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1
Introduction

This chapter is an introduction to the fascinating world of dynamical systems.

The analysis of dynamical systems concerns the study of time-varying phenomena.

A dynamical system consists of an evolution rule, which specifies the future and past

states of a system, given only the current state. The modern theory of dynamical

systems goes back to the end of the 19th century with Poincaré’s groundbreaking

work on celestial mechanics, where fundamental questions concerning the stability

and evolution of the solar system were addressed. His work has laid the basis for

the local and global analysis of dynamical systems.

A simple example of a dynamical system is provided by a pendulum. A planar

pendulum consists of a rod, suspended at a fixed point, which oscillates in the

vertical plane. Its state at any time is specified by the position and the speed of the

pendulum. The pendulum is subject to gravity, and the evolution rule is determined

by Newton’s law F = ma, where F denotes the gravitational force, m the mass and

a the acceleration.

There is a wide area of applications, which ranges from fields as physics, biology,

chemistry, economics, engineering, sociology, demography, etc. In fact, this broad
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CHAPTER 1. INTRODUCTION

scope of applications is one of the main reasons for the popularity of dynamical

systems over the last decades. To describe these real-world applications, a mathe-

matical model has to be built on which we can apply algorithms and computational

methods to determine the state of the observations.

A dynamical system can either refer to continuous-time or discrete-time phe-

nomena. The evolution rule in the first case corresponds with a set of ordinary

differential equations (ODEs), in the second case with a map. Most concepts and

results present in a continuous-time dynamical system have an analogon in the dis-

crete case. This thesis focuses on ODEs, but we will also apply the existing theory

for maps.

The ordered family of points obtained by applying the evolution rule is called a

trajectory (or orbit). If a trajectory that starts in a point, remains in that point,

the point is called an equilibrium. An example is given by the motionless pendulum.

The equilibrium is called stable if all nearby trajectories converge to the equilibrium.

One of the main concepts in the theory of dynamical systems is that of bifurca-

tions. As a parameter is varied, the dynamical system may encounter points where

the qualitative behaviour changes. At such a point the dynamical system is said to

have gone through a bifurcation. The simplest example of a bifurcation is the loss

of stability of an equilibrium.

There are two types of bifurcations, namely local and global bifurcations. A

local bifurcation is a bifurcation that can be detected by looking at any small

neighbourhood of the equilibrium or periodic orbit. For example, a Hopf bifur-

cation, where the equilibrium changes stability and a periodic orbit is born, is a

local bifurcation. However, there are also bifurcations that can not be detected by

looking at any small vicinity of an equilibrium or periodic orbit. These are global

bifurcations. A heteroclinic orbit, which converges to a first equilibrium forwards

in time and to a second equilibrium backwards in time, is an example of a global

bifurcation.

At the detection of a bifurcation, the main goal is to find a division of the

parameter space around the bifurcation point into different strata such that for all

parameter values belonging to a certain stratum, the same dynamical behaviour is

performed. A diagram representing such a division is called a bifurcation diagram.

To each stratum corresponds a phase portrait, which shows all possible orbits in the

state space.

The analysis of a (nonlinear) dynamical system can be a daunting task. Even

a simple system can demonstrate complex behaviour that can not be represented

in analytical formulae. Numerical methods are then needed. One way to study a
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dynamical system is by numerical simulation. Through time-integration one may

detect the presence of (stable) equilibria or periodic orbits, and in this way obtain

a rough sketch of how the bifurcation diagram looks like. A second option is by

making use of continuation, which is a predictor-corrector method. The idea is

to compute a curve that satisfies a suitable system of equations, which define the

dynamical object under consideration. For example, once a (stable) equilibrium is

detected, one can apply continuation techniques starting from this equilibrium point

and compute a curve of equilibria when varying a parameter.

One of the continuation software packages that can be used for the study of

continuous-time dynamical systems and their bifurcations is MatCont [31–33]. Re-

search groups from Belgium and The Netherlands, as well as individual scientists

from other countries, cooperated in the development of MatCont. It is written in

Matlab and therefore platform-independent. The graphical user interface is quite

easy to handle and allows for an interactive study of the bifurcations. The software

is based on numerical continuation where first a tangent prediction is made, which

is then corrected by Moore-Penrose continuation.

When continuing a curve of equilibria, one may detect a bifurcation, i.e. a Limit

Point or a Hopf bifurcation. These bifurcations are codimension 1 bifurcations,

which generically occur at the variation of 1 system parameter. Next, a Limit Point

or Hopf curve can be computed through continuation, on which in turn bifurca-

tions can be detected. These are codimension 2 bifurcations in which the variation

of 2 system parameters is involved. In fact, such a bifurcation is determined by

imposing two independent conditions. The transversal or tangential intersection

of codimension 1 bifurcation curves happens at codimension 2 bifurcation points.

Therefore, codimension 2 points play the role of organizing centers. Codimen-

sion 1 bifurcation curves can root at a codimension 2 point, e.g. in the case of a

Bogdanov-Takens point, a homoclinic bifurcation curve originates.

Generically, in a system that contains m parameters, up to codimension m bifur-

cations can occur. In practice, the analysis of codimension 2 points can already be

very complex and in some cases, the complete bifurcation picture is still unknown.

Therefore, one in general restricts to the study of bifurcations up to codimension 2.

A periodic orbit can be found in several ways, e.g. by time-integration, or at a

Hopf bifurcation. The first method can only be applied in the case of a stable orbit

and the initialization of a periodic orbit from a Hopf bifurcation sometimes fails.

This clarifies that it is important to have alternatives for the initialization of higher

order codimension bifurcations.

Next to equilibria and periodic orbits, homoclinic orbits play an important role
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CHAPTER 1. INTRODUCTION

in applications. A homoclinic orbit can be seen as a periodic orbit whose period

tends to infinity. In the case of homoclinic orbits, the continuation of periodic orbits

with an ever-increasing period can lead to the detection of a homoclinic orbit. An

alternative method is given by the homotopy method, on which we will focus in

Chapter 3. This method allows one to initiate a homoclinic orbit starting from an

equilibrium. The method consists of a systematic procedure in which each step

aims for a better approximation of the searched homoclinic orbit. At the end of the

homotopy process, (hopefully) a well enough approximation is achieved, which can

be used as start-up for the Newton correction method and converges to the exact

homoclinic orbit. Also in the case of heteroclinic orbits, a homotopy method can

provide one with an approximating starting orbit for the continuation of heteroclinic

orbits. In Chapter 3 we describe the homotopy methods for both types of orbits and

their implementation in a software package, in our case MatCont. We also made

the continuation of heteroclinic orbits available in MatCont. We present several

examples that demonstrate the effectiveness of this systematic procedure.

To determine the bifurcation scenario around a bifurcation point, one can scan

the neighbourhood of the bifurcation point to search for the presence of local and

global bifurcations. But it would be much easier if at detection of the bifurcation,

one would immediately know what bifurcation curves are involved and in what

stratum they are situated. This issue is addressed by looking at the normal form

coefficients.

When encountering a bifurcation, first a reduction of the dynamical system to a

center manifold is made. Two-dimensional manifolds are also called surfaces. Ex-

amples include the plane, the sphere, the torus, etc. The center manifold is usually

lower dimensional. The defining equations in the center manifold are then put in

a simplified form, i.e. a normal form. The type of bifurcation that occurs in the

dynamical system can be deduced from a study of this normal form. Indeed, the

coefficients appearing in the normal form, i.e. the normal form coefficients, dis-

tinguish between the different scenarios that can happen at the bifurcation point.

For example, a negative normal form coefficient at a Hopf bifurcation corresponds

with the birth of a stable periodic orbit, a positive one with an unstable periodic

orbit. Through the introduction of parameters, to each possible case one can asso-

ciate an unfolding of the normal form, which shows the division of the parameter

space into its strata and the corresponding phase portraits. The number of un-

folding parameters present in the normal form is equal to the codimension of the

bifurcation.

In Chapter 4, Chapter 5 and Chapter 6 we focus on local codimension 2 bifur-
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cations of periodic orbits, of which there are 11 cases. The dimension of the center

manifold varies from 2 to 5 and the bifurcations are classified according to this di-

mension, which is determined by the eigenvalues of a matrix specific to the periodic

orbit. A map can be associated to every periodic orbit, namely the Poincaré map.

The periodic orbit then corresponds with a fixed point of this Poincaré map. An

advantage of this association is that results earlier developed for maps can to some

extent be used in the study of bifurcations of periodic orbits.

In Chapter 4 we derive the normal forms for all 11 codimension 2 bifurcations of

periodic orbits and state what normal form coefficients determine what bifurcation

scenario happens near the bifurcation point. We present their unfoldings and clar-

ify the interpretation of the orbits appearing in the phase portraits. Remark that

we present the unfolding for the truncated normal form. The question then raises

whether the higher order terms present in the original normal form influence the

dynamics derived from a study of the truncated normal form. In some cases, the

higher order perturbations do not affect the bifurcation portrait corresponding with

the truncated normal form. Unfortunately, this is not always the case. The appear-

ance of global bifurcations may obstruct the topological equivalence between the

bifurcation diagrams corresponding with the truncated and original normal forms.

A perturbation by higher order terms makes the dynamics in the vicinity of global

bifurcations much more complex and sometimes the exact sequence of events is

unknown.

We then need expressions for the normal form coefficients. We determine them

by the use of the homological equation. In Chapter 5 we elucidate the method

and derive the formulae for all coefficients of interest. Note that long expressions

are involved. Though the approach is the same in all cases, each case has its own

specifics.

The logical next step is then to concentrate on the implementation of the nor-

mal form coefficients. In Chapter 6 we discuss how the formulae can efficiently be

incorporated in MatCont. Concerning the interpretation of the normal form coeffi-

cients of the codimension 2 bifurcations of periodic orbits where the dimension of the

center manifold equals 4 (i.e. the Limit Point-Neimark-Sacker and Period-Doubling-

Neimark-Sacker bifurcation) or 5 (i.e. the Double Neimark-Sacker bifurcation), a

distinction is made between ’simple’ and ’difficult’ cases. In the ’difficult’ case the

dynamics is more complex and an extra torus is involved. Higher order terms in the

normal form determine the stability of this extra torus. Since this extra torus is not

always present and for complexity reasons, in general, we omit their computation.

However, the expressions are implemented in MatCont such that the interested user
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can obtain all details.

To confirm the correctness of our method, we present a series of examples that

contain all codimension 2 bifurcations of periodic orbits. On the one hand, at the

bifurcation point we compute the normal form coefficients that allow us to make a

prediction about the dynamics around the detected point by the use of the unfold-

ings discussed in Chapter 4. On the other hand, we scan the vicinity of the detected

point for possible bifurcation curves. In all the examples, the two approaches lead

to the same dynamical picture, and therefore it corroborates us of the correctness

of the computation of the normal form coefficients.

The contents of this thesis have been published in or submitted for publication,

see [24], [25], [21], [26], [28] and [27]. Next to the content of this thesis, I also

made contributions to [50], [22], [83] and [23].

6



2
Preliminaries

In this introductory chapter we review some concepts in the theory of dynam-

ical systems that will be needed for a good comprehension of the rest of this

thesis. Most of the material in this chapter is based on [67].

2.1 Basics

Consider the following continuous-time dynamical system

ẋ(t) ≡ dx

dt
= f (x(t), α), (2.1)

where x ∈ Rn is a state vector, α ∈ Rp is a parameter vector and f : Rn × Rp →
Rn is sufficiently smooth.

Definition 2.1. The map ϕt : X → X defined in the state space X that

transforms an initial state x0 ∈ X into the state xt ∈ X at time t, namely

xt = ϕtx0, is called the evolution operator of the dynamical system.

7
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The family {ϕt}t∈T of evolution operators is called a flow.

Definition 2.2. A dynamical system is a triple {T, X, ϕt}, where T is a time

set, X is a state space, and ϕt : X → X is a family of evolution operators

parametrized by t ∈ T and satisfying:

• ϕ0 = id,

• ϕt+s = ϕt ◦ ϕs.

General theory guarantees that for smooth right-hand sides f a solution (x0, α0) to

(2.1) exists that is unique for any (x0, α0) for small |t|. Moreover, the degree of

smoothness of the solution x is the same as the one for f .

Definition 2.3. A dynamical system {T, Rn, ϕt} is called topologically

equivalent to a dynamical system {T, Rn, ψt} if there is a homeomorphism

h : Rn → Rn mapping orbits of the first system onto orbits of the second

system, preserving the direction of time.

A phase portrait is the representation of a collection of trajectories corresponding

to multiple initial conditions of the dynamical system. The phase portrait gives

us information about, e.g., the stable and unstable objects present in the system.

Figure 2.1 (a) shows an example of a phase portrait.

Definition 2.4. The appearance of a topologically inequivalent phase portrait

under variation of parameters is called a bifurcation.

A bifurcation diagram shows the topological inequivalent strata in parameter

space, together with their corresponding phase portraits. Figure 2.1 (b) shows

an example of a bifurcation diagram.

Definition 2.5. The codimension of a bifurcation in (2.1) is the difference

between the dimension of the parameter space and the dimension of the cor-

responding bifurcation set.

8
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Figure 2.1: (a) Phase portrait (x, y are state variables). (b) Partial bifurcation

diagram (Iapp, v3 are parameters).

So, the codimension of a bifurcation is the number of conditions that define the

bifurcation, or thus the number of parameters that have to be varied for the detection

of the bifurcation.

Definition 2.6. An invariant set of a dynamical system {T, X, ϕt} is a subset

S ⊂ X such that x0 ∈ S implies that ϕtx0 ∈ S for all t ∈ T.

Examples of invariant sets are given by equilibria, periodic orbits or tori, where an

equilibrium is defined as follows.

Definition 2.7. A point x0 ∈ X is called an equilibrium if ϕtx0 = x0 for all

t ∈ T.

A periodic orbit is defined as follows.

Definition 2.8. A cycle or periodic orbit Γ is an orbit such that for each

point x0 ∈ Γ holds that ϕt+T0 x0 = ϕtx0 with some T0 > 0, for all t ∈ R. The

minimal T0 with this property is called the period of the cycle Γ. A cycle of a

9
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continuous-time dynamical system, in a neighbourhood of which there are no

other cycles, is called a limit cycle.

Another important concept in dynamical systems, which will be extensively discussed

in this thesis, is the one of normal forms. To report the definition, we need to extend

the concept of topologically equivalent systems to parameter-dependent systems.

Definition 2.9. Let

ẋ = f (x, α), x ∈ Rn, α ∈ Rp (2.2)

and

ẏ = g(y, β), y ∈ Rn, β ∈ Rp (2.3)

be two dynamical systems. (2.2) is called locally topologically equivalent to

(2.3) near the equilibrium x0 for certain parameter values α0, if there exists a

map (x, α) 7→ (hα(x), p(α)), defined in a neighbourhood of (x, α) = (x0, α0)
in the direct product Rn × Rp and such that

(i) p : Rp → Rp is a homeomorphism defined in a neighbourhood of α = α0,
β = p(α);

(ii) hα : Rn → Rn is a parameter-dependent homeomorphism defined in a

neighborhood Uα of x = x0, y = hα(x), and mapping orbits of (2.2) in

Uα onto orbits of (2.3) in hα(Uα), preserving the direction of time.

A generic system (2.1) is a system that satisfies a finite number of genericity

conditions, i.e.

Ni[ f ] 6= 0, i = 1, 2, . . . , s,

where each Ni is some (algebraic) function of certain partial derivatives of f (x, α)
with respect to x and α evaluated at the equilibrium. Genericity conditions where

partial derivatives with respect to x are considered, are nondegeneracy conditions

and the conditions for which partial derivatives with respect to the parameters are

involved, are called transversality conditions.

Definition 2.10. System ξ̇ = g(ξ, β; σ), ξ ∈ Rn, β ∈ Rk, σ ∈ Rl is called a

topological normal form for a bifurcation if any generic system (2.1) in which

10
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the equilibrium x = 0 satisfies the same bifurcation conditions at α = 0, is

locally topologically equivalent near the origin to ξ̇ = g(ξ, β; σ) for some values

of the coefficients σi.

A normal form is not uniquely determined. This however does not affect the con-

clusions that are drawn from these normal forms.

Definition 2.11. The operator V∗ is called the adjoint operator of the op-

erator V if

〈V∗ f , g〉 = 〈 f , Vg〉,
for all functions f and g.

Note that 〈u, v〉 = uHv = ūTv is the standard scalar product in an appropriate

complex (or real) finite-dimensional vectorspace.

2.2 Equilibria and their bifurcations

Let x0 be an equilibrium of the system (2.1). Let A denote the Jacobian matrix
∂ f
∂x

evaluated at x0. The values of the eigenvalues of the Jacobian matrix are essential

in the study of the dynamical system. Denote the second up to fifth order derivatives

as B(x, y), C(x, y, z), D(x, y, z, u), E(x, y, z, u, v) where

Bi(x, y) =
n

∑
j,k=1

∂2 fi(ξ)

∂ξ j∂ξk

∣∣∣∣∣
ξ=x0

xjyk,

Ci(x, y, z) =
n

∑
j,k,l=1

∂3 fi(ξ)

∂ξ j∂ξk∂ξl

∣∣∣∣∣
ξ=x0

xjykzl ,

Di(x, y, z, u) =
n

∑
j,k,l,m=1

∂4 fi(ξ)

∂ξ j∂ξk∂ξl∂ξm

∣∣∣∣∣
ξ=x0

xjykzlum,

Ei(x, y, z, u, v) =
n

∑
j,k,l,m,o=1

∂5 fi(ξ)

∂ξ j∂ξk∂ξl∂ξm∂ξo

∣∣∣∣∣
ξ=x0

xjykzlumvo,

11
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for i = 1, 2, . . . , n.

Definition 2.12. An equilibrium is called hyperbolic if the Jacobian has no

eigenvalues on the imaginary axis.

An equilibrium is locally asymptotically stable if for all eigenvalues λ of the Jaco-

bian matrix holds that ℜ(λ) < 0. If for at least one eigenvalue holds that ℜ(λ) > 0,

the equilibrium is unstable. Here, ℜ(λ) stands for the real part of λ.

There are five kinds of hyperbolic equilibria in the plane. At a stable node, there

are two negative real eigenvalues, see Figure 2.2 (a). At a stable focus, there is a

complex conjugate pair of eigenvalues with negative real part, see Figure 2.2 (b).

Also the unstable analogues of these equilibria exist. At a saddle, there is a positive

and a negative real eigenvalue, see Figure 2.2 (c).

(a) Node (b) Focus (c) Saddle

Figure 2.2: Several types of equilibria.

Two invariant sets are associated to a hyperbolic equilibrium x0, i.e. the stable

and unstable sets of x0 given by

WS(x0) = {x|ϕtx → x0, t → +∞},

WU(x0) = {x|ϕtx → x0, t → −∞},

respectively.

2.2.1 Codimension 1 bifurcations of equilibria

Limit Point bifurcation

12
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Definition 2.13. The bifurcation associated with the appearance of an eigen-

value λ1 = 0 is called a Limit Point bifurcation (LP, or Fold or Saddle-Node

bifurcation).

This bifurcation corresponds with a collision and disappearance of two equilibria

when crossing the bifurcation parameter value, see Figure 2.3. At parameter value

α0 a saddle-node equilibrium appears. The normal form at the LP bifurcation is

given by the one-dimensional system

u̇ = au2 + . . . , u ∈ R.

If a = 0, then the bifurcation is degenerate (i.e. the bifurcation is not the typical,

generic case).

α < α
0

α = α
0

α > α
0

Figure 2.3: A Fold bifurcation of equilibria.

Hopf bifurcation

Definition 2.14. The bifurcation corresponding to the presence of eigenvalues

λ1,2 = ±iω0, ω0 > 0, is called a Hopf bifurcation (H, or Andronov-Hopf

bifurcation).

At the Hopf bifurcation a periodic orbit is born and there is an exchange of stability

of the equilibrium. The normal form at the Hopf bifurcation is given by the two-

dimensional system

ż = iω0z + c1z|z|2 + . . . , z ∈ C

13
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where l1 = ℜ(c1) is called the first Lyapunov coefficient at the Hopf bifurcation.

The periodic orbit is stable if the first Lyapunov coefficient is negative, in which case

the bifurcation is supercritical or soft, see Figure 2.4. Otherwise, the periodic orbit

is unstable, which corresponds with a subcritical or sharp bifurcation. If l1 = 0,

then the bifurcation is degenerate.

α < α
0

α = α
0

α > α
0

Figure 2.4: Supercritical Hopf bifurcation of equilibria.

2.2.2 Codimension 2 bifurcations of equilibria

Codimension 2 bifurcation points are points where curves corresponding to codim 1
bifurcations intersect transversally or tangentially. In generic systems (2.1) only five

codim 2 bifurcations of equilibria are possible [3,56,67]. We list them in Table 2.1.

Note that the coefficients a and l1 appear in the critical normal forms of the LP and

H bifurcation, respectively. The eigenvalues mentioned in the table are assumed to

be the only ones for which holds that ℜ(λ) = 0.

2.3 Fixed points

Consider the following discrete-time dynamical system

x 7→ f (x, α), x ∈ Rn, α ∈ Rp, (2.4)

where the map f is smooth with respect to x and α. A fixed point of the system

(2.4) is a point x0 that is mapped to itself, i.e. f (x0, α0) = x0. The second

14
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Label Name Properties

CP Cusp λ1 = 0, a = 0
GH Bautin λ1,2 = ±iω0, l1 = 0
BT Bogdanov-Takens λ1,2 = 0
ZH Zero-Hopf λ1 = 0, λ2,3 = ±iω0, ω0 > 0
HH Double Hopf (Hopf-Hopf) λ1,2 = ±iω1, λ3,4 = ±iω2, ω1,2 > 0

Table 2.1: Codim 2 bifurcations of equilibria.

iterate of the map f is given by f 2 = f ◦ f . The eigenvalues of the Jacobian

matrix evaluated at a fixed point are called multipliers. A fixed point is said to

be hyperbolic if it has no multipliers on the unit circle. There are three ways in

which the hyperbolicity can be lost. Either a simple positive multiplier approaches

the unit circle where then µ1 = 1, or a simple negative multiplier approaches the

unit circle, where µ1 = −1, or a pair of simple complex multipliers reaches the unit

circle where µ1,2 = e±iθ0 , 0 < θ0 < π.

We now state a powerful result in dynamical systems, namely the Hartman-

Grobman theorem. This result gives us the ability to locally reduce the dynamical

system to its linear part near fixed points. We first explain the concept of locally

topologically conjugacy.

Definition 2.15. Two maps f , g : Rn 7→ Rn satisfying f = h−1 ◦ g ◦ h for

some homeomorphism h : Rn 7→ Rn are called locally topologically conjugate.

Theorem 2.16 (Hartman-Grobman theorem). Let x0 be a hyperbolic fixed

point of the map f . Then, there exists a neighborhood U of x0 and a homeo-

morphism h : U → Rn such that h(x0) = 0, and such that in a neighbourhood

U of x0, the map f is locally topologically conjugate by h to the map of its

linearization A.

From each continuous-time dynamical system {Rn, X, ϕt} we can derive a discrete-

time dynamical system. This can be done by fixing some T0 > 0 and considering a

system generated by iteration of the map f = ϕT0 . This map is called a T0-shift

map along orbits of {Rn, X, ϕt}. The T0-shift of a continuous-time dynamical

15
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system ẋ = f (x(t)) can be obtained by Picard iterations. The successive iterations

are defined by 



x0(t) = x0,

xn+1(t) = x0 +
∫ t

0
f (xn(s))ds, n ≥ 0

such that the T0-shift map is given by x0 7→ x(T0), with x(T0) = limn→+∞ xn(T0).

2.4 Limit cycles and their bifurcations

The defining system that we typically use for a limit cycle is given by





ẋ(t)− T f (x(t), α) = 0,

x(0)− x(1) = 0,
∫ 1

0

˙̃x(t)Tx(t)dt = 0,

(2.5)

where t ∈ [0, 1]. Indeed, when studying periodic solutions to (2.1) it is convenient

to introduce the period T as an explicit unknown by rescaling time to the interval [0,
1]. The second equation represents the periodicity condition. The third equation is

the phase condition, which is an integral condition that makes the periodic solution

unique. This is necessary since the phase of the limit cycle has to be fixed. Indeed,

each point on the limit cycle can be represented as initial point of the periodic orbit.

The solution with minimal 2-norm distance to x̃ is chosen, with x̃(t) an initial guess

for the solution, typically obtained from a previous step in a continuation method

(see Section 2.8.1). This approach is by now standard in numerical bifurcation

software, see [31,37,41,53,69].

To every periodic orbit, a map can be coupled. This is very useful since the

results concerning maps can then be applied to differential equations.

Definition 2.17. Let Σ be a (n − 1)-dimensional hypersurface transverse to

the vector field at the periodic orbit Γ. Let x0 be the intersection of Σ and the

periodic orbit. The map P that associates points x ∈ Σ sufficiently close to x0

with their first return points P(x) to Σ is called a Poincaré map associated

with the cycle Γ.
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Σ

Г

x₀

x
P(x)

Figure 2.5: The Poincaré map associated with a limit cycle Γ.

As can be seen in Figure 2.5, the intersection x0 of the hypersurface Σ with the

periodic orbit Γ is a fixed point of the Poincaré map P. Note that the dimension of

the cross-section Σ is one lower than the dimension of the state space of the ODE.

Concerning the next definition, recall that A represents the Jacobian matrix
∂ f
∂x .

Definition 2.18. The fundamental matrix solution of (2.1) is the time-

dependent matrix M(t) that satisfies

Ṁ = A M,

with the initial condition M(0) = In, the unit n× n-matrix. The matrix M(T)
is called a monodromy matrix of the cycle Γ.

The following theorem makes it possible to determine the multipliers of a periodic

orbit without computation of the Poincaré map.

Theorem 2.19. The monodromy matrix M(T) has eigenvalues

1, µ1, µ2, . . . , µn−1,

where µi are the multipliers of the Poincaré map associated with the cycle Γ.

17
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The eigenvalues of the monodromy matrix are called the Floquet multipliers of the

limit cycle. The previous theorem shows that there is always a ’trivial’ multiplier

1, which is denoted as µ0. The multipliers with |µ| = 1 are called the critical

multipliers. If the trivial multiplier is simple and there are no other multipliers for

which |µ| = 1 holds, then the limit cycle is called hyperbolic. The limit cycle is

locally asymptotically stable if for all multipliers µ except the trivial one it holds

that |µ| < 1. The limit cycle is unstable if for at least one multiplier it holds that

|µ| > 1.

We will now list the codim 1 and 2 bifurcations of limit cycles. Note that these

bifurcations are exactly the codim 1 and codim 2 bifurcations of the fixed points of

the Poincaré map.

2.4.1 Codimension 1 bifurcations of limit cycles

Limit Point of Cycles bifurcation

Definition 2.20. The bifurcation associated with the appearance of µ1 =
1 is called a Limit Point of Cycles bifurcation (LPC, or Fold of Cycles

bifurcation).

x₁

x₂

α₀ α αα₀

T

LPC

Γ

Figure 2.6: Limit Point of Cycles bifurcation.

As can be seen in Figure 2.6, an LPC point forms a turning point for periodic orbits.

The normal form at the LPC bifurcation is given by the T-periodic two-dimensional

18
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system {
τ̇ = 1 − ξ + aξ2 + . . . ,

ξ̇ = bξ2 + . . . .
(2.6)

Here, τ plays the role of the phase coordinate along the orbit and ξ ∈ R is a

coordinate along a direction transversal to the periodic orbit. If b = 0, then the

bifurcation is degenerate.

Period-Doubling bifurcation

Definition 2.21. The bifurcation associated with the appearance of µ1 = −1
is called a Period-Doubling bifurcation (PD, or Flip bifurcation).

ГW c
0W c

α W c
α

α < α
0

α = α
0

α > α
0

Г

Figure 2.7: Period-Doubling bifurcation.

At a PD bifurcation a limit cycle emerges from the original limit cycle with a period

that is approximately twice the original period (see Figure 2.7). The normal form

at the PD bifurcation is given by the 2T-periodic two-dimensional system
{

τ̇ = 1 + aξ2 + . . . ,

ξ̇ = cξ3 + . . . .
(2.7)

The coordinates τ and ξ ∈ R have the same meaning as in the LPC case. In

Figure 2.8, we have illustrated these coordinates for a PD bifurcation. If c < 0,

the period doubled orbit is stable, if c > 0, the period doubled orbit is unstable. If

c = 0, then the bifurcation is degenerate.
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Γ

W� (Γ)

τ

ξ

Figure 2.8: Illustration of τ- and ξ-coordinate for a PD bifurcation.

Neimark-Sacker bifurcation

Definition 2.22. The bifurcation corresponding to the presence of µ1,2 =
e±iθ0 , 0 < θ0 < π, is called a Neimark-Sacker bifurcation (NS, or torus

bifurcation).

Γ

α < α
0

α = α
0

α > α
0

T2

Figure 2.9: Neimark-Sacker bifurcation.

When crossing the critical parameter value, an invariant two-dimensional torus is

born that leads to a change of stability of the periodic orbit (see Figure 2.9). The
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normal form at the NS bifurcation is given by the T-periodic three-dimensional

system

{
τ̇ = 1 + a|ξ|2 + . . . ,

ξ̇ = iθ
T ξ + dξ|ξ|2 + . . . ,

(2.8)

where ξ ∈ C. If ℜ(d) < 0, the born torus is stable, if ℜ(d) > 0, the born torus is

unstable. If ℜ(d) = 0, then the bifurcation is degenerate.

2.4.2 Codimension 2 bifurcations of limit cycles

It is well known [3,67] that in generic two-parameter systems (2.1) only eleven codim

2 local bifurcations of limit cycles occur. We list them in Table 2.2. Note that the

coefficients b, c and d appear in the critical normal forms of the LPC, PD and NS

bifurcations, respectively. The multipliers mentioned in the table are assumed to be

the only ones for which holds that |µ| = 1.

Label Name Properties

CPC Cusp Point of Cycles µ0,1 = 1, b = 0
GPD Generalized Period-Doubling µ0 = 1, µ1 = −1, c = 0

CH Chenciner µ0 = 1, µ1,2 = e±iθ0 ,ℜ(d) = 0
R1 Strong Resonance 1:1 µ0,1,2 = 1
R2 Strong Resonance 1:2 µ0 = 1, µ1,2 = −1

R3 Strong Resonance 1:3 µ0 = 1, µ1,2 = e±i 2π
3

R4 Strong Resonance 1:4 µ0 = 1, µ1,2 = e±i π
2

LPPD Fold-Flip µ0,1 = 1, µ2 = −1

LPNS Limit Point-Neimark-Sacker µ0,1 = 1, µ2,3 = e±iθ0

PDNS Period-Doubling-Neimark-Sacker µ0 = 1, µ1 = −1, µ2,3 = e±iθ

NSNS Double Neimark-Sacker µ0 = 1, µ1,2 = e±iθ0 , µ3,4 = e±iθ1

Table 2.2: Codim 2 bifurcations of limit cyles.
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2.5 Homoclinic and heteroclinic orbits

Definition 2.23. An orbit Γ starting at a point x ∈ Rn is called a homoclinic

orbit to the equilibrium point x0 of system (2.1) if ϕtx → x0 as t → ±∞.

Depending on the type of equilibrium there are two kinds of homoclinic orbits with

codimension 1. For a Homoclinic-to-Hyperbolic-Saddle orbit (HHS orbit), the

equilibrium is a saddle, for a Homoclinic-to-Saddle-Node orbit (HSN orbit), the

equilibrium is a saddle-node.

Definition 2.24. An orbit Γ starting at a point x ∈ Rn is called a heteroclinic

orbit to the equilibrium points x1 and x2 of system (2.1) if ϕtx → x1 as

t → −∞ and ϕtx → x2 as t → +∞.

Heteroclinic orbits can have codimension 0, i.e. they are persistent under parameter

variations, or a higher codimension. Pictures of a Homoclinic-to-Hyperbolic-Saddle

and a heteroclinic orbit are given in Figure 2.10 (a), (b) respectively.

(a) (b)

x

Γ

x₀

W
 
1W

 

W
!

Γ

x

x₁

W
 
2

W
!
1 W

!
2

x₂

Figure 2.10: (a) Homoclinic orbit in R3. (b) Heteroclinic orbit in R3.

Consider a homoclinic orbit for a fixed parameter value α0 at equilibrium x0.

There are two invariant sets related to this orbit, namely the stable and unstable
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sets given by

WS(x0) = {x ∈ Rn|ϕt
α0
(x) → x0 if t → +∞},

WU(x0) = {x ∈ Rn|ϕt
α0
(x) → x0 if t → −∞},

respectively. These manifolds are tangent to the stable (generalized) eigenspace

TS, corresponding to the union of all eigenvalues µ of A with ℜ(µ) < 0, and

the unstable (generalized) eigenspace TU, corresponding to the union of all

eigenvalues λ of A with ℜ(λ) > 0, respectively. Denote with nS the number of

eigenvalues µ for which holds that ℜ(µ) < 0 and with nU the number of eigenvalues

λ for which holds that ℜ(λ) > 0. Stable eigenvalues with maximal ℜ(µ) are called

the leading stable eigenvalues, while unstable eigenvalues with minimal ℜ(λ) are

called the leading unstable eigenvalues.

2.6 Center manifolds

Hyperbolic equilibria are robust, i.e. small perturbations do not change qualitatively

the phase portrait near the equilibrium. This is a consequence of the Hartman-

Grobman theorem (continuous version of the theorem in Section 2.3). Therefore,

when dealing with hyperbolic equilibria, it is sufficient to study the linearization of

the system.

However, when dealing with nonhyperbolic equilibria, things get more compli-

cated. This is the point where center manifolds are introduced. Next to the stable

subspace, which corresponds to all eigenvalues with ℜ(µ) < 0 and the unstable

subspace, which corresponds to all eigenvalues with ℜ(λ) > 0, denote with Tc the

linear (generalized) eigenspace of A corresponding to the union of the nc eigen-

values on the imaginary axis. These eigenvalues are called the critical eigenvalues.

Theorem 2.25 (Center manifold theorem). There is a locally defined

smooth nc-dimensional invariant manifold Wc of (2.1) that is tangent to Tc at

x = 0. Moreover, there is a neighbourhood U of x0 = 0 such that if ϕtx ∈ U
for all t ≥ 0 (t ≤ 0), then ϕtx → Wc for t → +∞ (t → −∞).
There also exists a stable (unstable) invariant manifold WS (WU) that is tan-

gent to the stable (unstable) eigenspace.

The manifold Wc is called the center manifold. To understand the bifurcation

scenario around the equilibrium point, it is sufficient to investigate what happens in
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the center manifold since this manifold is exponentially attractive or repelling. In

this way, the study of a high-dimensional dynamical system can be reduced to the

study of a low-dimensional center manifold.

2.7 Normal form theorems

In this section we concentrate on nonhyperbolic periodic orbits. Let M(T) ∈ Rn×n

be the monodromy matrix. From Theorem 2.19 it follows that 1 is always a mul-

tiplier of the periodic orbit. Let M0 be the critical Jordan structure, i.e. the block

diagonal matrix consisting of the critical Jordan blocks, starting with the block of

the trivial multiplier 1. Let µk = eiθk(0 ≤ θk < π) be a critical multiplier with

multiplicity mk. The matrix Lk ∈ Rmk×mk is defined as

Lk =




σk 1 . . . 0
0 σk . . . 0
...

. . .
. . . 1

0 . . . 0 σk


 ,

where σk is the Floquet exponent of multiplier µk, with σk = iθk/T in the case of

multiplier 1 or a complex multiplier µk, and σk = 0 for µk = −1. The matrix L0 is

the block diagonal matrix formed from the blocks Lk for which |µk| = 1, starting

with the block that corresponds with multiplier 1. The matrix L̃0 is the matrix L0

without the first row and the first column.

Proposition 2.26. [59] To each Jordan block of size mk of the monodromy

matrix M(T) corresponding to a critical multiplier µk 6= −1, there exist mk

independent T-periodic Cl vector functions w
(µk)
j (τ) such that

(
− d

dτ
+ A(τ)− σk

)
w
(µk)
j (τ) =

{
0, j = 0,

w
(µk)
j−1 (τ), j = 1, . . . , mk − 1.

We consider the case µk = −1 separately.
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Proposition 2.27. [59] For a Jordan block of size mk of the monodromy

matrix M(T) belonging to multiplier −1, there exist mk Cl vector functions

w
(−1)
j (τ) such that

• w
(−1)
j (τ + T) = −w

(−1)
j (τ),

•
(
− d

dτ + A(τ)
)

w
(−1)
j (τ) =

{
0, j = 0,

w
(−1)
j−1 (τ), j = 1, . . . , mk − 1.

Define a Floquet operator Q(µk)(τ) to the subspace spanned by the vector functions

{w
(µk)
0 , . . . , w

(µk)
mk−1} from Proposition 2.26 or Proposition 2.27 as

Q(µk)(τ)ξ =
mk−1

∑
j=0

ξ jw
(µk)
j (τ), ∀ξ = (ξ0, . . . , ξmk−1).

Denote with E0(τ) the subspace spanned by the nc vector functions w
(µk)
j (τ), ∀j,

µk, built in Proposition 2.26 and Proposition 2.27. We can write

E0(τ) = Ẽ0(τ)⊕ {Ru̇0(τ)},

where u̇0(τ) is the eigenfunction corresponding to the trivial multiplier 1. Denote

with Q0(τ) the Floquet operator to the (nc − 1)-dimensional subspace spanned by

Ẽ0(τ). If all vector functions w
(µk)
j (τ) correspond with multiplier 1 or a complex

multiplier, the Floquet operator Q0(τ) is T-periodic. However, if multiplier −1 is

involved, we can write

Q0(τ)ξ = Q00(τ)ξ00 + Q01(τ)ξ01,

where ξ = (ξ00, ξ01). Q00(τ)ξ00 belongs to the subspace spanned by the vector

functions given in Proposition 2.26 and thus corresponding with multiplier 1 or a

complex multiplier, and Q01(τ)ξ01 belongs to the subspace spanned by the vector

functions given in Proposition 2.27 and thus corresponding with multiplier −1.

Q00(τ) is T-periodic, while Q01(τ) is 2T-periodic.

We now give the normal form theorem in the simple case.
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Theorem 2.28. [59] Assume that

• the Jordan block of M(T) belonging to the eigenvalue 1 is 1-dimensional,

• −1 is not an eigenvalue of M(T).

Then a center manifold for (2.1) in the neighbourhood of the periodic orbit Γ

may be represented as

Z = u0(τ) + Q0(τ)ξ + H(τ, ξ),

where Q0(τ) is the T-periodic Floquet operator and H is T-periodic in τ and at

least quadratic in ξ. A normal form for the vector field on the center manifold

may be found such that (2.1) becomes





dτ

dt
= 1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where p and P are T-periodic in τ, are polynomials at least quadratic in ξ and

satisfy for any τ ∈ R, ξ ∈ Rnc−1

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,

d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0.

We now consider the case that the Jordan block of M(T) belonging to the trivial

multiplier is more than one-dimensional. The normal form theorem in this nonsimple

case is stated as follows.

Theorem 2.29. [59] Assume that

• the Jordan block of M(T) belonging to the eigenvector u̇0 is more than

1-dimensional,

• −1 is not an eigenvalue of M(T).

Then a center manifold for (2.1) in the neighbourhood of the periodic orbit Γ
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may be represented as

Z = u0(τ) + Q0(τ)ξ + H(τ, ξ),

where H is T-periodic in τ and at least quadratic in ξ. A normal form for the

vector field on the center manifold may be found such that (2.1) becomes





dτ

dt
= 1 + ξ1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where p and P are T-periodic in τ, are polynomials at least quadratic in ξ and

satisfy for any τ ∈ R, ξ ∈ Rnc−1

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,

d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0.

Note that ξ1 is the first coordinate of ξ and corresponds with multiplier 1. The last

normal form theorem investigates the case when −1 is a Floquet multiplier. Define

a symmetry S̃0

Υ = (Υ0, Υ1) 7→ S̃0Υ = (Υ0,−Υ1)

such that

Q0(τ + T)Υ = Q0(τ)S̃0Υ.

Theorem 2.30. [59] Assume that

• −1 is an eigenvalue of M(T).

Then the results of Theorem 2.28 or Theorem 2.29 hold with the following

modification: H, p and P are 2T-periodic in τ such that

H(τ + T, ξ) = H(τ, S̃0ξ)

and

p(τ + T, ξ) = p(τ, S̃0ξ), P(τ + T, S̃0ξ) = S̃0P(τ, ξ),
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for all τ ∈ R and ξ ∈ Rnc−1.

The eigenfunctions w1, . . . , wmk−1 from Proposition 2.26 and Proposition 2.27 are

called the generalized eigenfunctions. The (generalized) eigenfunctions of the

adjoint operator are called the (generalized) adjoint eigenfunctions.

2.8 MatCont

MatCont is a numerical bifurcation software package in Matlab for the interac-

tive study of dynamical systems and bifurcations. The package is freely available

at http://sourceforge.net/projects/matcont. MatCont is a successor package to

AUTO [37] and CONTENT [69], which are written in compiled languages (Fortran,

C, C++).

2.8.1 MatCont: a continuation software

MatCont is based on continuation where a sequence of points that approximate

a desired branch are computed starting from an initial guess. The continuation

algorithm makes use of a predictor-corrector method.

LPNSCHR4R1 R3BPCGHBTCPBP HHZH CPC PDNS R2 NSNS GPDLPPD2

codim

0

1 LPCH

LC

NSLP

O

EP

PD

Figure 2.11: Graph of adjacency for equilibrium and limit cycle bifurcations in

MatCont.

The relationships between the bifurcations of codim 0, 1 and 2 that are imple-

mented in MatCont are visualized in Figure 2.11. By time-integration, represented
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by the orbit O at the top, we can converge to a stable equilibrium (EP) or a stable

periodic orbit (LC). From then on, continuation is used through which higher codi-

mension bifurcations can be detected. For example, by continuation of a PD curve

(codim 1), four codim 2 bifurcations can be detected, namely GPD, R2, LPPD and

PDNS.

NSFNSS NFF ND* TL* SH OF* IF* NCH

HSN

codim

LC

HHS

DR*2

1

0

Figure 2.12: Graph of adjacency for homoclinic bifurcations in MatCont. * stands

for S or U.

Relationships between homoclinic objects of codimension 1 and 2 computed by

MatCont are presented in Figure 2.12. ’*’ stands for either S or U, depending on

whether a stable or an unstable invariant manifold is involved. The labels of the

bifurcations are listed in Table 2.3. During HSN continuation, only one bifurcation

is tested for, namely the Noncentral Homoclinic-to-Saddle-Node orbit or NCH orbit.

This orbit forms the transition between HHS and HSN curves. During HHS contin-

uation, next to the detection of an NCH orbit 9 types of bifurcations are tested for.

The characteristics and test functions for these bifurcations can be found in [25].

2.8.2 Discretization by collocation at Gauss points

In MatCont, the continuation of limit cycles makes use of orthogonal collocation.

For the numerical study, the continuous limit cycle has to be discretized. Therefore,

we first rescale the interval [0, T] to the unit interval [0, 1]. We then deal with a

standard boundary problem with function Y(t) ∈ Rn, t ∈ [0, 1], as unknown and
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Type of object Label

Neutral saddle NSS

Neutral saddle-focus NSF

Neutral Bi-Focus NFF

Shilnikov-Hopf SH

Double Real Stable leading eigenvalue DRS

Double Real Unstable leading eigenvalue DRU

Neutrally-Divergent saddle-focus (Stable) NDS

Neutrally-Divergent saddle-focus (Unstable) NDU

Three Leading eigenvalues (Stable) TLS

Three Leading eigenvalues (Unstable) TLU

Orbit-Flip with respect to the Stable manifold OFS

Orbit-Flip with respect to the Unstable manifold OFU

Inclination-Flip with respect to the Stable manifold IFS

Inclination-Flip with respect to the Unstable manifold IFU

Noncentral Homoclinic-to-Saddle-Node NCH

Table 2.3: Bifurcations related to homoclinic orbits.

satisfying {
Ẏ = F(Y),

aY(0) + bY(1) = 0,
(2.9)

where F is a sufficiently smooth function and a, b are constant matrices.

To discretize it by a collocation method, the interval [0, 1] is subdivided into

N intervals with grid points:

0 = τ0 < τ1 < · · · < τN = 1.

The points τ0, τ1, . . . , τN form the coarse mesh ∆. We define h = maxi hi where

hi = τi+1 − τi. Y(t) is approximated by a continuous function Y∆(t) that in

each interval [τi, τi+1] is a degree m polynomial, whose values are represented at

equidistant mesh points, namely at

τi,j = τi +
j

m
hi (j = 0, 1, ..., m).

We note that τi,m = τi+1 = τi+1,0 for 0 ≤ i ≤ N − 1. These grid points form

the fine mesh. In each interval [τi, τi+1] we require the polynomials to satisfy the
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differential equation in (2.9) exactly at m collocation points, i.e. Nmn conditions

that have to be specified. Denote with xM the vector of the function values at

the fine mesh points, with xC the vector of the function values at the collocation

points and with ẋC the vector of the derivative values at the collocation points.

The best choice for the collocation points are the Gauss points ζi,j, i.e. the roots

of the Legendre polynomial of degree m, relative to the interval [τi, τi+1] [20, 30].

Note that the mesh is nonuniform and adaptive. We also require the polynomials

to satisfy the boundary conditions in (2.9). Under generic regularity conditions for

system (2.9) De Boor and Swartz [20] proved that Y∆(t) converges uniformly over

[0, 1] to Y(t) with order hm+1 and with order h2m (’superconvergence’) at the

points of the coarse mesh.
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3
Interactive Initialization and

Continuation of Homoclinic and

Heteroclinic Orbits

In this chapter we discuss a homotopy method that makes it possible to initiate

a homoclinic or heteroclinic orbit, starting from an equilibrium point.

3.1 Introduction

Homoclinic and heteroclinic orbits, also called connecting orbits, are important

in applications for a number of reasons. They underlie phenomena in fluid me-

chanics [7], model ’excitation’ in models of biological cells [86], chaotic vibration of

structures [81], chaotic behaviour of electronic circuits [18, 46, 47], light pulses in

fiber optics [80], chemical reactions [54], wave solutions in combustion models [9],

etc.

The detection of a connecting orbit is a quite delicate work because of the

sensitive dependence on initial conditions and on parameter values. MatCont sup-
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ports several methods to initialize homoclinic orbits, including one that is based on

the approximation of the homoclinic orbit by a limit cycle with large period [32].

However, there are many ODEs (e.g. ODEs describing travelling impulses) where

the corresponding limit cycles are of the saddle type (i.e. unstable) and cannot be

found by numerical integration. Often such cycles are not born via local Hopf-like

bifurcations. We therefore need a method with a good chance of success in finding

the connecting orbits, even in difficult problems.

The homotopy (i.e. successive continuations) method first described in [39,40]

is a powerful tool that makes use of a systematic procedure to detect a sufficiently

accurate starting orbit for the continuation of the connecting orbits. Starting from

the same basic ideas, we present new and improved algorithms for the numerical

initialization and continuation of homoclinic and heteroclinic orbits.

The first efficient methods for continuation of homoclinic or heteroclinic orbits to

equilibria were implemented as HomCont toolbox in the standard software auto, see

[10,15,16,38]. As in MatCont, these methods are based on the truncated boundary

value problems (BVPs) with projection boundary conditions and integral phase

conditions, which are discretized using piecewise-polynomial approximation with

orthogonal collocation. However, there are essential differences between HomCont

and our implementation. HomCont employs a technique due to [10] to ensure

the smoothness of the bases in the generalized eigenspaces used in the projection

boundary conditions. These bases are originally computed in each step by black-box

linear algebra routines. As a consequence some blocks of the Jacobian matrix of the

discretized projection BVP are approximated by finite differences, even if all partial

derivatives of the right-hand side of (2.1) w.r.t. (x, α) are provided by the user. Our

construction of the projection boundary conditions is different and is based on the

’Continuation of Invariant Subspaces’ algorithm [35], where the Riccati equations

play the central role. However, unlike [29], we include the Riccati equations in

the defining truncated BVP. This allows us to set up the Jacobian matrix of the

discretized defining system avoiding finite differences, if the user-supplied derivatives

are available. In this way we simultaneously continue the connecting solution and

the (orthogonal complements to) stable and unstable invariant subspaces of the

Jacobian, which makes the continuation more robust.

In this chapter, we rigourously describe the homotopy methods for Homoclinic-

to-Hyperbolic-Saddle orbits, for Homoclinic-to-Saddle-Node orbits and for hetero-

clinic orbits and discuss their implementation details in MatCont. We begin by

introducing the defining system for HHS orbits in Section 3.2.1. The differences for

the defining systems for HSN and heteroclinic orbits are highlighted in Section 3.2.2
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and Section 3.2.3. In Section 3.3 we discuss the possible ways of initializing a HHS

orbit in MatCont, i.e. either starting from a limit cycle with large period, or making

use of the successive continuations method. A detailed decription of the algorithm

of the homotopy method and the interactive implementation in MatCont is given in

Section 3.3.2. Variants of the homotopy methods for HSN orbits, starting from only

a saddle-node equilibrium, and heteroclinic orbits, starting from two equilibria, are

discussed in Section 3.4 and in Section 3.5, respectively. The successive homotopy

and continuation steps are implemented in a user-friendly way in the graphical user

interface in MatCont. We illustrate the effectiveness of the homotopy method by

numerous examples in Section 3.6, which should convince the reader of its robust-

ness.

3.2 Extended Defining System for Continuation

In this section we describe the defining equations for the continuation of HHS orbits,

HSN orbits and heteroclinic orbits.

3.2.1 Homoclinic-to-Hyperbolic-Saddle orbits

Suppose that the eigenvalues of the Jacobian matrix fx(x0, α0) can be ordered

according to

ℜ(µnS
) ≤ ... ≤ ℜ(µ1) < 0 < ℜ(λ1) ≤ ... ≤ ℜ(λnU

).

For the continuation of HHS orbits, two system parameters have to be varied. We

will now discuss the defining system for the continuation of these homoclinic orbits.

Defining system

To allow a discretization of the HHS orbits, the infinite time interval is truncated, so

that instead of [−∞,+∞] we use [−T,+T], where T is the half-return time. The

discretization is then the same as for limit cycles, see Section 2.8.2, which means

that the equation

ẋ(t)− 2T f (x(t), α) = 0, (3.1)

must be satisfied in the collocation points.

The second part in the defining system is the equilibrium condition

f (x0, α) = 0. (3.2)
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Third, there is a so-called phase condition for the homoclinic solution, which is

not always used but helps to improve the homoclinic continuation

∫ 1

0

˙̃x
∗
(t)[x(t)− x̃(t)]dt = 0. (3.3)

As for limit cycles, x̃(t) is some initial guess for the solution, typically obtained

from the previous continuation step. Note that in the literature also another phase

condition is used, see for example [38]. However, in the present implementation we

employ condition (3.3).

Fourth, there are the homoclinic-specific constraints to the solution. For these

we need access to the stable and unstable eigenspaces of the system linearized about

the equilibrium after each step. It is not efficient to recompute these spaces from

scratch in each continuation-step. Instead, we use the algorithm for continuing

invariant subspaces using only algebraic arguments, a modification of the method

from [12, 29, 35]. We now summarize the steps in this algorithm; details and an

extensive algebraic justification are given in [64].

Suppose we have the following block Schur factorization for A(0) = fx(x0, α0),
the Jacobian matrix at the equilibrium point of a known homoclinic orbit, taken as

a base point for the continuation

A(0) = Q(0) R(0) QT(0), Q(0) = [Q1(0) Q2(0)],

where A(0), R(0) and Q(0) are n × n-matrices, Q(0) is orthogonal, Q1(0) has

dimensions n × k and R(0) is block upper triangular

R(0) =

[
R11 R12

0 R22

]
,

where R11 is an k × k-block (R11 and R22 are not required to be triangular). Then

the columns of Q1(0) span an invariant subspace P(0) of dimension k (e.g. the

stable or unstable subspace) of A(0), and the columns of Q2(0) span the orthogonal

complement P(0)⊥.

What we need for the continuation are the subspace-defining columns for a

matrix A(s) close to A(0), without having to compute everything explicitly again.

We will call these matrices Q1(s) and Q2(s) with

A(s) = Q(s) R(s) QT(s), Q(s) = [Q1(s) Q2(s)],

where s parameterizes the curve of homoclinic orbits.
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As shown in [34], it is always possible to obtain a smooth path of block Schur

factorizations and we can accumulate all transformations in such a way that we are

always looking for corrections close to the identity. Therefore, we can write (for s
sufficiently small)

Q(s) = Q(0) U(s), U(0) = In×n, (3.4)

so that we now need to compute the n × n-matrix U(s). By partitioning U(s) in

blocks of the same size as we partitioned R(0), we obtain

U(s) = [U1(s) U2(s)] =

[
U11(s) U12(s)
U21(s) U22(s)

]
,

where U11(s) has dimensions k × k, and U22(s) has dimensions (n − k)× (n − k).
In [64] it is proven that we can always assume that U11(s) and U22(s) are

symmetric positive-definite, by redefining Q(s) and R(s) if necessary. Now define

for all s the (n − k)× k-matrix Y(s) as

Y(s) = U21(s)U
−1
11 (s).

It is shown in [12,64] that U(s) can be written completely in terms of Y(s):

U(s) = (3.5)
[(

I
Y(s)

)
(I + Y(s)TY(s))−

1
2

(
−Y(s)T

I

)
(I + Y(s)Y(s)T)−

1
2

]
.

We now define T11(s), T12(s), T21(s) and T22(s) by

Q(0)T A(s) Q(0) =

[
T11(s) T12(s)
T21(s) T22(s)

]
. (3.6)

Here T11(s) is of size k × k and T22(s) is an (n − k)× (n − k)-matrix. Using the

invariant subspace relation

QT
2 (s) A(s) Q1(s) = 0,

and executing substitutions using (3.4), (3.5) and (3.6), we obtain the following

algebraic Riccati equation for Y(s):

T22(s) Y(s)− Y(s) T11(s) + T21(s)− Y(s) T12(s) Y(s) = 0. (3.7)
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So to do a quick and smooth subspace continuation of both stable and unstable

subspaces, we only need to keep track of the two small matrices YS(s) ∈ R(n−nS)×nS

(with S for stable) and YU(s) ∈ R(n−nU)×nU (with U for unstable). We use a similar

notation for the stable and unstable variants of T11(s), T12(s), T21(s) and T22(s).
From the matrices YS(s) and YU(s), we can easily compute the span of the stable

and unstable subspaces, and their orthogonal complements.

Therefore, a stable and an unstable variant of the Ricatti equation (3.7) are

added to the defining system for the continuation to keep track of the matrices

YS(s) and YU(s)

T22U(s)YU(s)− YU(s)T11U(s) + T21U(s)− YU(s)T12U(s)YU(s) = 0,

T22S(s)YS(s)− YS(s)T11S(s) + T21S(s)− YS(s)T12S(s)YS(s) = 0.
(3.8)

We can now formulate constraints on the behaviour of the solution close to the

equilibrium x0. The initial vector x(0)− x0 of the orbit is placed in the unstable

eigenspace of the system in the equilibrium. We express this by the requirement

that it is orthogonal to the orthogonal complement of the unstable eigenspace.

Analogously, the end vector x(1)− x0 of the orbit is placed in the stable eigenspace

of the system in the equilibrium. This is expressed by the requirement that the

vector is orthogonal to the orthogonal complement of the stable eigenspace.

Let QU(0) be the orthogonal matrix from the base point related to the unstable

invariant subspace. From (3.4) and (3.5) it follows that a basis of that subspace in

a point s can be computed by

QU(s) = QU(0)

[
I

YU(s)

]
,

while a basis for the orthogonal complement to that subspace can be computed by

QU⊥
(s) = QU(0)

[
−YU(s)

T

I

]
.

Note that in general the bases QU(s) and QU⊥
(s) are not orthogonal. The matrices

for the stable subspace can be computed similarly. The equations to be added to

the system are then

QU⊥
(s)T(x(0)− x0) = 0,

QS⊥ (s)T(x(1)− x0) = 0.
(3.9)

Note that the initial values of YU(0), YS(0) are the zero matrices.
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Finally, the distances between x(0) and x0 and between x(1) and x0 must be

taken into account, so that the following equations are added

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x0‖ − ε1 = 0.
(3.10)

These distances ε0 and ε1 should be small enough. The half-return time T, ε0 and

ε1 are called the homoclinic parameters.

After a user-chosen number of steps, the base point is adapted. This means

that QU(0) and QS(0) are recomputed, YU and YS are reset to zero, and the mesh

is adapted.

Implementation in MatCont

The basic defining system for the continuation of a HHS orbit in two free system

parameters consists of (3.1), (3.2), (3.8), (3.9) and (3.10) with T free and ε0 and

ε1 fixed. So the phase condition (3.3) is not used.

Alternatively, the phase condition (3.3) is added automatically if from the triple

(T, ε0, ε1) two homoclinic parameters are freed, instead of just one. Any combina-

tion of one or two parameters of that triple is possible.

The variables in the defining system are stored in one vector. It contains consec-

utively the values of x(t) in the fine mesh points (including x(0) and x(1)), the free

homoclinic parameters, two free system parameters, the coordinates of the saddle

x0, and the elements of the matrices YS and YU.

3.2.2 Homoclinic-to-Saddle-Node orbits

When the equilibrium x0 is a saddle-node, the eigenvalues of fx(x0, α0) can be

ordered as

ℜ(µnS
) ≤ ... ≤ ℜ(µ1) < ν = 0 < ℜ(λ1) ≤ ... ≤ ℜ(λnU

).

For a Homoclinic-to-Saddle-Node orbit, the extended defining system undergoes

some small changes. The vector x(0)− x0 has to be placed in the center-unstable

subspace (i.e. the subspace spanned by the eigenvectors corresponding to the

eigenvalues ν, λ1, . . . , λnU
), instead of the unstable space. Analogously, x(1) −

x0 must be in the center-stable subspace (i.e. the subspace spanned by the

eigenvectors corresponding to the eigenvalues ν, µ1, . . . , µnS
).
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The vector-condition is again implemented by requiring that the vector is orthog-

onal to the orthogonal complement of the corresponding space. So the equations

(3.9) themselves do not really change; the changes happen in the computation of

the matrices Q. Indeed, the equations (3.9) correspond now with n− 1 restrictions,

i.e. one condition less than in the case of Homoclinic-to-Hyperbolic-Saddle orbits.

The number of equations is restored by adding the constraint that the equilibrium

must be a saddle-node, i.e. the equilibrium has the eigenvalue ν = 0. For this we

use the bordering technique, as described in Section 4.2.1 of [49]. The technique

basically requires g to be zero, where g is obtained by solving

(
fx(x0, α) wbor

vT
bor 0

)(
v
g

)
=

(
0
1

)
. (3.11)

Here wbor and vbor are bordering vectors, chosen in such a way that the matrix in

(3.11) is nonsingular. These vectors have to be adapted at the adaptation steps.

Taking the previous remarks into account, the defining system for the continuation

of HSN orbits is given by (3.1)− (3.2)− (g = 0)− (3.3)− (3.8)− (3.9)− (3.10).

