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Numerical Periodic Normalization for Codim 2 Bifurcations of Limit Cycles:
Computational Formulas, Numerical Implementation, and Examples∗
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Abstract. Explicit computational formulas for the coefficients of the periodic normal forms for codimension 2
(codim 2) bifurcations of limit cycles in generic autonomous ODEs are derived. All cases (except
the weak resonances) with no more than three Floquet multipliers on the unit circle are covered.
The resulting formulas are independent of the dimension of the phase space and involve solutions of
certain boundary-value problems on the interval [0, T ], where T is the period of the critical cycle,
as well as multilinear functions from the Taylor expansion of the ODE right-hand side near the
cycle. The formulas allow one to distinguish between various bifurcation scenarios near codim 2
bifurcations of limit cycles. Our formulation makes it possible to use robust numerical boundary-
value algorithms based on orthogonal collocation, rather than shooting techniques, which greatly
expands its applicability. The implementation is described in detail with numerical examples, where
numerous codim 2 bifurcations of limit cycles are analyzed for the first time.
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1. Introduction. Isolated periodic orbits (limit cycles) of smooth differential equations

(1.1) u̇ = f(u, p), u ∈ R
n, p ∈ R

m,

play an important role in applications. In generic systems of the form (1.1) depending on one
control parameter (i.e., with m = 1) a hyperbolic limit cycle exists for an open interval of
parameter values p. At a boundary of such an interval, the limit cycle may become nonhyper-
bolic, so that a cycle limit point (saddle-node), or a period-doubling (flip), or a torus (Neimark–
Sacker) bifurcation occurs. In two-parameter generic systems (1.1) (i.e., with m = 2) these
local bifurcations happen at certain curves in the parameter plane. These curves of codi-
mension 1 (codim 1) bifurcations can meet tangentially or intersect transversally at some
codimension 2 (codim 2) points characterized by a double degeneracy of the limit cycle which
play the role of organizing centers for local dynamics, i.e., near the critical cycle and for nearby
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parameter values. In some cases, such codim 2 bifurcations imply the appearance of nearby
“chaotic motions.”

The codim 2 bifurcations of limit cycles in generic systems (1.1) are well understood
with the help of the corresponding Poincaré maps and their normal forms (see, for example,
[24, 2, 4, 3, 29, 20]). However, applications of these results to the analysis of concrete systems
(1.1) are exceptional, since they require accurate higher-order derivatives of the Poincaré map
which are hardly available numerically [42, 22, 23, 32].

We note that there exists software, e.g., CAPD [9] and TIDES [1, 6], that allows us to
compute up to any precision level the solution of an ODE using a Taylor series method in a
variable stepsize—variable order formulation. It can also compute, up to any order, the partial
derivatives of the solution with respect to the initial conditions. When applied to compute
a periodic orbit by a shooting method, this will also provide the derivatives of the Poincaré
map.

Though this is a valuable approach in some individual cases, it is difficult to use in a
continuation context. Also, the shooting method does not have the high-order convergence
properties of the method of approximation by piecewise polynomials with collocation in the
Gauss points that is routinely used in the standard software such as AUTO [17], CONTENT
[31], and MATCONT [15, 14]. Moreover, the number of derivatives of the Poincaré map to
be computed is O(nk) if derivatives up to order k are needed (in several cases k = 5). Even
for moderate values of n this involves a great deal of unnecessary work since in our situation
the normal form itself is known in advance and we need only compute its coefficients. We will
show that this can be done without computing the derivatives of the Poincaré map.

Indeed, recently an alternative numerical method to analyze codim 1 limit cycle bifurca-
tions has been developed and implemented in [30]. It is based on the periodic normalization
proposed in [19, 25, 26] and completely avoids the numerical computation of Poincaré maps
and their derivatives. Instead, the computation of the normal form coeffcients is reduced
to solving certain linear boundary-value problems (BVPs), where only the partial deriva-
tives of the right-hand side (RHS) of (1.1) are used, and evaluating certain integrals. In
our implementation in MATCONT, we discretize these BVPs by orthogonal collocation with
piecewise-polynomial functions. Note that all appearing integrals can also be easily computed
using this discretization.

Analytical studies of bifurcation phenomena and their normal forms are sometimes sup-
ported by numerical computations, e.g., in [37, 8]. In such studies, curves of codim 1 bifur-
cations of limit cycles are computed (often with AUTO [17]), and codim 2 bifurcations are
detected. However, since normal form coeffcients are not computed, the results cannot be
compared to ours.

In the present paper, we apply the approach developed in [30] to codim 2 bifurcations
of limit cycles. We therefore advise the reader to first get acquainted with [30]. It should
be noted that already in [10] normal forms for some codim 2 bifurcations of cycles in (1.1)
were derived, while [25] contains the periodic normal forms for many codim 2 bifurcations of
cycles as well as a general normalization technique applicable at any codimension. However,
in neither of these publications are explicit formulas for the normal form coefficients given
in a form suitable for numerical implementation. The derivation of such formulas is the
primary contribution of this paper. We also report full details of their implementation and
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give numerous numerical examples.
The paper is organized as follows. In section 2 we fix notation, list the periodic normal

forms for codim 2 bifurcations of limit cycles in generic ODEs, and clarify the relationships
between the periodic normal forms and bifurcations of the Poincaré maps. Note that we
exclude the weakly resonant cases since traditionally, weak resonances are not included in
the list of codim 2 bifurcations (see [3, page 48]) but are considered as generic codim 1
Neimark–Sacker bifurcations, where only one invariant torus appears. We follow this tradition.
The birth of this torus is determined by the first Lyapunov coefficient that we do compute.
However, Arnol’d also noticed that it is more natural to describe such bifurcations in two-
parameter families (see pages 43 and 53 in [3]), where phase locking tongues appear.1 In
section 3 we derive explicit formulas to compute the critical normal form coefficients for these
bifurcations, which we order by the dimension nc of the cycle center manifold (i.e., the total
number of critical multipliers with |μ| = 1 including the trivial multiplier 1). We restrict
our attention to the cases nc = 2 and 3 but do not detect and thus do not compute normal
forms for weak resonances. In this paper we study the resulting eight cases for which nc = 2
or 3. The formulas for the normal form coefficients for these bifurcations are independent
of the dimension of the phase space and involve solutions of certain BVPs on the interval
[0, T ], where T is the period of the critical cycle, as well as multilinear functions from the
Taylor expansion of the RHS of (1.1) near the cycle. In section 4 we give the explicit formulas
for all needed functions and coefficients, but rescaled to the interval [0, 1], and discuss their
implementation in MATCONT. In section 5, we focus on four examples which contain all
eight codim 2 bifurcations of limit cycles with two- and three-dimensional center manifolds.
We discuss in detail which type of codim 2 bifurcation occurs in each case and check the
correspondence with the value/sign of the normal form coefficients.

We also provide some supplementary online material. In Appendix A of these supplemen-
tary files, we derive all necessary periodic normal forms based on [25, 26], where suggestions
were made for the derivation in all codim 2 cases, except the fold-flip, but details were missing.
In Appendix B some results on differential-difference operators used in section 4 are formu-
lated. Appendix C contains a list of all needed functions and normal form coefficients in the
considered eight cases. A tutorial is added as Appendix D, which allows the interested reader
to do all the computations that led to the bifurcation diagrams reported in Figures 1 and 3.

2. Periodic normal forms on the center manifold. We write (1.1) at the critical param-
eter values as

(2.1) u̇ = F (u),

and suppose that there is a limit cycle Γ corresponding to a periodic solution u0(t) = u0(t+T ),
where T > 0 is its (minimal) period. Develop F (u0(t) + v) into the Taylor series
(2.2)

F (u0(t) + v(t)) = F (u0(t)) +A(t)v(t) +
1

2
B(t; v(t), v(t)) +

1

3!
C(t; v(t), v(t), v(t))

+
1

4!
D(t; v(t), v(t), v(t), v(t)) +

1

5!
E(t; v(t), v(t), v(t), v(t), v(t)) +O(‖v‖6),

1The truncated critical normal form for a weak resonance depends on the order q of the resonance, and its
principle part is given by ż = iωz +Az|z|2 +Bz̄q−1, where �(A) determines the first Lyapunov coefficient but
B has very little dynamical meaning (|B| linearly scales the width of the tongue [26]).
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whereA(t)v = Fu(u0(t))v, B(t; v1, v2) = Fuu(u0(t))[v1, v2], C(t; v1, v2, v3) = Fuuu(u0(t))[v1, v2,
v3], etc. The multilinear forms A,B,C,D, and E are periodic in t with period T .

Consider the initial-value problem for the fundamental matrix solution Y (t), namely,

(2.3)
dY

dt
= A(t)Y, Y (0) = In,

where In is the n×n identity matrix. The eigenvalues of the monodromy matrixM = Y (T ) are
called (Floquet) multipliers of the limit cycle. The multipliers with |μ| = 1 are called critical.
There is always a “trivial” critical multiplier μn = 1. We denote the total number of critical
multipliers (counting multiplicity) by nc and assume that the limit cycle is nonhyperbolic,
i.e., nc > 1. In this case, there exists an invariant nc-dimensional critical center manifold
W c(Γ) ⊂ R

n near Γ.
It is well known [2, 29] that in generic two-parameter systems such as (1.1) only 11 codim 2

local bifurcations of limit cycles occur. In this paper we consider eight of these cases, namely,
those for which the dimension of the center manifold equals 2 or 3 (excluding the weak
resonances). To describe the normal forms of generic (2.1) on the critical center manifold
W c(Γ) for these codim 2 cases, we parameterize W c(Γ) near Γ by (τ, ξ), where τ ∈ [0, kT ]
for k ∈ {1, 2, 3, 4} is a cyclic coordinate, and ξ is a real or complex transverse coordinate,
depending on the bifurcation. Note that t represents the time of the dynamical system. It
follows from [25] that it is possible to select the τ - and ξ-coordinates so that the restriction
of (2.1) to the corresponding critical center manifold W c(Γ) with nc = 2 or nc = 3 will have
a periodic normal form. Each normal form can be written as

(2.4)

⎧⎪⎨
⎪⎩

dτ

dt
= 1 + p(ξ) + r(τ, ξ),

dξ

dt
= P (ξ) +R(τ, ξ),

where p and P are polynomials in ξ of some degree N without constant terms given in Table
1, while r and R are smooth O(‖ξ‖N+1)-functions which are kT -periodic in τ . We stress that
the normal forms from Table 1 are valid for generic systems. In particular, it is assumed that
a multiple critical eigenvalue of the monodromy matrix M (when present) is not semisimple
and that the corresponding Jordan chain has maximal length.

After a time reparameterization, (2.4) can be rewritten as

(2.5)

⎧⎪⎨
⎪⎩

dτ

dt
= 1,

dξ

dt
= P̃ (ξ) + R̃(τ, ξ),

where P̃ and R̃ have the same properties as P and R. The equation for ξ will then become
the nonautonomous system

dξ

dt
= P̃ (ξ) + R̃(t, ξ)

with the kT -periodic in t RHS. The kT -shift along orbits of the resulting autonomous trun-
cated system,

(2.6) ξ̇ = P̃ (ξ),
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Table 1
Truncated critical periodic normal forms with two- and three-dimensional center manifold.

nc Label Critical multipliers Truncated normal form

2 CPC μ1 = 1 (double)
τ̇ = 1− ξ + α1ξ

2 + α2ξ
3, τ ∈ [0, T ],

ξ̇ = cξ3, ξ ∈ R,

2 GPD μ1 = 1, μ2 = −1
τ̇ = 1 + α1ξ

2 + α2ξ
4, τ ∈ [0, 2T ],

ξ̇ = eξ5, ξ ∈ R,

3 CH
μ1 = 1, μ2,3 = e±iθ

θ �= 2π
j
, j = 1, 2, 3, 4, 5, 6

τ̇ = 1 + α1|ξ|2 + α2|ξ|4, τ ∈ [0, T ],

ξ̇ = iωξ + icξ|ξ|2 + eξ|ξ|4, ω = θ
T
, ξ ∈ C,

3 R1 μ1 = 1 (triple)

τ̇ = 1− ξ1 + αξ21 , τ ∈ [0, T ],

ξ̇1 = ξ2 − ξ1ξ2, ξ1 ∈ R,

ξ̇2 = aξ21 + bξ1ξ2, ξ2 ∈ R,

3 R2 μ1 = 1, μ2 = −1 (double)

τ̇ = 1 + αξ21 , τ ∈ [0, 2T ],

ξ̇1 = ξ2 + αξ21ξ2, ξ1 ∈ R,

ξ̇2 = aξ31 + bξ21ξ2, ξ2 ∈ R,

3 R3 μ1 = 1, μ2,3 = e±i 2π
3

τ̇ = 1 + α1|ξ|2 + α2ξ
3 + ᾱ2ξ̄

3, τ ∈ [0, 3T ],

ξ̇ = bξ̄2 + cξ|ξ|2, ξ ∈ C,

3 R4 μ1 = 1, μ2,3 = e±iπ
2

τ̇ = 1 + α1|ξ|2 + α2ξ
4 + ᾱ2ξ̄

4, τ ∈ [0, 4T ],

ξ̇ = cξ|ξ|2 + dξ̄3, ξ ∈ C,

3 LPPD μ1 = 1 (double), μ2 = −1

τ̇ = 1− ξ1 + α20ξ
2
1 + α02ξ

2
2 + α30ξ

3
1 + α12ξ1ξ

2
2 , τ ∈ [0, 2T ],

ξ̇1 = a20ξ
2
1 + a02ξ

2
2 + a30ξ

3
1 + a12ξ1ξ

2
2 , ξ1 ∈ R,

ξ̇2 = b11ξ1ξ2 + b21ξ
2
1ξ2 + b03ξ

3
2 , ξ2 ∈ R,

will approximate the kth iterate of the Poincaré map associated with the limit cycle and
restricted to the center manifold, in appropriate coordinates. Notice that the RHS of (2.6)
has the same terms as the corresponding equation in the Iooss normal form in [25].

This construction can be carried out to parameter-dependent systems. In appropriate
coordinates, a canonical unfolding of (2.6) will approximate the restricted Poincaré map of
the generic two-parameter system (1.1) [25]. In what follows, we refer to the bifurcation
diagrams of the unfoldings given in [29]. The complete overview of all bifurcation diagrams
with phase portraits can be found in the arXiv paper [13].

2.1. Bifurcations with two critical eigenvalues.

2.1.1. Cusp point of cycles (CPC) bifurcation. In this case, (2.6) takes the form

(2.7) ξ̇ = cξ3, ξ ∈ R,

and the T -shift along its orbits approximates the restricted Poincaré map associated with the
critical limit cycle. The canonical two-parameter unfolding of (2.7) is

ξ̇ = β1 + β2ξ + cξ3,

provided c �= 0. Equilibria of these equations correspond to fixed points of the Poincaré maps,
i.e., cycles in (1.1). When two equilibria collide at a limit point bifurcation, a limit point of
cycles (LPC) bifurcation occurs in (1.1). The bifurcation diagram of this equation is shown
in Figure 8.3 in section 8.2 of [29] for the case c < 0. On curves T1 and T2, which meet
tangentially at the cusp point, two limit cycles collide and disappear. When detecting a CPC
point, the output given by MATCONT is the normal form coefficient c.
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2.1.2. Generalized period-doubling (GPD) bifurcation. In this case, (2.6) reduces to

(2.8) ξ̇ = eξ5, ξ ∈ R,

and the 2T -shift along its orbits will approximate the second iterate of the restricted Poincaré
map associated with the critical limit cycle. The canonical two-parameter unfolding of (2.8)
when e �= 0 is

ξ̇ = β1ξ + β2ξ
3 + eξ5.

The equilibrium ξ = 0 of this equation corresponds to the fixed point of the Poincaré map,
while symmetric nonzero equilibria of this equation correspond to its 2-cycles. Thus, a pitch-
fork bifurcation in this equation will describe a period-doubling bifurcation of a limit cycle in
(1.1). If e < 0, we obtain the bifurcation diagram reported in Figure 9.3 in [29], in which the
limit point curve of the period-doubled limit cycles T (2) is tangent to the subcritical period-

doubling branch labeled as F
(1)
− . If e > 0, we are in the opposite situation. The output given

by MATCONT is the normal form coefficient e.

2.2. Bifurcations with three critical eigenvalues.

2.2.1. Chenciner (CH) bifurcation. In this case, (2.6) becomes

(2.9) ξ̇ = iωξ + i(c − α1ω)ξ|ξ|2 + (e− i(α1c− α2
1ω + α2ω))ξ|ξ|4,

and the T -shift along its orbits will approximate the restricted Poincaré map associated with
the critical limit cycle. The canonical two-parameter unfolding of (2.9) is locally topologically
equivalent to the normal form for the degenerate Hopf (Bautin) bifurcation

ξ̇ = (β1 + iω)ξ + β2ξ|ξ|2 + �(e)ξ|ξ|4,
provided �(e) �= 0. The trivial equilibrium ξ = 0 corresponds to the bifurcating cycle in
(1.1), while limit cycles in the (�(ξ),�(ξ))-plane correspond to closed invariant curves of
the approximate Poincaré map, i.e., approximate invariant tori in (1.1). Note that actual
invariant sets of (1.1) can be close to tori but have a much more complicated structure. The
Hopf bifurcation will correspond to the Neimark–Sacker bifurcation, while the LPC at which
two limit cycles collide and disappear will be substituted by a complicated bifurcation set
where an “annihilation” of two closed invariant curves occurs. This set, however, is close to
the LPC curve, which therefore will be referred to as the “limit point of tori curve.”

The sign of �(e) determines the bifurcation scenario: �(e) < 0 corresponds with a stable
critical limit cycle and �(e) > 0 with an unstable critical limit cycle. When �(e) < 0 the
outer invariant curve is stable and the limit point of tori curve is tangent to the subcritical
Neimark–Sacker branch, as shown in Figure 9.5 of [29]. When �(e) > 0 the outer invariant
curve is unstable and the limit point of tori curve is tangent to the supercritical Neimark–
Sacker branch. The output given by MATCONT is �(e).

2.2.2. Strong resonance 1:1 (R1) bifurcation. In this case, (2.6) has the form

(2.10)

{
ξ̇1 = ξ2,

ξ̇2 = aξ21 + bξ1ξ2,
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where it is assumed that ab �= 0. The T -shift along orbits of this system will approximate the
restricted Poincaré map associated with the critical limit cycle. The canonical two-parameter
unfolding of (2.10) is given by the Bogdanov normal form

{
ξ̇1 = ξ2,

ξ̇2 = β1 + β2ξ1 + aξ21 + bξ1ξ2,

with bifurcation diagrams depending on the sign of the product ab. Equilibria of this sys-
tem correspond to fixed points of the Poincaré map, i.e., to cycles of (1.1), while its limit
cycles approximate closed invariant curves of the map, i.e., invariant tori of (1.1). The Hopf
bifurcation will thus correspond to the Neimark–Sacker bifurcation. In particular, as shown
in Figure 8.8 of [29], if the two coefficients have different signs, the Neimark–Sacker curve H
is supercritical, while in the other case it is subcritical. The saddle homoclinic bifurcation in
the Bogdanov normal form will correspond to a complicated sequence of bifurcations through
which the torus self-destructs near a homoclinic tangle. The output given by MATCONT is
the product of the coefficients a and b.

2.2.3. Strong resonance 1:2 (R2) bifurcation. If we reparameterize time, (2.6) takes the
form

(2.11)

{
ξ̇1 = ξ2,

ξ̇2 = aξ31 + bξ21ξ2.

The 2T -shift along its orbits will approximate the second iterate of the restricted Poincaré
map associated with the critical limit cycle. The canonical two-parameter unfolding of (2.11)
when ab �= 0 is {

ξ̇1 = ξ2,

ξ̇2 = β1ξ1 + β2ξ2 + aξ31 + bξ21ξ2.

