be linearly approximated.Moreover, we need
a center manifold parametrization

x = H(w, β), H : Rnc × R2 → Rn, (4)

that incorporates β . Taking (3) and (4) together, the invariance
condition for the parameter-dependent centermanifold in theODE
(1) can be written as a homological equation:

Hw(w, β)G(w, β) = f (H(w, β), V (β)), (5)

which we can solve by a recursive procedure based on Fredholm’s
solvability condition that will give the Taylor coefficients of G, H
with respect to w and β and V w.r.t. to β . We assume that G is
normalized, i.e. the zero coefficients in the Taylor series of G are
known in the expansion

G(w, β) =
∑

|ν|+|µ|≥1

1
ν!µ!

gνµwνβµ,

while the Taylor series of H and V are unknown

H(w, β) =
∑

|ν|+|µ|≥1

1
ν!µ!

hνµwνβµ, V (β) =
∑
|µ|≥1

1
µ!
vµβ

µ.

Here ν and µ are multi-indices. Substituting these series in (5)
and collecting coefficients of the wνβµ-terms, we obtain linear
systems, all of which must be solvable due to the existence of
the center manifold. Fredholm’s solvability condition for singular
systems gives then expressions for gνµ and vµ in terms of the
Taylor coefficients of f (x, α). For µ = 0 this reproduces the
critical normal form coefficients first computed in [16], while the
coefficientswith |µ| ≥ 1 yield the necessary data on the parameter
dependence.
To summarize, a bifurcation point is detected within a certain

small tolerance. As the prediction depends on the initial point, this
translates into small errors of the predicted curve. If we start close
enough to the actual new curve, any pointwill converge to it and in
general one expects a convergence cone [14]. If we parametrize the
predicted curve by ε, the initial amplitude ε is to be chosen within
the convergence cone, see also Fig. 1.
This procedure is adopted from [3], where it has been applied to

the derivation of the asymptotics of the fold andHopf curves rooted
at CP and BT codim 2 points, as well as that for a homoclinic orbit
to a saddle emanating from the BT-point. Recently, this technique

Fig. 1. Sketch of the switch in the case of a GH bifurcation. A predicted point along
P(ε) in the cone (a) will converge to the LPC-curve, outside (b) it will not.

has been successfully used for switching at codim 2 fixed points of
maps to the continuation of nonhyperbolic periodic orbits rooted
there [15]. Note that a similar procedure was suggested in [12],
without using the Fredholm condition, and carried through in the
ZH-case in [13], where, however, no asymptotics of codim 1 curves
were derived. Finally, we point out that the problem of switching
to the LPC-curve at the GH bifurcation has been briefly discussed
in [3] in a setting without the Taylor expansion in β .
The paper is organized as follows. In Section 2 we recall smooth

parameter-dependent normal forms on center manifolds for the
GH, ZH and HH cases, and give the asymptotic expressions of the
branches of nonhyperbolic cycles in these normal forms. Then
we carry out the reduction procedure described above and derive
the necessary coefficients gνµ, hνµ and vµ in terms of f and its
derivatives. These coefficients are finally used to set up predictors
for these branches in the original system (1). An implementation
of the resulting formulas in the software matcont is discussed
at the end of this section. Section 3 presents several applications
of the technique developed in this paper to known ODE models,
an extension of the Lorenz-84 system and a laser model, where
we compare the asymptotic formulas for the cycle bifurcations
with numerically computed LPC- and NS-branches. A discussion
of existing results and open problems in switching to homoclinic
branches at ZH and HH bifurcations is given in Section 4.

2. Asymptotics and the center manifold

2.1. The ‘new’ curves

The parameter-dependent normal forms are known and can be
found in the standard texts, e.g. [17]. As the normal form and the
asymptotic expressions are the necessary theoretical ingredient,
we present these here.