3.2.3 Heteroclinic Orbits

The defining equations for the continuation of heteroclinic orbits are very similar

to the ones of HHS orbits. The following small changes have to be executed. The

vector x(1)− x1 has to be placed in the stable eigenspace of x1, the end distance

‖x(1)− x1‖ has to be small enough and the Schur decomposition in the stable

variant of the Ricatti equation factorizes the matrix fx(x1, α0). Therefore, the

defining system is given by

ẋ(t)− 2T f (x(t), α) = 0,

f (x0, α) = 0,

f (x1, α) = 0,
∫ 1

0

˙̃x
∗
(t)[x(t)− x̃(t)]dt = 0,

T22U(s)YU(s) − YU(s)T11U(s) + T21U(s) − YU(s)T12U(s)YU(s) = 0,

T22S(s)YS(s) − YS(s) T11S(s) + T21S(s) − YS(s) T12S(s)YS(s) = 0,

QU⊥
(s)T(x(0)− x0) = 0,
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QS⊥ (s)T(x(1)− x1) = 0,

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x1‖ − ε1 = 0.

3.3 Starting Strategies for Homoclinic-to-Hyper-

bolic-Saddle orbits

In this section we examine two ways in which the continuation of HHS orbits in

MatCont can be initialized. We briefly review the earlier implemented method where

the HHS orbit is started from a limit cycle with a large period [32]. The algorithm

and our implementation of the initialization by making use of the homotopy method,

starting from a saddle equilibrium will be extensively discussed in Section 3.3.2.

3.3.1 Starting from a limit cycle with large period

When starting from a limit cycle with large period, the user must first declare the

cycle to be close to a Homoclinic-to-Hyperbolic-Saddle orbit. Automatically, initial

values for the homoclinic parameters are computed. The program looks for the point

on the cycle with smallest ‖ f (x, α)‖. This point is taken as a first approximation

for the equilibrium x0.

The mesh points of the limit cycle are kept as mesh points for the homoclinic

orbit, except for the mesh interval that contains the current equilibrium approxima-

tion. This mesh interval is deleted, as it will grow to infinity in the homoclinic orbit.

In memory, the stored cycle then needs to be ’rotated’, so that the first point x(0)
and the last point x(1) of the homoclinic orbit are effectively stored as first and

last point, respectively. Half of the time span of the remaining part of the cycle is

kept as initial value for T. Initial values for ε0 and ε1 are also computed; these are

found by simply computing the distance from x(0) and x(1) to the approximated

equilibrium.

Then the user has to select 2 free system parameters, and 1 or 2 of the homo-

clinic parameters T, ε0, ε1. The defining system (i.e. the number of equations) is

automatically adjusted according to the choice of the user.
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3.3.2 Starting by homotopy

The method

For the initialization of HHS orbits, there is an efficient method that constructs

a Homoclinic-to-Hyperbolic-Saddle orbit starting from only the saddle equilibrium

x
(0)
0 .

As described in Section 3.2.1, the defining equations for the continuation of a

homoclinic orbit can be written as

ẋ(t)− 2T f (x(t), α) = 0,

f (x0, α) = 0,
∫ 1

0

˙̃x
∗
(t)[x(t)− x̃(t)]dt = 0,

QU⊥ ,T(x(0)− x0) = 0,

QS⊥ ,T(x(1)− x0) = 0,

T22UYU − YUT11U + T21U − YUT12UYU = 0,

T22SYS − YST11S + T21S − YST12SYS = 0,

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x0‖ − ε1 = 0,

(3.12)

where QU⊥ ∈ Rn×nS , QS⊥ ∈ Rn×nU , YU ∈ RnS×nU and YS ∈ RnU×nS .

If the phase condition is added in the continuation, two of the three homo-

clinic parameters T, ε0, ε1 are freed, otherwise just one homoclinic parameter is

freed. Without phase condition the number of constraints is equal to Nmn + 2n +
2 + 2nU nS. The free scalar variables are given by xM, x0, α1, T, YU , YS, where α1

is the free system parameter, so that the number of free scalar variables equals

Nmn + 2n + 2 + 2nU nS. If the phase condition is added, the number of con-

straints is augmented by one and an extra homoclinic parameter has to be freed.

For continuation, a second system parameter has to be freed.

Initially the projections QU⊥ ,(0) and QS⊥ ,(0) are constructed using the real Schur

factorizations:

fx(x
(0)
0 , α) = Q

(0)
0 R

(0)
0 Q

(0),T
0 , Q

(0)
0 = [QU,(0) QU⊥ ,(0)],

fx(x
(0)
0 , α) = Q

(0)
1 R

(0)
1 Q

(0),T
1 , Q

(0)
1 = [QS,(0) QS⊥ ,(0)].

(3.13)
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These first factorizations are chosen so that the nU columns q
(0)
0,1 , ..., q

(0)
0,nU

of QU,(0)

form an orthonormal basis of the right invariant subspace SU
0 of fx(x

(0)
0 , α), corre-

sponding to the eigenvalues λ
(0)
1 , ..., λ

(0)
nU

, and the nS = n− nU columns q
(0)
0,nU+1, ...,

q
(0)
0,nU+nS

of QU⊥ ,(0) form an orthonormal basis of the orthogonal complement SU⊥
0 .

Similarly, the nS columns q
(0)
1,1 , ..., q

(0)
1,nS

of QS,(0) form an orthonormal basis of the

right invariant subspace SS
0 of fx(x

(0)
0 , α), corresponding to the eigenvalues µ

(0)
1 , ...,

µ
(0)
nS

, and the nU columns q
(0)
1,nS+1, ..., q

(0)
1,nS+nU

of QS⊥ ,(0) form an orthonormal basis

of the orthogonal complement SS⊥
0 .

Moreover, let SU
0,k, k = 1, ..., nU , be the right invariant subspace of fx(x

(0)
0 , α)

corresponding to the eigenvalues λ
(0)
1 , ..., λ

(0)
k , whenever either λ

(0)
k is real or the

couple (λ
(0)
k−1, λ

(0)
k ) forms a conjugate pair of complex eigenvalues. Then the first

k columns q
(0)
0,1 , ..., q

(0)
0,k of Q

(0)
0 form an orthonormal basis of SU

0,k and the remaining

n − k columns q
(0)
0,k+1, ..., q

(0)
0,n of Q

(0)
0 form an orthonormal basis of the orthogonal

complement SU⊥
0,k . The analog holds for the subspace corresponding to the negative

eigenvalues.

The construction process of a homoclinic orbit fitting the equations (3.12), from a

saddle equilibrium, is splitted into several steps in the algorithm below. The basic

ideas of this homotopy method were formulated in [39,40]. We first give the outline

of the algorithm and then write down the explicit equations.

The beginning vector x(0)− x0 of a homoclinic orbit lies in the eigenspace of the

leading unstable eigenvalues. We start by choosing an initial point in this space, not

far from the saddle equilibrium x
(0)
0 , say x(0) = x

(0)
0 + ε0(c1q

(0)
0,1 + c2q

(0)
0,2 ). Here,

c2 is nonzero only when λ1 and λ2 form a complex conjugate pair. Now there are

two possibilities. Either, we obtain an initial connecting orbit by time integration,

starting from the above mentioned point x(0). Or, we initialize a small connecting

orbit segment [0, T] by the constant x(0) and extend this initial orbit segment by

continuation with respect to T.

Define τi = 1
ε1
〈x(1) − x

(0)
0 , q

(0)
1,nS+i〉, for i = 1, . . . , nU. Typically, the initial

connecting orbit is a crude orbit with initial point x(0) ∈ SU
0 but the terminal

point x(1) /∈ SS
0 . Hence the τi’s are, in general, nonzero. However, for a HHS

orbit it must hold that x(1) ∈ SS
0 so τi = 0, for i = 1, . . . , nU. By a sequence of
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homotopies we will locate zero intercepts of the τi’s.

Define now ci as ci =
1
ε0
〈x(0)− x

(0)
0 , q

(0)
0,i 〉, for i = 1, . . . , nU. This is consistent

with the use of c1 and c2 in the definition of x(0) above. In the first homotopy

step we try to locate a zero intercept of one of the τi’s. To this end, all τi’s

are free and both c1 and c2 are free under the restriction that c2
1 + c2

2 = 1, since

‖x(0)− x0‖ = ε0. In the following homotopy steps, we fix all τj’s that are zero

already, and try to locate a zero of another τi, while each time freeing an additional

ci, to replace the fixed equation τj = 0 and thus to keep the same number of free

variables. So, in the successive steps we let the initial point x(0) vary within a wider

subspace of the unstable eigenspace SU
0 of x

(0)
0 in order to place the end point x(1)

in the stable eigenspace SS
0 of x

(0)
0 . More specifically, we keep x(1) free, while x(0)

is allowed to vary on the hypersphere in SU
0 of radius ε0.

In the previous successive homotopies, zero intercepts are detected of all τi’s

except for one. This last τi can be made zero, by varying one component of the

system parameter α. This requires recalculation of the saddle equilibrium x0, and

of the matrices QU⊥
and QS⊥ , by use of the matrices YU and YS. When having

detected a zero intercept of the last τi, the end vector x(1)− x0 lies within the stable

eigenspace SS
0 of x0. However, the distance ε1 is not necessarily small. Therefore,

one more continuation, with T, ε1 and one system parameter free, is needed to

make ε1 small enough in order to find a proper starting orbit for the continuation

of homoclinic orbits.

In each homotopy step we compute a branch, i.e. a one-dimensional manifold,

of solutions. For this there must hold that nc − nv = −1, where nc is the number

of constraints and nv is the number of free scalar variables.

The described procedure converges, provided the initialization is sufficiently close

to the homoclinic situation, see convergence theorem in [39].

The algorithm

We now describe the algorithm in detail.

ALGORITHM. Locating a homoclinic orbit by homotopy.

Input.

x
(0)
0 ∈ Rn, α ∈ Rp, fx(x

(0)
0 , α), and the real Schur factorizations (3.13).

1. Locating a connecting orbit, α is fixed.
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Step 1. We have already mentioned that either a time integration or a con-

tinuation can be used to compute an initial connecting orbit. When we use

time integration, the starting point is given by

x(0) = x
(0)
0 + ε0(c1q

(0)
0,1 + c2q

(0)
0,2 ),

where c2 is zero, except in the case that the eigenvalues with smallest positive

real part consist of a complex conjugate pair. Note that c2
1 + c2

2 = 1 and

c3 = . . . = cnU
= 0.

If continuation is used, set the algorithm parameters ε0 and T to small, positive

values, so that x(t) is approximately constant on [0, T], or after rescaling on

[0, 1]. To be specific, set

x(t) = x
(0)
0 + ε0(c1q

(0)
0,1 + c2q

(0)
0,2 ), 0 ≤ t ≤ 1,

with the same remark for c2 as above. Extend this small starting segment by

continuation where the defining equations are given by

ẋC − 2T f (xC, α) = 0,

ε0ci − 〈x(0)− x
(0)
0 , q

(0)
0,i 〉 = 0, i = 1, ..., nU ,

τi −
1

ε1
〈x(1)− x

(0)
0 , q

(0)
1,nS+i〉 = 0, i = 1, ..., nU ,

〈x(0)− x
(0)
0 , q

(0)
0,nU+i〉 = 0, i = 1, ..., nS,

‖x(1)− x
(0)
0 ‖ − ε1 = 0.

(3.14)

This gives us nc = Nmn+ n+ nU + 1 constraints and the free scalar variables

are xM, τ1, . . . τnU
, T, ε1 so that nv = Nmn + n + nU + 2. Therefore, it is

possible to compute a branch of solutions to system (3.14) in the direction of

increasing T.

Typically ε1 initially increases and then starts to decrease. In practice one

usually executes time-integration or continuation until ε1 stops decreasing, its

value being not necessarily small.

Steps k, k = 2, ..., nU (for nU > 1). Compute a branch of solutions to the

45



CHAPTER 3. HOMOCLINIC AND HETEROCLINIC ORBITS

system

ẋC − 2T f (xC, α) = 0,

ε0ci − 〈x(0)− x
(0)
0 , q

(0)
0,i 〉 = 0, i = 1, ..., nU ,

τi −
1

ε1
〈x(1)− x

(0)
0 , q

(0)
1,nS+i〉 = 0, i = 1, ..., nU ,

〈x(0)− x
(0)
0 , q

(0)
0,nU+i〉 = 0, i = 1, ..., nS,

‖x(0)− x
(0)
0 ‖ − ε0 = 0,

‖x(1)− x
(0)
0 ‖ − ε1 = 0,

to locate a zero of, say, τk−1 (while τ1, ..., τk−2 = 0 are fixed). Free scalar

variables are xM, c1, ..., ck, τk−1, ..., τnU
, ε1. Therefore, there are nc = Nmn +

n + nU + 2 constraints and nv = Nmn + n + nU + 3 free scalar variables, so

nc − nv = −1.

At the end of these successive steps, all the τ’s are zero except for one.

Remark that zero intercepts of the τi’s don’t have to be located in the order

τ1, τ2, . . ., but any order is possible.

2. Locating a connecting orbit, α varies.

Step nU + 1. Compute a branch of solutions to the system

ẋC − 2T f (xC, α) = 0,

f (x0, α) = 0,

〈x(0)− x0, q0,nU+i〉 = 0, i = 1, ..., nS,

τi −
1

ε1
〈x(1)− x0, q1,nS+i〉 = 0, i = 1, ..., nU ,

T22UYU − YUT11U + T21U − YUT12UYU = 0,

T22SYS − YST11S + T21S − YST12SYS = 0,

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x0‖ − ε1 = 0,

where YU ∈ RnS×nU , YS ∈ RnU×nS , to locate a zero of τnU
(while τ1, ...,

τnU−1 = 0 are fixed). Free scalar variables are xM, x0, α1, τnU
, ε1, YU , YS.

This gives us nc = Nmn + 2n + 2 + 2nU nS constraints and nv = Nmn +
2n + 3 + 2nU nS free scalar variables, so nc − nv = −1.

46



3.3. STARTING STRATEGIES FOR HHS ORBITS

Now, the end vector x(1)− x0 lies within the stable eigenspace of the saddle

equilibrium.

3. Increasing the accuracy of the connecting orbit, α varies.

Step nU + 2. Compute a branch of solutions to the system

ẋC − 2T f (xC, α) = 0,

f (x0, α) = 0,

〈x(0)− x0, q0,nU+i〉 = 0, i = 1, ..., nS,

〈x(1)− x0, q1,nS+i〉 = 0, i = 1, ..., nU ,

T22UYU − YUT11U + T21U − YUT12UYU = 0,

T22SYS − YST11S + T21S − YST12SYS = 0,

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x0‖ − ε1 = 0,

where YU ∈ RnS×nU , YS ∈ RnU×nS , in the direction of decreasing ε1 until

this distance is ’small’. Free scalar variables are xM, x0, α1, T, ε1, YU , YS. As

before, nc = Nmn + 2n + 2 + 2nU nS and nv = Nmn + 2n + 3 + 2nU nS.

By executing the successive steps of the algorithm, a connecting orbit is constructed

with the beginning vector lying in the unstable eigenspace of the saddle equilibrium,

the end vector lying in the stable eigenspace, and ε0 and ε1 small. Now, the

continuation of HHS orbits can be started, with (3.12) as defining system.

Implementation in MatCont

In MatCont, the initial connecting orbit in the first step is obtained by time-

integration since in our experiments this approach led to more stable results. Fur-

ther, the ci’s are denoted as UParam1, UParam2, etc. (the notation refers to un-

stable connection parameters) and the τi’s are denoted as SParam1, SParam2,

etc. (the notation refers to stable connection parameters). In the ’Type’ menu in

the MatCont window, the curve type of the initial orbit is ConnectionSaddle and the

curve type of the successive continuations is denoted as HomotopySaddle. In the

MatCont window these curve types are abbreviated to ConnecHom and HTHom. So

the curve of the time-integration appears in the MatCont window as EP_ConnecHom

and the possible continuations as ConnecHom_HTHom, HTHom_HTHom, HTHom_Hom.
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We now consider the starter windows of the successive curves. The left Starter

of Figure 3.1 shows the starter window of EP_ConnecHom. The coordinates of the

saddle equilibrium x
(0)
0 , the system parameters, UParam1 and UParam2 and the dis-

tance ε0 have to be filled in by the user. When the eigenvalue with smallest positive

real part is real, only UParam1 is taken into account (whatever value to UParam2 is

given). Then two opposite directions are candidates for the position of the starting

point x(0). The chosen direction is determined by the sign of UParam1. When the

eigenvalues with smallest positive real part consist of a complex conjugate pair, the

starting point is determined by x(0) = x
(0)
0 + ε0(UParam1 q

(0)
0,1+UParam2 q

(0)
0,2 ). So

the beginning vector can lie in a two-dimensional space that doesn’t make it obvious

at all in which direction we have to start. Only trial and error helps in this case.

Figure 3.1: Starter windows.

To make it easier for the user when choosing the unstable connection param-

eters, the condition UParam12+UParam22 = 1 can be ignored in the first step.

UParam1 and UParam2 are automatically rescaled by MatCont so that this condi-

tion is fulfilled.

When the user obtains a satisfactory connecting orbit after time integration,

the button ’Select Connection’ has to be pressed. The user can then choose the

number of mesh intervals and collocation points. By default, 40 mesh intervals

and 4 collocation points are used. The code now searches for the point on the
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time-integrated orbit where ε1 stops decreasing for the last time. If such a point

doesn’t exist, the last point of the orbit is taken. This point is selected as the end

point of the initial connecting orbit.

The starter window for ConnecHom_HTHom and HTHom_HTHom is illustrated on

the right of Figure 3.1. In the successive continuations the user has to indicate

the free system parameter, the free connection parameters and the free homoclinic

parameters. Error catches are provided, e.g. if a stable connection parameter equal

to zero is denoted as free, an error window appears.

In the successive continuations that locate zero intercepts of the SParams, a test

function determines whether an SParam has become zero. This test function is the

product of the free stable connection parameters. In the continuation to make ε1

small, the test function is given by ε1−eps1tol, where eps1tol is a tolerance, chosen

by the user, which determines how small ε1 is wanted.

Examples of the homotopy method for HHS orbits are given in Section 3.6.1,

Section 3.6.2 and Section 3.6.3.

3.4 Starting Homoclinic-to-Saddle-Node orbits by

homotopy

We also have implemented the homotopy method for HSN orbits.

3.4.1 The method

In the homotopy method for HSN orbits, we start from a saddle-node equilibrium

x
(0)
0 to construct a Homoclinic-to-Saddle-Node orbit. The defining equations for the

continuation of a HSN orbit consist of (3.12), where QU⊥ ∈ Rn×nS , QS⊥ ∈ Rn×nU

as before but YU ∈ R(nS+1)×nU and YS ∈ R(nU+1)×nS , supplemented by the

equation

g = 0, (3.15)

where g is computed by solving (3.11).

If the phase condition is added in the continuation, two of the three homoclinic

parameters T, ε0, ε1 are freed, otherwise just one homoclinic parameter is freed.

Without phase condition, the number of constraints equals Nmn + 2n + 2+ (nS +
1)nU + (nU + 1)nS and xM, x0, α1, T, YU , YS are the free scalar variables so nv =
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Nmn + 2n + 2 + (nS + 1)nU + (nU + 1)nS. If the phase condition is added, the

number of constraints is augmented by one and an extra homoclinic parameter

has to be freed. For continuation a second parameter has to be varied so that

nc − nv = −1.

In the system given by the equations (3.12) and equation (3.15) the columns

of QU⊥
span the orthogonal complement of the center-unstable eigenspace of the

saddle-node equilibrium while the columns of QS⊥ span the orthogonal complement

of the center-stable eigenspace. As in the homotopy method for HHS orbits, initially

these projections are constructed using the real Schur factorizations:

fx(x
(0)
0 , α) = Q

(0)
0 R

(0)
0 Q

(0),T
0 , Q

(0)
0 = [QU,(0) QU⊥ ,(0)],

fx(x
(0)
0 , α) = Q

(0)
1 R

(0)
1 Q

(0),T
1 , Q

(0)
1 = [QS,(0) QS⊥ ,(0)].

(3.16)

These first factorizations are chosen so that the nU + 1 columns q
(0)
0,1 , ..., q

(0)
0,nU+1 of

QU,(0) form an orthonormal basis of the right invariant subspace SU
0 of fx(x

(0)
0 , α),

corresponding to the eigenvalues λ
(0)
1 , ..., λ

(0)
nU

, λ
(0)
nU+1 (with λ

(0)
nU+1 = ν(0)) and the

nS = n− nU − 1 columns q
(0)
0,nU+1+i, i = 1, . . . , nS, of QU⊥ ,(0) form an orthonormal

basis of the orthogonal complement SU⊥
0 . Similarly, the nS + 1 columns q

(0)
1,1 , ...,

q
(0)
1,nS+1 of QS,(0) form an orthonormal basis of the right invariant subspace SS

0

of fx(x
(0)
0 , α), corresponding to the eigenvalues µ

(0)
1 , ..., µ

(0)
nS

, µ
(0)
nS+1 (with µ

(0)
nS+1 =

ν(0)), and the nU columns q
(0)
1,nS+1+i, i = 1, . . . , nU, of QS⊥ ,(0) form an orthonormal

basis of the orthogonal complement SS⊥
0 .

Moreover, let SU
0,k, k = 1, ..., nU + 1, be the right invariant subspace of fx(x

(0)
0 ,

α) corresponding to the eigenvalues λ
(0)
1 , ..., λ

(0)
k , whenever either λ

(0)
k is real or the

couple (λ
(0)
k−1, λ

(0)
k ) forms a conjugate pair of complex eigenvalues. Then the first k

columns q
(0)
0,1 , . . . , q

(0)
0,k of Q

(0)
0 form an orthonormal basis of SU

0,k and the remaining

n − k columns q
(0)
0,k+1, ..., q

(0)
0,n of Q

(0)
0 form an orthonormal basis of the orthogonal

complement SU⊥
0,k . The analog holds for the subspace corresponding to the negative

eigenvalues.

The construction process of a HSN orbit fitting equations (3.12) and equation

(3.15) from a saddle-node equilibrium is analogous to the homotopy method for
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HHS orbits, although there are some essential differences. We discuss them first,

before giving the explicit equations.

The beginning vector of a HSN orbit lies in the eigenspace corresponding to

the zero eigenvalue. Therefore, only two opposite directions are candidates for

starting direction, which makes it easier to find a proper initial connecting orbit

compared to a HHS orbit where the proper direction can have to be searched for in

a two-dimensional space.

Now, possibly nU or nS is equal to zero. If nU equals zero, the center-stable

space is the whole phase space so only one homotopy step in which ε1 is made

small, needs to be executed.

Since the number of c’s is one more than the number of τ’s, no system parame-

ter has to be varied in the series of continuations that makes the stable connection

parameters zero. Indeed, when nU is strictly positive, in the first homotopy step

two c’s are free and all the τ’s are free, and in the following steps each time one

more c is freed to replace the fixed equation τ = 0. Also the continuation that

makes ε1 small requires no free system parameter.

3.4.2 The algorithm

We now consider the algorithm in more detail.

ALGORITHM. Locating a Homoclinic-to-Saddle-Node orbit by homotopy.

Input.

x
(0)
0 ∈ Rn, fx(x

(0)
0 , α), and the real Schur factorizations (3.16).

1. Locating a connecting orbit.

Step 1. A HSN orbit starts in the direction of the eigenvector q corresponding

to the zero eigenvalue ν. The first step of the homotopy method can be done

either by time integration or continuation. If we choose time integration, we

start from the point x(0) = x
(0)
0 + ε0c1q(0). The value of c1 is either 1 or

−1 and c2, . . . , cnU+1 are put equal to zero. If continuation is used, we set

a small orbit segment equal to a constant, namely x(t) = x
(0)
0 + ε0c1q(0) in

[0, T] for small values of T and ε0, and with the same remark for the c’s. We
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then extend this segment by continuation using the following equations

ẋC − 2T f (xC, α) = 0,

ε0ci − 〈x(0)− x
(0)
0 , q

(0)
0,i 〉 = 0, i = 1, ..., nU + 1,

τi −
1

ε1
〈x(1)− x

(0)
0 , q

(0)
1,nS+1+i〉 = 0, i = 1, ..., nU ,

〈x(0)− x
(0)
0 , q

(0)
0,nU+1+i〉 = 0, i = 1, ..., nS,

‖x(1)− x
(0)
0 ‖ − ε1 = 0.

This gives us nc = Nmn+ n+ nU + 1 constraints and the free scalar variables

are xM, τ1, . . . τnU
, T, ε1, so nv = Nmn + n + nU + 2.

Again, typically ε1 first increases and then starts to decrease. We stop the

time integration or continuation when ε1 stops decreasing.

Steps k, k = 2, ..., nU + 1 (nU ≥ 1). Compute a branch of solutions to the

system

ẋC − 2T f (xC, α) = 0,

ε0ci − 〈x(0)− x
(0)
0 , q

(0)
0,i 〉 = 0, i = 1, ..., nU + 1,

τi −
1

ε1
〈x(1)− x

(0)
0 , q

(0)
1,nS+1+i〉 = 0, i = 1, ..., nU ,

〈x(0)− x
(0)
0 , q

(0)
0,nU+1+i〉 = 0, i = 1, ..., nS,

‖x(0)− x
(0)
0 ‖ − ε0 = 0,

‖x(1)− x
(0)
0 ‖ − ε1 = 0,

to locate a zero of, say, τk−1 (while τ1, . . . , τk−2 = 0 are fixed). The number

of constraints is nc = Nmn + n + nU + 2 and the free scalar variables are

given by xM, c1, . . . ck, τk−1, . . . τnU
, ε1, so that nv = Nmn+ n+ nU + 3, and

thus nc − nv = −1.

The τ’s can be made zero in any possible order. At the end of these suc-

cessive continuations the end vector x(1)− x
(0)
0 lies within the center-stable

eigenspace of x
(0)
0 .

2. Increasing the accuracy of the connecting orbit.
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Step nU + 2. Compute a branch of solutions to the system

ẋC − 2T f (xC, α) = 0,

〈x(0)− x
(0)
0 , q

(0)
0,nU+1+i〉 = 0, i = 1, ..., nS,

〈x(1)− x
(0)
0 , q

(0)
1,nS+1+i〉 = 0, i = 1, ..., nU ,

‖x(0)− x
(0)
0 ‖ − ε0 = 0,

‖x(1)− x
(0)
0 ‖ − ε1 = 0,

in the direction of decreasing ε1 until this distance is ’small’. The number of

constraints is nc = Nmn + n + 1 and the free scalar variables are xM, T, ε1,

so that nv = Nmn + n + 2.

The successive homotopies give a connecting orbit where the starting vector lies

within the center-unstable eigenspace of the equilibrium, where the end vector lies

within the center-stable eigenspace and where the distances ε0 and ε1 are small, so

the continuation of HSN orbits can be started.

3.4.3 Implementation in MatCont

Analogous notation as for HHS orbits is used. In the ’Type’ menu in the Mat-

Cont window the types ConnectionSaddleNode and HomotopySaddleNode are used.

In the MatCont window, the curve of the time-integration is LP_ConnecHSN and

ConnecHSN_HTHSN, HTHSN_HTHSN and HTHSN_HSN form the successive continua-

tions. The starter windows are similar to the Starters used in the homotopy method

for HHS orbits, except that in the Starter of LP_ConnecHSN only UParam1 has to be

filled in by the user, since the starting vector lies in the direction of the eigenvector

corresponding to the zero eigenvalue.

We give an example of the method in Section 3.6.4.

3.5 Starting heteroclinic orbits by homotopy

We also have implemented the homotopy method for heteroclinic orbits.
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3.5.1 The method

An analogous homotopy method for heteroclinic orbits is also implemented. Let

ℜ(µnS
) ≤ ... ≤ ℜ(µ1) < 0 < ℜ(λ1) ≤ ... ≤ ℜ(λnU

),

where λ1, ..., λnU
are the eigenvalues of fx(x0, α) with nonnegative real part and µ1,

..., µnS
are the eigenvalues of fx(x1, α) with nonpositive real part (with x(t) → x0

as t → −∞ and x(t) → x1 as t → +∞). The defining system for the continuation

of heteroclinic orbits is given by

ẋC − 2T f (xC, α) = 0,

f (x0, α) = 0,

f (x1, α) = 0,
∫ 1

0

˙̃x
∗
(t)[x(t)− x̃(t)]dt = 0,

QU⊥ ,T(x(0)− x0) = 0,

QS⊥ ,T(x(1)− x1) = 0,

T22UYU − YUT11U + T21U − YUT12UYU = 0,

T22SYS − YST11S + T21S − YST12SYS = 0,

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x1‖ − ε1 = 0,

(3.17)

with QU⊥ ∈ Rn×(n−nU), QS⊥ ∈ Rn×(n−nS), YU ∈ R(n−nU)×nU , YS ∈ R(n−nS)×nS .

If the phase condition is added in the continuation, two of the three heteroclinic

parameters T, ε0, ε1 are freed, otherwise just one heteroclinic parameter is freed.

We remark that without phase condition in system (3.17) the number of constraints

equals Nmn + 4n − nU − nS + 2 + (n − nU)nU + (n − nS)nS and the free scalar

variables are given by xM, x0, x1, α1, . . . , αnα−1, T, YU , YS, so that nv = Nmn +
3n + nα + (n − nU)nU + (n − nS)nS. If the phase condition is added, the number

of constraints is augmented by one and an extra heteroclinic parameter has to be

freed. For continuation another parameter has to be freed. Since for continuation

nc − nv has to be equal to −1, we can conclude that the number of free system

parameters has to be equal to nα = n − (nU + nS) + 2.

The method is very similar to the homotopy method for HHS orbits. Remark

that since we deal with two different equilibria, in the first step ε1 is not necessarily
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initially increasing. But again, generally, we stop time integration or continuation

when ε1 stops decreasing.

3.5.2 The algorithm

ALGORITHM. Locating a heteroclinic orbit by homotopy.

Input.

x
(0)
0 ∈ Rn, x

(0)
1 ∈ Rn, α = (α1, . . . , αnα−1) ∈ Rnα−1, fx(x

(0)
0 , α), fx(x

(0)
1 , α), and

the real Schur factorizations of these matrices.

1. Locating a connecting orbit, α is fixed.

Step 1. The first step can be done either by time integration or by continua-

tion. If we choose time integration, we start from x(0) = x
(0)
0 + ε0(c1q

(0)
0,1 +

c2q
(0)
0,2 ), with the same remark about c1 and c2 as for HHS orbits. If contin-

uation is used, we set x(t) = x
(0)
0 + ε0(c1q

(0)
0,1 + c2q

(0)
0,2 ) in [0, T] for a small

value of T and ε0, and extend this segment by continuation using the following

equations

ẋC − 2T f (xC, α) = 0,

ε0ci − 〈x(0)− x
(0)
0 , q

(0)
0,i 〉 = 0, i = 1, ..., nU ,

τi −
1

ε1
〈x(1)− x

(0)
1 , q

(0)
1,nS+i〉 = 0, i = 1, ..., n − nS,

〈x(0)− x
(0)
0 , q

(0)
0,nU+i〉 = 0, i = 1, ..., n − nU ,

‖x(1)− x
(0)
1 ‖ − ε1 = 0.

This gives us nc = Nmn + 2n − nS + 1 constraints and the free scalar vari-

ables are xM, τ1, . . . τn−nS
, T, ε1, so that nv = Nmn + 2n − nS + 2.

We stop the time integration or continuation when ε1 stops decreasing.

Steps k, k = 2, ..., nU (for nU > 1). Compute a branch of solutions to the
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system

ẋC − 2T f (xC, α) = 0,

ε0ci − 〈x(0)− x
(0)
0 , q

(0)
0,i 〉 = 0, i = 1, ..., nU ,

τi −
1

ε1
〈x(1)− x

(0)
1 , q

(0)
1,nS+i〉 = 0, i = 1, ..., n − nS,

〈x(0)− x
(0)
0 , q

(0)
0,nU+i〉 = 0, i = 1, ..., n − nU ,

‖x(0)− x
(0)
0 ‖ − ε0 = 0,

‖x(1)− x
(0)
1 ‖ − ε1 = 0,

to locate a zero of, say, τk−1 (while τ1, . . . , τk−2 = 0, fixed). The number

of constraints is nc = Nmn + 2n − nS + 2 and the free scalar variables are

given by xM, c1, . . . ck, τk−1, . . . τn−nS
, ε1, so that nv = Nmn + 2n − nS + 3,

and thus nc − nv = −1.

At the end of these successive continuations τ1 = . . . = τnU−1 = 0. Remark

that the τ’s can be made zero in any possible order.

2. Locating a connecting orbit, α varies.

Steps k, k = nU + 1, ..., n − nS + 1 (for n − nS ≥ nU). Compute a branch of

solutions to the system

ẋC − 2T f (xC, α) = 0,

f (x0, α) = 0,

f (x1, α) = 0,

〈x(0)− x0, q0,nU+i〉 = 0, i = 1, ..., n − nU ,

τi −
1

ε1
〈x(1)− x1, q1,nS+i〉 = 0, i = 1, ..., n − nS,

T22UYU − YUT11U + T21U − YUT12UYU = 0,

T22SYS − YST11S + T21S − YST12SYS = 0,

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x1‖ − ε1 = 0,

where YU ∈ R(n−nU)×nU , YS ∈ R(n−nS)×nS , to locate a zero of τk−1 (while

τ1, ..., τk−2 = 0, fixed). The number of constraints is nc = Nmn+ 4n− nU −
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nS + 2 + (n − nU)nU + (n − nS)nS and the free scalar variables are xM, x0,
x1, α1, . . . αk−nU

, τk−1, . . . τn−nS
, ε1, YU , YS, so that nv = Nmn + 4n − nU −

nS + 3 + (n − nU)nU + (n − nS)nS.

At the end of these homotopies all the τ’s are zero. Again, any order in which

zero intercepts of the τ’s are detected is possible.

3. Increasing the accuracy of the connecting orbit, α varies.

Step n − nS + 2. Compute a branch of solutions to the system

ẋC − 2T f (xC, α) = 0,

f (x0, α) = 0,

f (x1, α) = 0,

〈x(0)− x0, q0,nU+i〉 = 0, i = 1, ..., n − nU ,

〈x(1)− x1, q1,nS+i〉 = 0, i = 1, ..., n − nS,

T22UYU − YUT11U + T21U − YUT12UYU = 0,

T22SYS − YST11S + T21S − YST12SYS = 0,

‖x(0)− x0‖ − ε0 = 0,

‖x(1)− x1‖ − ε1 = 0,

where YU ∈ R(n−nU)×nU , YS ∈ R(n−nS)×nS , in the direction of decreasing

ε1 until this end distance is ’small’. The number of constraints is nc =
Nmn + 4n − nU − nS + 2 + (n − nU)nU + (n − nS)nS and the free scalar

variables are xM, x0, x1, α1, . . . αnα−1, T, ε1, YU , YS, so that nv = Nmn+ 3n+
nα + 1 + (n − nU)nU + (n − nS)nS = Nmn + 4n − nU − nS + 3 + (n −
nU)nU + (n − nS)nS.

After these homotopies, a proper starting orbit for the continuation of heteroclinic

orbits is obtained.

3.5.3 Implementation in MatCont

Analogous notation as for HHS and HSN orbits is used. The curve of the time-

integration is EP_ConnecHet and the possible continuations are denoted as Connec-

Het_HTHet, HTHet_HTHet, HTHet_Het. The full notation in the ’Type’ menu is

given by ConnectionHet and HomotopyHet. The starter windows are similar to the
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starters used in the homotopy method for HHS orbits, except that in the starter of

EP_ConnecHet x
(0)
0 and x

(0)
1 has to be filled in by the user.

We give an example of the method in Section 3.6.5.

3.6 Examples

In this section we examine examples in which the homotopy method is applied. In

Section 3.6.1 we consider a homoclinic bifurcation curve, obtained by the succes-

sive continuations method, that spirals towards the so-called T-point in the Lorenz

system. In Section 3.6.2 and Section 3.6.3 we focus on the difficult case where

the leading unstable eigenvalues of the HHS orbit consist of a complex conjugate

pair and thus the starting direction has to be searched in a two-dimensional space.

Section 3.6.4 and Section 3.6.5 illustrate the robustness of the homotopy method

for HSN orbits and heteroclinic orbits, respectively.

3.6.1 HHS orbits in the Lorenz system

One of the best-known dynamical systems that contains homoclinic orbits is the

three-dimensional system [77], given by





ẋ = σ(y − x),

ẏ = rx − y − xz,

ż = −bz + xy,

(3.18)

with the standard values σ = 10, b = 8/3, and where r is the primary bifurcation

parameter. For these parameter values, a supercritical pitchfork bifurcation from the

trivial equilibrium occurs at r = 1, giving rise to two symmetric nontrivial equilibria.

At r ≈ 13.926 there are two symmetry-related orbits that are homoclinic to the

origin, and from which two primary families of saddle cycles arise (together with a

nontrivial hyperbolic invariant set containing many other periodic and nonperiodic

orbits). One of these homoclinic orbits is located entirely in the half-space x > 0
and has one maximum of the x-component of its solution. We will refer to this

orbit as the (1, 0)-loop and say that it makes one turn around the corresponding

nontrivial equilibrium. It is well known that, at other parameter values, the Lorenz

system has homoclinic orbits with one positive maximum and n negative minima of

the x-component of the corresponding solution. Such homoclinic orbits make one
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turn around the nontrivial equilibrium with x > 0 and n turns around the nontrivial

equilibrium with x < 0. We will call these orbits the (1, n)-loops, following [82].

Our aim here is to illustrate how one can compute bifurcation values of the

parameter r at which (1, n)-loops exist and how to continue the corresponding

bifurcation curves in the (σ, r)-plane. Note that the number of turns n can change

along a homoclinic bifurcation curve. In particular, we will compute (a segment

of) a homoclinic bifurcation curve that spirals towards the so-called T-point (σ∞,
r∞) ≈ (10.16, 30.87), where the Lorenz system has a codimension 2 heteroclinic

orbit connecting the trivial and nontrivial equilibria. Along this curve, n goes to

infinity when we approach the T-point. This codim 2 global bifurcation has been

analyzed in detail in [13,14] and was later rediscovered in [48].

To begin with, fix r = 15.5. Then, the origin is a saddle equilibrium of (3.18)

with eigenvalues

λ
(0)
1 = 7.7382, µ

(0)
1 = −2.6667, µ

(0)
2 = −18.7382,

and the normalized unstable eigenvector corresponding to λ
(0)
1 > 0 equals

q
(0)
0,1 =




−0.4911
−0.8711

0


 .

Since we want to compute homoclinic orbits departing from the origin in the half-

space x > 0, we take UParam1 = −1. We then integrate the orbit starting at

distance ε0 = 0.01 from the origin over time interval T = 1.3 by computing in

MatCont the EP_ConnecHom curve. The integration procedure produces the orbit

segment shown in Figure 3.2 (a), which is far from being homoclinic but is sufficient

to start the homotopy method.

By selecting the connection in the Starter window, we are automatically prepared

to compute the ConnecHom_HTHom curve. The last point obtaind by time integration

is selected as the end point of the new curve. In this continuation, where we

use 20 mesh intervals, the system parameter r, as well as SParam1 and ε1 are

active. The initial values of these last two parameters are Sparam1 = −0.0668 and

ε1 = 18.5152, respectively. While the value of SParam1 indicates that the end-point

of the integrated orbit is rather close to the plane tangent to the two-dimensional

stable invariant manifold of the origin, its distance ε1 to the equilibrium is quite

large. The ConnecHom_HTHom continuation produces a family of orbit segments

attaining SParam1 = 0 at r = 16.1793 (see Figure 3.2 (b)), where ε1 = 17.4523.
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Figure 3.2: Initializing the (1, 0)-homoclinic orbit by homotopy.

Selecting the last point as the initial point for the next continuation, we can

compute the HTHom_HTHom curve with r, T and ε1 as active parameters (note that

now T is set to 0.65, that is one-half of its initial value). Our goal at this stage is to

reach ε1 = 0.5 by increasing the interval T. This indeed happens at T = 1.3476 with

r = 13.9266, which is a good approximation for the (1, 0)-homoclinic parameter

value, see Figure 3.2 (c).

After selecting the last point and the curve type HTHom_Hom, we are ready to

continue the found homoclinic orbit in the two system parameters σ and r, keeping

T and ε1 active. It produces the (1, 0)-homoclinic curve on Figure 3.3.
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Figure 3.3: Partial two-parameter bifurcation diagram of the Lorenz system and its magnification

near the T-point.

Similar steps, but starting with r = 55, produce Figure 3.4. We take a mesh

consisting of N = 40 intervals and use the standard value m = 4. Selecting the

last orbit as the initial orbit for the continuation of the ConnecHom_HTHom-curve

with r, SParam1 and ε1 active, gives us Figure 3.4 (b) where SParam1 = 0 at

r = 56.9941 and ε1 = 49.8634. From this last point, the continuation of the

HTHom_HTHom-curve is executed with r, T and ε1 free, until ε1 = 0.5. This is

obtained at the (1, 1)-homoclinic parameter value r = 54.6460 and the improved

connection is shown in Figure 3.4 (c). Figure 3.5 and Figure 3.3 (left) show the

family of the (1, 1)-homoclinic orbits along the corresponding HTHom_Hom-curve.

Figure 3.3 includes results of similar computations for the (1, n)-homoclinic

curves with various n, obtained with the homotopy method. The (1, ∞)-curve

spirals towards the T-point mentioned above; along this curve, the homoclinic orbit

approaches the heteroclinic cycle connecting the origin to the nontrivial equilibrium

and from this equilibrium back to the origin. Most of the curves in Figure 3.3 were

first reported in [82]; we present several more of them with the main purpose to

illustrate the power of MatCont that allows to produce such figures in a matter

of minutes. The continuation took 22.2 seconds to compute 100 (1, 0)-homoclinic

orbits. The runs were executed in Matlab version 7.5.0, on an Intel 2.99 GHz
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Figure 3.4: Initializing the (1, 1)-homoclinic orbit by homotopy.

machine with 1.99 Gigabyte RAM. We also stress that the figure shows only a

small portion of the (σ, r)-bifurcation diagram of the Lorenz system, even if one is

concerned only with homoclinic bifurcations. For example, there are sequences of

T-points corresponding to different heteroclinic contours, with their own homoclinic

spirals.
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Figure 3.5: A family of (1, 1)-homoclinic orbits.

3.6.2 HHS orbits in Hopf-Hopf normal form with broken symmetry

We consider the normal form of the Hopf-Hopf codimension 2 bifurcation in polar

coordinates, given by





ṙ1 = r1(µ1 + p11r2
1 + p12r2

2 + s1r4
2),

ṙ2 = r2(µ2 + p21r2
1 + p22r2

2 + s2r4
1),

ϕ̇1 = ω1,

ϕ̇2 = ω2.

We rewrite this system in the cartesian (x1, y1, x2, y2)-coordinates and add order 6
terms to break the symmetry so that we obtain the following equations





ẋ1 = x1(µ1 + p11(x2
1 + y2

1) + p12(x2
2 + y2

2) + s1(x2
2 + y2

2)
2)− y1ω1 + 3y6

1

ẏ1 = y1(µ1 + p11(x2
1 + y2

1) + p12(x2
2 + y2

2) + s1(x2
2 + y2

2)
2) + x1ω1−2x6

2

ẋ2 = x2(µ2 + p21(x2
1 + y2

1) + p22(x2
2 + y2

2) + s2(x2
1 + y2

1)
2)− y2ω2−7y6

1

ẏ2 = y2(µ2 + p21(x2
1 + y2

1) + p22(x2
2 + y2

2) + s2(x2
1 + y2

1)
2) + x2ω2+x6

1.

The initial parameter values are given by µ1 = 9.7, µ2 = −50, p11 = 1, p12 = 1.5,
p21 = −2, p22 = −1, s1 = 1.3, s2 = 1.7, ω1 = 0.001, ω2 = 0.00235. The origin is
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an equilibrium of this system and the eigenvalues are given by λ
(0)
1 = 9.7 + 0.001i,

λ
(0)
2 = 9.7 − 0.001i, µ

(0)
1 = −50 + 0.00235i, µ

(0)
2 = −50 − 0.00235i; so we have

a two-dimensional unstable manifold and a two-dimensional stable manifold where

in both cases the eigenvalues consist of a complex conjugate pair. Therefore, the

equilibrium is called a bifocus. This gives us an interesting example to apply the

homotopy method on.

Since the eigenvalues with smallest positive real part constitute a complex conju-

gate pair, both UParam1 and UParam2 play a role in the initialization, we set them

equal to −1 and 1, respectively. The unstable parameters are now automatically

rescaled such that UParam12 +UParam22 = 1 holds, so UParam1 = −0.7071 and

UParam2 = 0.7071. We set the value of ε0 equal to 1.4142 · 10−4. Therefore, we

start time integration from the point

x(0) = (0, 0, 0, 0)T + 1.4142 · 10−4(−0.7071q
(0)
0,1 + 0.7071q

(0)
0,2 ),

where q
(0)
0,1 = (1, 0, 0, 0)T and q

(0)
0,2 = (0, 1, 0, 0)T span the two-dimensional eigenspace

corresponding to the eigenvalues 9.7 ± 0.001i.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

x₁

y
₁

Figure 3.6: Starting orbit after time integration.

When we execute time-integration over an interval of length 1.1, we obtain

Figure 3.6. First, ε1 increases, then this distance decreases, and then starts to

increase again. MatCont searches for the point where ε1 stops decreasing, indicated

by the arrow, and takes it as endpoint of the initial connecting orbit. None of the
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stable connection parameters equals zero, but they are quite small, namely −0.03550
and −0.7491. We now start the successive homotopies where we use a discretization

of 50 mesh intervals and 4 collocation points.

Executing a continuation with both unstable and both stable connection pa-

rameters and ε1 free, SParam1 becomes zero and SParam2 attains the value of

−0.7472. To make this last stable connection parameter zero, a system parameter

has to be varied, we choose µ2. This gives ε1 = 1.2490, so a continuation, with T,
ε1 and µ2 free, is needed to decrease the value of ε1. We put eps1tol equal to 10−4,

which is reached when T = 0.8299 and µ2 = −14.3953. A family of homoclinic

orbits originating at this end orbit is presented in Figure 3.7, where T and ε1 are

the free homoclinic parameters and µ1 and µ2 the free system parameters. The

continuation of 100 HHS orbits took 118.6 seconds. The runs were executed in

Matlab version 7.5.0, on an Intel 2.99 GHz machine with 1.99 Gigabyte RAM.
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Figure 3.7: A family of bifocus homoclinic orbits.
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3.6.3 HHS orbits in a model with bifocus homoclinic orbits

We consider the following system introduced in [75]





ẋ = y − w,

ẏ = z − νw,

ż = −x2 + αx − γy − z − ν2w,

ẇ = ε

(
ανx + (α − γν)y + ν2z

ν4 + γν2 + 2αν

)
+ νw,

where ν is the positive real root of s3 + s2 + γs − α = 0. The initial parameter

values are α = 4, γ = 2 and ε = 1. The origin x
(0)
0 = (0, 0, 0, 0)T is an equilibrium

of the system and the eigenvalues are given by (λ
(0)
1 , λ

(0)
2 , µ

(0)
1 , µ

(0)
2 ) = (1.0000 +

0.7977i, 1.0000 − 0.7977i,−1.0000 + 1.7321i,−1.0000 − 1.7321i). So we have a

two-dimensional stable manifold and a two-dimensional unstable manifold where

the eigenvalues consist of a complex conjugate pair.

The following point is taken as starting point: x(0) = x
(0)
0 + 1.4142 · 10−4

(0.7071q
(0)
0,1 − 0.7071q

(0)
0,2 ), with q

(0)
0,1 the real part and q

(0)
0,2 the imaginary part of the

eigenvector corresponding to λ
(0)
1 . By time integration we obtain the left plot in

Figure 3.8 where the arrow indicates the point where ε1 stops decreasing.
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Figure 3.8: Starting orbit after time integration and continuation of HHS orbits.
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The τ’s are nonzero, namely τ1 = −0.06920 and τ2 = 0.4978. We execute

a first homotopy with c1, c2, τ1, τ2 and ε1 free, such that τ1 equals zero and τ2 =
0.4076. A second continuation with τ2, the system parameter ε and ε1 free, makes

the second stable connection parameter zero, however ε1 equals 13.2364. Therefore,

a continuation that makes ε1 smaller (with 5 · 10−4 as goal value), with ε, T and

ε1 free is executed. The end values of the system parameter ε and homoclinic

parameter T are given by 0.3218 and 10.9177, respectively. Now, the continuation

of HHS orbits can be started, with α and ε as free system parameters and ε0 and

ε1 as free homoclinic parameters, see the right plot of Figure 3.8.

3.6.4 HSN orbits in a cell cycle model

As an example of the homotopy method for Homoclinic-to-Saddle-Node orbits, we

study the following cell cycle model





Ẋ = k1 − (k′2 + k′′2 Y)X,

Ẏ =
(k′3 + k′′3 A)(1 − Y)

J3 + 1 − Y
− k4mXY

J4 + Y
,

Ȧ = k′5 + k′′5
(mX)n

Jn
5 + (mX)n

− k6 A,

introduced in [93]. A continuum of HSN orbits was computed in [50] where the

continuation was started up from a limit cycle of a large period. During this con-

tinuation a Noncentral Homoclinic-to-Saddle-Node orbit was detected. We will

recompute these orbits making use of the homotopy method. We consider the

Limit Point x
(0)
0 = (0.0461, 0.8269, 0.0504)T with the initial parameter values given

by k1 = 0.04, k′2 = 0.04, k′′2 = 1, k′3 = 1, k′′3 = 10, k4 = 35, J3 = 0.04, J4 = 0.04,
k′5 = 0.005, k′′5 = 0.2, k6 = 0.1, J5 = 0.3, n = 4, m = 0.7933. The eigenvalues of

the Jacobian evaluated in x
(0)
0 equal ν(0) = 8.9930 · 10−7, µ

(0)
1 = −9.3355 · 10−2,

µ
(0)
2 = −2.2666, so nU = 0.

Figure 3.9 shows the time integrated orbit, started from x
(0)
0 with UParam1 = 1

and ε0 = 0.01 over an interval of length 200. This is clearly a proper starting orbit.

For discretization during the successive homotopies we use 50 mesh intervals and 4
collocation points. Since there are no strictly positive eigenvalues, no τ’s have to

be made zero, so we can immediately execute the continuation that makes ε1 small.

Although, the value of ε1 is already very small, namely 0.0036, a homotopy is done
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Figure 3.9: Starting orbit after time integration.

until ε1 = 10−4 is attained. The half-return time T is then equal to 1445.6988.

The HTHSN_HSN continuation can now be started, with ε0 and ε1 as free homoclinic

parameters, and k4 and m as free system parameters. The continuation works well

and the NCH orbit is detected. The continuation of 100 HSN orbits took 79.3
seconds, with the same computer specifications as before.

The HSN orbits that converge to the NCH orbit are the lower orbits in Fig-

ure 3.10. Note that the NCH orbit can also be detected on a branch of HHS

orbits that approach from the opposite direction in Figure 3.10. After a neutral

saddle bifurcation, these HHS orbits disappear when encountering the NCH orbit

for k4 = 21.2940 and m = 1.3310.

3.6.5 Heteroclinic orbits in a model of the Josephson Junction

We study the following three-dimensional Josephson Junction problem, introduced

in [40] 



ẋ = y,

ẏ = z,

ż = ((1 − c2)z + αc y − sin(x) + γ)/(βc).

This system contains the two equilibria x
(0)
0 = (arcsin(γ), 0, 0)T and x

(0)
1 = (π −

arcsin(γ), 0, 0)T. Consider the parameter values α = 0.18, β = 0.1, γ = 0.1, c =

0.6, such that x
(0)
0 = (0.1002, 0, 0)T and x

(0)
1 = (3.0414, 0, 0)T. The eigenvalues in
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Figure 3.10: Continuum of HHS orbits (upper orbits) and HSN orbits (lower orbits)

that converge to the NCH orbit.

x
(0)
0 and x

(0)
1 are given by




10.6899
1.2339
−1.2572


 and




10.9686
−0.1510 + 1.2203i
−0.1510 − 1.2203i


 ,

respectively. Therefore, there is a two-dimensional unstable manifold in x
(0)
0 with a

real leading eigenvalue, so only one unstable connection parameter, namely Uparam1,

has to be taken into account in the first step, and a two-dimensional stable manifold

in x
(0)
1 . Due to the eigenvalues in x

(0)
0 and x

(0)
1 , there are two unstable connec-

tion parameters and one stable connection parameter. The starting point is given

by x(0) = x
(0)
0 + ε0UParam1q

(0)
0,1 with q

(0)
0,1 = (−0.4545,−0.5608,−0.6920)T, the

eigenvector corresponding to λ
(0)
1 = 1.2339. We initialize UParam1 = −1 and

ε0 = 10−4 and integrate over an interval of length 3. MatCont takes that part of
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the time-integrated orbit up to the point where ε1 stops decreasing, which in this

case is only a very small segment, for which SParam1 = −0.8175.

In the successive homotopies we use a discretization of 50 mesh intervals and 4
collocation points. A continuation with all the connection parameters and ε1 free

places the end-vector x(1)− x
(0)
1 in the stable eigenspace of x

(0)
1 , the end value of

ε1 equals 5.1783. Note that nα = n − (nU + nS) + 2 = 3 − (2 + 2) + 2 = 1, so

no free system parameters are needed in the continuation to make ε1 small.
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Figure 3.11: Continuation that makes ε1 small.

A plot of this continuation is given in Figure 3.11. The initial orbit is only the

small vertical line on the left, however, through the homotopy we succeed in finding

a proper starting orbit for the computation of a branch of heteroclinic orbits. This

gives us an indication of the robustness of the method. The stable eigenspace of

x
(0)
1 is two-dimensional because of the complex conjugate pair of eigenvalues with

negative real part. This explains the spiral convergence to x
(0)
1 as can be seen in

the figure. The end values of the heteroclinic parameters are T = 30.4026 and

ε1 = 10−4. Finally, we can start the continuation of heteroclinic orbits, taking c as

the free system parameter and T as the free heteroclinic parameter. The result is

shown in Figure 3.12. The continuation of 100 heteroclinic orbits took 49.7 seconds.
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Figure 3.12: A family of heteroclinic orbits.

3.7 Conclusion

In this chapter we have introduced a defining BVP for the continuation of connect-

ing orbits, in which the Riccati equations used to set up the projection boundary

conditions are explicitly included. We have presented a homotopy method for the

initialization of connecting orbits. The power of the successive continuations ap-

proach was affirmed by the success of the method in a large variety of chosen

examples. Moreover, the possibility of reaching a solution from a far away starting

point contributes to the strength of the method. Therefore, the homotopy method

is a valuable alternative for the detection of a connecting orbit, which often gives

results where other methods fail.

We have remarked that the first step in the homotopy method can be done

either by a time integration or a continuation. In HomCont the first step is done

by continuation. We have tested both strategies, and in our examples the time-

integration seemed to be the most effective. That is why in MatCont the homotopy

always starts from a solution obtained via time integration.

In [22] we have given an overview of the test functions for all codimension 2
homoclinic bifurcations and paid special attention to the orbit- and inclination-flip

cases, for which we have generalized the test functions such that they can also be

applied when the leading eigenvalues are complex.
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4
Normal forms for Codim 2

Bifurcations of Limit Cycles

In this chapter we derive normal forms for the codimension 2 bifurcations of

limit cycles and discuss the possible bifurcation scenarios that can happen in

a neighbourhood of these bifurcation points.

4.1 Introduction

High-dimensional systems occur frequently in the study of dynamical systems. The

higher the dimension, the more complex and time-consuming the computations are.

First reducing the dimensionality of the system then seems a very tempting idea.

The center manifold theory tackles this problem. When encountering a bifurcation,

the center manifold theorem guarantees the existence of a stable, an unstable and a

low-dimensional center invariant manifold near the bifurcation point. The study of

the dynamics in the whole system can then be restricted to the study of the dynamics

in the center manifold. The dynamics in the center manifold is determined by the
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normal forms, which exhibit the relevant bifurcation. Although the center manifold

is not unique, and the normal form is not unique either, the drawn bifurcation

conclusions are not affected by the choices made.

The Hartman-Grobman theorem states that in the case of hyperbolicity the

linearization of the system determines the bifurcation scenario. However, in the

case of nonhyperbolicity nonlinear terms enter the field. The nonlinear terms are

resonant terms in the normal forms when they can not be removed by coordinate

changes. Luckily, not all nonlinear terms are equally important. At a bifurcation

point, several situations may occur. The value of the normal form coefficients allows

us to select the right scenario and to determine the essential features happening

around the bifurcation point. Normal form coefficients then provide initial guesses

for where to search for new phenomena.

In Section 4.2 we present the normal forms for the codim 2 bifurcations of

limit cycles, i.e. the bifurcations listed in Table 2.2. We hereby make a distinction

between the normal forms corresponding with a two- or three-dimensional center

manifold, i.e. nc = 2 or 3, and the normal forms where nc = 4 or 5. We also

briefly discuss the possible bifurcations in their unfoldings. In Section 4.3 we give

a derivation of the normal forms presented in Section 4.2, based on the theory

of Iooss. In Section 4.4 we investigate in detail the possible bifurcation scenarios

around the bifurcation points. Quantities in terms of the normal form coefficients

make a distinction between the several possible situations at the corresponding

bifurcation point. To check the genericity of the system, nondegeneracy conditions

are formulated. Finally, in Section 4.A we derive quadratic approximations of the

Hopf and heteroclinic bifurcation curves that are needed in the interpretation of the

PDNS and NSNS bifurcations.

4.2 Critical normal forms

Isolated periodic orbits (limit cycles) of smooth differential equations

ẋ = f (x, α), x ∈ Rn, α ∈ Rp, (4.1)

play an important role in applications. Write (4.1) at the critical parameter values

as

u̇ = F(u), (4.2)
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and suppose that there is a limit cycle Γ corresponding to a periodic solution u0(t),
where T > 0 is its (minimal) period. Develop F(u0(t) + v(t)) into the Taylor series

F(u0(t) + v(t))

= F(u0(t)) + A(t)v(t) +
1

2
B(t; v(t), v(t)) +

1

3!
C(t; v(t), v(t), v(t))

+
1

4!
D(t; v(t), v(t), v(t), v(t)) +

1

5!
E(t; v(t), v(t), v(t), v(t), v(t)) + O(|v|6),

(4.3)

where A(t)v = Fu(u0(t))v, B(t; v1, v2) = Fuu(u0(t))[v1, v2], C(t; v1, v2, v3) =
Fuuu(u0(t))[v1, v2, v3], etc. The multilinear forms A, B, C, D, and E are periodic in

t with period T. Assume that the limit cycle is nonhyperbolic, i.e. the number of

critical multipliers nc > 1. Then, there exists an invariant nc-dimensional critical

center manifold Wc(Γ) ⊂ Rn near Γ.

To describe the normal forms of a generic system (4.2) on the critical center

manifold for the codim 2 bifurcations of limit cycles, we parameterize Wc(Γ) near

Γ by (τ, ξ), where τ ∈ [0, kT] for k ∈ {1, 2, 3, 4} is a cyclic coordinate, and ξ is

a real or complex transverse coordinate, depending on the bifurcation. It follows

from [59] that it is possible to select the τ- and ξ-coordinates so that the restriction

of (4.2) to the corresponding critical center manifold Wc(Γ) will have a periodic

normal form. Each normal form can be written as





dτ

dt
= 1 + p(ξ) + r(τ, ξ),

dξ

dt
= P(ξ) + R(τ, ξ),

(4.4)

where p and P are polynomials in ξ of some degree N and without constant terms,

while r and R are smooth O(|ξ|N+1)-functions that are kT-periodic in τ.