We have four different bifurcation diagrams, determined by the signs of the coefficients. Those
with negative b are reported in Figure 9.9 of [29], where a > 0, and Figure 9.10 of [29], where
a < 0. The other two cases can be obtained by reversing the arrows of the phase portraits
and making a vertical flip both of the state portraits and of the bifurcation diagrams. The
trivial equilibrium ξ = 0 corresponds to the fixed point of the restricted Poincaré map, i.e.,
the bifurcating cycle of (1.1), while the nontrivial equilibria are the fixed points of the second
iterate of the Poincaré map and correspond to one doubled cycle in (1.1). Thus, a pitchfork
bifurcation implies the period-doubling bifurcation, and a Hopf bifurcation gives a Neimark–
Sacker bifurcation that generates an invariant torus. More complicated invariant sets and
bifurcations are also possible. The primary Neimark–Sacker curve H(1) is supercritical (with
negative normal form coefficient) if our coefficient b is negative and subcritical otherwise.
Moreover, if a < 0, a secondary Neimark–Sacker curve H(2) is rooted at the 1:2 resonance
point with opposite criticality of the primary one. The output given by MATCONT is (a, b).

2.2.4. Strong resonance 1:3 (R3) bifurcation. In this case, (2.6) takes the form

(2.12) ξ̇ = bξ̄2 + cξ|ξ|2, ξ ∈ C.
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The 3T -shift along its orbits will approximate the third iterate of the restricted Poincaré map
associated with the critical limit cycle. The canonical two-parameter unfolding of (2.12) when
b �= 0 and �(c) �= 0 is

ξ̇ = (β1 + iβ2)ξ + bξ̄2 + cξ|ξ|2.
Its trivial equilibrium corresponds to the bifurcating limit cycle, while three nontrivial equi-
libria correspond to fixed points of the third iterate of the Poincaré map, i.e., the cycle in (1.1)
with triple period. Moreover, a limit cycle in the (�(ξ),�(ξ))-plane approximates a closed
invariant curve of the Poincaré map, i.e., an invariant torus in (1.1). The usual remark about
the nature of the approximation is applicable here, but a Hopf bifurcation corresponds to the
Neimark–Sacker one. As can be seen in Figure 9.12 of [29], if �(c) < 0 the Neimark–Sacker
bifurcation at the curve N is supercritical (with negative normal form coefficient), while in
the other case it is subcritical. The output given by MATCONT is (b,�(c)).

2.2.5. Strong resonance 1:4 (R4) bifurcation. Here (2.6) has the form

(2.13) ξ̇ = cξ|ξ|2 + dξ̄3, ξ ∈ C.

The 4T -shift along its orbits will approximate the fourth iterate of the restricted Poincaré
map associated with the critical limit cycle. The canonical two-parameter unfolding of (2.13)
when the complex product cd �= 0 is

ξ̇ = (β1 + iβ2)ξ + cξ|ξ|2 + dξ̄3,

and its equilibria, cycles, and their bifurcations have the standard interpretations in terms of
the original system (1.1). In particular, nonzero equilibria correspond to the fixed points of
the fourth iterate of the Poincaré map, i.e., one cycle of approximate period-4T in (1.1). The
bifurcation diagram of the unfolding depends on the complex number

A =
c

|d|
(see [28, 29] and references therein). Many topologically different bifurcation diagrams can
be found near the 1:4 resonance point. The analysis, if one excludes higher codimension
situations, can be reduced to 22 different cases. First, analyzing the unfolding, one can divide
the A-plane into two big regions: in the semiplane �(A) < 0 the primary Neimark–Sacker
bifurcation is supercritical, and in the semiplane �(A) > 0 it is subcritical. What happens
in the semiplane �(A) > 0 can therefore be obtained by inverting the direction of the vector
fields. We can further reduce the analysis to the third quadrant of the A-plane, since the
12 possible cases are topologically equivalent paired through the transformation ξ �→ ξ̄. The
different regions are shown in Figure 9.14 of section 9.5.5 in [29], in which some curves are
computed numerically.

The output given by MATCONT is (A, d).

2.2.6. Fold-flip (LPPD) bifurcation. In this final case, (2.6) has the form

(2.14)

{
ξ̇1 = a20ξ

2
1 + a02ξ

2
2 + (a30 + a20)ξ

3
1 + (a12 + a02)ξ1ξ

2
2 ,

ξ̇2 = b11ξ1ξ2 + (b21 + b11)ξ
2
1ξ2 + b03ξ

3
2 .
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The 2T -shift along its orbits will approximate the second iterate of the restricted Poincaré
map associated with the critical limit cycle. If b11 �= 0, the canonical unfolding of (2.14) is
provided by{

ξ̇1 = β1 + β2ξ1 + a20ξ
2
1 + a02ξ

2
2 + (a30 + a20)ξ

3
1 + (a12 + a02)ξ1ξ

2
2 ,

ξ̇2 = b11ξ1ξ2 + (b21 + b11)ξ
2
1ξ2 + b03ξ

3
2 .

Its equilibria and cycles have standard interpretations in terms of the original system (1.1).
In particular, equilibria with ξ2 �= 0 correspond to a double-period cycle, while their Hopf
bifurcation represents a Neimark–Sacker (torus) bifurcation of this cycle in (1.1). Bifurcations
of limit cycles approximate torus bifurcations. The critical coefficients allow us to determine
which bifurcation scenario takes place. In particular (see [29, 33] for more details), three
additional nondegeneracy conditions are involved:

• if a20 �= 0 there are two limit cycles which collide and disappear;
• if a02 �= 0 the double-period limit cycle is born;
• if a02b11 < 0 a nondegenerate torus bifurcation occurs for the period-doubled cycle,

with the Lyapunov coefficient that might differ by a positive factor from

CNS = −2a20b21a02 + 6b03a
2
20 + (−2a02b21 − 6a20a02 + 2a20b03 − 3a02a30 − a12a20)b11

+ b211(a12 − a02),

provided CNS �= 0.
In Figures 9.25–9.28 of [29] four possible scenarios are reported depending on the sign of

the normal form coefficients. The output given by MATCONT is (b11, a20, a02, CNS).

3. Computation of critical coefficients. Taking into account previous results, we can
assume that a parameterization of the center manifold W c(Γ) has been selected so that the
restriction of (2.1) to this manifold has one of the normal forms given in section 2. We
then apply the so-called homological equation approach [7]: the Taylor expansions of T -, 2T -,
3T -, or 4T -periodic unknown functions involved in these parameterizations can be found by
solving appropriate BVPs on [0, T ] so that (2.1) restricted to W c(Γ) has the corresponding
periodic normal form. The coefficients of the normal forms arise from the Fredholm solvability
conditions for the BVPs as integrals of scalar products over [0, T ], involving nonlinear terms
of (2.1) near the periodic solution u0, as well as the critical (generalized) eigenfunctions
and already known expansion terms of the center manifold. A significant improvement with
respect to [30] is that we systematically use (anti)periodicity properties of individual terms in
the Taylor expansions. Note that BVPs for the generalized eigenfunctions are set up under
the same genericity assumptions on the Jordan structure of the monodromy matrix which are
used in the derivation of the corresponding critical normal forms.

The coefficient functions in the Taylor expansion are usually unique up to the addition
of a multiple of a known eigenfunction. This can be fixed by adding an integral condition.
Among other things this leads to the fact that normal form coefficients are not unique, but
implications for the underlying dynamical systems are independent of this. We also remark
that the solvability of all the equations up to the maximal order of the normal form has to be
checked. Finally, we note that the coefficients in the equation for the cyclic variable will be
computed only when needed for the computation of other critical coefficients.
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3.1. Bifurcations with a two-dimensional center manifold.

3.1.1. Cusp point of cycles bifurcation. The two-dimensional critical center manifold
W c(Γ) at the cusp point of cycles (CPC) bifurcation can be parameterized locally by (τ, ξ) as

(3.1) u = u0(τ) + ξv(τ) +H(τ, ξ), τ ∈ [0, T ], ξ ∈ R,

where H satisfies H(T, ξ) = H(0, ξ) and has the Taylor expansion

(3.2) H(τ, ξ) =
1

2
h2(τ)ξ

2 +
1

6
h3(τ)ξ

3 +O(ξ4)

with hj(T ) = hj(0) for j = 2, 3, while the generalized eigenfunction v is defined (as a function
of τ) by

(3.3)

⎧⎨
⎩

v̇ −A(τ)v − F (u0) = 0, τ ∈ [0, T ],
v(T )− v(0) = 0,∫ T

0 〈v, F (u0)〉dτ = 0,

where the dot denotes the derivative with respect to τ (this notation will be used throughout
this section). The function v exists due to Lemma 2 of [25]. Let ϕ∗ be a nontrivial solution
of the adjoint eigenvalue problem

(3.4)

{
ϕ̇∗ +AT(τ)ϕ∗ = 0, τ ∈ [0, T ],
ϕ∗(T )− ϕ∗(0) = 0,

and the generalized adjoint eigenfunction v∗ a solution of

(3.5)

{
v̇∗ +AT(τ)v∗ + ϕ∗ = 0, τ ∈ [0, T ],

v∗(T )− v∗(0) = 0,

which is now defined up to the addition of a multiple of ϕ∗. Note that the first equation of
(3.3) implies

(3.6)

∫ T

0
〈ϕ∗, F (u0)〉 dτ = 0

for ϕ∗ satisfying (3.4). Moreover, due to spectral assumptions at the CPC point, we can also
assume

(3.7)

∫ T

0
〈ϕ∗, v〉dτ = 1.

Notice that this assumption gives us another normalization condition for free, since taking
into account (3.3) and (3.5) we have

(3.8)

∫ T

0
〈v∗, F (u0)〉dτ =

∫ T

0
〈ϕ∗, v〉dτ = 1;
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i.e., we have automatically normalized the eigenfunction of the adjoint problem with respect
to the generalized eigenfunction of the original problem and the generalized eigenfunction of
the adjoint problem with respect to the eigenfunction of the original problem. So ϕ∗ is the
unique solution of the BVP

(3.9)

⎧⎨
⎩

ϕ̇∗ +AT(τ)ϕ∗ = 0, τ ∈ [0, T ],
ϕ∗(T )− ϕ∗(0) = 0,∫ T

0 〈ϕ∗, v〉dτ − 1 = 0.

We still need an integral condition for the adjoint generalized eigenfunction v∗. In all cases,
for the computation of an adjoint generalized eigenfunction we will require the inner product
with an original eigenfunction to be zero. Here, the inner product with v is appropriate.
Therefore, we obtain

(3.10)

⎧⎨
⎩

v̇∗ +AT(τ)v∗ + ϕ∗ = 0, τ ∈ [0, T ],
v∗(T )− v∗(0) = 0,∫ T

0 〈v∗, v〉dτ = 0.

Now, we substitute (3.1) into (2.1), using (2.2), the CPC normal form in Table 1, and
(3.2). This gives

u̇0 + ξ (v̇ − u̇0) + ξ2
(
α1u̇0 − v̇ +

1

2
h2

)
+ ξ3

(
α2u̇0 + α1v̇ − 1

2
ḣ2 +

1

6
ḣ3 + cv

)
+O(ξ4)

= F (u0) + ξA(τ)v +
1

2
ξ2 (A(τ)h2 +B(τ ; v, v))

+
1

6
ξ3 (A(τ)h3 + 3B(τ ;h2, v) + C(τ ; v, v, v)) +O(ξ4).

Collecting the ξ0-terms, we get the identity u̇0 = F (u0), since u0 is the periodic solution
of (2.1). The ξ1-terms provide another identity, namely, v̇ − u̇0 = A(τ)v, as stated in (3.3).

From collecting the ξ2-terms we obtain an equation for h2:

(3.11) ḣ2 −A(τ)h2 = B(τ ; v, v) + 2v̇ − 2α1u̇0.

The differential operator d
dτ − A(τ) on the left-hand side is singular in the space of vector-

functions on [0, T ] satisfying h2(T ) = h2(0), since u̇0 is in its kernel. Now, we project the
left-hand side of (3.11) on the adjoint null-eigenfunction, i.e., we take the scalar product with
ϕ∗ pointwise and integrate the result over [0, T ], to obtain

∫ T

0

〈
ϕ∗,

(
d

dτ
−A(τ)

)
h2

〉
dτ = −

∫ T

0

〈(
d

dτ
+AT (τ)

)
ϕ∗, h2

〉
dτ = 0

due to (3.4). Therefore, the projection of the RHS of (3.11) on ϕ∗ also has to vanish, which
leads to the so-called Fredholm solvability condition:∫ T

0
〈ϕ∗, B(τ ; v, v) + 2v̇ − 2α1u̇0〉 dτ =

∫ T

0
〈ϕ∗, B(τ ; v, v) + 2A(τ)v〉 dτ = 0.
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Notice that this condition is actually trivially satisfied, due to the fact that we are at the CPC
point, so that the second order normal form coefficient (see [30])

b =
1

2

∫ T

0
〈ϕ∗, B(τ ; v, v) + 2A(τ)v〉 dτ

vanishes. Hence (3.11) is solvable, independent of the value of α1. For any value of α1

we get an equation for h2 to be solved in the space of vector-functions on [0, T ] satisfying
h2(T ) = h2(0). Notice that if h2 satisfies (3.11), h2 + εF (u0) also satisfies (3.11), due to the
fact that F (u0) = u̇0. The orthogonality condition with v∗ determines the value of ε such
that we can define h2 as the unique solution of

(3.12)

⎧⎨
⎩

ḣ2 −A(τ)h2 −B(τ ; v, v) − 2Av − 2F (u0) + 2α1F (u0) = 0, τ ∈ [0, T ],
h2(T )− h2(0) = 0,∫ T
0 〈v∗, h2〉 dτ = 0.

Collecting the ξ3-terms we finally obtain an equation in h3 which allows us to determine
the normal form coefficient c of the CPC normal form in Table 1, namely,

ḣ3 −A(τ)h3 = −6α2u̇0 − 6α1v̇ + 3ḣ2 − 6cv + 3B(τ ;h2, v) + C(τ ; v, v, v).

The Fredholm solvability condition implies that

∫ T

0
〈ϕ∗,−6α2u̇0 − 6α1v̇ + 3ḣ2 − 6cv + 3B(τ ;h2, v) + C(τ ; v, v, v)〉 dτ = 0.

Using this equation together with (3.3), (3.7), and (3.6), we get the expression

c =
1

6

∫ T

0
〈ϕ∗,−6α1A(τ)v + 3A(τ)h2 + 3B(τ ; v, v) + 6A(τ)v + 3B(τ ;h2, v) + C(τ ; v, v, v)〉 dτ,

where v and ϕ∗ are defined by (3.3) and (3.9), while h2 satisfies (3.12).
Finally, let us prove that the choice of α1 does not influence the value of the critical normal

form coefficient c. Indeed, two solutions h2 corresponding to α
(1)
1 �= α

(2)
1 in (3.12) differ by

h
(2)
2 − h

(1)
2 = −2(α

(2)
1 − α

(1)
1 )v, from which it follows that

c(2) − c(1) = (α
(2)
1 − α

(1)
1 )

∫ T

0
〈ϕ∗,−2A(τ)v −B(τ ; v, v)〉 dτ = (α

(1)
1 − α

(2)
1 ) b = 0,

since b = 0. So, for simplicity, we take α1 = 0, which further simplifies the expression for
c. The critical coefficient c in the periodic CPC normal form has thus been computed. The
bifurcation is nondegenerate if c �= 0.
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3.1.2. Generalized period-doubling bifurcation. The two-dimensional critical center mani-
fold W c(Γ) at the generalized period-doubling (GPD) bifurcation can be parameterized locally
by (τ, ξ) as

(3.13) u = u0(τ) + ξv(τ) +H(τ, ξ), τ ∈ [0, 2T ], ξ ∈ R,

where the function H satisfies H(2T, ξ) = H(0, ξ). It has the Taylor expansion

(3.14) H(τ, ξ) =
1

2
h2(τ)ξ

2 +
1

6
h3(τ)ξ

3 +
1

24
h4(τ)ξ

4 +
1

120
h5(τ)ξ

5 +O(ξ6),

where hj(2T ) = hj(0), while

(3.15)

⎧⎨
⎩

v̇ −A(τ)v = 0, τ ∈ [0, T ],
v(T ) + v(0) = 0,∫ T

0 〈v, v〉dτ − 1 = 0,

and
v(τ + T ) = −v(τ) for τ ∈ [0, T ].

The function v exists due to Lemma 5 of [25].
The functions hi, i = 2, . . . , 5, can be found by solving appropriate BVPs, assuming that

(2.1) restricted to W c(Γ) has the periodic GPD normal form in Table 1. From (3.13) and
(3.14) it follows that hi(τ + T ) = hi(τ) for i even and hi(τ + T ) = −hi(τ) for i odd, for
τ ∈ [0, T ]. Indeed, since we are at the GPD point u(τ, ξ) = u(τ + T,−ξ),

∑
i

1

i!
hi(τ)ξ

i =
∑
i

1

i!
hi(τ + T )(−1)iξi,

and thus
hi(τ) = (−1)ihi(τ + T ),

from which the statement follows. This makes it possible to restrict our considerations to the
interval [0, T ] instead of [0, 2T ].

The coefficients α1, α2, and e arise from the solvability conditions for the BVPs as in-
tegrals of scalar products over the interval [0, T ]. Specifically, these scalar products involve
among other things the terms up to the fifth order of (1.1) near the periodic solution u0, the
eigenfunction v, the adjoint eigenfunction ϕ∗ satisfying

(3.16)

⎧⎨
⎩

ϕ̇∗ +AT(τ)ϕ∗ = 0, τ ∈ [0, T ],
ϕ∗(T )− ϕ∗(0) = 0,∫ T

0 〈ϕ∗, F (u0)〉 dτ − 1 = 0,

and a similar adjoint eigenfunction v∗ satisfying

(3.17)

⎧⎨
⎩

v̇∗ +AT(τ)v∗ = 0, τ ∈ [0, T ],
v∗(T ) + v∗(0) = 0,∫ T

0 〈v∗, v〉dτ − 1 = 0.
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To derive the normal form coefficient, we proceed as in section 3.1.1; namely, we substitute
(3.13) into (2.1) and use the GPD normal form Table 1, (3.14), as well as (2.2).

Collecting the ξ0- and ξ1-terms in the resulting equation gives the trivial identities, namely,
u̇0 = F (u0) and v̇ = A(τ)v, if we take (3.15) into account.

By collecting the ξ2-terms, we obtain the equation for h2,

(3.18) ḣ2 −A(τ)h2 = B(τ ; v, v) − 2α1u̇0,

which is to be solved in the space of functions satisfying h2(T ) = h2(0). In this space, the
differential operator d

dτ −A(τ) is singular with null-function u̇0. Thus, the following Fredholm
solvability condition has to be satisfied:

∫ T

0
〈ϕ∗, B(τ ; v, v) − 2α1u̇0〉 dτ = 0.

This leads to the expression

(3.19) α1 =
1

2

∫ T

0
〈ϕ∗, B(τ ; v, v)〉 dτ,

where v and ϕ∗ are defined by (3.15) and (3.16), respectively.
With α1 defined in this way, let h2 be a solution of (3.18) in the space of functions satisfying

h2(0) = h2(T ). Notice also here that if h2 is a solution of (3.18), then also h2+ε1F (u0) satisfies
(3.18), since F (u0) is in the kernel of the operator d

dτ − A(τ). In order to obtain a unique
solution (without projection on the null-eigenspace) we impose the following orthogonality
condition which determines the value of ε1:∫ T

0
〈ϕ∗, h2〉 dτ = 0.

Thus h2 is the unique solution of the BVP

(3.20)

⎧⎨
⎩

ḣ2 −A(τ)h2 −B(τ ; v, v) + 2α1F (u0) = 0, τ ∈ [0, T ],
h2(T )− h2(0) = 0,∫ T
0 〈ϕ∗, h2〉 dτ = 0.