2.1.1. Generalized Hopf
Near a GH bifurcation the vector field restricted to the center

manifold is given by

ẇ = λ(β)w + c1(β)w|w|2 + c2(β2)w|w|4

+O(|w|6), w ∈ C, (6)

where λ(0) = iω, and this bifurcation is characterized by d1 =
R(c1(0)) = 0 and d2 = R(c2(0)) 6= 0. A curve LPC of fold
bifurcation of limit cycles emanates from this point. Let us write
w = ρeiψ , and, in particular,

λ(β) = iω + β1 + ib1(β)+ O(|β|2),

R(c1(β)) = β2 + O(|β|2),
(7)

where b1 is a real function with b1(0) = 0. To obtain the
approximation to the LPC-curve, write (6) in polar coordinates
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and truncate the sixth-order terms. Then the ρ̇-equation decouples
and a double equilibrium of this equation corresponds to the LPC-
curve. The result is

ρ = ε, β1 = d2ε4, β2 = −2d2ε2. (8)

2.1.2. Zero-Hopf
Near a ZH bifurcation the vector field restricted to the center

manifold is given by(
ẋ
ẇ

)
=

(
β1 + f200x2 + f011|w|2 + f300x3 + f111x|w|2

(iω(β)+ β2)w + g110xw + g210x2w + g021w|w|2

)
+O(‖(x, w)‖4), (9)

where (x, w) ∈ R×C. An extraNeimark–Sacker (torus) bifurcation
of limit cycles (NS) occurs ifR(g110)f011 < 0.
Using polar coordinates forw as for theGH-case and truncating

fourth-order terms, the NS-curve is found as an equilibrium of
the (ẋ, ρ̇)-system together with the trace of the corresponding
Jacobian, i.e. the Hopf condition for the amplitude system. The
asymptotic expression is

ρ = ε, x = −
f111 + 2g021
2f200

ε2, β1 = −f011ε2,

β2 =
2(R(g110)− f200)R(g021)+R(g110)f111

2f200
ε2.

(10)

This agrees with a formula given in [7].

2.1.3. Double-Hopf
For a HH bifurcation the dynamics on the center manifold is

governed by the following normal form:(
ẇ1
ẇ2

)
=

(
(iω1(β)+ β1)w1 + f2100w1|w1|2 + f1011w1|w2|2

(iω2(β)+ β2)w2 + g1110w2|w1|2 + g0021w2|w2|2

)
+O(‖(w1, w2)‖

4), (11)

where (w1, w2) ∈ C×C. There are generically two half-lines along
which there is a NS bifurcation of limit cycles. Rewriting (11) in
polar coordinates w1 = ρ1eiψ1 , w2 = ρ2eiψ2 , the two ρ̇-equations
decouple. With the fourth-order terms truncated, the asymptotics
for the NS-curves are approximated by transcritical bifurcations
of trivial equilibria of the reduced system (with either ρ1 or ρ2
equal to zero), which is equivalent to a vanishing determinant of
the corresponding Jacobian. Their asymptotics are given as

(ρ1, ρ2, β1, β2) =
(
ε, 0,−R(f2100)ε2,−R(g1110)ε2

)
, (12)

(ρ1, ρ2, β1, β2) =
(
0, ε,−R(f1011)ε2,−R(g0021)ε2

)
. (13)

2.2. Coefficients of parameter-dependent center manifolds

We can assume that the codim 2 point is x0 = 0 and α0 = 0.
The homological equation (5) results in a formal power series,
the coefficients of which should be zero, leading to a recursive
procedure. This also requires the Taylor expansion of the right-
hand side of (1)

f (x, α) = Ax+
1
2
B(x, x)+

1
6
C(x, x, x)+

1
24
D(x, x, x, x)

+ J1α + A1(x, α)+
1
2
B1(x, x, α)+

1
6
C1(x, x, x, α)+ · · · , (14)

where A is the Jacobian of f w.r.t. to x and we have defined

B(u, v) =
n∑
i,j=1

∂2f (x0, α0)
∂xi∂xj

uivj,

C(u, v, w) =
n∑

i,j,k=1

∂3f (x0, α0)
∂xi∂xj∂xk

uivjwk,

J1u =
2∑
i=1

∂ f (x0, α0)
∂αi

ui,

A1(u, v) =
n∑
i=1

2∑
j=1

∂2f (x0, α0)
∂xi∂αj

uivj,

and similarly D, B1 and C1.
We assume that the critical normal form coefficients are known

(see [16,3]) and give here only parameter-related coefficients hνµ
from the homological equation. These provide in each case a linear
approximation to the parameter transformation (3).