Below, we list the critical normal forms and briefly describe bifurcations possible

in their generic unfoldings (see [3–5,67], as well as [21], for more details). Note that

the α’s present in the normal forms have no relation with the parameters α, present

in (4.1). From Section 5.2 however, it will follow that in two cases, namely the Cusp

Point of Cycles bifurcation and the Fold-Flip bifurcation, further simplification of

the normal forms is possible. We stress that the normal forms below are valid for

generic systems. In particular, it is assumed that a multiple critical eigenvalue of the

monodromy matrix M (when present) is nonsemisimple and that the corresponding

Jordan chain has maximal length.
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4.2.1 Bifurcations with a 2D center manifold

Cusp Point of Cycles bifurcation

The cycle exhibits a Cusp Point of Cycles bifurcation if the eigenvalue µ0,1 = 1
is double nonsemisimple (i.e. the corresponding Jordan block of the monodromy

matrix M(T) is two-dimensional), while there are no other critical multipliers and

the coefficient b in (2.6) vanishes. The two-dimensional periodic normal form at

the CPC bifurcation is




dτ

dt
= 1 − ξ + α1ξ2 + α2ξ3 + . . . ,

dξ

dt
= cξ3 + . . . ,

(4.5)

where τ ∈ [0, T], ξ is a real coordinate on Wc(Γ) that is transverse to Γ, α1, α2,
c ∈ R and the dots denote the O(|ξ|4)-terms, which are T-periodic in τ. If c 6= 0,

the limit cycle Γ is a triple root. In generic two-parameter systems (4.1), three

hyperbolic limit cycles exist in a cuspidal wedge approaching the codim 2 point that

is delimited by two bifurcation curves, where two cycles collide and disappear via a

Limit Point of Cycles bifurcation.

Generalized Period-Doubling bifurcation

The cycle exhibits a Generalized Period-Doubling bifurcation if the trivial eigenvalue

µ0 = 1 of the monodromy matrix M(T) is simple and there is only one other

critical simple eigenvalue µ1 = −1 and the coefficient c in (2.7) vanishes. The

two-dimensional periodic normal form at the GPD bifurcation is





dτ

dt
= 1 + α1ξ2 + α2ξ4 + . . . ,

dξ

dt
= eξ5 + . . . ,

(4.6)

where τ ∈ [0, 2T], ξ is a real coordinate on Wc(Γ) that is transverse to Γ, α1, α2,
e ∈ R and the dots denote the O(|ξ|6)-terms, which are 2T-periodic in τ. If e 6= 0,

at most two period doubled limit cycles can bifurcate from the critical limit cycle

Γ. In generic two-parameter systems (4.1), the GPD point in the Period-Doubling

bifurcation curve separates its sub- and supercritical branch and is the origin of a

unique Limit Point of Cycles bifurcation curve, where two period doubled cycles

collide and disappear.
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4.2.2 Bifurcations with a 3D center manifold

In all following cases, ’chaotic motions’ in the full system on the center manifold

are possible (see [3–5,67] and references therein).

Chenciner bifurcation

The cycle exhibits a Chenciner bifurcation if the trivial critical eigenvalue µ0 = 1 of

M(T) is simple and there are only two more critical simple multipliers µ1,2 = e±iθ

with θ 6= 2π
j , for j = 1, 2, 3, 4, 5, 6, and the coefficient ℜ(d) in (2.8) vanishes. The

three-dimensional periodic normal form at the CH bifurcation can be written as




dτ

dt
= 1 + α1|ξ|2 + α2|ξ|4 + . . . ,

dξ

dt
= iωξ + icξ|ξ|2 + eξ|ξ|4 + . . . ,

(4.7)

where τ ∈ [0, T], ω = θ/T, ξ is a complex coordinate on Wc(Γ) transverse to Γ,

α1, α2, c ∈ R, e ∈ C and the dots denote the O(|ξ|6)-terms, which are T-periodic

in τ. In generic two-parameter systems (4.1), at the CH point the Neimark-Sacker

bifurcation changes its criticality (i.e. the bifurcating invariant torus changes its

stability). A complicated bifurcation set responsible for ’collision’ and destruction

of two tori of opposite stability is rooted at this codim 2 point.

Strong Resonance 1:1 bifurcation

The cycle exhibits a Strong Resonance 1:1 bifurcation if the trivial critical eigenvalue

µ0,1,2 = 1 of M(T) is triple and the corresponding Jordan block is three-dimensional,

while there are no other critical multipliers. The three-dimensional periodic normal

form at the R1 bifurcation is




dτ

dt
= 1 − ξ1 + αξ2

1 + . . . ,

dξ1

dt
= ξ2 − ξ1ξ2 + . . . ,

dξ2

dt
= aξ2

1 + bξ1ξ2 + . . . ,

(4.8)

where τ ∈ [0, T], (ξ1, ξ2) are real coordinates on Wc(Γ) transverse to Γ, α, a, b ∈ R

and the dots denote the O(|ξ|3)-terms, which are T-periodic in τ. In generic two-

parameter systems (4.1), the R1 point is located on a Limit Point of Cycles curve.
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At this point, a torus bifurcation curve is rooted together with global homoclinic

bifurcation curves, along which the stable and the unstable invariant manifolds of

a saddle cycle are tangent. The intersection of the invariant manifolds generates a

Poincaré homoclinic structure with the associated periodic and ’chaotic motions’.

Strong Resonance 1:2 bifurcation

The cycle exhibits a Strong Resonance 1:2 bifurcation if the trivial critical multi-

plier µ0 = 1 is simple and the only other critical multiplier µ1,2 = −1 is double

nonsemisimple. The three-dimensional periodic normal form at the R2 bifurcation

is 



dτ

dt
= 1 + αξ2

1 + . . . ,

dξ1

dt
= ξ2 + αξ2

1ξ2 + . . . ,

dξ2

dt
= aξ3

1 + bξ2
1ξ2 + . . . ,

(4.9)

where τ ∈ [0, 2T], (ξ1, ξ2) are real coordinates on Wc(Γ) transverse to Γ, α, a,
b ∈ R and the dots denote the O(|ξ|4)-terms, which are 2T-periodic in τ. In

generic two-parameter systems (4.1), the R2 point is the endpoint of a torus bifur-

cation curve. The Period-Doubling bifurcation curve passes through this point, and

(depending on the normal form coefficients) a torus bifurcation curve of the period

doubled limit cycle can originate there. As in the R1 case, global bifurcation curves

related to homoclinic tangencies can be present.

Strong Resonance 1:3 bifurcation

The cycle exhibits a Strong Resonance 1:3 bifurcation if the trivial critical multiplier

µ0 = 1 is simple and there are only two more critical simple multipliers µ1,2 = e±i 2π
3 .

The three-dimensional periodic normal form at the R3 bifurcation can be written as





dτ

dt
= 1 + α1|ξ|2 + α2ξ3 + ᾱ2ξ̄3 + . . . ,

dξ

dt
= bξ̄2 + cξ|ξ|2 + . . . ,

(4.10)

where τ ∈ [0, 3T], ξ is a complex coordinate on Wc(Γ) transverse to Γ, α1 ∈
R, α2, b, c ∈ C and the dots denote the O(|ξ|4)-terms, which are 3T-periodic

in τ. In generic two-parameter systems (4.1), near the R3 point a homoclinic
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Poincaré structure of the 3T-periodic limit cycle destroys the torus that is born

at the Neimark-Sacker bifurcation curve passing through this point. Curves of

homoclinic tangencies are rooted there.

Strong Resonance 1:4 bifurcation

The cycle exhibits a Strong Resonance 1:4 bifurcation if the trivial critical multiplier

µ0 = 1 is simple and there are only two more critical simple multipliers µ1,2 = e±i π
2 .

The three-dimensional periodic normal form at the R4 bifurcation can be written as





dτ

dt
= 1 + α1|ξ|2 + α2ξ4 + ᾱ2ξ̄4 + . . . ,

dξ

dt
= cξ|ξ|2 + dξ̄3 + . . . ,

(4.11)

where τ ∈ [0, 4T], ξ is a complex coordinate on Wc(Γ) transverse to Γ, α1 ∈ R,

α2, c, d ∈ C and the dots denote the O(|ξ|5)-terms, which are 4T-periodic in τ. In

generic two-parameter systems (4.1), at the R4 point there can be eight different

situations, depending upon the values of c and d. In the simplest case a homoclinic

structure associated to a 4T-periodic cycle destroys an invariant torus that is born

at the Neimark-Sacker bifurcation curve that passes through this point.

Fold-Flip bifurcation

The cycle exhibits a Fold-Flip bifurcation if the trivial critical multiplier µ0,1 = 1 is

double nonsemisimple and there is only one more critical multiplier µ2 = −1. The

three-dimensional periodic normal form at the LPPD bifurcation is




dτ

dt
= 1 − ξ1 + α20ξ2

1 + α02ξ2
2 + α30ξ3

1 + α12ξ1ξ2
2 + . . . ,

dξ1

dt
= a20ξ2

1 + a02ξ2
2 + a30ξ3

1 + a12ξ1ξ2
2 + . . . ,

dξ2

dt
= b11ξ1ξ2 + b21ξ2

1ξ2 + b03ξ3
2 + . . . ,

(4.12)

where τ ∈ [0, 2T], (ξ1, ξ2) are real coordinates on Wc(Γ) transverse to Γ, all the

coefficients are real and the dots denote the O(|ξ|4)-terms, which are 2T-periodic

in τ. In generic two-parameter systems (4.1), the Period-Doubling and Limit Point

of Cycles bifurcation curves are tangent at the LPPD point, where (depending on

the normal form coefficients) a Neimark-Sacker bifurcation curve of the 2T-periodic
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cycle can be rooted. Global bifurcations of heteroclinic structures and invariant tori

are also possible.

4.2.3 Bifurcations with a 4D center manifold

Note that in the normal forms of the previous 8 cases, with a 2- or 3-dimensional

center manifold, the derivative of the ξ-variable with respect to the time t appeared.

In the cases where the dimension of the center manifold equals 4 or 5, the derivative

of the ξ-variable is taken with respect to the phase coordinate τ. We will discuss

the two approaches in Section 4.3 and the following chapter.

Limit Point-Neimark-Sacker bifurcation

The Limit Point-Neimark-Sacker bifurcation occurs when the trivial critical multi-

plier µ0,1 = 1 corresponds to a two-dimensional Jordan block and there are only

two more critical simple multipliers µ2,3 = e±iθ with θ 6= 2π
j , for j = 1, 2, 3, 4. The

four-dimensional Iooss normal form at the LPNS bifurcation can be written as





dτ

dt
= 1 − ξ1 + α200ξ2

1 + α011 |ξ2|2 + α300ξ3
1 + α111ξ1 |ξ2|2 + . . . ,

dξ1

dτ
= a200ξ2

1 + a011 |ξ2|2 + a300ξ3
1 + a111ξ1 |ξ2|2 + . . . ,

dξ2

dτ
= iωξ2 + b110ξ1ξ2 + b210ξ2

1ξ2 + b021ξ2 |ξ2|2 + . . . ,

(4.13)

where τ ∈ [0, T], ω = θ/T, ξ1 is a real and ξ2 a complex coordinate on Wc(Γ) that

are transverse to Γ, αijk, aijk ∈ R, bijk ∈ C, and the dots denote the O(|ξ|4)-terms,

which are T-periodic in τ. In generic two-parameter systems (4.1), the Neimark-

Sacker and Limit Point of Cycles bifurcation curves are tangent at the LPNS point,

where (depending on the normal form coefficients) a 3-torus can be born. The

equations (4.13) implicitly describe motions on the 4-dimensional invariant manifold

Wc(Γ) with one cyclic coordinate τ.

Period-Doubling-Neimark-Sacker bifurcation

The Period-Doubling-Neimark-Sacker bifurcation occurs when the trivial critical

multiplier µ0 = 1 is simple and there are only three more critical simple multipliers,
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namely µ1 = −1 and µ2,3 = e±iθ with θ 6= 2π
j , for j = 1, 2, 3, 4. The four-

dimensional Iooss normal form at the PDNS bifurcation can be written as





dτ

dt
= 1 + α200ξ2

1 + α011 |ξ2|2 + α400ξ4
1 + α022 |ξ2|4 + α211ξ2

1 |ξ2|2 + . . . ,

dξ1

dτ
= a300ξ3

1 + a111ξ1 |ξ2|2 + a500ξ5
1 + a122ξ1 |ξ2|4 + a311ξ3

1 |ξ2|2 + . . . ,

dξ2

dτ
= iωξ2 + b210ξ2

1ξ2 + b021ξ2 |ξ2|2 + b410ξ4
1ξ2 + b221ξ2

1ξ2 |ξ2|2

+ b032ξ2 |ξ2|4 + . . . ,
(4.14)

where τ ∈ [0, 2T], ω = θ/T, ξ1 is a real and ξ2 a complex coordinate on Wc(Γ) that

are transverse to Γ, αijk, aijk ∈ R, bijk ∈ C, and the dots denote the O(|ξ|6)-terms,

which are 2T-periodic in τ. In generic two-parameter systems (4.1), depending on

the normal form coefficients a distinction is made between the ’simple’ and ’difficult’

cases. In the ’difficult’ case, a 3-torus can be present.

4.2.4 Bifurcations with a 5D center manifold

Double Neimark-Sacker bifurcation

The Double Neimark-Sacker bifurcation occurs when the trivial critical multiplier

µ0 = 1 is simple and there are only four more critical simple multipliers µ1,2 = e±iθ1

and µ3,4 = e±iθ2 with θ1,2 6= 2π
j , for j = 1, 2, 3, 4, 5, 6 and lθ1 6= jθ2 for l, j ∈ Z

with l + j ≤ 4 (see [51]). The five-dimensional periodic normal form at the NSNS

bifurcation can be written as





dτ

dt
= 1 + α1100 |ξ1|2 + α0011 |ξ2|2

+ α2200 |ξ1|4 + α0022 |ξ2|4 + α1111 |ξ1|2 |ξ2|2 + . . . ,

dξ1

dτ
= iω1ξ1 + a2100ξ1 |ξ1|2 + a1011ξ1 |ξ2|2

+ a3200ξ1 |ξ1|4 + a1022ξ1 |ξ2|4 + a2111ξ1 |ξ1|2 |ξ2|2 + . . . ,

dξ2

dτ
= iω2ξ2 + b0021ξ2 |ξ2|2 + b1110ξ2 |ξ1|2

+ b0032ξ2 |ξ2|4 + b2210ξ2 |ξ1|4 + b1121ξ2 |ξ1|2 |ξ2|2 + . . . ,

(4.15)
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where τ ∈ [0, T], ω1,2 = θ1,2/T, ξ1 and ξ2 are complex coordinates on Wc(Γ) that

are transverse to Γ, αijkl ∈ R, aijkl , bijkl ∈ C, and the dots denote the O(|ξ|6)-terms,

which are T-periodic in τ. In generic two-parameter systems (4.1), depending on

the normal form coefficients a distinction is made between ’simple’ and ’difficult’

cases. In the ’difficult’ case a 4-torus can be present. The equations (4.15) implicitly

describe motions on a 5-dimensional manifold with one cyclic coordinate τ.

4.3 Derivation of the normal forms

In this section we give the derivation of the normal forms for all codim 2 bifurcations

of limit cycles, i.e. the normal forms (4.5)-(4.15). This derivation is based on the

theory of Iooss, described in Section 2.7.

4.3.1 Bifurcations with 2 critical eigenvalues

Cusp Point of Cycles bifurcation

At the CPC bifurcation the monodromy matrix has the critical Jordan structure

M0 =

(
1 1
0 1

)
,

i.e. the multiplier µ = 1 is double nonsemisimple. Following the notation used in

Section 2.7, σ = 0 and thus

L0 =

(
0 1
0 0

)
, L̃0 = 0.

We are in a situation in which Theorem 2.29 can be applied. In particular, a periodic

normal form of (4.2) on the center manifold of the cycle can be written as

dτ

dt
= 1 + ξ + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where τ plays the role of phase coordinate along the orbit and ξ is a coordinate along

a direction transversal to the periodic orbit. Here, p and P are at least quadratic

polynomials in ξ with T-periodic in τ coefficients, and are such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,
d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0,
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for all τ and ξ ∈ R. Putting L̃0 = 0 we obtain

d

dτ
p(τ, ξ) = 0,

d

dτ
P(τ, ξ) = 0,

i.e. the two polynomials p and P are independent of τ. So by explicitly writing the

lowest order terms of the two polynomials, the normal form becomes





dτ

dt
= 1 + ξ + p(ξ) = 1 + ξ + α1ξ2 + α′2ξ3 + . . . ,

dξ

dτ
= P(ξ) = bξ2 + cξ3 + . . . ,

where the dots denote O(|ξ|4)-terms. At a CPC point holds that b = 0. By making

the substitution ξ 7→ −ξ, we obtain the normal form (4.5) with α2 = −α′2.

Generalized Period-Doubling bifurcation

At the GPD bifurcation, we obtain

M0 =

(
1 0
0 −1

)
, L0 =

(
0 0
0 0

)
, L̃0 = 0.

We are in a case in which we can apply Theorem 2.30. It gives the following 2T-

periodic normal form on the center manifold (using the formula of Theorem 2.28)

dτ

dt
= 1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

with polynomials p and P at least quadratic in ξ, having 2T-periodic in τ coeffi-

cients, and such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,
d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0,

p(τ + T, ξ) = p(τ,−ξ), P(τ + T,−ξ) = −P(τ, ξ).

Putting L̃0 = 0 in the first two formulas brings us back to the situation of the

previous case
d

dτ
p(τ, ξ) = 0,

d

dτ
P(τ, ξ) = 0,
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i.e. the two polynomials are independent of τ. This makes it possible to rewrite the

last two formulas as

p(ξ) = p(−ξ), P(−ξ) = −P(ξ),

so polynomial p is even (p = φ(ξ2)) and polynomial P is odd (P = ξψ(ξ2)).
Therefore, we can write our normal form as





dτ

dt
= 1 + φ(ξ2) = 1 + α1ξ2 + α2ξ4 + . . . ,

dξ

dτ
= ξψ(ξ2) = cξ3 + eξ5 + . . . ,

where the dots denote O(|ξ|6)-terms. By taking the GPD-condition c = 0 into

account, we obtain the normal form (4.6).

4.3.2 Bifurcations with 3 critical eigenvalues

Chenciner bifurcation

In the CH case the Jordan block associated to the trivial multiplier is one-dimensional.

We have

M0 =




1 0 0

0 eiωT 0

0 0 e−iωT


 , L0 =




0 0 0
0 iω 0
0 0 −iω


 , L̃0 =

(
iω 0
0 −iω

)
.

This puts us in a situation in which we can apply Theorem 2.28. If we assume that
ωT
2π 6∈ Q, then it follows immediately from Example III.9 from [60] that a periodic

normal form on the center manifold is given by




dτ

dt
= 1 + φ(|ξ|2),

dξ

dτ
= iωξ + ξψ(|ξ|2),

where the polynomials φ and ψ are at least linear in their argument; φ is real, while

ψ takes values in C. If we explicitly write terms up to and including the fifth order,

namely 



dτ

dt
= 1 + α1|ξ|2 + α2|ξ|4 + . . . ,

dξ

dτ
= iωξ + c′ξ|ξ|2 + e′ξ|ξ|4 + . . . ,
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where the dots denote O(|ξ|6)-terms, we obtain the normal form (4.7) with ic =
iωα1 + c′ (since the Lyapunov coefficient of the Neimark-Sacker bifurcation is purely

imaginary) and e = iωα2 + α1c′ + e′.

Strong Resonance 1:1 bifurcation

At the R1 bifurcation we have

M0 =




1 1 0
0 1 1
0 0 1


 , L0 =




0 1 0
0 0 1
0 0 0


 , L̃0 =

(
0 1
0 0

)
.

We are in a case in which we can apply Theorem 2.29. The truncated T-periodic

normal form on the center manifold has the form

dτ

dt
= 1 + ξ1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where ξ = (ξ1, ξ2). Here p and P are at least quadratic polynomials in (ξ1, ξ2)
with T-periodic in τ coefficients, and are such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,
d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0.

If we write the Fourier expansions for p and P, namely

p(τ, ξ) =
∞

∑
l=−∞

pl(ξ)e
i 2πlτ

T , P(τ, ξ) =
∞

∑
l=−∞

Pl(ξ)e
i 2πlτ

T ,

we obtain, for any l ∈ Z, the following differential equations

d

dξ
pl(ξ)L̃∗

0ξ − i
2πl

T
pl(ξ) = 0,

d

dξ
Pl(ξ)L̃∗

0ξ − i
2πl

T
Pl(ξ)− L̃∗

0 Pl(ξ) = 0.
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Putting our L̃0 into the equations and writing Pl(ξ1, ξ2) = (P
(1)
l (ξ1, ξ2), P

(2)
l (ξ1,

ξ2)), we can rewrite them as a set of differential equations in variable ξ2

d

dξ2
pl(ξ1, ξ2) = i

2πl

Tξ1
pl(ξ1, ξ2),

d

dξ2
P
(1)
l (ξ1, ξ2) = i

2πl

Tξ1
P
(1)
l (ξ1, ξ2),

d

dξ2
P
(2)
l (ξ1, ξ2) =

1

ξ1

(
i
2πl

T
P
(2)
l (ξ1, ξ2) + P

(1)
l (ξ1, ξ2)

)
.

Since pl(ξ1, ξ2), P
(1)
l (ξ1, ξ2) and P

(2)
l (ξ1, ξ2) are polynomials, if l 6= 0 the only

solution is the trivial one. Therefore, l equals zero and thus the polynomials are

τ-independent. We obtain

d

dξ2
p0(ξ1, ξ2) =

d

dξ2
P
(1)
0 (ξ1, ξ2) = 0,

d

dξ2
P
(2)
0 (ξ1, ξ2) =

1

ξ1
P
(1)
0 (ξ1, ξ2).

The first two equations show that p0 and P
(1)
0 are independent from ξ2, thus

p0(ξ1) = φ0(ξ1), P
(1)
0 (ξ1) = ξ1χ(ξ1).

Integrating the last differential equation gives

P
(2)
0 (ξ1, ξ2) = ξ2χ(ξ1) + ψ(ξ1).

Now we can further simplify our normal form. In fact, we can make a change of

variables such that polynomial P
(1)
0 vanishes (see page 19–20 in [60]). We then

have

P̃
(1)
0 (ξ1) = 0, P̃

(2)
0 (ξ1, ξ2) = ξ2φ1(ξ1) + φ2(ξ1),

where φ1 and φ2 are polynomials satisfying φ1(0) = φ2(0) =
dφ2

dξ1

∣∣∣∣
ξ1=0

= 0.

Assembling all the information gives us the following normal form




dτ

dt
= 1 + ξ1 + φ0(ξ1) = 1 + ξ1 + αξ2

1 + . . . ,

dξ1

dτ
= ξ2,

dξ2

dτ
= ξ2φ1(ξ1) + φ2(ξ1) = a′ξ2

1 + b′ξ1ξ2 + . . . ,
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where the dots denote O(|ξ|3)-terms. Note that the polynomials φ0 and φ2 are

at least quadratic in ξ1, while φ1 is at least linear in its argument. To obtain the

normal form (4.8), make the substitutions ξ1 7→ −ξ1 and ξ2 7→ −ξ2 and impose

that a = −a′ and b = −b′.

Strong Resonance 1:2 bifurcation

At the R2 bifurcation it holds that

M0 =




1 0 0
0 −1 1
0 0 −1


 , L0 =




0 0 0
0 0 1
0 0 0


 , L̃0 =

(
0 1
0 0

)
.

We are in a case in which we can apply Theorem 2.30. So we have the following

2T-periodic normal form on the center manifold

dτ

dt
= 1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where ξ = (ξ1, ξ2). The polynomials p and P are at least quadratic in ξ with

2T-periodic in τ coefficients, and are such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,

d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0,

p(τ + T, ξ) = p(τ,−ξ), P(τ + T,−ξ) = −P(τ, ξ). (4.16)

Similar to the R1 case (since the L̃0 matrix is the same), we obtain that all polyno-

mials are independent from τ, l has to be equal to zero and the polynomials p and

P(1) are independent from ξ2.

Because of the independence from τ, we can rewrite (4.16) as

p(ξ) = p(−ξ), P(−ξ) = −P(ξ),

obtaining that the polynomial p is even (p(ξ1) = φ0(ξ
2
1)) and the polynomials P(1)

and P(2) are odd (P(1)(ξ1) = ξ1φ̃1(ξ
2
1) and P(2)(ξ1, ξ2) = ξ2φ̃1(ξ

2
1) + ξ1φ̃2(ξ

2
1)).

Now we can simplify our normal form by changing variables (as discussed in the R1

case) such that

P̃(1)(ξ1) = 0, P̃(2)(ξ1, ξ2) = ξ2φ1(ξ
2
1) + ξ1φ2(ξ

2
1).
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Putting all information in the normal form equations gives the system





dτ

dt
= 1 + φ0(ξ

2
1) = 1 + αξ2

1 + . . . ,

dξ1

dτ
= ξ2,

dξ2

dτ
= ξ2φ1(ξ

2
1) + ξ1φ2(ξ

2
1) = aξ3

1 + bξ2
1ξ2 + . . . ,

where the dots denote O(|ξ|4)-terms. From this follows the normal form (4.9).

Strong Resonance 1:3 bifurcation

An R3 point is a simple case, since the Jordan block associated with the trivial

multiplier is one-dimensional and -1 is not a multiplier of the critical limit cycle. So

we have

M0 =




1 0 0

0 ei 2π
3 0

0 0 e−i 2π
3


 , L0 =




0 0 0

0 i 2π
3T 0

0 0 −i 2π
3T


 , L̃0 =

(
i 2π

3T 0

0 −i 2π
3T

)
.

We can apply Theorem 2.28, which gives the following T-periodic normal form on

the center manifold

dτ

dt
= 1 + p(τ, z),

dz

dτ
= L̃0z + P(τ, z),

where z = (z1, z̄1). The polynomials p and P are at least quadratic in z with

T-periodic in τ coefficients, and are such that

d

dτ
p(τ, z)− d

dz
p(τ, z)L̃∗

0z = 0,
d

dτ
P(τ, z) + L̃∗

0 P(τ, z)− d

dz
P(τ, z)L̃∗

0z = 0.

We apply the results derived in Example III.9 from [60] with ωT/2π = 1/3 to

obtain





dτ

dt
= 1 + ψ0(|z1|2, z̄3

1ei2πτ/T, z3
1e−i2πτ/T),

dz1

dτ
= i

2π

3T
z1 + z1ψ1(|z1|2, z3

1e−i2πτ/T) + z̄2
1ei2πτ/Tψ2(|z1|2, z̄3

1ei2πτ/T).
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Defining a new variable ξ = e−i 2πτ
3T z1, this system can be rewritten as





dτ

dt
= 1 + φ0(|ξ|2, ξ̄3, ξ3),

dξ

dτ
= ξφ1(|ξ|2, ξ3) + ξ̄2φ2(|ξ|2, ξ̄3),

with the polynomials φ0 and φ1 at least linear in their arguments, while φ2 may

contain constant terms. Notice that this system is autonomous and equivariant

under the rotations of angle 2π/3. Writing the leading terms of the polynomials

gives 



dτ

dt
= 1 + α1|ξ|2 + α2ξ3 + ᾱ2ξ̄3 + . . . ,

dξ

dτ
= bξ̄2 + cξ|ξ|2 + . . . ,

where the dots denote O(|ξ|4)-terms, so that (4.10) follows.

Strong Resonance 1:4 bifurcation

As in the R3 case the Jordan block associated with the trivial multiplier is one-

dimensional. The matrices are

M0 =




1 0 0

0 ei π
2 0

0 0 e−i π
2


 , L0 =




0 0 0
0 i π

2T 0
0 0 −i π

2T


 , L̃0 =

(
i π

2T 0
0 −i π

2T

)
.

We can apply Theorem 2.28 and obtain a T-periodic normal form on the center

manifold
dτ

dt
= 1 + p(τ, z),

dz

dτ
= L̃0z + P(τ, z),

where z = (z1, z̄1). The polynomials p and P are at least quadratic in z, having

T-periodic in τ coefficients, and are such that

d

dτ
p(τ, z)− d

dz
p(τ, z)L̃∗

0z = 0,
d

dτ
P(τ, z) + L̃∗

0 P(τ, z)− d

dz
P(τ, z)L̃∗

0z = 0.

Again, we make use of Example III.9 from [60] with ωT/2π = 1/4 and obtain





dτ

dt
= 1 + ψ0(|z1|2, z̄4

1ei2πτ/T, z4
1e−i2πτ/T),

dz1

dτ
= i

π

2T
z1 + z1ψ1(|z1|2, z4

1e−i2πτ/T) + z̄3
1ei2πτ/Tψ2(|z1|2, z̄4

1ei2πτ/T).
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Defining a new variable ξ = e−i πτ
2T z1, the system can be rewritten as





dτ

dt
= 1 + φ0(|ξ|2, ξ̄4, ξ4),

dξ

dτ
= ξφ1(|ξ|2, ξ4) + ξ̄3φ2(|ξ|2, ξ̄4),

with the polynomials φ0 and φ1 at least linear in their arguments, while φ2 may

contain constant terms. Notice that this system is autonomous and equivariant

under the rotations of angle π/2. Writing the leading terms of the polynomials

gives 



dτ

dt
= 1 + α1|ξ|2 + α2ξ4 + ᾱ2ξ̄4 + . . . ,

dξ

dτ
= cξ|ξ|2 + dξ̄3 + . . . ,

where the dots denote O(|ξ|5)-terms, implying the normal form (4.11).

Fold-Flip bifurcation

At the LPPD bifurcation it holds that

M0 =




1 1 0
0 1 0
0 0 −1


 , L0 =




0 1 0
0 0 0
0 0 0


 , L̃0 =

(
0 0
0 0

)
.

Theorem 2.30 gives the following truncated 2T-periodic normal form on the center

manifold
dτ

dt
= 1 + ξ1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where ξ = (ξ1, ξ2). The polynomials p and P are at least quadratic in ξ, having

2T-periodic in τ coefficients, and are such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0, (4.17)

d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0, (4.18)

p(τ + T, ξ1, ξ2) = p(τ, ξ1,−ξ2), (4.19)

P(1)(τ + T, ξ1,−ξ2) = P(1)(τ, ξ1, ξ2), (4.20)

P(2)(τ + T, ξ1,−ξ2) = −P(2)(τ, ξ1, ξ2). (4.21)
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By putting L̃0 into (4.17) and (4.18), we obtain

d

dτ
p(τ, ξ1, ξ2) =

d

dτ
P(1)(τ, ξ1, ξ2) =

d

dτ
P(2)(τ, ξ1, ξ2) = 0,

so the polynomials are independent from τ. From (4.19), (4.20) and (4.21), it then

follows that

p(ξ1, ξ2) = p(ξ1,−ξ2),

P(1)(ξ1,−ξ2) = P(1)(ξ1, ξ2),

P(2)(ξ1,−ξ2) = −P(2)(ξ1, ξ2),

so the polynomials are of the following form

p(ξ1, ξ2) = χ1(ξ1) + χ2(ξ
2
2)(1 + χ3(ξ1)),

P(1)(ξ1, ξ2) = ψ1(ξ1) + ψ2(ξ
2
2)(1 + ψ3(ξ1)),

P(2)(ξ1, ξ2) = ξ2 ϕ1(ξ1) + ξ2 ϕ2(ξ
2
2)(1 + ϕ3(ξ1)),

with χ1 and ψ1 at least quadratic in their argument and all the other polynomials

at least linear in their argument.

Assembling all the information gives the following system





dτ

dt
= 1 + ξ1 + χ1(ξ1) + χ2(ξ

2
2)(1 + χ3(ξ1))

= 1 + ξ1 + α20ξ2
1 + α02ξ2

2 + α′30ξ3
1 + α′12ξ1ξ2

2 + . . . ,

dξ1

dτ
= ψ1(ξ1) + ψ2(ξ

2
2)(1 + ψ2(ξ1))

= a′20ξ2
1 + a′02ξ2

2 + a′30ξ3
1 + a′12ξ1ξ2

2 + . . . ,

dξ2

dτ
= ξ2 ϕ1(ξ1) + ξ2 ϕ2(ξ

2
2)(1 + ϕ3(ξ1))

= b′11ξ1ξ2 + b′21ξ2
1ξ2 + b03ξ3

2 + . . . ,

where the dots denote O(|ξ|4)-terms. By making the substitution ξ1 7→ −ξ1, we

obtain the normal form (4.12) with α30 = −α′30, α12 = −α′12, a30 = a′30 + a′20,
a12 = a′12 + a′02, a20 = −a′20, a02 = −a′02, b11 = −b′11, b21 = b′21 + b′11.
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4.3.3 Bifurcations with 4 critical eigenvalues

In the previous 8 cases we determined the normal forms based on the theorems of

Iooss, in which the derivative of the ξ-variable with respect to the phase coordinate

τ appears. We then reparametrized the obtained system so that in the final normal

forms the derivative of the ξ-variable with respect to the time t appears. In the

next three cases however, we omit this time reparameterization. In fact, this last

step is not necessary for the theory developed in the rest of this thesis.

Limit Point-Neimark-Sacker bifurcation

At the LPNS bifurcation we have

M0 =




1 1 0 0
0 1 0 0

0 0 eiωT 0

0 0 0 e−iωT


 ,

L0 =




0 1 0 0
0 0 0 0
0 0 iω 0
0 0 0 −iω


 , L̃0 =




0 0 0
0 iω 0
0 0 −iω


 .

We are in a situation in which we can apply Theorem 2.29. So we can define a

T-periodic normal form on the center manifold

dτ

dt
= 1 + ξ1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where ξ = (ξ1, ξ2, ξ̄2)
T with ξ1 ∈ R, ξ2 ∈ C. The polynomials p, P are real,

respectively complex, T-periodic in τ and at least quadratic in (ξ1, ξ2, ξ̄2) such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,
d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0.

If we write the polynomials in a Fourier expansion, namely

p(τ, ξ) =
∞

∑
l=−∞

pl(ξ)e
i 2πlτ

T , P(τ, ξ) =
∞

∑
l=−∞

Pl(ξ)e
i 2πlτ

T ,
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we obtain for any l ∈ Z the following differential equations

d

dξ
pl(ξ)L̃∗

0ξ − i
2πl

T
pl(ξ) = 0,

d

dξ
Pl(ξ)L̃∗

0ξ − i
2πl

T
Pl(ξ)− L̃∗

0 Pl(ξ) = 0.

Putting L̃0 into the equations with

Pl(ξ1, ξ2, ξ̄2) = (P
(1)
l (ξ1, ξ2, ξ̄2), P

(2)
l (ξ1, ξ2, ξ̄2), P̄

(2)
l (ξ1, ξ2, ξ̄2))

T

we can rewrite them as a set of differential equations in variable ξ2

iωξ2
d

dξ2
pl(ξ) + i

2πl

T
pl(ξ) = iωξ̄2

d

dξ̄2
pl(ξ),

iωξ2
d

dξ2
P
(1)
l (ξ) + i

2πl

T
P
(1)
l (ξ) = iωξ̄2

d

dξ̄2
P
(1)
l (ξ),

iωξ2
d

dξ2
P
(2)
l (ξ) + i

2πl

T
P
(2)
l (ξ) = iωξ̄2

d

dξ̄2
P
(2)
l (ξ) + iωP

(2)
l (ξ),

iωξ2
d

dξ2
P̄
(2)
l (ξ) + i

2πl

T
P̄
(2)
l (ξ) = iωξ̄2

d

dξ̄2
P̄
(2)
l (ξ)− iωP̄

(2)
l (ξ).

Since pl(ξ1, ξ2, ξ̄2), P
(1)
l (ξ1, ξ2, ξ̄2) and P

(2)
l (ξ1, ξ2, ξ̄2) are polynomials, it follows

from the equations that they are zero if l 6= 0. Therefore, the polynomials are

τ-independent. We then obtain

ξ2
d

dξ2
p0(ξ1, ξ2, ξ̄2) = ξ̄2

d

dξ̄2
p0(ξ1, ξ2, ξ̄2),

ξ2
d

dξ2
P
(1)
0 (ξ1, ξ2, ξ̄2) = ξ̄2

d

dξ̄2
P
(1)
0 (ξ1, ξ2, ξ̄2),

ξ2
d

dξ2
P
(2)
0 (ξ1, ξ2, ξ̄2) = ξ̄2

d

dξ̄2
P
(2)
0 (ξ1, ξ2, ξ̄2) + P

(2)
0 (ξ1, ξ2, ξ̄2),

and the complex conjugate of the last equation. From the first equation it follows

that

p0(ξ1, ξ2, ξ̄2) = ψ1(ξ1) + ψ2(|ξ2|2) + ψ3(ξ1)ψ4(|ξ2|2),
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where ψ2, ψ3 and ψ4 are at least linear in their argument and ψ1 at least quadratic.

Similarly, we obtain

P
(1)
0 (ξ1, ξ2, ξ̄2) = φ1(ξ1) + φ2(|ξ2|2) + φ3(ξ1)φ4(|ξ2|2),

with the same conditions for φ as the ones for ψ. At last, from the third equation

we can derive that

P
(2)
0 (ξ1, ξ2, ξ̄2) = ξ2χ1(ξ1) + ξ2χ2(|ξ2|2) + ξ2χ3(ξ1)χ4(|ξ2|2),

where χ1, χ2, χ3 and χ4 are at least linear in their argument.

Assembling all the information gives us the following normal form




dτ

dt
= 1 + ξ1 + α200ξ2

1 + α011 |ξ2|2 + α′300ξ3
1 + α′111ξ1 |ξ2|2 + . . . ,

dξ1

dτ
= a′200ξ2

1 + a′011 |ξ2|2 + a300ξ3
1 + a111ξ1 |ξ2|2 + . . . ,

dξ2

dτ
= iωξ2 + b′110ξ1ξ2 + b210ξ2

1ξ2 + b021ξ2 |ξ2|2 + . . . .

By applying the substitution ξ1 7→ −ξ1, we find the Iooss normal form (4.13), i.e.




dτ

dt
= 1 − ξ1 + α200ξ2

1 + α011 |ξ2|2 + α300ξ3
1 + α111ξ1 |ξ2|2 + . . . ,

dξ1

dτ
= a200ξ2

1 + a011 |ξ2|2 + a300ξ3
1 + a111ξ1 |ξ2|2 + . . . ,

dξ2

dτ
= iωξ2 + b110ξ1ξ2 + b210ξ2

1ξ2 + b021ξ2 |ξ2|2 + . . . ,

with α300 = −α′300, α111 = −α′111, a200 = −a′200, a011 = −a′011, b110 = −b′110 and

the dots denote O(|ξ|4) terms. Note that the time evolution is given by




dτ

dt
= 1 − ξ1 + α200ξ2

1 + α011 |ξ2|2 + α300ξ3
1 + α111ξ1 |ξ2|2 + . . . ,

dξ1

dt
= a200ξ2

1 + a011 |ξ2|2 + a∗300ξ3
1 + a∗111ξ1 |ξ2|2 + . . . ,

dξ2

dt
= iωξ2 + b∗110ξ1ξ2 + b∗210ξ2

1ξ2 + b∗021ξ2 |ξ2|2 + . . . ,

with a∗300 = −a200 + a300, a∗111 = −a011 + a111, b∗110 = −iω + b110, b∗210 = iωα200

− b110 + b210, b∗021 = iωα011 + b021. We could use this system as our starting
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normal form, as in the previous cases. However, since the time reparametrized ODE

has exactly the same form as (4.13), we can as well use (4.13). Therefore, (as

mentioned before) in this and the next two cases, we will use the Iooss normal form

as the starting normal form and thus we will not make use of the time reparametrized

version of this normal form.

Period-Doubling-Neimark-Sacker bifurcation

At the PDNS bifurcation it holds that

M0 =




1 0 0 0
0 −1 0 0

0 0 eiωT 0

0 0 0 e−iωT


 ,

L0 =




0 0 0 0
0 0 0 0
0 0 iω 0
0 0 0 −iω


 , L̃0 =




0 0 0
0 iω 0
0 0 −iω


 .

We are in a case in which we can apply Theorem 2.30. So we can define a 2T-

periodic normal form on the center manifold

dτ

dt
= 1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where ξ = (ξ1, ξ2, ξ̄2). The polynomials p and P are 2T-periodic in τ and at least

quadratic in their argument such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,

d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0,

p(τ + T, ξ1, ξ2, ξ̄2) = p(τ,−ξ1, ξ2, ξ̄2),

P(1)(τ + T,−ξ1, ξ2, ξ̄2) = −P(1)(τ, ξ1, ξ2, ξ̄2),

P(2)(τ + T,−ξ1, ξ2, ξ̄2) = P(2)(τ, ξ1, ξ2, ξ̄2),

and the complex conjugate of the last equation.
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As in the LPNS case (since the L̃0 matrix is the same) we obtain that all

polynomials are independent from τ, so that we can rewrite the last three equations

as

p(ξ1, ξ2, ξ̄2) = p(−ξ1, ξ2, ξ̄2),

P(1)(−ξ1, ξ2, ξ̄2) = −P(1)(ξ1, ξ2, ξ̄2),

P(2)(−ξ1, ξ2, ξ̄2) = P(2)(ξ1, ξ2, ξ̄2),

thus p and P(2) are even in ξ1 and P(1) is odd in ξ1. Similar to the results of the

LPNS case, we obtain

p0(ξ1, ξ2, ξ̄2) = ψ1(ξ
2
1) + ψ2(|ξ2|2) + ψ3(ξ

2
1)ψ4(|ξ2|2),

P
(1)
0 (ξ1, ξ2, ξ̄2) = ξ1φ1(ξ

2
1) + ξ1φ2(|ξ2|2) + ξ1φ3(ξ

2
1)φ4(|ξ2|2),

P
(2)
0 (ξ1, ξ2, ξ̄2) = ξ2χ1(ξ

2
1) + ξ2χ2(|ξ2|2) + ξ2χ3(ξ

2
1)χ4(|ξ2|2),

with all functions at least linear in their argument.

Assembling all the information gives us the Iooss normal form (4.14), i.e.





dτ

dt
= 1 + α200ξ2

1 + α011 |ξ2|2 + α400ξ4
1 + α022 |ξ2|4 + α211ξ2

1 |ξ2|2 + . . . ,

dξ1

dτ
= a300ξ3

1 + a111ξ1 |ξ2|2 + a500ξ5
1 + a122ξ1 |ξ2|4 + a311ξ3

1 |ξ2|2 + . . . ,

dξ2

dτ
= iωξ2 + b210ξ2

1ξ2 + b021ξ2 |ξ2|2 + b410ξ4
1ξ2 + b221ξ2

1ξ2 |ξ2|2

+ b032ξ2 |ξ2|4 + . . . ,

where the dots denote O(|ξ|6) terms. Note that the time evolution is given by





dτ

dt
= 1 + α200ξ2

1 + α011 |ξ2|2 + α400ξ4
1 + α022 |ξ2|4 + α211ξ2

1 |ξ2|2 + . . . ,

dξ1

dt
= a300ξ3

1 + a111ξ1 |ξ2|2 + a′500ξ5
1 + a′311ξ3

1 |ξ2|2 + a′122ξ1 |ξ2|4 + . . . ,

dξ2

dt
= iωξ2 + b′210ξ2

1ξ2 + b′021ξ2 |ξ2|2 + b′410ξ4
1ξ2 + b′221ξ2

1ξ2 |ξ2|2

+ b′032ξ2 |ξ2|4 + . . . ,

with a′500 = a300α200 + a500, a′311 = a300α011 + a111α200 + a311, a′122 = a111α011 +
a122, b′210 = iωα200 + b210, b′021 = iωα011 + b021, b′410 = iωα400 + b210α200 + b410,
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b′221 = iωα211 + b210α011 + b021α200 + b221, b′032 = iωα022 + b021α011 + b032.

4.3.4 Bifurcations with 5 critical eigenvalues

Double Neimark-Sacker bifurcation

At the NSNS bifurcation we have the matrices

M0 =




1 0 0 0 0

0 eiω1T 0 0 0

0 0 e−iω1T 0 0

0 0 0 eiω2T 0

0 0 0 0 e−iω2T




,

L0 =




0 0 0 0 0
0 iω1 0 0 0
0 0 −iω1 0 0
0 0 0 iω2 0
0 0 0 0 −iω2




, L̃0 =




iω1 0 0 0
0 −iω1 0 0
0 0 iω2 0
0 0 0 −iω2


 .

We are in a case in which we can apply Theorem 2.28. So we can define a T-periodic

normal form on the center manifold

dτ

dt
= 1 + p(τ, ξ),

dξ

dτ
= L̃0ξ + P(τ, ξ),

where ξ = (ξ1, ξ̄1, ξ2, ξ̄2). The polynomials p and P are T-periodic in τ and at

least quadratic in (ξ1, ξ̄1, ξ2, ξ̄2) such that

d

dτ
p(τ, ξ)− d

dξ
p(τ, ξ)L̃∗

0ξ = 0,
d

dτ
P(τ, ξ) + L̃∗

0 P(τ, ξ)− d

dξ
P(τ, ξ)L̃∗

0ξ = 0.

Writing down the polynomials in a Fourier expansion results in the following equa-

tions

iω1ξ1
d

dξ1
pl(ξ) + iω2ξ2

d

dξ2
pl(ξ) + i

2πl

T
pl(ξ)

= iω1ξ̄1
d

dξ̄1
pl(ξ) + iω2ξ̄2

d

dξ̄2
pl(ξ),
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iω1ξ1
d

dξ1
P
(1)
l (ξ) + iω2ξ2

d

dξ2
P
(1)
l (ξ) + i

2πl

T
P
(1)
l (ξ)

= iω1ξ̄1
d

dξ̄1
P
(1)
l (ξ) + iω2ξ̄2

d

dξ̄2
P
(1)
l (ξ) + iω1P

(1)
l (ξ),

iω1ξ1
d

dξ1
P̄
(1)
l (ξ) + iω2ξ2

d

dξ2
P̄
(1)
l (ξ) + iω1P̄

(1)
l (ξ)

= iω1ξ̄1
d

dξ̄1
P̄
(1)
l (ξ) + iω2ξ̄2

d

dξ̄2
P̄
(1)
l (ξ)− i

2πl

T
P̄
(1)
l (ξ),

iω1ξ1
d

dξ1
P
(2)
l (ξ) + iω2ξ2

d

dξ2
P
(2)
l (ξ) + i

2πl

T
P
(2)
l (ξ)

= iω1ξ̄1
d

dξ̄1
P
(2)
l (ξ) + iω2ξ̄2

d

dξ̄2
P
(2)
l (ξ) + iω2P

(2)
l (ξ),

iω1ξ1
d

dξ1
P̄
(2)
l (ξ) + iω2ξ2

d

dξ2
P̄
(2)
l (ξ) + iω1P̄

(2)
l (ξ)

= iω1ξ̄1
d

dξ̄1
P̄
(2)
l (ξ) + iω2ξ̄2

d

dξ̄2
P̄
(2)
l (ξ)− i

2πl

T
P̄
(2)
l (ξ).

Since pl(ξ1, ξ̄1, ξ2, ξ̄2), P
(1)
l (ξ1, ξ̄1, ξ2, ξ̄2) and P

(2)
l (ξ1, ξ̄1, ξ2, ξ̄2) are polynomials, it

follows from the equations that they are zero if l 6= 0. So p and P are τ-independent

and p0(ξ1, ξ̄1, ξ2, ξ̄2), P
(1)
0 (ξ1, ξ̄1, ξ2, ξ̄2) and P

(2)
0 (ξ1, ξ̄1, ξ2, ξ̄2) satisfy

ξ1
d

dξ1
p0(ξ1, ξ̄1, ξ2, ξ̄2) = ξ̄1

d

dξ̄1
p0(ξ1, ξ̄1, ξ2, ξ̄2),

ξ2
d

dξ2
p0(ξ1, ξ̄1, ξ2, ξ̄2) = ξ̄2

d

dξ̄2
p0(ξ1, ξ̄1, ξ2, ξ̄2),

ξ1
d

dξ1
P
(1)
0 (ξ1, ξ̄1, ξ2, ξ̄2) = ξ̄1

d

dξ̄1
P
(1)
0 (ξ1, ξ̄1, ξ2, ξ̄2) + P

(1)
0 (ξ1, ξ̄1, ξ2, ξ̄2),

ξ2
d

dξ2
P
(1)
0 (ξ1, ξ̄1, ξ2, ξ̄2) = ξ̄2

d

dξ̄2
P
(1)
0 (ξ1, ξ̄1, ξ2, ξ̄2),

ξ1
d

dξ1
P
(2)
0 (ξ1, ξ̄1, ξ2, ξ̄2) = ξ̄1

d

dξ̄1
P
(2)
0 (ξ1, ξ̄1, ξ2, ξ̄2),

ξ2
d

dξ2
P
(2)
0 (ξ1, ξ̄1, ξ2, ξ̄2) = ξ̄2

d

dξ̄2
P
(2)
0 (ξ1, ξ̄1, ξ2, ξ̄2) + P

(2)
0 (ξ1, ξ̄1, ξ2, ξ̄2).

From the first two equations follows that

p0(ξ1, ξ̄1, ξ2, ξ̄2) = ψ1(|ξ1|2) + ψ2(|ξ2|2) + ψ3(|ξ1|2)ψ4(|ξ2|2).
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From the third and fourth equation, we obtain

P
(1)
0 (ξ1, ξ̄1, ξ2, ξ̄2) = ξ1φ1(|ξ1|2) + ξ1φ2(|ξ2|2) + ξ1φ3(|ξ1|2)φ4(|ξ2|2),

and analogously

P
(2)
0 (ξ1, ξ̄1, ξ2, ξ̄2) = ξ2χ1(|ξ2|2) + ξ2χ2(|ξ1|2) + ξ2χ3(|ξ1|2)χ4(|ξ2|2),

where all functions are at least linear in their argument.

Assembling all the information gives us the Iooss normal form (4.15), i.e.





dτ

dt
= 1 + α1100 |ξ1|2 + α0011 |ξ2|2 + α2200 |ξ1|4 + α0022 |ξ2|4

+ α1111 |ξ1|2 |ξ2|2 + . . . ,

dξ1

dτ
= iω1ξ1 + a2100ξ1 |ξ1|2 + a1011ξ1 |ξ2|2 + a3200ξ1 |ξ1|4 + a1022ξ1 |ξ2|4

+ a2111ξ1 |ξ1|2 |ξ2|2 + . . . ,

dξ2

dτ
= iω2ξ2 + b0021ξ2 |ξ2|2 + b1110ξ2 |ξ1|2 + b0032ξ2 |ξ2|4 + b2210ξ2 |ξ1|4

+ b1121ξ2 |ξ1|2 |ξ2|2 + . . . ,

where the dots denote O(|ξ|6) terms. Note that the time evolution is of the form





dτ

dt
= 1 + α1100 |ξ1|2 + α0011 |ξ2|2 + α2200 |ξ1|4 + α0022 |ξ2|4

+ α1111 |ξ1|2 |ξ2|2 + . . . ,

dξ1

dt
= iω1ξ1 + a′2100ξ1 |ξ1|2 + a′1011ξ1 |ξ2|2 + a′3200ξ1 |ξ1|4 + a′1022ξ1 |ξ2|4

+ a′2111ξ1 |ξ1|2 |ξ2|2 + . . . ,

dξ2

dt
= iω2ξ2 + b′0021ξ2 |ξ2|2 + b′1110ξ2 |ξ1|2 + b′0032ξ2 |ξ2|4 + b′2210ξ2 |ξ1|4

+ b′1121ξ2 |ξ1|2 |ξ2|2 + . . . ,

where the coefficients with primes are functions of the original coefficients.
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4.4 Generic unfoldings of the critical normal forms

In this section we describe how the coefficients of the critical normal forms can

be used to predict bifurcations of the phase portraits near the critical limit cycles

for nearby parameter values. Certain quantities that are functions of these criti-

cal coefficients, are introduced and used to distinguish between various bifurcation

scenarios.

We first concentrate on the first 8 cases in which we represent the normal form

as (4.4). After a time reparametrization, (4.4) can be rewritten as





dτ

dt
= 1,

dξ

dt
= P̃(ξ) + R̃(τ, ξ),

where P̃ and R̃ have the same properties as P and R. The equation for ξ will then

become the nonautonomous system

dξ

dt
= P̃(ξ) + R̂(t, ξ)

with the right-hand side kT-periodic in t. The kT-shift along orbits of the resulting

autonomous truncated system,

ξ̇ = P̃(ξ), (4.22)

will approximate the k-th iterate of the Poincaré map associated with the limit cycle

and restricted to the center manifold, in appropriate coordinates. Notice that the

right-hand side of (4.22) has the same terms as the corresponding equation in the

Iooss normal form in [59].

This construction can be extended to parameter-dependent systems. In appro-

priate coordinates, a canonical unfolding of (4.22) will approximate the restricted

Poincaré map of the generic two-parameter system (4.1) [59]. The new unfolding

parameters will be denoted as (β1, β2).

Note that we study the truncated normal form. Higher order terms, however,

can alter the bifurcation portrait obtained from this truncated normal form. For

a detailed description of the effect of the higher order terms, we refer to [67]. In

the CPC and GPD cases, the general and truncated normal forms are topologically

equivalent.
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4.4.1 Bifurcations with 2 critical eigenvalues

Cusp Point of Cycles bifurcation

In this case, (4.22) takes the form

ξ̇ = cξ3, ξ ∈ R,

and the T-shift along its orbits approximates the restricted Poincaré map associated

with the critical limit cycle. Indeed, the T-shift can be obtained by making one

Picard iteration (as discussed in Section 2.3), i.e.

ξ0(t) = η, ξ1(t) = η +
∫ t

0
cη3ds

and thus

η 7→ η + cTη3. (4.23)

Further iterations do not change this expansion. The canonical two-parameter

unfolding of (4.23) is (up to a rescaling given by (9.10) in [67])

η 7→ η + β1 + β2η + cTη3,

provided c 6= 0. Fixed points of this equation correspond to fixed points of the

Poincaré maps, i.e. cycles in (4.1). When two fixed points collide at a Limit Point

bifurcation, a Limit Point of Cycles bifurcation occurs in (4.1). The bifurcation

diagram of this equation is shown in Figure 4.1. On the curves T1 and T2, which

meet tangentially at the Cusp Point of Cyles, two limit cycles collide and disappear.

When detecting a CPC point, the output given by MatCont is the normal form

coefficient c.

Generalized Period-Doubling bifurcation

In this case, (4.22) reduces to

ξ̇ = eξ5, ξ ∈ R,

and the 2T-shift along its orbits approximates the second iterate of the restricted

Poincaré map associated with the critical limit cycle. Indeed, by doing one Picard

iteration up to 2T we obtain

η 7→ η + 2Teη5. (4.24)
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Figure 4.1: Bifurcation diagram of the Cusp bifurcation of the fixed point normal

form.

The canonical two-parameter unfolding of (4.24) when e 6= 0 is (given on page 416

of [67])

η 7→ (1 + 2β1)η − 2β2η3 + e2Tη5.

The fixed point η = 0 of this equation corresponds to the fixed point of the Poincaré

map, while symmetric nonzero fixed points of this equation correspond to its period

doubled cycles. Thus, a pitchfork bifurcation in this equation will describe a Period-

Doubling bifurcation of a limit cycle in (4.1). The coefficient of the fifth order term

of the 2T-shift has opposite sign than the one for maps derived in [67]. Therefore,

the behaviour of the system at the bifurcation is the same but with opposite sign

of the normal form coefficient. If e < 0 we obtain the bifurcation diagram reported

in Figure 4.2 (b), in which the Limit Point curve of the period doubled limit cycles

T(2) is tangent to the subcritical Period-Doubling branch labeled as F
(1)
− . If e > 0

we are in the opposite situation, depicted in Figure 4.2 (a). The output given by

MatCont is the normal form coefficient e.
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Figure 4.2: Bifurcation diagram of the degenerate Period-Doubling point bifurcation

of the fixed point normal form.

4.4.2 Bifurcations with 3 critical eigenvalues

Chenciner bifurcation

In this case, (4.22) becomes

ξ̇ = iωξ + i(c − α1ω)ξ|ξ|2 + (e − i(α1c − α2
1ω + α2ω))ξ|ξ|4, (4.25)

and the T-shift along its orbits approximates the restricted Poincaré map associated

with the critical limit cycle. Indeed, this can be shown by making use of Picard

iterations. However, before we can do this, we need to make a change of variables

in order to obtain a quasi-identity flow. By introducing the new complex variable

z = e−iωtξ, (4.25) can be rewritten as

ż = i(c − α1ω)z |z|2 +
(

e − i(α1c − α2
1ω + α2ω)

)
z |z|4 .

Doing two Picard iterations up to time T, we obtain

z 7→z + iT(c − α1ω)z |z|2

+ T

(
e − c2T

2
+ α1cTω − 1

2
α2

1Tω2 + i
(

α2
1ω − α1c − α2ω

))
z |z|4 .

(4.26)
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The canonical two-parameter unfolding of (4.26) is locally topologically equivalent

to the normal form for the degenerate Hopf (Bautin) bifurcation ((9.22) in [67])

z 7→(1 + β1)z + (β2 + iT(c − α1ω))z|z|2

+ T

(
e − c2T

2
+ α1cTω − 1

2
α2

1Tω2 + i
(

α2
1ω − α1c − α2ω

))
z|z|4,

provided ℜ(e) 6= 0. The trivial fixed point z = 0 corresponds to the bifurcating cycle

in (4.1), while limit cycles in the (ℜ(z),ℑ(z))-plane correspond to closed invariant

curves of the approximate Poincaré map, i.e. approximate invariant tori in (4.1).

Note that actual invariant sets of (4.1) can be close to tori but have a much more

complicated structure. The Hopf bifurcation will correspond to the Neimark-Sacker

bifurcation, while the LPC curve at which two limit cycles collide and disappear will

be substituted by a complicated bifurcation set where an ’annihilation’ of two closed

invariant curves occurs. This set is however close to the LPC curve, therefore we

will refer to it as the ’Limit Point of Tori curve’.

The sign of the second Lyapunov coefficient L2 (as defined on page 420 of

[67]) determines the bifurcation scenario. However, from (4.7) we can derive that

ℜ(e) < 0 corresponds with a stable critical limit cycle and ℜ(e) > 0 with an

unstable critical limit cycle. Therefore, the case ℜ(e) < 0 corresponds with the

case L2 < 0 and ℜ(e) > 0 corresponds with L2 > 0. So ℜ(e) and the second

Lyapunov coefficient L2 as defined in [67] have the same sign and vanish at the

same time. Since both coefficients have the same effect and L2 requires more

computations, we compute ℜ(e) to determine the bifurcation scenario, and we will

call ℜ(e) the second Lyapunov coefficient. When ℜ(e) < 0, the outer invariant

curve is stable and the Limit Point of Tori curve Tc is tangent to the subcritical

Neimark-Sacker branch N+, as shown in Figure 4.3 (a). When ℜ(e) > 0, the outer

invariant curve is unstable and the Limit Point of Tori curve Tc is tangent to the

supercritical Neimark-Sacker branch N−. The output given by MatCont is ℜ(e).