Collecting the ξ3-terms, we get the equation for h3,

(3.21) ḣ3 −A(τ)h3 = C(τ ; v, v, v) + 3B(τ ; v, h2)− 6α1v̇,

which is to be solved in the space of functions satisfying h3(T ) = −h3(0). In this space the
differential operator d

dτ −A(τ) has a one-dimensional null-space, spanned by v, and (3.21) is
solvable only if the RHS of this equation lies in the range of that operator. Using (3.15), we
can rewrite the RHS as

C(τ ; v, v, v) + 3B(τ ; v, h2)− 6α1A(τ)v.
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Note that the Fredholm solvability condition

(3.22)

∫ T

0
〈v∗, C(τ ; v, v, v) + 3B(τ ; v, h2)− 6α1A(τ)v〉 dτ = 0

is trivially satisfied due to the fact that we are in the GPD point, and so the cubic coefficient
of the normal form (see [30])

c =
1

3

∫ T

0
〈v∗, C(τ ; v, v, v) + 3B(τ ; v, h2)− 6α1A(τ)v〉 dτ

vanishes. Since the RHS of (3.21) is in the range space of the operator d
dτ − A(τ), we can

solve the equation in order to find h3 as the unique solution of the BVP

(3.23)

⎧⎨
⎩

ḣ3 −A(τ)h3 − C(τ ; v, v, v) − 3B(τ ; v, h2) + 6α1A(τ)v = 0, τ ∈ [0, T ],
h3(T ) + h3(0) = 0,∫ T
0 〈v∗, h3〉 dτ = 0.

By collecting the ξ4-terms, we get the equation for h4,

ḣ4 −A(τ)h4 = D(τ ; v, v, v, v) + 6C(τ ; v, v, h2) + 3B(τ ;h2, h2)

+ 4B(τ ; v, h3)− 12α1ḣ2 − 24α2u̇0,

which is to be solved in the space of functions satisfying h4(T ) = h4(0). The Fredholm
solvability condition gives us the following expression for α2:

α2 =
1

24

∫ T

0
〈ϕ∗,D(τ ; v, v, v, v) + 6C(τ ; v, v, h2) + 3B(τ ;h2, h2) + 4B(τ ; v, h3)− 12α1ḣ2〉 dτ,

which by considering (3.18) can be simplified to

α2 =
1

24

∫ T

0
〈ϕ∗,D(τ ; v, v, v, v) + 6C(τ ; v, v, h2) + 3B(τ ;h2, h2)

+ 4B(τ ; v, h3)− 12α1(A(τ)h2 +B(τ ; v, v))〉 dτ + α2
1,

where α1 is given by (3.19) and h2, h3, v, and ϕ∗ are the solutions of the BVPs (3.20), (3.23),
(3.15), and (3.16), respectively.

Using this value of α2, we can find h4 by solving⎧⎪⎪⎨
⎪⎪⎩

ḣ4 −A(τ)h4 −D(τ ; v, v, v, v) − 6C(τ ; v, v, h2)− 3B(τ ;h2, h2)
−4B(τ ; v, h3) + 12α1(A(τ)h2 +B(τ ; v, v) − 2α1F (u0)) + 24α2F (u0) = 0, τ ∈ [0, T ],

h4(T )− h4(0) = 0,∫ T
0 〈ϕ∗, h4〉 dτ = 0.

Finally, by collecting the ξ5-terms, we get the equation for h5,

ḣ5 −A(τ)h5 = E(τ ; v, v, v, v, v) + 10D(τ ; v, v, v, h2) + 15C(τ ; v, h2, h2) + 10C(τ ; v, v, h3)

+10B(τ ;h2, h3) + 5B(τ ; v, h4)− 120α2v̇ − 20α1ḣ3 − 120ev,
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which has to be solved in the space of functions satisfying h5(T ) = −h5(0). Since the operator
d
dτ −A(τ) has a one-dimensional null-space, we can apply the Fredholm solvability condition
to compute the parameter e in the GPD normal form from Table 1. Using the normalization
of (3.17), (3.23), and (3.22), we get

e =
1

120

∫ T

0
〈v∗, E(τ ; v, v, v, v, v) + 10D(τ ; v, v, v, h2) + 15C(τ ; v, h2, h2) + 10C(τ ; v, v, h3)

+ 10B(τ ;h2, h3) + 5B(τ ; v, h4)− 120α2A(τ)v − 20α1A(τ)h3〉 dτ.

If this quantity does not vanish, the codim 2 bifurcation is nondegenerate.

3.2. Bifurcations with a three-dimensional center manifold.

3.2.1. Chenciner bifurcation. The three-dimensional critical center manifold W c(Γ) at
the Chenciner (CH) bifurcation can be parameterized locally by (τ, ξ) as

(3.24) u = u0(τ) + ξv(τ) + ξ̄v̄(τ) +H(τ, ξ, ξ̄), τ ∈ [0, T ], ξ ∈ C,

where the real function H satisfies H(T, ξ, ξ̄) = H(0, ξ, ξ̄) and has the Taylor expansion

H(τ, ξ, ξ̄) =

5∑
i,j=0

2≤i+j≤5

1

i!j!
hij(τ)ξ

iξ̄j +O(|ξ|6),(3.25)

with hij(T ) = hij(0) and hij = h̄ji so that hii is real, while v and its conjugate v̄ are defined
as

(3.26)

⎧⎨
⎩

v̇(τ)−A(τ)v + iω v = 0, τ ∈ [0, T ],
v(T )− v(0) = 0,∫ T

0 〈v, v〉dτ − 1 = 0.

These functions exist due to Lemma 2 of [25].
If we assume that (2.1) restricted to W c(Γ) has the CH periodic normal form in Table 1,

as in the previous cases, we can find the functions hij(τ) by solving appropriate BVPs.
First we introduce the two needed adjoint eigenfunctions. The first one, namely, ϕ∗,

satisfies (3.16), and the second one, namely, v∗, satisfies

(3.27)

⎧⎨
⎩

v̇∗(τ) +AT(τ)v∗ + iω v∗ = 0, τ ∈ [0, T ],
v∗(T )− v∗(0) = 0,∫ T

0 〈v∗, v〉dτ − 1 = 0.

Note that in [30] the last term in the differential equation for v∗ has the wrong sign. This error
could have led to wrong values of the cubic normal form coefficient at the torus bifurcation
computed by early versions of MATCONT.

As usual, we substitute (3.24) into (2.1), use the CH normal form from Table 1, (3.25),
as well as (2.2), and collect the corresponding terms in order to find the needed normal form
coefficients.
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The ξ-independent and the linear terms give rise to the usual identities

u̇0 = F (u0), v̇ −A(τ)v + iωv = 0, ˙̄v −A(τ)v̄ − iωv̄ = 0.

Collecting the coefficients of the ξ2- or ξ̄2-terms leads to the equation

ḣ20 −A(τ)h20 + 2iωh20 = B(τ ; v, v)

or its complex-conjugate. This equation has a unique solution h20 satisfying h20(T ) = h20(0),
since due to the spectral assumptions e2iωT is not a multiplier of the critical cycle. Thus, h20
can be found by solving{

ḣ20 −A(τ)h20 + 2iωh20 −B(τ ; v, v) = 0, τ ∈ [0, T ],
h20(T )− h20(0) = 0.

By collecting the ξξ̄-terms we obtain an equation for h11, namely,

ḣ11 −A(τ)h11 = B(τ ; v, v̄)− α1u̇0,

which is to be solved in the space of the functions satisfying h11(T ) = h11(0). In this space
the operator d

dτ − A(τ) has a range space with codim 1. As before, the null-eigenfunction of

the adjoint operator − d
dτ − AT(τ) is ϕ∗, given by (3.16), and thus because of the Fredholm

solvability condition, we can easily obtain the needed value for α1,

α1 =

∫ T

0
〈ϕ∗, B(τ ; v, v̄)〉dτ.

With α1 defined in this way, let h11 be the unique solution of the BVP⎧⎨
⎩

ḣ11 −A(τ)h11 −B(τ ; v, v̄) + α1u̇0 = 0, τ ∈ [0, T ],
h11(T )− h11(0) = 0,∫ T

0 〈ϕ∗, h11〉dτ = 0.

The coefficient of the third order term in the CH normal form from Table 1 is purely
imaginary since the first Lyapunov coefficient vanishes at a CH point. We are now ready to
compute this coefficient. In fact, if we collect the ξ2ξ̄-terms, we obtain

ḣ21 −A(τ)h21 + iωh21 = C(τ ; v, v, v̄) + 2B(τ ; v, h11) +B(τ ; v̄, h20)− 2icv − 2α1v̇,

which is to be solved in the space of functions satisfying h21(T ) = h21(0). In this space the
operator d

dτ −A(τ) + iω is singular, since eiωT is a multiplier of the critical cycle. So we can
impose the usual Fredholm solvability condition taking (3.27) into account:

(3.28)

∫ T

0
〈v∗, C(τ ; v, v, v̄) + 2B(τ ; v, h11) +B(τ ; v̄, h20)− 2icv − 2α1v̇〉dτ = 0.

This allows us to find the value of the coefficient c of the CH normal form from Table 1,

c = − i

2

∫ T

0
〈v∗, C(τ ; v, v, v̄) + 2B(τ ; v, h11) +B(τ ; v̄, h20)− 2α1A(τ)v〉dτ + α1ω,
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and, with c defined in this way, we can find h21 as the unique solution of the BVP

(3.29)

⎧⎪⎪⎨
⎪⎪⎩

ḣ21 −A(τ)h21 + iωh21 − C(τ ; v, v, v̄)− 2B(τ ; v, h11)
−B(τ ; v̄, h20) + 2icv + 2α1(A(τ)v − iωv) = 0, τ ∈ [0, T ],

h21(T )− h21(0) = 0,∫ T
0 〈v∗, h21〉dτ = 0.

Collecting the ξ3-terms gives us an equation for h30,

ḣ30 −A(τ)h30 + 3iωh30 = C(τ ; v, v, v) + 3B(τ ; v, h20),

which has a unique solution h30 satisfying h30(T ) = h30(0), since e3iωT is not a multiplier of
the critical cycle by the spectral assumptions. Thus, h30 is the unique solution of the BVP{

ḣ30 −A(τ)h30 + 3iωh30 −C(τ ; v, v, v) − 3B(τ ; v, h20) = 0, τ ∈ [0, T ],
h30(T )− h30(0) = 0.

By collecting the ξ3ξ̄-terms we obtain an equation for h31,

ḣ31 −A(τ)h31 + 2iωh31 = D(τ ; v, v, v, v̄) + 3C(τ ; v, v, h11) + 3C(τ ; v, v̄, h20) + 3B(τ ;h11, h20)

+ 3B(τ ; v, h21) +B(τ ; v̄, h30)− 6ich20 − 3α1ḣ20,

which has a unique solution h31 satisfying h31(T ) = h31(0), since e2iωT is not a multiplier of
the critical cycle by the spectral assumptions. Thus, h31 is the unique solution of the BVP⎧⎪⎪⎨

⎪⎪⎩
ḣ31 −A(τ)h31 + 2iωh31 −D(τ ; v, v, v, v̄)− 3C(τ ; v, v, h11)

−3C(τ ; v, v̄, h20)− 3B(τ ;h11, h20)− 3B(τ ; v, h21)
−B(τ ; v̄, h30) + 6ich20 + 3α1(A(τ)h20 − 2iωh20 +B(τ ; v, v)) = 0, τ ∈ [0, T ],

h31(T )− h31(0) = 0.

Taking the |ξ|4-terms into account gives an equation for h22,

ḣ22 −A(τ)h22 = D(τ ; v, v, v̄, v̄) + C(τ ; v, v, h02) + 4C(τ ; v, v̄, h11) + C(τ ; v̄, v̄, h20)

+ 2B(τ ;h11, h11) + 2B(τ ; v, h12) +B(τ ;h02, h20) + 2B(τ ; v̄, h21)

− 4α1ḣ11 − 4α2u̇0,

which is to be solved in the space of functions satisfying h22(T ) = h22(0). In this space the
operator d

dτ −A(τ) has a range space with codim 1 which is orthogonal to ϕ∗. So one Fredholm
solvability condition is involved, allowing us to compute the value of the coefficient α2 of our
normal form as follows:

α2 =
1

4

∫ T

0
〈ϕ∗,D(τ ; v, v, v̄, v̄) + C(τ ; v, v, h02) + 4C(τ ; v, v̄, h11) + C(τ ; v̄, v̄, h20)

+ 2B(τ ;h11, h11) + 2B(τ ; v, h12) +B(τ ;h02, h20) + 2B(τ ; v̄, h21)

− 4α1(A(τ)h11 +B(τ ; v, v̄))〉dτ + α2
1.
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Using this value for α2, we can find h22 as the unique solution of the BVP⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ḣ22 −A(τ)h22 −D(τ ; v, v, v̄, v̄)− C(τ ; v, v, h02)− 4C(τ ; v, v̄, h11)
− C(τ ; v̄, v̄, h20)− 2B(τ ;h11, h11)− 2B(τ ; v, h12)−B(τ ;h02, h20)

− 2B(τ ; v̄, h21) + 4α1(A(τ)h11 +B(τ ; v, v̄)− α1F (u0)) + 4α2F (u0) = 0, τ ∈ [0, T ],
h22(T )− h22(0) = 0,∫ T

0 〈ϕ∗, h22〉dτ = 0.

Finally, by collecting the ξ3ξ̄2-terms we get an equation for h32,

ḣ32 −A(τ)h32 + iωh32 = E(τ ; v, v, v, v̄, v̄) +D(τ ; v, v, v, h02) + 6D(τ ; v, v, v̄, h11)

+ 3D(τ ; v, v̄, v̄, h20) + 6C(τ ; v, h11, h11) + 3C(τ ; v, v, h12) + 3C(τ ; v, h02, h20)

+ 6C(τ ; v̄, h11, h20) + 6C(τ ; v, v̄, h21) + C(τ ; v̄, v̄, h30) + 3B(τ ;h12, h20) + 6B(τ ;h11, h21)

+ 3B(τ ; v, h22) +B(τ ;h02, h30) + 2B(τ ; v̄, h31)− 12ev − 6ich21 − 12α2v̇ − 6α1ḣ21,

which, since the operator is singular, allows us, using the first equation of (3.26) as well as the
first and the last equations of (3.29), to compute the critical coefficient e of the CH normal
form by imposing the Fredholm solvability condition:

e =
1

12

∫ T

0
〈v∗, E(τ ; v, v, v, v̄, v̄) +D(τ ; v, v, v, h02) + 6D(τ ; v, v, v̄, h11)

+ 3D(τ ; v, v̄, v̄, h20) + 6C(τ ; v, h11, h11) + 3C(τ ; v, v, h12)

+ 3C(τ ; v, h02, h20) + 6C(τ ; v̄, h11, h20) + 6C(τ ; v, v̄, h21) + C(τ ; v̄, v̄, h30)

+ 3B(τ ;h12, h20) + 6B(τ ;h11, h21) + 3B(τ ; v, h22) +B(τ ;h02, h30)

+ 2B(τ ; v̄, h31)− 12α2A(τ)v − 6α1(A(τ)h21 + 2B(τ ; v, h11) + C(τ ; v, v, v̄)

+ B(τ ; v̄, h20)− 2α1Av)〉dτ + iωα2 + icα1 − α2
1iω.

We define the second Lyapunov coefficient as

L2(0) = �(e).

If this coefficient does not vanish, the codim 2 point is nondegenerate.
It can be checked that the equations for h40, h50, and h41 are uniquely solvable. Since we

are in a complex eigenvalue case, v is determined up to a factor γ, for which γ̄Tγ = 1. Then
v∗, h20, h21, h30, h31 are replaced by γv∗, γ2h20, γh21, γ3h30, γ2h31, respectively, but α1, α2, c,
and e are not affected by this factor.

3.2.2. Strong resonance 1:1 bifurcation. The three-dimensional critical center manifold
W c(Γ) at the R1 bifurcation can be parameterized locally by (τ, ξ) as

(3.30) u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) +H(τ, ξ), τ ∈ [0, T ], ξ = (ξ1, ξ2) ∈ R
2,

where H satisfies H(T, ξ) = H(0, ξ) and has the Taylor expansion

(3.31) H(τ, ξ) =
1

2
h20(τ)ξ

2
1 + h11(τ)ξ1ξ2 +

1

2
h02(τ)ξ

2
2 +O(‖ξ‖3).
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Here the functions h20, h11, and h02 are T -periodic in τ , while v1 and v2 are the generalized
eigenfunctions associated with the trivial multiplier and defined as the unique solutions of the
BVPs ⎧⎨

⎩
v̇1 −A(τ)v1 − F (u0) = 0, τ ∈ [0, T ],

v1(T )− v1(0) = 0,∫ T
0 〈v1, F (u0)〉dτ = 0

(3.32)

and ⎧⎨
⎩

v̇2 −A(τ)v2 + v1 = 0, τ ∈ [0, T ],
v2(T )− v2(0) = 0,∫ T

0 〈v2, F (u0)〉dτ = 0,

(3.33)

respectively. The functions v1 and v2 exist and are different due to Lemma 2 of [25]. Following
our approach to find the value of the normal form constants, we define ϕ∗ as a solution of the
adjoint eigenfunction problem (3.4), v∗1 as a solution of{

v̇1
∗(τ) +AT(τ)v∗1 − ϕ∗ = 0, τ ∈ [0, T ],

v∗1(T )− v∗1(0) = 0,

and v∗2 as a solution of {
v̇2

∗(τ) +AT(τ)v∗2 + v∗1 = 0, τ ∈ [0, T ],
v∗2(T )− v∗2(0) = 0.

The above definitions immediately imply that

(3.34)

∫ T

0
〈ϕ∗, F (u0)〉dτ =

∫ T

0
〈ϕ∗, v1〉dτ =

∫ T

0
〈F (u0), v

∗
1〉dτ = 0.

Due to the spectral assumptions at the R1 point we are free to assume that

(3.35)

∫ T

0
〈ϕ∗, v2〉dτ = 1.

Appending this condition to the eigenproblem, we can find the eigenfunction ϕ∗ as the unique
solution of the BVP

(3.36)

⎧⎨
⎩

ϕ̇∗ +AT(τ)ϕ∗ = 0, τ ∈ [0, T ],
ϕ∗(T )− ϕ∗(0) = 0,∫ T

0 〈ϕ∗, v2〉dτ − 1 = 0.

As already mentioned in the CPC case, we will choose adjoint generalized eigenfunctions
orthogonal to an original eigenfunction. Therefore, v∗1 and v∗2 are obtained as the solution of

(3.37)

⎧⎨
⎩

v̇1
∗ +AT(τ)v∗1 − ϕ∗ = 0, τ ∈ [0, T ],

v∗1(T )− v∗1(0) = 0,∫ T
0 〈v∗1 , v2〉dτ = 0
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and

(3.38)

⎧⎨
⎩

v̇2
∗(τ) +AT(τ)v∗2 + v∗1 = 0, τ ∈ [0, T ],

v∗2(T )− v∗2(0) = 0,∫ T
0 〈v∗2 , v2〉dτ = 0,

respectively. Notice that, as in the CPC case, we have normalized in (3.35) the adjoint
eigenfunction with the last generalized eigenfunction, which gives us in addition∫ T

0
〈v∗1 , v1〉dτ =

∫ T

0
〈v∗2 , F (u0)〉dτ = 1.

As usual, to derive the value of the normal form coefficients we substitute (3.30) into
(2.1), we use (2.2) as well as the R1 normal form in Table 1 and (3.31), and we get differential
equations at every degree of ξ. Note that in fact the solvability of all the equations up to the
maximal order of the normal form has to be checked. We will pay extra attention to it in this
section.