2.2.1. Generalized Hopf
Here we closely follow the idea outlined in [3]. We first expand

the eigenvalue and the first Lyapunov coefficient in the original
parameters α

λ(α) = iω + γ1,10α1 + γ1,01α2 + · · · ,
c1(α) = =(c1(0))+ γ2,10α1 + γ2,01α2 + · · · ,

i.e. we assume α = β and insert this into the normal form (6).
We then collect the equations to obtain the transformation to the
unfolding parameters β . Below we have µ = (10), (01) as indices
and v10 = (1, 0), v01 = (0, 1) as vectors.
The first equation in the homological equation comes from the

coefficient of the w-term, i.e. ν = (10) and µ = (00), and gives
the (eigenvalue) equation

(A− iωIn)h1000 = 0.

In what follows we write q = h1000. The ν = (01) and µ = (00)
coefficient is the complex conjugated version and will be omitted
as it does not provide new information. To impose the Fredholm
solvability condition we need the adjoint eigenvector p defined by
(A+ iωIn)Tp = 0. We also normalize so that q̄Tq = p̄Tq = 1.
The formula for the Lyapunov coefficient c1 on the center

manifold is derived from the terms in (5) with µ = (00) and
ν = (20), (11), (21), see [17]. These are

(A− 2iωIn)h2000 = −B(q, q), (15a)
Ah1100 = −B(q, q̄), (15b)

(A− iωIn)h2100 = 2c1q− (C(q, q, q̄)+ 2B(h1100, q)
+ B(h2000, q̄)). (15c)

Now (15a) and (15b) are non-singular and one can easily obtain
h2000 and h1100. The matrix in (15c) is singular so that imposing
Fredholm’s solvability condition leads to the following compact
formula for the first Lyapunov coefficient

c1 =
1
2
p̄T (C(q, q, q̄)+ 2B(h1100, q)+ B(h2000, q̄)) . (16)

Considering ν = (00) and ν = (10), i.e. the β1, β2, β1w
and β2w terms, the first parameter-dependent equations (actually
four) coming from (5) are

Ah00µ =−J1vµ,
(A− iωIn)h10µ = γ1,µq− A1(q, vµ)− B(q, h00µ).

(17)

The first equation is non-singular, so we set h00µ = A−1J1vµ. From
the second we find the two γ1,µ using the Fredholm alternative

γ1,µ = p̄T
(
A1(q, vµ)− B(q, A−1J1vµ)

)
. (18)
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The vectors h10µ will be needed and can be obtained using a
bordered matrix approach, see [10],(
A− iωIn q
p̄T 0

)(
h10µ
0

)
=

(
γ1,µq− A1(q, vµ)− B(q, h00µ)

0

)
.

(19)
The vector h2100 can also be obtained in this way. This choice for
the bordering vectors leads to solutions such that p̄Th10µ = p̄Th2100
= 0.
The higher-order parameter-dependent equations from (5)

originate from the terms with µ = (10), (01) and ν = (20), (11),
(21):
(A− 2iωIn)h20µ = 2h2000γ1,µ −

[
C(q, q, h00µ)+ 2B(q, h10µ)

+ B(h2000, h00µ)+ B1(q, q, vµ)+ A1(h2000, vµ)
]
, (20a)

Ah11µ = 2R(γ1,µ)h1100 −
[
C(q, q̄, h00µ)+ B(h1100, h00µ)

+ B(q̄, h10µ)+ B(q, h01µ)+ B1(q, q̄, vµ)+ A1(h1100, vµ)
]
,(20b)

(A− iωIn)h21µ = 2γ2,µq+ h2100(2γ1,µ + γ̄1,µ)+ 2h10µc1
−
[
D(q, q, q̄, h00µ)+ 2C(q, h1100, h00µ)+ 2C(q, q̄, h10µ)

+ C(q, q, h01µ)+ C(h2000, q̄, h00µ)+ 2B(q, h11µ)
+ 2B(h1100, h10µ)+ B(h2000, h01µ)+ B(h2100, h00µ)
+ B(h20µ, q̄)+ C1(q, q, q̄, vµ)+ 2B1(h1100, q, vµ)

+ B1(h2000, q̄, vµ)+ A1(h2100, vµ)
]
. (20c)

Now, as before, (20a) and (20b) are non-singular sowe can solve
these to get h20µ and h11µ. With the Fredholm alternative we find

γ2,µ =
1
2
p̄T
[
D(q, q, q̄, h00µ)+ 2C(q, h1100, h00µ)