Strong Resonance 1:1 bifurcation

In this case, (4.22) has the form
{

ξ̇1 = ξ2,

ξ̇2 = aξ2
1 + bξ1ξ2,

(4.27)

where it is assumed that ab 6= 0. The T-shift along orbits of this system approx-

imates the restricted Poincaré map associated with the critical limit cycle. The
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Figure 4.3: Bifurcation diagram of the generalized Neimark-Sacker bifurcation of

the fixed point normal form.

canonical two-parameter unfolding of (4.27) is given by the Bogdanov-Takens nor-

mal form (up to a rescaling given by (9.53) in [67])

{
ξ̇1 = ξ2,

ξ̇2 = β1 + β2ξ1 + aξ2
1 + bξ1ξ2,

with bifurcation diagrams depending on the sign of the product ab. Equilibria of this

system correspond to fixed points of the Poincaré map, i.e. to cycles of (4.1), while

its limit cycles approximate closed invariant curves of the map, i.e. invariant tori of

(4.1). The Hopf bifurcation will thus correspond to the Neimark-Sacker bifurcation.

In particular, as shown in Figure 4.4, if the two coefficients have a different sign, the

Neimark-Sacker curve H is supercritical, while in the other case it is subcritical. The

saddle homoclinic bifurcation in the Bogdanov-Takens normal form will correspond

to a complicated sequence of bifurcations through which the torus destructs near a

homoclinic tangle. The output given by MatCont is the product of the coefficients

a and b.
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Figure 4.4: Bifurcation diagram of the Strong Resonance 1:1 bifurcation of the

fixed point normal form. The other two cases in which a < 0 can be obtained

by a reflection around the origin of the state portraits and a left-right flip of the

bifurcation diagrams.

Strong Resonance 1:2 bifurcation

If we reparametrize time, (4.22) takes the form

{
ξ̇1 = ξ2,

ξ̇2 = aξ3
1 + bξ2

1ξ2.
(4.28)

The 2T-shift along its orbits approximates the second iterate of the restricted

Poincaré map associated with the critical limit cycle. The canonical two-parameter

unfolding of (4.28) when ab 6= 0 is ((9.74) in [67])

{
ξ̇1 = ξ2,

ξ̇2 = β1ξ1 + β2ξ2 + aξ3
1 + bξ2

1ξ2.

There are four different bifurcation diagrams, determined by the signs of the co-

efficients. The ones with negative b are reported in Figure 4.5. The other two

cases can be obtained by reversing the arrows of the phase portraits and making an
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Figure 4.5: Bifurcation diagram of the Strong Resonance 1:2 bifurcation of the fixed

point normal form. The other two possible cases in which b > 0 can be obtained

by reversing time and making an up-down flip both of the state portraits and of the

bifurcation diagrams.

up-down flip both of the state portraits and of the bifurcation diagrams. The trivial

equilibrium ξ = 0 corresponds to the fixed point of the restricted Poincaré map,

i.e. the bifurcating cycle of (4.1), while the nontrivial equilibria are the fixed points

of the second iterate of the Poincaré map and correspond to one period doubled

cycle in (4.1). Thus, a pitchfork implies the Period-Doubling bifurcation F, and

a Hopf bifurcation corresponds to a Neimark-Sacker bifurcation that generates an

invariant torus. More complicated invariant sets and bifurcations are also possible.

The primary Neimark-Sacker curve H(1) is supercritical (with negative normal form

coefficient) if the critical coefficient b is negative, subcritical otherwise. Moreover,

if a < 0, a secondary Neimark-Sacker curve H(2) is rooted at the R2 point with

opposite criticality of the primary one. The output given by MatCont is (a, b).

Strong Resonance 1:3 bifurcation

In this case, (4.22) takes the form

ξ̇ = bξ̄2 + cξ|ξ|2, ξ ∈ C. (4.29)

The 3T-shift along its orbits approximates the third iterate of the restricted Poincaré

map associated with the critical limit cycle. The canonical two-parameter unfolding
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of (4.29) when b 6= 0 and ℜ(c) 6= 0 is ((9.88) in [67])

ξ̇ = (β1 + iβ2)ξ + bξ̄2 + cξ|ξ|2.

Its trivial equilibrium corresponds to the bifurcating limit cycle, while three nontrivial

equilibria correspond to fixed points of the third iterate of the Poincaré map, i.e.

the cycle in (4.1) with triple period. Moreover, a limit cycle in the (ℜ(ξ),ℑ(ξ))-
plane approximates a closed invariant curve of the Poincaré map, i.e. an invariant

torus in (4.1). So a Hopf bifurcation corresponds to a Neimark-Sacker bifurcation.

As can be seen in Figure 4.6, if ℜ(c) < 0, the Neimark-Sacker bifurcation N is

supercritical (with negative normal form coefficient), while in the other case it is

subcritical. The output given by MatCont is (b,ℜ(c)).
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Figure 4.6: Bifurcation diagram of the Strong Resonance 1:3 bifurcation of the fixed

point normal form.

Strong Resonance 1:4 bifurcation

Here, (4.22) has the form

ξ̇ = cξ|ξ|2 + dξ̄3, ξ ∈ C. (4.30)

The 4T-shift along its orbits approximates the fourth iterate of the restricted Poincaré

map associated with the critical limit cycle. The canonical two-parameter unfolding
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of (4.30) when the complex product cd 6= 0 is ((9.98) in [67])

ξ̇ = (β1 + iβ2)ξ + cξ|ξ|2 + dξ̄3

and its equilibria, cycles, and their bifurcations have the standard interpretations

in terms of the original system (4.1). In particular, nonzero equilibria correspond

to the fixed points of the fourth iterate of the Poincaré map, i.e. one cycle with

an approximate period of 4T in (4.1). The bifurcation diagram of the unfolding

depends on the complex number

A =
c

|d|
(see [65, 67] and references therein). Many topologically different bifurcation dia-

grams can be found near the R4 point. The analysis, if one excludes higher codi-

mension situations, can be reduced to 22 different cases. First of all, by analyzing

the unfolding, one can divide the A-plane into two big regions: in the semiplane

ℜ(A) < 0 the primary Neimark-Sacker bifurcation is supercritical, in the semiplane

ℜ(A) > 0 it is subcritical. What happens in the semiplane ℜ(A) > 0 can therefore

be obtained from the semiplane ℜ(A) < 0 by inverting the direction of the vector

fields and doing the transformation β → −β. We can further reduce the analysis

to the third quadrant of the A-plane, since the 12 possible cases are topologically

equivalent paired through the transformation ξ 7→ ξ̄. The different regions are

shown in Figure 4.7, in which some curves are computed numerically.

Figure 4.8 and Figure 4.9 show the possible bifurcation diagrams with the

sketches of the phase portraits for the Poincaré maps in the case ℜ(A) < 0.

We use the following notation:

N: Neimark-Sacker bifurcation. In regions VII and VIII there is also a Neimark-

Sacker bifurcation of the period 4 limit cycle.

T: Fold bifurcation of the period 4 limit cycles. There are three possibilities.

Superscript in, on or out means that the bifurcation happens inside, on or

outside a ’big’ invariant curve.

H: Homoclinic connection of the period 4 saddle limit cycle. Superscript S means

that the born invariant curve is smaller than the limit cycle (a square look-

ing homoclinic connection), C that it is bigger (a clover looking homoclinic

connection), and L means that the born invariant curve is around the pe-

riod 4 limit cycle; subscript + (-) means that the saddle quantity is positive

(negative), and thus the born invariant curve is repelling (attracting).
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Figure 4.7: Partitioning of the A-plane into topologically different regions.

F: Fold bifurcation of the tori.

The output given by MatCont is (A, d).
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Figure 4.8: Bifurcation diagrams locally to the Strong Resonance 1:4 bifurcation in regions I to IVa of the

semiplane ℜ(A) < 0 of Figure 4.7. The cases in which ℜ(A) > 0 can be obtained by the transformation

t → −t, β → −β.1
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4.4. GENERIC UNFOLDINGS OF THE CRITICAL NORMAL FORMS

Fold-Flip bifurcation

In this case, (4.22) has the form

{
ξ̇1 = a20ξ2

1 + a02ξ2
2 + (a30 + a20)ξ

3
1 + (a12 + a02)ξ1ξ2

2,

ξ̇2 = b11ξ1ξ2 + (b21 + b11)ξ
2
1ξ2 + b03ξ3

2.
(4.31)

The 2T-shift along its orbits approximates the second iterate of the restricted

Poincaré map associated with the critical limit cycle. Indeed, the 2T-shift of (4.31)

is the same, up to cubic terms, as the 1-shift of

{
ξ̇1 = 2Ta20ξ2

1 + 2Ta02ξ2
2 + 2T(a30 + a20)ξ

3
1 + 2T(a12 + a02)ξ1ξ2

2,

ξ̇2 = 2Tb11ξ1ξ2 + 2T(b21 + b11)ξ
2
1ξ2 + 2Tb03ξ3

2.
(4.32)

System (4.32) is topologically equivalent with





ζ̇1 = a1ζ2
1 + b1ζ2

2 + (c1 − a2
1)ζ

3
1 + (d1 − a1b1 + b1)ζ1ζ2

2,

ζ̇2 = −ζ1ζ2 +
1

2
(a1 − 1)ζ2

1ζ2 +
1

2
b1ζ3

2,
(4.33)

since this second system can be obtained (neglecting higher order terms) from (4.32)

using the transformation

{
ζ1 = −2b11Tξ1 − 2T

(
b11 + b21 + a20b11T + b2

11T
)

ξ2
1 − 2T(b03 + a02b11T)ξ2

2,

ζ2 = 2b11Tξ2.

This transformation should be invertible, so one nondegeneracy condition is involved,

namely

b11 6= 0.

If this condition is satisfied, the system can be put in the form (4.33), where the

constants are defined as

a1 = − a20

b11
, b1 = − a02

b11
, c1 =

a20 + a30 + 2a2
20T

2b2
11T

,

d1 =
−2a20b03 + 3a02b11 + a12b11 + 2b03b11 + 2a02b21 + 2a02a20b11T + 6a02b2

11T

2b3
11T

.
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If b11 6= 0, the canonical two-parameter unfolding is provided by ((9.120) in [67])





ζ̇1 = β1 + (−a1β1 + β2)ζ1 + a1ζ2
1 + b1ζ2

2 + (c1 − a2
1)ζ

3
1 + (d1 − a1b1 + b1)ζ1ζ2

2,

ζ̇2 =
1

2
β1ζ2 − ζ1ζ2 +

1

2
(a1 − 1)ζ2

1ζ2 +
1

2
b1ζ3

2.

Its equilibria and cycles have standard interpretations in terms of the original sys-

tem (4.1). In particular, equilibria with ζ2 6= 0 correspond to a period doubled

cycle, while a Hopf bifurcation represents a Neimark-Sacker bifurcation of this cycle

in (4.1). Bifurcations of limit cycles approximate torus bifurcations. The critical

coefficients allow to determine what bifurcation scenario takes place. In particu-

lar (see [67, 73] for more details), three additional nondegeneracy conditions are

involved:

• if a20 6= 0 there are two limit cycles that collide and disappear (on F);

• if a02 6= 0 a period doubled limit cycle is born (on P);

• if a02b11 < 0 a nondegenerate torus bifurcation NS occurs for the period

doubled cycle, with a Lyapunov coefficient that might differ by a positive

factor from

CNS = −2a20b21a02 + 6b03a2
20 + (−2a02b21 − 6a20a02 + 2a20b03 − 3a02a30

− a12a20)b11 + b2
11(a12 − a02),

provided CNS 6= 0.

In Figure 4.10 four possible scenarios are reported depending on the sign of the

normal form coefficients. The output given by MatCont is (b11, a20, a02, CNS).

4.4.3 Bifurcations with 4 critical eigenvalues

We now concentrate on the last 3 cases in which the original Iooss representation

is used as starting normal form. These normal forms are closely related to the

normal forms for the Zero-Hopf and Hopf-Hopf bifurcations of equilibria. We can

consider an unfolding of the corresponding bifurcation and study its canonical local

bifurcation diagram for nearby parameter values. One can transform the restricted

system into a parameter-dependent normal form in which the ξ-equations have a
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Figure 4.10: Bifurcation diagrams of a Fold-Flip bifurcation of the fixed point normal

form.

τ-independent principle part and higher order terms that are kT-periodic in τ with

k = 1 for LPNS and NSNS and k = 2 for PDNS. Below we describe bifurcations of

these principle parts, i.e. the truncated parameter-dependent autonomous normal

forms. Since the dynamics is determined by the ξ-equations, we first focus on

their bifurcations by discussing the correspondence and the interpretation of the

bifurcation diagrams of the generic unfoldings of the LPNS, PDNS and NSNS

bifurcations. We then interpret the appearing bifurcation diagrams for the original

system (4.1).
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Limit Point-Neimark-Sacker bifurcation

Generically, a two-parameter unfolding of (4.1) near this bifurcation restricted to

the center manifold is smoothly orbitally equivalent (with possible time reversal) to

a system in which the equations for the transverse coordinates have the form (see

Lemma 8.10 and expression (8.77) on page 336 in [67])





dξ

dτ
= β1 + ξ2 + s |ζ|2 + O(|(ξ, ζ, ζ̄)|4),

dζ

dτ
= (β2 + iω1)ζ + (θ + iϑ)ξζ + ξ2ζ + O(|(ξ, ζ, ζ̄)|4),

(4.34)

where the O-terms are T-periodic in τ. This system is similar to the normal form

for the Zero-Hopf bifurcation of equilibria (cf. Theorem 8.6 on page 338 in [67]).

In Figure 4.11 the four possible bifurcation diagrams of the amplitude system for

(4.34) without the higher order terms, i.e.





dξ

dτ
= β1 + ξ2 + sρ2,

dρ

dτ
= ρ(β2 + θξ + ξ2),

(4.35)

are reported depending on the sign of the normal form coefficients s and θ [67].

Let us now discuss the interpretation of the phase portraits in the (ξ, ρ)-plane

of the truncated amplitude system in the context of the bifurcating limit cycle.

The fixed points or limit cycles have additional dimensions from the phases of the

periodic orbit itself plus the phases ignored in the reduction to the amplitude system.

We note that in the amplitude system the vertical direction always corresponds to a

Neimark-Sacker bifurcation, but that the horizontal component of the phase space

has a different meaning. For LPNS, equilibria on the horizontal axis correspond to

limit cycles. Equilibria off the horizontal axis correspond to invariant 2-dimensional

tori T2 and the periodic orbit that exists if sθ < 0 corresponds to an invariant

3-dimensional torus T3.

The critical values of s and θ can be expressed in terms of the coefficients of

(4.13) as

s = sign (a200a011), θ =
ℜ(b110)

a200
.

These values determine the bifurcation scenario. For sθ < 0, a 3-torus appears

in the unfolding via a Neimark-Sacker bifurcation T. The stability of this torus is
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Figure 4.11: Bifurcation diagrams of the truncated amplitude system (4.35) for the

LPNS bifurcation.

determined by the third order terms in (4.13). Indeed, the sign of the corresponding

first Lyapunov coefficient for the Hopf bifurcation in (4.35) is opposite to that of θ
but the ‘time’ in (4.34) is rescaled with factor

E = ℜ
(

b210 + b110

(ℜ(b021)

a011
− 3a300

2a200
+

a111

2a011

)
− b021a200

a011

)
,

(see page 337 in [67]). If E · l1 < 0, a stable 3-torus appears, if E · l1 > 0, the

3-torus is unstable. The output given by MatCont is (s, θ, E).
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Note that Figure 4.11 presents bifurcations of the truncated system (4.34) that

only approximates the full normalized unfolding. In particular, the orbit structure

on the invariant tori can differ from that for the approximating system due to phase

locking. Moreover, the destruction of T3 via a heteroclinic bifurcation P in case

(c) of Figure 4.11 becomes a complicated sequence of global bifurcations involving

stable and unstable invariant sets of cycles and tori. All these bifurcations, however,

occur in the exponentially small parameter wedge near the heteroclinic bifurcation

curve P. For detailed discussions of the effects of the truncation, also in the PDNS

and NSNS cases, we refer to [71,95] and references therein.

Period-Doubling-Neimark-Sacker bifurcation

Generically, a two-parameter unfolding of (4.1) near this bifurcation restricted to the

center manifold is smoothly orbitally equivalent to a system in which the equations

for the transverse coordinates have the form (see Lemma 8.14 on page 354 of [67])





dv1

dτ
= β1v1 + P11v3

1 + P12v1 |v2|2 + S1v1 |v2|4 + O(|(v1, v2, v̄2)|6),
dv2

dτ
= (β2 + iω2)v2 + P21v2

1v2 + P22v2 |v2|2 + S2v4
1v2 + iR2v2 |v2|4

+ O(|(v1, v2, v̄2)|6),

(4.36)

where the O-terms are 2T-periodic in τ. This system is similar to the normal form

for the Hopf-Hopf bifurcations of equilibria (cf. Theorem 8.8 on page 357 in [67]).

The amplitude system for (4.36) without the higher order terms is





dr1

dτ
= r1(β1 + p11r2

1 + p12r2
2 + s1r4

2),

dr2

dτ
= r1(β2 + p21r2

1 + p22r2
2 + s2r4

1),

(4.37)

where

p11 = P11, p12 = P12, p21 = ℜ(P21), p22 = ℜ(P22), s1 = S1, s2 = ℜ(S2).

The values of pjk and sj, for j, k = 1, 2, and the quantities

θ =
p12

p22
, δ =

p21

p11
, Θ =

s1

p2
22

, ∆ =
s2

p2
11
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indicate in which bifurcation scenario we are (see Section 8.6.2 in [67]).

In the ’simple’ case where p11 p22 > 0, there are five topologically different

bifurcation diagrams of the truncated amplitude system (4.37), corresponding to

the following cases:

I. θ > 0, δ > 0, θδ > 1

II. θ > 0, δ > 0, θδ < 1

III. θ > 0, δ < 0

IV. θ < 0, δ < 0, θδ < 1

V. θ < 0, δ < 0, θδ > 1.

If δ > θ, reverse the role of θ and δ. Each case corresponds with a region in the (θ,
δ)-plane, see Figure 4.12 (a). The parametric portraits belonging to the different

regions can be seen in Figure 4.13 (a), with corresponding phase portraits in the

(r1, r2)-plane in Figure 4.13 (b). The phase portraits are only shown for the case

p11 < 0 and p22 < 0. The case p11 > 0 and p22 > 0 can be reduced to the

considered one by reversing time.

In the ’difficult’ case where p11 p22 < 0, however, there are six essentially differ-

ent bifurcation diagrams:

I. θ > 1, δ > 1

II. θ > 1, δ < 1, θδ > 1

III. θ > 0, δ > 0, θδ < 1

IV. θ > 0, δ < 0

V. θ < 0, δ < 0, θδ < 1

VI. θ < 0, δ < 0, θδ > 1.

The regions in the (θ, δ)-plane are shown in Figure 4.12 (b). The related parametric

portraits and phase portraits of (4.37) are given in Figure 4.14. Only the case

p11 > 0 and p22 < 0 is presented, to which the opposite one can be easily reduced.
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Figure 4.12: (a) The five subregions in the (θ, δ)-plane in the ’simple’ case. (b)

The six subregions in the (θ, δ)-plane in the ’difficult’ case.

We note that Section 8.6.2 in [67] for the ’difficult’ case contains a few errors in

the figures and in the asymptotic expression for the heteroclinic bifurcation curve1.

Therefore, for completeness, we provide the correct asymptotics in Section 4.A.

The critical values of Pjk and Sj can be expressed in terms of the coefficients of

(4.14) as

P11 = a300, P12 = a111, ℜ(P21) = ℜ(b210), ℜ(P22) = ℜ(b021),

and

S1 = a122 + a111

(ℜ(b221)

ℜ(b210)
− 2

ℜ(b032)

ℜ(b021)
− a500ℜ(b021)

a300ℜ(b210)

)
,

ℜ(S2) = ℜ(b410) +ℜ(b210)

(
a311

a111
− 2

a500

a300
− a300ℜ(b032)

a111ℜ(b021)

)
,

(see page 356 in [67]).

1Unfortunately, there is also a minor misprint in our earlier ’correction’ for the heteroclinic curve
given in [71].
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Figure 4.13: Bifurcation diagrams of the amplitude system (4.37) for the PDNS

and NSNS bifurcations: (a) Parametric portraits in the ’simple’ case. (b) Phase

portraits in the ’simple’ case.

The fifth order terms in (4.14) determine the stability of the tori in the ’difficult’

cases. In fact, the sign of the first Lyapunov coefficient for the Neimark-Sacker

bifurcation is given by (see Section 4.A)

sign l1 = −sign (δ(θ(θ − 1)∆ + δ(δ − 1)Θ)) . (4.38)

The output of MatCont is (p11, p22, θ, δ, sign l1).
For PDNS we have an interpretation analogous to LPNS, but the invariant sets

may be ’doubled’. The origin always corresponds to the original limit cycle. Other

fixed points on the vertical axis represent the period doubled limit cycles, while

a fixed point on the horizontal axis corresponds to a T2. Fixed points off the

coordinate axes correspond to doubled tori T2 and periodic orbits correspond to

T3. As in the LPNS case, Figure 4.13 and Figure 4.14 present bifurcations of the
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Figure 4.14: Bifurcation diagrams of the amplitude system (4.37) for the PDNS

and NSNS bifurcations: (a) Parametric portraits in the ’difficult’ case. (b) Phase

portraits in the ’difficult’ case.

truncated amplitude system that only approximates the full normalized unfolding. In

particular, one has to be careful with ’torus doubling’, which is in fact a complicated

quasi-periodic bifurcation [79,96].

4.4.4 Bifurcations with 5 critical eigenvalues

Double Neimark-Sacker bifurcation

Generically, a two-parameter unfolding of (4.1) near this bifurcation restricted to the

center manifold is smoothly orbitally equivalent to a system in which the equations
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for the transverse coordinates have the form (see Lemma 8.14 on page 354 of [67])

dv1

dτ
= (β1 + iω1)v1 + P11v1 |v1|2 + P12v1 |v2|2 + iR1v1 |v1|4 + S1v1 |v2|4

+ O(|(v, v̄)|6),
dv2

dτ
= (β2 + iω2)v2 + P21v2 |v1|2 + P22v2 |v2|2 + S2v2 |v1|4 + iR2v2 |v2|4

+ O(|(v, v̄)|6),
(4.39)

where the O-terms are T-periodic in τ. Neglecting this periodicity, system (4.39)

is the normal form for the Hopf-Hopf bifurcation of equilibria (cf. Theorem 8.8 on

page 357 in [67]).

The truncated amplitude system for (4.39) is given by (4.37), where now

p11 = ℜ(P11) = ℜ(a2100), p12 = ℜ(P12) = ℜ(a1011),

p21 = ℜ(P21) = ℜ(b1110), p22 = ℜ(P22) = ℜ(b0021),

and

s1 = ℜ(S1)

= ℜ(a1022) +ℜ(a1011)

(ℜ(b1121)

ℜ(b1110)
− 2

ℜ(b0032)

ℜ(b0021)
− ℜ(a3200)ℜ(b0021)

ℜ(a2100)ℜ(b1110)

)
,

s2 = ℜ(S2)

= ℜ(b2210) +ℜ(b1110)

(ℜ(a2111)

ℜ(a1011)
− 2

ℜ(a3200)

ℜ(a2100)
− ℜ(a2100)ℜ(b0032)

ℜ(a1011)ℜ(b0021)

)
.

The output of MatCont is (p11, p22, θ, δ, sign l1).
Although the phase portraits of the truncated amplitude system are the same as

for PDNS, their interpretation is slightly different, since they ’live’ in the (|v1|, |v2|)-
plane. Here, on both axes the fixed points correspond to invariant 2-dimensional

tori T2 for the original system. Fixed points off the coordinate axes and limit cycles

correspond to T3 and T4, respectively. The usual remark on the approximate nature

of the bifurcation diagrams applies here as well.

4.5 Conclusion

In this chapter we discussed the normal forms of codim 2 bifurcations of limit

cycles. Although in [17, 59] periodic normal forms for some codim 2 bifurcations
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of limit cycles were presented, neither of these publications treated all 11 codim

2 local bifurcations of limit cycles. We have presented quantities in terms of the

normal form coefficients that allow to pick the right bifurcation scenario for each

specific case. Of course, we need explicit formulas for these critical coefficients.

This problem will be tackled in the next chapter. There, we will propose an efficient

method for the computation of the normal form coefficients.

4.A Bifurcations of the amplitude system for Hopf-

Hopf bifurcation in the ’difficult’ case

Here, we derive quadratic approximations of the Hopf and heteroclinic bifurcation

curves for the Hopf-Hopf amplitude system (4.37). By introducing new phase vari-

ables and rescaling time, (4.37) can be rewritten as

(
x′

y′

)
=

(
x(β1 + x − θy + Θy2)
y(β2 + δx − y + ∆x2)

)
.

Remark that ′ represents the derivative w.r.t. the rescaled time. The main results

are

β1,Hop f = − θ − 1

δ − 1
β2 −

(δ − 1)Θ + (θ − 1)∆

(δ − 1)3
β2

2,

β1,Het = − θ − 1

δ − 1
β2 +

θΘ(δ − 1)3 + δ∆(θ − 1)3

(δ − 1)3(2δθ − δ − θ)
β2

2,

l1 = −δ (δ(δ − 1)Θ + θ(θ − 1)∆) .

For the Hopf bifurcation curve we impose the conditions x′ = 0, y′ = 0 and
∂x′
∂x + ∂y′

∂y = 0. Solving a series expansion yields the result for the Hopf curve. Next,

the first Lyapunov coefficient l1 is computed using the invariant formula (5.39)

from [67], from which (4.38) follows.

For the heteroclinic curve we proceed as follows. We assume δ, θ < 0 and

δθ − 1 > 0 and we transform variables to obtain a system that is a perturbation of

a Hamiltonian system. This enables us to formulate a Melnikov function. Setting

this function to zero yields an equation from which we extract the quadratic ap-

proximation to the heteroclinic curve. Introducing the transformation (τ∗, x, y, β1,
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β2) → (εxp−1yq−1τ∗, εx, εy, c1ε + c2ε2, ε) where

c1 = − θ − 1

δ − 1
, p =

1 − δ

δθ − 1
, q =

1 − θ

δθ − 1
,

then we obtain
(

x′

y′

)
= xp−1yq−1

(
x(c1 + x − θy)
y(1 + δx − y)

)
+ εxp−1yq−1

(
c2x + Θxy2

∆yx2

)
,

which for ε = 0 is a Hamiltonian system with Hamiltonian

H(x, y) =
1

p
xpyq

(
−1 +

δ − 1

θ − 1
x + y

)
.

Define g1 = xpyq−1(c2 + Θy2) and g2 = ∆xp+1yq. The Melnikov function along

the nontrivial critical curve H(x, y) = 0 is given by the following integral

M(h) =
∫

H=h
g1dy − g2dx

=
∫

H=h
xpyq−1(c2 + Θy2)dy − ∆xp+1yqdx

=
∫

H=h

(
xpyq−1(c2 + Θy2) +

q∆

p + 2
xp+2yq−1

)
dy,

where we have used Green’s Theorem to convert the dx term to dy. Now along the

nontrivial critical curve H(x, y) = 0 we have x = θ−1
δ−1 (1 − y) so that

M(0) =

(
θ − 1

δ − 1

)p ∫ 1

0
(1 − y)pyq−1

(
c2 + Θy2 +

(
θ − 1

δ − 1

)2 q∆

p + 2
(1 − y)2

)
dy

∼ c2 Ip,q−1 + ΘIp,q+1 +

(
θ − 1

δ − 1

)2 q∆

p + 2
Ip+2,q−1,

where we defined

Ia,b =
∫ 1

0
(1 − y)aybdy =

Γ(1 + a)Γ(1 + b)

Γ(2 + a + b)
.

Solving M(0) = 0 and substituting p, q we obtain

c2 =
θΘ(δ − 1)3 − δ∆(1 − θ)3

(δ − 1)3(2δθ − δ − θ)
.
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As a final check we consider the difference between the Hopf and heteroclinic curves

β1,HET − β1,HOPF = − (δθ − 1)l1
δ(δ − 1)3(2δθ − δ − θ)

β2
2.

We see that the curves coincide precisely when the Hopf bifurcation is degenerate.

126



5
Numerical Periodic Normalization

for Codimension 2 Bifurcations of

Limit Cycles – Computational

Formulas

In this chapter we derive for all codimension 2 bifurcations of limit cycles the

normal form coefficients that are needed to determine the bifurcation scenario

near the bifurcation point.

5.1 Introduction

In generic systems of the form

ẋ = f (x, α), x ∈ Rn, α ∈ Rp, (5.1)

depending on one control parameter (i.e. with p = 1), a hyperbolic limit cycle exists

for an open interval of parameter values α. At a boundary of such an interval, the
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limit cycle may become nonhyperbolic, so that either a Limit Point of Cycles, or a

Period-Doubling, or a Neimark-Sacker bifurcation occurs. In two-parameter generic

systems (5.1) (i.e. with p = 2) these local bifurcations happen at certain curves in

the parameter plane. These curves of codim 1 bifurcations can meet tangentially or

intersect transversally at some codim 2 points characterized by a double degeneracy

of the limit cycle. These codim 2 points play the role of organizing centers for local

dynamics, i.e. near the critical cycle and for nearby parameter values. In some

cases, such codim 2 bifurcations imply the appearance of nearby ’chaotic motions’.

The codim 2 bifurcations of limit cycles in generic systems (5.1) are well under-

stood with the help of the corresponding Poincaré maps and their normal forms

(see [3–5, 51, 58, 67]). Indeed, in the Poincaré map, the limit cycle is a fixed

point and one can use techniques developed for maps to obtain the critical nor-

mal form [51,71]. However, applications of these results to the analysis of concrete

systems (5.1) are exceptional, since they require accurate higher-order derivatives

of the Poincaré map that are hardly available numerically [55,57,70,92].

This may be done by using software such as capd [1] and tides [2, 8]. These

packages allow one to compute up to any precision level the solution of an ODE

using a Taylor series method in a variable stepsize - variable order formulation. The

software can also compute, up to any order, the partial derivatives of the solution

with respect to the initial conditions. When applied to compute a periodic orbit

by a shooting method, this will also provide the derivatives of the Poincaré map.

Alternatively one could integrate the variational equations [90] or use automatic

differentiation [57,70] to obtain the derivatives of the Poincaré map.

All these methods, however, have some drawbacks that make them less (time)

efficient. First, these are shooting methods that are difficult to use in a continua-

tion context. Also, a shooting method does not have the high order convergence

properties of the method of approximation by piecewise polynomials with colloca-

tion in the Gauss points (that is used in MatCont, as discussed in Section 2.8.2).

Moreover, the number of derivatives of the Poincaré map to be computed is O(nk)
if derivatives up to order k are needed (sometimes k = 5). Even for moderate values

of n this involves a great deal of unnecessary work since in our situation the normal

form itself is known in advance and we only need to compute its coefficients.

There is an alternative technique that is more suitable in the context of numerical

continuation of periodic orbits using collocation and that avoids the computation

of the Poincaré map and their derivatives. Indeed, recently a numerical method to

analyse codim 1 limit cycle bifurcations has been developed in [68]. It is based on the

periodic normalization proposed in [44,59,60]. The computation of the normal form
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coefficients is reduced to solving certain linear boundary value problems, where only

the partial derivatives of the right-hand side (RHS) of (5.1) are used, and evaluating

certain integrals.

This chapter consists of the derivation of explicit formulas for the normal form

coefficients for all codim 2 bifurcations of limit cycles (see Table 2.2). We order

the different cases by the dimension nc of the cycle center manifold. The formulas

for the critical coefficients are independent of the dimension of the phase space and

involve solutions of certain BVPs on the interval [0, T], where T is the period of

the critical cycle, as well as multilinear functions from the Taylor expansion of the

right-hand side of (5.1) near the cycle.

In the LPNS, PDNS and NSNS cases, the critical coefficients impose a distinc-

tion between a ’simple’ and a ’difficult’ situation. In a ’simple’ situation, terms up

to the second order in the LPNS case and up to the third order in the PDNS and

NSNS cases are sufficient to determine the bifurcation scenario. These terms are

listed in the next section. However, in a ’difficult’ situation, also the third order

terms in the LPNS case and the fourth and fifth order terms in the PDNS and

NSNS cases are needed. We have listed these higher order terms in Section 5.A.

5.2 Computation of critical coefficients

Our aim in this section is to derive expressions for the critical coefficients in the

normal forms derived in the previous chapter. We first sketch the general idea that

we will use in all the codim 2 bifurcations of limit cycles.

Assume that system (5.1) has a nonhyperbolic limit cycle Γ. Then, there exists

an nc-dimensional invariant center manifold, parametrized by w ∈ Rnc , such that

u = H(w), H : Rnc → Rn. (5.2)

The restriction of the differential equations to the center manifold is represented by

some normal form

ẇ = G(w), G : Rnc → Rnc . (5.3)

Substitution of (5.2) and (5.3) into

u̇ = F(u), (5.4)
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i.e. the restriction of (5.1) to the critical parameter values, gives the following

homological equation

Hw(w)G(w) = F(H(w)). (5.5)

To obtain an approximation to the solution, we expand the functions G and H in

(5.5) into multivariate Taylor series, i.e.

G(w) = ∑
|ν|≥1

1

ν!
gνwν, H(w) = ∑

|ν|≥1

1

ν!
hνwν.

Note that for a multi-index ν = (ν1, ν2, . . . , νk) it holds that ν! = ν1!ν2! . . . νk! and

|ν| = ν1 + ν2 + . . .+ νk. The coefficients gν of the normal form and the coefficients

hν of the Taylor expansion for H(w) are unknown but they will be derived from the

homological equation by a recursive procedure. Indeed, by collecting the coefficients

corresponding to the wν-terms, we obtain a linear system for coefficient hν, i.e.

Lhν = Rν,

where L = d
dτ − A + g(µ) with g(µ) a function of the critical multipliers. The

right-hand side Rν depends on the coefficients of H and G of order less than or

equal to |ν|, as well as on terms of order less than or equal to |ν| of the Taylor

expansion (4.3) of F. Now, there are two possibilities. Either L is nonsingular.

Then, the order ν term is nonresonant, which means that gν does not appear in the

normal form (5.3). Or L is singular. Then, the Fredholm solvability condition is

involved, i.e. ∫ T

0
〈p, Rν〉dτ = 0,

where p is a null-vector of the adjoint operator L∗. Indeed,

∫ T

0
〈p, Rν〉dτ =

∫ T

0
〈p, Lhν〉dτ =

∫ T

0
〈L∗p, hν〉dτ = 0.

When Rν depends on the unknown normal form coefficient gν, L is singular and the

Fredholm solvability condition gives the expression for gν.

So following this homological equation approach [11], we can find the T-,

2T-, 3T- or 4T-periodic unknown functions hν by solving appropriate BVPs on

[0, T]. The coefficients of the normal forms arise from the Fredholm solvability

conditions applied on the RHS of the ODEs as integrals of scalar products over
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[0, T], involving nonlinear terms of (5.4) near the periodic solution u0, as well as

the critical (generalized) eigenfunctions and already known expansion terms of the

center manifold.

The linear parts in the homological equation determine the critical (generalized)

eigenfunctions. The higher order terms lead to expressions for hν so that a better

approximation for the center manifold is obtained. Note that the computation of

an order k normal form coefficient demands only an order k − 1 approximation of

the center manifold. Of course, not all terms up to the order k − 1 are needed.

Note also that in the case of a complex multiplier the relation hνiνj
= hνjνi

holds

for the appropriate positions νi and νj in the multi-index ν, corresponding with the

positions of the complex conjugate multipliers.

The functions hν in the Taylor expansion are usually unique up to the addition

of a multiple of a known eigenfunction. This can be fixed by adding an integral con-

dition. Among other things this leads to the fact that normal form coefficients are

not unique but implications for the underlying dynamical systems are independent

of this. We also remark that the solvability of all the equations up to the maximal

order of the normal form has to be checked. Also note that the coefficients in the

equation for the cyclic variable will only be computed when needed for the compu-

tation of other critical coefficients. Finally, we remark that certain nondegeneracy

conditions have to be fulfilled. If this is not the case, we are in a degenerate case.

In the codim 2 bifurcations where the center manifold is 4- or 5-dimensional, a

distinction is made between ’simple’ and ’difficult’ cases in the bifurcation scenarios.

The stability of the extra torus appearing in the ’difficult’ cases is determined by

up to third order terms for the LPNS bifurcation and up to fifth order terms for

the PDNS and NSNS bifurcations. In the ’simple’ cases, second order derivatives

are sufficient to determine the behaviour in the LPNS bifurcations and third order

derivatives are sufficient in the PDNS and NSNS bifurcations. Therefore, we restrict

our computations in this section to second order terms in the LPNS case and up

to and including third order terms in the PDNS and NSNS cases. The expressions

of the third order coefficients for LPNS and fourth and fifth order coefficients for

PDNS and NSNS are given in Section 5.A.
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5.2.1 Bifurcations with a 2D center manifold

Cusp Point of Cycles bifurcation

The two-dimensional critical center manifold Wc(Γ) at the CPC bifurcation can be

parametrized locally by (τ, ξ) ∈ [0, T]× R as

u = u0(τ) + ξv(τ) + H(τ, ξ), (5.6)

where H satisfies H(T, ξ) = H(0, ξ) and has the Taylor expansion

H(τ, ξ) =
1

2
h2(τ)ξ

2 +
1

6
h3(τ)ξ

3 + O(|ξ|4) (5.7)

with hj(T) = hj(0), for j = 2, 3, while the generalized eigenfunction v is defined

(as function of τ) by





v̇ − A(τ)v − F(u0) = 0, τ ∈ [0, T],

v(T)− v(0) = 0,
∫ T

0
〈v, F(u0)〉dτ = 0.

(5.8)

Note that in the rest of this chapter the dot denotes the derivative with respect to

τ. The function v exists due to Proposition 2.26. Let ϕ∗ be a nontrivial solution

of the adjoint eigenvalue problem

{
ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
(5.9)

and the generalized adjoint eigenfunction v∗ a solution of

{
v̇∗ + AT(τ)v∗ + ϕ∗ = 0, τ ∈ [0, T],

v∗(T)− v∗(0) = 0,
(5.10)

which is now defined up to the addition of a multiple of ϕ∗. Note that the first

equation of (5.8) implies

∫ T

0
〈ϕ∗, F(u0)〉 dτ =

∫ T

0
〈ϕ∗, v̇ − A(τ)v〉 dτ = −

∫ T

0
〈ϕ̇∗ + AT(τ)ϕ∗, v〉 dτ = 0

(5.11)
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for ϕ∗ satisfying (5.9). Moreover, due to spectral assumptions at the CPC-point,

we can also assume ∫ T

0
〈ϕ∗, v〉dτ = 1. (5.12)

Notice that this assumption gives us another normalization condition for free, since

taking into account (5.8) and (5.10) we have

∫ T

0
〈v∗, F(u0)〉dτ =

∫ T

0
〈v∗, v̇ − A(τ)v〉 dτ

= −
∫ T

0
〈v̇∗ + AT(τ)v∗, v〉 dτ

=
∫ T

0
〈ϕ∗, v〉dτ

= 1.

So we have normalized the eigenfunction of the adjoint problem w.r.t. the gener-

alized one of the original problem and the generalized eigenfunction of the adjoint

problem w.r.t. the eigenfunction of the original problem. So ϕ∗ is the unique

solution of the BVP





ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, v〉dτ − 1 = 0.

(5.13)

We still need an integral condition for the adjoint generalized eigenfunction v∗. In

all cases, for the computation of an adjoint generalized eigenfunction we will require

the inproduct with an original eigenfunction to be zero. Here, the inproduct with v
is appropriate. Therefore, we obtain





v̇∗ + AT(τ)v∗ + ϕ∗ = 0, τ ∈ [0, T],

v∗(T)− v∗(0) = 0,
∫ T

0
〈v∗, v〉dτ = 0.

(5.14)

Now, we substitute (5.6) into (5.4), using (4.3), the CPC normal form (4.5), and
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(5.7). This gives

u̇0 + ξ (v̇ − u̇0) + ξ2

(
α1u̇0 − v̇ +

1

2
ḣ2

)
+ ξ3

(
α2u̇0 + α1v̇ − 1

2
ḣ2 +

1

6
ḣ3 + cv

)

+ O(|ξ|4) = F(u0) + ξ A(τ)v +
1

2
ξ2 (A(τ)h2 + B(τ; v, v)) +

1

6
ξ3 (A(τ)h3

+3B(τ; h2, v) + C(τ; v, v, v)) + O(|ξ|4).

Collecting the ξ0-terms we get the identity u̇0 = F(u0), since u0 is the periodic

solution of (5.4). The ξ1-terms provide another identity, namely v̇ − u̇0 = A(τ)v,

as stated in (5.8).

By collecting the ξ2-terms we obtain an equation for h2

ḣ2 − A(τ)h2 = B(τ; v, v) + 2v̇ − 2α1u̇0. (5.15)

The differential operator d
dτ − A(τ) in the left-hand side is singular in the space of

vector functions on [0, T] satisfying h2(T) = h2(0), since u̇0 is in its kernel. Now,

we project the left-hand side of (5.15) on the adjoint null-eigenfunction, i.e. we

take the scalar product with ϕ∗ pointwise and integrate the result over [0, T] to

obtain

∫ T

0
〈ϕ∗,

(
d

dτ
− A(τ)

)
h2〉 dτ = −

∫ T

0
〈
(

d

dτ
+ AT(τ)

)
ϕ∗, h2〉 dτ = 0,

due to (5.9). Therefore, the projection of the right-hand side of (5.15) on ϕ∗ also

has to vanish, i.e.

∫ T

0
〈ϕ∗, B(τ; v, v) + 2v̇ − 2α1u̇0〉 dτ =

∫ T

0
〈ϕ∗, B(τ; v, v) + 2A(τ)v〉 dτ = 0,

due to (5.11). This represents the Fredholm solvability condition, discussed at the

beginning of this section. Notice that this condition is actually trivially satisfied,

due to the fact that we are at a CPC-point, for which holds that the second order

normal form coefficient (see [68])

b =
1

2

∫ T

0
〈ϕ∗, B(τ; v, v) + 2A(τ)v〉 dτ

vanishes. Hence equation (5.15) is solvable, independent of the value of α1. For any

value of α1 we get an equation for h2 to be solved in the space of vector functions
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on [0, T] satisfying h2(T) = h2(0). Notice that if h2 satisfies (5.15), h2 + εF(u0)
also satisfies (5.15), due to the fact that F(u0) = u̇0. The orthogonality condition

with v∗ determines the value of ε such that we can define h2 as the unique solution

of




ḣ2 − A(τ)h2 − B(τ; v, v)− 2Av − 2F(u0) + 2α1F(u0) = 0, τ ∈ [0, T],

h2(T)− h2(0) = 0,
∫ T

0
〈v∗, h2〉 dτ = 0.

(5.16)

Collecting the ξ3-terms we obtain an equation in h3 that allows us to determine the

normal form coefficient c of the CPC normal form (4.5), namely

ḣ3 − A(τ)h3 = −6α2u̇0 − 6α1v̇ + 3ḣ2 − 6cv + 3B(τ; h2, v) + C(τ; v, v, v).

The Fredholm solvability condition implies that
∫ T

0
〈ϕ∗,−6α2u̇0 − 6α1v̇ + 3ḣ2 − 6cv + 3B(τ; h2, v) + C(τ; v, v, v)〉 dτ = 0.

Making use of (5.8), (5.12) and (5.11), we then obtain the expression

c =
1

6

∫ T

0
〈ϕ∗,−6α1 A(τ)v + 3A(τ)h2 + 3B(τ; v, v)

+ 6A(τ)v + 3B(τ; h2, v) + C(τ; v, v, v)〉 dτ

where v and ϕ∗ are defined by (5.8) and (5.13), respectively, while h2 satisfies

(5.16).

Finally, let us prove that the choice of α1 does not influence the value of the

critical normal form coefficient c. Indeed, two solutions h2 corresponding to α
(1)
1 6=

α
(2)
1 in (5.16) differ by h

(2)
2 − h

(1)
2 = −2(α

(2)
1 − α

(1)
1 )v, from which it follows that

c(2) − c(1) = (α
(2)
1 − α

(1)
1 )

∫ T

0
〈ϕ∗,−2A(τ)v − B(τ; v, v)〉 dτ

= (α
(1)
1 − α

(2)
1 ) b

= 0,

since b = 0. So, for simplicity, we take α1 = 0, that further simplifies the expression

for c. The critical coefficient c in the periodic CPC normal form has thus been

computed. The bifurcation is nondegenerate if c 6= 0.
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Generalized Period-Doubling bifurcation

The two-dimensional critical center manifold Wc(Γ) at the GPD bifurcation can be

parametrized locally by (τ, ξ) ∈ [0, 2T]× R as

u = u0(τ) + ξv(τ) + H(τ, ξ), (5.17)

where the function H satisfies H(2T, ξ) = H(0, ξ). It has the Taylor expansion

H(τ, ξ) =
1

2
h2(τ)ξ

2 +
1

6
h3(τ)ξ

3 +
1

24
h4(τ)ξ

4 +
1

120
h5(τ)ξ

5 + O(|ξ|6), (5.18)

where hj(2T) = hj(0), while





v̇ − A(τ)v = 0, τ ∈ [0, T],

v(T) + v(0) = 0,
∫ T

0
〈v, v〉dτ − 1 = 0,

(5.19)

and

v(τ + T) = −v(τ) for τ ∈ [0, T].

The function v exists due to Proposition 2.27.

The functions hi, i = 2, . . . , 5 can be found by solving appropriate BVPs, assum-

ing that (5.4) restricted to Wc(Γ) has the periodic GPD normal form (4.6). From

(5.17) and (5.18) it follows that hi(τ + T) = hi(τ) for i even and hi(τ + T) =
−hi(τ) for i odd, for τ ∈ [0, T]. Indeed, since we are at the GPD point u(τ,
ξ) = u(τ + T,−ξ), so

∑
i

1

i!
hi(τ)ξ

i = ∑
i

1

i!
hi(τ + T)(−1)iξ i,

and thus

hi(τ) = (−1)ihi(τ + T),

from which the stated follows. This makes it possible to restrict our considerations

to the interval [0, T] instead of [0, 2T].

The coefficients α1, α2 and e arise from the solvability conditions for the BVPs

as integrals of scalar products over the interval [0, T]. Specifically, these scalar
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products involve among other things the terms up to the fifth order of (5.1) near

the periodic solution u0, the eigenfunction v, the adjoint eigenfunction ϕ∗ satisfying





ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, F(u0)〉 dτ − 1 = 0,

(5.20)

and a similar adjoint eigenfunction v∗ satisfying





v̇∗ + AT(τ)v∗ = 0, τ ∈ [0, T],

v∗(T) + v∗(0) = 0,
∫ T

0
〈v∗, v〉dτ − 1 = 0.

(5.21)

To derive the normal form coefficient, we proceed as in the CPC case, namely, we

substitute (5.17) into (5.4) and use the GPD normal form (4.6), (5.18), as well as

(4.3).

Collecting the ξ0- and ξ1-terms in the resulting equation gives the trivial iden-

tities, namely u̇0 = F(u0) and v̇ = A(τ)v.

By collecting the ξ2-terms, we obtain the following equation for h2,

ḣ2 − A(τ)h2 = B(τ; v, v)− 2α1u̇0, (5.22)

to be solved in the space of functions satisfying h2(T) = h2(0). In this space,

the differential operator d
dτ − A(τ) is singular with null-function u̇0. Thus, the

following Fredholm solvability condition has to be satisfied

∫ T

0
〈ϕ∗, B(τ; v, v)− 2α1u̇0〉 dτ = 0,

which leads to the expression

α1 =
1

2

∫ T

0
〈ϕ∗, B(τ; v, v)〉 dτ, (5.23)

where v and ϕ∗ are defined by (5.19) and (5.20), respectively.

With α1 defined in this way, let h2 be a solution of (5.22) in the space of

functions satisfying h2(0) = h2(T). Notice also that if h2 is a solution of (5.22),

137



CHAPTER 5. COMPUTATIONAL FORMULAS

then also h2 + ε1F(u0) satisfies (5.22), since F(u0) is in the kernel of the operator
d

dτ − A(τ). In order to obtain a unique solution (without projection on the null-

eigenspace) we impose the following orthogonality condition that determines the

value of ε1: ∫ T

0
〈ϕ∗, h2〉 dτ = 0.

Thus h2 is the unique solution of the BVP




ḣ2 − A(τ)h2 − B(τ; v, v) + 2α1F(u0) = 0, τ ∈ [0, T],

h2(T)− h2(0) = 0,
∫ T

0
〈ϕ∗, h2〉 dτ = 0.

(5.24)

By collecting the ξ3-terms, we get the equation for h3,

ḣ3 − A(τ)h3 = C(τ; v, v, v) + 3B(τ; v, h2)− 6α1v̇, (5.25)

to be solved in the space of functions satisfying h3(T) = −h3(0). In this space,

the differential operator d
dτ − A(τ) has a one-dimensional null-space, spanned by

v, and (5.25) is solvable only if the RHS of this equation lies in the range of that

operator. By using (5.19), we can rewrite the right-hand side as

C(τ; v, v, v) + 3B(τ; v, h2)− 6α1 A(τ)v.

Note that the Fredholm solvability condition
∫ T

0
〈v∗, C(τ; v, v, v) + 3B(τ; v, h2)− 6α1 A(τ)v〉 dτ = 0 (5.26)

is trivially satisfied due to the fact that we are in a GPD point and so the cubic

coefficient of the normal form (see [68])

c =
1

3

∫ T

0
〈v∗, C(τ; v, v, v) + 3B(τ; v, h2)− 6α1 A(τ)v〉 dτ

vanishes. Since the RHS of (5.25) is in the range space of the operator d
dτ − A(τ),

we can solve the equation in order to find h3 as the unique solution of the BVP




ḣ3 − A(τ)h3 − C(τ; v, v, v)− 3B(τ; v, h2) + 6α1 A(τ)v = 0, τ ∈ [0, T],

h3(T) + h3(0) = 0,
∫ T

0
〈v∗, h3〉 dτ = 0.

(5.27)
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By collecting the ξ4-terms, we get the equation for h4,

ḣ4 − A(τ)h4 = D(τ; v, v, v, v) + 6C(τ; v, v, h2) + 3B(τ; h2, h2)

+ 4B(τ; v, h3)− 12α1ḣ2 − 24α2u̇0,

to be solved in the space of functions satisfying h4(T) = h4(0). The Fredholm

solvability condition gives us the following expression for α2,

α2 =
1

24

∫ T

0
〈ϕ∗, D(τ; v, v, v, v) + 6C(τ; v, v, h2)

+ 3B(τ; h2, h2) + 4B(τ; v, h3)− 12α1ḣ2〉 dτ,

which by considering (5.22) can be simplified into

α2 =
1

24

∫ T

0
〈ϕ∗, D(τ; v, v, v, v) + 6C(τ; v, v, h2) + 3B(τ; h2, h2)

+ 4B(τ; v, h3)− 12α1(A(τ)h2 + B(τ; v, v))〉 dτ + α2
1,

where α1 is given by (5.23), and h2, h3, v and ϕ∗ are the solutions of the BVPs

(5.24), (5.27), (5.19) and (5.20), respectively.

Using this value of α2 we can find h4 by solving





ḣ4 − A(τ)h4 − D(τ; v, v, v, v)− 6C(τ; v, v, h2)

−3B(τ; h2, h2)− 4B(τ; v, h3) + 12α1(A(τ)h2

+B(τ; v, v)− 2α1F(u0)) + 24α2F(u0) = 0, τ ∈ [0, T],

h4(T)− h4(0) = 0,
∫ T

0
〈ϕ∗, h4〉 dτ = 0.

(5.28)

Finally, by collecting the ξ5-terms, we get the equation for h5,

ḣ5 − A(τ)h5 = E(τ; v, v, v, v, v) + 10D(τ; v, v, v, h2) + 15C(τ; v, h2, h2)

+ 10C(τ; v, v, h3) + 10B(τ; h2, h3) + 5B(τ; v, h4)

− 120α2v̇ − 20α1ḣ3 − 120ev,

which has to be solved in the space of functions satisfying h5(T) = −h5(0). Since

the operator d
dτ − A(τ) has a one-dimensional null-space, we can apply the Fred-

holm solvability condition to compute the critical coefficient e in the GPD normal
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form (4.6). Using the normalization of (5.21), (5.27), and (5.26), we get

e =
1

120

∫ T

0
〈v∗, E(τ; v, v, v, v, v) + 10D(τ; v, v, v, h2) + 15C(τ; v, h2, h2)

+ 10C(τ; v, v, h3) + 10B(τ; h2, h3) + 5B(τ; v, h4)

− 120α2 A(τ)v − 20α1 A(τ)h3〉 dτ.

If this quantity does not vanish, the codim 2 bifurcation is nondegenerate.

5.2.2 Bifurcations with a 3D center manifold

Chenciner bifurcation

The three-dimensional critical center manifold Wc(Γ) at the CH bifurcation can be

parametrized locally by (τ, ξ) ∈ [0, T]× C as

u = u0(τ) + ξv(τ) + ξ̄v̄(τ) + H(τ, ξ, ξ̄), (5.29)

where the real function H satisfies H(T, ξ, ξ̄) = H(0, ξ, ξ̄), and has the Taylor

expansion

H(τ, ξ, ξ̄) =
5

∑
i,j=0

2≤i+j≤5

1

i!j!
hij(τ)ξ

i ξ̄ j + O(|ξ|6), (5.30)

with hij(T) = hij(0) and hij = h̄ji so that hii is real, while v and its conjugate v̄
are defined as 




v̇(τ)− A(τ)v + iω v = 0, τ ∈ [0, T],

v(T)− v(0) = 0,
∫ T

0
〈v, v〉dτ − 1 = 0.

(5.31)

These functions exist due to Proposition 2.26.

If we assume that (5.4) restricted to Wc(Γ) has the CH periodic normal form

(4.7), as in the previous cases we can find the functions hij(τ) by solving appropriate

BVPs.
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First, we introduce the two needed adjoint eigenfunctions. The first one, namely

ϕ∗, satisfies 



ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, F(u0)〉 dτ − 1 = 0,

(5.32)

and the second one, namely v∗, satisfies





v̇∗(τ) + AT(τ)v∗ + iω v∗ = 0, τ ∈ [0, T],

v∗(T)− v∗(0) = 0,
∫ T

0
〈v∗, v〉dτ − 1 = 0.

(5.33)

Note that in [68] in the Neimark-Sacker bifurcation, the last term in the differential

equation for v∗ has the wrong sign. This error can have lead to wrong values of the

cubic normal form coefficient at the torus bifurcation computed by earlier versions

of MatCont.

As usual, we substitute (5.29) into (5.4), use the CH normal form (4.7), and

(5.30), as well as (4.3), and collect the corresponding terms in order to find the

needed normal form coefficients.

The ξ-independent and the linear terms give rise to the usual identities

u̇0 = F(u0), v̇ − A(τ)v + iωv = 0, ˙̄v − A(τ)v̄ − iωv̄ = 0.

Collecting the coefficients of the ξ2- or ξ̄2-terms leads to the equation

ḣ20 − A(τ)h20 + 2iωh20 = B(τ; v, v)

or its complex-conjugate. This equation has a unique solution h20 satisfying h20(T)
= h20(0), since due to the spectral assumptions e2iωT is not a multiplier of the

critical cycle. Thus, h20 can be found by solving

{
ḣ20 − A(τ)h20 + 2iωh20 − B(τ; v, v) = 0, τ ∈ [0, T],

h20(T)− h20(0) = 0.

By collecting the |ξ|2-terms we obtain an equation for h11, namely

ḣ11 − A(τ)h11 = B(τ; v, v̄)− α1u̇0,
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to be solved in the space of the functions satisfying h11(T) = h11(0). In this space

the operator d
dτ − A(τ) has a range space with codimension 1. As before, the

null-eigenfunction of the adjoint operator − d
dτ − AT(τ) is ϕ∗, given by (5.32), and

thus because of the Fredholm solvability condition, we can easily obtain the needed

value for α1, i.e.

α1 =
∫ T

0
〈ϕ∗, B(τ; v, v̄)〉dτ.

With α1 defined in this way, let h11 be the unique solution of the BVP





ḣ11 − A(τ)h11 − B(τ; v, v̄) + α1u̇0 = 0, τ ∈ [0, T],

h11(T)− h11(0) = 0,
∫ T

0
〈ϕ∗, h11〉dτ = 0.

The coefficient of the third order term in the CH normal form (4.7) is purely imagi-

nary since the first Lyapunov coefficient vanishes at a Chenciner point. We are now

ready to compute this coefficient. In fact, if we collect the ξ |ξ|2-terms we obtain

ḣ21 − A(τ)h21 + iωh21 = C(τ; v, v, v̄)+ 2B(τ; v, h11)+ B(τ; v̄, h20)− 2icv− 2α1v̇,

to be solved in the space of functions satisfying h21(T) = h21(0). In this space the

operator d
dτ − A(τ) + iω is singular, since eiωT is a multiplier of the critical cycle.

So we can impose the usual Fredholm solvability condition

∫ T

0
〈v∗, C(τ; v, v, v̄) + 2B(τ; v, h11) + B(τ; v̄, h20)− 2icv − 2α1v̇〉dτ = 0.

This allows us to find the value of the coefficient c of the CH normal form (4.7)

c = − i

2

∫ T

0
〈v∗, C(τ; v, v, v̄) + 2B(τ; v, h11) + B(τ; v̄, h20)− 2α1 A(τ)v〉dτ + α1ω

and, with c defined in this way, we can find h21 as the unique solution of the BVP





ḣ21 − A(τ)h21 + iωh21 − C(τ; v, v, v̄)− 2B(τ; v, h11)

−B(τ; v̄, h20) + 2icv + 2α1(A(τ)v − iωv) = 0, τ ∈ [0, T],

h21(T)− h21(0) = 0,
∫ T

0
〈v∗, h21〉dτ = 0.

(5.34)
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Collecting the ξ3-terms gives us an equation for h30

ḣ30 − A(τ)h30 + 3iωh30 = C(τ; v, v, v) + 3B(τ; v, h20),

which has a unique solution h30 satisfying h30(T) = h30(0), since e3iωT is not a

multiplier of the critical cycle by the spectral assumptions. Thus, h30 is the unique

solution of the BVP

{
ḣ30 − A(τ)h30 + 3iωh30 − C(τ; v, v, v)− 3B(τ; v, h20) = 0, τ ∈ [0, T],

h30(T)− h30(0) = 0.

By collecting the ξ2 |ξ|2-terms we obtain an equation for h31

ḣ31 − A(τ)h31 + 2iωh31 = D(τ; v, v, v, v̄) + 3C(τ; v, v, h11) + 3C(τ; v, v̄, h20)

+ 3B(τ; h11, h20) + 3B(τ; v, h21) + B(τ; v̄, h30)

− 6ich20 − 3α1ḣ20,

which has a unique solution h31 satisfying h31(T) = h31(0), since e2iωT is not a

multiplier of the critical cycle by the spectral assumptions. Thus, h31 is the unique

solution of the BVP





ḣ31 − A(τ)h31 + 2iωh31 − D(τ; v, v, v, v̄)− 3C(τ; v, v, h11)

−3C(τ; v, v̄, h20)− 3B(τ; h11, h20)− 3B(τ; v, h21)B(τ; v̄, h30)

−+ 6ich20 + 3α1(A(τ)h20 − 2iωh20 + B(τ; v, v)) = 0, τ ∈ [0, T],

h31(T)− h31(0) = 0.