By collecting the ξ0-terms we get the identity u̇0 = F (u0). The linear terms provide two
other identities, namely,

v̇1 −A(τ)v1 − F (u0) = 0 and v̇2 −Av2 + v1 = 0;

cf. (3.32) and (3.33).
By collecting the ξ21-terms we find an equation for h20, namely,

(3.39) ḣ20 −A(τ)h20 = −2αu̇0 + 2v̇1 +B(τ ; v1, v1)− 2av2,

which is to be solved in the space of periodic functions on [0, T ]. In this space, the differential
operator d

dτ −A(τ) is singular with a range orthogonal to ϕ∗. Using (3.34), (3.35), and (3.32),
we obtain from the corresponding Fredholm solvability condition the following value for a:

a =
1

2

∫ T

0
〈ϕ∗, 2A(τ)v1 +B(τ ; v1, v1)〉dτ.(3.40)

Notice that in the RHS of (3.39) we have no freedom which could change the value of the
coefficient a. This confirms the theoretically proved fact that the ξ21-term of the R1 normal
form from Table 1 is resonant. Notice, moreover, that parameter α is undetermined, which
gives us two degrees of freedom for h20. In fact, if h20 is a solution of (3.39), then also
h̃20 = h20 + εI20F (u0) + εII20v1 is a solution, due to the fact that F (u0) spans the null-space of
the operator d

dτ −A(τ) and that we can tune α as desired:

(3.41)
dh̃20
dτ

−A(τ)h̃20 =
dh20
dτ

−A(τ)h20 + εII20

(
dv1
dτ

−A(τ)v1

)
=

dh20
dτ

−A(τ)h20 + εII20u̇0.

By collecting the ξ1ξ2-terms we find an equation for h11,

(3.42) ḣ11 −A(τ)h11 = B(τ ; v1, v2) + v̇2 − h20 − bv2 + v1,
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which is to be solved in the space of T -periodic functions. As in the previous case, taking
(3.35) into account, as well as (3.33) and (3.34), the corresponding solvability condition implies

b =

∫ T

0
〈ϕ∗, B(τ ; v1, v2) +A(τ)v2〉dτ −

∫ T

0
〈ϕ∗, h20〉dτ.

Using (3.37), (3.39), (3.34), and (3.32), we can rewrite this expression as

(3.43) b =

∫ T

0
〈ϕ∗, B(τ ; v1, v2) +A(τ)v2〉dτ +

∫ T

0
〈v∗1 , 2Av1 +B(τ ; v1, v1)〉dτ,

thus obtaining a formula for b which involves only the original and adjoint eigenfunctions.
Notice that the freedom that we have in h20 cannot be used to change the value of coef-

ficient b (and so the ξ1ξ2-term of the R1 normal form in Table 1 is resonant). Indeed, h20 is
defined up to a multiple of F (u0) and v1, but both vectors are orthogonal to ϕ∗; see the first two
orthogonality conditions in (3.34). However the presence of h20 in the RHS gives us three de-
grees of freedom for h11. In fact, if h11 is a solution of (3.42), h̃11 = h11+εI11F (u0)−εI20v1+εII20v2
is also a solution.

Collecting the ξ22-terms gives us an equation for h02,

ḣ02 −A(τ)h02 = B(τ, v2, v2)− 2h11,

which is to be solved in the space of T -periodic functions. This equation should be solvable,
so the RHS should lie in the range of the operator d

dt −A(τ):

∫ T

0
〈ϕ∗, B(τ, v2, v2)− 2h11〉dτ = 0.

This condition can be satisfied by tuning h11. In fact, εII20 is not yet determined, so h11 can
have a projection on v2. Due to (3.35), v2 does not lie in the range of the d

dτ −A(τ) operator,
and therefore we can require that

∫ T

0
〈ϕ∗, h11〉dτ =

1

2

∫ T

0
〈ϕ∗, B(τ, v2, v2)〉dτ.

This last solvability condition determines εII20 uniquely, and since εII20 determines the value
of α (see (3.39) and (3.41)), α is now also uniquely determined. So the center manifold
expansion has now become unique. Note that in fact the value of α is not needed since it
can be shown that it does not affect the bifurcation scenario. Note also that in order to
compute the necessary coefficients a and b by (3.40) and (3.43), the second order expansion
of the center manifold is not needed. Indeed, we have rewritten the formulas of the normal
form coefficients in terms of the original and adjoint eigenfunctions. Since h20 and h11 are not
needed, we do not write down their defining BVPs.
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3.2.3. Strong resonance 1:2 bifurcation. The three-dimensional critical center manifold
W c(Γ) at the R2 bifurcation can be parameterized locally by (τ, ξ) as

(3.44) u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) +H(τ, ξ), τ ∈ [0, 2T ], ξ = (ξ1, ξ2) ∈ R
2,

where H satisfies H(2T, ξ) = H(0, ξ) and has the Taylor expansion

(3.45) H(τ, ξ) =
3∑

i,j=0
2≤i+j≤3

1

i!j!
hij(τ)ξ

i
1ξ

j
2 +O(‖ξ‖4),

where all functions hij are 2T -periodic, the eigenfunction corresponding to eigenvalue −1 is
given by ⎧⎨

⎩
v̇1 −A(τ)v1 = 0, τ ∈ [0, T ],

v1(T ) + v1(0) = 0,∫ T
0 〈v1, v1〉dτ − 1 = 0,

(3.46)

and the generalized eigenfunction is given by⎧⎨
⎩

v̇2 −A(τ)v2 + v1 = 0, τ ∈ [0, T ],
v2(T ) + v2(0) = 0,∫ T

0 〈v2, v1〉dτ = 0,

(3.47)

with
v1(τ + T ) := −v1(τ) and v2(τ + T ) := −v2(τ) for τ ∈ [0, T ].

The functions v1 and v2 exist due to Lemma 5 of [25]. The functions hij of (3.45) can be found
by solving appropriate BVPs, assuming that (2.1) restricted to W c(Γ) has the R2 normal form
from Table 1. As in the GPD case, we first deduce periodicity properties of these functions
hij . Similarly to the GPD case, we here have u(τ, ξ1, ξ2) = u(τ + T,−ξ1,−ξ2). This implies
that ∑

i,j

1

i!j!
hij(τ)ξ

i
1ξ

j
2 =

∑
i,j

1

i!j!
hij(τ + T )(−1)i+jξi1ξ

j
2,

and thus
hij(τ) = (−1)i+jhij(τ + T ),

from which follows that hij(τ + T ) = hij(τ) for i+ j even and hij(τ + T ) = −hij(τ) for i+ j
odd, for τ ∈ [0, T ]. Taking these (anti)periodicity properties into account, we can reduce our
analysis to the interval [0, T ] instead of [0, 2T ].

The coefficients α, a, and b arise from the solvability conditions for the BVPs as integrals
of scalar products over the interval [0, T ]. Specifically, those scalar products involve among
other things the quadratic and cubic terms of (2.2) near the periodic solution u0. The adjoint
eigenfunction ϕ∗ associated to the trivial multiplier is the T -periodic solution of (3.16). The
adjoint eigenfunction v∗1 is the unique solution of the problem⎧⎨

⎩
v̇∗1(τ) +AT(τ)v∗1 = 0, τ ∈ [0, T ],

v∗1(T ) + v∗1(0) = 0,∫ T
0 〈v∗1 , v2〉dτ − 1 = 0.

(3.48)
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Note that we can indeed require this normalization since v2 is the last generalized eigenfunction
of the original problem and therefore not orthogonal to all the eigenfunctions of the adjoint
problem. We further define the generalized adjoint eigenfunction v∗2 as the unique solution of⎧⎨

⎩
v̇∗2(τ) +AT(τ)v∗2 − v∗1 = 0, τ ∈ [0, T ],

v∗2(T ) + v∗2(0) = 0,∫ T
0 〈v∗2 , v2〉dτ = 0,

(3.49)

since, as above, v∗1 is not orthogonal to v2. Moreover, we have

∫ T

0
〈v∗2 , v1〉dτ =

∫ T

0
〈v∗1 , v2〉dτ = 1

and ∫ T

0
〈v2, v1〉dτ =

∫ T

0
〈v∗1 , v1〉dτ = 0.(3.50)

To derive the normal form coefficients, we proceed as in the previous sections, namely, we
substitute (3.44) into (2.1), and use (2.2) as well as the R2 normal form from Table 1 and
(3.45).

By collecting the ξ0-terms we get the trivial identity u̇0 = F (u0). The linear terms provide
two other identities, namely, v̇1 = A(τ)v1 and v1+ v̇2 = A(τ)v2, in correspondence with (3.46)
and (3.47).

Collecting the ξ22-terms gives an equation for h02,

ḣ02 −A(τ)h02 = B(τ ; v2, v2)− 2h11,

which is to be solved in the space of functions satisfying h02(T ) = h02(0). In this space, the
differential operator d

dτ −A(τ) is singular and its null-space is spanned by u̇0. The Fredholm
solvability condition gives a normalization condition for function h11, namely,∫ T

0
〈ϕ∗, h11〉 dτ =

1

2

∫ T

0
〈ϕ∗, B(τ ; v2, v2)〉 dτ.

By collecting the ξ1ξ2-terms we obtain the differential equation for h11,

ḣ11 −A(τ)h11 = B(τ ; v1, v2)− h20,

which must be solved in the space of functions satisfying h11(T ) = h11(0). The Fredholm
solvability condition gives in this case a normalization condition for h20, i.e.,

(3.51)

∫ T

0
〈ϕ∗, h20〉 dτ =

∫ T

0
〈ϕ∗, B(τ ; v1, v2)〉 dτ.

By collecting the ξ21-terms we find an equation for h20,

(3.52) ḣ20 −A(τ)h20 = B(τ ; v1, v1)− 2αu̇0,
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which is to be solved in the space of functions satisfying h20(T ) = h20(0). In this space, the
differential operator d

dτ −A(τ) is singular and its null-space is spanned by u̇0. The Fredholm
solvability condition leads to the expression

(3.53) α =
1

2

∫ T

0
〈ϕ∗, B(τ ; v1, v1)〉 dτ,

where v1 is defined in (3.46).
With α defined in this way we have to find a normalization condition which makes the

solution of (3.52) unique. Indeed, if h20 is a solution of (3.52) with h20(T ) = h20(0), then
h̃20 = h20 + ε1u̇0 is also a solution, since u̇0 spans the kernel of the operator d

dτ − A(τ) in
the space of T -periodic functions. The projection along the space generated by u̇0 is fixed by
solvability condition (3.51). So h20 can be found as the unique solution of the BVP

(3.54)

⎧⎨
⎩

ḣ20 −A(τ)h20 −B(τ ; v1, v1) + 2αF (u0) = 0, τ ∈ [0, T ],
h20(T )− h20(0) = 0,∫ T

0 〈ϕ∗, h20〉 dτ =
∫ T
0 〈ϕ∗, B(τ ; v1, v2)〉 dτ.

In line with the previous observations, we can define h11 as the unique solution of the
BVP ⎧⎨

⎩
ḣ11 −A(τ)h11 −B(τ ; v1, v2) + h20 = 0, τ ∈ [0, T ],

h11(T )− h11(0) = 0,∫ T
0 〈ϕ∗, h11〉 dτ = 1

2

∫ T
0 〈ϕ∗, B(τ ; v2, v2)〉 dτ,

with h20 defined in (3.54).
By collecting the ξ31-terms we get an equation for h30,

(3.55) ḣ30 −A(τ)h30 = C(τ ; v1, v1, v1) + 3B(τ ; v1, h20)− 6av2 − 6αv̇1,

which again must be solved in the space of functions satisfying h30(T ) = −h30(0). Taking the
integral condition of (3.48) into account, we obtain

a =
1

6

∫ T

0
〈v∗1 , C(τ ; v1, v1, v1) + 3B(τ ; v1, h20)− 6αA(τ)v1〉 dτ,

where α is defined by (3.53), h20 is the solution of (3.54), and v1 and v∗1 are defined in (3.46)
and (3.47), respectively. As remarked before, it is important to note that if h30 is a solution
of (3.55) with h30(T ) = −h30(0), then h̃30 = h30 + εI30v1 is also a solution, since v1 spans the
null-space of the operator d

dt −A(τ).
Collecting the ξ21ξ2-terms we get the equation for h21,

(3.56)
ḣ21 −A(τ)h21 = −h30 − 2bv2 − 2αv̇2 − 2αv1 + C(τ ; v1, v1, v2) +B(τ ;h20, v2) + 2B(τ ;h11, v1),

which is to be solved in the space of functions satisfying h21(T ) = −h21(0). The solvability of
this equation implies that∫ T

0
〈v∗1 ,−h30 − 2bv2 − 2αv̇2 − 2αv1 + C(τ ; v1, v1, v2) +B(τ ;h20, v2) + 2B(τ ;h11, v1)〉dτ = 0.
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Notice that the ξ21ξ2-term in the R2 normal form from Table 1 is resonant: in fact, we cannot
use the freedom on h30 to make the normal form parameter b zero since∫ T

0
〈v∗1 , h̃30〉dτ =

∫ T

0
〈v∗1 , h30 + εI30v1〉dτ =

∫ T

0
〈v∗1 , h30〉dτ.

Using the normalization from (3.48) and (3.50) gives us the following expression for b:

b =
1

2

∫ T

0
〈v∗1 ,−2αA(τ)v2+C(τ ; v1, v1, v2)+B(τ ;h20, v2)+2B(τ ;h11, v1)〉dτ− 1

2

∫ T

0
〈v∗1 , h30〉dτ.

However, there is no need to explicitly compute the cubic expansion of the center manifold
since the last term of this sum can be rewritten so that the formula for b takes the form

b =
1

2

∫ T

0
〈v∗1 ,−2αA(τ)v2 + C(τ ; v1, v1, v2) +B(τ ;h20, v2) + 2B(τ ;h11, v1)〉dτ

+
1

2

∫ T

0
〈v∗2 , C(τ ; v1, v1, v1) + 3B(τ ; v1, h20)− 6αAv1〉dτ,

where h20 is defined in (3.54) and α calculated in (3.53). Notice that, since h30 appears on the
RHS of (3.56), we have two degrees of freedom on h21. In fact, if h21 is a solution of (3.56),
then h̃21 = h21 + εI21v1 + εI30v2 is also a solution since

dh̃21
dτ

−A(τ)h̃21 =
dh21
dτ

−A(τ)h21 + εI30

(
dv2
dτ

−A(τ)v2

)
=

dh21
dτ

−A(τ)h21 − εI30v1.

By collecting the ξ1ξ
2
2-terms we get the equation for h12,

ḣ12 −A(τ)h12 = C(τ, v1, v2, v2) +B(τ, v1, h02) + 2B(τ, v2, h11)− 2h21,

which is to be solved in the space of functions satisfying h12(T ) = −h12(0). The Fredholm
solvability condition implies that∫ T

0
〈v∗1 , C(τ, v1, v2, v2) +B(τ, v1, h02) + 2B(τ, v2, h11)− 2h21〉dτ = 0.

As mentioned before, h21 has a component in the direction of v2, which is not orthogonal to
the adjoint eigenfunction v∗1 , so it is possible to impose

∫ T

0
〈v∗1 , h21〉dτ =

1

2

∫ T

0
〈v∗1 , C(τ, v1, v2, v2) +B(τ, v1, h02) + 2B(τ, v2, h11)〉dτ.

This condition defines εI30 uniquely; the freedom of εI21 gives us as usual another freedom on
h12 in the direction of v2.

Finally, collecting the ξ32-terms gives

ḣ03 −A(τ)h03 = C(τ, v2, v2, v2) + 3B(v2, h02)− 3h12,
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which is to be solved in the space of functions satisfying h03(T ) = −h03(0). The Fredholm
solvability condition is∫ T

0
〈v∗1 , C(τ, v2, v2, v2) + 3B(v2, h02)− 3h12〉dτ = 0,

which can be satisfied imposing∫ T

0
〈v∗1 , h12〉dτ =

1

3

∫ T

0
〈v∗1 , C(τ, v2, v2, v2) + 3B(v2, h02)〉dτ.

This last condition determines the value of εI21, and thus the third order center manifold
expansion is uniquely determined. However, since this third order expansion of the center
manifold is not needed for the computation of the critical coefficients, we do not write down
those conditions explicitly.

3.2.4. Strong resonance 1:3 bifurcation. The three-dimensional critical center manifold
W c(Γ) at the R3 bifurcation can be parameterized locally by (τ, ξ) as

u = u0(τ) + ξv(τ) + ξ̄v̄(τ) +H(τ, ξ, ξ̄), τ ∈ [0, 3T ], ξ ∈ C,

where the real function H satisfies H(3T, ξ, ξ̄) = H(0, ξ, ξ̄) and has the Taylor expansion

H(τ, ξ, ξ̄) =

3∑
i,j=0

2≤i+j≤3

1

i!j!
hij(τ)ξ

iξ̄j +O(|ξ|4),

with hij(3T ) = hij(0) and hij = h̄ji so that hii is real. The eigenfunction v is defined as the
unique solution of the BVP

(3.57)

⎧⎪⎨
⎪⎩

v̇(τ)−A(τ)v = 0, τ ∈ [0, T ],

v(T )− ei
2π
3 v(0) = 0,∫ T

0 〈v, v〉dτ − 1 = 0

and is extended on the interval [0, 3T ] using the equivariance property of the normal form,
i.e.,

v(τ + T ) := ei
2π
3 v(τ) and v(τ + 2T ) := ei

4π
3 v(τ) for τ ∈ [0, T ].

The definition of the conjugate eigenfunction v̄ follows immediately. These functions exist due
to Lemma 2 of [25].

As usual the functions hij can be found by solving appropriate BVPs, assuming that
(2.1) restricted to W c(Γ) has the periodic R3 normal form from Table 1. Also here we
can deduce a property for the functions hij . The definition of v(τ) in [0, 3T ] states that
u(τ, ξ, ξ̄) = u(τ + T, e−i2π/3ξ, ei2π/3ξ̄). Therefore,

∑
k,l

1

k!l!
hkl(τ)ξ

k ξ̄l =
∑
k,l

1

k!l!
hkl(τ + T )(e−i2π/3)kξk(ei2π/3)lξ̄l,
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and thus
hkl(τ) = hkl(τ + T )(e−i2π/3)k(ei2π/3)l

for τ ∈ [0, T ]. This, for example, implies that hkk is T -periodic. These periodicity properties
allow us to concentrate only on the interval [0, T ].

The adjoint eigenfunction ϕ∗ corresponding to the trivial multiplier is the unique T -
periodic solution of BVP (3.16). The adjoint eigenfunction v∗ satisfies

(3.58)

⎧⎪⎨
⎪⎩

v̇∗(τ) +AT(τ)v∗ = 0, τ ∈ [0, T ],

v∗(T )− ei
2π
3 v∗(0) = 0,∫ T

0 〈v∗, v〉dτ − 1 = 0.

Similarly, we obtain v̄∗.
After the standard substitutions in (2.1), the constant and linear terms give us as usual

u̇0 = F (u0), v̇ −A(τ)v = 0, ˙̄v −A(τ)v̄ = 0.

From the ξ2- or ξ̄2-terms we obtain the equation (or its complex-conjugate)

ḣ20 −A(τ)h20 = B(τ ; v, v) − 2b̄v̄,

which is to be solved in the space of functions satisfying h20(T ) = ei
4π
3 h20(0). In this space

the operator d
dτ − A(τ) has a range space with codim 1 which is orthogonal to v̄∗. So only

one Fredholm solvability condition is involved, from which we obtain

(3.59) b =
1

2

∫ T

0
〈v∗, B(τ ; v̄, v̄)〉dτ.

Using this value for b, we can find h20 as the unique solution of the BVP

(3.60)

⎧⎪⎨
⎪⎩

ḣ20 −A(τ)h20 −B(τ ; v, v) + 2b̄v̄ = 0, τ ∈ [0, T ],

h20(T )− ei
4π
3 h20(0) = 0,∫ T

0 〈v̄∗, h20〉dτ = 0.

By collecting the ξξ̄-terms, we obtain an equation for h11,

ḣ11 −A(τ)h11 = B(τ ; v, v̄)− α1u̇0,

which is to be solved in the space of functions satisfying h11(T ) = h11(0). The Fredholm
solvability condition implies

(3.61) α1 =

∫ T

0
〈ϕ∗, B(τ ; v, v̄)〉dτ.