+ 2C(q, q̄, h10µ)+ C(q, q, h01µ)+ C(h2000, q̄, h00µ)
+ 2B(q, h11µ)+ 2B(h1100, h10µ)+ B(h2000, h01µ)
+ B(h2100, h00µ)+ B(h20µ, q̄)+ C1(q, q, q̄, vµ)

+ 2B1(h1100, q, vµ)+ B1(h2000, q̄, vµ)+ A1(h2100, vµ)
]
. (21)

The parameter transformation (3) to get to the form (7) is given
by

α =

(
R

(
γ1,10 γ1,01
γ2,10 γ2,01

))−1
β. (22)

A careful inspection shows that every term in (21) is obtained
by differentiating the corresponding one in (16) to a parameter. So
essentially, we get a Taylor expansion of the Lyapunov coefficient.
As an alternative computational scheme, one can normalize
immediately in (17). This results in an orthogonal frame for
the parameter transformation, i.e. along the Hopf curve and
perpendicularly. Then the higher-order equations (20) should be
considered for these orthogonal vectors to obtain linear scalings
for the correct parameter transformation. We will use this scheme
for the next case.

2.2.2. Zero-Hopf
This case is also treated in [13], however with only one param-

eter and for hyperbolic periodic orbits. Thus our computational
scheme is different. We introduce the eigenvectors
Aq1 = ATp1 = 0 and Aq2 = iωq2, ATp2 = −iωp2,
normalized so that q̄Ti qi = p̄

T
i qi = 1 for i = 1, 2. We list only the

necessary equations:
A[h00010, h00001] = [q1, 0] − J1[v10, v01], (23a)

A[h10010, h10001] = [h20000, 0] − A1(q1, [v10, v01])
− B(q1, [h00010, h00001]), (23b)

(A− iωIn)[h01010, h01001] = [h11000, q2] − A1(q2, [v10, v01])
− B(q2, [h00010, h00001]). (23c)

In contrast to the other cases, GH and HH, here the first system is
already singular. Taking the inner-product with the adjoint null-
vector we obtain the new orthogonal frame (s1, s2)

γ = (γ1, γ2) = pT1 J1, sT1 = γ /‖γ ‖
2, sT2 = (−γ2, γ1),

v10 = s1 + δ1s2, v01 = δ2s2.
(24)

Polynomial terms in the normal form (9) like β1x are also resonant,
but they can be eliminated by hypernormalization. After solving
(23a) with a bordered matrix, still a multiple of q1 may be added
to h00010 and h00001. We use this to perform hypernormalization. If
we write

r1 = −AINV
(
q1 − J1s1
0

)
, r2 = −AINV

(
−J1s2
0

)
,

where AINV indicates the use of a bordered matrix (using the
vectors q1 and p1), then we have

h00010 = r1 + δ1r2 + δ3q1, h00001 = δ2r2 + δ4q1,

for some δ’s. Then by applying the Fredholm alternative to (23b)
and (23c) we can solve for all δ’s at once

LL
(
δ1
δ3

)
=−

(
〈p1, A1(q1, r1)+ B(q1, r1)〉
〈p2, A1(q2, r1)+ B(q2, r1)〉

)
,

R(LL)
(
δ2
δ4

)
=

(
0
1

)
,

(25)

where

LL =
(
〈p1, A1(q1, r2)+ B(q1, r2)〉 2f200
〈p2, A1(q2, r2)+ B(q2, r2)〉 g110

)
.

In particular, this also defines the parameter transformation (3).

2.2.3. Double Hopf
Although high-dimensional, this case can be treated in a

relatively simple manner. We introduce the eigenvectors

Aqi = iωqi, ATpi = −iωpi,

normalized so that q̄Ti qi = p̄
T
i qi = 1 for i = 1, 2.

Using the same notation as for the generalizedHopf from (5)we
get

Ah0000µ =−J1vµ,
(A− iω1In)h1000µ = γ1,µq1 − A1(q1, vµ)− B(q1, h0000µ),
(A− iω2In)h0010µ = γ2,µq2 − A1(q2, vµ)− B(q2, h0000µ).

(26)

As the first equation is non-singular, formal substitution of h000010
and h000001 and the Fredholm alternative leads to the same
transformation (22) from the unfolding to the system parameters.