Taking the |ξ|4-terms into account gives an equation for h22

ḣ22 − A(τ)h22 = D(τ; v, v, v̄, v̄) + C(τ; v, v, h02) + 4C(τ; v, v̄, h11)

+ C(τ; v̄, v̄, h20) + 2B(τ; h11, h11) + 2B(τ; v, h12)

+ B(τ; h02, h20) + 2B(τ; v̄, h21)− 4α1ḣ11 − 4α2u̇0,

to be solved in the space of functions satisfying h22(T) = h22(0). In this space the

operator d
dτ − A(τ) has a range space with codimension 1 that is orthogonal to ϕ∗.

So one Fredholm solvability condition is involved, allowing to compute the value of

143



CHAPTER 5. COMPUTATIONAL FORMULAS

the coefficient α2 of our normal form as follows

α2 =
1

4

∫ T

0
〈ϕ∗, D(τ; v, v, v̄, v̄) + C(τ; v, v, h02) + 4C(τ; v, v̄, h11)

+ C(τ; v̄, v̄, h20) + 2B(τ; h11, h11) + 2B(τ; v, h12) + B(τ; h02, h20)

+ 2B(τ; v̄, h21)− 4α1(A(τ)h11 + B(τ; v, v̄))〉dτ + α2
1.

Using this value for α2 we can find h22 as the unique solution of the BVP





ḣ22 − A(τ)h22 − D(τ; v, v, v̄, v̄)− C(τ; v, v, h02)

−4C(τ; v, v̄, h11)− C(τ; v̄, v̄, h20)− 2B(τ; h11, h11)

−2B(τ; v, h12)− B(τ; h02, h20)− 2B(τ; v̄, h21)

+4α1(A(τ)h11 + B(τ; v, v̄)− α1F(u0)) + 4α2F(u0) = 0, τ ∈ [0, T],

h22(T)− h22(0) = 0,
∫ T

0
〈ϕ∗, h22〉dτ = 0.

Finally, by collecting the ξ |ξ|4-terms we obtain an equation for h32

ḣ32 − A(τ)h32 + iωh32

= E(τ; v, v, v, v̄, v̄) + D(τ; v, v, v, h02) + 6D(τ; v, v, v̄, h11) + 3D(τ; v, v̄, v̄, h20)

+ 6C(τ; v, h11, h11) + 3C(τ; v, v, h12) + 3C(τ; v, h02, h20) + 6C(τ; v̄, h11, h20)

+ 6C(τ; v, v̄, h21) + C(τ; v̄, v̄, h30) + 3B(τ; h12, h20) + 6B(τ; h11, h21)

+ 3B(τ; v, h22) + B(τ; h02, h30) + 2B(τ; v̄, h31)

− 12ev − 6ich21 − 12α2v̇ − 6α1ḣ21

that, since the operator is singular, allows us, using the first equation of (5.31) as

well as the first and the last equation of (5.34), to compute the critical coefficient
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e of the CH normal form by imposing the Fredholm solvability condition:

e =
1

12

∫ T

0
〈v∗, E(τ; v, v, v, v̄, v̄) + D(τ; v, v, v, h02) + 6D(τ; v, v, v̄, h11)

+ 3D(τ; v, v̄, v̄, h20) + 6C(τ; v, h11, h11) + 3C(τ; v, v, h12)

+ 3C(τ; v, h02, h20) + 6C(τ; v̄, h11, h20) + 6C(τ; v, v̄, h21) + C(τ; v̄, v̄, h30)

+ 3B(τ; h12, h20) + 6B(τ; h11, h21) + 3B(τ; v, h22) + B(τ; h02, h30)

+ 2B(τ; v̄, h31)− 12α2 A(τ)v − 6α1(A(τ)h21 + 2B(τ; v, h11)

+ C(τ; v, v, v̄) + B(τ; v̄, h20)− 2α1 Av)〉dτ + iωα2 + icα1 − α2
1iω.

We define the second Lyapunov coefficient as

L2(0) = ℜ(e) .

If this coefficient does not vanish, the codim 2 point is nondegenerate.

Note that it can be checked that the equations for h40, h50 and h41 are uniquely

solvable. Since we are in a complex eigenvalue case, v is determined up to a factor

γ, for which γ̄Tγ = 1. Then v∗, h20, h21, h30, h31 are replaced by γv∗, γ2h20,

γh21, γ3h30, γ2h31 respectively, but the values for α1, α2, c and e remain the same.

Strong Resonance 1:1 bifurcation

The three-dimensional critical center manifold Wc(Γ) at the R1 bifurcation can be

parameterized locally by (τ, ξ) = (τ, ξ1, ξ2) ∈ [0, T]× R2 as

u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) + H(τ, ξ), (5.35)

where H satisfies H(T, ξ) = H(0, ξ) and has the Taylor expansion

H(τ, ξ) =
1

2
h20(τ)ξ

2
1 + h11(τ)ξ1ξ2 +

1

2
h02(τ)ξ

2
2 + O(|ξ|3). (5.36)

Here, the functions h20, h11 and h02 are T-periodic in τ, while v1 and v2 are the

generalized eigenfunctions and are defined as the unique solutions of the BVPs




v̇1 − A(τ)v1 − F(u0) = 0, τ ∈ [0, T],

v1(T)− v1(0) = 0,
∫ T

0
〈v1, F(u0)〉dτ = 0,

(5.37)
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and




v̇2 − A(τ)v2 + v1 = 0, τ ∈ [0, T],

v2(T)− v2(0) = 0,
∫ T

0
〈v2, F(u0)〉dτ = 0,

(5.38)

respectively. The functions v1 and v2 exist and are different due to Proposition 2.26.

Following our approach to find the values of the normal form coefficients, we define

ϕ∗ as a solution of the adjoint eigenfunction problem (5.9), v∗1 as a solution of

{
v̇1

∗(τ) + AT(τ)v∗1 − ϕ∗ = 0, τ ∈ [0, T],

v∗1(T)− v∗1(0) = 0,

and v∗2 as a solution of

{
v̇2

∗(τ) + AT(τ)v∗2 + v∗1 = 0, τ ∈ [0, T],

v∗2(T)− v∗2(0) = 0.

The above definitions immediately imply that

∫ T

0
〈ϕ∗, F(u0)〉dτ =

∫ T

0
〈ϕ∗, v1〉dτ =

∫ T

0
〈F(u0), v∗1〉dτ = 0. (5.39)

Due to the spectral assumptions at the R1-point we are free to assume that

∫ T

0
〈ϕ∗, v2〉dτ = 1. (5.40)

Appending this condition to the eigenproblem, we can find the eigenfunction ϕ∗ as

the unique solution of the BVP





ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, v2〉dτ − 1 = 0.

(5.41)

As already mentioned in the CPC case, we will choose adjoint generalized eigen-

functions to be orthogonal to an original eigenfunction. Therefore, v∗1 and v∗2 are
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obtained as the solution of




v̇1
∗ + AT(τ)v∗1 − ϕ∗ = 0, τ ∈ [0, T],

v∗1(T)− v∗1(0) = 0,
∫ T

0
〈v∗1 , v2〉dτ = 0,

(5.42)

and 



v̇2
∗(τ) + AT(τ)v∗2 + v∗1 = 0, τ ∈ [0, T],

v∗2(T)− v∗2(0) = 0,
∫ T

0
〈v∗2 , v2〉dτ = 0,

(5.43)

respectively. Notice that, as in the CPC case, we have normalized in (5.40) the

adjoint eigenfunction with the last generalized eigenfunction, which gives us in

addition ∫ T

0
〈v∗1 , v1〉dτ =

∫ T

0
〈v∗2 , F(u0)〉dτ = 1.

As usual, to derive the value of the normal form coefficients we substitute (5.35)

into (5.4), we use (4.3) as well as the R1 normal form (4.8) and (5.36) and get

differential equations at every degree of ξ. Remark that in fact the solvability of all

the equations up to the maximal order of the normal form has to be checked. We

will pay extra attention to this in our discussion for the R1 case.

By collecting the ξ0-terms we get the identity u̇0 = F(u0). The linear terms

provide two other identities, namely

v̇1 − A(τ)v1 − F(u0) = 0 and v̇2 − Av2 + v1 = 0,

cf. (5.37) and (5.38).

By collecting the ξ2
1-terms we find an equation for h20, namely

ḣ20 − A(τ)h20 = −2αu̇0 + 2v̇1 + B(τ; v1, v1)− 2av2, (5.44)

to be solved in the space of periodic functions on [0, T]. In this space, the differential

operator d
dτ − A(τ) is singular with a range orthogonal to ϕ∗. Using equations

(5.39), (5.40), and (5.37), we obtain from the corresponding Fredholm solvability

condition the following value for a

a =
1

2

∫ T

0
〈ϕ∗, 2A(τ)v1 + B(τ; v1, v1)〉dτ. (5.45)
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Notice that in the RHS of (5.44) we have no freedom to change the value of the

coefficient a. This confirms the theoretically proven fact that the ξ2
1-term of the R1

normal form (4.8) is resonant. Notice moreover that parameter α is undetermined,

which gives us two degrees of freedom for h20. In fact, if h20 is a solution of (5.44),

then also h̃20 = h20 + εI
20F(u0) + εI I

20v1 is a solution, due to the fact that F(u0)

spans the null-space of the operator d
dτ − A(τ) and that we can tune α as desired:

dh̃20

dτ
− A(τ)h̃20 =

dh20

dτ
− A(τ)h20 + εI I

20

(
dv1

dτ
− A(τ)v1

)

=
dh20

dτ
− A(τ)h20 + εI I

20u̇0. (5.46)

By collecting the ξ1ξ2-terms we find an equation for h11

ḣ11 − A(τ)h11 = B(τ; v1, v2) + v̇2 − h20 − bv2 + v1, (5.47)

to be solved in the space of T-periodic functions. As in the previous case, taking

(5.40) into account, as well as (5.38) and (5.39), the corresponding solvability

condition implies

b =
∫ T

0
〈ϕ∗, B(τ; v1, v2) + A(τ)v2〉dτ −

∫ T

0
〈ϕ∗, h20〉dτ.

Using (5.42), (5.44), (5.39) and (5.37), we can rewrite this expression as

b =
∫ T

0
〈ϕ∗, B(τ; v1, v2) + A(τ)v2〉dτ

+
∫ T

0
〈v∗1 , 2Av1 + B(τ; v1, v1)〉dτ,

(5.48)

thus obtaining a formula for b that involves only the original and adjoint eigenfunc-

tions.

Notice that the freedom that we have in h20 can not be used to change the value

of coefficient b (and so the ξ1ξ2-term of the R1 normal form (4.8) is resonant).

Indeed, h20 is defined up to a multiple of F(u0) and v1, but both vectors are

orthogonal to ϕ∗, see the first two orthogonality conditions in (5.39). However, the

presence of h20 in the RHS gives us three degrees of freedom for h11. In fact, if h11

is a solution of (5.47), also h̃11 = h11 + εI
11F(u0)− εI

20v1 + εI I
20v2 is a solution.
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Collecting the ξ2
2-terms gives us the following equation for h02

ḣ02 − A(τ)h02 = B(τ, v2, v2)− 2h11,

to be solved in the space of T-periodic functions. This equation should be solvable,

so the RHS should lay in the range of the operator d
dt − A(τ):

∫ T

0
〈ϕ∗, B(τ, v2, v2)− 2h11〉dτ = 0.

This condition can be satisfied by tuning h11. In fact, εI I
20 is not yet determined, so

h11 can have a projection on v2. Due to (5.40), v2 does not lay in the range of the
d

dτ − A(τ) operator, and therefore we can require that

∫ T

0
〈ϕ∗, h11〉dτ =

1

2

∫ T

0
〈ϕ∗, B(τ, v2, v2)〉dτ.

This last solvability condition determines εI I
20 uniquely, and since εI I

20 determines the

value of α, see (5.44) and (5.46), also α is now uniquely determined. So the center

manifold expansion has now become unique. Note that in fact the value of α is

not needed since it can be shown that it does not affect the bifurcation scenario.

Remark also that in order to compute the necessary coefficients a and b by equations

(5.45) and (5.48), the second order expansion of the center manifold is not needed.

Indeed, we have rewritten the formulas of the normal form coefficients in terms of

the original and adjoint eigenfunctions. Since h20 or h11 are not needed, we don’t

write down their defining BVPs.

Strong Resonance 1:2 bifurcation

The three-dimensional critical center manifold Wc(Γ) at the R2 bifurcation can be

parametrized locally by (τ, ξ) ∈ [0, 2T]× R2 as

u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) + H(τ, ξ), τ ∈ [0, 2T], ξ = (ξ1, ξ2) ∈ R2,
(5.49)

where H satisfies H(2T, ξ) = H(0, ξ) and has the Taylor expansion

H(τ, ξ) =
3

∑
i,j=0

2≤i+j≤3

1

i!j!
hij(τ)ξ

i
1ξ

j
2 + O(|ξ|4), (5.50)
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where all functions hij are 2T-periodic, the eigenfunction corresponding to eigen-

value −1 is given by





v̇1 − A(τ)v1 = 0, τ ∈ [0, T],

v1(T) + v1(0) = 0,
∫ T

0
〈v1, v1〉dτ − 1 = 0,

(5.51)

and the generalized eigenfunction by





v̇2 − A(τ)v2 + v1 = 0, τ ∈ [0, T],

v2(T) + v2(0) = 0,
∫ T

0
〈v2, v1〉dτ = 0,

(5.52)

with

v1(τ + T) := −v1(τ) and v2(τ + T) := −v2(τ) for τ ∈ [0, T].

The functions v1 and v2 exist due to Proposition 2.27. The functions hij of (5.50)

can be found by solving appropriate BVPs, assuming that (5.4) restricted to Wc(Γ)
has the R2 normal form (4.9). As in the Generalized Period-Doubling case, we

first deduce periodicity properties of these functions hij. It holds that u(τ, ξ1,
ξ2) = u(τ + T,−ξ1,−ξ2). This implies that

∑
i,j

1

i!j!
hij(τ)ξ

i
1ξ

j
2 = ∑

i,j

1

i!j!
hij(τ + T)(−1)i+jξ i

1ξ
j
2,

and thus

hij(τ) = (−1)i+jhij(τ + T),

from which follows that hij(τ + T) = hij(τ) for i+ j even and hij(τ + T) = −hij(τ)
for i + j odd, for τ ∈ [0, T]. Taking these (anti-)periodicity properties into account,

we can reduce our analysis to the interval [0, T] instead of [0, 2T].
The coefficients α, a and b arise from the solvability conditions for the BVPs

as integrals of scalar products over the interval [0, T]. Specifically, those scalar

products involve among other things the quadratic and cubic terms of (4.3) near

the periodic solution u0. The adjoint eigenfunction ϕ∗ associated to the trivial

multiplier is the T-periodic solution of (5.20). The adjoint eigenfunction v∗1 is the
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unique solution of the problem





v̇∗1(τ) + AT(τ)v∗1 = 0, τ ∈ [0, T],

v∗1(T) + v∗1(0) = 0
∫ T

0
〈v∗1 , v2〉dτ − 1 = 0.

(5.53)

Note that we can indeed require this normalization since v2 is the last general-

ized eigenfunction of the original problem and therefore not orthogonal to all the

eigenfunctions of the adjoint problem. We further define the generalized adjoint

eigenfunction v∗2 as the unique solution of





v̇∗2(τ) + AT(τ)v∗2 − v∗1 = 0, τ ∈ [0, T],

v∗2(T) + v∗2(0) = 0
∫ T

0
〈v∗2 , v2〉dτ = 0.

(5.54)

Moreover, we have
∫ T

0
〈v∗2 , v1〉dτ = 1

and

∫ T

0
〈v∗1 , v1〉dτ = 0. (5.55)

To derive the normal form coefficients, we proceed as in the previous cases, namely,

we substitute (5.49) into (5.4), and use (4.3) as well as the R2 normal form (4.9)

and (5.50).

By collecting the ξ0-terms we get the trivial identity u̇0 = F(u0). The linear

terms provide two other identities, namely v̇1 = A(τ)v1 and v1 + v̇2 = A(τ)v2, in

accordance with (5.51) and (5.52).

Collecting the ξ2
2-terms gives an equation for h02,

ḣ02 − A(τ)h02 = B(τ; v2, v2)− 2h11,

to be solved in the space of functions satisfying h02(T) = h02(0). In this space, the

differential operator d
dτ − A(τ) is singular and the null-space of the adjoint operator
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is spanned by ϕ∗. The Fredholm solvability condition gives a normalization condition

for function h11, namely

∫ T

0
〈ϕ∗, h11〉 dτ =

1

2

∫ T

0
〈ϕ∗, B(τ; v2, v2)〉 dτ.

By collecting the ξ1ξ2-terms we obtain the differential equation for h11

ḣ11 − A(τ)h11 = B(τ; v1, v2)− h20,

which must be solved in the space of functions satisfying h11(T) = h11(0). The

Fredholm solvability condition gives in this case a normalization condition for h20,

i.e. ∫ T

0
〈ϕ∗, h20〉 dτ =

∫ T

0
〈ϕ∗, B(τ; v1, v2)〉 dτ. (5.56)

By collecting the ξ2
1-terms we find an equation for h20

ḣ20 − A(τ)h20 = B(τ; v1, v1)− 2αu̇0, (5.57)

to be solved in the space of functions satisfying h20(T) = h20(0). In this space,

the differential operator d
dτ − A(τ) is singular and the null-space of its adjoint is

spanned by ϕ∗. The Fredholm solvability condition leads to the expression

α =
1

2

∫ T

0
〈ϕ∗, B(τ; v1, v1)〉 dτ, (5.58)

where v1 is defined by (5.51).

With α defined in this way we have to find a normalization condition that makes

the solution of (5.57) unique. Indeed, if h20 is a solution of (5.57) with h20(T) =
h20(0), also h̃20 = h20 + ε1u̇0 is a solution, since u̇0 spans the kernel of the operator
d

dτ − A(τ) in the space of T-periodic functions. The projection along the space

generated by u̇0 is fixed by solvability condition (5.56). So h20 can be found as the

unique solution of the BVP





ḣ20 − A(τ)h20 − B(τ; v1, v1) + 2αF(u0) = 0, τ ∈ [0, T],

h20(T)− h20(0) = 0,
∫ T

0
〈ϕ∗, h20〉 dτ =

∫ T

0
〈ϕ∗, B(τ; v1, v2)〉 dτ.

(5.59)

152



5.2. COMPUTATION OF CRITICAL COEFFICIENTS

In the line of the previous observations, we can define h11 as the unique solution of

the BVP




ḣ11 − A(τ)h11 − B(τ; v1, v2) + h20 = 0, τ ∈ [0, T]

h11(T)− h11(0) = 0,
∫ T

0
〈ϕ∗, h11〉 dτ =

1

2

∫ T

0
〈ϕ∗, B(τ; v2, v2)〉 dτ.

By collecting the ξ3
1-terms we get an equation for h30

ḣ30 − A(τ)h30 = C(τ; v1, v1, v1) + 3B(τ; v1, h20)− 6av2 − 6αv̇1, (5.60)

which must be solved in the space of functions satisfying h30(T) = −h30(0). Taking

the integral condition of (5.53) into account, we obtain

a =
1

6

∫ T

0
〈v∗1 , C(τ; v1, v1, v1) + 3B(τ; v1, h20)− 6αA(τ)v1〉 dτ

where α is defined by (5.58), h20 is the solution of (5.59) and v1 and v∗1 are defined

in (5.51) and (5.53), respectively. As remarked before, it is important to note that

if h30 is a solution of (5.60) with h30(T) = −h30(0), also h̃30 = h30 + εI
30v1 is a

solution, since v1 spans the null-space of the operator d
dt − A(τ) in the space of

anti-periodic functions (i.e. functions v1 for which holds that v1(T) = −v1(0)).
By collecting the ξ2

1ξ2-terms we get the equation for h21

ḣ21 − A(τ)h21 = −h30 − 2bv2 − 2αv̇2 − 2αv1 + C(τ; v1, v1, v2)

+ B(τ; h20, v2) + 2B(τ; h11, v1),
(5.61)

to be solved in the space of functions satisfying h21(T) = −h21(0). The solvability

of this equation implies

∫ T

0
〈v∗1 ,−h30 − 2bv2 − 2αv̇2 − 2αv1 + C(τ; v1, v1, v2)

+B(τ; h20, v2) + 2B(τ; h11, v1)〉dτ = 0.

Notice that the ξ2
1ξ2-term in the R2 normal form (4.9) is resonant: in fact we

cannot use the freedom on h30 to make the normal form parameter b zero since

∫ T

0
〈v∗1 , h̃30〉dτ =

∫ T

0
〈v∗1 , h30 + εI

30v1〉dτ =
∫ T

0
〈v∗1 , h30〉dτ,
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because of (5.55). Using the normalization from (5.53) and (5.55) gives us the

following expression for b:

b =
1

2

∫ T

0
〈v∗1 ,−2αA(τ)v2 + C(τ; v1, v1, v2) + B(τ; h20, v2) + 2B(τ; h11, v1)〉dτ

− 1

2

∫ T

0
〈v∗1 , h30〉dτ.

However, there is no need to compute explicitly the cubic expansion of the center

manifold since the last term of this sum can be rewritten. Indeed,

− 1

2

∫ T

0
〈v∗1 , h30〉dτ

= −1

2

∫ T

0
〈v̇∗2 + AT(τ)v∗2 , h30〉dτ

=
1

2

∫ T

0
〈v∗2 , ḣ30 − A(τ)h30〉dτ

=
1

2

∫ T

0
〈v∗2 , C(τ; v1, v1, v1) + 3B(τ; v1, h20)− 6av2 − 6αv̇1〉dτ

=
1

2

∫ T

0
〈v∗2 , C(τ; v1, v1, v1) + 3B(τ; v1, h20)− 6αA(τ)v1〉dτ,

so that the formula for b takes the following form

b =
1

2

∫ T

0
〈v∗1 ,−2αA(τ)v2 + C(τ; v1, v1, v2) + B(τ; h20, v2) + 2B(τ; h11, v1)〉dτ

+
1

2

∫ T

0
〈v∗2 , C(τ; v1, v1, v1) + 3B(τ; v1, h20)− 6αAv1〉dτ,

where h20 is defined in (5.59) and α calculated in (5.58). Notice that, since h30

appears on the RHS of equation (5.61), we have two degrees of freedom on h21. In

fact, if h21 is a solution of (5.61), also h̃21 = h21 + εI
21v1 + εI

30v2 is a solution since

dh̃21

dτ
− A(τ)h̃21 =

dh21

dτ
− A(τ)h21 + εI

30

(
dv2

dτ
− A(τ)v2

)

=
dh21

dτ
− A(τ)h21 − εI

30v1.

By collecting the ξ1ξ2
2-terms we get the equation for h12

ḣ12 − A(τ)h12 = C(τ, v1, v2, v2) + B(τ, v1, h02) + 2B(τ, v2, h11)− 2h21,
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to be solved in the space of functions satisfying h12(T) = −h12(0). The Fredholm

solvability condition implies that

∫ T

0
〈v∗1 , C(τ, v1, v2, v2) + B(τ, v1, h02) + 2B(τ, v2, h11)− 2h21〉dτ = 0.

As mentioned before, h21 has a component in the direction of v2 that is not orthog-

onal to the adjoint eigenfunction v∗1 , so it is possible to impose

∫ T

0
〈v∗1 , h21〉dτ =

1

2

∫ T

0
〈v∗1 , C(τ, v1, v2, v2) + B(τ, v1, h02) + 2B(τ, v2, h11)〉dτ.

This condition defines εI
30 uniquely; the freedom of εI

21 gives us as usual another

freedom on h12 in the direction of v2.

Finally, collecting the ξ3
2-terms gives

ḣ03 − A(τ)h03 = C(τ, v2, v2, v2) + 3B(v2, h02)− 3h12,

to be solved in the space of functions satisfying h03(T) = −h03(0). The Fredholm

solvability condition is

∫ T

0
〈v∗1 , C(τ, v2, v2, v2) + 3B(v2, h02)− 3h12〉dτ = 0,

which can be satisfied by imposing

∫ T

0
〈v∗1 , h12〉dτ =

1

3

∫ T

0
〈v∗1 , C(τ, v2, v2, v2) + 3B(v2, h02)〉dτ.

This last condition determines the value of εI
21 and thus the third order center man-

ifold expansion is uniquely determined. However, since this third order expansion of

the center manifold is not needed for the computation of the critical coefficients,

we do not write down those conditions explicitly.

Strong Resonance 1:3 bifurcation

The three-dimensional critical center manifold Wc(Γ) at the R3 bifurcation can be

parametrized locally by (τ, ξ) ∈ [0, 3T]× C as

u = u0(τ) + ξv(τ) + ξ̄ v̄(τ) + H(τ, ξ, ξ̄),
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where the real function H satisfies H(3T, ξ, ξ̄) = H(0, ξ, ξ̄) and has the Taylor

expansion

H(τ, ξ, ξ̄) =
3

∑
i,j=0

2≤i+j≤3

1

i!j!
hij(τ)ξ

i ξ̄ j + O(|ξ|4),

with hij(3T) = hij(0) and hij = h̄ji so that hii is real. The eigenfunction v is

defined as the unique solution of the BVP





v̇(τ)− A(τ)v = 0, τ ∈ [0, T],

v(T)− ei 2π
3 v(0) = 0,

∫ T

0
〈v, v〉dτ − 1 = 0,

(5.62)

and extended on the interval [0, 3T] using the equivariance property of the normal

form, i.e.

v(τ + T) := ei 2π
3 v(τ) and v(τ + 2T) := ei 4π

3 v(τ) for τ ∈ [0, T].

The definition of the conjugate eigenfunction v̄ follows immediately. These functions

exist due to Proposition 2.26.

As usual the functions hij can be found by solving appropriate BVPs, assuming

that (5.4) restricted to Wc(Γ) has the periodic R3 normal form (4.10). Also here

we can deduce a property for the functions hij. The definition of v(τ) in [0, 3T]

states that u(τ, ξ, ξ̄) = u(τ + T, e−i2π/3ξ, ei2π/3ξ̄). Therefore,

∑
k,l

1

k!l!
hkl(τ)ξ

k ξ̄ l = ∑
k,l

1

k!l!
hkl(τ + T)(e−i2π/3)kξk(ei2π/3)l ξ̄ l ,

and thus

hkl(τ) = hkl(τ + T)(e−i2π/3)k(ei2π/3)l ,

for τ ∈ [0, T]. This implies that hkk is T-periodic. These periodicity properties

allow us to concentrate on the interval [0, T].

The adjoint eigenfunction ϕ∗ corresponding to the trivial multiplier is the unique
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T-periodic solution of BVP (5.20). The adjoint eigenfunction v∗ satisfies





v̇∗(τ) + AT(τ)v∗ = 0, τ ∈ [0, T],

v∗(T)− ei 2π
3 v∗(0) = 0,

∫ T

0
〈v∗, v〉dτ − 1 = 0.

(5.63)

Similarly, we obtain v̄∗.
After the standard substitutions in (5.4), the constant and linear terms give us

as usual

u̇0 = F(u0), v̇ − A(τ)v = 0, ˙̄v − A(τ)v̄ = 0.

From the ξ2- or ξ̄2-terms we obtain the following equation (or its complex conjugate)

ḣ20 − A(τ)h20 = B(τ; v, v)− 2b̄v̄,

to be solved in the space of functions satisfying h20(T) = ei 4π
3 h20(0). In this space

the operator d
dτ − A(τ) has a range space with codimension 1 that is orthogonal

to v̄∗. So only one Fredholm solvability condition is involved, from which we obtain

b =
1

2

∫ T

0
〈v∗, B(τ; v̄, v̄)〉dτ.

Using this value for b we can find h20 as the unique solution of the BVP





ḣ20 − A(τ)h20 − B(τ; v, v) + 2b̄v̄ = 0, τ ∈ [0, T],

h20(T)− ei 4π
3 h20(0) = 0,

∫ T

0
〈v̄∗, h20〉dτ = 0.

(5.64)

By collecting the |ξ|2-terms we obtain an equation for h11

ḣ11 − A(τ)h11 = B(τ; v, v̄)− α1u̇0,

to be solved in the space of functions satisfying h11(T) = h11(0). The Fredholm

solvability condition implies

α1 =
∫ T

0
〈ϕ∗, B(τ; v, v̄)〉dτ. (5.65)
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With α1 defined in this way, let h11 be the unique solution of the BVP





ḣ11 − A(τ)h11 − B(τ; v, v̄) + α1u̇0 = 0, τ ∈ [0, T],

h11(T)− h11(0) = 0,
∫ T

0
〈ϕ∗, h11〉dτ = 0.

(5.66)

Finally, collecting the ξ |ξ|2-terms gives an equation for h21

ḣ21 − A(τ)h21 = C(τ; v, v, v̄) + 2B(τ; v, h11) + B(τ; v̄, h20)− 2cv − 2b̄h02 − 2α1v̇,

to be solved in the space of the functions satisfying h21(T) = ei 2π
3 h21(0). The

Fredholm solvability condition implies that parameter c of the R3 normal form

(4.10) is determined by

c =
1

2

∫ T

0
〈v∗, C(τ; v, v, v̄) + 2B(τ; v, h11) + B(τ; v̄, h20)− 2α1 Av〉dτ

where α1 is defined by (5.65), and v, v∗, h11 and h20 are the unique solutions of

the BVPs (5.62), (5.63), (5.66) and (5.64), respectively.

By collecting the ξ3-terms we obtain

ḣ30 − A(τ)h30 = C(τ; v, v, v) + 3B(τ; v, h20)− 6b̄h11 − 6α2u̇0,

to be solved in the space of functions satisfying h30(T) = h30(0). Therefore,

α2 =
∫ T

0
〈ϕ∗, C(τ; v, v, v) + 3B(τ; v, h20)〉dτ.

Remark that as in the Chenciner case v is not uniquely determined. Indeed, when

v is a solution of (5.62) and γ ∈ C with γ̄γ = 1, then γv is also a solution. Then

the adjoint function is given by γv∗, and b and h20 are replaced by γ̄3b and γ2h20,

respectively. The normal form coefficient c remains the same. However, the normal

form coefficient b is multiplied with γ̄3. This doesn’t affect the bifurcation analysis

since there must just hold that this normal form coefficient is nonzero, and obviously

γ 6= 0. Moreover, the analysis around the bifurcation point is independent from the

sign of b.
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Strong Resonance 1:4 bifurcation

The three-dimensional critical center manifold Wc(Γ) at the R4 bifurcation can be

parametrized locally by (τ, ξ) ∈ [0, 4T]× C as

u = u0(τ) + ξv(τ) + ξ̄ v̄(τ) + H(τ, ξ, ξ̄),

where the real function H satisfies H(4T, ξ, ξ̄) = H(0, ξ, ξ̄) and has the Taylor

expansion

H(τ, ξ, ξ̄) =
3

∑
i,j=0

2≤i+j≤3

1

i!j!
hij(τ)ξ

i ξ̄ j + O(|ξ|4),

with hij(4T) = hij(0) and hij = h̄ji so that hii is real, while v is defined by





v̇ − A(τ)v = 0, τ ∈ [0, T],

v(T)− ei π
2 v(0) = 0,

∫ T

0
〈v, v〉dτ − 1 = 0,

(5.67)

extended on [0, 4T] using the equivariance property of the normal form, i.e.

v(τ + T) := ei π
2 v(τ) = iv(τ),

v(τ + 2T) := eiπv(τ) = −v(τ),

v(τ + 3T) := ei 3π
2 v(τ) = −iv(τ),

for τ ∈ [0, T].

The definition of the conjugate v̄ follows immediately. These functions exist due

to Proposition 2.26. As usual the functions hij can be found by solving appropriate

BVPs, assuming that (5.4) restricted to Wc(Γ) has the periodic R4 normal form

(4.11). Similar to the R3 case, it holds that

hkl(τ) = hkl(τ + T)(e−iπ/2)k(eiπ/2)l ,

for τ ∈ [0, T].
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The adjoint eigenfunction ϕ∗ is defined by the T-periodic solution of (5.20) and

v∗ satisfies 



v̇∗(τ) + AT(τ)v∗ = 0, τ ∈ [0, T],

v∗(T)− ei π
2 v∗(0) = 0,

∫ T

0
〈v∗, v〉dτ − 1 = 0.

(5.68)

Similarly, we obtain v̄∗.
The constant and the linear terms give the identities u̇0 = F(u0), v̇− A(τ) = 0,

and ˙̄v− A(τ)v̄ = 0. From the ξ2- or ξ̄2-terms the following equation (or its complex

conjugate) follows

ḣ20 − A(τ)h20 = B(τ; v, v).

Notice that this equation is nonsingular in the space of functions satisfying h20(T) =
−h20(0). So h20 is obtained as the unique solution of the BVP

{
ḣ20 − A(τ)h20 − B(τ; v, v) = 0, τ ∈ [0, T],

h20(T) + h20(0) = 0.
(5.69)

By collecting the |ξ|2-terms we obtain an equation for h11

ḣ11 − A(τ)h11 = B(τ; v, v̄)− α1u̇0,

to be solved in the space of functions satisfying h11(T) = h11(0). The Fredholm

solvability condition gives exactly the same expression for α1 as in the R3 case,

namely

α1 =
∫ T

0
〈ϕ∗, B(τ; v, v̄)〉dτ. (5.70)

With this value of α1, h11 is the unique solution of




ḣ11 − A(τ)h11 − B(τ; v, v̄) + α1u̇0 = 0, τ ∈ [0, T],

h11(T)− h11(0) = 0,
∫ T

0
〈ϕ∗, h11〉dτ = 0.

(5.71)

The ξ̄ |ξ|2-terms give an equation for h12

ḣ12 − A(τ)h12 = C(τ; v, v̄, v̄) + B(τ; v, h02) + 2B(τ; v̄, h11)− 2c̄v̄ − 2α1 ˙̄v,
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to be solved in the space of functions satisfying h12(T) = −ih12(0). The Fredholm

solvability condition implies

c̄ =
1

2

∫ T

0
〈v̄∗, C(τ; v, v̄, v̄) + B(τ; v, h02) + 2B(τ; v̄, h11)− 2α1 A(τ)v̄〉dτ,

(5.72)

where α1 is defined in (5.70), and v, h11 and h02 are the unique solutions of the

BVPs (5.67), (5.71) and the complex conjugate of (5.69). The complex conjugate

of (5.72) gives us the critical coefficient c in the R4 normal form (4.11). By collecting

the ξ̄3-terms we obtain an equation for h03

ḣ03 − A(τ)h03 = C(τ; v̄, v̄, v̄) + 3B(τ; v̄, h02)− 6dv,

to be solved in the space of functions satisfying h03(T) = ih03(0). The nontrivial

Fredholm solvability condition gives the value of the critical coefficient d in the R4

normal form, namely

d =
1

6

∫ T

0
〈v∗, C(τ; v̄, v̄, v̄) + 3B(τ; v̄, h02)〉dτ.

So we finally obtain the value of

A =
c

|d|

that can be used to determine the bifurcation scenario at the R4 point.

Also in this case v is not uniquely determined, since for every γ ∈ C with

γ̄Tγ = 1, γv is also a solution. Then the adjoint eigenfunction is given by γv∗,
and h20 is replaced by γ2h20. The normal form coefficient c remains the same,

but instead of d we get γ̄4d. However, this again doesn’t influence the bifurcation

analysis since the study is determined by the above defined coefficient A for which

we need only |d|.

Fold-Flip bifurcation

The three-dimensional critical center manifold Wc(Γ) at the LPPD bifurcation can

be parametrized locally by (τ, ξ) = (τ, ξ1, ξ2) ∈ [0, 2T]× R2 as

u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) + H(τ, ξ),
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where H satisfies H(2T, ξ) = H(0, ξ) and has the Taylor expansion

H(τ, ξ) =
3

∑
i,j=0

2≤i+j≤3

1

i!j!
hij(τ)ξ

i
1ξ

j
2 + O(|ξ|4),

while the eigenfunctions v1 and v2 are given by





v̇1 − A(τ)v1 − F(u0) = 0, τ ∈ [0, T],

v1(T)− v1(0) = 0,
∫ T

0
〈v1, F(u0)〉dτ = 0,

(5.73)

and





v̇2 − A(τ)v2 = 0, τ ∈ [0, T],

v2(T) + v2(0) = 0,
∫ T

0
〈v2, v2〉dτ − 1 = 0,

(5.74)

respectively, with

v1(τ + T) := v1(τ) and v2(τ + T) := −v2(τ) for τ ∈ [0, T].

The functions v1 and v2 exist because of Proposition 2.26 and Proposition 2.27.

The functions hij can be found by solving appropriate BVPs, assuming that (5.4)

restricted to Wc(Γ) has the periodic LPPD normal form (4.11). Moreover, similar

as before, u(τ, ξ1, ξ2) = u(τ + T, ξ1,−ξ2) such that

hij(τ) = (−1)jhij(τ + T),

for τ ∈ [0, T]. Therefore, we will reduce all computations to the interval [0, T].

To compute the coefficients of the normal form, we need the generalized eigen-

function v1 and eigenfunction v2, and the adjoint eigenfunctions ϕ∗, v∗1 and v∗2 ,
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defined as solution of the BVPs




ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, v1〉dτ − 1 = 0,

(5.75)





v̇∗1 + AT(τ)v∗1 + ϕ∗ = 0, τ ∈ [0, T],

v∗1(T)− v∗1(0) = 0,
∫ T

0
〈v∗1 , v1〉dτ = 0,

(5.76)

and




v̇∗2 + AT(τ)v∗2 = 0, τ ∈ [0, T],

v∗2(T) + v∗2(0) = 0,
∫ T

0
〈v∗2 , v2〉dτ − 1 = 0.

(5.77)

Note that the integral conditions can be satisfied due to the spectral assumptions

at the LPPD point. The following orthogonality conditions hold automatically

∫ T

0
〈ϕ∗, F(u0)〉dτ =

∫ T

0
〈ϕ∗, v2〉dτ =

∫ T

0
〈v∗1 , v2〉dτ

=
∫ T

0
〈v∗2 , v1〉dτ =

∫ T

0
〈v∗2 , F(u0)〉dτ = 0,

and since we have normalized the adjoint eigenfunction associated to multiplier 1

with the generalized eigenfunction, we also have

∫ T

0
〈v∗1 , F(u0)〉dτ = 1.

As usual, to derive the normal form coefficients we substitute the above expansions

into (5.4) and compare term by term. By collecting the constant and linear terms

we get the identities u̇0 = F(u0), v̇1 = A(τ)v1 + F(u0), and v̇2 = A(τ)v2.

By collecting the ξ2
1-terms we find an equation for h20

ḣ20 − A(τ)h20 = B(τ; v1, v1)− 2a20v1 − 2α20u̇0 + 2v̇1, (5.78)
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to be solved in the space of functions satisfying h20(T) = h20(0). In this space, the

differential operator d
dτ − A(τ) is singular and the null-space of the adjoint operator

is spanned by ϕ∗. The corresponding Fredholm solvability condition implies

a20 =
1

2

∫ T

0
〈ϕ∗, B(τ; v1, v1) + 2A(τ)v1〉 dτ.

With a20 tuned in this way, (5.78) is solvable for any value of parameter α20. As in

the Cusp Point of Cycles case, we are free to choose parameter α20 as we want; we

take α20 = 0. This choice will not influence our final conclusion about the possible

bifurcation scenarios.

In order to make the solution of (5.78) unique, we have to fix the projection on

the null-space of the operator, more specifically in the direction of F(u0). Therefore,

we impose the orthogonality condition with the adjoint generalized eigenfunction

v∗1 , and obtain h20 as the unique solution of the BVP





ḣ20 − A(τ)h20 − B(τ; v1, v1) + 2a20v1

+2α20F(u0)− 2A(τ)v1 − 2F(u0) = 0, τ ∈ [0, T],

h20(T)− h20(0) = 0,
∫ T

0
〈v∗1 , h20〉dτ = 0.

By collecting the ξ1ξ2-terms we obtain a singular equation for h11

ḣ11 − A(τ)h11 = B(τ; v1, v2)− b11v2 + v̇2,

to be solved in the space of the functions that satisfy h11(T) = −h11(0). The

Fredholm solvability condition gives

b11 =
∫ T

0
〈v∗2 , B(τ; v1, v2) + A(τ)v2〉 dτ,

due to (5.74) and (5.77). With b11 defined in this way, we can compute h11 as the

unique solution of the BVP




ḣ11 − A(τ)h11 − B(τ; v1, v2) + b11v2 − A(τ)v2 = 0, τ ∈ [0, T],

h11(T) + h11(0) = 0,
∫ T

0
〈v∗2 , h11〉dτ = 0.
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Collecting the ξ2
2-terms gives a singular equation for h02

ḣ02 − A(τ)h02 = B(τ; v2, v2)− 2a02v1 − 2α02u̇0, (5.79)

where solvability gives in the standard way

a02 =
1

2

∫ T

0
〈ϕ∗, B(τ; v2, v2)〉 dτ.

So (5.79) is solvable, for any value of the parameter α02. For simplicity, we take

α02 = 0.

Notice that also here, the solution of (5.79) is orthogonal to the adjoint eigen-

function ϕ∗. Since we have to fix the projection in the direction of the eigenfunction

u̇0, we define h02 as the unique solution of




ḣ02 − A(τ)h02 − B(τ; v2, v2) + 2a02v1 + 2α02F(u0) = 0, τ ∈ [0, T],

h02(T)− h02(0) = 0,
∫ T

0
〈v∗1 , h02〉dτ = 0.

By applying the Fredholm solvability conditions to the singular equations for hij

with i + j = 3, we obtain

a30 =
1

6

∫ T

0
〈ϕ∗, C(τ; v1, v1, v1) + 3B(τ; h20, v1)− 6a20h20

+ 3(A(τ)h20 + B(τ; v1, v1)) + 6(1 − α20)A(τ)v1〉 dτ − a20,

b21 =
1

2

∫ T

0
〈v∗2 , C(τ; v1, v1, v2) + B(τ; h20, v2) + 2B(τ; h11, v1)− 2a20h11

− 2b11h11 + 2(A(τ)h11 + B(τ; v1, v2)) + 2(1 − α20)A(τ)v2〉 dτ − b11,

a12 =
1

2

∫ T

0
〈ϕ∗, C(τ; v1, v2, v2) + B(τ; h02, v1) + 2B(τ; h11, v2)− 2b11h02

− 2a02h20 + A(τ)h02 + B(τ; v2, v2)− 2α02 A(τ)v1〉 dτ − a02,

b03 =
1

6

∫ T

0
〈v∗2 , C(τ; v2, v2, v2) + 3B(τ; h02, v2)− 6a02h11 − 6α02 A(τ)v2〉 dτ.

5.2.3 Bifurcations with a 4D center manifold

As discussed in the previous chapter, the representation of the normal forms for

bifucations with a 4- or 5-dimensional center manifold is slightly different from
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the ones corresponding with a 2- or 3-dimensional center manifold. Indeed, in the

normal forms for LPNS, PDNS and NSNS we consider the derivative of the ξ-

variable with respect to the phase coordinate τ instead of time t as in the first 8
cases. This, however, does not affect our homological equation approach. In fact,

instead of looking at τ and ξ as functions of time t, we now consider ξ as a function

of τ, which is in turn a function of time t. Both approaches are mathematically

equivalent.

Limit Point-Neimark-Sacker bifurcation

The four-dimensional critical center manifold Wc(Γ) at the LPNS bifurcation can

be parametrized locally by (τ, ξ1, ξ2) ∈ [0, T]× R × C as

u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) + ξ̄2v̄2(τ) + H(τ, ξ1, ξ2, ξ̄2), (5.80)

where the real function H satisfies H(T, ξ1, ξ2, ξ̄2) = H(0, ξ1, ξ2, ξ̄2) and has the

Taylor expansion

H(τ, ξ1, ξ2, ξ̄2) = ∑
2≤i+j+k≤3

1

i!j!k!
hijk(τ)ξ

i
1ξ

j
2ξ̄k

2 + O(|ξ|4), (5.81)

where the eigenfunctions v1 and v2 are defined as




v̇1 − A(τ)v1 − F(u0) = 0, τ ∈ [0, T],

v1(T)− v1(0) = 0,
∫ T

0
〈v1, F(u0)〉dτ = 0,

(5.82)

and




v̇2 − A(τ)v2 + iωv2 = 0, τ ∈ [0, T],

v2(T)− v2(0) = 0,
∫ T

0
〈v2, v2〉dτ − 1 = 0.

(5.83)

The functions v1 and v2 exist because of Proposition 2.26. The functions hijk can

be found by solving appropriate BVPs, assuming that (5.4) restricted to Wc(Γ) has

the LPNS normal form (4.13).

The coefficients of the normal form arise from the solvability conditions for the

BVPs as integrals of scalar products over the interval [0, T]. Specifically, those
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scalar products involve among other things the quadratic and cubic terms of (4.3)

near the periodic solution u0, the generalized eigenfunction v1 and the eigenfunction

v2, and the adjoint eigenfunctions ϕ∗, v∗1 and v∗2 as solutions of the problems





ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, v1〉dτ − 1 = 0,

(5.84)





v̇∗1 + AT(τ)v∗1 + ϕ∗ = 0, τ ∈ [0, T],

v∗1(T)− v∗1(0) = 0,
∫ T

0
〈v∗1 , v1〉dτ = 0,

(5.85)

and




v̇∗2 + AT(τ)v∗2 + iωv∗2 = 0, τ ∈ [0, T],

v∗2(T)− v∗2(0) = 0,
∫ T

0
〈v∗2 , v2〉dτ − 1 = 0.

(5.86)

In what follows we will make use of the orthogonality condition

∫ T

0
〈ϕ∗, F(u0)〉dτ = 0, (5.87)

and the normalization condition

∫ T

0
〈v∗1 , F(u0)〉dτ = 1, (5.88)

which can be easily obtained from (5.82), (5.84) and (5.85).

To derive the expressions for the normal form coefficients we write down the

homological equation and compare term by term. We therefore substitute (5.80)

into (5.4), using (4.3), (4.13) and (5.81). By collecting the constant and linear

terms we get the identities

u̇0 = F(u0), v̇1 − F(u0) = A(τ)v1, v̇2 + iωv2 = A(τ)v2,

and the complex conjugate of the last equation.
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By collecting the ξ2
1-terms we find an equation for h200

ḣ200 − A(τ)h200 = B(τ; v1, v1)− 2a200v1 − 2α200u̇0 + 2v̇1, (5.89)

to be solved in the space of functions satisfying h200(T) = h200(0). In this space,

the differential operator d
dτ − A(τ) is singular and the null-space of its adjoint

operator is spanned by ϕ∗. The Fredholm solvability condition

∫ T

0
〈ϕ∗, B(τ; v1, v1)− 2a200v1 − 2α200u̇0 + 2v̇1〉 dτ = 0

allows us to calculate coefficient a200 in (4.13) due to (5.82), (5.87) and the required

normalization in (5.84), i.e.

a200 =
1

2

∫ T

0
〈ϕ∗, B(τ; v1, v1) + 2A(τ)v1〉 dτ. (5.90)

With this expression for a200, let h200 be a solution of (5.89) in the space of functions

satisfying h200(0) = h200(T). Notice that if h200 is a solution of (5.89), then

also h200 + ε1F(u0) satisfies (5.89), since F(u0) lies in the kernel of the operator
d

dτ − A(τ). In order to obtain a unique solution (without a component along the

null-eigenspace) we impose the following orthogonality condition

∫ T

0
〈v∗1 , h200〉 dτ = 0,

which determines the value of ε1 since (5.88) holds. Thus, h200 is the unique

solution of the BVP





ḣ200 − A(τ)h200 − B(τ; v1, v1)− 2A(τ)v1

+2a200v1 + 2α200u̇0 − 2u̇0 = 0, τ ∈ [0, T],

h200(T)− h200(0) = 0,
∫ T

0
〈v∗1 , h200〉 dτ = 0.

By collecting the ξ2
2-terms (or ξ̄2

2-terms) we find an equation for h020

ḣ020 − A(τ)h020 + 2iωh020 = B(τ; v2, v2),
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(or its complex conjugate). This equation has a unique solution satisfying h020(T) =
h020(0), since due to the spectral assumptions e2iωT is not a multiplier of the critical

cycle. Thus, h020 can be found by solving

{
ḣ020 − A(τ)h020 + 2iωh020 − B(τ; v2, v2) = 0, τ ∈ [0, T],

h020(T)− h020(0) = 0.

By collecting the ξ1ξ2-terms we obtain an equation for h110

ḣ110 − A(τ)h110 + iωh110 = B(τ; v1, v2)− b110v2 + v̇2 + iωv2,

to be solved in the space of functions satisfying h110(T) = h110(0). In this space,

the differential operator d
dτ − A(τ)+ iω is singular, since eiωT is a critical multiplier.

So we can impose the following Fredholm solvability condition

∫ T

0
〈v∗2 , B(τ; v1, v2)− b110v2 + v̇2 + iωv2〉 dτ = 0,

which due to the normalization condition in (5.86) determines the value of the

normal form coefficient b110, yielding

b110 =
∫ T

0
〈v∗2 , B(τ; v1, v2) + A(τ)v2〉 dτ. (5.91)

The null-space of the operator d
dτ − A(τ) + iω is one-dimensional and spanned by

v2. To determine h110 uniquely, we need to impose an orthogonality condition with

a vector whose inproduct with v2 is nonzero. v∗2 can be chosen because of the

normalization condition in (5.86). Therefore, we obtain h110 as the unique solution

of the BVP




ḣ110 − A(τ)h110 + iωh110 − B(τ; v1, v2) + b110v2 − A(τ)v2 = 0, τ ∈ [0, T],

h110(T)− h110(0) = 0,
∫ T

0
〈v∗2 , h110〉 dτ = 0.

By collecting the |ξ2|2-terms we obtain a singular equation for h011, namely

ḣ011 − A(τ)h011 = B(τ; v2, v̄2)− a011v1 − α011u̇0,
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to be solved in the space of functions satisfying h011(T) = h011(0). The nontrivial

kernel of the adjoint of the operator d
dτ − A(τ) is spanned by ϕ∗. So, the following

Fredholm solvability condition is involved
∫ T

0
〈ϕ∗, B(τ; v2, v̄2)− a011v1 − α011u̇0〉 dτ = 0,

which gives us the expression for the normal form coefficient a011, i.e.

a011 =
∫ T

0
〈ϕ∗, B(τ; v2, v̄2)〉 dτ. (5.92)

We impose the orthogonality condition with the adjoint generalized eigenfunction

v∗1 to obtain h011 as the unique solution of




ḣ011 − A(τ)h011 − B(τ; v2, v̄2) + a011v1 + α011u̇0 = 0, τ ∈ [0, T],

h011(T)− h011(0) = 0,
∫ T

0
〈v∗1 , h011〉 dτ = 0.

Note that the values of α200 and α011 are not determined by the homological equa-

tion. We therefore put them equal to zero.

Third order coefficients are only needed to determine the stability of the torus,

if it exists. We have listed these terms in Section 5.A.1.

Period-Doubling-Neimark-Sacker bifurcation

The four-dimensional critical center manifold Wc(Γ) at the PDNS bifurcation can

be parametrized locally by (τ, ξ1, ξ2) ∈ [0, 2T]× R × C as

u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) + ξ̄2v̄2(τ) + H(τ, ξ1, ξ2, ξ̄2),

where H satisfies H(2T, ξ1, ξ2, ξ̄2) = H(0, ξ1, ξ2, ξ̄2) and has the Taylor expansion

H(τ, ξ1, ξ2, ξ̄2) = ∑
2≤i+j+k≤5

1

i!j!k!
hijk(τ)ξ

i
1ξ

j
2ξ̄k

2 + O(|ξ|6),

while the eigenfunctions v1 and v2 are defined by




v̇1 − A(τ)v1 = 0, τ ∈ [0, T],

v1(T) + v1(0) = 0,
∫ T

0
〈v1, v1〉dτ − 1 = 0,

(5.93)
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with v1(τ + T) = −v1(τ) for τ ∈ [0, T] and





v̇2 − A(τ)v2 + iωv2 = 0, τ ∈ [0, T],

v2(T)− v2(0) = 0,
∫ T

0
〈v2, v2〉dτ − 1 = 0.

(5.94)

The functions v1 and v2 exist because of Proposition 2.27 and Proposition 2.26.

The functions hijk can be found by solving appropriate BVPs, assuming that (5.4)

restricted to Wc(Γ) has the normal form (4.14). Moreover, u(τ, ξ1, ξ2, ξ̄2) = u(τ +
T,−ξ1, ξ2, ξ̄2) so that

hijk(τ) = (−1)ihijk(τ + T), (5.95)

for τ ∈ [0, T]. Therefore, we can restrict our computations to the interval [0, T]
instead of [0, 2T].

The coefficients of the normal form arise from the solvability conditions for the

BVPs as integrals of scalar products over the interval [0, T]. Specifically, those

scalar products involve among other things the quadratic up to quintic terms of

(4.3) near the periodic solution u0, v1, v2, and the adjoint eigenfunctions ϕ∗, v∗1
and v∗2 as solutions of the problems





ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, F(u0)〉dτ − 1 = 0,

(5.96)





v̇∗1 + AT(τ)v∗1 = 0, τ ∈ [0, T],

v∗1(T) + v∗1(0) = 0,
∫ T

0
〈v∗1 , v1〉dτ − 1 = 0,

(5.97)

and





v̇∗2 + AT(τ)v∗2 + iωv∗2 = 0, τ ∈ [0, T],

v∗2(T)− v∗2(0) = 0,
∫ T

0
〈v∗2 , v2〉dτ − 1 = 0.

(5.98)
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By collecting the constant and linear terms in the homological equation we get the

identities

u̇0 = F(u0), v̇1 = A(τ)v1, v̇2 + iωv2 = A(τ)v2,

and the complex conjugate of the last equation, which merely reflect the definition

of u0 and the differential equations in (5.93), (5.94).

By collecting the ξ2
1-terms we find an equation for h200

ḣ200 − A(τ)h200 = B(τ; v1, v1)− 2α200u̇0, (5.99)

to be solved in the space of functions satisfying h200(T) = h200(0). In this space,

the differential operator d
dτ − A(τ) is singular and the null-space of its adjoint is

spanned by ϕ∗. The Fredholm solvability condition

∫ T

0
〈ϕ∗, B(τ; v1, v1)− 2α200u̇0〉 dτ = 0

together with the required normalization in (5.96) gives us the possibility to calculate

α200 in (4.13), i.e.

α200 =
1

2

∫ T

0
〈ϕ∗, B(τ; v1, v1)〉 dτ. (5.100)

As before, h200 is determined up to the addition of a multiple of u̇0, since h200 +
ε1F(u0) is a solution of (5.99) for every value of ε1. We fix the value of h200

by demanding the orthogonality with the adjoint eigenfunction corresponding with

multiplier 1, i.e. ∫ T

0
〈ϕ∗, h200〉 dτ = 0.

We then obtain h200 as the unique solution of the BVP





ḣ200 − A(τ)h200 − B(τ; v1, v1) + 2α200u̇0 = 0, τ ∈ [0, T],

h200(T)− h200(0) = 0,
∫ T

0
〈ϕ∗, h200〉 dτ = 0.

(5.101)

By collecting the ξ2
2-terms (or ξ̄2

2-terms) we obtain the differential equation for h020

ḣ020 − A(τ)h020 + 2iωh020 = B(τ; v2, v2),
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or its complex conjugate. Since e2iωT is not a critical multiplier, no Fredholm

solvability condition has to be satisified. h020 can thus simply be found by solving
{

ḣ020 − A(τ)h020 + 2iωh020 − B(τ; v2, v2) = 0, τ ∈ [0, T],

h020(T)− h020(0) = 0.

The equation found by comparing the ξ1ξ2-terms is given by

ḣ110 − A(τ)h110 + iωh110 = B(τ; v1, v2).

From (5.95) it follows that h110 is anti-periodic. Now, since −eiωT is not a multiplier

of the critical cycle, no solvability condition has to be satisfied. Therefore, we can

immediately obtain h110 from
{

ḣ110 − A(τ)h110 + iωh110 − B(τ; v1, v2) = 0, τ ∈ [0, T],

h110(T) + h110(0) = 0.

The |ξ2|2-terms lead to a singular equation for h011, namely

ḣ011 − A(τ)h011 = B(τ; v2, v̄2)− α011u̇0,

to be solved in the space of T-periodic functions. The nontrivial kernel of the

operator d
dτ − A(τ) is spanned by u̇0. So, the Fredholm solvability condition with

the corresponding T-periodic adjoint eigenfunction is involved, i.e.

∫ T

0
〈ϕ∗, B(τ; v2, v̄2)− α011u̇0〉 dτ = 0,

from which the expression for the normal form coefficient α011 can be derived

α011 =
∫ T

0
〈ϕ∗, B(τ; v2, v̄2)〉 dτ.

Now, we still need to uniquely determine the multiple of F(u0) that can be added

to function h011, and will therefore impose the orthogonality condition with ϕ∗ to

obtain h011 as the unique solution of




ḣ011 − A(τ)h011 − B(τ; v2, v̄2) + α011u̇0 = 0, τ ∈ [0, T],

h011(T)− h011(0) = 0,
∫ T

0
〈ϕ∗, h011〉 dτ = 0.
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We have now examined all order two terms, and continue with the order three

terms. Collecting the ξ3
1-terms determines an equation for h300 and will give us the

possibility to compute the normal form coefficient a300 in (4.14). The differential

equation

ḣ300 − A(τ)h300 = C(τ; v1, v1, v1) + 3B(τ; v1, h200)− 6α200v̇1 − 6a300v1

has to be solved in the space of functions satisfying h300(T) = −h300(0). The

nontrivial anti-periodic kernel of the operator d
dτ − A(τ) is spanned by v1. So,

the Fredholm solvability condition with the anti-periodic adjoint eigenfunction v∗1 is

involved, i.e.
∫ T

0
〈v∗1 , C(τ; v1, v1, v1) + 3B(τ; v1, h200)− 6α200v̇1 − 6a300v1〉 dτ = 0

and thus

a300 =
1

6

∫ T

0
〈v∗1 , C(τ; v1, v1, v1) + 3B(τ; v1, h200)− 6α200 A(τ)v1〉 dτ,

due to the normalization condition from (5.97). The usual orthogonality condition

with the adjoint eigenfunction v∗1 is imposed to obtain h300 as the unique solution

of




ḣ300 − A(τ)h300 − C(τ; v1, v1, v1)− 3B(τ; v1, h200)

+6α200 A(τ)v1 + 6a300v1 = 0, τ ∈ [0, T],

h300(T) + h300(0) = 0,
∫ T

0
〈v∗1 , h300〉 dτ = 0.