With α1 defined in this way, let h11 be the unique solution of the BVP

(3.62)

⎧⎨
⎩

ḣ11 −A(τ)h11 −B(τ ; v, v̄) + α1u̇0 = 0, τ ∈ [0, T ],
h11(T )− h11(0) = 0,∫ T

0 〈ϕ∗, h11〉dτ = 0.
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Finally, collecting the ξ2ξ̄-terms gives an equation for h21,

ḣ21 −A(τ)h21 = C(τ ; v, v, v̄) + 2B(τ ; v, h11) +B(τ ; v̄, h20)− 2cv − 2b̄h02 − 2α1v̇,

which is to be solved in the space of the functions satisfying h21(T ) = ei
2π
3 h21(0). The

Fredholm solvability condition implies that parameter c of the R3 normal form in Table 1 is
determined by

c =
1

2

∫ T

0
〈v∗, C(τ ; v, v, v̄) + 2B(τ ; v, h11) +B(τ ; v̄, h20)− 2α1Av〉dτ,

where α1 is defined by (3.61), and v, h11, and h20 are the unique solutions of the BVPs (3.57),
(3.62), and (3.60).

By collecting the ξ3-terms we obtain

ḣ30 −A(τ)h30 = C(τ ; v, v, v) + 3B(τ ; v, h20)− 6b̄h11 − 6α2u̇0,

which is to be solved in the space of the functions satisfying h30(T ) = h30(0). Therefore,

α2 =

∫ T

0
〈ϕ∗, C(τ ; v, v, v) + 3B(τ ; v, h20)〉dτ.

Note that as in the CH case v is not uniquely determined. Indeed, when v is a solution
of (3.57) and γ ∈ C with γ̄γ = 1, then γv is also a solution. Then the adjoint function is
given by γv∗, and b and h20 are replaced by γ̄3b and γ2h20, respectively. The normal form
coefficient c remains the same. However, the normal form coefficient b is multiplied by γ̄3.
This does not affect the bifurcation analysis since it must hold only that this normal form
coefficient is nonzero, and obviously γ �= 0. Moreover, the analysis around the bifurcation
point is independent from the sign of b.

3.2.5. Strong resonance 1:4 bifurcation. The three-dimensional critical center manifold
W c(Γ) at the R4 bifurcation can be parameterized locally by (τ, ξ) as

u = u0(τ) + ξv(τ) + ξ̄v̄(τ) +H(τ, ξ, ξ̄), τ ∈ [0, 4T ], ξ ∈ C,

where the real function H satisfies H(4T, ξ, ξ̄) = H(0, ξ, ξ̄) and has the Taylor expansion

H(τ, ξ, ξ̄) =
3∑

i,j=0
2≤i+j≤3

1

i!j!
hij(τ)ξ

iξ̄j +O(|ξ|4),

with hij(4T ) = hij(0) and hij = h̄ji so that hii is real, while v is defined by

(3.63)

⎧⎨
⎩

v̇ −A(τ)v = 0, τ ∈ [0, T ],

v(T )− ei
π
2 v(0) = 0,∫ T

0 〈v, v〉dτ − 1 = 0,
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extended on [0, 4T ] using the equivariance property of the normal form, i.e.,

v(τ + T ) := ei
π
2 v(τ) = iv(τ),

v(τ + 2T ) := eiπv(τ) = −v(τ),

v(τ + 3T ) := ei
3π
2 v(τ) = −iv(τ)

for τ ∈ [0, T ].
The definition of the conjugate v̄ follows from this. These functions exist due to Lemma 2

of [25]. As usual the functions hij can be found by solving appropriate BVPs, assuming that
(2.1) restricted to W c(Γ) has the periodic R4 normal form from Table 1. Similar to the R3
case, it holds that

hkl(τ) = hkl(τ + T )(e−iπ/2)k(eiπ/2)l

for τ ∈ [0, T ].
The adjoint eigenfunction ϕ∗ is defined by the T -periodic solution of (3.16), and v∗ satisfies

(3.64)

⎧⎨
⎩

v̇∗(τ) +AT(τ)v∗ = 0, τ ∈ [0, T ],

v∗(T )− ei
π
2 v∗(0) = 0,∫ T

0 〈v∗, v〉dτ − 1 = 0.

Similarly, we obtain v̄∗.
The constant and the linear terms give the identities u̇0 = F (u0), v̇ − A(τ) = 0, and

˙̄v − A(τ)v̄ = 0. From the ξ2- or ξ̄2-terms the following equation (or its complex-conjugate)
follows:

ḣ20 −A(τ)h20 = B(τ ; v, v).

Notice that this equation is nonsingular in the space of functions satisfying h20(T ) = −h20(0).
So h20 is given as the unique solution of the BVP

(3.65)

{
ḣ20 −A(τ)h20 −B(τ ; v, v) = 0, τ ∈ [0, T ],

h20(T ) + h20(0) = 0.

By collecting the ξξ̄-terms we obtain an equation for h11,

ḣ11 −A(τ)h11 = B(τ ; v, v̄)− α1u̇0,

which is to be solved in the space of functions satisfying h11(T ) = h11(0). The Fredholm
solvability condition gives exactly the same value of α1 as in (3.61). With this value of α1,
h11 is the unique solution of BVP (3.62).

The ξξ̄2-terms give an equation for h12,

ḣ12 −A(τ)h12 = C(τ ; v, v̄, v̄) +B(τ ; v, h02) + 2B(τ ; v̄, h11)− 2c̄v̄ − 2α1 ˙̄v,

which is to be solved in the space of functions satisfying h12(T ) = −ih12(0). The Fredholm
solvability condition implies

c̄ =
1

2

∫ T

0
〈v̄∗, C(τ ; v, v̄, v̄) +B(τ ; v, h02) + 2B(τ ; v̄, h11)− 2α1A(τ)v̄〉dτ,
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where α1 is defined in (3.61), and v, h11, and h02 are the unique solutions of the BVPs
(3.63), (3.62), and the complex-conjugate of (3.65). Taking the complex-conjugate gives us
the critical coefficient c in the R4 normal form from Table 1.

Finally, by collecting the ξ̄3-terms we obtain an equation for h03,

ḣ03 −A(τ)h03 = C(τ ; v̄, v̄, v̄) + 3B(τ ; v̄, h02)− 6dv,

which is to be solved in the space of the functions satisfying h03(T ) = ih03(0). The nontrivial
Fredholm solvability condition gives the value of the critical coefficient d in the R4 normal
form, namely,

d =
1

6

∫ T

0
〈v∗, C(τ ; v̄, v̄, v̄) + 3B(τ ; v̄, h02)〉dτ.

So we finally obtain the value of

A =
c

|d| ,

which can be used to determine the bifurcation scenario at the R4 resonance.
Also, in this case v is not uniquely determined, since for every γ ∈ C with γ̄Tγ = 1, γv is

a solution. Then the adjoint eigenfunction is given by γv∗, and h20 is replaced by γ2h20. The
normal form coefficient c remains the same, but instead of d we get γ̄4d. However, this again
does not influence the bifurcation analysis since the study is determined by the above-defined
A for which we need only |d|.

3.2.6. Fold-flip bifurcation. The three-dimensional critical center manifold W c(Γ) at the
LPPD bifurcation can be parameterized locally by (τ, ξ) as

u = u0(τ) + ξ1v1(τ) + ξ2v2(τ) +H(τ, ξ), τ ∈ [0, 2T ], ξ = (ξ1, ξ2) ∈ R
2,

where H satisfies H(2T, ξ) = H(0, ξ) and has the Taylor expansion

H(τ, ξ) =

3∑
i,j=0

2≤i+j≤3

1

i!j!
hij(τ)ξ

i
1ξ

j
2 +O(‖ξ‖4),

while the eigenfunctions v1 and v2 are given by⎧⎨
⎩

v̇1 −A(τ)v1 − F (u0) = 0, τ ∈ [0, T ],
v1(T )− v1(0) = 0,∫ T

0 〈v1, F (u0)〉dτ = 0

(3.66)

and ⎧⎨
⎩

v̇2 −A(τ)v2 = 0, τ ∈ [0, T ],
v2(T ) + v2(0) = 0,∫ T

0 〈v2, v2〉dτ − 1 = 0,

(3.67)

with
v1(τ + T ) := v1(τ) and v2(τ + T ) := −v2(τ) for τ ∈ [0, T ].
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The functions v1 and v2 exist because of Lemmas 2 and 5 of [25]. The functions hij can be
found by solving appropriate BVPs, assuming that (2.1) restricted to W c(Γ) has the periodic
LPPD normal form in Table 1. Moreover, similarly as before, u(τ, ξ1, ξ2) = u(τ + T, ξ1,−ξ2)
such that

hij(τ) = (−1)jhij(τ + T )

for τ ∈ [0, T ]. As before, we will reduce all computations to the interval [0, T ].
To compute the coefficients of the normal form, we need the generalized eigenfunction v1,

the eigenfunction v2, and the adjoint eigenfunctions ϕ∗, v∗1 , and v∗2, defined as solution of the
following BVPs:

⎧⎨
⎩

ϕ̇∗ +AT(τ)ϕ∗ = 0, τ ∈ [0, T ],
ϕ∗(T )− ϕ∗(0) = 0,∫ T

0 〈ϕ∗, v1〉dτ − 1 = 0,

(3.68)

⎧⎨
⎩

v̇∗1 +AT(τ)v∗1 + ϕ∗ = 0, τ ∈ [0, T ],
v∗1(T )− v∗1(0) = 0,∫ T

0 〈v∗1 , v1〉dτ = 0,

(3.69)

and ⎧⎨
⎩

v̇∗2 +AT(τ)v∗2 = 0, τ ∈ [0, T ],
v∗2(T ) + v∗2(0) = 0,∫ T

0 〈v∗2 , v2〉dτ − 1 = 0.

(3.70)

Note that the integral conditions can be satisfied due to the spectral assumptions at the LPPD
point. The following orthogonality conditions hold automatically:

∫ T

0
〈ϕ∗, F (u0)〉dτ =

∫ T

0
〈ϕ∗, v2〉dτ =

∫ T

0
〈v∗1 , v2〉dτ

=

∫ T

0
〈v∗2 , v1〉dτ =

∫ T

0
〈v∗2 , F (u0)〉dτ = 0.

Since we have normalized the adjoint eigenfunction associated to multiplier 1 with the last
generalized eigenfunction, we also have

∫ T

0
〈v∗1 , F (u0)〉dτ = 1.

As usual, to derive the normal form coefficients we substitute the above expansions into
(2.1) and compare term by term. By collecting the constant and linear terms we get the
identities u̇0 = F (u0), v̇1 = A(τ)v1 + F (u0), and v̇2 = A(τ)v2.

By collecting the ξ21-terms we find an equation for h20,

(3.71) ḣ20 −A(τ)h20 = B(τ ; v1, v1)− 2a20v1 − 2α20u̇0 + 2v̇1,
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which is to be solved in the space of functions satisfying h20(T ) = h20(0). In this space,
the differential operator d

dτ − A(τ) is singular and its null-space is spanned by u̇0. The
corresponding Fredholm solvability condition implies

a20 =
1

2

∫ T

0
〈ϕ∗, B(τ ; v1, v1) + 2A(τ)v1〉 dτ.

With a20 tuned in this way (3.71) is solvable for any value of parameter α20. As in the
cusp of cycles case, we are free to choose parameter α20 as we want, and we take α20 = 0.
This choice will not influence our final conclusion about possible bifurcation scenarios.

In order to make the solution of (3.71) unique, we have to fix the projection on the null-
space of the operator, more specifically in the direction of F (u0). Therefore, we impose the
orthogonality condition with the adjoint generalized eigenfunction v∗1 and obtain h20 as the
unique solution of the BVP⎧⎨
⎩

ḣ20 −A(τ)h20 −B(τ ; v1, v1) + 2a20v1 + 2α20F (u0)− 2A(τ)v1 − 2F (u0) = 0, τ ∈ [0, T ],
h20(T )− h20(0) = 0,∫ T

0 〈v∗1 , h20〉dτ = 0.

By collecting the ξ1ξ2-terms we obtain a singular equation for h11,

ḣ11 −A(τ)h11 = B(τ ; v1, v2)− b11v2 + v̇2,

which is to be solved in the space of the functions that satisfy h11(T ) = −h11(0). The Fredholm
solvability condition gives, using (3.67) and (3.70),

b11 =

∫ T

0
〈v∗2 , B(τ ; v1, v2) +A(τ)v2〉 dτ.

With b11 defined in this way, we can compute h11 as the unique solution of the BVP⎧⎨
⎩

ḣ11 −A(τ)h11 −B(τ ; v1, v2) + b11v2 −A(τ)v2 = 0, τ ∈ [0, T ],
h11(T ) + h11(0) = 0,∫ T

0 〈v∗2 , h11〉dτ = 0.

Collecting the ξ22-terms gives a singular equation for h02,

(3.72) ḣ02 −A(τ)h02 = B(τ ; v2, v2)− 2a02v1 − 2α02u̇0,

where solvability gives in the standard manner

a02 =
1

2

∫ T

0
〈ϕ∗, B(τ ; v2, v2)〉 dτ.

So (3.72) is solvable for any value of the parameter α02. For simplicity, we take α02 = 0.
Notice that also here, the solution of (3.72) is orthogonal to the adjoint eigenfunction ϕ∗.
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Since we have to fix the projection in the direction of eigenfunction u̇0, we define h02 as the
unique solution of⎧⎨

⎩
ḣ02 −A(τ)h02 −B(τ ; v2, v2) + 2a02v1 + 2α02F (u0) = 0, τ ∈ [0, T ],

h02(T )− h02(0) = 0,∫ T
0 〈v∗1 , h02〉dτ = 0.

Applying the Fredholm solvability conditions to the singular equations for hij with i+ j =
3, we obtain

a30 =
1

6

∫ T

0
〈ϕ∗, C(τ ; v1, v1, v1) + 3B(τ ;h20, v1)− 6a20h20

+ 3(A(τ)h20 +B(τ ; v1, v1)) + 6(1 − α20)A(τ)v1〉 dτ − a20,

b21 =
1

2

∫ T

0
〈v∗2 , C(τ ; v1, v1, v2) +B(τ ;h20, v2) + 2B(τ ;h11, v1)− 2a20h11

− 2b11h11 + 2(A(τ)h11 +B(τ ; v1, v2)) + 2(1− α20)A(τ)v2〉 dτ − b11,

a12 =
1

2

∫ T

0
〈ϕ∗, C(τ ; v1, v2, v2) +B(τ ;h02, v1) + 2B(τ ;h11, v2)− 2b11h02

− 2a02h20 +A(τ)h02 +B(τ ; v2, v2)− 2α02A(τ)v1〉 dτ − a02,

b03 =
1

6

∫ T

0
〈v∗2 , C(τ ; v2, v2, v2) + 3B(τ ;h02, v2)− 6a02h11 − 6α02A(τ)v2〉 dτ.

4. Implementation issues. Numerical implementation of the formulas derived in section 3
requires the evaluation of integrals of scalar functions over [0, T ] and the solution of nonsingular
linear BVPs with integral constraints. Such tasks can be carried out as in the standard
continuation software such as AUTO [17], CONTENT [31], and MATCONT [14]. In these
software packages, periodic solutions to (1.1) are computed with the method of orthogonal
collocation with piecewise polynomials applied to properly formulated BVPs.

The standard BVP for the periodic solutions is formulated on the unit interval [0, 1], so
that the period T becomes a parameter, and it involves an integral phase condition,⎧⎨

⎩
ẋ(τ)− Tf(x(τ), α) = 0, τ ∈ [0, 1],

x(0) − x(1) = 0,∫ 1
0 〈x(τ), ξ̇(τ)〉 dτ = 0,

(4.1)

where ξ is a previously calculated periodic solution to a nearby problem, rescaled to [0, 1].
In the orthogonal collocation method [5], problem (4.1) is replaced by the following dis-

cretization:

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=0

xi,j �̇i,j(ζi,k)− Tf

⎛
⎝ m∑

j=0

xi,j�i,j(ζi,k), α

⎞
⎠ = 0,

x0,0 − xN−1,m = 0,

N−1∑
i=0

m−1∑
j=0

σi,j〈xi,j , ξ̇i,j〉+ σN,0〈xN,0, ξ̇N,0〉 = 0.
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The points xi,j form the approximation of x(τ) with m+ 1 equidistant mesh points

τi,j = τi +
j

m
(τi+1 − τi), j = 0, 1, . . . ,m,

in each of the N intervals [τi, τi+1], where 0 = τ0 < τ1 < · · · < τN = 1.
The �i,j(τ)’s are the Lagrange basis polynomials, while the points ζi,j (j = 1, . . . ,m) are

Gauss points [12], i.e., the roots of the Legendre polynomial of degree m, all relative to the
interval [τi, τi+1].

With this choice of collocation points ζi,j, the approximation error at the mesh points has
order of accuracy m+1, ‖x(τi,j)−xi,j‖ = O(hm+1), where h = maxi=1,2,...,N{ti}, ti = τi−τi−1,
while for the coarse mesh points τi the error has order of accuracy 2m, ‖x(τi)−xi,0‖ = O(h2m)
(“superconvergence”).

The integration weight σi,j of τi,j is given by wj+1ti+1 for 0 ≤ i ≤ N − 1 and 0 <
j < m. For i = 0, . . . , N − 2, the integration weight of τi,m (τi,m = τi+1,0) is given by
σi,m = wm+1ti+1 + w1ti+2, and the integration weights of τ0 and τN are given by w1t1 and
wm+1tN , respectively. In the above expressions, wj+1 is the Lagrange quadrature coefficient.

4.1. Discretization symbols. It is convenient to discretize all computed functions using
the same mesh as in (4.2). For a given vector function η ∈ C1([0, 1],Rn) we consider three
different discretizations:

• ηM ∈ R
(Nm+1)n, the vector of the function values at the mesh points;

• ηC ∈ R
Nmn, the vector of the function values at the collocation points;

• ηW = [
ηW1
ηW2

] ∈ R
Nmn × R

n, where ηW1 is the vector of the function values at the
collocation points multiplied by the Gauss–Legendre weights and the lengths of the
corresponding mesh intervals, and ηW2 = η(0).

Formally, we also introduce the structured sparse matrix LC×M that converts a vector ηM
of function values at the mesh points into a vector ηC of its values at the collocation points,
namely, ηC = LC×MηM . This matrix is never formed explicitly; its entries are the �i,j(ζi,k)-
coefficients in (4.2). We also need a matrix AC×M such that AC×MηM = (A(t)η(t))C . Again
this matrix need not be formed explicitly. On the other hand, we do need the matrix (D −
TA(t))C×M explicitly; it is defined by (D−TA(t))C×MηM = (η̇(t)−TA(t)η(t))C . Finally, let
the tensors BC×M×M and CC×M×M×M be defined by BC×M×Mη1Mη2M = (B(t; η1(t), η2(t)))C
and

CC×M×M×Mη1Mη2Mη3M = (C(t; η1(t), η2(t), η3(t)))C

for all ηi ∈ C1([0, 1],Rn). (These tensors are not formed explicitly.)
Let f(t), g(t) ∈ C0([0, 1],R) be two scalar functions. Then the integral

∫ 1
0 f(t)dt is repre-

sented by
∑N−1

i=0

∑m
j=1 ωj(fC)i,jti+1 =

∑N−1
i=0

∑m
j=1(fW1)i,j, where (fC)i,j = f(ζi,j) and ωj is

the Gauss–Legendre quadrature coefficient. The integral
∫ 1
0 f(t)g(t)dt is approximated with

Gauss–Legendre by fT
W1

gC ≈ fT
W1

LC×MgM , where equality holds if g(t) is a piecewise poly-
nomial of degree m or less on the given mesh. For vector functions f(t), g(t) ∈ C0([0, 1],Rn),
the integral

∫ 1
0 〈f(t), g(t)〉 dt is formally approximated by the same expression: fT

W1
gC ≈

fT
W1

LC×MgM , where again we have equality if g(t) is a piecewise polynomial of degree m or
less on the given mesh. Concerning the accuracy of the quadrature formulas, we first note
that accuracy is not an important issue for the phase integral in (4.1), as this equation selects
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only a specific solution from the continuum of solutions obtained by phase shifts. Similarly,
the discretization of the normalization integrals does not affect the inherent accuracy, in-
cluding superconvergence at the main mesh points τi of the solution of the discretized BVP.
Discretization of integrals, as specified above, follows the standard Gauss quadrature error,
which has order of accuracy 2m if, as mentioned before, the function g(t) is a piecewise poly-
nomial of degree m or less on the given mesh and if f(t) is sufficiently smooth (in a piecewise
sense). Otherwise, still assuming sufficient piecewise smoothness, the order of accuracy of the
numerical integrals is m+ 1 if m is odd, and m+ 2 if m is even. In particular, for the often
used choice m = 4, the integrals would then have order of accuracy 6.