2.3. Implementation of the predictors

We have implemented our switching routines in matcont [6].
For the continuation of LPC and NS curves it uses a minimally
augmented defining system [18], i.e. we need to supply an
approximation of the limit cycle, the period, the parameters and,
if necessary, the multiplier. The parameters follow from applying
the inverse transformation to (3). There is always one dynamic
variableψ giving a free phase shift along the bifurcating limit cycle
with a period 2π

ω1(ε)
. For the initial cycle we make an equidistant

mesh ψ = 2nπ/mN, n = 0 . . .mN where N + 1 is the number of
mesh points and m the number of collocation points. Let q denote
the eigenvector corresponding to the eigenvalue iω1, then points
on the limit cycle are given by x0 + ε(qeiψ + q̄e−iψ ). Similarly,
terms as ε2h20e2iψ and ε2h0010 are included. An internal routine
of matcont then adapts this limit cycle on each mesh interval
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Fig. 2. Bifurcation diagram of the Extended Lorenz-84 model. Labels are as in the text except LP Limit Point and H Hopf. Dashed lines show the predicted new curves; (a)
Zoom near the GH point, (b) Zoom near the HH point. On the lower NS curve two codim 2 bifurcations of cycles are detected: CH Chenciner bifurcation, R2 1:2 Resonance.

from an equidistantmesh to amesh defined at the non-equidistant
collocation points.
For the NS curves the system is augmented with the real part k

of the multiplier. In this case the normal forms (9), (11) also define
a second rotationwith frequencyω2(ε) andwe have themultiplier
k = cos

(
2πω2(ε)
ω1(ε)

)
.

matcont uses Moore–Penrose continuation for which also a
tangent vector to the bifurcation curve is needed. This tangent vec-
tor is easily obtained by differentiating the predictor w.r.t. ε.
Below we list some case-specific details.

2.3.1. Generalized Hopf
The period is given by T = 2π/ω+(2d2b1,2−=(c1(0)))ε2, with

b1,2 =
∂b1
∂β2
. The parameters are given by α = α0 + V (0,−2d2ε2)T .

The cycle is approximated by

x0 + ε(qeiψ + q̄e−iψ )+ ε2(h2000e2iψ + h0200e−2iψ

+ h1100 − 2d2(h0010V12 + h0001V22)).

Note that for a ε4-approximation also seventh-order derivatives
would be needed; this follows fromRemark 3.3.2 in [21]. Therefore
we restrict to O(ε3) in the implementation.

2.3.2. Zero-Hopf
The cycle is approximated by

x0 + ε(q2eiψ + q̄2e−iψ )+ ε2(h02000e2iψ + h00200e−2iψ + h01100)
+β1h00010 + β2h00010 + xq1,

where x, β1, β2 are as in (10). In the continuation we also need to
provide the period and themultiplier. Approximating formulas are
defined as follows

T = 2π/ω(0)− ε2(ω1β1 + ω2β2 + =(g110)x− =(g021)),
k = 1− (4πR(g110)f011)(ε/ω0)2.

(27)

2.3.3. Double Hopf
On the first branch the cycle is approximated by

x0 + ε(q1eiψ + q̄1e−iψ )+ ε2(h200000e2iψ + h020000e−2iψ

+ h110000 + A−1J1VR(f2100, g1110)T ).

Approximating formulas for the period and the multiplier on the
first branch are given by

T =
2π

ω1 + dω1ε2
, k = cos(T (ω2 + dω2ε2)),

(dω1, dω2) = −=(γ1γ2)T (R(γ1γ2)T )−1

×R(f2100, g1110)T + =(f2100, g1110)

(28)

and similarly for the other branch.

3. Examples

3.1. New curves in an extension of the Lorenz-84 model

The first example is an extended version of the Lorenz-84
model. A bifurcation analysis of this model was presented in
[22,23]. In this system X models the intensity of a baroclinic wave
and Y and Z the sine and cosine coefficients of the wave. This
model may be extended with a variable U to study the influence
of external parameters such as temperature, and the model then
shows several limit cycle bifurcations [20]. It has the form:
Ẋ = −Y 2 − Z2 − αX + αF − γU2,
Ẏ = XY − βXZ − Y + G,
Ż = βXY + XZ − Z,
U̇ = −δU + γUX + T .