The ξ3
2 (or ξ̄3

2)-terms from the homological equation give the following expression

for h030

ḣ030 − A(τ)h030 + 3iωh030 = C(τ; v2, v2, v2) + 3B(τ; v2, h020),

or its complex conjugate. This equation has a unique solution h030 satisfying

h030(T) = h030(0), since due to the spectral assumptions e3iωT is not a multi-

plier of the critical cycle. Thus, h030 can be found by solving
{

ḣ030 − A(τ)h030 + 3iωh030 − C(τ; v2, v2, v2)− 3B(τ; v2, h020) = 0, τ ∈ [0, T],

h030(T)− h030(0) = 0.
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By collecting the ξ2
1ξ2-terms we obtain an equation for h210

ḣ210 − A(τ)h210 + iωh210 = C(τ; v1, v1, v2) + B(τ; v2, h200) + 2B(τ; v1, h110)

− 2α200v̇2 − 2b210v2 − 2iωα200v2,
(5.102)

to be solved in the space of T-periodic functions. The nontrivial kernel of the adjoint

of the operator d
dτ − A(τ) + iω is spanned by the complex eigenfunction v∗2 . So,

the following Fredholm solvability condition has to be imposed

∫ T

0
〈v∗2 , C(τ; v1, v1, v2) + B(τ; v2, h200) + 2B(τ; v1, h110)

−2α200v̇2 − 2b210v2 − 2iωα200v2〉 dτ = 0,

from which the expression for the normal form coefficient b210 can be derived,

namely

b210 =
1

2

∫ T

0
〈v∗2 , C(τ; v1, v1, v2) + B(τ; v2, h200)

+ 2B(τ; v1, h110)− 2α200 A(τ)v2〉dτ,

taking the normalization from (5.98) into account. Now, h210 is defined by (5.102)

up to the addition of a multiple of v2. Therefore, we impose the orthogonality

condition with the complex adjoint eigenfunction v∗2 to obtain h210 as the unique

solution of





ḣ210 − A(τ)h210 + iωh210 − C(τ; v1, v1, v2)− B(τ; v2, h200)

−2B(τ; v1, h110) + 2α200 A(τ)v2 + 2b210v2 = 0, τ ∈ [0, T],

h210(T)− h210(0) = 0,
∫ T

0
〈v∗2 , h210〉 dτ = 0.

Since no ξ1ξ2
2-term is present in the normal form (4.14), we will find a nonsingular

equation for h120. Moreover, because of property (5.95) h120 is anti-periodic and

thus





ḣ120 − A(τ)h120 + 2iωh120 − C(τ; v1, v2, v2)

−B(τ; v1, h020)− 2B(τ; v2, h110) = 0, τ ∈ [0, T],

h120(T) + h120(0) = 0.
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The two remaining third order terms corresponding with ξ2 |ξ2|2 and ξ1 |ξ2|2 both

give a singular equation, namely

ḣ021 − A(τ)h021 + iωh021 = C(τ; v2, v2, v̄2) + B(τ; v̄2, h020) + 2B(τ; v2, h011)

− 2α011v̇2 − 2b021v2 − 2iωα011v2

and

ḣ111 − A(τ)h111 = C(τ; v1, v2, v̄2) + B(τ; v1, h011) + B(τ; v2, h101)

+ B(τ; v̄2, h110)− α011v̇1 − a111v1.

The first function is T-periodic, the second one is anti-periodic. Both involve a

Fredholm solvability condition, which leads to the computation of the two remaining

unknown third order normal form coefficients of (4.14), i.e.

b021 =
1

2

∫ T

0
〈v∗2 , C(τ; v2, v2, v̄2) + B(τ; v̄2, h020)

+ 2B(τ; v2, h011)− 2α011 A(τ)v2〉 dτ

and

a111 =
∫ T

0
〈v∗1 , C(τ; v1, v2, v̄2) + B(τ; v1, h011)

+ 2ℜ(B(τ; v2, h101))− α011 A(τ)v1〉 dτ.

Since we need the functions h021 and h111 for the computation of higher order

normal form coefficients, we write down their BVPs, yielding




ḣ021 − A(τ)h021 + iωh021 − C(τ; v2, v2, v̄2)− B(τ; v̄2, h020)

−2B(τ; v2, h011) + 2α011 A(τ)v2 + 2b021v2 = 0, τ ∈ [0, T],

h021(T)− h021(0) = 0,
∫ T

0
〈v∗2 , h021〉 dτ = 0

and




ḣ111 − A(τ)h111 − C(τ; v1, v2, v̄2)− B(τ; v1, h011)

−2ℜ(B(τ; v2, h101)) + α011 A(τ)v1 + a111v1 = 0, τ ∈ [0, T],

h111(T) + h111(0) = 0,
∫ T

0
〈v∗1 , h111〉 dτ = 0.
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The stability of a possibly existing extra torus depends on the fourth and fifth order

coefficients, which we have listed in Section 5.A.2.

5.2.4 Bifurcations with a 5D center manifold

Double Neimark-Sacker bifurcation

The five-dimensional critical center manifold Wc(Γ) at the NSNS bifurcation can

be parametrized locally by (τ, ξ1, ξ2) ∈ [0, T]× C2 as

u = u0(τ) + ξ1v1(τ) + ξ̄1v̄1(τ) + ξ2v2(τ) + ξ̄2v̄2(τ) + H(τ, ξ1, ξ̄1, ξ2, ξ̄2),

where H satisfies H(T, ξ1, ξ̄1, ξ2, ξ̄2) = H(0, ξ1, ξ̄1, ξ2, ξ̄2) and has the Taylor ex-

pansion

H(τ, ξ1, ξ̄1, ξ2, ξ̄2) = ∑
2≤i+j+k+l≤5

1

i!j!k!l!
hijkl(τ)ξ

i
1ξ̄

j
1ξk

2ξ̄ l
2 + O(|ξ|6),

where the complex eigenfunctions v1 and v2 are given by





v̇1 − A(τ)v1 + iω1v1 = 0, τ ∈ [0, T],

v1(T)− v1(0) = 0,
∫ T

0
〈v1, v1〉dτ − 1 = 0,

(5.103)

and




v̇2 − A(τ)v2 + iω2v2 = 0, τ ∈ [0, T],

v2(T)− v2(0) = 0,
∫ T

0
〈v2, v2〉dτ − 1 = 0.

(5.104)

The functions v1 and v2 exist because of Proposition 2.26. The functions hijkl will

be found by solving appropriate BVPs, assuming that (5.4) restricted to Wc(Γ) has

the normal form (4.15).

The coefficients of the normal form arise from the solvability conditions for the

BVPs as integrals of scalar products over the interval [0, T]. Specifically, those

scalar products involve among other things the quadratic up to quintic terms of
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(4.3) near the periodic solution u0, the eigenfunctions v1 and v2, and the adjoint

eigenfunctions ϕ∗, v∗1 and v∗2 as solution of the problems





ϕ̇∗ + AT(τ)ϕ∗ = 0, τ ∈ [0, T],

ϕ∗(T)− ϕ∗(0) = 0,
∫ T

0
〈ϕ∗, F(u0)〉dτ − 1 = 0,

(5.105)





v̇∗1 + AT(τ)v∗1 + iω1v∗1 = 0, τ ∈ [0, T],

v∗1(T)− v∗1(0) = 0,
∫ T

0
〈v∗1 , v1〉dτ − 1 = 0,

(5.106)

and





v̇∗2 + AT(τ)v∗2 + iω2v∗2 = 0, τ ∈ [0, T],

v∗2(T)− v∗2(0) = 0,
∫ T

0
〈v∗2 , v2〉dτ − 1 = 0.

(5.107)

By collecting the constant and linear terms in the homological equation we get the

identities

u̇0 = F(u0), v̇1 + iω1v1 = A(τ)v1, v̇2 + iω2v2 = A(τ)v2, (5.108)

and the complex conjugates of the last two equations. (5.108) merely reflects the

definition of u0 and the differential equations in (5.103) and (5.104).

By collecting the ξ2
1 (or ξ̄2

1)-terms we find an equation for h2000

ḣ2000 − A(τ)h2000 + 2iω1h2000 = B(τ; v1, v1),

(or its complex conjugate). This equation has a unique solution h2000 satisfying

h2000(T) = h2000(0), since due to the spectral assumptions e2iω1T is not a multiplier

of the critical cycle. Thus, h2000 can be found by solving

{
ḣ2000 − A(τ)h2000 + 2iω1h2000 − B(τ; v1, v1) = 0, τ ∈ [0, T],

h2000(T)− h2000(0) = 0.
(5.109)
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The function h0200 is just the complex conjugate of the function h2000. Analogously,

by comparing the ξ2
2-terms, we obtain h0020 as the unique solution of

{
ḣ0020 − A(τ)h0020 + 2iω2h0020 − B(τ; v2, v2) = 0, τ ∈ [0, T],

h0020(T)− h0020(0) = 0.
(5.110)

Notice the symmetry between (5.109) and (5.110).

By collecting the |ξ1|2-terms we obtain a singular equation, as expected since

this term is present in the NSNS normal form (4.15), namely

ḣ1100 − A(τ)h1100 = B(τ; v1, v̄1)− α1100u̇0,

to be solved in the space of functions satisfying h1100(T) = h1100(0). Since the null-

space of the adjoint operator is spanned by ϕ∗, the Fredholm solvability condition

∫ T

0
〈ϕ∗, B(τ; v1, v̄1)− α1100u̇0〉 dτ = 0

gives us the possibility to calculate parameter α1100 due to the normalization con-

dition in (5.105), i.e.

α1100 =
∫ T

0
〈ϕ∗, B(τ; v1, v̄1)〉 dτ.

The function h1100 is now determined up to the addition of a multiple of u̇0. As

always, we will add an orthogonality condition, in this case with the adjoint eigen-

function corresponding with multiplier 1. Therefore, we obtain h1100 as the unique

solution of the BVP




ḣ1100 − A(τ)h1100 − B(τ; v1, v̄1) + α1100u̇0 = 0, τ ∈ [0, T],

h1100(T)− h1100(0) = 0,
∫ T

0
〈ϕ∗, h1100〉 dτ = 0.

Analogously, the function h0011 can be obtained by solving





ḣ0011 − A(τ)h0011 − B(τ; v2, v̄2) + α0011u̇0 = 0, τ ∈ [0, T],

h0011(T)− h0011(0) = 0,
∫ T

0
〈ϕ∗, h0011〉 dτ = 0,
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where

α0011 =
∫ T

0
〈ϕ∗, B(τ; v2, v̄2)〉 dτ.

By collecting the ξ1ξ2-terms we find the following differential equation for h1010

ḣ1010 − A(τ)h1010 + iω1h1010 + iω2h1010 = B(τ; v1, v2).

This equation has a unique solution satisfying h1010(T) = h1010(0), since due to

the spectral assumptions ei(ω1+ω2)T is not a multiplier of the critical cycle. Thus,

h1010 can be found by solving
{

ḣ1010 − A(τ)h1010 + iω1h1010 + iω2h1010 − B(τ; v1, v2) = 0, τ ∈ [0, T],

h1010(T)− h1010(0) = 0.

Note that h0101 = h1010.

The last second order derivative corresponding with the ξ1ξ̄2-terms results in a

nonsingular differential equation, such that
{

ḣ1001 − A(τ)h1001 + iω1h1001 − iω2h1001 − B(τ; v1, v̄2) = 0, τ ∈ [0, T],

h1001(T)− h1001(0) = 0.

We now investigate the third order terms. From the ξ3
1- and ξ3

2-terms we immedi-

ately get the BVPs for h3000 and h0030, namely




ḣ3000 − A(τ)h3000 + 3iω1h3000

−C(τ; v1, v1, v1)− 3B(τ; v1, h2000) = 0, τ ∈ [0, T],

h3000(T)− h3000(0) = 0

and 



ḣ0030 − A(τ)h0030 + 3iω2h0030

−C(τ; v2, v2, v2)− 3B(τ; v2, h0020) = 0, τ ∈ [0, T],

h0030(T)− h0030(0) = 0.

Since the ξ1 |ξ1|2-term is present in the NSNS normal form, a Fredholm solvability

condition is applied to the RHS of the differential equation for h2100

ḣ2100 − A(τ)h2100 + iω1h2100

= C(τ; v1, v1, v̄1) + 2B(τ; v1, h1100) + B(τ; v̄1, h2000)

− 2a2100v1 − 2iω1α1100v1 − 2α1100v̇1,
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namely
∫ T

0
〈v∗1 , C(τ; v1, v1, v̄1) + 2B(τ; v1, h1100) + B(τ; v̄1, h2000)

−2a2100v1 − 2α1100v̇1 − 2iω1α1100v1〉 dτ = 0.

Taking the normalization condition from (5.106) and the differential equation from

(5.103) into account, we get

a2100 =
1

2

∫ T

0
〈v∗1 , C(τ; v1, v1, v̄1) + 2B(τ; v1, h1100)

+ B(τ; v̄1, h2000)− 2α1100 A(τ)v1〉 dτ.

We can then compute h2100 as the unique solution of the BVP




ḣ2100 − A(τ)h2100 + iω1h2100 − C(τ; v1, v1, v̄1)

−2B(τ; v1, h1100)− B(τ; v̄1, h2000)

+2a2100v1 + 2α1100 A(τ)v1 = 0, τ ∈ [0, T],

h2100(T)− h2100(0) = 0,
∫ T

0
〈v∗1 , h2100〉 dτ = 0.

We now immediately list the following BVPs




ḣ2010 − A(τ)h2010 + 2iω1h2010 + iω2h2010 − C(τ; v1, v1, v2)

−B(τ; v2, h2000)− 2B(τ; v1, h1010) = 0, τ ∈ [0, T],

h2010(T)− h2010(0) = 0,




ḣ2001 − A(τ)h2001 + 2iω1h2001 − iω2h2001 − C(τ; v1, v1, v̄2)

−B(τ; v̄2, h2000)− 2B(τ; v1, h1001) = 0, τ ∈ [0, T],

h2001(T)− h2001(0) = 0,




ḣ1020 − A(τ)h1020 + iω1h1020 + 2iω2h1020 − C(τ; v1, v2, v2)

−B(τ; v1, h0020)− 2B(τ; v2, h1010) = 0, τ ∈ [0, T],

h1020(T)− h1020(0) = 0,

and



ḣ0120 − A(τ)h0120 − iω1h0120 + 2iω2h0120 − C(τ; v̄1, v2, v2)

−B(τ; v̄1, h0020)− 2B(τ; v2, h0110) = 0, τ ∈ [0, T],

h0120(T)− h0120(0) = 0,
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corresponding with a nonsingular differential equation. The ξ2 |ξ2|2-terms from the

homological equation make it possible to compute b0021. Indeed, the differential

equation

ḣ0021 − A(τ)h0021 + iω2h0021

= C(τ; v2, v2, v̄2) + B(τ; v̄2, h0020) + 2B(τ; v2, h0011)

− 2b0021v2 − 2α0011v̇2 − 2iω2α0011v2

results in a solvability condition with v∗2 , i.e.
∫ T

0
〈v∗2 , C(τ; v2, v2, v̄2) + B(τ; v̄2, h0020) + 2B(τ; v2, h0011)

−2b0021v2 − 2α0011v̇2 − 2iω2α0011v2〉 dτ = 0.

Therefore, considering the normalization condition from (5.107) and the differential

equation from (5.104), we can calculate coefficient b0021 as

b0021 =
1

2

∫ T

0
〈v∗2 , C(τ; v2, v2, v̄2) + B(τ; v̄2, h0020)

+ 2B(τ; v2, h0011)− 2α0011 A(τ)v2〉 dτ,

with h0021 the unique solution of the BVP




ḣ0021 − A(τ)h0021 + iω2h0021 − C(τ; v2, v2, v̄2)

−B(τ; v̄2, h0020)− 2B(τ; v2, h0011)

+2b0021v2 + 2α0011 A(τ)v2 = 0, τ ∈ [0, T],

h0021(T)− h0021(0) = 0,
∫ T

0
〈v∗2 , h0021〉 dτ = 0.

The last two to be examined third order terms give us both an expression for a

normal form coefficient. The first one, obtained from the |ξ1|2 ξ2-terms, leads to

the BVP




ḣ1110 − A(τ)h1110 + iω2h1110 − C(τ; v1, v̄1, v2)

−B(τ; v1, h0110)− B(τ; v̄1, h1010)− B(τ; v2, h1100)

+b1110v2 + α1100 A(τ)v2 = 0, τ ∈ [0, T],

h1110(T)− h1110(0) = 0,
∫ T

0
〈v∗2 , h1110〉 dτ = 0,
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where from the solvability condition follows that

b1110 =
∫ T

0
〈v∗2 , C(τ; v1, v̄1, v2) + B(τ; v1, h0110) + B(τ; v̄1, h1010)

+ B(τ; v2, h1100)− α1100 A(τ)v2〉 dτ.

Analogously, we obtain the following BVP




ḣ1011 − A(τ)h1011 + iω1h1011 − C(τ; v1, v2, v̄2)

−B(τ; v1, h0011)− B(τ; v2, h1001)− B(τ; v̄2, h1010)

+a1011v1 + α0011 A(τ)v1 = 0, τ ∈ [0, T],

h1011(T)− h1011(0) = 0,
∫ T

0
〈v∗1 , h1011〉 dτ = 0,

where

a1011 =
∫ T

0
〈v∗1 , C(τ; v1, v2, v̄2) + B(τ; v1, h0011) + B(τ; v2, h1001)

+ B(τ; v̄2, h1010)− α0011 A(τ)v1〉 dτ.

We still need the coefficients b1101 and a0111, determined by

b1101 =
∫ T

0
〈v̄∗2 , C(τ; v1, v̄1, v̄2) + B(τ; v1, h0101) + B(τ; v̄1, h1001)

+ B(τ; v̄2, h1100)− α1100 A(τ)v̄2〉 dτ

and

a0111 =
∫ T

0
〈v̄∗1 , C(τ; v̄1, v2, v̄2) + B(τ; v̄1, h0011) + B(τ; v2, h0101)

+ B(τ; v̄2, h0110)− α0011 A(τ)v̄1〉 dτ.

As before, the higher order terms (fourth and fifth order) that determine the stability

of the extra torus can be found in Section 5.A.3.

5.3 Conclusion

This chapter completes the development of efficient methods for the computation

of the critical normal form coefficients for all codim 1 and 2 local bifurcations
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of limit cycles, started in [68] and based on [59]. Together with the papers on

the computation of the critical normal form coefficients for codim 1 and 2 local

bifurcations of equilibria in ODEs [66] and fixed points of maps [70,71], it contributes

to the development of methods, algorithms, and software tools for multiparameter

bifurcation analysis of smooth finite-dimensional dynamical systems.

In this chapter, we have provided the explicit formulas for the normal form

coefficients for codim 2 local bifurcations of limit cycles. The approach perfectly fits

into the continuation context, where limit cycles and their bifurcations are computed

using the BVP-approach, without numerical approximation of Poincaré maps. The

resulting formulas are independent of the phase space dimension and are applied in

the original basis. In the next chapter, full details are given of the implementation

of the developed methods, together with a discussion of several numerical examples

in which the validity of the values of the normal form coefficients is checked for.

5.A Higher order coefficients

In this appendix we list the third order normal form coefficients for the LPNS

bifurcation and the fourth and fifth order coefficients for PDNS and NSNS, which

are necessary to determine the stability of the extra torus (if it exists). Remark that

we have not listed the coefficients that can be obtained by complex conjugacy or

the similar expressions for ω2 instead of ω1 in the case of NSNS.

5.A.1 Third order coefficients for LPNS

The third order normal form coefficients in (4.13) are determined by

a300 =
1

6

∫ T

0
〈ϕ∗, C(τ; v1, v1, v1) + 3B(τ; v1, h200) + 3ḣ200

− 6a200h200 − 6α200 A(τ)v1〉 dτ + a200,

b210 =
1

2

∫ T

0
〈v∗2 , C(τ; v1, v1, v2) + B(τ; v2, h200) + 2B(τ; v1, h110)

+ 2ḣ110 − 2α200 A(τ)v2〉 dτ + b110,

b021 =
1

2

∫ T

0
〈v∗2 , C(τ; v2, v2, v̄2) + B(τ; v̄2, h020)

+ 2B(τ; v2, h011)− 2α011 A(τ)v2〉 dτ,
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a111 =
∫ T

0
〈ϕ∗, C(τ; v1, v2, v̄2) + 2ℜ(B(τ; v2, h101)) + B(τ; v1, h011)

+ ḣ011 − α011 A(τ)v1 − 2ℜ(b110)h011 − a011h200〉 dτ + a011.

5.A.2 Fourth and fifth order coefficients for PDNS

The fourth order normal form coefficients in (4.14) are determined by

α400 =
1

24

∫ T

0
〈ϕ∗, D(τ; v1, v1, v1, v1) + 6C(τ; v1, v1, h200)

+ 3B(τ; h200, h200) + 4B(τ; v1, h300)− 12α200ḣ200〉 dτ,

α211 =
1

2

∫ T

0
〈ϕ∗, D(τ; v1, v1, v2, v̄2) + C(τ; v1, v1, h011) + C(τ; v2, v̄2, h200)

+ 4ℜ(C(τ; v1, v2, h101)) + 2ℜ(B(τ; v2, h201)) + B(τ; h200, h011)

+ 2B(τ; h101, h110) + 2B(τ; v1, h111)− α011ḣ200 − 2α200ḣ011〉 dτ,

α022 =
1

4

∫ T

0
〈ϕ∗, D(τ; v2, v2, v̄2, v̄2) + 4C(τ; v2, v̄2, h011) + 2ℜ(C(τ; v2, v2, h002))

+ B(τ; h020, h002) + 2B(τ; h011, h011) + 4ℜ(B(τ; v2, h012))− 4α011ḣ011〉 dτ.

The fourth order functions of the expansion of the critical center manifold can be

computed by solving the following BVPs on [0, T]





ḣ400 − A(τ)h400 − D(τ; v1, v1, v1, v1)− 6C(τ; v1, v1, h200)

−3B(τ; h200, h200)− 4B(τ; v1, h300) + 12α200ḣ200

+24α400u̇0 + 24a300h200 = 0,

h400(T)− h400(0) = 0,
∫ T

0
〈ϕ∗, h400〉 dτ = 0,





ḣ040 − A(τ)h040 + 4iωh040 − D(τ; v2, v2, v2, v2)

−6C(τ; v2, v2, h020)− 4B(τ; v2, h030)− 3B(τ; h020, h020) = 0,

h040(T)− h040(0) = 0,
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



ḣ310 − A(τ)h310 + iωh310 − D(τ; v1, v1, v1, v2)

−3C(τ; v1, v1, h110)− 3C(τ; v1, v2, h200)− B(τ; v2, h300)

−3B(τ; v1, h210)− 3B(τ; h200, h110) + 6α200ḣ110

+6a300h110 + 6b210h110 + 6iωα200h110 = 0,

h310(T) + h310(0) = 0,




ḣ130 − A(τ)h130 + 3iωh130 − D(τ; v1, v2, v2, v2)

−3C(τ; v2, v2, h110)− 3C(τ; v1, v2, h020)− B(τ; v1, h030)

−3B(τ; h020, h110)− 3B(τ; v2, h120) = 0,

h130(T) + h130(0) = 0,




ḣ031 − A(τ)h031 + 2iωh031 − D(τ; v2, v2, v2, v̄2)

−3C(τ; v2, v2, h011)− 3C(τ; v2, v̄2, h020)− B(τ; v̄2, h030)

−3B(τ; h020, h011)− 3B(τ; v2, h021) + 3α011ḣ020

+6b021h020 + 6iωα011h020 = 0,

h031(T)− h031(0) = 0,




ḣ211 − A(τ)h211 − D(τ; v1, v1, v2, v̄2)− C(τ; v1, v1, h011)

−C(τ; v2, v̄2, h200)− 4ℜ(C(τ; v1, v2, h101))− 2ℜ(B(τ; v2, h201))

−B(τ; h200, h011)− 2B(τ; h101, h110)− 2B(τ; v1, h111) + α011ḣ200

+2α200ḣ011 + 2α211u̇0 + 2a111h200 + 4ℜ(b210)h011 = 0,

h211(T)− h211(0) = 0,
∫ T

0
〈ϕ∗, h211〉 dτ = 0,





ḣ121 − A(τ)h121 + iωh121 − D(τ; v1, v2, v2, v̄2)

−C(τ; v1, v̄2, h020)− 2C(τ; v1, v2, h011)− C(τ; v2, v2, h101)

−2C(τ; v2, v̄2, h110)− B(τ; v1, h021)− B(τ; h020, h101)

−2B(τ; h011, h110)− 2B(τ; v2, h111)− B(τ; v̄2, h120)

+2α011ḣ110 + 2b021h110 + 2a111h110 + 2iωα011h110 = 0,

h121(T) + h121(0) = 0,
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



ḣ220 − A(τ)h220 + 2iωh220 − D(τ; v1, v1, v2, v2)

−C(τ; v2, v2, h200)− 4C(τ; v1, v2, h110)− C(τ; v1, v1, h020)

−B(τ; h200, h020)− 2B(τ; v2, h210)− 2B(τ; h110, h110)

−2B(τ; v1, h120) + 2α200ḣ020 + 4b210h020 + 4iωα200h020 = 0,

h220(T)− h220(0) = 0,




ḣ022 − A(τ)h022 − D(τ; v2, v2, v̄2, v̄2)− 4C(τ; v2, v̄2, h011)

−2ℜ(C(τ; v2, v2, h002))− B(τ; h020, h002)− 2B(τ; h011, h011)

−4ℜ(B(τ; v2, h012)) + 4α011ḣ011 + 4α022u̇0 + 8ℜ(b021)h011 = 0,

h022(T)− h022(0) = 0,
∫ T

0
〈ϕ∗, h022〉 dτ = 0.

The fifth order normal form coefficients in (4.14) are determined by

a500 =
1

120

∫ T

0
〈v∗1 , E(τ; v1, v1, v1, v1, v1) + 10D(τ; v1, v1, v1, h200)

+ 10C(τ; v1, v1, h300) + 15C(τ; v1, h200, h200) + 10B(τ; h200, h300)

+ 5B(τ; v1, h400)− 20α200ḣ300 − 120α400 A(τ)v1〉 dτ − α200a300,

b410 =
1

24

∫ T

0
〈v∗2 , E(τ; v1, v1, v1, v1, v2) + 6D(τ; v1, v1, v2, h200)

+ 4D(τ; v1, v1, v1, h110) + 4C(τ; v1, v2, h300) + 6C(τ; v1, v1, h210)

+ 3C(τ; v2, h200, h200) + 12C(τ; v1, h200, h110) + 4B(τ; v1, h310)

+ 4B(τ; h110, h300) + 6B(τ; h200, h210) + B(τ; v2, h400)

− 24α400 A(τ)v2 − 12α200ḣ210〉 dτ − α200b210,

a311 =
1

6

∫ T

0
〈v∗1 , E(τ; v1, v1, v1, v2, v̄2) + D(τ; v1, v1, v1, h011)

+ 6ℜ(D(τ; v1, v1, v2, h101)) + 3D(τ; v1, v2, v̄2, h200) + 3C(τ; v1, h200, h011)

+ 6ℜ(C(τ; v2, h200, h101)) + 6ℜ(C(τ; v1, v2, h201)) + C(τ; v2, v̄2, h300)

+ 3C(τ; v1, v1, h111) + 6C(τ; v1, h101, h110) + 3B(τ; h200, h111)

+ 6ℜ(B(τ; h201, h110)) + 2ℜ(B(τ; v2, h301)) + B(τ; h011, h300)

+ 3B(τ; h211, v1)− 6α211 A(τ)v1 − α011ḣ300

− 6α200ḣ111〉 dτ − α200a111 − α011a300,
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b221 =
1

4

∫ T

0
〈v∗2 , E(τ; v1, v1, v2, v2, v̄2) + D(τ; v2, v2, v̄2, h200)

+ 2D(τ; v1, v2, v2, h101) + 2D(τ; v1, v1, v2, h011)

+ D(τ; v1, v1, v̄2, h020) + 4D(τ; v1, v2, v̄2, h110) + 2C(τ; v̄2, h110, h110)

+ C(τ; v1, v1, h021) + C(τ; v2, v2, h201) + C(τ; v̄2, h200, h020)

+ 2C(τ; v2, v̄2, h210) + 2C(τ; v1, v̄2, h120) + 2C(τ; v1, h020, h101)

+ 4C(τ; v1, v2, h111) + 4C(τ; v2, h101, h110) + 2C(τ; v2, h200, h011)

+ 4C(τ; v1, h110, h011) + B(τ; v̄2, h220) + 2B(τ; v1, h121) + 2B(τ; h120, h101)

+ 4B(τ; h110, h111) + 2B(τ; h210, h011) + 2B(τ; v2, h211) + B(τ; h200, h021)

+ B(τ; h201, h020)− 2α011ḣ210 − 4α211 A(τ)v2 − 2α200ḣ021〉 dτ

− α200b021 − α011b210,

a122 =
1

4

∫ T

0
〈v∗1 , E(τ; v1, v2, v2, v̄2, v̄2) + 4ℜ(D(τ; v2, v2, v̄2, h101))

+ 2ℜ(D(τ; v1, v2, v2, h002)) + 4D(τ; v1, v2, v̄2, h011) + 2C(τ; v1, h011, h011)

+ 8ℜ(C(τ; v2, h011, h101)) + 4ℜ(C(τ; v2, h002, h110)) + C(τ; v1, h020, h002)

+ 4ℜ(C(τ; v1, v2, h012)) + 4C(τ; v2, v̄2, h111) + 2ℜ(C(τ; v2, v2, h102))

+ 4B(τ; h011, h111) + 2ℜ(B(τ; h020, h102)) + 4ℜ(B(τ; v2, h112))

+ B(τ; v1, h022) + 4ℜ(B(τ; h110, h012))− 4α011ḣ111

− 4α022 A(τ)v1〉 dτ − α011a111,

b032 =
1

12

∫ T

0
〈v∗2 , E(τ; v2, v2, v2, v̄2, v̄2) + D(τ; v2, v2, v2, h002)

+ 3D(τ; v2, v̄2, v̄2, h020) + 6D(τ; v2, v2, v̄2, h011) + 6C(τ; v̄2, h020, h011)

+ 6C(τ; v2, v̄2, h021) + C(τ; v̄2, v̄2, h030) + 3C(τ; v2, h002, h020)

+ 3C(τ; v2, v2, h012) + 6C(τ; v2, h011, h011) + 3B(τ; h020, h021)

+ 6B(τ; h021, h011) + 3B(τ; v2, h022) + 2B(τ; v̄2, h031)

+ B(τ; h002, h030)− 6α011ḣ021 − 12α022 A(τ)v2〉 dτ − α011b021.

5.A.3 Fourth and fifth order coefficients for NSNS

The fourth order normal form coefficients for (4.15) are determined by
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α2200 =
1

4

∫ T

0
〈ϕ∗, D(τ; v1, v1, v̄1, v̄1) + 2ℜ(C(τ; v1, v1, h0200))

+ 4C(τ; v1, v̄1, h1100) + B(τ; h2000, h0200) + 2B(τ; h1100, h1100)

+ 4ℜ(B(τ; v1, h1200))− 4α1100ḣ1100〉 dτ,

α1111 =
∫ T

0
〈ϕ∗, D(τ; v1, v̄1, v2, v̄2) + C(τ; v1, v̄1, h0011) + 2ℜ(C(τ; v1, v2, h0101))

+ 2ℜ(C(τ; v1, v̄2, h0110)) + C(τ; v2, v̄2, h1100) + 2ℜ(B(τ; v1, h0111))

+ B(τ; h0110, h1001) + B(τ; h0101, h1010) + B(τ; h0011, h1100)

+ 2ℜ(B(τ; v2, h1101))− α0011ḣ1100 − α1100ḣ0011〉 dτ.

The fourth order functions of the expansion of the critical center manifold can be

computed by solving the following BVPs on [0, T]





ḣ4000 − A(τ)h4000 + 4iω1h4000 − D(τ; v1, v1, v1, v1)

−6C(τ; v1, v1, h2000)− 3B(τ; h2000, h2000)− 4B(τ; v1, h3000) = 0,

h4000(T)− h4000(0) = 0,




ḣ3100 − A(τ)h3100 + 2iω1h3100 − D(τ; v1, v1, v1, v̄1)

−3C(τ; v1, v1, h1100)− 3C(τ; v1, v̄1, h2000)− B(τ; v̄1, h3000)

−3B(τ; v1, h2100)− 3B(τ; h2000, h1100) + 3α1100ḣ2000

+6a2100h2000 + iω1α1100h2000 = 0,

h3100(T)− h3100(0) = 0,




ḣ3010 − A(τ)h3010 + 3iω1h3010 + iω2h3010 − D(τ; v1, v1, v1, v2)

−3C(τ; v1, v1, h1010)− 3C(τ; v1, v2, h2000)− B(τ; v2, h3000)

−3B(τ; v1, h2010)− 3B(τ; h2000, h1010) = 0,

h3010(T)− h3010(0) = 0,




ḣ3001 − A(τ)h3001 + 3iω1h3001 − iω2h3001 − D(τ; v1, v1, v1, v̄2)

−3C(τ; v1, v1, h1001)− 3C(τ; v1, v̄2, h2000)− B(τ; v̄2, h3000)

−3B(τ; v1, h2001)− 3B(τ; h2000, h1001 = 0,

h3001(T)− h3001(0) = 0,
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



ḣ2200 − A(τ)h2200 − D(τ; v1, v1, v̄1, v̄1)− 2ℜ(C(τ; v1, v1, h0200))

−4C(τ; v1, v̄1, h1100)− B(τ; h2000, h0200)− 2B(τ; h1100, h1100)

−4ℜ(B(τ; v1, h1200)) + 8ℜ(a2100)h1100 + 4α2200u̇0 + 4α1100ḣ1100 = 0,

h2200(T)− h2200(0) = 0,
∫ T

0
〈ϕ∗, h2200〉 dτ = 0,





ḣ2020 − A(τ)h2020 + 2iω1h2020 + 2iω2h2020 − D(τ; v1, v1, v2, v2)

−C(τ; v1, v1, h0020)− C(τ; v2, v2, h2000)− 4C(τ; v1, v2, h1010)

−B(τ; h2000, h0020)− 2B(τ; v2, h2010)

−2B(τ; h1010, h1010)− 2B(τ; v1, h1020) = 0,

h2020(T)− h2020(0) = 0,




ḣ2002 − A(τ)h2002 + 2iω1h2002 − 2iω2h2002 − D(τ; v1, v1, v̄2, v̄2)

−C(τ; v̄2, v̄2, h2000)− 4C(τ; v1, v̄2, h1001)− C(τ; v1, v1, h0002)

−2B(τ; v̄2, h2001)− B(τ; h2000, h0002)

−2B(τ; h1001, h1001)− 2B(τ; v1, h1002) = 0,

h2002(T)− h2002(0) = 0,




ḣ2110 − A(τ)h2110 + iω1h2110 + iω2h2110 − D(τ; v1, v1, v̄1, v2)

−C(τ; v1, v1, h0110)− 2C(τ; v1, v̄1, h1010)− C(τ; v̄1, v2, h2000)

−2C(τ; v1, v2, h1100)− B(τ; v̄1, h2010)− 2B(τ; h1010, h1100)

−B(τ; v2, h2100)− B(τ; h2000, h0110)− 2B(τ; v1, h1110) + 2a2100h1010

+2b1110h1010 + 2α1100ḣ1010 + 2i(ω1 + ω2)α1100h1010 = 0,

h2110(T)− h2110(0) = 0,




ḣ2101 − A(τ)h2101 + iω1h2101 − iω2h2101 − D(τ; v1, v1, v̄1, v̄2)

−C(τ; v1, v1, h0101)− 2C(τ; v1, v̄1, h1001)− C(τ; v̄1, v̄2, h2000)

−2C(τ; v1, v̄2, h1100)− 2B(τ; h1001, h1100)− 2B(τ; v1, h1101)

−B(τ; v̄2, h2100)− B(τ; v̄1, h2001)− B(τ; h2000, h0101)

+2a2100h1001 + 2b1101h1001 + 2α1100ḣ1001 + 2i(ω1 − ω2)α1100h1001 = 0,

h2101(T)− h2101(0) = 0,
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



ḣ2011 − A(τ)h2011 + 2iω1h2011 − D(τ; v1, v1, v2, v̄2)

−C(τ; v1, v1, h0011)− 2C(τ; v1, v2, h1001)− C(τ; v2, v̄2, h2000)

−2C(τ; v1, v̄2, h1010)− B(τ; v̄2, h2010)− B(τ; v2, h2001)

−B(τ; h2000, h0011)− 2B(τ; h1001, h1010)− 2B(τ; v1, h1011)

+2a1011h2000 + α0011ḣ2000 + 2iω1α0011h2000 = 0,

h2011(T)− h2011(0) = 0,




ḣ1111 − A(τ)h1111 − D(τ; v1, v̄1, v2, v̄2)− C(τ; v1, v̄1, h0011)

−2ℜ(C(τ; v1, v2, h0101))− 2ℜ(C(τ; v1, v̄2, h0110))

−C(τ; v2, v̄2, h1100)− 2ℜ(B(τ; v1, h0111))− B(τ; h0110, h1001)

−B(τ; h0101, h1010)− B(τ; h0011, h1100)− 2ℜ(B(τ; v2, h1101))

+2ℜ(a0111)h1100 + α0011ḣ1100 + 2ℜ(b1101)h0011

+α1111u̇0 + α1100ḣ0011 = 0,

h1111(T)− h1111(0) = 0,
∫ T

0
〈ϕ∗, h1111〉 dτ = 0.

The fifth order normal form coefficients for (4.15) are given by

a3200 =
1

12

∫ T

0
〈v∗1 , E(τ; v1, v1, v1, v̄1, v̄1) + D(τ; v1, v1, v1, h0200)

+ 3D(τ; v1, v̄1, v̄1, h2000) + 6D(τ; v1, v1, v̄1, h1100) + 6C(τ; v1, h1100, h1100)

+ 3C(τ; v1, v1, h1200) + C(τ; v̄1, v̄1, h3000) + 6C(τ; v1, v̄1, h2100)

+ 6C(τ; v̄1, h2000, h1100) + 3C(τ; v1, h0200, h2000) + B(τ; h0200, h3000)

+ 2B(τ; v̄1, h3100) + 3B(τ; v1, h2200) + 6B(τ; h2100, h1100)

+ 3B(τ; h2000, h1200)− 6α1100ḣ2100 − 12α2200 A(τ)v1〉 dτ − α1100a2100,

b0032 =
1

12

∫ T

0
〈v∗2 , E(τ; v2, v2, v2, v̄2, v̄2) + D(τ; v2, v2, v2, h0002)

+ 3D(τ; v2, v̄2, v̄2, h0020) + 6D(τ; v2, v2, v̄2, h0011) + 6C(τ; v2, h0011, h0011)

+ 3C(τ; v2, v2, h0012) + C(τ; v̄2, v̄2, h0030) + 6C(τ; v2, v̄2, h0021)

+ 6C(τ; v̄2, h0020, h0011) + 3C(τ; v2, h0002, h0020) + B(τ; h0002, h0030)

+ 2B(τ; v̄2, h0031) + 3B(τ; v2, h0022) + 6B(τ; h0021, h0011)

+ 3B(τ; h0020, h0012)− 6α0011ḣ0021 − 12α0022 A(τ)v2〉 dτ − α0011b0021,
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a1022 =
1

4

∫ T

0
〈v∗1 , E(τ; v1, v2, v2, v̄2, v̄2) + D(τ; v1, v̄2, v̄2, h0020)

+ D(τ; v1, v2, v2, h0002) + 2D(τ; v2, v2, v̄2, h1001) + 2D(τ; v2, v̄2, v̄2, h1010)

+ 4D(τ; v1, v2, v̄2, h0011) + 2C(τ; v1, v̄2, h0021) + C(τ; v1, h0020, h0002)

+ 2C(τ; v1, v2, h0012) + 2C(τ; v̄2, h1001, h0020) + 4C(τ; v2, h1001, h0011)

+ 2C(τ; v2, h1010, h0002) + C(τ; v2, v2, h1002) + 4C(τ; v̄2, h1010, h0011)

+ 4C(τ; v2, v̄2, h1011) + C(τ; v̄2, v̄2, h1020) + 2C(τ; v1, h0011, h0011)

+ B(τ; v1, h0022) + 2B(τ; h0021, h1001) + B(τ; h0020, h1002)

+ 2B(τ; h0012, h1010) + 4B(τ; h0011, h1011) + 2B(τ; v2, h1012)

+ B(τ; h0002, h1020) + 2B(τ; v̄2, h1021)− 4α0011ḣ1011

− 4α0022 A(τ)v1〉 dτ − α0011a1011,

b2210 =
1

4

∫ T

0
〈v∗2 , E(τ; v1, v1, v̄1, v̄1, v2) + D(τ; v̄1, v̄1, v2, h2000)

+ D(τ; v1, v1, v2, h0200) + 2D(τ; v1, v1, v̄1, h0110) + 2D(τ; v1, v̄1, v̄1, h1010)

+ 4D(τ; v1, v̄1, v2, h1100) + 2C(τ; v̄1, v2, h2100) + C(τ; v2, h2000, h0200)

+ 2C(τ; v1, v2, h1200) + 2C(τ; v̄1, h0110, h2000) + 4C(τ; v1, h0110, h1100)

+ 2C(τ; v1, h1010, h0200) + C(τ; v1, v1, h0210) + 4C(τ; v̄1, h1010, h1100)

+ 4C(τ; v1, v̄1, h1110) + C(τ; v̄1, v̄1, h2010) + 2C(τ; v2, h1100, h1100)

+ B(τ; v2, h2200) + 2B(τ; h2100, h0110) + B(τ; h2000, h0210)

+ 2B(τ; h1200, h1010) + 4B(τ; h1100, h1110) + 2B(τ; v1, h1210)

+ B(τ; h0200, h2010) + 2B(τ; v̄1, h2110)− 4α1100ḣ1110

− 4α2200 A(τ)v2〉 dτ − α1100b1110,
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a2111 =
1

2

∫ T

0
〈v∗1 , E(τ; v1, v1, v̄1, v2, v̄2) + D(τ; v1, v1, v2, h0101)

+ D(τ; v1, v1, v̄1, h0011) + D(τ; v1, v1, v̄2, h0110) + 2D(τ; v1, v̄1, v̄2, h1010)

+ 2D(τ; v1, v2, v̄2, h1100) + D(τ; v̄1, v2, v̄2, h2000) + 2D(τ; v1, v̄1, v2, h1001)

+ 2C(τ; v1, h1001, h0110) + C(τ; v2, v̄2, h2100) + 2C(τ; v2, h1001, h1100)

+ 2C(τ; v1, h1100, h0011) + 2C(τ; v1, h1010, h0101) + C(τ; v̄1, v̄2, h2010)

+ C(τ; v̄1, v2, h2001) + 2C(τ; v1, v̄2, h1110) + 2C(τ; v̄2, h1010, h1100)

+ 2C(τ; v1, v2, h1101) + C(τ; v2, h2000, h0101) + 2C(τ; v̄1, h1001, h1010)

+ C(τ; v̄1, h2000, h0011) + C(τ; v̄2, h2000, h0110) + 2C(τ; v1, v̄1, h1011)

+ C(τ; v1, v1, h0111) + B(τ; v2, h2101) + B(τ; h2100, h0011)

+ 2B(τ; v1, h1111) + B(τ; v̄1, h2011) + B(τ; h0101, h2010)

+ B(τ; h2001, h0110) + B(τ; h2000, h0111) + B(τ; v̄2, h2110)

+ 2B(τ; h1011, h1100) + 2B(τ; h1010, h1101) + 2B(τ; h1001, h1110)

− 2α1111 A(τ)v1 − 2α1100ḣ1011 − α0011ḣ2100〉 dτ − α0011a2100 − α1100a1011,

b1121 =
1

2

∫ T

0
〈v∗2 , E(τ; v1, v̄1, v2, v2, v̄2) + D(τ; v1, v2, v2, h0101)

+ D(τ; v2, v2, v̄2, h1100) + D(τ; v̄1, v2, v2, h1001) + 2D(τ; v̄1, v2, v̄2, h1010)

+ 2D(τ; v1, v̄1, v2, h0011) + D(τ; v1, v̄1, v̄2, h0020) + 2D(τ; v1, v2, v̄2, h0110)

+ 2C(τ; v2, h0110, h1001) + C(τ; v1, v̄1, h0021) + 2C(τ; v1, h0110, h0011)

+ 2C(τ; v2, h0011, h1100) + 2C(τ; v2, h1010, h0101) + C(τ; v̄1, v̄2, h1020)

+ C(τ; v1, v̄2, h0120) + 2C(τ; v̄1, v2, h1011) + 2C(τ; v̄1, h1010, h0011)

+ 2C(τ; v1, v2, h0111) + C(τ; v1, h0020, h0101) + 2C(τ; v̄2, h0110, h1010)

+ C(τ; v̄2, h0020, h1100) + C(τ; v̄1, h0020, h1001) + 2C(τ; v2, v̄2, h1110)

+ C(τ; v2, v2, h1101) + B(τ; v1, h0121) + B(τ; h0021, h1100)

+ 2B(τ; v2, h1111) + B(τ; v̄2, h1120) + B(τ; h0101, h1020)

+ B(τ; h0120, h1001) + B(τ; h0020, h1101) + B(τ; v̄1, h1021)

+ 2B(τ; h1110, h0011) + 2B(τ; h1010, h0111) + 2B(τ; h0110, h1011)

− 2α1111 A(τ)v2 − 2α0011ḣ1110 − α1100ḣ0021〉 dτ − α1100b0021 − α0011b1110.
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6
Numerical Periodic Normalization

for Codimension 2 Bifurcations of

Limit Cycles – Implementation

and Examples

In this chapter we concentrate on the implementation details for the critical

coefficients and demonstrate the correctness of the normal form analysis by

numerous examples.

6.1 Introduction

Consider a smooth system of ODEs

ẋ = f (x, α), x ∈ Rn, α ∈ Rp, (6.1)

smoothly depending on a parameter α. Typically, the dynamics of such systems

show qualitative transitions upon variation of the parameter. At these bifurcation
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points, the normal form coefficients allow one to distinguish between the compli-

cated bifurcation scenarios that can happen near the codim 2 bifurcations of limit

cycles, where 3-tori and 4-tori can be present. The formulas for these critical coef-

ficients were theoretically derived in the previous chapter. In this chapter, we check

the validity of the obtained expressions for the normal form coefficients by means

of several examples.

Numerical continuation software, such as MatCont, may be used to track bi-

furcations from a stable equilibrium to a periodic oscillation by a Hopf bifurcation.

Once a limit cycle is obtained, first codim 1 bifurcations of limit cycles and then

codim 2 bifurcations can be detected. The neighbourhood of the codim 2 point

is then scanned to determine the position of local bifurcations with respect to the

bifurcation point and to each other. Global bifurcations, however, are more difficult

to detect. Some global bifurcations as the appearance of (un)stable invariant tori

with multi-frequency oscillations can be found from a Hopf-Hopf or a Neimark-

Sacker bifurcation. Bifurcations of these invariant tori Tm≥2 into other tori or

chaos, however, are out of reach of the standard numerical analysis.

One possibility to study bifurcations of tori – if they are stable – is to compute

Lyapunov exponents. The dimension of the torus for a given parameter value

then equals the number of exponents equal to zero. Varying one parameter one

can observe that exponents become zero and this indicates a bifurcation. Lyapunov

exponents will be used to check whether the obtained values of the critical coeffi-

cients are acceptable in the three most complex codim 2 bifurcations of limit cycles

where the dimension of the center manifold equals 4 or 5, i.e. LPNS, PDNS and

NSNS.

In Chapter 4 we have computed the normal forms for all codim 2 bifurcations

of limit cycles and in Chapter 5 its coefficients by a method based on periodic

normalization. The computation of the normal form coefficients was reduced to

solving certain linear boundary value problems, where only the partial derivatives of

the RHS of (6.1) are used. In our implementation in MatCont, we discretize these

BVPs by orthogonal collocation with piecewise-polynomial functions. Note that all

appearing integrals can also be easily computed using this discretization. MatCont

automatically invokes the algorithm of the calculation of the critical coefficients

whenever the corresponding bifurcation is detected. Hence, any user is able to use

it and to take advantage of the automated normal form analysis. In this chapter we

document precisely on the implementation details and we numerically confirm the

results of the normal form analysis by means of several examples.

Similar to the formulation of the BVP for periodic solutions on the unit interval

196



6.2. IMPLEMENTATION ISSUES

instead of [0, T], we redefine the critical coefficients and the BVPs for the functions

in the expansion of the center manifold, derived in Chapter 5, to the interval [0, 1].
In Section 6.2 we give the explicit formulas for all needed functions and coefficients

on [0, 1] and discuss their implementation in MatCont. In Section 6.3 we analyse

seven models that exhibit all 11 codim 2 bifurcations of limit cycles. We consider

two models from population biology, the Steinmetz-Larter model, the Lorenz-84 and

the extended Lorenz-84 model, a laser model and one for mechanical vibrations. In

these models, we discuss in detail what type of codim 2 bifurcation is detected and

check the correspondence with the value/sign of the normal form coefficients. In

the LPNS, PDNS and NSNS cases we corroborate the predictions using Lyapunov

exponents to verify the existence of stable invariant tori of various dimensions and

chaos. In fact, we argue that the classification from the critical normal forms guides

the correct interpretation of the Lyapunov exponents. Finally, in Section 6.A some

results on differential-difference operators used in Section 6.2, are formulated.

6.2 Implementation issues

Numerical implementation of the formulas derived in Chapter 5 requires the evalua-

tion of integrals of scalar functions over [0, T] and the solution of nonsingular linear

BVPs with integral constraints. In MatCont, periodic solutions to (6.1) are com-

puted with the method of orthogonal collocation with piecewise polynomials applied

to properly formulated BVPs, as discussed in Section 2.8.2. In this section we first

fix notation concerning the discretization of the BVPs and the integral expressions

for the normal form coefficients. We then discuss the implementation details for

all needed critical coefficients and functions for each codim 2 bifurcation of limit

cycles.

6.2.1 Discretization notation

The standard BVP for the periodic solutions is formulated on the unit interval [0,
1] so that the period T becomes a parameter, and it involves an integral phase

condition. The system that we typically use is (2.5). In the orthogonal collocation
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method [6], problem (2.5) is replaced by the following discretization:




m

∑
j=0

xi,j ℓ̇i,j(ζi,k)− T f

(
m

∑
j=0

xi,jℓi,j(ζi,k), α

)
= 0,

x0,0 − xN−1,m = 0,

N−1

∑
i=0

m−1

∑
j=0

σi,j〈xi,j, ξ̇i,j〉+ σN,0〈xN,0, ξ̇N,0〉 = 0.

(6.2)

The points xi,j (i = 0, . . . , N − 1, j = 0, . . . m) form the approximation of the exact

solution x in the equidistant mesh points τi,j. The ℓi,j’s are the Lagrange basis

polynomials, while the points ζi,j are the Gauss points. Function ξ is a previously

calculated periodic solution, with function values in [0, 1]. The integration weight

σi,j of τi,j is given by wj+1hi for 0 ≤ i ≤ N − 1 and 0 < j < m. Recall that

hi = τi+1 − τi. For i = 0, . . . , N − 2, the integration weight of τi,m (τi,m = τi+1,0)

is given by σi,m = wm+1hi + w1hi+1, and the integration weights of τ0 and τN are

given by w1h0 and wm+1hN−1, respectively. In the above expressions, wj+1 is the

Lagrange quadrature coefficient.

It is convenient to discretize all needed functions by using the same mesh as in

(6.2). Consider a vector function η ∈ C1([0, 1], Rn). In Section 2.8.2 we introduced

ηM as the vector of the function values at the mesh points and ηC as the vector of

the function values at the collocation points. We now also consider ηW =
[

ηW1
ηW2

]
∈

RNmn ×Rn, where ηW1
is the vector of the function values at the collocation points

multiplied by the Gauss-Legendre weights and the lengths of the corresponding mesh

intervals, and ηW2
= η(0).

Formally, we also introduce the structured sparse matrix LC×M that converts

a vector ηM into a vector ηC, i.e. ηC = LC×MηM. This matrix is never formed

explicitly; its entries are the ℓi,j(ζi,k)-coefficients in (6.2). We also need a matrix

AC×M such that AC×MηM = (A(t)η(t))C. Again this matrix need not be formed

explicitly. On the other hand, we need the matrix (D − TA(t))C×M explicitly;

it is defined by (D − TA(t))C×MηM = (η̇(t) − TA(t)η(t))C. Finally, let the

tensors BC×M×M and CC×M×M×M be defined by BC×M×Mη1Mη2M = (B(t; η1(t),
η2(t)))C and

CC×M×M×Mη1Mη2Mη3M = (C(t; η1(t), η2(t), η3(t)))C

for all ηi ∈ C1([0, 1], Rn). An analogous notation is used for the fourth and fifth

order derivatives. Note that these tensors are not formed explicitly.
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Let f (t) and g(t) ∈ C0([0, 1], R) be two scalar functions. Then the integral∫ 1
0 f (t)dt is represented by ∑

N−1
i=0 ∑

m
j=1 ωj( fC)i,jhi = ∑

N−1
i=0 ∑

m
j=1( fW1

)i,j, where

( fC)i,j = f (ζi,j) and ωj is the Gauss-Legendre quadrature coefficient. The integral∫ 1
0 f (t)g(t)dt is approximated with Gauss-Legendre by f T

W1
gC = f T

W1
LC×MgM.

For vector functions f (t), g(t) ∈ C0([0, 1], Rn), the integral
∫ 1

0 〈 f (t), g(t)〉dt is

formally approximated by the same expression: f T
W1

gC = f T
W1

LC×MgM. Concerning

the accuracy of the quadrature formulas, we first note that accuracy is not an

important issue for the phase integral in (2.5), as this equation only selects a specific

solution from the continuum of solutions obtained by phase shifts. Similarly, the

discretization of the normalization integrals does not affect the inherent accuracy,

including superconvergence at the coarse mesh points τi of the solution of the

discretized BVP. Discretization of integrals follows the standard Gauss quadrature

error, which has order of accuracy 2m. Otherwise, still assuming sufficient piecewise

smoothness, the order of accuracy of the numerical integrals is m + 1 if m is odd,

and m + 2 if m is even. In particular, for the often used choice m = 4, the integrals

would then have order of accuracy 6.

Since in the rest of this section we will often deal with equations of the form

Mx = r, with M a singular matrix, we first discuss a bordering technique that

allows us to determine the solution to this problem. Let q be a right null-vector of

M, i.e. Mq = 0, and p be a left null-vector of M, i.e. pHM = 0. Then, the matrix

(
M p

qH 0

)

is nonsingular. Therefore, x can be obtained by solving the system

(
M p

qH 0

)(
x
s

)
=

(
r
0

)
. (6.3)

Indeed, (6.3) corresponds with the equations Mx + sp = r and 〈q, x〉 = 0. Now,

from the Fredholm solvability condition follows that 〈p, r〉 = 0. Therefore,

0 = 〈p, r〉
= 〈p, Mx + sp〉
= 〈MH p, x〉+ s〈p, p〉
= s〈p, p〉,
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and thus s = 0, so that Mx = r. Equation 〈q, x〉 = 0 just selects one from the

many solutions.

In Chapter 5 we derived the coefficients of the critical normal forms and the

functions needed for their computation using the coordinate τ ∈ [0, T]. Regarding

the implementation, in all cases we will rescale to the interval [0, 1]. Therefore,

define u1(t) = u0(Tt) = u0(τ) for t ∈ [0, 1], where u0 corresponds with the

original limit cycle (as defined in Section 4.2). In this chapter, the dot then denotes

the derivative with respect to t ∈ [0, 1]. In what follows, the rescaled vector

functions will have an extra lower index 1.

6.2.2 Bifurcations with a 2D center manifold

Cusp Point of Cycles bifurcation

The rescalings of the linear BVP’s (5.8), (5.13) and (6.4) defining the generalized

eigenfunction, the adjoint and generalized adjoint eigenfunction respectively, are

given by




v̇1(t)− TA(t)v1(t)− TF(u1(t)) = 0, t ∈ [0, 1],

v1(1)− v1(0) = 0,
∫ 1

0
〈v1(t), F(u1(t))〉dt = 0,

(6.4)

with v(τ) = v1(τ/T),





ϕ̇∗
1(t) + TAT(t)ϕ∗

1(t) = 0, t ∈ [0, 1],

ϕ∗
1(1)− ϕ∗

1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), v1(t)〉dt − 1 = 0,

(6.5)

where ϕ∗(τ) = ϕ∗
1(τ/T)/T and





v̇∗1(t) + TAT(t)v∗1(t) + Tϕ∗
1(t) = 0, t ∈ [0, 1],

v∗1(1)− v∗1(0) = 0,
∫ 1

0
〈v∗1(t), v1(t)〉dt = 0,

(6.6)
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with v∗(τ) = v∗1(τ/T)/T. Function h2,1 is the rescaled version of h2, defined by

(5.16), and can be found as the unique solution of





ḣ2,1(t)− TA(t)h2,1(t)− TB(t; v1(t), v1(t))

−2TA(t)v1(t)− 2TF(u1(t)) = 0, t ∈ [0, 1],

h2,1(1)− h2,1(0) = 0,
∫ 1

0
〈v∗1(t), h2,1(t)〉 dt = 0,

(6.7)

where h2(τ) = h2,1(τ/T). Normal form coefficient c is then given by the following

expression

c =
1

6

∫ 1

0
〈ϕ∗

1(t), 3A(t)h2,1(t) + 3B(t; v1(t), v1(t)) + 6A(t)v1(t) (6.8)

+ 3B(t; h2,1(t), v1(t)) + C(t; v1(t), v1(t), v1(t))〉 dt.

We now concentrate on how the functions and coefficients can efficiently be imple-

mented in Matlab. The approximation v1M to v1 can be computed by solving the

discretization of (6.4), i.e.




(D − TA(t))C×M

δ0 − δ1
p

gT
W1

LC×M 0



[

v1M

a1

]
=




T fC

0n×1

0


 , (6.9)

where a1 equals zero since the M × M upper left part of the big matrix is singular,

g(t) = F(u1(t)), and p is obtained by solving the following system

[
pT a2

]



(D − TA(t))C×M

δ0 − δ1
r1

rT
2 0


 =

[
01×M 1

]
, (6.10)

where r1 and r2 are any M × 1 vectors that make the (M + 1)× (M + 1)-matrix

in (6.10) nonsingular. Here, a2 = 0 such that p is then the left null-vector of[
(D − TA(t))C×M

δ0 − δ1

]
; in (6.9) the normalized p is used. This technique guaran-

tees that we always deal with nonsingular systems. Note that δ0v1M corresponds

with the first n components of v1M and δ1v1M with the last n components of v1M.

Concerning the adjoint eigenfuntion, we will compute ϕ∗
1W instead of ϕ∗

1M since

ϕ∗
1W can be calculated by a system very similar to (6.9). Formally, the computation
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of ϕ∗
1W is based on Proposition 6.1 on page 255 from the appendix, i.e. since

ϕ ∈ Ker(φ2), with φ2 defined in Proposition 6.1,

(
ϕ∗

1
ϕ∗

1(0)

)
is orthogonal to the

range of

[
D − TA(t)

δ0 − δ1

]
. By discretization we obtain

(ϕ∗
1)

T
W

[
(D − TA(t))C×M

δ0 − δ1

]
= 0.

Therefore, ϕ∗
1W can be obtained by solving

[
(ϕ∗

1)
T
W a

]



(D − TA(t))C×M

δ0 − δ1
p

qT 0


 =

[
01×M 1

]
, (6.11)

where a equals zero and q is the normalized right null-vector of

[
(D − TA(t))C×M

δ0 − δ1

]
.