In section 3 we derived the coefficients of the critical normal forms in Table 1 and the func-
tions needed for their computation using the coordinate τ ∈ [0, T ]. Regarding the implementa-
tion, in all cases we will rescale to the interval [0, 1]. Therefore, define u1(t) = u0(T t) = u0(τ)
for t ∈ [0, 1], where u0 was defined in section 2. In general, vector-functions with the rescaled
argument will have an extra lower index 1. Note that the multilinear forms A, B, C, D, and
E are computed by means of the MATLAB symbolic toolbox.

4.2. Cusp of cycles bifurcation. The linear BVPs (3.3), (3.4), and (3.5) defining the gen-
eralized eigenfunction, the adjoint eigenfunction, and the generalized adjoint eigenfunctions,
respectively, are to be replaced by the rescaled problems

(4.3)

⎧⎨
⎩

v̇1(t)− TA(t)v1(t)− TF (u1(t)) = 0, t ∈ [0, 1],
v1(1) − v1(0) = 0,∫ 1

0 〈v1(t), F (u1(t))〉dt = 0,

with v(τ) = v1(τ/T ),

(4.4)

⎧⎨
⎩

ϕ̇∗
1(t) + TAT(t)ϕ∗

1(t) = 0, t ∈ [0, 1],
ϕ∗
1(1)− ϕ∗

1(0) = 0,∫ 1
0 〈ϕ∗

1(t), v1(t)〉dt− 1 = 0,

where ϕ∗(τ) = ϕ∗
1(τ/T )/T , and⎧⎨

⎩
v̇∗1(t) + TAT(t)v∗1(t) + Tϕ∗

1(t) = 0, t ∈ [0, 1],
v∗1(1)− v∗1(0) = 0,∫ 1

0 〈v∗1(t), v1(t)〉dt = 0,

with v∗(τ) = v∗1(τ/T )/T . We then still need h2,1(t), which is the unique solution of the
rescaled BVP (3.12), i.e.,

(4.5)

⎧⎪⎪⎨
⎪⎪⎩

ḣ2,1(t)− TA(t)h2,1(t)− TB(t; v1(t), v1(t))
−2TA(t)v1(t)− 2TF (u1(t)) = 0, t ∈ [0, 1],

h2,1(1)− h2,1(0) = 0,∫ 1
0 〈v∗1(t), h2,1(t)〉 dt = 0,

where h2(τ) = h2,1(τ/T ), to compute the normal form coefficient c via

c =
1

6

∫ 1

0
〈ϕ∗

1(t), 3A(t)h2,1(t) + 3B(t; v1(t), v1(t))(4.6)

+ 6A(t)v1(t) + 3B(t;h2,1(t), v1(t)) + C(t; v1(t), v1(t), v1(t))〉 dt.
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We now give the matrix approximations. We compute v1M by solving the discretization
of (4.3), i.e., ⎡

⎣ (D − TA(t))C×M

δ0 − δ1
p

gTW1
LC×M 0

⎤
⎦[

v1M
a1

]
=

⎡
⎣ TfC

0n×1

0

⎤
⎦ ,(4.7)

where a1 equals zero since the M × M upper left part of the big matrix is singular, g(t) =
F (u1(t)), and p is obtained by solving the system

[
pT a2

] ⎡⎣ (D − TA(t))C×M

δ0 − δ1
r1

r2 0

⎤
⎦ =

[
0M×1 1

]
,(4.8)

where r1 and r2 are any vectors which make the big matrix in (4.8) nonsingular. Here, a2 = 0

and p is then the left null-vector of
[ (D−TA(t))C×M

δ0−δ1

]
; in (4.7) the normalized p is used. This

technique guarantees that we always deal with nonsingular systems.
We will compute ϕ∗

1W instead of ϕ∗
1M since ϕ∗

1W can be calculated by a system very
similar to (4.7). Formally, the computation of ϕ∗

1W is based on Proposition B.1 from the
supplementary files, i.e., since ϕ ∈ Ker(φ2), with φ2 defined in Proposition B.1. We need

(ϕ∗
1)

T
W

[
(D − TA(t))C×M

δ0 − δ1

]
= 0.

Therefore, ϕ∗
1W can be obtained by solving

(4.9)
[
(ϕ∗

1)
T
W a

] ⎡⎣ (D − TA(t))C×M

δ0 − δ1
p

qT 0

⎤
⎦ =

[
0M×1 1

]
,

where a equals zero and q is the normalized right null-vector of
[ (D−TA(t))C×M

δ0−δ1

]
. We then

approximate I =
∫ 1
0 〈ϕ∗

1(t), v1(t)〉dt by I1 = (ϕ∗
1)

T
W1

LC×Mv1M . ϕ∗
1W is then rescaled to ensure

that I1 = 1.
It is more efficient to compute v∗1W instead of v∗1M , since v∗1 will be used only to compute

integrals of the form
∫ 1
0 〈v∗1(t), ζ(t)〉dt. From Proposition B.3 we can conclude that

〈[
v∗1

v∗1(0)

]
,

[
ḣ− TA(t)h
h(0) − h(1)

]〉
= −

〈[ −Tϕ∗
1

0

]
,

[
h
0

]〉

for all appropriate functions h, such that v∗1 can be obtained by solving

[
(v∗1)

T
W a

] ⎡⎣ (D − TA(t))C×M v1C
δ0 − δ1 0n×1

qT 0

⎤
⎦ =

[
T (ϕ∗

1)
T
W1

LC×M 0
]
,

where a equals zero and p is defined in (4.8).
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Next, (h2,1)M is found by solving the discretization of (4.5), namely,⎡
⎣ (D − TA(t))C×M

δ0 − δ1
p

(v∗1)TW1
LC×M 0

⎤
⎦[

h2,1M
a

]
=

⎡
⎣ R

0n×1

0

⎤
⎦ ,

with R = TBC×M×Mv1Mv1M + 2TAC×Mv1M + 2TgC , a = 0, and p defined above.
Finally, (4.6) is approximated by

c =
1

6
(ϕ∗

1)
T
W1

(3AC×Mh2,1M + 3BC×M×Mv1Mv1M

+ 6AC×Mv1M + 3BC×M×Mh2,1Mv1M + CC×M×M×Mv1Mv1Mv1M ).

Note that since we have a CPC bifurcation, the quadratic coefficient of the ξ-equation in
the corresponding normal form has to be equal to zero. MATCONT makes an extra check
whether this coefficient [30], determined by

b =
1

2
(ϕ∗

1)
T
W1

(BC×M×Mv1Mv1M + 2AC×Mv1M ),

is indeed small enough.

4.3. GPD bifurcation. The linear BVPs (3.15), (3.16), and (3.17) defining the eigenfunc-
tion associated to multiplier −1 and the adjoint eigenfunctions become the following rescaled
problems:

(4.10)

⎧⎨
⎩

v̇1(t)− TA(t)v1(t) = 0, t ∈ [0, 1],
v1(1) + v1(0) = 0,∫ 1

0 〈v1(t), v1(t)〉dt− 1 = 0,

where v(τ) = v1(τ/T )/
√
T ,

(4.11)

⎧⎨
⎩

ϕ̇∗
1(t) + TAT(t)ϕ∗

1(t) = 0, t ∈ [0, 1],
ϕ∗
1(1)− ϕ∗

1(0) = 0,∫ 1
0 〈ϕ∗

1(t), F (u1(t))〉 dt− 1 = 0,

with ϕ∗(τ) = ϕ∗
1(τ/T )/T , and

(4.12)

⎧⎨
⎩

v̇∗1(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],
v∗1(1) + v∗1(0) = 0,∫ 1

0 〈v∗1(t), v1(t)〉dt− 1 = 0,

with v∗(τ) = v∗1(τ/T )/
√
T .

Let h2,1(t) be the unique solution of the rescaled version of BVP (3.20), i.e.,⎧⎨
⎩

ḣ2,1(t)− TA(t)h2,1(t)− TB(t; v1(t), v1(t)) + 2α1,1TF (u1(t)) = 0, t ∈ [0, 1],
h2,1(1)− h2,1(0) = 0,∫ 1

0 〈ϕ∗
1(t), h2,1(t)〉 dt = 0,
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with h2(τ) = h2,1(τ/T )/T , and h3,1(t) be the unique solution of the rescaled version of BVP
(3.23), i.e., ⎧⎪⎪⎨

⎪⎪⎩
ḣ3,1(t)− TA(t)h3,1(t)− TC(t; v1(t), v1(t), v1(t))

− 3TB(t; v1(t), h2,1(t)) + 6α1,1TA(t)v1(t) = 0, t ∈ [0, 1],
h3,1(1) + h3,1(0) = 0,∫ 1

0 〈v∗1(t), h3,1(t)〉 dt = 0,

with h3(τ) = h3,1(τ/T )/(
√
TT ), where now

α1,1 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(t; v1(t), v1(t))〉 dt,

and α1,1 = Tα1.
The coefficient h4,1(t) is obtained as the unique solution of the rescaled BVP⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ḣ4,1(t)− TA(t)h4,1(t)− TD(t; v1(t), v1(t), v1(t), v1(t))
− 6TC(t; v1(t), v1(t), h2,1(t))− 3TB(t;h2,1(t), h2,1(t))

− 4TB(t; v1(t), h3,1(t)) + 12α1,1T (A(t)h2,1(t) +B(t; v1(t), v1(t))
− 2α1,1F (u1(t))) + 24α2,1TF (u1(t)) = 0, t ∈ [0, 1],

h4,1(1)− h4,1(0) = 0,∫ 1
0 〈ϕ∗

1(t), h4,1(t)〉 dt = 0,

with h4(τ) = h4,1(τ/T )/T
2, and where

α2,1 =
1

24

∫ 1

0
〈ϕ∗

1(t),D(t; v1(t), v1(t), v1(t), v1(t)) + 6C(t; v1(t), v1(t), h2,1(t))

+ 3B(t;h2,1(t), h2,1(t)) + 4B(t; v1(t), h3,1(t))− 12α1,1(A(t)h2,1(t)

+B(t; v1(t), v1(t)))〉 dt + α2
1,1,

with α2,1 = T 2α2.
Finally, we can write the critical coefficient as

e =
1

120T 2

∫ 1

0
〈v∗1(t), E(t; v1(t), v1(t), v1(t), v1(t), v1(t)) + 10D(t; v1(t), v1(t), v1(t), h2,1(t))

+ 15C(t; v1(t), h2,1(t), h2,1(t)) + 10C(t; v1(t), v1(t), h3,1(t)) + 10B(t;h2,1(t), h3,1(t))

+ 5B(t; v1(t), h4,1(t))− 120α2,1A(t)v1(t)− 20α1,1A(t)h3,1(t)〉 dt.
We now come to the implementation details in MATCONT. We compute v1M by solving⎡

⎣ (D − TA(t))C×M

δ0 + δ1
p1

qT1 0

⎤
⎦[

v1M
a1

]
=

⎡
⎣ 0C×1

0n×1

1

⎤
⎦ ,(4.13)

with p1 and q1 the normalized solutions of⎡
⎣ (D − TA(t))C×M

δ0 + δ1
r1

rT2 0

⎤
⎦[

q1
a2

]
=

⎡
⎣ 0C×1

0n×1

1

⎤
⎦
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and [
pT1 a3

] ⎡⎣ (D − TA(t))C×M

δ0 + δ1
r1

rT2 0

⎤
⎦ =

[
0M×1 1

]
,

where r1 and r2 are random vectors. Every ai equals zero. v1M is then uniquely determined by
the normalization

∑N−1
i=0

∑m
j=0 σj〈(v1M )i,j , (v1M )i,j〉 = 1, where σj is the Lagrange quadrature

coefficient.
Equation (4.9) is used for the computation of ϕ∗

1W . We approximate I =
∫ 1
0 〈ϕ∗

1(t), F (u1(t))〉dt
by I1 = (ϕ∗

1)
T
W1

gC and normalize ϕ∗
1W to ensure that I1 = 1.

The discretization of (4.12) can be computed with the same matrix as in (4.13) (see the
antiperiodic version of Proposition B.1 in the supplementary files),

[
(v∗1)TW a

] ⎡⎣ (D − TA(t))C×M

δ0 + δ1
p1

qT1 0

⎤
⎦ =

[
0M×1 1

]
,

where a = 0. We approximate I =
∫ 1
0 〈v∗1(t), v1(t)〉dt by I1 = (v∗1)TW1

LC×Mv1M . v∗1W is
rescaled to ensure that I1 = 1.

This then makes it possible to compute the expression for α1,1, namely,

(4.14) α1,1 =
1

2
(ϕ∗

1)
T
W1

BC×M×Mv1Mv1M .

Now, h2,1(t), h3,1(t), and h4,1(t) are found by solving the systems⎡
⎣ (D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0

⎤
⎦[

h2,1M
a1

]
=

⎡
⎣ TBC×M×Mv1Mv1M − 2α1,1TgC

0n×1

0

⎤
⎦ ,

⎡
⎣ (D − TA(t))C×M

δ0 + δ1
p1

(v∗1)TW1
LC×M 0

⎤
⎦[

h3,1M
a2

]
=

⎡
⎣ R
0n×1

0

⎤
⎦ ,

with

R = TCC×M×M×Mv1Mv1Mv1M + 3TBC×M×Mv1Mh2,1M − 6α1,1TAC×Mv1M ,

and ⎡
⎣ (D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0

⎤
⎦[

h4,1M
a3

]
=

⎡
⎣ R
0n×1

0

⎤
⎦ ,

with

R = TDC×M×M×M×Mv1Mv1Mv1Mv1M + 6TCC×M×M×Mv1Mv1Mh2,1M

+ 3TBC×M×Mh2,1Mh2,1M + 4TBC×M×Mv1Mh3,1M

− 12α1,1T (AC×Mh2,1M +BC×M×Mv1Mv1M − 2α1,1gC)− 24α2,1TgC
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and

(4.15)

α2,1 =
1
24 (ϕ

∗
1)

T
W1

(DC×M×M×M×Mv1Mv1Mv1Mv1M + 6CC×M×M×Mv1Mv1Mh2,1M
+ 3BC×M×Mh2,1Mh2,1M + 4BC×M×Mv1Mh3,1M − 12α1,1(AC×Mh2,1M
+BC×M×Mv1Mv1M )) + α2

1,1.

Here, q is the normalized right null-vector and p the normalized left null-vector of the M ×M
matrix corresponding with the T -periodic boundary condition, as before. In what follows, p,
q, p1, and q1 will denote the previously defined null-vectors.

Now, we have all ingredients for the computation of the normal form coefficient

(4.16)

e = 1
120T 2 (v

∗
1)

T
W1

(EC×M×M×M×M×Mv1Mv1Mv1Mv1Mv1M
+ 10DC×M×M×M×Mv1Mv1Mv1Mh2,1M + 15CC×M×M×Mv1Mh2,1Mh2,1M
+ 10CC×M×M×Mv1Mv1Mh3,1M + 10BC×M×Mh2,1Mh3,1M
+ 5BC×M×Mv1Mh4,1M − 120α2,1AC×Mv1M − 20α1,1AC×Mh3,1M ).

Note that since we are in the GPD case, the cubic coefficient of the ξ-equation in the
corresponding normal form has to vanish. MATCONT makes an extra check whether this
coefficient, computed as explained in [30] via

c =
1

3T
(v∗1)

T
W1

(CC×M×Mv1Mv1Mv1M + 3BC×M×Mv1Mh2,1M − 6α1,1AC×Mv1M ),

is indeed small enough.

4.4. CH bifurcation. The linear BVPs (3.26) and (3.27) defining the eigenfunction asso-
ciated to the complex multiplier and the adjoint eigenfunctions are substituted by the rescaled
problems

(4.17)

⎧⎨
⎩

v̇1(t)− TA(t)v1(t) + iωT v1(t) = 0, t ∈ [0, 1],
v1(1)− v1(0) = 0,∫ 1

0 〈v1(t), v1(t)〉dt− 1 = 0,

with v(τ) = v1(τ/T )/
√
T , (4.11), and⎧⎨

⎩
v̇∗1(t) + TAT(t)v∗1(t) + iωT v∗1(t) = 0, t ∈ [0, 1],

v∗1(1)− v∗1(0) = 0,∫ 1
0 〈v∗1(t), v1(t)〉dt − 1 = 0,

where v∗(τ) = v∗1(τ/T )/
√
T .

The second order coefficients of the center manifold are now defined by the corresponding
rescaled problems

(4.18)

{
ḣ20,1(t)− TA(t)h20,1(t) + 2iωTh20,1(t)− TB(t; v1(t), v1(t)) = 0, t ∈ [0, 1],

h20,1(1) − h20,1(0) = 0,

where h20(τ) = h20,1(τ/T )/T , and⎧⎨
⎩

ḣ11,1(t)− TA(t)h11,1(t)− TB(t; v1(t), v̄1(t)) + α1,1TF (u1(t)) = 0, t ∈ [0, 1],
h11,1(1)− h11,1(0) = 0,∫ 1

0 〈ϕ∗
1(t), h11,1(t)〉dt = 0,
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with h11(τ) = h11,1(τ/T )/T , where

α1,1 =

∫ 1

0
〈ϕ∗

1(t), B(t; v1(t), v̄1(t))〉dt,

with α1,1 = Tα1.
Now, we can compute

c1 = − i

2

∫ 1

0
〈v∗1(t), C(t; v1(t), v1(t), v̄1(t)) + 2B(t; v1(t), h11,1(t)) +B(t; v̄1(t), h20,1(t))

− 2α1,1A(t)v1(t)〉dt + α1,1ω,

with c1 = Tc. With c1 defined in this way, h21,1 can be computed as the solution of

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ḣ21,1(t)− TA(t)h21,1(t) + iωTh21,1(t)− TC(t; v1(t), v1(t), v̄1(t))
−2TB(t; v1(t), h11,1(t))− TB(t;h20,1(t), v̄1(t)) + 2ic1Tv1(t)

+ 2α1,1T (A(t)v1(t)− iωv1(t)) = 0, t ∈ [0, 1],
h21,1(1) − h21,1(0) = 0,∫ 1
0 〈v∗1(t), h21,1(t)〉dt = 0,

where h21(τ) = h21,1(τ/T )/(
√
TT ).

Next, the rescaling of the BVP for h30(τ) gives⎧⎨
⎩

ḣ30,1(t)− TA(t)h30,1(t) + 3iωTh30,1(t)
−TC(t; v1(t), v1(t), v1(t))− 3TB(t; v1(t), h20,1(t)) = 0, t ∈ [0, 1],

h30,1(1)− h30,1(0) = 0,

with h30(τ) = h30,1(τ/T )/(
√
TT ).