(29)

The parameters F and T are varied while we fix α = .25, β =
1,G = .25, δ = 1.04, γ = .987. The bifurcation diagram displays
one fold bifurcation and twoHopf bifurcation curves, see Fig. 2.We
find all codim 2 points of equilibria, in particular, GH, ZH and HH,
see Table 1.
We have applied our switching routines to all three emanating

curves, since the NS bifurcation from ZH is a neutral saddle. The
predictions in parameter space are shown in Fig. 2 next to the
numerically continued curves. The predicted points were used as a
starting point for the continuation of these limit cycle bifurcations,
which shows that our approach works. Another numerical check
is provided by inspecting the tangent vector, which we provide
together with a first point. When we find a second point on the
curve by continuation and adapt the defining system, we will
obtain amore precise tangent vector. For a small continuation step,
this tangent vector and the predicted one should be close. Indeed,
for the examples reported here, the first digits always coincided.
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Fig. 3. Error measures: (a) The residual R of the first Newton-step. (b) The distance d between the predicted and the first corrected point. In this computation, we left out the
tangent vector in the continuation. matcont then tries to correct the first point immediately instead of starting the continuation. We have taken 20 mesh and 4 collocation
points and ε ∈ [10−9, .2]. The points shown correspond to a choice for ε where the predicted point converged to the codim 1 curve. Lines correspond to bifurcation curves
in Fig. 2 as follows: LPC solid, lower NS dashed, upper NS dotted.

Table 1
Parameter values of F and T at the bifurcation points in Fig. 2 together with normal coefficients (scaled, see [17])

Label F T Normal form coefficients

GH 2.3763601 .050197432 d2 = 0.1558012
HH 2.5332211 .026273943 p11p22 = −1, θ = −3.648550, δ = −1.052987

Θ = 1230.630,∆ = −210.861
ZH 1.2834193 .000126541 s = 1, θ = 0.3715145, E = −1

Finally we present some measure of the error of the switching
routines as a function of the initial amplitude ε, see Fig. 3 and its
caption. Interestingly, this figure represents the idea of Fig. 1. Using
a small initial amplitude ε may not work due to a numerical error
in the calculated codim 2 point. On the other hand ε must not be
taken too large for the approximation to remain valid.

3.2. Switching in a Laser model

In [24] a single-mode inversionless laser with a three-level
phaser was studied and shown to operate in various modes.
These modes are ‘‘off’’ (non-lasing), continuous waves, periodic,
quasi-periodic and chaotic lasing. In particular, the boundary of
the region of chaos seems to be defined by several limit cycle
bifurcations born from several codim 2 equilibrium bifurcations.
Here we start such boundary computations using our routines
without first doing simulations and limit cycle continuations in this
9-dimensional system.
The model is a 9-dimensional system given by 3 real and 3

complex equations:

Ω̇l =−
γcav

2
Ωl − g=(σab),

ρ̇aa = Ra −
i
2
(Ωl(σab − σ

∗

ab)+Ωp(σac − σ
∗

ac)),

ρ̇bb = Rb +
i
2
Ωl(σab − σ

∗

ab),

σ̇ab =−(γ1 + i∆l)σab −
i
2
(Ωl(ρaa − ρbb)−Ωpσcb),

σ̇ac =−(γ2 + i∆p)σac −
i
2
(Ωp(2ρaa + ρbb − 1)−Ωlσ ∗cb),

σ̇cb =−(γ3 + i(∆l −∆p))σcb −
i
2
(Ωlσ

∗

ac −Ωpσab),

(30)

with Ra = −.505ρaa− .405ρbb+ .45, Rb = .0495ρaa− .0505ρbb+
.0055 and ∆l := ∆cav + gR(σab)/Ωl. The parameters are fixed at

Fig. 4. Partial bifurcation diagram of the inversionless laser. Hopf curves (denoted
byH) are dotted,while LPC andNS curves are solid. Dashed lines show the predicted
approximations to the new curves.