Such a null-vector is obtained by solving the following system




(D − TA(t))C×M

δ0 − δ1
r1

rT
2 0



[

q
a1

]
=

[
0M×1

1

]
, (6.12)

with r1 and r2 random vectors. We then approximate I =
∫ 1

0 〈ϕ∗
1(t), v1(t)〉dt by

I1 = (ϕ∗
1)

T
W1

LC×Mv1M. The obtained ϕ∗
1W from (6.11) is then rescaled to ensure

that I1 = 1.

It is more efficient to compute v∗1W instead of v∗1M, since v∗1 will only be used to

compute integrals of the form
∫ 1

0 〈v∗1(t), ζ(t)〉dt. From Proposition 6.5 on page 258

we can conclude that
〈[

v∗1
v∗1(0)

]
,

[
ḣ − TA(t)h
h(0)− h(1)

]〉
= −

〈[
−Tϕ∗

1
0

]
,

[
h
0

]〉
,

for all appropriate functions h, such that v∗1 can be obtained by solving

[
(v∗1)

T
W a

]



(D − TA(t))C×M v1C

δ0 − δ1 0n×1

qT 0


 =

[
T(ϕ∗

1)
T
W1

LC×M 0
]

,

where a equals zero and q is the normalized solution of (6.12).
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Next, h2,1M is found by solving the discretization of (6.7), namely




(D − TA(t))C×M

δ0 − δ1
p

(v∗1)
T
W1

LC×M 0



[

h2,1M

a

]
=




R

0n×1

0


 ,

with R = TBC×M×Mv1Mv1M + 2TAC×Mv1M + 2TgC, a = 0 and p is obtained by

normalizing the solution of (6.10).

Finally, the normal form coefficient of interest (6.8) is approximated by

c =
1

6
(ϕ∗

1)
T
W1

(3AC×Mh2,1M + 3BC×M×Mv1Mv1M + 6AC×Mv1M

+3BC×M×Mh2,1Mv1M + CC×M×M×Mv1Mv1Mv1M) .

Remark that since we have a CPC bifurcation, the quadratic coefficient appearing

in the ξ-equation of the normal form has to be equal to zero. We have provided in

MatCont an extra check whether this coefficient (see [68]), determined by

b =
1

2
(ϕ∗

1)
T
W1

(BC×M×Mv1Mv1M + 2AC×Mv1M),

is indeed small enough.

Generalized Period-Doubling bifurcation

The rescaled linear BVPs for the eigenfunction v associated to multiplier −1, defined

by (5.19), and the adjoint eigenfunctions ϕ∗ and v∗, respectively defined by (5.20)

and (5.21), are given by





v̇1(t)− TA(t)v1(t) = 0, t ∈ [0, 1],

v1(1) + v1(0) = 0,
∫ 1

0
〈v1(t), v1(t)〉dt − 1 = 0,

(6.13)

where v(τ) = v1(τ/T)/
√

T,





ϕ̇∗
1(t) + TAT(t)ϕ∗

1(t) = 0, t ∈ [0, 1],

ϕ∗
1(1)− ϕ∗

1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), F(u1(t))〉 dt − 1 = 0,

(6.14)
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with ϕ∗(τ) = ϕ∗
1(τ/T)/T and





v̇∗1(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],

v∗1(1) + v∗1(0) = 0,
∫ 1

0
〈v∗1(t), v1(t)〉dt − 1 = 0,

(6.15)

with v∗(τ) = v∗1(τ/T)/
√

T.

Let h2,1 be the unique solution of the BVP




ḣ2,1(t)− TA(t)h2,1(t)− TB(t; v1(t), v1(t)) + 2α1,1TF(u1(t)) = 0, t ∈ [0, 1],

h2,1(1)− h2,1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), h2,1(t)〉 dt = 0,

with h2(τ) = h2,1(τ/T)/T, and h3,1 the unique solution of





ḣ3,1(t)− TA(t)h3,1(t)− TC(t; v1(t), v1(t), v1(t))

−3TB(t; v1(t), h2,1(t)) + 6α1,1TA(t)v1(t) = 0, t ∈ [0, 1],

h3,1(1) + h3,1(0) = 0,
∫ 1

0
〈v∗1(t), h3,1(t)〉 dt = 0,

with h3(τ) = h3,1(τ/T)/(
√

TT), where

α1,1 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(t; v1(t), v1(t))〉 dt,

and α1,1 = Tα1.

The rescaled version of function h4, defined by (5.28), is the unique solution of

the following BVP




ḣ4,1(t)− TA(t)h4,1(t)− TD(t; v1(t), v1(t), v1(t), v1(t))

−6TC(t; v1(t), v1(t), h2,1(t))− 3TB(t; h2,1(t), h2,1(t))

−4TB(t; v1(t), h3,1(t)) + 12α1,1T(A(t)h2,1(t)

+B(t; v1(t), v1(t))− 2α1,1F(u1(t))) + 24α2,1TF(u1(t)) = 0, t ∈ [0, 1],

h4,1(1)− h4,1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), h4,1(t)〉 dt = 0,
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with h4(τ) = h4,1(τ/T)/T2, and where

α2,1 =
1

24

∫ 1

0
〈ϕ∗

1(t), D(t; v1(t), v1(t), v1(t), v1(t)) + 6C(t; v1(t), v1(t), h2,1(t))

+ 3B(t; h2,1(t), h2,1(t)) + 4B(t; v1(t), h3,1(t))− 12α1,1(A(t)h2,1(t)

+ B(t; v1(t), v1(t)))〉 dt + α2
1,1,

with α2,1 = T2α2.

Finally, we can write down the critical coefficient

e =
1

120 T2

∫ 1

0
〈v∗1(t), E(t; v1(t), v1(t), v1(t), v1(t), v1(t))

+ 10D(t; v1(t), v1(t), v1(t), h2,1(t)) + 15C(t; v1(t), h2,1(t), h2,1(t))

+ 10C(t; v1(t), v1(t), h3,1(t)) + 10B(t; h2,1(t), h3,1(t))

+ 5B(t; v1(t), h4,1(t))− 120α2,1 A(t)v1(t)− 20α1,1 A(t)h3,1(t)〉 dt.

We now concentrate on the implementation details in MatCont. We compute the

approximation v1M to v1 given by (6.13) by solving




(D − TA(t))C×M

δ0 + δ1
p1

qT
1 0



[

v1M

a1

]
=

[
0M×1

1

]
, (6.16)

with p1 and q1 the normalized solutions of




(D − TA(t))C×M

δ0 + δ1
r1

rT
2 0



[

q1

a2

]
=

[
0M×1

1

]

and

[
pT

1 a3

]



(D − TA(t))C×M

δ0 + δ1
r1

rT
2 0


 =

[
01×M 1

]
,

where r1 and r2 are random vectors. Every ai equals zero. v1M is then uniquely

determined by the normalization ∑
N−1
i=0 ∑

m
j=0 σj〈(v1M)i,j, (v1M)i,j〉 = 1, where σj is

the Lagrange quadrature coefficient.
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As in the CPC case, ϕ∗
1W is computed instead of ϕ∗

1M, which can be done

by making use of (6.11). We approximate I =
∫ 1

0 〈ϕ∗
1(t), F(u1(t))〉dt by I1 =

(ϕ∗
1)

T
W1

gC and normalize ϕ∗
1W to ensure that I1 = 1.

This then makes it possible to compute α1,1 as

α1,1 =
1

2
(ϕ∗

1)
T
W1

BC×M×Mv1Mv1M. (6.17)

The discretization of (6.15) can be computed with the matrix from (6.16), see

Proposition 6.2 on page 256 in Section 6.A,

[
(v∗1)

T
W a

]



(D − TA(t))C×M

δ0 + δ1
p1

qT
1 0


 =

[
01×M 1

]
,

where a = 0. We approximate I =
∫ 1

0 〈v∗1(t), v1(t)〉dt by I1 = (v∗1)
T
W1

LC×Mv1M.

v∗1W is rescaled to ensure that I1 = 1.

Now, h2,1, h3,1 and h4,1 are found by solving the following systems



(D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0



[

h2,1M

a1

]
=




TBC×M×Mv1Mv1M − 2α1,1TgC

0n×1

0


 ,




(D − TA(t))C×M

δ0 + δ1
p1

(v∗1)
T
W1

LC×M 0



[

h3,1M

a2

]
=




R

0n×1

0


 ,

with

R = TCC×M×M×Mv1Mv1Mv1M + 3TBC×M×Mv1Mh2,1M − 6α1,1TAC×Mv1M,

and



(D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0



[

h4,1M

a3

]
=




R

0n×1

0


 ,

where

R = TDC×M×M×M×Mv1Mv1Mv1Mv1M + 6TCC×M×M×Mv1Mv1Mh2,1M

+ 3TBC×M×Mh2,1Mh2,1M + 4TBC×M×Mv1Mh3,1M

− 12α1,1T(AC×Mh2,1M + BC×M×Mv1Mv1M − 2α1,1gC)− 24α2,1TgC
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and

α2,1 =
1

24
(ϕ∗

1)
T
W1

(DC×M×M×M×Mv1Mv1Mv1Mv1M + 6CC×M×M×Mv1Mv1Mh2,1M

+ 3BC×M×Mh2,1Mh2,1M + 4BC×M×Mv1Mh3,1M − 12α1,1(AC×Mh2,1M

+ BC×M×Mv1Mv1M)) + α2
1,1.

(6.18)

Here, q is the normalized right null-vector and p the normalized left null-vector of

the M × M-matrix corresponding with the T-periodic boundary condition (as in

the CPC case). In what follows, p, q, p1 and q1 will denote the previously defined

null-vectors. Note that every ai equals zero.

Now, we have all ingredients for the computation of the normal form coefficient

e =
1

120T2
(v∗1)

T
W1

(EC×M×M×M×M×Mv1Mv1Mv1Mv1Mv1M

+ 10DC×M×M×M×Mv1Mv1Mv1Mh2,1M + 15CC×M×M×Mv1Mh2,1Mh2,1M

+ 10CC×M×M×Mv1Mv1Mh3,1M + 10BC×M×Mh2,1Mh3,1M

+ 5BC×M×Mv1Mh4,1M − 120α2,1 AC×Mv1M − 20α1,1 AC×Mh3,1M).
(6.19)

Remark that since we are in a GPD point, the cubic coefficient of the ξ-equation

in the corresponding normal form has to vanish. MatCont makes an extra check to

verify whether this coefficient, computed as (see [68])

c =
1

3T
(v∗1)

T
W1

(CC×M×Mv1Mv1Mv1M + 3BC×M×Mv1Mh2,1M − 6α1,1 AC×Mv1M),

is indeed small enough.

6.2.3 Bifurcations with a 3D center manifold

Chenciner bifurcation

When rescaling, the linear BVP (5.31) defining the eigenfunction associated to the

complex multiplier and the BVPs (5.32) and (5.33) defining the adjoint eigenfunc-

tions are replaced by




v̇1(t)− TA(t)v1(t) + iωT v1(t) = 0, t ∈ [0, 1],

v1(1)− v1(0) = 0,
∫ 1

0
〈v1(t), v1(t)〉dt − 1 = 0,

(6.20)
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with v(τ) = v1(τ/T)/
√

T, (6.14) and




v̇∗1(t) + TAT(t)v∗1(t) + iωT v∗1(t) = 0, t ∈ [0, 1],

v∗1(1)− v∗1(0) = 0,
∫ 1

0
〈v∗1(t), v1(t)〉dt − 1 = 0,

where v∗(τ) = v∗1(τ/T)/
√

T, respectively.

The second order terms are defined by
{

ḣ20,1(t)− TA(t)h20,1(t) + 2iωTh20,1(t)− TB(t; v1(t), v1(t)) = 0, t ∈ [0, 1],

h20,1(1)− h20,1(0) = 0,

with h20(τ) = h20,1(τ/T)/T, and




ḣ11,1(t)− TA(t)h11,1(t)− TB(t; v1(t), v̄1(t)) + α1,1TF(u1(t)) = 0, t ∈ [0, 1],

h11,1(1)− h11,1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), h11,1(t)〉dt = 0,

with h11(τ) = h11,1(τ/T)/T, where

α1,1 =
∫ 1

0
〈ϕ∗

1(t), B(t; v1(t), v̄1(t))〉dt,

for α1,1 = Tα1.

Now, we can compute

c1 = − i

2

∫ 1

0
〈v∗1(t), C(t; v1(t), v1(t), v̄1(t)) + 2B(t; v1(t), h11,1(t))

+ B(t; v̄1(t), h20,1(t))− 2α1,1 A(t)v1(t)〉dt + α1,1ω,

for c1 = Tc. With c1 defined in this way, h21M can be computed as the solution of




ḣ21,1(t)− TA(t)h21,1(t) + iωTh21,1(t)

−TC(t; v1(t), v1(t), v̄1(t))− 2TB(t; v1(t), h11,1(t))

−TB(t; h20,1(t), v̄1(t)) + 2ic1Tv1(t)

+2α1,1T(A(t)v1(t)− iωv1(t)) = 0, t ∈ [0, 1],

h21,1(1)− h21,1(0) = 0,
∫ 1

0
〈v∗1(t), h21,1(t)〉dt = 0,
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where h21(τ) = h21,1(τ/T)/(
√

TT).

Next, the rescaling of h30 gives





ḣ30,1(t)− TA(t)h30,1(t) + 3iωTh30,1(t)

−TC(t; v1(t), v1(t), v1(t))− 3TB(t; v1(t), h20,1(t)) = 0, t ∈ [0, 1],

h30,1(1)− h30,1(0) = 0,

with h30(τ) = h30,1(τ/T)/(
√

TT).

Now, we come to the fourth order terms where the rescaled h31,1 is the solution

of





ḣ31,1(t)− TA(t)h31,1(t) + 2iωTh31,1(t)

−TD(t; v1(t), v1(t), v1(t), v̄1(t))− 3TC(t; v1(t), v1(t), h11,1(t))

−3TC(t; v1(t), v̄1(t), h20,1(t))− 3TB(t; h11,1(t), h20,1(t))

−3TB(t; v1(t), h21,1(t))− TB(t; v̄1(t), h30,1(t))

+6ic1Th20,1(t) + 3α1,1T(A(t)h20,1(t)

−2iωh20,1(t) + B(t; v1(t), v1(t))) = 0, t ∈ [0, 1],

h31,1(1)− h31,1(0) = 0,
(6.21)

with h31(τ) = h31,1(τ/T)/T2, and the rescaled h22,1 the solution of





ḣ22,1(t)− TA(t)h22,1(t)− TD(t; v1(t), v1(t), v̄1(t), v̄1(t))

−TC(t; v1(t), v1(t), h02,1(t))− 4TC(t; v1(t), v̄1(t), h11,1(t))

−TC(t; v̄1(t), v̄1(t), h20,1(t))− 2TB(t; h11,1(t), h11,1(t))

−2TB(t; v1(t), h12,1(t))− TB(t; h02,1(t), h20,1(t))

−2TB(t; v̄1(t), h21,1(t)) + 4α1,1T(A(t)h11,1(t)

+B(t; v1(t), v̄1(t))− α1,1F(u1(t))) + 4α2,1TF(u1(t)) = 0, t ∈ [0, 1],

h22,1(1)− h22,1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), h22,1(t)〉dt = 0,
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with h22(τ) = h22,1(τ/T)/T2, and

α2,1 =
1

4

∫ 1

0
〈ϕ∗

1(t), D(t; v1(t), v1(t), v̄1(t), v̄1(t)) + C(t; v1(t), v1(t), h02,1(t))

+ 4C(t; v1(t), v̄1(t), h11,1(t)) + C(t; v̄1(t), v̄1(t), h20,1(t))

+ 2B(t; h11,1(t), h11,1(t)) + 2B(t; v1(t), h12,1(t)) + B(t; h02,1(t), h20,1(t))

+ 2B(t; v̄1(t), h21,1(t))− 4α1,1(A(t)h11,1(t) + B(t; v1(t), v̄1(t)))〉dt + α2
1,1,

for α2,1 = T2α2.

At last, the critical coefficient e is determined by

e =
1

12T2

∫ 1

0
〈v∗1(t), E(t; v1(t), v1(t), v1(t), v̄1(t), v̄1(t))

+ D(t; v1(t), v1(t), v1(t), h02,1(t)) + 6D(t; v1(t), v1(t), v̄1(t), h11,1(t))

+ 3D(t; v1(t), v̄1(t), v̄1(t), h20,1(t)) + 6C(t; v1(t), h11,1(t), h11,1(t))

+ 3C(t; v1(t), v1(t), h12,1(t)) + 3C(t; v1(t), h02,1(t), h20,1(t))

+ 6C(t; v̄1(t), h11,1(t), h20,1(t)) + 6C(t; v1(t), v̄1(t), h21,1(t))

+ C(t; v̄1(t), v̄1(t), h30,1(t)) + 3B(t; h12,1(t), h20,1(t))

+ 6B(t; h11,1(t), h21,1(t)) + 3B(t; v1(t), h22,1(t)) + B(t; h02,1(t), h30,1(t))

+ 2B(t; v̄1(t), h31,1(t))− 12α2,1 A(t)v1(t)− 6α1,1(A(t)h21,1(t)

+ 2B(t; v1(t), h11,1(t)) + C(t; v1(t), v1(t), v̄1(t)) + B(t; h20,1(t), v̄1(t))

− 2α1,1 A(t)v1(t))〉dt + α2,1i
ω

T2
+ α1,1i

c1

T2
− α2

1,1i
ω

T2
.

We now concentrate on the computation of the vector approximations for the pre-

viously defined functions. We compute v1M by solving the discretization of (6.20)




(D − TA(t) + iωTL)C×M

δ0 − δ1
p2

qH
2 0



[

v1M

a

]
=

[
0M×1

1

]
,

with a = 0, and where q2 is the normalized right null-vector of the complex matrix

K =

[
(D − TA(t) + iωTL)C×M

δ0 − δ1

]
and p2 the normalized right null-vector of KH.

This vector is then rescaled to ensure that ∑
N−1
i=0 ∑

m
j=0 σj〈(v1M)i,j, (v1M)i,j〉 = 1.

The approximation (ϕ∗
1)W1

to the adjoint eigenfunction ϕ∗
1 is computed as in

the GPD case. For the calculation of v∗1 we apply Proposition 6.3 on page 257 from
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the appendix. Since v∗1 lies in the kernel of the operator φ2, it holds that

[
v∗1

v∗1(0)

]

is orthogonal to the range of

[
D − TAT(t) + iωT

δ0 − δ1

]
. By discretization we obtain

[
(v∗1)

H
W a

]



(D − TA(t) + iωTL)C×M

δ0 − δ1
p2

qH
2 0


 =

[
01×M 1

]
.

We then approximate I =
∫ 1

0 〈v∗1(t), v1(t)〉dt by I1 = (v∗1)
H
W1

LC×Mv1M and rescale

v∗1W so that I1 = 1.

The second order terms are approximated by

[
(D − TA(t) + 2 iωTL)C×M

δ0 − δ1

]
h20,1M =

[
TBC×M×Mv1Mv1M

0n×1

]

and



(D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0



[

h11,1M

a

]
=




TBC×M×Mv1Mv̄1M − α1,1TgC

0n×1

0


 ,

with a = 0 and α1,1 computed as

α1,1 = (ϕ∗
1)

T
W1

BC×M×Mv1Mv̄1M.

An approximation to the rescaled normal form coefficient c1 is given by

c1 = − i

2
(v∗1)

H
W1

(CC×M×M×Mv1Mv1M v̄1M + 2BC×M×Mv1Mh11,1M

+ BC×M×M v̄1Mh20,1M − 2α1,1 AC×Mv1M) + α1,1ω,

where MatCont provides an extra check to ensure that this coefficient is indeed

purely imaginary.

Next, we determine the third order coefficients of the center manifold expansion,

namely




(D − TA(t) + iωTL)C×M

δ0 − δ1
p2

(v∗1)
H
W1

LC×M 0



[

h21,1M

a

]
=




R

0n×1

0


 ,
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where

R = TCC×M×M×Mv1Mv1M v̄1M + 2TBC×M×Mv1Mh11,1M

+ TBC×M×Mh20,1Mv̄1M − 2ic1TLC×Mv1M

− 2α1,1T(AC×Mv1M − iωLC×Mv1M)

and a = 0, and

[
(D − TA(t) + 3iωTL)C×M

δ0 − δ1

]
h30,1M =

[
R

0n×1

]
,

with R = TCC×M×M×Mv1Mv1Mv1M + 3TBC×M×Mv1Mh20,1M.

The approximation to (6.21) is given by

[
(D − TA(t) + 2iωTL)C×M

δ0 − δ1

]
h31,1M =

[
R

0n×1

]
,

with

R = TDC×M×M×M×Mv1Mv1Mv1Mv̄1M + 3TCC×M×M×Mv1Mv1Mh11,1M

+ 3TCC×M×M×Mv1M v̄1Mh20,1M + 3TBC×M×Mh11,1Mh20,1M

+ 3TBC×M×Mv1Mh21,1M + TBC×M×Mv̄1Mh30,1M − 6ic1TLC×Mh20,1M

− 3α1,1T(AC×Mh20,1M − 2iωLC×Mh20,1M + BC×M×Mv1Mv1M)

while

α2,1 =
1

4
(ϕ∗

1)
T
W1

(DC×M×M×M×Mv1Mv1Mv̄1Mv̄1M + CC×M×M×Mv1Mv1Mh02,1M

+ 4CC×M×M×Mv1Mv̄1Mh11,1M + CC×M×M×Mv̄1Mv̄1Mh20,1M

+ 2BC×M×Mh11,1Mh11,1M + 2BC×M×Mv1Mh12,1M + BC×M×Mh02,1Mh20,1M

+ 2BC×M×M v̄1Mh21,1M − 4α1,1(AC×Mh11,1M + BC×M×Mv1M v̄1M)) + α2
1,1.

The other needed fourth order term is given by




(D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0



[

h22,1M

a

]
=




R

0n×1

0


 ,
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with

R = TDC×M×M×M×Mv1Mv1Mv̄1M v̄1M + TCC×M×M×Mv1Mv1Mh02,1M

+ 4TCC×M×M×Mv1Mv̄1Mh11,1M + TCC×M×M×Mv̄1Mv̄1Mh20,1M

+ 2TBC×M×Mh11,1Mh11,1M + 2TBC×M×Mv1Mh12,1M

+ TBC×M×Mh02,1Mh20,1M + 2TBC×M×M v̄1Mh21,1M

− 4α1,1T(AC×Mh11,1M + BC×M×Mv1Mv̄1M − α1gC)− 4α2,1TgC

and a = 0. Now, we have all information needed to compute the fifth order

coefficient of the normal form, namely

e =
1

12T2
(v∗1)

H
W1

(EC×M×M×M×M×Mv1Mv1Mv1Mv̄1M v̄1M

+ DC×M×M×M×Mv1Mv1Mv1Mh02,1M + 6DC×M×M×M×Mv1Mv1M v̄1Mh11,1M

+ 3DC×M×M×M×Mv1M v̄1Mv̄1Mh20,1M + 6CC×M×M×Mv1Mh11,1Mh11,1M

+ 3CC×M×M×Mv1Mv1Mh12,1M + 3CC×M×M×Mv1Mh02,1Mh20,1M

+ 6CC×M×M×Mv̄1Mh11,1Mh20,1M + 6CC×M×M×Mv1M v̄1Mh21,1M

+ CC×M×M×Mv̄1M v̄1Mh30,1M + 3BC×M×Mh12,1Mh20,1M

+ 6BC×M×Mh11,1Mh21,1M + 3BC×M×Mv1Mh22,1M

+ BC×M×Mh02,1Mh30,1M + 2BC×M×M v̄1Mh31,1M − 12α2,1 AC×Mv1M

− 6α1,1(AC×Mh21,1M + 2BC×M×Mv1Mh11,1M + CC×M×M×Mv1Mv1Mv̄1M

+ BC×M×Mh20,1Mv̄1M − 2α1,1 AC×Mv1M)) + α2,1i
ω

T2
+ α1,1i

c1

T2
− α2

1,1i
ω

T2
.

Strong Resonance 1:1 bifurcation

Next to the generalized eigenfunction v1,1 defined by (6.4), the second generalized

eigenfunction associated to multiplier 1 is given by





v̇2,1(t)− TA(t)v2,1(t) + Tv1,1(t) = 0, t ∈ [0, 1],

v2,1(1)− v2,1(0) = 0,
∫ 1

0
〈v2,1(t), F(u1(t))〉dt = 0,

with v2(τ) = v2,1(τ/T).
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The adjoint eigenfunction ϕ∗
1 is determined by the first two equations of (6.5)

and the normalization condition
∫ 1

0
〈ϕ∗

1(t), v2,1(t)〉dt − 1 = 0.

We also need the rescaled first generalized adjoint eigenfunction that is the solution

of 



v̇∗1,1(t) + TAT(t)v∗1,1(t)− Tϕ∗
1(t) = 0, t ∈ [0, 1],

v∗1,1(1)− v∗1,1(0) = 0,
∫ 1

0
〈v∗1,1(t), v2,1(t)〉dt = 0,

with v∗1(τ) = v∗1,1(τ/T)/T. Now, we have all information needed to write down

the expression of the two rescaled critical coefficients, namely

a =
1

2

∫ 1

0
〈ϕ∗

1(t), 2A(t)v1,1(t) + B(t; v1,1(t), v1,1(t))〉dt

and

b =
∫ 1

0
〈ϕ∗

1(t), B(t; v1,1(t), v2,1(t)) + A(t)v2,1(t)〉dt

+
∫ 1

0
〈v∗1,1(t), 2A(t)v1,1(t) + B(t; v1,1(t), v1,1(t))〉dt.

The implementation in MatCont is straightforward and relies on earlier explained

techniques so we will omit further details.

Strong Resonance 1:2 bifurcation

Eigenfunction v1,1 associated to multiplier −1 is given by the solution of (6.13),

where v1(τ) = v1,1(τ/T)/
√

T, and the generalized eigenfunction v2,1 defined on

the interval [0, 1] is the solution of





v̇2,1(t)− TA(t)v2,1(t) + Tv1,1(t) = 0, t ∈ [0, 1],

v2,1(1) + v2,1(0) = 0,
∫ 1

0
〈v2,1(t), v1,1(t)〉dt = 0,

where v2(τ) = v2,1(τ/T)/
√

T.
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The rescaled adjoint eigenfunctions are determined by (6.14), the first two equa-

tion of (6.15) with normalization condition
∫ 1

0 〈v∗1,1(t), v2,1(t)〉dt = 1 and





v̇∗2,1(t) + TAT(t)v∗2,1(t)− Tv∗1,1(t) = 0, t ∈ [0, 1],

v∗2,1(1) + v∗2,1(0) = 0,
∫ 1

0
〈v2,1(t), v∗2,1(t)〉 dt = 0,

where v∗2(τ) = v∗2,1(τ/T)/
√

T.

With α1 defined as

α1 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(t; v1,1(t), v1,1(t))〉 dt,

for α1 = Tα, let h20,1 be the unique solution of the BVP





ḣ20,1(t)− TA(t)h20,1(t)− TB(t; v1,1(t), v1,1(t)) + 2α1TF(u1(t)) = 0, t ∈ [0, 1],

h20,1(1)− h20,1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), h20,1(t)〉 dt −
∫ 1

0
〈ϕ∗

1(t), B(v1,1(t), v2,1(t))〉 dt = 0,

(6.22)

where h20(τ) = h20,1(τ/T)/T.

With h11,1, being the rescaling of the function h11, the solution of





ḣ11,1(t)− TA(t)h11,1(t)− TB(t; v1,1(t), v2,1(t)) + Th20,1(t) = 0, t ∈ [0, 1],

h11,1(1)− h11,1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), h11,1(t)〉 dt − 1

2

∫ 1

0
〈ϕ∗

1(t), B(v2,1(t), v2,1(t))〉 dt = 0,

where h11(τ) = h11,1(τ/T)/T, we are able to obtain the two normal form coeffi-

cients as

a1 =
1

6

∫ 1

0
〈v∗1,1(t), C(t; v1,1(t), v1,1(t), v1,1(t))

+ 3B(t; v1,1(t), h20,1(t))− 6α1 A(t)v1,1(t)〉 dt,
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for a1 = Ta, and

b =
1

2T

∫ 1

0
〈v∗1,1(t),−2α1 A(t)v2,1(t) + C(t; v1,1(t), v1,1(t), v2,1(t))

+ B(t; h20,1(t), v2,1(t)) + 2B(t; h11,1(t), v1,1(t))〉dt

+
1

2T

∫ 1

0
〈v∗2,1(t), C(t; v1,1(t), v1,1(t), v1,1(t))

+ 3B(t; v1,1(t), h20,1(t))− 6α1 A(t)v1,1(t)〉dt.

Concerning the implementation details we will just highlight the differences with

respect to the previous cases. Formula (6.16) gives us the value of v1,1 in the

mesh points. However, since v1,1 is used in the integral condition for v2,1, we have

to transfer this vector to the collocation points and multiply it with the Gauss-

Legendre weights and the lenghts of the corresponding intervals, to obtain v1,1W1
.

The computation of v2,1M is then straightforward.

By making use of Proposition 6.6 on page 259, we can approximate the adjoint

generalized eigenfunction v∗2,1 by solving

[
(v∗2,1)

T
W a

]



(D − TA(t))C×M v2,1C

δ0 + δ1 0n×1

qT
1 0


 =

[
−T(v∗1,1)

T
W1

LC×M 0
]

.

Now, h20,1M is found by discretizing (6.22), i.e.




(D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0



[

h20,1M

a

]

=




TBC×M×Mv1,1Mv1,1M − 2α1TgC

0n×1

(ϕ∗
1)

T
W1

BC×M×Mv1,1Mv2,1M


 .
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Strong Resonance 1:3 bifurcation

The BVPs for the rescaled eigenfunction and its adjoint belonging to eigenvalue

ei 2π
3 are determined by





v̇1(t)− TA(t)v1(t) = 0, t ∈ [0, 1],

v1(1)− ei 2π
3 v1(0) = 0,

∫ 1

0
〈v1(t), v1(t)〉dt − 1 = 0,

(6.23)

with v(τ) = v1(τ/T)/
√

T, and





v̇∗1(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],

v∗1(1)− ei 2π
3 v∗1(0) = 0,

∫ 1

0
〈v∗1(t), v1(t)〉dt − 1 = 0,

where v∗(τ) = v∗1(τ/T)/
√

T. The adjoint eigenfunction ϕ∗
1 corresponding to the

trivial multiplier is given by (6.14).

The normal form coefficients α1 and b can then be deduced from the expressions

α1,1 =
∫ 1

0
〈ϕ∗

1(t), B(v1(t), v̄1(t))〉dt, (6.24)

for α1,1 = Tα1, and

b1 =
1

2

∫ 1

0
〈v∗1(t), B(v̄1(t), v̄1(t))〉dt,

for b1 =
√

Tb.

The rescaled second order functions in the center manifold expansion are solu-

tions of





ḣ20,1(t)− TA(t)h20,1(t)− TB(v1(t), v1(t)) + 2b̄1Tv̄1(t) = 0, t ∈ [0, T],

h20,1(1)− ei 4π
3 h20,1(0) = 0,

∫ 1

0
〈v̄∗1(t), h20,1(t)〉dt = 0,
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with h20(τ) = h20,1(τ/T)/T, and





ḣ11,1(t)− TA(t)h11,1 − TB(v1(t), v̄1(t)) + α1,1TF(u1(t)) = 0, t ∈ [0, 1],

h11,1(1)− h11,1(0) = 0,
∫ 1

0
〈ϕ∗

1(t), h11,1(t)〉dt = 0,

(6.25)

with h11(τ) = h11,1(τ/T)/T. This then all results in the following expression for

the critical coefficient c

c =
1

2T

∫ 1

0
〈v∗1(t), C(v1(t), v1(t), v̄1(t)) + 2B(v1(t), h11,1(t))

+ B(v̄1(t), h20,1(t))− 2α1,1 Av1(t)〉dt.

We now discuss the implementation details in MatCont. We again highlight only

the differences with the implementation details given in the previous cases. Eigen-

function v1, determined by (6.23), is computed by solving




(D − TA(t))C×M

δ0 − e−i 2π
3 δ1

p3

qH
3 0



[

v1M

a

]
=

[
0M×1

1

]
,

where a = 0 as usual. We normalize v1M by requiring ∑
N−1
i=0 ∑

m
j=0 σj〈(v1M)i,j,

(v1M)i,j〉 = 1, where σj is the Lagrange quadrature coefficient. q3 is the normalized

right null-vector of K =

[
(D − TA(t))C×M

δ0 − e−i 2π
3 δ1

]
and p3 the normalized right null-

vector of KH.

To compute the adjoint eigenfunction v∗1 , we apply Proposition 6.4 on page 257

with θ = 2π
3 . Since v∗1 ∈ Ker(φ2), this function can be obtained by solving

[
(v∗1)

H
W a

]



(D − TA(t))C×M

δ0 − e−i 2π
3 δ1

p3

qH
3 0


 =

[
01×M 1

]
. (6.26)

v∗1W is then rescaled such that (v∗1)
H
W1

LC×Mv1M = 1.

By computing first the complex conjugate of h20,1 we can make use of the matrix
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from (6.26), except for the last line that represents the integral condition, to get



(D − TA(t))C×M

δ0 − e−i 2π
3 δ1

p3

(v∗1)
H
W1

LC×M 0



[

h̄20,1M

a

]

=




TBC×M×M v̄1Mv̄1M − 2b1Tv1C

0n×1

0


 .

Strong Resonance 1:4 bifurcation

The eigenfunction and the adjoint eigenfunction corresponding to multiplier ei π
2 and

defined on [0, 1] are the solutions of




v̇1(t)− TA(t)v1(t) = 0, t ∈ [0, 1],

v1(1)− ei π
2 v1(0) = 0,

∫ 1

0
〈v1(t), v1(t)〉dt − 1 = 0,

with v(τ) = v1(τ/T)/
√

T and




v̇∗1(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],

v∗1(1)− ei π
2 v∗1(0) = 0,

∫ 1

0
〈v∗1(t), v1(t)〉dt − 1 = 0,

with v∗(τ) = v∗1(τ/T)/
√

T, respectively. We also need the functions ϕ∗
1 and h11,1

defined by (6.14) and (6.25), and the value of α1,1 given by (6.24).

The other second order term is determined by
{

ḣ20,1(t)− TA(t)h20,1(t)− TB(v1(t), v1(t)) = 0, t ∈ [0, 1],

h20,1(1) + h20,1(0) = 0,

with h20(τ) = h20,1(τ/T)/T.

The critical coefficients are then given by

c̄ =
1

2T

∫ 1

0
〈v̄∗1(t), C(v1(t), v̄1(t), v̄1(t)) + B(v1(t), h02,1(t))

+ 2B(v̄1(t), h11,1(t))− 2α11 A(t)v̄1(t)〉dt
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and

d =
1

6T

∫ 1

0
〈v∗1(t), C(v̄1(t), v̄1(t), v̄1(t)) + 3B(v̄1(t), h02,1(t))〉dt.

The code is very similar to the one of the R3 case.

Fold-Flip bifurcation

The rescaled generalized eigenfunction v1,1 associated to multiplier 1 is the solution

of the BVP (6.4) and the rescaling of the eigenfunction v2,1 associated to multiplier

−1 is given by (6.13). The system (6.5) determines the adjoint eigenfunction ϕ∗
1

and the generalized adjoint eigenfunction v∗1,1 is the solution to (6.6). The last

adjoint eigenfunction v∗2,1 is determined by (6.15).

The coefficients in front of the ξ2
1-terms in the normal form (4.12) are given by

a20 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(v1,1(t), v1,1(t)) + 2A(t)v1,1(t)〉 dt

and α20 = 0.

The second order functions of the center manifold expansion are defined by the

BVPs





ḣ20,1(t)− TA(t)h20,1(t)− TB(v1,1(t), v1,1(t)) + 2a20Tv1,1(t)

+2α20TF(u1(t))− 2TA(t)v1,1(t)− 2TF(u1(t)) = 0, t ∈ [0, 1],

h20,1(1)− h20,1(0) = 0,
∫ 1

0
〈v∗1,1(t), h20,1(t)〉dt = 0,

with h20(τ) = h20,1(τ/T),





ḣ11,1(t)− TA(t)h11,1(t)− TB(v1,1(t), v2,1(t))

+Tb11v2,1(t)− TA(t)v2,1(t) = 0, t ∈ [0, 1],

h11,1(1) + h11,1(0) = 0,
∫ 1

0
〈v∗2,1(t), h11,1(t)〉dt = 0,
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with h11(τ) = h11,1(τ/T)/
√

T and





ḣ02,1(t)− TA(t)h02,1(t)− TB(v2,1(t), v2,1(t))

+2a02,1Tv1,1(t) + 2α02,1TF(u1(t)) = 0, t ∈ [0, 1],

h02,1(1)− h02,1(0) = 0,
∫ 1

0
〈v∗1,1(t), h02,1(t)〉dt = 0,

with h02(τ) = h02,1(τ/T)/T, where

b11 =
∫ 1

0
〈v∗2,1(t), B(v1,1(t), v2,1(t)) + A(t)v2,1(t)〉 dt,

a02,1 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(v2,1(t), v2,1(t))〉 dt

for a02,1 = Ta02, and α02 = 0.

The rescaling of the last four normal form coefficients of interest gives

a30 =
1

6

∫ 1

0
〈ϕ∗

1(t), C(v1,1(t), v1,1(t), v1,1(t)) + 3B(h20,1, v1,1(t))− 6a20h20,1(t)

+ 3(A(t)h20,1(t) + B(v1,1(t), v1,1(t))) + 6(1 − α20)A(t)v1,1(t)〉 dt − a20,

b21 =
1

2

∫ 1

0
〈v∗2,1(t), C(v1,1(t), v1,1(t), v2,1(t)) + B(h20,1(t), v2,1(t))

+ 2B(h11,1(t), v1,1(t))− 2a20h11,1(t)− 2b11h11,1(t) + 2(A(t)h11,1(t)

+ B(v1,1(t), v2,1(t))) + 2(1 − α20)A(t)v2,1(t)〉 dt − b11,

a12 =
1

2T

∫ 1

0
〈ϕ∗

1(t), C(v1,1(t), v2,1(t), v2,1(t)) + B(h02,1(t), v1,1(t))

+ 2B(h11,1(t), v2,1(t))− 2b11h02,1(t)− 2a02,1h20,1(t) + A(t)h02,1(t)

+ B(v2,1(t), v2,1(t))− 2α02,1 A(t)v1,1(t)〉 dt − a02,1

T

and

b03 =
1

6T

∫ 1

0
〈v∗2,1(t), C(v2,1(t), v2,1(t), v2,1(t)) + 3B(h02,1(t), v2,1(t))

− 6a02,1h11,1(t)− 6α02,1 A(t)v2,1(t)〉 dt.

For the computation of the needed functions and coefficients, we refer to the pre-

vious sections.
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6.2.4 Bifurcations with a 4D center manifold

We have extensively discussed the rescaling and the implementation of the (adjoint)

eigenfunctions, the functions appearing in the expansion of the center manifold

and the normal form coefficients for all bifurcations of limit cycles with a 2- or

3-dimensional center manifold in Section 6.2.2 and Section 6.2.3. What concerns

the bifurcations with a 4- or 5-dimensional center manifold, we will just mention the

relation between the functions and coefficients on [0, T], as defined in Section 5.2.3

and Section 5.2.4, and the rescaled versions on [0, 1]. The reader should then be

able to write down their definitions and implement them by proceeding as in the

previous sections.

Limit Point-Neimark-Sacker bifurcation

The relation between the generalized eigenfunction v1 and the rescaled v1,1 is given

by v1(τ) = v1,1(τ/T). For the eigenfunction corresponding with the complex

multiplier it holds that v2(τ) = v2,1(τ/T)/
√

T. The relations for the adjoint

eigenfunctions are given by ϕ∗(τ) = ϕ∗
1(τ/T)/T, v∗1(τ) = v∗1,1(τ/T) and v∗2(τ) =

v∗2,1(τ/T)/
√

T. The rescaling of the critical coefficient a200 is given by expression

(5.90), but with ϕ∗ replaced by ϕ∗
1 , v1 replaced by v1,1 and the integral taken

over [0, 1]. We have that h200(τ) = h200,1(τ/T), h020(τ) = h020,1(τ/T)/T and

h110(τ) = h110,1(τ/T)/
√

T where the rescaling of b110 is similar to expression

(5.91). We then first define a011,1 as the expression (5.92), but with ϕ∗ replaced by

ϕ∗
1 , v2 replaced by v2,1 and the integral taken over [0, 1], such that a011,1 = Ta011.

Finally, h011(τ) = h011,1(τ/T)/T.

Period-Doubling-Neimark-Sacker bifurcation

The eigenfunctions corresponding to multiplier −1 and the complex multiplier are

rescaled as follows: v1(τ) = v1,1(τ/T)/
√

T, v2(τ) = v2,1(τ/T)/
√

T. The rela-

tions for the adjoint eigenfunctions are given by ϕ∗(τ) = ϕ∗
1(τ/T)/T, v∗1(τ) =

v∗1,1(τ/T)/
√

T and v∗2(τ) = v∗2,1(τ/T)/
√

T. We define α200,1 as the expression

(5.100) but with the replacement of the functions by their rescaled versions and the

integral over [0, 1], such that α200,1 = Tα200. The second order function h200 leads

to the relation h200(τ) = h200,1(τ/T)/T, solution of a BVP similar to (5.101) but

where α200 is replaced by α200,1 in the differential equation. The other second order

functions lead to the relations h020(τ) = h020,1(τ/T)/T, h110(τ) = h110,1(τ/T)/T
and h011(τ) = h011,1(τ/T)/T where in the differential equation α011 is replaced
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by α011,1, with α011,1 = Tα011 (as before). For all third order functions it holds

that the rescaled functions are obtained by muliplying the unrescaled versions with√
TT. We define a rescaled version of every critical third order coefficient such that

the rescaled coefficient is T times the unrescaled one. These rescaled coefficients

will appear in the differential equations of the third order functions.

6.2.5 Bifurcations with a 5D center manifold

Double Neimark-Sacker bifurcation

The rescaling of the eigenfunctions corresponding to the complex multipliers leads

to the relations v1(τ) = v1,1(τ/T)/
√

T and v2(τ) = v2,1(τ/T)/
√

T. For the

adjoint eigenfunctions it holds that ϕ∗(τ) = ϕ∗
1(τ/T)/T, v∗1(τ) = v∗1,1(τ/T)/

√
T

and v∗2(τ) = v∗2,1(τ/T)/
√

T. All rescaled second order functions are obtained

as T times the original ones and all rescaled third order functions as
√

TT times

the functions defined on [0, T]. The critical coefficients appearing in the differential

equations are replaced by their rescaled versions, which are T times the original ones.

Note that in the LPNS, PDNS and NSNS case, we have not given the rescalings of

the higher order terms from Section 5.A, but our discussion in this section should

provide enough information to make the derivations. For efficiency reasons these

higher order coefficients are not computed in MatCont, unless explicitly requested by

the user. The implementation code for all cases is available in MatCont. Concerning

the output in MatCont in the LPNS case, E = NaN is reported when terms up to

only the second order are computed. In the PDNS and NSNS cases, sign l1 = NaN
is reported when terms up to only the third order are computed.

6.3 Examples

In this section we investigate what bifurcation curves exist around a codim 2 bifur-

cation of limit cycles and check whether this bifurcation scenario corresponds with

the situation predicted by the values of the normal form coefficients.
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6.3.1 Periodic predator-prey model

Our first model is a periodically forced predator-prey system, studied in [74] by using

shooting techniques, and described by the following differential equations





ẋ = r
(

1 − x

K

)
x − p(x, t)y,

ẏ = ep(x, t)y − dy,
(6.27)

where x and y are the numbers of individuals respectively of prey and predator

populations or suitable measures of density or biomass. The parameters present in

(6.27) are the intrinsic growth rate r, the carrying capacity K, the efficiency e and

the death rate d of the predator. The function p(x, t) is the predator functional

response, for which the Holling type II is chosen, with constant attack rate a and

half saturation b(t) that varies periodically with period one (year), i.e.

p(x, t) =
ax

b(t) + x
, b(t) = b0(1 + ε cos(2πt)).

Instead of system (6.27), we consider the extended autonomous system





ẋ = r
(

1 − x

K

)
x − axy

b0(1 + εu) + x
,

ẏ = e
axy

b0(1 + εu) + x
− dy,

u̇ = u − 2πv − (u2 + v2)u,

v̇ = 2πu + v − (u2 + v2)v,

(6.28)

where the last two equations have a stable limit cycle with u(t) = cos(2πt + ϕ)
and a phase shift ϕ depending on the initial conditions.

With fixed r = 2π, K = e = 1, a = 4π and d = 2π, we perform a bifurcation

analysis w.r.t. the remaining parameters (ε, b0), obtaining the bifurcation diagram

reported in Figure 6.1. Since the system is periodically forced, no equilibria are

present. The blue curves, with labels LPC2(1) and LPC2(2), are Limit Point of

Cycles bifurcation curves of the second iterate, the purple curves are Neimark-

Sacker bifurcations (of the first or of the second iterate, respectively labeled with

NS1 and NS2); while the green curves are Period-Doubling bifurcations, dotted

when subcritical and a solid line when supercritical (with notation PD1, PD2, PD4

and PD8).
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Figure 6.1: Bifurcation diagram of limit cycles in system (6.28). In blue are

Limit Point of Cycles bifurcations, in green Period-Doubling bifurcations and in

purple Neimark-Sacker bifurcations. Solid/dotted curves correspond to supercriti-

cal/subcritical bifurcations.

We have chosen this system as a first example since it allows us to check whether

the computation of the normal form coefficients αi is correct. Indeed, in a period-

ically forced system the return time is independent of the distance from the limit

cycle, so the first equation in the periodic normal form should be dτ
dt = 1. In the

GPD, CH, PDNS and NSNS cases, as well as in the strong resonance cases R2, R3

and R4, this would imply that all αi in the normal forms (4.5)-(4.15) must vanish.

For the remaining CPC, R1, LPPD and LPNS (and even the codim 1 LPC) cases,

the normal forms (4.5)-(4.15) derived for bifurcations of generic ODEs cannot be

applied verbatim, because periodically forced systems are not generic due to a spe-

cial Jordan structure of their monodromy matrix. We illustrate this phenomenon.

Consider a continuation of a period doubled limit cycle in (6.28) and suppose that

an LPC bifurcation is detected. For each point of the continuation, we compute
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the singular values of the monodromy matrix minus the identity matrix. The two

smallest singular values are shown in Figure 6.2. There is always one singular value

equal to zero, but also the second one vanishes when approaching the LPC point.

This means that instead of a Jordan block of length two (as is expected at the

LPC-point in generic ODEs [59]), we have in fact two Jordan blocks of length one.

Therefore, in a periodically forced system we can not apply the general theory de-

rived for generic LPC points. A similar situation is encountered in the CPC, R1,

LPPD and LPNS cases for periodically forced systems, which therefore should be

treated separately. Normal forms for periodically forced ODEs were studied in [44].

0 500 1000 1500

0

0.05

0.1

0.15

0.2

0.25

0.3

LPC

Figure 6.2: The two smallest singular values of M(T)− In.

As can be seen in Figure 6.1, an R1 point is detected in our periodically forced

example. Due to the above remark, we will not attempt any normal form analysis

for this point. We will analyze in detail all other detected codimension 2 points and

report the normal form coefficients, computed as explained in Section 6.2.

The two Generalized Period-Doubling points

In Figure 6.1 the LPC2 curves are tangent to the PD1 curve in two different GPD

points. In the first GPD point, with parameter values (ε, b0) = (0.319, 0.412), the

Limit Point of Cycles curve is tangent to the subcritical Period-Doubling curve (type

presented in Figure 4.2 (b)), while in the second one, for (ε, b0) = (1.093, 0.218),
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the LPC2 curve is tangent to the supercritical part of the PD1 bifurcation curve

(type presented in Figure 4.2 (a)).

Performing the computation of the GPD normal form coefficients at the first

point, we obtain

• for the first equation of the GPD normal form (4.6) the two coefficients α1

and α2, up to a scaling term T and T2 computed through formula (6.17) and

(6.18) respectively, are zero, up to the accuracy of the computation.

• the normal form coefficient e of the second equation from (4.6), computed

through formula (6.19), equals e = −58.287.

Notice that these results are in agreement with what we expected. Indeed, since we

are in the case presented in Figure 4.2 (b), the normal form coefficient e is negative.

From the computation of the GPD normal form coefficients at the second critical

point we obtain

• for the first equation of the GPD normal form (4.6) holds that the two coef-

ficients α1 and α2 equal zero up to the accuracy of the computation.

• the value of the normal form coefficient in the second equation is e = 41.544.

Also in this case the obtained results are in agreement with the theory.

The Strong Resonance 1:2 points

We divide the Strong Resonance 1:2 points present in this model into two groups,

namely the R2 point at (ε, b0) = (0.337, 0.340) and the cascade of resonance points

in the right lower part of the graph.

The isolated R2 point forms the intersection of the NS1 curve, i.e. the super-

critical Neimark-Sacker curve of a limit cycle with a period approximately equal to

1, and PD1. The situation is thus the one depicted in Figure 4.5 (a). Performing

the normal form coefficient computation we obtain

• in the first equation of the R2 normal form (4.9) α = 0.

• in the last equation of the R2 normal form we have (a, b) = (3.401,−12.907).

Note that the obtained results are in accordance with the theory. Indeed, the absence

of a secondary Neimark-Sacker curve implies that a > 0 and the supercriticality of

the NS1 curve implies that b < 0.
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In the lower right part of the bifurcation diagram a resonance cascade is present,

which accumulates on the sequence of Period-Doubling curves. A zoom of this part

is shown in Figure 6.3. Each resonance point of this cascade is a point of the type

0.6 0.65 0.7 0.75 0.8
0.17

0.175
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0.19
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R4  
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R2 
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LPC2(2)

PD2

PD4

PD8

NS2

NS4

NS8

ε

Figure 6.3: The resonance cascade in system (6.28). In blue are Limit Point of

Cycles bifurcations, in green Period-Doubling bifurcations and in purple Neimark-

Sacker bifurcations. Solid/dotted curves correspond to supercritical/subcritical bi-

furcations.

represented in Figure 4.5 (b) (so with a < 0 and the sign of b dependent on the

criticality of the incoming Neimark-Sacker curve). Notice that the criticality of the

NS curves changes at the R2 point (as depicted in Figure 4.5 (b)).

As first general result we observe that in the first equation of the R2 normal form

(4.9) coefficient α = 0 for all points (as expected since the system is periodically

forced). We remark that for the calculation of the normal form coefficients in the

ξ-equations, a computation to high accuracy is needed to get unambiguous results.

The results are

(on PD2) In the R2 point (ε, b0) = (0.744, 0.184). To the left of the R2 point the PD2

curve is supercritical, to the right it is subcritical. The incoming NS2 curve is

subcritical, while the outgoing NS4 curve is supercritical. We are thus in the
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time reversed situation of Figure 4.5 (b). So we expect that b > 0 (subcritical

incoming Neimarck-Sacker curve) and a < 0 (there is an outgoing secondary

Neimarck-Sacker curve). The computed critical coefficients at the R2 point

are (a, b) = (−65.767, 16.267).

(on PD4) In the R2 point (ε, b0) = (0.743, 0.186). To the left of the R2 point the PD4

curve is supercritical, to the right it is subcritical. The incoming NS4 curve is

supercritical, while the outgoing NS8 curve is subcritical. We are therefore in

the situation depicted in Figure 4.5 (b). So we expect that b < 0 (supercritical

incoming Neimarck-Sacker curve) and a < 0 (there is an outgoing secondary

Neimarck-Sacker curve). The computed coefficients at the R2 point are (a,
b) = (−269.368,−18.151).

(on PD8) In the R2 point (ε, b0) = (0.744, 0.186). To the left of the R2 point the PD8

curve is supercritical, to the right it is subcritical. The incoming NS8 curve

is subcritical, we are thus in the time reversed situation of Figure 4.5 (b).

Thus, we expect that b > 0 (subcritical incoming Neimarck-Sacker curve)

and a < 0 (there is an outgoing secondary Neimarck-Sacker curve, since the

cascade continues). The computed critical coefficients at the R2 point are

(a, b) = (−921.701, 16.581).

All the obtained results are in agreement with the theory.

The Strong Resonance 1:3 points

There are two Strong Resonance 1:3 points, one on NS2, the other one on NS4,

as can be seen in Figure 6.3. These two points behave in a different way. The

Neimark-Sacker curve corresponding with the first R3 point at (ε, b0) = (0.709,
0.179) is subcritical, so we expect ℜ(c) to be positive (situation depicted in Fig-

ure 4.6 (b)). The Neimark-Sacker curve of the second point at (ε, b0) = (0.743,
0.185) is supercritical, so ℜ(c) should be negative (situation depicted in Figure 4.6

(a)). To check whether we are in a nondegenerate case, we also have to take the

value of b into account, however, the sign of b is not relevant.

• for the first R3 point we have that (b,ℜ(c)) = (4.557 − 4.457i, 9.155).

• for the second R3 point we have that (b,ℜ(c)) = (0.405+ 12.143i,−8.820).

These results are in accordance with the theory.
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The Strong Resonance 1:4 points

There are two Strong Resonance 1:4 points, one on NS2, the other one on NS4, as

can be seen in Figure 6.3. These two points behave in the same way as the Strong

Resonance 1:3 bifurcation points. The Neimark-Sacker curve corresponding with the

first R4 point at (ε, b0) = (0.675, 0.177) is subcritical, so here we expect ℜ(A) to

be positive. The Neimark-Sacker curve of the second R4 point at (ε, b0) = (0.743,
0.185) is supercritical, so ℜ(A) should be negative. Moreover, since those points

are part of a resonance cascade, we should not have Limit Point bifurcations of

nontrivial equilibria, so we are in region I of Figure 4.7. In order to assure that we

are not in a degenerate case, we also need to check that d 6= 0.

• for the first R4 point it holds that (c, d) = (11.624 − 84.897i, 65.072 +
92.254i), so A = 0.103 − 0.752i.

• for the second R4 point it holds that (c, d) = (−8.580 − 414.721i,−416.641
− 489.172i), so A = −0.01335 − 0.645i.

The results are in accordance with the theory. For both bifurcation points the value

of A belongs to region I of Figure 4.7.

6.3.2 The Steinmetz-Larter model

The following model of the peroxidase-oxidase reaction was studied by Steinmetz

and Larter [91] and is used as test-example in [52,68], i.e.





Ȧ = −k1 ABX − k3 ABY + k7 − k−7 A,

Ḃ = −k1 ABX − k3 ABY + k8,

Ẋ = k1 ABX − 2k2X2 + 2k3 ABY − k4X + k6,

Ẏ = −k3 ABY + 2k2X2 − k5Y,

(6.29)

where A, B, X, Y are state variables and k1, k2, k3, k4, k5, k6, k7, k8, and k−7 are

parameters. We fix the parameters reported in the following table

Par. Value Par. Value Par. Value Par. Value

k1 0.1631021 k2 1250 k3 0.046875 k4 20

k5 1.104 k6 0.001 k−7 0.1175

and we perform a bifurcation analysis in the remaining parameter space (k7, k8). A

few curves are reported in Figure 6.4.
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Figure 6.4: Bifurcation diagram of limit cycles in model (6.29). In blue are Limit

Point of Cycles bifurcations and in purple Neimark-Sacker bifurcations. Solid/dotted

curves correspond to supercritical/subcritical bifurcations.

The Strong Resonance 1:1 points

The two Strong Resonance 1:1 points behave differently, since in the left R1 point

the Neimark-Sacker curve rooted at the bifurcation point is supercritical, while in

the other one it is subcritical.

• for the R1 point in (k7, k8) = (1.180, 0.724), the two coefficients of the last

equation of the R1 normal form (4.8) are equal to (a, b) = (−3.654 · 10−3,
0.735). Their product ab = −2.686 · 10−3 is negative, which corresponds

with a supercritical NS curve rooted at the R1 point.

• for the R1 point in (k7, k8) = (1.858, 0.930), the two coefficients of the last

equation of the R1 normal form (4.8) are equal to (a, b) = (−6.643 · 10−2,
−2.157). Their product ab = 0.143 is positive, and indeed the NS curve

rooted at the R1 point is subcritical.

So we can conclude that the results are in accordance with the theory.
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The Chenciner points

In Figure 6.4 we see that a CH point is detected at (k7, k8) = (1.757, 0.913). The

critical coefficient at that bifurcation point equals ℜ(e) = 1.392, hence positive.

In order to verify if the normal form computation is correct, one might use tori

continuation techniques [19, 36, 63, 76, 84, 85, 88]. However, these techniques are

not stable near critical cases like the one we have. In order to validate our result

we therefore rely on simulations.
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Figure 6.5: Simulations on a parameter grid (black points) of system (6.29). The

purple solid/dotted line is the supercritical/subcritical Neimark-Sacker curve. The

colour represents the value of the maximum of the first coordinate of the attractor

reached through simulation from a point close to the limit cycle.

The obtained result is shown in Figure 6.5. The indicated regions correspond

with the regions as denoted in Figure 4.3. The one point to which regions 1, 2 and

3 are adjacent, corresponds with the CH point. The purple solid curve between

regions 2 and 3 is the supercritical Neimark-Sacker curve, the purple dashed one

between regions 1 and 2 is the subcritical Neimark-Sacker curve. For each point of

the grid, we have started time integration from a point close to the orginal limit

cycle (a 1 % perturbation) until an attractor was found. The maximum value of the
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X-coordinate of an orbit with time length 1000 along the attractor is shown in the

colormap. In region 2 this attractor is the original limit cycle, in region 3 it is the

inner torus arisen through the supercritical Neimark-Sacker curve. In region 1 the

original limit cycle is unstable, and so the trajectory that starts nearby converges

to another attractor. Between regions 1 and 3 and regions 1 and 2 happens a

catastrophic bifurcation, i.e. a drastic change of the attractor, identified from the

change of color that varies from blue to red. Right above the Chenciner point,

the catastrophic bifurcation is the subcritical NS curve, while left below it is the

Limit Point of Tori (Tc) curve. Figure 6.5 gives evidence that the scenario that

corresponds with a positive second Lyapunov coefficient is obtained.

6.3.3 The Lorenz-84 system

This model, taken from [78], is a meteorological model proposed by Lorenz in 1984

in order to describe the atmospheric circulation. The equations of the model are





ẋ = −y2 − z2 − ax + aF,

ẏ = xy − bxz − y + G,

ż = bxy + xz − z,

(6.30)

where (a, b, F, G) are parameters. We fix a = 0.25, b = 4. This model, as found in

[89,94], contains most of the analyzed codimension 2 bifurcations of limit cycles. We

report in Figure 6.6 a bifurcation diagram recomputed and extended with MatCont

in which the bifurcations of equilibria are thicker and the limit cycle bifurcations are

thin. In particular, the blue curve is a Limit Point of Cycles bifurcation curve, the

green ones are Period-Doubling bifurcation curves and the purple ones are Neimark-

Sacker curves. The codimension 2 points are marked with a red dot, and from

Figure 6.6 follows that almost all bifurcations where the dimension of the center

manifold equals 2 or 3, except for the Chenciner bifurcation and the Fold-Flip

bifurcation, are present in this model.