Now, we come to the fourth order terms where the rescaled h31,1(t) is the solution of
(4.19)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ḣ31,1(t)− TA(t)h31,1(t) + 2iωTh31,1(t)− TD(t; v1(t), v1(t), v1(t), v̄1(t))
− 3TC(t; v1(t), v1(t), h11,1(t))− 3TC(t; v1(t), v̄1(t), h20,1(t))

− 3TB(t;h11,1(t), h20,1(t))− 3TB(t; v1(t), h21,1(t))− TB(t; v̄1(t), h30,1(t))
+ 6ic1Th20,1(t) + 3α1,1T (A(t)h20,1(t)− 2iωh20,1(t) +B(t; v1(t), v1(t))) = 0, t ∈ [0, 1],

h31,1(1) − h31,1(0) = 0,

where h31(τ) = h31,1(τ/T )/T
2, and the rescaled h22,1(t) of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ḣ22,1(t)− TA(t)h22,1(t)− TD(t; v1(t), v1(t), v̄1(t), v̄1(t))
− TC(t; v1(t), v1(t), h02,1(t))− 4TC(t; v1(t), v̄1(t), h11,1(t))

− TC(t; v̄1(t), v̄1(t), h20,1(t)) − 2TB(t;h11,1(t), h11,1(t))
− 2TB(t; v1(t), h12,1(t))− TB(t;h02,1(t), h20,1(t))

− 2TB(t; v̄1(t), h21,1(t)) + 4α1,1T (A(t)h11,1(t)
+B(t; v1(t), v̄1(t))− α1,1F (u1(t))) + 4α2,1TF (u1(t)) = 0, t ∈ [0, 1],

h22,1(1)− h22,1(0) = 0,∫ 1
0 〈ϕ∗

1(t), h22,1(t)〉dt = 0,
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where h22(τ) = h22,1(τ/T )/T
2, and

α2,1 =
1

4

∫ 1

0
〈ϕ∗

1(t),D(t; v1(t), v1(t), v̄1(t), v̄1(t)) + C(t; v1(t), v1(t), h02,1(t))

+ 4C(t; v1(t), v̄1(t), h11,1(t)) + C(t; v̄1(t), v̄1(t), h20,1(t))

+ 2B(t;h11,1(t), h11,1(t)) + 2B(t; v1(t), h12,1(t)) +B(t;h02,1(t), h20,1(t))

+ 2B(t; v̄1(t), h21,1(t))− 4α1,1(A(t)h11,1(t) +B(t; v1(t), v̄1(t)))〉dt + α2
1,1,

with α2,1 = T 2α2.
At last, the critical coefficient e is determined by

e =
1

12T 2

∫ 1

0
〈v∗1(t), E(t; v1(t), v1(t), v1(t), v̄1(t), v̄1(t)) +D(t; v1(t), v1(t), v1(t), h02,1(t))

+ 6D(t; v1(t), v1(t), v̄1(t), h11,1(t)) + 3D(t; v1(t), v̄1(t), v̄1(t), h20,1(t))

+ 6C(t; v1(t), h11,1(t), h11,1(t)) + 3C(t; v1(t), v1(t), h12,1(t))

+ 3C(t; v1(t), h02,1(t), h20,1(t)) + 6C(t; v̄1(t), h11,1(t), h20,1(t))

+ 6C(t; v1(t), v̄1(t), h21,1(t)) +C(t; v̄1(t), v̄1(t), h30,1(t))

+ 3B(t;h12,1(t), h20,1(t)) + 6B(t;h11,1(t), h21,1(t)) + 3B(t; v1(t), h22,1(t))

+B(t;h02,1(t), h30,1(t)) + 2B(t; v̄1(t), h31,1(t))− 12α2,1A(t)v1(t)

− 6α1,1(A(t)h21,1(t) + 2B(t; v1(t), h11,1(t)) + C(t; v1(t), v1(t), v̄1(t))

+B(t;h20,1(t), v̄1(t))− 2α1,1A(t)v1(t))〉dt+ α2,1i
ω

T 2
+ α1,1i

c1
T 2

− α2
1,1i

ω

T 2
.

We now compute the vector approximations for the previously defined functions. We
compute v1M by solving the discretization of (4.17)⎡

⎣ (D − TA(t) + iωTL)C×M

δ0 − δ1
p2

qH2 0

⎤
⎦[

v1,1M
a

]
=

⎡
⎣ 0C×1

0n×1

1

⎤
⎦ ,

with a = 0, and where q2 is the normalized right null-vector of the complex matrix K =[ (D−TA(t)+iωTL)C×M

δ0−δ1

]
and p2 the normalized right null-vector of KH. This vector is then

rescaled to ensure that
∑N−1

i=0

∑m
j=0 σj〈(v1M )i,j , (v1M )i,j〉 = 1.

ϕ∗
1,W1

is computed as in section 4.3. For the computation of v∗1 we apply Proposition B.2
from the supplementary files, which makes it possible to compute v∗1 by solving

[
(v∗1)HW a

] ⎡⎣ (D − TA(t) + iωTL)C×M

δ0 − δ1
p2

qH2 0

⎤
⎦ =

[
0M×1 1

]
.

We then approximate I =
∫ 1
0 〈v∗1(t), v1(t)〉dt by I1 = (v∗1)HW1

LC×Mv1M and rescale v∗1W so that
I1 = 1.

The second order terms are approximated by[
(D − TA(t) + 2 iωTL)C×M

δ0 − δ1

]
h20,1M =

[
TBC×M×Mv1Mv1M

0n×1

]
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and ⎡
⎣ (D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0

⎤
⎦[

h11,1M
a

]
=

⎡
⎣ TBC×M×Mv1M v̄1M − α1,1TgC

0n×1

0

⎤
⎦ ,

with α1,1 computed as
α1,1 = (ϕ∗

1)
T
W1

BC×M×Mv1M v̄1M .

An approximation to the rescaled normal form coefficient c1 is given by

c1 = − i

2
(v∗1)

H
W1

(CC×M×M×Mv1Mv1M v̄1M + 2BC×M×Mv1Mh11,1M

+BC×M×M v̄1Mh20,1M − 2α1,1AC×Mv1M ) + α1,1ω,

where in MATCONT an extra check is done to ensure that this coefficient is indeed purely
imaginary.

Next, we determine the third order coefficients of the center manifold expansion, namely,⎡
⎣ (D − TA(t) + iωTL)C×M

δ0 − δ1
p2

(v∗1)
H
W1

LC×M 0

⎤
⎦[

h21,1M
a

]
=

⎡
⎣ R

0n×1

0

⎤
⎦ ,

where

R = TCC×M×M×Mv1Mv1M v̄1M + 2TBC×M×Mv1Mh11,1M + TBC×M×Mh20,1M v̄1M

− 2ic1TLC×Mv1M − 2α1,1T (AC×Mv1M − iωLC×Mv1M )

and a = 0, and [
(D − TA(t) + 3iωTL)C×M

δ0 − δ1

]
h30,1M =

[
R

0n×1

]
,

with R = TCC×M×M×Mv1Mv1Mv1M + 3TBC×M×Mv1Mh20,1M .
The approximation to (4.19) is given by[

(D − TA(t) + 2iωTL)C×M

δ0 − δ1

]
h31,1M =

[
R

0n×1

]
,

with

R = TDC×M×M×M×Mv1Mv1Mv1M v̄1M + 3TCC×M×M×Mv1Mv1Mh11,1M

+ 3TCC×M×M×Mv1M v̄1Mh20,1M + 3TBC×M×Mh11,1Mh20,1M

+ 3TBC×M×Mv1Mh21,1M + TBC×M×M v̄1Mh30,1M − 6ic1TLC×Mh20,1M

− 3α1,1T (AC×Mh20,1M − 2iωLC×Mh20,1M +BC×M×Mv1Mv1M )

while

α2,1 =
1

4
(ϕ∗

1)
T
W1

(DC×M×M×M×Mv1Mv1M v̄1M v̄1M + CC×M×M×Mv1Mv1Mh02,1M

+ 4CC×M×M×Mv1M v̄1Mh11,1M + CC×M×M×M v̄1M v̄1Mh20,1M

+ 2BC×M×Mh11,1Mh11,1M + 2BC×M×Mv1Mh12,1M +BC×M×Mh02,1Mh20,1M

+ 2BC×M×M v̄1Mh21,1M − 4α1,1(AC×Mh11,1M +BC×M×Mv1M v̄1M )) + α2
1,1.
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The last fourth order term needed is given by

⎡
⎣ (D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0

⎤
⎦[

h22,1M
a

]
=

⎡
⎣ R

0n×1

0

⎤
⎦ ,

with

R = TDC×M×M×M×Mv1Mv1M v̄1M v̄1M + TCC×M×M×Mv1Mv1Mh02,1M

+ 4TCC×M×M×Mv1M v̄1Mh11,1M + TCC×M×M×M v̄1M v̄1Mh20,1M

+ 2TBC×M×Mh11,1Mh11,1M + 2TBC×M×Mv1Mh12,1M + TBC×M×Mh02,1Mh20,1M

+ 2TBC×M×M v̄1Mh21,1M − 4α1,1T (AC×Mh11,1M +BC×M×Mv1M v̄1M

− α1gC)− 4α2,1TgC

and a = 0. Now, we have all the information needed to compute the fifth order coefficient of
the normal form, namely,

e =
1

12T 2
(v∗1)

H
W1

(EC×M×M×M×M×Mv1Mv1Mv1M v̄1M v̄1M

+DC×M×M×M×Mv1Mv1Mv1Mh02,1M + 6DC×M×M×M×Mv1Mv1M v̄1Mh11,1M

+ 3DC×M×M×M×Mv1M v̄1M v̄1Mh20,1M + 6CC×M×M×Mv1Mh11,1Mh11,1M

+ 3CC×M×M×Mv1Mv1Mh12,1M + 3CC×M×M×Mv1Mh02,1Mh20,1M

+ 6CC×M×M×M v̄1Mh11,1Mh20,1M + 6CC×M×M×Mv1M v̄1Mh21,1M

+ CC×M×M×M v̄1M v̄1Mh30,1M + 3BC×M×Mh12,1Mh20,1M

+ 6BC×M×Mh11,1Mh21,1M + 3BC×M×Mv1Mh22,1M

+BC×M×Mh02,1Mh30,1M + 2BC×M×M v̄1Mh31,1M − 12α2,1AC×Mv1M

− 6α1,1(AC×Mh21,1M + 2BC×M×Mv1Mh11,1M + CC×M×M×Mv1Mv1M v̄1M

+BC×M×Mh20,1M v̄1M − 2α1,1AC×Mv1M )) + α2,1i
ω

T 2
+ α1,1i

c1
T 2

− α2
1,1i

ω

T 2
.

4.5. Strong resonance 1:1 bifurcation. In addition to the rescaled generalized eigenfunc-
tion v1,1 defined by (4.3), the second rescaled generalized eigenfunction associated to multiplier
1 can be found by solving

⎧⎨
⎩

v̇2,1(t)− TA(t)v2,1(t) + Tv1,1(t) = 0, t ∈ [0, 1],
v2,1(1)− v2,1(0) = 0,∫ 1

0 〈v2,1(t), F (u1(t))〉dt = 0,

with v2(τ) = v2,1(τ/T ).
The adjoint eigenfunction ϕ∗

1 is determined by the first two equations of (4.4) and the
normalization condition ∫ 1

0
〈ϕ∗

1(t), v2,1(t)〉dt− 1 = 0.
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We also need the first rescaled generalized adjoint eigenfunction that is given by⎧⎨
⎩

v̇∗1,1(t) + TAT(t)v∗1,1(t)− Tϕ∗
1(t) = 0, t ∈ [0, 1],

v∗1,1(1)− v∗1,1(0) = 0,∫ 1
0 〈v∗1,1(t), v2,1(t)〉dt = 0,

with v∗1(τ) = v∗1,1(τ/T )/T . Now, we have all the information needed to compute the two
critical coefficients, namely,

a =
1

2

∫ 1

0
〈ϕ∗

1(t), 2A(t)v1,1(t) +B(t; v1,1(t), v1,1(t))〉dt(4.20)

and

b =

∫ 1

0
〈ϕ∗

1(t), B(t; v1,1(t), v2,1(t)) +A(t)v2,1(t)〉dt

+

∫ 1

0
〈v∗1,1(t), 2A(t)v1,1(t) +B(t; v1,1(t), v1,1(t))〉dt.

The implementation in MATCONT is straightforward and relies on earlier explained tech-
niques, so we will omit further details.

4.6. Strong resonance 1:2 bifurcation. The rescaled eigenfunction associated to multi-
plier −1 is given by (4.10), and the rescaled generalized eigenfunction is the solution of⎧⎨

⎩
v̇2,1(t)− TA(t)v2,1(t) + Tv1,1(t) = 0, t ∈ [0, 1],

v2,1(1) + v2,1(0) = 0,∫ 1
0 〈v2,1(t), v1,1(t)〉dt = 0,

where v2(τ) = v2,1(τ/T )/
√
T .

The rescaled adjoint eigenfunctions are determined by (4.11), (4.12) but with normaliza-
tion condition

∫ 1
0 〈v∗1,1(t), v2,1(t)〉dt = 1 and

⎧⎨
⎩

v̇∗2,1(t) + TAT(t)v∗2,1(t)− Tv∗1,1(t) = 0, t ∈ [0, 1],

v∗2,1(1) + v∗2,1(0) = 0,∫ 1
0 〈v2,1(t), v∗2,1(t)〉 dt = 0,

where v∗2(τ) = v∗2,1(τ/T )/
√
T .

With α1 defined as

α1 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(t; v1,1(t), v1,1(t))〉 dt,

with α1 = Tα, let h20,1(t) be the unique solution of the rescaled BVP

(4.21)

⎧⎨
⎩

ḣ20,1(t)− TA(t)h20,1(t)− TB(t; v1,1(t), v1,1(t)) + 2α1TF (u1(t)) = 0, t ∈ [0, 1],
h20,1(1) − h20,1(0) = 0,∫ 1

0 〈ϕ∗
1(t), h20,1(t)〉 dt−

∫ 1
0 〈ϕ∗

1(t), B(v1,1(t), v2,1(t))〉 dt = 0,
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where h20(τ) = h20,1(τ/T )/T .
With h11,1(t) being the rescaling of the function h11(τ), the solution of

⎧⎨
⎩

ḣ11,1(t)− TA(t)h11,1(t)− TB(t; v1,1(t), v2,1(t)) + Th20,1(t) = 0, t ∈ [0, 1],
h11,1(1)− h11,1(0) = 0,∫ 1

0 〈ϕ∗
1(t), h11,1(t)〉 dt− 1

2

∫ 1
0 〈ϕ∗

1(t), B(v2,1(t), v2,1(t))〉 dt = 0,

where h11(τ) = h11,1(τ/T )/T , we are able to obtain the two normal form coefficients by the
expressions
(4.22)

a1 =
1

6

∫ 1

0
〈v∗1,1(t), C(t; v1,1(t), v1,1(t), v1,1(t)) + 3B(t; v1,1(t), h20,1(t))− 6α1A(t)v1,1(t)〉 dt,

with a1 = Ta, and

b =
1

2T

∫ 1

0
〈v∗1,1(t),−2α1A(t)v2,1(t) + C(t; v1,1(t), v1,1(t), v2,1(t))

+B(t;h20,1(t), v2,1(t)) + 2B(t;h11,1(t), v1,1(t))〉dt

+
1

2T

∫ 1

0
〈v∗2,1(t), C(t; v1,1(t), v1,1(t), v1,1(t)) + 3B(t; v1,1(t), h20,1(t))− 6α1A(t)v1,1(t)〉dt.

For the implementation details we will just highlight the differences from the previous
cases. Formula (4.13) gives us the value of v1,1 in the mesh points. However, since v1,1 is used
in the integral condition for v2,1, we have to transfer this vector to the collocation points and
multiply it with the Gauss–Legendre weights and the lengths of the corresponding intervals
to obtain (v1,1)W1 . The computation of v2,1 is then straightforward.

Using the antiperiodic version of Proposition B.3, we approximate the adjoint generalized
eigenfunction by solving

[
(v∗2,1)TW a

] ⎡⎣ (D − TA(t))C×M v2,1C
δ0 + δ1 0n×1

qT1 0

⎤
⎦ =

[−T (v∗1,1)TW1
LC×M 0

]
.

Now, h20,1M is found by discretizing (4.21), i.e.,

⎡
⎣ (D − TA(t))C×M

δ0 − δ1
p

(ϕ∗
1)

T
W1

LC×M 0

⎤
⎦[

h20,1M
a

]
=

⎡
⎣ TBC×M×Mv1,1Mv1,1M − 2α1TgC

0n×1

(ϕ∗
1)

T
W1

BC×M×Mv1,1Mv2,1M

⎤
⎦ .

4.7. Strong resonance 1:3 bifurcation. The BVPs for the rescaled eigenfunction and its
adjoint belonging to eigenvalue ei

2π
3 are determined by⎧⎪⎨

⎪⎩
v̇1(t)− TA(t)v1(t) = 0, t ∈ [0, 1],

v1(1)− ei
2π
3 v1(0) = 0,∫ 1

0 〈v1(t), v1(t)〉dt− 1 = 0,

(4.23)
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with v(τ) = v1(τ/T )/
√
T , and⎧⎪⎨

⎪⎩
v̇∗1(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],

v∗1(1) − ei
2π
3 v∗1(0) = 0,∫ 1

0 〈v∗1(t), v1(t)〉dt− 1 = 0,

where v∗(τ) = v∗1(τ/T )/
√
T . The adjoint eigenfunction corresponding to the trivial multiplier

is given by (4.11).
These eigenfunctions already make it possible to compute the rescaled normal form coef-

ficients

α1,1 =

∫ 1

0
〈ϕ∗

1(t), B(v1(t), v̄1(t))〉dt,(4.24)

where α1,1 = Tα1, and

b1 =
1

2

∫ 1

0
〈v∗1(t), B(v̄1(t), v̄1(t))〉dt,

with b1 =
√
Tb.

The rescaled second order functions in the center manifold expansion are solutions of⎧⎪⎨
⎪⎩

ḣ20,1(t)− TA(t)h20,1(t)− TB(v1(t), v1(t)) + 2b̄1T v̄1(t) = 0, t ∈ [0, T ],

h20,1(1) − ei
4π
3 h20,1(0) = 0,∫ 1

0 〈v̄∗1(t), h20,1(t)〉dt = 0,

with h20(τ) = h20,1(τ/T )/T , and

(4.25)

⎧⎨
⎩

ḣ11,1(t)− TA(t)h11,1 − TB(v1(t), v̄1(t)) + α1,1TF (u1(t)) = 0, t ∈ [0, 1],
h11,1(1)− h11,1(0) = 0,∫ 1

0 〈ϕ∗
1(t), h11,1(t)〉dt = 0,

with h11(τ) = h11,1(τ/T )/T . This all results then in

c =
1

2T

∫ 1

0
〈v∗1(t), C(v1(t), v1(t), v̄1(t)) + 2B(v1(t), h11,1(t))

+B(v̄1(t), h20,1(t))− 2α1,1Av1(t)〉dt.
We now come to the implementation details in MATCONT. We again highlight only the

differences from the implementation details given in the previous sections. Eigenfunction v1,
determined by (4.23), is computed by⎡

⎣ (D − TA(t))C×M

δ0 − e−i 2π
3 δ1

p3

qH3 0

⎤
⎦[

v1M
a

]
=

⎡
⎣ 0C×1

0n×1

1

⎤
⎦ .

We normalize v1M by requiring
∑N−1

i=0

∑m
j=0 σj〈(v1M )i,j , (v1M )i,j〉 = 1, where σj is the La-

grange quadrature coefficient. q3 is the normalized right null-vector of K =
[ (D−TA(t))C×M

δ0−e−i 2π3 δ1

]
,

and p3 is the normalized right null-vector of KH.
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To compute the adjoint eigenfunction v∗1, we apply Proposition B.1 from the supplementary

files but with boundary condition ζ(0)− e−i 2π
3 ζ(1) and obtain

[
(v∗1)HW a

] ⎡⎣ (D − TA(t))C×M

δ0 − e−i 2π
3 δ1

p3

qH3 0

⎤
⎦ =

[
0M×1 1

]
.(4.26)

v∗1W is rescaled such that (v∗1)
H
W1

LC×Mv1M = 1.
By first computing the complex conjugate of h20,1 we can use the same matrix as in (4.26),

except for the last line which represents the integral condition, to get⎡
⎣ (D − TA(t))C×M

δ0 − e−i 2π
3 δ1

p3

(v∗1)HW1
LC×M 0

⎤
⎦[

h̄20,1M
a

]
=

⎡
⎣ TBC×M×M v̄1M v̄1M − 2b1Tv1C

0n×1

0

⎤
⎦ .