γ1 = .05, γ2 = .25525, γ3 = .25025, γcav = .03, g = 100,∆p =
0 while ∆cav and Ωp are varied to study several detuning effects.
For more details, see [24].
We have reproduced a part from the bifurcation diagram

which corresponds to continuous wave and periodically pulsating
solutions, i.e. with Ωl 6= 0, see Fig. 4. As the system has Z2-
symmetry the same bifurcations are found for∆cav → −∆cav . For
clarity of the figure we do not display these here.We list the codim
2 points in Table 2. The normal form coefficients of HH1 confirm
the claim of [24] that themost complicated type was encountered;
only the 3-torus is stable. This is also confirmedwhenwe continue
the Neimark–Sacker bifurcations. For HH2 the NS curves are not in
the same quadrant defined by the Hopf curves, while they are for
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Table 2
Parameter values ofΩp and∆cav at the codim 2 points together with normal coefficients (scaled, see [17])

Label Ωp ∆cav Normal form coefficients

GH1 7.228819 5.511455 d2 = −46.49852
GH2 5.021574 1.446387 d2 = 3.813132
GH3 4.824066 1.059367 d2 = 195.1119
GH4 3.312120 −3.273568 d2 = −6.468468
HH1 5.087299 −1.2362053 p11p22 = −1, θ = −.07194543, δ = −13.91412

Θ = .9595389,∆ = −2602.275
HH2 3.555848 −1.983857 p11p22 = 1, θ = −.1179924, δ = −26.59452

Θ = −10.81042,∆ = −2713.608

Fig. 5. Error measures along the eight curves: 10 log of the distance between the predicted and the first corrected point versus 10 log(ε). (a) Along the Neimark–Sacker
curves, (b) Along the LPC curves. This figure again resembles the idea of Fig. 1.

HH1. All cycle bifurcations where computed with 20 mesh points
and 4 collocation points and the initial amplitude was set to ε =
.001, which worked immediately in all cases. The error measures
are shown in Fig. 5 showing similar behaviour as Fig. 3(b). We
remark that one LPC curve connects GH2 and GH3 points and stays
close to theHopf curve. Similarly, aNS curve starts atHH1, becomes
neutral between two1:2 resonances and ends atHH2. Itwould have
taken much more effort to find this feature otherwise.

4. Discussion

This paper contributes to the bifurcation analysis of codim 2
bifurcations of equilibria in multidimensional ODEs by providing
explicit predictors for branches of nonhyperbolic cycles emanating
from these bifurcations. We have tested it on several examples
with good results. We believe that this work will further facilitate
automated analysis of nonlinear systems. However, we like to
mention that we also tried the double Hopf point in a model for
the lateral pyloric neuron [8,9]. Although we were able to switch
to one branch and continue it without any problem, the Jacobian
of the defining system along the second branch was numerically
singular. In this model withmultiple time scales probably a special
numerical scheme is necessary.
It is well known that branches of orbits homoclinic to

hyperbolic equilibria are also rooted at BT, ZH and HH codim 2
bifurcation points. The BT case has been treated in [2] (see also
[3], where the computational setting is closest to the present
paper). The corresponding predictor for the homoclinic branch is
implemented in matcont. The problem of providing predictors
for homoclinic branches rooted at ZH and HH points is more
challenging. Some important results in this direction are obtained
in [4,7,5], where the systems reduced to the center manifold
were considered. However, a complete set of formulas suitable for
switching to homoclinic curves in these cases is still not available.
For instance, in theZH case thenormal form (9) exhibits homoclinic

bifurcations of saddle-focus equilibria in theparameter plane along
a bifurcation curve with the linear approximation

β2,hom =
R(g110)β1

f200(2f200 − 3R(g110))

[
R(g210)−

3R(g110)
2f200

f300

+
(f200 −R(g110))

f011
f111 −

2(f200 −R(g110))2

f011R(g110)
R(g021)

]
,

provided that R(g110)f011 < 0 and R(g110)f200 < 0. Application of
the above reduction to the parameter-dependent center manifolds
in the ZH case yields an approximation to the bifurcation curve in
the parameter plane. Now the challenge is to construct a suitable
initial solution in state space. On this work in progress will be
reported elsewhere.
Another direction for future research is a problem of switching

to secondary cycle bifurcations at codim 2 bifurcations of cycles in
(1). Here a generalization of the periodic normalization technique
from [18] to critical codim 2 cases and its extension to parameter-
dependent systems in the spirit of [15] are required.

Acknowledgement

The authors want to thank S.Wieczorek for suggesting the laser
model and his further assistance with it.

References

[1] V.I. Arnold, Geometrical Methods in the Theory of Ordinary Differential
Equations, Springer-Verlag, New York, Heidelberg, Berlin, 1983.