The Swallow-tail bifurcation

The first degeneracy we analyze is the vanishing of the coefficient c in the CPC

normal form (4.5). This bifurcation, called the Swallow-tail bifurcation, is in our

case characterized by the collision and disappearance of two Cusp Point of Cycles

bifurcations. In order to capture this codimension 3 bifurcation we analyze part

of the blue curve in Figure 6.6 for different parameter values of b. The result is
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Figure 6.6: Bifurcation diagram of model (6.30). The thick curves are bifurca-

tion curves of equilibria, the thin curves are bifurcation curves of limit cycles (in

blue Limit Point of Cycles curves, in green Period-Doubling curves and in purple

Neimark-Sacker curves). Solid/dotted curves correspond to supercritical/subcritical

bifurcations.

shown in Figure 6.7. Part of the LPC-branch is plotted in the (G, F)-plane for

several values of the parameter b ∈ [2.91, 2.95] (from red to blue). In the table we

can see the behaviour of the critical coefficient c (i.e. c1 and c2 for the two CPC

points), where it exists (the colours from the table correspond with the ones from

the bifurcation diagram). Note how the behaviour of this codim 3 bifurcation is

captured by a smooth vanishing of the normal form coefficient.
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Figure 6.7: Different Limit Point of Cycles bifurcation curves in the (G, F)-plane

for different values of the parameter b. The parameter values are reported in the

table.

The Generalized Period-Doubling points

On the green curve PD2(2) from Figure 6.6 there are two Generalized Period-

Doubling points. Computing the normal form coefficient in the first GPD point,

with parameter values (G, F) = (0.900, 11.145), gives e = −1.318 · 10−3 < 0.

Therefore, there is a Limit Point of Cycles bifurcation curve that starts rightward

tangent to the subcritical part of the Period-Doubling curve. In the second case,

namely for (G, F) = (1.124, 14.129), e = 2.895 · 10−3 > 0, and so the LPC

curve starts rightward tangent to the supercritical part of the PD curve. These

conclusions following from the normal form analysis are clarified in Figure 6.8; in

the upper panels the Poincaré maps of the limit cycles involved in the bifurcation are

sketched. In region 0 there is a stable 2T-periodic cycle. In region 1 the 2T-periodic

cycle becomes unstable and a stable 4T-periodic curve appears. In region 2 we still
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have this stable 4T-curve, but a second (unstable) 4T-periodic cycle appears and

the 2T-cycle becomes stable. We then cross the upper right PD2(2) curve such

that another stable 4T-periodic cycle appears. On the LPC4(2) curve the red limit

cycle and the inner green limit cycle from region 3 collide and disappear, while on

the LPC4(1) curve the two involved limit cycles from region 2 collide and disappear.
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Figure 6.8: Two Generalized Period-Doubling points with different sign of normal

form coefficients on the Period-Doubling bifurcation curve PD2(2) of Figure 6.6.

The Strong Resonance 1:1 points

Two R1 points are located on the LPC2 curve. These two points should have

different products of normal form coefficients. In fact, for the first one, where (G,
F) = (0.522, 10.718), the Neimark-Sacker curve NS2(1) rooted at the bifurcation

point is supercritical (i.e. the situation depicted in Figure 4.4 (a)), while for the

second one, where (G, F) = (2.220, 9.811), NS2(2) is subcritical (see the zoom in
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Figure 6.9).

• For the first R1 point (a, b) = (2.577,−1.266), so the product ab = −3.262
is negative.

• For the second R1 point (a, b) = (−9.887,−2.005), so the product ab =
19.819 is positive.

These results are in accordance with the theory.

2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.3

9.8

9.82

9.84

9.86

9.88

9.9

9.92

G

F

R1 

R4  

R3 

R2 

R2 

LPC2

NS2(2) 
PD4(2) 

PD2(3) 

R4 R3 

Figure 6.9: Zoom on the resonance cascade that starts at the right R1 point in

Figure 6.6. In blue are the Limit Point of Cycles bifurcation curves, in green the

Period-Doubling curves, in purple the Neimark-Sacker curves. Solid/dotted curves

correspond to supercritical/subcritical curves.

The Strong Resonance 1:2 points

At the R2 point at (G, F) = (1.593, 6.106) shown in Figure 6.6, the incoming

Neimark-Sacker curve NS is subcritical (therefore we must have b > 0), while the
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outgoing curve NS2(1) (that exists and thus a < 0) is supercritical, i.e. we are in

the time reversed case of Figure 4.5 (b). The coefficients computed at the R2 point

are (a, b) = (−0.633, 0.179), in accordance with what we expected.

At the R1 point located at (G, F) = (2.220, 9.811) starts a resonance cascade,

as shown in Figure 6.9. On the cascade we find many resonance points, which we

will analyze in what follows. In particular, since the R2 points belong to a cascade,

they are of the type presented in Figure 4.5 (b) (so a < 0), with at successive R2

points a change of criticality of the incoming NS curve. The NS2(2) curve born at

the R1 point is subcritical, so for the first R2 point we expect that b > 0, while for

the second one b < 0.

• For the first R2 point at (G, F) = (2.298, 9.916) we have that (a, b) =
(−1.316, 0.111).

• For the second R2 point at (G, F) = (2.298, 9.920) we have that (a, b) =
(−2.623,−5.641 · 10−2).

The results are in accordance with the theory.

The Strong Resonance 1:3 points

There are several Strong Resonance 1:3 points at which we can have a closer look.

There is one R3 point located on the NS curve and two R3 points are detected

on the NS2(1) curve. The R3 bifurcation point corresponding to the first iterate

happens at (G, F) = (1.624, 4.628), with a positive normal form coefficient of the

Neimark-Sacker bifurcation; this corresponds with the situation from Figure 4.6 (b).

The R3 points corresponding to the second iterate are at (G, F) = (1.235, 7.072)
and (G, F) = (0.739, 8.989), where the Neimark-Sacker bifurcation is in both cases

supercritical, so we are in the situation depicted in Figure 4.6 (a).

• For the R3 point at (G, F) = (1.624, 4.628) we have that (b,ℜ(c)) = (0.191
− 0.546i, 6.186 · 10−2).

• For the R3 point at (G, F) = (1.235, 7.072) we have that (b,ℜ(c)) =
(−0.446 − 0.190i,−3.612 · 10−2).

• For the R3 point at (G, F) = (0.7394, 8.989) we have that (b,ℜ(c)) =
(−0.129 + 1.681 · 10−2i,−1.951 · 10−2).

238



6.3. EXAMPLES

All these results are in accordance with the theory.

There are also R3 points on the cascade, shown in Figure 6.9. The first one

corresponds with a subcritical NS2(2) curve, while the second one corresponds with

a supercritical Neimark-Sacker curve.

• For the first R3 point at (G, F) = (2.279, 9.889) we have that (b,ℜ(c)) =
(−2.958 − 0.360i, 0.738).

• For the second R3 point at (G, F) = (2.297, 9.919) we have that (b,ℜ(c)) =
(2.745 + 3.539i,−0.385).

Also in this case all results are in accordance with the theory.

The Strong Resonance 1:4 points

There are five 1:4 resonance points at which we will have a closer look. One is

located on the NS curve, two others on the NS2(1) curve and the last two lie on

the resonance cascade (see Figure 6.9).

• For the R4 point at (G, F) = (1.647, 3.376) we have that (c, d) = (5.0045
· 10−2 − 7.459 · 10−2i, 0.110 + 0.534i) and so A = 9.179 · 10−2 − 0.137i
(subcritical NS curve, case I).

• For the R4 point at (G, F) = (0.595, 9.777) we have that (c, d) = (−1.513
· 10−2 − 0.135i,−2.665 · 10−2 − 4.112 · 10−2i) and so A = −0.308 − 2.753i
(supercritical NS curve, case VIII).

• For the R4 point at (G, F) = (1.390, 6.620) we have that (c, d) = (−4.172
· 10−2 − 0.992i,−0.428 − 1.082i) and so A = −3.584 · 10−2 − 0.852i (su-

percritical NS curve, case I).

For the first and the last point no further bifurcation analysis is possible to confirm

the correctness of the results since the curves rooted at the bifurcation point are

global bifurcations of limit cycles. Instead, it is possible to continue all local bifur-

cations of limit cycles rooted at the second R4 point, obtaining the result shown in

Figure 6.10. The meaning of the curve Tin is explained in Section 4.4.2 and shown

in the bifurcation diagram of the R4 point, see Figure 4.9. Curve T corresponds

with the Fold bifurcation of the 4T-periodic cycle that happens on the ’big’ cycle.

For curve Tin, the fold bifurcation happens in the ’big’ cycle. Curve NS (NS4)
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Figure 6.10: Bifurcation diagram at the R4 point at (G, F) = (0.595, 9.777). In

blue are the Limit Point of Cycles bifurcation curves, in purple the Neimark-Sacker

curves. Solid/dotted curves correspond to supercritical/subcritical curves.

corresponds with curve N (N′) from Figure 4.9. Note that we have not made the

distinction between region VII and region VIII.

The first R4 point of the resonance cascade lies on a subcritical NS2(2) curve,

while the second one lies on a supercritical Neimark-Sacker curve (see Figure 6.9).

Moreover, since they are part of a cascade, we expect them to be of type I.

• For the first R4 point at (G, F) = (2.298, 9.916) we have that (c, d) = (5.185
· 10−2 − 1.763i,−2.014 + 0.455i) and so A = 2.510 · 10−2 − 0.854i.

• For the second R4 point at (G, F) = (2.298, 9.919) we have that (c, d) =
(−2.821 · 10−2 − 6.815i,−10.845 + 2.146i) and so A = −2.550 · 10−3 −
0.616i.

Both points indeed belong to region I.

6.3.4 The extended Lorenz-84 system

As done in [73], it is possible to extend the Lorenz-84 system (6.30) by adding a

fourth variable that takes the influence on the jet stream and the baroclinic waves

of external parameters like the temperature of the sea surface into account. The
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resulting system is




ẋ = −y2 − z2 − ax + aF − γu2,

ẏ = xy − bxz − y + G,

ż = bxy + xz − z,

u̇ = −δu + γux + K.

(6.31)

We use the parameter values mentioned in [73], i.e.

a = 0.25, b = 1, G = 0.2, δ = 1.04, γ = 0.987, F = 1.75, K = 0.0003.

Time integrating this system from the origin leads to the detection of a stable

limit cycle. In a continuation with K as free system parameter the limit cycle

undergoes a supercritical Period-Doubling bifurcation. Now, we can perform a two

parameter continuation of PD bifurcations in (F, K) and obtain the bifurcation

diagram reported in Figure 6.11 (cf. [73]).
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4
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Figure 6.11: Bifurcation diagram of limit cycles in model (6.31). The blue curve is a

Limit Point of Cycles curve, the green one is a Period-Doubling curve (solid/dotted

parts correspond to supercritical/subcritical parts) and the purple curve is a super-

critical Neimark-Sacker bifurcation curve of the period doubled limit cycle.
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The Fold-Flip point

As can be seen in Figure 6.11, a Fold-Flip point is detected for (F, K) = (1.762,
2.806 · 10−4). Since there is a Neimark-Sacker curve of the period doubled limit

cycle rooted at the bifurcation point and the NS2 curve (corresponding with curve

NS from Figure 4.10) and the LPC curve (corresponding with curve F from Fig-

ure 4.10) lie on different sides of the PD curve (corresponding with curve P from

Figure 4.10), we are in the situation represented in Figure 4.10 (a), i.e. we have

a20b11 < 0 and a02b11 < 0. Moreover, since the NS2 curve is supercritical, CNS

should be negative. Numerically, we obtain that b11 = 562.222, a20 = −0.576,
a02 = −1.784 · 10−5, CNS = −1.076 · 107. Hence, these results are in agreement

with the theory. They also agree with [73], where the LPPD bifurcation was ana-

lyzed by computing the normal form coefficients for the critical Poincaré map, using

the numerical integration of the variational equations to compute the multilinear

forms in the Taylor expansion of this map.

6.3.5 Laser model

In [97] a single-mode inversionless laser with a three-level phaser was studied and

shown to operate in various modes. These modes are ’off’ (nonlasing), continuous

waves, periodic, quasi-periodic and chaotic lasing. The model is a 9-dimensional

system given by 3 real and 3 complex equations, namely





Ω̇l = − γcav
2 Ωl − gℑ(σab),

ρ̇aa = Ra − i
2 (Ωl(σab − σ∗

ab) + Ωp(σac − σ∗
ac)),

ρ̇bb = Rb +
i
2 Ωl(σab − σ∗

ab),

σ̇ab = −(γ1 + i∆l)σab − i
2 (Ωl(ρaa − ρbb)− Ωpσcb),

σ̇ac = −(γ2 + i∆p)σac − i
2 (Ωp(2ρaa + ρbb − 1)− Ωlσ

∗
cb),

σ̇cb = −(γ3 + i(∆l − ∆p))σcb − i
2 (Ωlσ

∗
ac − Ωpσab),

(6.32)

with Ra = −0.505ρaa − 0.405ρbb + 0.45, Rb = 0.0495ρaa − 0.0505ρbb + 0.0055
and ∆l = ∆cav + gℜ(σab)Ωl. The fixed parameters are γ1 = 0.275, γ2 = 0.25525,
γ3 = 0.25025, γcav = 0.03, g = 100, ∆p = 0. The parameters Ωp and ∆cav are

varied. The bifurcation diagram of (6.32) is computed in [72] and is reproduced in

Figure 6.12.
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Figure 6.12: Bifurcation diagram of (6.32). The thick red curves are Hopf curves.

In blue are Limit Point of Cycles bifurcations and in purple Neimark-Sacker bifurca-

tions. Solid/dotted curves correspond to supercritical/subcritical bifurcations. The

dashed curves are curves of neutral saddles.
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The Limit Point-Neimark-Sacker points

Figure 6.12 shows three NS curves NS(1), NS(2) and NS(3) starting from two

HH points. On NS(3) one of the richer situations possible at an LPNS point

occurs. The normal form coefficients for the LPNS point at (Ωp, ∆cav) = (3.411,
−1.819) are (s, θ, E) = (1,−0.139,−911.248), so sθ < 0. This means that there

exists a 3-torus, which is stable since θ < 0 and E < 0. Therefore, we are in

the case represented in Figure 4.11 (c), but with a stable 3-torus. We will make

use of Lyapunov exponents to check the validity of our calculations for the critical

coefficients. For the computation of the Lyapunov exponents, we used a code

written by V. N. Govorukhin (2004). We fix one parameter, in this case Ωp, and

vary the second one, in this case ∆cav, where we stay in a close neighbourhood to

the LPNS point, and compute the Lyapunov exponents for the considered range of

parameter values. Figure 6.13 (a) shows the calculated Lyapunov exponents for Ωp

fixed at 3.45 and ∆cav ∈ [−1.8;−1.6]. More detail is shown in Figure 6.13 (b),

where we get a clear view on the number of Lyapunov exponents equal to zero.
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Figure 6.13: Lyapunov exponents computed for Ωp = 3.45 close to the LPNS point

at (Ωp, ∆cav) = (3.411,−1.819): (a) For ∆cav ∈ [−1.8;−1.6]. (b) Zoomed in near

the region with chaos due to heteroclinic tangles. The vertical black lines indicate

the parameter values where a bifurcation occurs.

We now discuss Figure 6.13. For ∆cav values to the right of −1.636, there is

244



6.3. EXAMPLES

one Lyapunov exponent equal to zero, which corresponds to the stable limit cycle

from region 6 in Figure 4.11 (c). At ∆cav = −1.636, we cross NS(3) and arrive

in region 5 from Figure 4.11 (c) where there is a stable 2-torus and therefore two

Lyapunov exponents equal to zero. When crossing the P curve at ∆cav = −1.773,

the stable 3-torus from region 4 arises, so we expect three Lyapunov exponents to

be zero. However, remark that in some small intervals only two Lyapunov exponents

are equal to zero (see Figure 6.13), but these correspond with resonances on the 3-

torus. Then, in the interval ∆cav ∈ [−1.796;−1.7916] positive Lyapunov exponents

appear, which indicates that there is chaos. This zone corresponds with T. In fact,

curve T from Figure 4.11 is a small zone. Finally, to the left of −1.796, we arrive

in region 3, where all Lyapunov exponents are negative.

4.3 4.4 4.5 4.6 4.7 4.8 4.9
−0.12

−0.1

−0.08

−0.06

−0.04

−0.02
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0.02

NS(2)

5

Ω
ᵖ

Figure 6.14: Lyapunov exponents computed close to the LPNS point at (Ωp,
∆cav) = (4.632, 1.438). The two-coloured dashed lines reveal pairs of equally large

Lyapunov exponents.

On the NS(2) curve there is an LPNS point for (Ωp, ∆cav) = (4.632, 1.438). The

normal form coefficients are (s, θ, E) = (1, 0.206, 808.009). The product sθ > 0 is

positive, so we are in a ’simple’ case, where no 3-torus is present. Since s = 1, the
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torus arisen through the Neimark-Sacker curve exists below the NS(2) curve (see

Figure 4.11 (a)). We compute the Lyapunov exponents for a straight line where the

beginning point (Ωp, ∆cav) = (4.302, 0.673) and end point (Ωp, ∆cav) = (4.984,
1.984) lie between the curves LPC(2) and NS(2), the first one to the left and the

second one to the right of the LPNS point. In Figure 6.14, we plot the Lyapunov

exponents for Ωp ∈ [4.3, 4.98]. The stable limit cycle is situated in the upper wedge

between the LPC(2) and NS(2) curves, which corresponds to region 4 in Figure 4.11

(a), so there is one Lyapunov exponent equal to zero for Ωp values larger than the

subcritical NS(2) curve (i.e. for regions 3 and 4). At Ωp ≈ 4.41, we cross the

subcritical NS(2) curve, with to the left no zero Lyapunov exponents.

6.3.6 A two-patch periodic predator-prey model

We study a simple two-patch predator-prey system with periodic (seasonal) forcing.

Simple predator-prey models lead to the ’paradox of enrichment’, i.e. increasing

the carrying capacity of the prey ultimately leads to extinction of the population

[87]. Outside the laboratory, however, stable populations are observed and not an

extinction. Here, spatial models have been put forward to explain this discrepancy.

As the simplest spatial case, one may consider a two-patch predator-prey model [61]

where predator and prey can migrate between the two patches by diffusion. This

leads to a diffusive instability of large oscillations and stabilizes the total population

size [62]. Here, we propose an extension where one of the patches experiences

seasonal influences while the other can be seen as a wild-life refuge where human

intervention minimizes seasonal influences. As a simplication we will only consider

the case that the predators can move between the patches, i.e. they can cross the

refuge barrier. On a proper time scale, the investigated system is defined by





ẋ1 = r1x1(1 − x1)−
cx1x2

x1 + b1(1 + εv1)
,

ẋ2 = −x2 +
cx1x2

x1 + b1(1 + εv1)
+ γ(y2 − x2),

ẏ1 = r2y1(1 − y1)−
cy1y2

y1 + b2
,

ẏ2 = −y2 +
cy1y2

y1 + b2
+ γ(x2 − y2),

v̇1 = −v2 + v1(1 − v2
1 − v2

2),

v̇2 = v1 + v2(1 − v2
1 − v2

2).

(6.33)
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The values of x1 and x2 denote the numbers of individuals (or densities) respectively

of prey and predator populations living outside the refuge and y1 and y2 are the

corresponding numbers or densities inside. The intrinsic growth rates ri and the

constant attack rate c are parameters of the model. For the predator outside the

refuge, the Holling type II is chosen as functional response with a half saturation

that varies periodically with period 2π. To this end, the last two equations are

introduced; their solutions converge to a stable limit cycle v1(t) = cos(t + φ) with

a phase shift φ depending on the initial conditions. The terms with parameter γ
describe the coupling of the two patches. The fixed parameter values are r1 = 1,
r2 = 1, b1 = 0.4, γ = 0.1, c = 2. We will use the half saturation b2 as a continuation

parameter together with the amplitude of the seasonal forcing ε. We observe that

a refuge can induce complex behaviour in a spatial population model with seasonal

forcing.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

b₂

ε

CH  

CH  

GPD 
GPD 

PDNSPDNS

GPD 

GPD 

PD

NS1(1) NS1(2)
NS2(2)

Figure 6.15: Bifurcation diagram of limit cycles in (6.33). In green are Period-

Doubling curves and in purple Neimark-Sacker curves (of the first or of the second

iterate, respectively labeled with NS1 and NS2).
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The Period-Doubling-Neimark-Sacker points

Figure 6.15 represents a bifurcation diagram for system (6.33) where two PDNS

points are detected. The right PDNS point has parameter values (b2, ε) = (0.277,
0.530). We are in the ’simple’ case of a PDNS point because the product of

the coefficients p11 = −5.01 · 10−2 and p22 = −0.211 is positive. Since θ =
−0.320 and δ = 1.087, Figure 4.12 (a) indicates that the bifurcation diagram in

a neighbourhood of the PDNS point is as in case III in Figure 4.13 (a), where

µ1 = 0 corresponds with NS1(2) and µ2 = 0 with PD. Curve T1 corresponds to

the Neimark-Sacker curve of the period doubled cycle NS2(2) from Figure 6.15.

Therefore, we expect the Period-Doubling curve T2 of the torus to be situated to

the left of NS1(2) and under the PD curve. The stable limit cycles are situated

in the lower right quadrant of the PDNS point. The exact location of T2 can be

determined by computing Lyapunov exponents for fixed b2 values smaller than the

critical b2 = 0.277 corresponding with the PDNS point. We have plotted a sketch

of this T2 curve in Figure 6.16, which represents a zoom of the neighbourhood of

the PDNS point.
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Figure 6.16: Zoom of the neighbourhood of the PDNS point at (b2, ε) = (0.277,
0.530) from Figure 6.15. In green are Period-Doubling curves, in purple Neimark-

Sacker curves (of the first or of the second iterate, respectively labeled with NS1(2)

and NS2(2)), in blue is the sketch of the T2 ’curve’.
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We have computed the Lyapunov exponents for b2 fixed at 0.261 and ε ∈
[0.46; 0.62], see Figure 6.17. In this figure the black vertical lines indicate the

position of the bifurcation curves. From the value of the Lyapunov exponents we

derive that T2 is crossed for ε ≈ 0.52. To the left of the T2 curve in Figure 6.17, we

have a stable torus, arisen through the supercritical Neimark-Sacker curve NS1(2),

corresponding with region 2 from Figure 4.13 (b). Between the curves T2 and

NS2(2), the 2-torus arisen through T2 is attracting. These regions correspond

with region 6 (between T2 and PD) and region 5 (between PD and NS2(2)) from

Figure 4.13 (b). When crossing the NS2(2) curve, the 2-torus disappears and the

period doubled cycle becomes attracting. All this is in agreement with the fact that

two Lyapunov exponents are equal to zero to the left of NS2(2), where afterwards

only one zero Lyapunov exponent is left.

0.46 0.5 0.54 0.58 0.62

−0.04

−0.02

0

NS2(2)T₂ PD

ε

Figure 6.17: Lyapunov exponents computed for b2 = 0.261, close to the PDNS

point at (b2, ε) = (0.277, 0.530).

The left PDNS point at (b2, ε) = (8.699 · 10−2, 0.519) again belongs to one of

the ’simple’ situations that can happen at a PDNS point (p11 = −0.447, p22 =
−1.472). The neighbourhood of the bifurcation point is as in case I in Figure 4.12

(a) since (θ, δ) = (2.234, 1.304). Remark that the stable limit cycles are situated

in the lower left quadrant of the PDNS point in Figure 6.18.
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Figure 6.18: Zoom of the neighbourhood of the PDNS point at (b2, ε) =
(8.699 · 10−2, 0.519) from Figure 6.15. In green are Period-Doubling curves, in

purple Neimark-Sacker curves (of the first or of the second iterate, respectively

labeled with NS1(1) and NS2(1)), in blue is the sketch of the T2 ’curve’.

The behaviour in a neighbourhood of this PDNS point can be derived from

Figure 6.18, which includes a plot of the Neimark-Sacker curve NS2(1) of the period

doubled cycle and also a sketch of the period doubled curve T2 of the torus, made

on the basis of the computation of the Lyapunov exponents. We have calculated

the Lyapunov exponents for parameter values in the upper right quadrant, close to

the PDNS point, for a fixed b2 = 0.08709. The results are given in Figure 6.19.

Going from the left to the right, where we follow the solid lines, we start with

two Lyapunov exponents equal to zero that correspond with the stable torus from

the original cycle in the regions 2, 3 and 4 from Figure 4.13. At the point where

the second Lyapunov exponent becomes nonzero, the T2 curve is located, namely

at ε ≈ 0.5198. We then arrive in region 12 from Figure 4.13 (b) where the 2-torus

has lost his stability and the period doubled cycle is stable. Therefore, one zero

Lyapunov exponent remains. We scan the Lyapunov exponents for a second time

where we now go from the right to the left and follow the dashed lines. The second

Lyapunov exponent now approaches zero not at the T2 curve but at the NS2(1)

curve. This is explained by the bistability happening in region 4, where one Lya-

punov exponent equal to zero indicates the stable period doubled cycle and two
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0.518 0.519 0.52 0.521 0.522

−15
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0

×10⁻⁴ PD NS2(1) T₂ NS1(1)

ε

Figure 6.19: Lyapunov exponents computed for b2 = 0.08709, close to the PDNS

point at (b2, ε) = (8.699 · 10−2, 0.519). Exponents indicated with solid lines are

computed by following the attractor with increasing ε, dotted lines with decreasing

ε. This highlights the bistability between NS2(1) and T2.

zero Lyapunov exponents indicate the stable torus. When we go further, we cross

region 3 and 2, with the stable torus of the orginal cycle. Here too, the Lyapunov

exponents corroborate the prediction based on the normal form coefficients.

Remark that since we deal with a periodically forced system the return time is

independent of the distance from the limit cycle, so we could do this extra check.

Indeed, for all PDNS points, the αijk in the first equation of the PDNS normal form

(4.14) are zero up to the accuracy of the computation.

6.3.7 Control of vibrations

In [45] a two-mass system of which the main mass is excited by a flow-induced, self

excited force is studied. A single mass that acts as a dynamic absorber is attached

to the main mass and, by varying the stiffness between the main mass and the
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absorber mass, represents a parametric excitation. The system is given by





ẋ1 = v1,

ẋ2 = v2,

v̇1 = −k1(v1 − v2)− Q2(1 + εy1)(x1 − x2),

v̇2 = Mk1(v1 − v2) + MQ2(1 + εy1)(x1 − x2)− k2v2 − x2 + βV2(1 − γv2
2)v2,

ẏ1 = −ηy2 + y1(1 − y2
1 − y2

2),

ẏ2 = ηy1 + y2(1 − y2
1 − y2

2).
(6.34)

The following parameters are fixed: ε = 0.1, k2 = 0.1, β = 0.1, V =
√

2.1, γ = 4,
Q = 0.95, M = 0.2, k1 and η will be the continuation parameters.

The Double Neimark-Sacker points

0.08 0.09 0.1 0.11 0.12 0.13
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Figure 6.20: Partial bifurcation diagram of limit cycles in system (6.34). In purple

are Neimark-Sacker curves.

An NSNS point is detected for (k1, η) = (9.167 · 10−2, 0.411), see Figure 6.20. The
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normal form coefficients are

(p11, p22, θ, δ, sign l1) = (−3.733 · 10−3,−6.494 · 10−3, 0.541, 1.203, 1).

The positive sign of the product p11 p22 implies that we are in a ’simple’ case that

can happen at the NSNS point. Since δ > θ, the role of both coefficients has to

be reversed. Therefore, the situation θ > 0, δ < 0, θδ < 1 indicates that the NSNS

bifurcation is located in region II in Figure 4.13 (a). As in the previous examples, we

compute the Lyapunov exponents to check the obtained results of the normal form

coefficients. We make the computations for k1 fixed at 0.083 and η ∈ [0.4; 0.42]
(η values are between the NS curves). The results are shown in Figure 6.21.
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Figure 6.21: Lyapunov exponents computed for k1 = 0.083 close to the NSNS point

at (k1, η) = (9.167 · 10−2, 0.411).

For η values starting from 0.40, we are in region 3 (or 12 due to symmetry) in

Figure 4.13 (b), where there is a stable 2-torus and thus two Lyapunov exponents

equal to zero. A third Lyapunov exponent approaches zero and between η ≈ 0.4117
and η ≈ 0.4154 three Lyapunov exponents are equal to zero. This region denotes

the appearance of a stable 3-torus and corresponds with region 5 from Figure 4.13

(b). The critical values of η correspond with the curves T1 and T2 in Figure 4.13 (a).

For η ≥ 0.4154, only a stable 2-torus remains and thus there are two zero Lyapunov
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exponents. Therefore, the computed Lyapunov exponents are in agreement with the

normal form coefficients.

6.4 Conclusion

In this chapter we discussed the implementation of the critical coefficients. The

formulas for the normal form coefficients derived in Chapter 5 are directly suitable

for numerical implementation using orthogonal collocation. They perfectly fit into

a continuation context, where limit cycles and their bifurcations are computed us-

ing the BVP-approach, without numerical approximation of the Poincaré map or

its derivatives. Being implemented into the Matlab toolbox MatCont [31, 32], the

developed methods are freely available to assist an advanced two-parameter bifur-

cation analysis of dynamical systems generated by ODEs from various applications.

The derivation of the normal form coefficients from Chapter 5 together with the

extensive discussion of the implementation details in this chapter make an interested

reader able to use the developed normal form theory and implement it in any (based

on continuation) software.

We investigated numerous examples to check whether the bifurcation diagram,

which we expect from the normal form analysis, corresponds with the bifurcation

scenario obtained by a study around the bifurcation point in MatCont. Every codim

2 bifurcation of limit cycles was tested for and at each point the bifurcation study

confirmed the results of the values of the normal form coefficients.

6.A Some results on differential-difference opera-

tors

In Section 6.2 we used the orthogonality with respect to the following inner product:

if ζ1, ζ2 ∈ C0([0, 1], Cn) and η1, η2 ∈ Cn, then

〈[
ζ1

η1

]
,

[
ζ2

η2

]〉
=
∫ 1

0
〈ζ1(t), ζ2(t)〉 dt + 〈η1, η2〉 =

∫ 1

0
ζH

1 (t)ζ2(t)dt + η̄T
1 η2.

If this inner product vanishes, then we say that the corresponding vectors are or-

thogonal and write [
ζ1

η1

]
⊥
[

ζ2

η2

]
.
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Below we list the propositions used in Section 6.2, with proofs of the statements.

Proposition 6.1. Consider two differential-difference operators

φ1,2 : C1([0, 1], Rn) → C0([0, 1], Rn)× Rn,

with

φ1(ζ) =

[
ζ̇ − TA(t)ζ
ζ(0)− ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TAT(t)ζ
ζ(0)− ζ(1)

]
.

If ζ ∈ C1([0, 1], Rn), then ζ ∈ Ker(φ1) if and only if

[
ζ

ζ(0)

]
⊥ φ2(C1([0, 1], Rn)),

and ζ ∈ Ker(φ2) if and only if

[
ζ

ζ(0)

]
⊥ φ1(C1([0, 1], Rn)).

Proof. We will focus on the first assertion. If ζ lies in the kernel of φ1, then

ζ̇ − TA(t)ζ = 0 and ζ(0)− ζ(1) = 0. For all g ∈ C1([0, 1], Rn) we have

∫ 1

0
gT(t)ζ̇(t)dt −

∫ 1

0
TgT(t)A(t)ζ(t)dt = 0

⇒ gT(t)ζ(t)|10 −
∫ 1

0
ġT(t)ζ(t)dt −

∫ 1

0
TgT(t)A(t)ζ(t)dt = 0

⇒ gT(1)ζ(1)− gT(0)ζ(0)−
∫ 1

0
(ġ(t) + TAT(t)g(t))Tζ(t)dt = 0

⇒ −(g(0)− g(1))Tζ(0)−
∫ 1

0
(ġ(t) + TAT(t)g(t))Tζ(t)dt = 0

⇒
〈[

ġ + TAT(t)g
g(0)− g(1)

]
,

[
ζ

ζ(0)

]〉
= 0.

Conversely, assume that

〈[
ζ

ζ(0)

]
,

[
ġ + TAT(t)g
g(0)− g(1)

]〉
= 0 for all g ∈ C1([0, 1], Rn).
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Then,

∫ 1

0
ζT(t)(ġ(t) + TAT(t)g(t))dt + ζT(0)(g(0)− g(1)) = 0

⇒ ζT(1)g(1)− ζT(0)g(0)−
∫ 1

0
(ζ̇(t)− TA(t)ζ(t))Tg(t)dt

+ ζT(0)(g(0)− g(1)) = 0

⇒ −(ζ(0)− ζ(1))Tg(1)−
∫ 1

0
(ζ̇(t)− TA(t)ζ(t))Tg(t)dt = 0.

If ζ̇(t)− TA(t)ζ(t) 6= 0, then there exists a g(t) with g(1) = 0 such that

∫ 1

0
(ζ̇(t)− TA(t)ζ(t))Tg(t)dt 6= 0.

This is impossible, so ζ̇(t)− TA(t)ζ(t) = 0. Hence (ζ(0)− ζ(1))Tg(1) = 0 for

all g; and thus there must hold that ζ(0)− ζ(1) = 0. From both observations it

follows that ζ ∈ Ker(φ1).
The proof of the second assertion is similar.

Proposition 6.2. Consider φ1,2 : C1([0, 1], Rn) → C0([0, 1], Rn)×Rn, where

φ1(ζ) =

[
ζ̇ − TA(t)ζ
ζ(0) + ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TAT(t)ζ
ζ(0) + ζ(1)

]
.

If ζ ∈ C1([0, 1], Rn), then ζ ∈ Ker(φ1) if and only if

[
ζ

ζ(0)

]
⊥ φ2(C1([0, 1], Rn)),

and ζ ∈ Ker(φ2) if and only if

[
ζ

ζ(0)

]
⊥ φ1(C1([0, 1], Rn)).

Proof. The proof is similar to the proof of Proposition 6.1.
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Proposition 6.3. Consider φ1,2 : C1([0, 1], Cn) → C0([0, 1], Cn)× Cn, where

φ1(ζ) =

[
ζ̇ − TA(t)ζ + iθζ

ζ(0)− ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TAT(t)ζ + iθζ

ζ(0)− ζ(1)

]
.

If ζ ∈ C1([0, 1], Cn), then ζ ∈ Ker(φ1) if and only if

[
ζ

ζ(0)

]
⊥ φ2(C1([0, 1], Cn)),

and ζ ∈ Ker(φ2) if and only if

[
ζ

ζ(0)

]
⊥ φ1(C1([0, 1], Cn)).

Proof. If ζ is in the kernel of φ1, then ζ̇ − TA(t)ζ + iθζ = 0 and ζ(0)− ζ(1) = 0.

For all g ∈ C1([0, 1], Cn) we have

∫ 1

0
gH(t)ζ̇(t)dt −

∫ 1

0
TgH(t)A(t)ζ(t)dt +

∫ 1

0
iθgH(t)ζ(t) = 0

⇒ gH(t)ζ(t)|10 −
∫ 1

0
ġH(t)ζ(t)dt −

∫ 1

0
TgH(t)A(t)ζ(t)dt +

∫ 1

0
iθgH(t)ζ(t) = 0

⇒ gH(1)ζ(1)− gH(0)ζ(0)−
∫ 1

0
(ġ(t) + TAT(t)g(t) + iθg(t))Hζ(t)dt = 0

⇒ −(g(0)− g(1))Hζ(0)−
∫ 1

0
(ġ(t) + TAT(t)g(t) + iθg(t))Hζ(t)dt = 0

⇒
〈[

ġ + TAT(t)g + iθg
g(0)− g(1)

]
,

[
ζ

ζ(0)

]〉
= 0.

The proofs of the reverse implication and the second assertion are similar.

Proposition 6.4. Consider φ1,2 : C1([0, 1], Cn) → C0([0, 1], Cn)× Cn, where

φ1(ζ) =

[
ζ̇ − TA(t)ζ

ζ(0)− e−iθζ(1)

]
, φ2(ζ) =

[
ζ̇ + TAT(t)ζ

ζ(0)− e−iθζ(1)

]
.
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If ζ ∈ C1([0, 1], Cn), then ζ ∈ Ker(φ1) if and only if

[
ζ

ζ(0)

]
⊥ φ2(C1([0, 1], Cn)),

and ζ ∈ Ker(φ2) if and only if

[
ζ

ζ(0)

]
⊥ φ1(C1([0, 1], Cn)).

Proof. If ζ is in the kernel of φ1, then ζ̇ − TA(t)ζ = 0 and ζ(0)− e−iθζ(1) = 0.

For all g ∈ C1([0, 1], Cn) we have

∫ 1

0
gH(t)ζ̇(t)dt −

∫ 1

0
TgH(t)A(t)ζ(t)dt = 0

⇒ gH(t)ζ(t)|10 −
∫ 1

0
ġH(t)ζ(t)dt −

∫ 1

0
TgH(t)A(t)ζ(t)dt = 0

⇒ gH(1)ζ(1)− gH(0)ζ(0)−
∫ 1

0
(ġ(t) + TAT(t)g(t))Hζ(t)dt = 0

⇒ −(g(0)− e−iθ g(1))Hζ(0)−
∫ 1

0
(ġ(t) + TAT(t)g(t))Hζ(t)dt = 0

⇒
〈[

ġ + TAT(t)g

g(0)− e−iθ g(1)

]
,

[
ζ

ζ(0)

]〉
= 0.

The proofs of the reverse implication and the second assertion are similar.

Proposition 6.5. Consider two differential-difference operators φ1,2 : C1([0,
1], Rn) → C0([0, 1], Rn)× Rn, where

φ1(ζ) =

[
ζ̇ − TA(t)ζ
ζ(0)− ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TAT(t)ζ
ζ(0)− ζ(1)

]
.

If ζ ∈ C1([0, 1], Rn), then

φ1(ζ) =

[
g
0

]
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if and only if

〈[
ζ

ζ(0)

]
,

[
ḣ + TAT(t)h
h(0)− h(1)

]〉
= −

〈[
g
0

]
,

[
h
0

]〉
,

for all h ∈ C1([0, 1], Rn). Furthermore

φ2(ζ) =

[
g
0

]

if and only if

〈[
ζ

ζ(0)

]
,

[
ḣ − TA(t)h
h(0)− h(1)

]〉
= −

〈[
g
0

]
,

[
h
0

]〉
,

for all h ∈ C1([0, 1], Rn).

Proof. We focus on the first assertion. Suppose that ζ̇(t)− TA(t)ζ(t) = g(t) and

ζ(0)− ζ(1) = 0. For all h ∈ C1([0, 1], Rn) we have
∫ 1

0
hT(t)ζ̇(t)dt −

∫ 1

0
ThT(t)A(t)ζ(t)dt =

∫ 1

0
hT(t)g(t)dt

⇒ hT(t)ζ(t)|10 −
∫ 1

0
ḣT(t)ζ(t)dt −

∫ 1

0
ThT(t)A(t)ζ(t)dt =

∫ 1

0
hT(t)g(t)dt

⇒ hT(1)ζ(1)− hT(0)ζ(0)−
∫ 1

0
(ḣ(t) + TAT(t)h(t))Tζ(t)dt =

∫ 1

0
hT(t)g(t)dt

⇒
∫ 1

0
ζT(t)(ḣ(t) + TAT(t)h(t))dt + ζT(0)(h(0)− h(1)) = −

∫ 1

0
gT(t)h(t)dt

⇒
〈[

ζ
ζ(0)

]
,

[
ḣ + TAT(t)h
h(0)− h(1)

]〉
= −

〈[
g
0

]
,

[
h
0

]〉
.

The proofs of the reverse implication and the second assertion are similar.

Proposition 6.6. Consider two differential-difference operators φ1,2 : C1([0,
1], Rn) → C0([0, 1], Rn)× Rn, where

φ1(ζ) =

[
ζ̇ − TA(t)ζ
ζ(0) + ζ(1)

]
, φ2(ζ) =

[
ζ̇ + TAT(t)ζ
ζ(0) + ζ(1)

]
.
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If ζ ∈ C1([0, 1], Rn), then

φ1(ζ) =

[
g
0

]

if and only if

〈[
ζ

ζ(0)

]
,

[
ḣ + TAT(t)h
h(0) + h(1)

]〉
= −

〈[
g
0

]
,

[
h
0

]〉
,

∀h ∈ C1([0, 1], Rn). Furthermore

φ2(ζ) =

[
g
0

]

if and only if

〈[
ζ

ζ(0)

]
,

[
ḣ − TA(t)h
h(0) + h(1)

]〉
= −

〈[
g
0

]
,

[
h
0

]〉
,

∀h ∈ C1([0, 1], Rn).

Proof. Suppose that ζ̇(t)− TA(t)ζ(t) = g(t) and ζ(0) + ζ(1) = 0. For all h ∈
C1([0, 1], Rn) we have

∫ 1

0
hT(t)ζ̇(t)dt −

∫ 1

0
ThT(t)A(t)ζ(t)dt =

∫ 1

0
hT(t)g(t)dt

⇒ hT(t)ζ(t)|10 −
∫ 1

0
ḣT(t)ζ(t)dt −

∫ 1

0
ThT(t)A(t)ζ(t)dt =

∫ 1

0
hT(t)g(t)dt

⇒ hT(1)ζ(1)− hT(0)ζ(0)−
∫ 1

0
(ḣ(t) + TAT(t)h(t))Tζ(t)dt =

∫ 1

0
hT(t)g(t)dt

⇒
∫ 1

0
ζT(t)(ḣ(t) + TAT(t)h(t))dt + ζT(0)(h(0) + h(1)) = −

∫ 1

0
gT(t)h(t)dt

⇒
〈[

ζ
ζ(0)

]
,

[
ḣ + TAT(t)h
h(0) + h(1)

]〉
= −

〈[
g
0

]
,

[
h
0

]〉
.

The proofs of the reverse implication and the second assertion are similar.
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7
Future work

This chapter gives a brief summary of the topics that we discussed in this

thesis and provides suggestions for future work.

In this thesis we discussed two main topics, namely the homotopy method for the

initialization of homoclinic and heteroclinic orbits and the normal form theory for

codimension 2 bifurcations of limit cycles. Both subjects offer possibilities for further

research.

In Chapter 3 we first remarked that a homoclinic orbit can be initialized from a

limit cycle with a large period. An alternative was offered by the homotopy method,

which is a systematic procedure that searches for a better approximation of the

homoclinic orbit in each step of the homotopy method. The consecutive steps lead

to an orbit that can be used as start-up for the continuation of homoclinic orbits.

The current version of MatCont now supports this method.

Homoclinic orbits are also known to bifurcate from certain codimension 2 bifur-

cations of equilibria, namely from a Bogdanov-Takens point, a Zero-Hopf point or a

Double Hopf equilibrium (see [56,67] and references therein). For the start-up from

a Bogdanov-Takens point, homoclinic predictors for the parameter and orbit are

given in [11]. These formulas are implemented in MatCont. However, in practice,
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the initialization often fails. This suggests that the method needs to be reconsid-

ered. This, together with a rigorous study of the initialization from a Zero-Hopf

and a Double Hopf point, is work currently under development.

Instead of starting up a homoclinic orbit from a limit cycle with a large period, the

reverse could be done. Depending on the type of the equilibrium of the homoclinic

orbit, either a unique limit cycle bifurcates from the homoclinic orbit or an infinite

number of limit cycles is present in a neighbourhood of the homoclinic orbit. Either

way, an initialization of a limit cycle from the homoclinic orbit could be envisaged.

The tricky part would probably be to deal with the infinite time that the orbit spends

near the equilibrium point.

The homotopy method that we considered in Chapter 3 concerned point-to-

point connections, for homoclinic orbits as well as heteroclinic orbits. The method,

however, could also be generalized to homoclinic cycle-to-cycle connections, hetero-

clinic point-to-cycle connections and heteroclinic cycle-to-cycle connections. These

methods were studied in [42,43] for 3-dimensional ODEs. They should be extended

to the n-dimensional case, and the methods and their continuations incorporated

in MatCont.

Chapter 4 listed the normal forms for all codimension 2 bifurcations of limit cycles

and presented their unfoldings, which clarified what kind of bifurcation scenario

occurs around the bifurcation point depending on the values of the normal form

coefficients. In Chapter 5 we derived these normal form coefficients by making use of

the homological equation approach. In Chapter 6 we considered the implementation

in MatCont and verified our computations of the critical coefficients by numerous

examples.

To fully support the two-parameter bifurcation analysis of ODEs, one further

needs special methods to switch between various branches of codimension 1 bifur-

cations of limit cycles rooted at the codimension 2 points. Such methods have

been developed and implemented in MatCont for codimension 2 equilibrium [72]

and fixed point [51] bifurcations. Switching at codimension 2 points to the con-

tinuation of codimension 1 local bifurcations of limit cycles seems to be the next

natural problem to attack, while that for codimension 1 bifurcations of homoclinic

and heteroclinic orbits is more difficult and probably requires new ideas. Similar

remarks can be made about quasi-periodic bifurcations of tori. Since there does

not (yet) exist robust techniques for the continuation of invariant tori, we used

Lyapunov exponents for the detection of the 2- and higher-dimensional tori.
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Samenvatting

De analyse van dynamische systemen betreft het bestuderen van fenomenen die

variëren doorheen de tijd. Een dynamisch systeem bevat een evolutieregel die speci-

fieert hoe de toekomst en het verleden eruitzien op basis van het heden. De moderne

theorie van dynamische systemen dateert van de 19de eeuw, toen Poincaré baan-

brekend werk leverde op het vlak van hemelmechanica en fundamentele problemen

zoals de stabiliteit en de evolutie van het zonnestelsel bestudeerde. Zijn werk ligt

aan de basis van de lokale en globale analyse van dynamische systemen.

Een eenvoudig voorbeeld van een dynamisch systeem wordt gegeven door een

slinger. De slinger bestaat uit een staaf die vast hangt aan een welbepaald punt

en heen en weer beweegt in een verticaal vlak. De toestand van de slinger wordt

volledig bepaald door zijn positie en snelheid. De slinger is onderhevig aan de

zwaartekracht, en de evolutieregel wordt gegeven door de wet van Newton F = ma,
waarbij F de gravitatiekracht is, m de massa en a de versnelling.

Maar dit onderzoeksgebied kent toepassingen in vele vakgebieden, zoals in de

fysica, biologie, chemie, economie en sociologie. Dit verklaart de populariteit van

dynamische systemen in de laatste decennia. Om deze toepassingen te beschrijven,

moet er een wiskundig model opgesteld worden. Gebruik makend van algoritmen

en computationele methoden kunnen we dan de observaties verklaren aan de hand

van dit model.

Een dynamisch systeem kan ofwel betrekking hebben op een continu systeem,

ofwel op een discreet systeem. In het eerste geval wordt de evolutieregel gegeven

door een stelsel gewone differentiaalvergelijkingen, in het tweede geval door een

afbeelding. De meeste concepten en resultaten met betrekking tot een continu

systeem hebben een analogon in het discrete geval. Dit doctoraat focust op de

studie van gewone differentiaalvergelijkingen. We maken echter ook gebruik van

bestaande resultaten voor afbeeldingen.

De geordende familie van punten die we bekomen door de evolutieregel toe te

passen, wordt een baan genoemd. Beschouw een baan die vertrekt in een punt en
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doorheen de tijd steeds in dat zelfde punt blijft. Zo een punt wordt een evenwichts-

punt genoemd. Een evenwichtspunt is stabiel als banen in de buurt van het punt

convergeren naar het evenwichtspunt.

Eén van de basisbegrippen in de theorie van dynamische systemen is dat van

een bifurcatie. Onder de variatie van een parameter kan het dynamisch systeem

op punten stoten waar het kwalitatief gedrag verandert. Dit is een bifurcatie. Het

eenvoudigste voorbeeld van een bifurcatie is het verdwijnen van de stabiliteit van

een evenwichtspunt.

Er bestaan twee soorten bifurcaties, namelijk lokale en globale bifurcaties. Een

lokale bifurcatie kan gedetecteerd worden door een willekeurig kleine omgeving van

een evenwichtspunt of periodieke baan te bekijken. Een voorbeeld van een lo-

kale bifurcatie wordt gegeven door de Hopfbifurcatie, waarbij de stabiliteit van het

evenwichtspunt verandert en een periodieke baan ontstaat. Er zijn echter ook bi-

furcaties die niet op deze manier kunnen gevonden worden. Dit zijn de globale

bifurcaties. Een voorbeeld wordt gegeven door een heteroclinische baan, waarbij

de baan naar een eerste evenwichtspunt convergeert voor positieve tijdswaarden en

naar een tweede evenwichtspunt voor negatieve tijdswaarden.

Bij de detectie van een bifurcatie is het de bedoeling om de parameterruimte

onder te verdelen in verschillende gebieden, zodat voor alle mogelijke parameter-

waarden behorende tot eenzelfde gebied hetzelfde dynamisch gedrag wordt vertoond.

Een bifurcatiediagram geeft zo een verdeling weer. Met elk gebied correspondeert er

een faseportret, dat een voorstelling geeft van alle mogelijke banen in de faseruimte.

De analyse van een (niet-lineair) dynamisch systeem kan heel uitdagend zijn.

Zelfs een eenvoudig systeem kan complex gedrag vertonen, waarbij geen expliciete

formules kunnen gegeven worden voor de oplossingen. Numerieke methoden geven

dan een antwoord. Numerieke simulatie vormt een eerste manier om een dynamisch

systeem te bestuderen. Hiervan gebruik makend kunnen (stabiele) evenwichtspun-

ten en periodieke banen gevonden worden. Op die manier verkrijgen we een ruwe

schets van hoe het faseportret eruitziet. Continuatie toepassen is een tweede manier.

Het idee is om een kromme te berekenen waarbij elk punt een oplossing is van een

geschikt stelsel vergelijkingen dat het te onderzoeken dynamisch object definieert.

Bijvoorbeeld, wanneer een (stabiel) evenwichtspunt wordt gedetecteerd, kunnen we

gebruik maken van continuatietechnieken om een kromme van evenwichtspunten te

berekenen onder de variatie van een parameter.

Een softwarepakket dat kan gebruikt worden voor de studie van continue dyna-

mische systemen is MatCont. Dit pakket is ontwikkeld door onderzoeksgroepen uit

België en Nederland, met de hulp van individuele wetenschappers uit andere landen.
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Het is geschreven in Matlab en bijgevolg platform-onafhankelijk. Dankzij de grafi-

sche user interface is een interactieve studie van bifurcaties mogelijk. Het pakket is

gebaseerd op numerieke continuatie, waarbij eerst een predictie wordt gemaakt, die

vervolgens verbeterd wordt door de Moore-Penrose correctiemethode.

Tijdens de continuatie van evenwichtspunten kan een bifurcatie gedetecteerd

worden, dit is ofwel een Limietpunt ofwel een Hopfbifurcatie. Dit zijn codimensie 1
bifurcaties, die gevonden worden onder de variatie van een enkele systeemparameter.

Vervolgens kan een Limietpunt kromme of een Hopfkromme berekend worden door

gebruik te maken van continuatie. Op deze krommen kunnen we opnieuw bifurcaties

ontdekken. Dit zijn codimensie 2 bifurcaties, waarbij er twee systeemparameters vrij

zijn. Een codimensie 2 bifurcatie wordt in feite bepaald door het opleggen van twee

onafhankelijke voorwaarden. Codimensie 1 bifurcatiekrommen snijden transversaal

of raken elkaar in codimensie 2 bifurcatiepunten. Er kunnen ook codimensie 1
bifurcatiekrommen ontspruiten uit een codimensie 2 punt. Bijvoorbeeld, in een

Bogdanov-Takens punt ontstaat er een homoclinische bifurcatiekromme.

Theoretisch gezien kunnen er codimensie m bifurcaties voorkomen in een sys-

teem dat m systeemparameters bevat. In de praktijk echter kan de analyse van

een codimensie 2 punt al zeer complex zijn en in sommige gevallen is het volledige

bifurcatieplaatje nog steeds onbekend. Daarom beperken we ons meestal tot de

studie van codimensie 1 en 2 bifurcaties.

Er bestaan verschillende manieren om een periodieke baan te detecteren, bij-

voorbeeld door tijdsintegratie of wanneer er zich een Hopfbifurcatie voordoet. De

eerste manier is enkel van toepassing voor een stabiele periodieke baan en de initia-

lisatie van een periodieke baan vertrekkende van een Hopfbifurcatie leidt niet altijd

tot convergentie. Daarom is het belangrijk om over een aantal alternatieven te

beschikken voor de initialisatie van bifurcatiekrommen.

Naast evenwichtspunten en periodieke banen spelen homoclinische banen een

belangrijke rol in toepassingen. Een homoclinische baan is een periodieke baan

waarvan de periode oneindig groot wordt. De continuatie van homoclinische banen

kan opgestart worden vertrekkende van een continuatie van periodieke banen waarbij

de periode alsmaar groter werd. De homotopiemethode vormt een alternatief. We

focussen op deze methode in Hoofdstuk 3. Hiervan gebruik makend is het mogelijk

om een homoclinische baan op te starten vertrekkende van een evenwichtspunt.

Het is een systematische procedure waarbij in elke homotopiestap gezocht wordt

naar een betere benadering van de exacte homoclinische baan. Aan het einde van

de homotopiemethode verkrijgen we een baan, die (hopelijk) de exacte oplossing

voldoende goed benadert zodat de Newton correcties tot convergentie leiden. Ook in
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het geval van heteroclinische banen kan de homotopiemethode een voldoende goede

benadering leveren voor de exacte heteroclinische baan. In Hoofdstuk 3 beschrijven

we de homotopiemethodes voor beide types van banen en hun implementatie in een

softwarepakket, in ons geval MatCont. De continuatie van heteroclinische banen is

nu ook mogelijk in MatCont. We bespreken een aantal voorbeelden die de efficiëntie

van de methode illustreren.

Om na te gaan wat er zoal gebeurt rond het bifurcatiepunt kunnen we de omge-

ving van het gedetecteerde punt scannen op zoek naar lokale en globale bifurcaties.

Maar het zou veel handiger zijn indien we bij detectie onmiddellijk zouden weten

welke bifurcatiekrommen aanwezig zijn en hoe deze zich verhouden ten opzichte van

elkaar. Dit probleem kan aangepakt worden door te kijken naar de normaalvormen.

Bij de detectie van een bifurcatie wordt eerst een reductie van het dynamisch

systeem tot een centrale variëteit gemaakt. De dimensie van deze centrale vari-

eteit is klein. De definiërende vergelijkingen in de centrale variëteit worden dan

vereenvoudigd. Deze vereenvoudigde vorm wordt de normaalvorm genoemd. Met

welk type bifurcatie we te maken hebben, wordt afgeleid uit deze normaalvorm.

De coefficiënten die voorkomen in de normaalvorm, de normaalvormcoëfficiënten,

maken een onderscheid tussen de mogelijke bifurcatiescenario’s voor het bifurca-

tiepunt. Bijvoorbeeld, een negatieve normaalvormcoëfficiënt horende bij een Hopf-

bifurcatie leidt tot het ontstaan van een stabiele periodieke baan, een positieve

normaalvormcoëfficiënt tot een onstabiele periodieke baan. Indien parameters wor-

den geïntroduceerd, kunnen we met elke bifurcatie een ontvouwing associëren. Deze

geeft de verdeling van de parameterruimte in verschillende gebieden en de corres-

ponderende faseportretten voor elk gebied. Het aantal ontvouwingsparameters dat

voorkomt in de normaalvorm, is gelijk aan de codimensie van de bifurcatie.

In de hoofdstukken 4 − 6 focussen we op codimensie 2 bifurcaties van perio-

dieke banen, in totaal zijn dat er 11. De dimensie van de centrale variëteit voor

deze bifurcaties varieert van 2 t.e.m. 5. De bifurcaties worden geordend volgens

deze dimensie. Met elke periodieke baan kan een afbeelding geassocieerd worden,

namelijk de Poincaré afbeelding. De periodieke baan is dan een vast punt van deze

afbeelding. Deze associatie heeft tot voordeel dat resultaten die eerder ontwikkeld

werden voor afbeeldingen, in zekere mate kunnen hergebruikt worden voor de op te

bouwen theorie voor periodieke banen.

In Hoofdstuk 4 leiden we de normaalvormen voor alle 11 codimensie 2 bifurca-

ties van periodieke banen af en we maken duidelijk welke normaalvormcoëfficiënten

aanleiding geven tot welk bifurcatiescenario. We bespreken hun ontvouwingen en

verduidelijken de interpretatie van de banen die voorkomen in de faseportretten.
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Merk op dat we de ontvouwing geven voor de getrunceerde normaalvorm. Het is

logisch om ons dan af te vragen of de hogere ordetermen die voorkomen in de

oorspronkelijke normaalvorm, de dynamica, die is afgeleid uit de studie van de ge-

trunceerde normaalvorm, beïnvloeden. In sommige gevallen hebben de hogere orde

perturbaties geen invloed op het bifurcatieplaatje dat overeenstemt met de getrun-

ceerde normaalvorm. Jammer genoeg is dit niet altijd het geval. De aanwezigheid

van globale bifurcaties kan de topologische equivalentie tussen de bifurcatiediagram-

men die corresponderen met de getrunceerde en oorspronkelijke normaalvormen, in

de weg staan. Een perturbatie door hogere ordetermen maakt de dynamica in de

buurt van de globale bifurcaties complexer en wat er exact gebeurt, is in sommige

gevallen nog steeds onbekend.

Het is vanzelfsprekend dat we formules voor de normaalvormcoëfficiënten nodig

hebben. Deze worden bepaald aan de hand van de homologische vergelijking. In

Hoofdstuk 5 bespreken we de methode en leiden we de uitdrukkingen voor alle

noodzakelijke coëfficiënten af. Merk op dat deze uitdrukkingen zeer lang kunnen

zijn. De aanpak is in alle gevallen dezelfde, maar elk geval heeft wel zijn eigen

bijzonderheden.

De logische volgende stap is dan de implementatie van de normaalvormcoëffici-

enten. In Hoofdstuk 6 bespreken we hoe de uitdrukkingen op een efficiënte ma-

nier kunnen geïmplementeerd worden in MatCont. Voor de interpretatie van de

normaalvormcoëfficiënten van de codimensie 2 bifurcaties van periodieke banen met

een 4- of 5-dimensionale centrale variëteit wordt er een onderscheid gemaakt tussen

de ’eenvoudige’ en ’moeilijke’ gevallen. In een ’moeilijk’ geval is het bifurcatiesce-

nario complexer en komt er een extra torus voor. Hogere ordetermen bepalen de

stabiliteit van deze extra torus. Omdat deze torus niet altijd bestaat en omwille van

complexiteitsargumenten, laten we de berekening van de hogere ordetermen in het

algemeen achterwege. De uitdrukkingen zijn echter geïmplementeerd in MatCont

zodat een geïnteresseerde gebruiker ze kan opvragen.

Om onze werkwijze te verifiëren bespreken we een aantal voorbeelden waarin alle

11 codimensie 2 bifurcaties voorkomen. Enerzijds berekenen we de normaalvormco-

efficiënten. Op basis daarvan kunnen we de dynamica rond het gedetecteerde punt

voorspellen aan de hand van de ontvouwing, besproken in Hoofdstuk 4. Ander-

zijds scannen we de omgeving van het gedetecteerde punt op zoek naar mogelijke

bifurcatiekrommen. In alle voorbeelden leiden de twee werkwijzen tot hetzelfde bi-

furcatieplaatje. Dit overtuigt ons van de correctheid van de berekeningen voor de

normaalvormcoëfficiënten.
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