[2] W.-J. Beyn, Numerical analysis of homoclinic orbits emanating from a Takens-
Bogdanov point, IMA J. Numer. Anal. 14 (1994) 381–410.

[3] W.-J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Yu.A. Kuznetsov, B.
Sandstede, Numerical continuation, and computation of normal forms,
in: B. Fiedler (Ed.), Handbook of Dynamical Systems, vol. 2, Elsevier Science,
Amsterdam, 2002, pp. 149–219.



Author's personal copy

3068 Yu.A. Kuznetsov et al. / Physica D 237 (2008) 3061–3068

[4] H.W. Broer, G. Vegter, Subordinate Šil’nikov bifurcations near some singulari-
ties of vector fields having low codimension, Ergodic Theory Dynam. Systems
4 (1984) 509–525.

[5] A.R. Champneys, V. Kirk, The entwined wiggling of homoclinic curves
emerging from saddle-node/Hopf instabilities, Physica D 195 (2004) 77–105.

[6] A. Dhooge, W. Govaerts, Yu.A. Kuznetsov, matcont:A matlab package for
numerical bifurcation analysis of ODEs, ACM Trans. Math. Software 29 (2003)
141–164.

[7] P. Gaspard, Local birth of homoclinic chaos, Physica D 62 (1993) 94–122.
[8] W. Govaerts, J. Guckenheimer, A. Khibnik, Defining functions formultiple Hopf
bifurcations, SIAM J. Numer. Anal. 34 (3) (1997) 1269–1288.

[9] W. Govaerts, Yu.A. Kuznetsov, B. Sijnave, Numerical methods for the
generalized Hopf bifurcation, SIAM J. Numer. Anal. 38 (1) (2000) 329–346.

[10] W.J.F Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria,
SIAM, Philadelphia, 2000.

[11] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

[12] M. Ipsen, F. Hynne, P.G. Sørensen, Systematic derivation of amplitude
equations and normal forms for dynamical systems, Chaos 8 (1998) 834–852.

[13] M. Ipsen, F. Hynne, P.G Sørensen, Amplitude equations for reaction-diffusion
systems with a Hopf bifurcation and slow real modes, Physica D 136 (2000)
66–92.

[14] A.D Jepson, D.W Decker, Convergence cones near bifurcation, SIAM J. Numer.
Anal. 23 (1986) 959–975.

[15] R. Khoshsiar Ghaziani, W. Govaerts, Yu.A. Kuznetsov, H.G.E Meijer, Numerical
methods for two-parameter local bifurcation analysis of maps, SIAM J. Sci.
Comput. 29 (2007) 2644–2667.

[16] Yu.A. Kuznetsov, Numerical normalization techniques for all codim
2 bifurcations of equilibria in ODEs, SIAM J. Numer. Anal. 36 (1999)
1104–1124.

[17] Yu.A. Kuznetsov, Elements of Applied Bifurcation Theory, third edition,
Springer-Verlag, New York, 2004.

[18] Yu.A. Kuznetsov, W. Govaerts, E.J Doedel, A. Dhooge, Numerical periodic
normalization for codim 1 bifurcations of limit cycles, SIAM J. Numer. Anal.
43 (2005) 1407–1435.

[19] Yu.A. Kuznetsov, V.V Levitin, content: A multiplatform environment for
analyzing dynamical systems. ftp.cwi.nl/pub/CONTENT. 1995–1997.

[20] Yu.A. Kuznetsov, H.G.E Meijer, L. van Veen, The fold-flip bifurcation, Internat.
J. Bifur. Chaos 14 (2004) 2253–2282.

[21] H.G.E Meijer, Codimension 2 bifurcations of iterated maps. Ph.D. Thesis,
Utrecht University, Netherlands, 2006.

[22] A. Shil’nikov, G. Nicolis, C. Nicolis, Bifurcation and predictability analysis of
a low-order atmospheric circulation model, Internat. J. Bifur. Chaos 5 (1995)
1701–1711.

[23] L. van Veen, Baroclinic flow and the Lorenz-84 model, Internat. J. Bifur. Chaos
13 (2003) 2117–2139.

[24] S. Wieczorek, W.W Chow, Self-induced chaos in a single-mode inversionless
laser, Phys. Rev. Lett. 97 (2006) 113903.