4.8. Strong resonance 1:4 bifurcation. The rescaled eigenfunction and the adjoint eigen-
function corresponding to multiplier ei

π
2 are given by the solution of⎧⎨

⎩
v̇1(t)− TA(t)v1(t) = 0, t ∈ [0, 1],

v1(1) − ei
π
2 v1(0) = 0,∫ 1

0 〈v1(t), v1(t)〉dt− 1 = 0,

with v(τ) = v1(τ/T )/
√
T , and⎧⎨

⎩
v̇∗1(t) + TAT(t)v∗1(t) = 0, t ∈ [0, 1],

v∗1(1)− ei
π
2 v∗1(0) = 0,∫ 1

0 〈v∗1(t), v1(t)〉dt− 1 = 0,

where v∗(τ) = v∗1(τ/T )/
√
T , respectively. We also need the functions ϕ∗

1(t) and h11,1(t) defined
by (4.11) and (4.25) and the value of α1,1 given by (4.24).

The other second order coefficient of the center manifold is determined by{
ḣ20,1(t)− TA(t)h20,1(t)− TB(v1(t), v1(t)) = 0, t ∈ [0, 1],

h20,1(1) + h20,1(0) = 0,

with h20(τ) = h20,1(τ/T )/T .
The critical normal form coefficients are then given by

c̄ =
1

2T

∫ 1

0
〈v̄∗1(t), C(v1(t), v̄1(t), v̄1(t)) +B(v1(t), h02,1(t)) + 2B(v̄1(t), h11,1(t))

− 2α11A(t)v̄1(t)〉dt

and

d =
1

6T

∫ 1

0
〈v∗1(t), C(v̄1(t), v̄1(t), v̄1(t)) + 3B(v̄1(t), h02,1(t))〉dt.

The code is very similar to that of the strong resonance 1:3 case.
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4.9. Fold-flip bifurcation. The rescaled generalized eigenfunction v1,1 associated to mul-
tiplier 1 is the solution of (4.3), and the eigenfunction v2,1(t) associated to multiplier −1 is
defined by (4.10). Equation (4.4) determines the adjoint eigenfunction ϕ∗

1(t) corresponding
to the trivial solution, and the generalized adjoint eigenfunction v∗1,1(t) is given by (4.2). The
last adjoint eigenfunction v∗2,1(t) is found by solving (4.12).

The coefficients in front of the ξ21-terms in the corresponding normal form are given by

a20 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(v1,1(t), v1,1(t)) + 2A(t)v1,1(t)〉 dt

and α20 = 0.
The second order coefficients of the center manifold expansion are defined by the rescaled

BVPs⎧⎪⎪⎨
⎪⎪⎩

ḣ20,1(t)− TA(t)h20,1(t)− TB(v1,1(t), v1,1(t))
+ 2a20Tv1,1(t) + 2α20TF (u1(t))− 2TA(t)v1,1(t)− 2TF (u1(t)) = 0, t ∈ [0, 1],

h20,1(1)− h20,1(0) = 0,∫ 1
0 〈v∗1,1(t), h20,1(t)〉dt = 0,

with h20(τ) = h20,1(τ/T ),⎧⎪⎪⎨
⎪⎪⎩

ḣ11,1(t)− TA(t)h11,1(t)− TB(v1,1(t), v2,1(t)) + Tb11v2,1(t)
− TA(t)v2,1(t) = 0, t ∈ [0, 1],

h11,1(1) + h11,1(0) = 0,∫ 1
0 〈v∗2,1(t), h11,1(t)〉dt = 0,

with h11(τ) = h11,1(τ/T )/
√
T , and

⎧⎪⎪⎨
⎪⎪⎩

ḣ02,1(t)− TA(t)h02,1(t)− TB(v2,1(t), v2,1(t)) + 2a02,1Tv1,1(t)
+ 2α02,1TF (u1(t)) = 0, t ∈ [0, 1],
h02,1(1) − h02,1(0) = 0,∫ 1

0 〈v∗1,1(t), h02,1(t)〉dt = 0,

with h02(τ) = h02,1(τ/T )/T , where

b11 =

∫ 1

0
〈v∗2,1(t), B(v1,1(t), v2,1(t)) +A(t)v2,1(t)〉 dt,

a02,1 =
1

2

∫ 1

0
〈ϕ∗

1(t), B(v2,1(t), v2,1(t))〉 dt,

with a02,1 = Ta02 and α02 = 0.
The rescaling of the last four normal form coefficients of interest gives

a30 =
1

6

∫ 1

0
〈ϕ∗

1(t), C(v1,1(t), v1,1(t), v1,1(t)) + 3B(h20,1, v1,1(t))− 6a20h20,1(t)

+ 3(A(t)h20,1(t) +B(v1,1(t), v1,1(t))) + 6(1− α20)A(t)v1,1(t)〉 dt− a20,
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b21 =
1

2

∫ 1

0
〈v∗2,1(t), C(v1,1(t), v1,1(t), v2,1(t)) +B(h20,1(t), v2,1(t)) + 2B(h11,1(t), v1,1(t))

− 2a20h11,1(t)− 2b11h11,1(t) + 2(A(t)h11,1(t) +B(v1,1(t), v2,1(t)))

+ 2(1 − α20)A(t)v2,1(t)〉 dt− b11,

a12 =
1

2T

∫ 1

0
〈ϕ∗

1(t), C(v1,1(t), v2,1(t), v2,1(t)) +B(h02,1(t), v1,1(t))

+ 2B(h11,1(t), v2,1(t))− 2b11h02,1(t)− 2a02,1h20,1(t) +A(t)h02,1(t)

+B(v2,1(t), v2,1(t))− 2α02,1A(t)v1,1(t)〉 dt− a02,1
T

,

and

b03 =
1

6T

∫ 1

0
〈v∗2,1(t), C(v2,1(t), v2,1(t), v2,1(t)) + 3B(h02,1(t), v2,1(t)) − 6a02,1h11,1(t)

− 6α02,1A(t)v2,1(t)〉 dt.
For the computation of the needed functions and coefficients of interest, we refer the reader

to the previous sections.

5. Examples. All computations in this section are performed with MATCONT [14]. In
particular, the bordering methods from [18, 21] are used to continue the codim 1 bifurcations
of limit cycles in two parameters. The algorithms described above for computing the normal
form coefficients are implemented in the current version of MATCONT.

5.1. Periodic predator-prey model. Our first model is a periodically forced predator-prey
system, studied in [34] using shooting techniques, and described by the differential equations

(5.1)

⎧⎨
⎩
ẋ = r

(
1− x

K

)
x− p(x, t)y,

ẏ = ep(x, t)y − dy,

where x and y are the numbers of individuals, respectively, of prey and predator populations
or suitable measures of density or biomass. The parameters present in (5.1) are the intrinsic
growth rate r, the carrying capacity K, the efficiency e, and the death rate d of the predator.
The function p(x, t) is the predator functional response, for which the Holling type II is chosen,
with constant attack rate a and half saturation b(t) that varies periodically with period one
(year), i.e.,

p(x, t) =
ax

b(t) + x
, b(t) = b0(1 + ε cos(2πt)).

Instead of system (5.1), we consider the extended autonomous system

(5.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = r
(
1− x

K

)
x− axy

b0(1 + εu) + x
,

ẏ = e
axy

b0(1 + εu) + x
− dy,

u̇ = u− 2πv − (u2 + v2)u,

v̇ = 2πu+ v − (u2 + v2)v,
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where the last two equations have a stable limit cycle with u(t) = cos(2πt + ϕ) and a phase
shift ϕ depending on the initial conditions.

With fixed r = 2π, K = e = 1, a = 4π, and d = 2π, we perform a bifurcation analysis
with respect to the remaining parameters (ε, b0) obtaining the bifurcation diagram reported
in Figure 1. Since the system is periodically forced, no equilibria are present. The blue curves,
with labels LPC2(1) and LPC2(2), are limit point of cycle bifurcation curves of the second
iterate, the magenta curves are Neimark–Sacker bifurcations (of the first or of the second
iterate, respectively labeled with NS1 and NS2), and the green curves are period-doubling
bifurcations, dotted when subcritical and a solid line when supercritical (with notation PD1,
PD2, PD4, and PD8).

We have chosen this system as the first example since it allows us to check if the compu-
tation of the normal form coefficients αi is correct. Indeed, in a periodically forced system
the return time is independent of the distance from the limit cycle, so that the first equation
in all periodic normal forms should be τ̇ = 1. For the cases GPD and CH, as well as for the
strong resonance cases R2, R3, and R4, this would imply that all αi in the normal forms listed
in Table 1 must vanish. For the remaining CPC, R1, and LPPD (and even LPC) cases, the
normal forms derived for bifurcations of generic ODEs and given in Table 1 cannot be applied
verbatim, because periodically forced systems are not generic due to the above-mentioned
property of the return time, which results in a special Jordan structure of their monodromy
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R2  R2

PD1

NS1
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b 0

ε

Figure 1. Bifurcation diagram of limit cycles in system (5.2). In blue are the limit points of cycle bifurca-
tions, in green period doubling bifurcations, and in magenta Neimark–Sacker bifurcations. Solid/dotted curves
correspond to supercritical/subcritical bifurcations.
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matrix. Let us illustrate this phenomenon. Consider a continuation of a period-doubled limit
cycle in (5.2), and suppose that its LPC bifurcation is detected. For each point of the contin-
uation, we compute the singular values of the monodromy matrix minus the identity matrix.
The two smallest singular values are shown in Figure 2. There is always one singular value
equal to zero, but also the second one vanishes when approaching the LPC point. This means
that instead of a Jordan block of length two (as is expected at the LPC point in generic ODEs
[25]), we have in fact two Jordan blocks of length one. Therefore, we cannot apply the general
theory derived for generic LPC points. A similar situation is encountered when the original
limit cycle undergoes an LPC bifurcation. Something analogous happens in the CPC, R1, and
LPPD cases for the periodically forced systems, which therefore should be treated separately.
Normal forms for periodically forced ODEs were studied in [19].

0 500 1000 1500

0

0.05

0.1

0.15

0.2

0.25

0.3

LPC

Figure 2. The two smallest singular values.

As can be seen in Figure 1, R1 points are detected in the periodically forced system.
Due to the above remark, we will not attempt any normal form analysis of these points. We
will analyze in detail other detected codim 2 points, reporting the normal form coefficients
computed as explained in section 4.

5.1.1. The two GPD points. In Figure 1 the LPC2 curves are tangent to the PD1 curve
in two different GPD points. In the first one, with parameter values (ε, b0) = (0.319, 0.412),
the LPC curve is tangent to the subcritical period-doubling curve (type presented in Figure
9.3 of [29]), while in the second one, for (ε, b0) = (1.093, 0.218), the LPC2 curve is tangent to
the supercritical part of the PD1 bifurcation curve.

Performing the computation of the GPD normal form coefficients at the first point, we
obtain the following:

• For the first equation of the GPD normal form the two coefficients α1 and α2, up to a
scaling term T and T 2 computed through the formula (4.14) and (4.15), are zero, up
to the accuracy of the computation.
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• The normal form coefficient of the second equation, computed through formula (4.16),
equals e = −58.287.

Notice that these results are in agreement with what we expected. Indeed, since we are in the
case presented in Figure 9.3 of [29], the normal form coefficient e is negative.

From the computation of the GPD normal form coefficients at the second critical point
we obtain the following:

• For the first equation of the GPD normal form the two coefficients equal zero up to
the accuracy of the computation.

• The value of the normal form coefficient of the second equation is e = 41.544.
Also in this case the obtained results are in agreement with the theory.

5.1.2. The 1:2 resonance points. We divide the 1:2 resonance points present in this
model into two groups, namely, the R2 point at (ε, b0) = (0.337, 0.340) and the cascade of
resonance points in the right lower part of the graph.

The isolated R2 point forms the intersection of the NS1 curve, the supercritical Neimark–
Sacker curve of a limit cycle with period approximately equal to 1, and PD1. The situation is
thus the one depicted in Figure 8.8 of [29]. Performing the normal form coefficient computation
we obtain the following:

• In the first equation of the R2 normal form α = 0.
• In the last equation of the R2 normal form we have (a, b) = (3.401,−12.907).

Note that the obtained results are in accordance with the theory. Indeed, the absence of a
secondary Neimark–Sacker curve implies that a > 0, and the supercriticality of the Neimark–
Sacker curve implies that b < 0.

In the lower right part of the bifurcation diagram a resonance cascade is present, which
accumulates on the sequence of period-doubling curves. A zoom of this part is shown in Figure
3. Each resonance point of this cascade is a point of the type represented in Figure 9.10 of [29]
(so with a < 0 and the sign of b dependent on the criticality of the incoming Neimark–Sacker
curve). Notice that the criticality of the NS curves changes at the R2 point (as depicted in
Figure 9.10 of [29]).

As a first general result we observe that, in the first equation of the R2 normal form
coefficient, α = 0 for all points (as expected since the system is periodically forced). We remark
that for the normal form coefficients in the ξ-equations of the normal forms, a computation
to high accuracy is needed to get unambiguous results. The results are as follows.

On PD2. In the R2 point (ε, b0) = (0.744, 0.184). To the left of the R2 point the PD2
curve is supercritical, and to the right it is subcritical. The NS2 curve incoming in the R2
point is subcritical, while the NS4 curve outgoing at the R2 point is supercritical. We are
thus in the time reversed situation of Figure 9.10 of [29]. So we expect that b > 0 (subcritical
incoming Neimark–Sacker curve) and a < 0 (there is an outgoing secondary Neimark–Sacker
curve). The computed critical coefficients at the R2 point are (a, b) = (−65.767, 16.267).

On PD4. In the R2 point (ε, b0) = (0.743, 0.186). To the left of the R2 point the PD4
curve is supercritical, and to the right it is subcritical. The NS4 curve incoming in the R2
point is supercritical, while the NS8 curve outgoing at the R2 point is subcritical. We are
therefore in the situation depicted in Figure 9.10 of [29]. We expect that b < 0 (supercritical
incoming Neimark–Sacker curve) and a < 0 (there is an outgoing secondary Neimark–Sacker
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Figure 3. The resonance cascade in system (5.2). In blue are the limit points of cycle bifurcations, in green
period doubling bifurcations, and in magenta Neimark–Sacker bifurcations. Solid/dotted curves correspond to
supercritical/subcritical bifurcations.

curve). The computed coefficients at the R2 point are (a, b) = (−269.368,−18.151).
On PD8. In the R2 point (ε, b0) = (0.744, 0.186). To the left of the R2 point the PD8

curve is supercritical, and to the right it is subcritical. The NS8 curve incoming in the R2
point is subcritical; we are thus in the time reversed situation of Figure 9.10 of [29]. Thus, we
expect that b > 0 (subcritical incoming Neimark–Sacker curve) and a < 0 (there is an outgoing
secondary Neimark–Sacker curve, since the cascade continues). The computed coefficients of
the R2 point are (a, b) = (−921.701, 16.581).

All the obtained results are in agreement with the theory.

5.1.3. The 1:3 resonance points. There are two 1:3 resonance points, one on NS2 and
the other on NS4, as can be seen in Figure 3. These two points behave in a different way. The
Neimark–Sacker curve corresponding to the first point at (ε, b0) = (0.709, 0.179) is subcritical,
so we expect �(c) to be positive. The Neimark–Sacker curve of the second point at (ε, b0) =
(0.743, 0.185) is supercritical, and so �(c) should be negative. To check whether we are in a
nondegenerate case, we also have to take b into account; however, the sign of b is not relevant.

• For the first R3 point we have that (b,�(c)) = (4.557 − 4.457i, 9.155).
• For the second R3 point we have that (b,�(c)) = (0.405 + 12.143i,−8.820).

These results are in accordance with the theory.

5.1.4. The 1:4 resonance points. There are two 1:4 resonance points, one on NS2 and
the other on NS4, as can be seen in Figure 3. These two points behave in the same way as
the 1:3 resonance bifurcation points. The Neimark–Sacker curve corresponding to the first
point at (ε, b0) = (0.675, 0.177) is subcritical, and so here we expect �(A) to be positive. The
Neimark–Sacker curve of the second point at (ε, b0) = (0.743, 0.185) is supercritical, and so
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�(A) should be negative. Moreover, since those points are part of a resonance cascade, we
should not have limit point bifurcations of nontrivial equilibria, so we are in region I of Figure
9.14 of [29]. In order to ensure that we are not in a degenerate case, we also need to check
that d �= 0.

• For the first R4 point we have that (c, d) = (11.624 − 84.897i, 65.072 + 92.254i), and
so A = 0.103 − 0.752i.

• For the second R4 point we have that (c, d) = (−8.580−414.721i,−416.641−489.172i),
and so A = −0.01335 − 0.645i.

The results are in accordance with the theory. For both bifurcation points the value of A
belongs to region I of Figure 9.14 in [29].

5.2. The Steinmetz–Larter model. The following model of the peroxidase-oxidase reac-
tion was studied by Steinmetz and Larter [41] and is used as the test-example in [30, 21]:

(5.3)

⎧⎪⎪⎨
⎪⎪⎩

Ȧ = −k1ABX − k3ABY + k7 − k−7A,

Ḃ = −k1ABX − k3ABY + k8,

Ẋ = k1ABX − 2k2X
2 + 2k3ABY − k4X + k6,

Ẏ = −k3ABY + 2k2X
2 − k5Y,

where A,B,X, Y are state variables and k1, k2, k3, k4, k5, k6, k7, k8, and k−7 are parameters.
We fix the parameters as follows.

Par. Value Par. Value Par. Value Par. Value

k1 0.1631021 k2 1250 k3 0.046875 k4 20
k5 1.104 k6 0.001 k−7 0.1175

We perform a bifurcation analysis in the remaining parameter space (k7, k8). A few curves
are reported in Figure 4.

5.2.1. The 1:1 resonance points. The two 1:1 resonance points behave differently, since
in one R1 point the Neimark–Sacker curve rooted at the bifurcation point is supercritical,
while in the other one it is subcritical.

• For the R1 point in (k7, k8) = (1.180, 0.724), the two coefficients of the last equation
of the R1 normal form are equal to (a, b) = (−3.654 10−3, 0.735). Their product
ab = −2.686 10−3 is negative, which corresponds to the fact that the Neimark–Sacker
curve rooted at the R1 point is supercritical.

• For the R1 point in (k7, k8) = (1.858, 0.930), the two coefficients of the last equation
of the R1 normal form are equal to (a, b) = (−6.643 10−2,−2.157). Their product
ab = 0.143 is positive, and indeed the Neimark–Sacker curve rooted at the R1 point
is subcritical.

So we can conclude that the results are in accordance with the theory.

5.2.2. The CH points. In Figure 4 we see a CH point at (k7, k8) = (1.757, 0.913). The
normal form coefficient at that bifurcation point equals �(e) = 1.392 and is hence positive. In
order to verify that the normal form computation is correct, one might use tori continuation
techniques [38, 27, 11, 16, 35, 39]. However, these techniques are not stable near critical cases
like the one we have. In order to validate our result we therefore rely on simulations.
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Figure 4. Bifurcation diagram of limit cycles in model (5.3). In blue are the limit points of cycle bifurca-
tions and in magenta Neimark–Sacker bifurcations. Solid/dotted curves correspond to supercritical/subcritical
bifurcations.

The obtained result is shown in Figure 5. The indicated regions correspond with the
regions as denoted in [29]. The magenta curve between regions 2 and 3 is the supercritical
Neimark–Sacker curve, and the red curve between regions 1 and 2 is the subcritical Neimark–
Sacker curve. For each point of the grid, we have started time integration from a point close to
the original limit cycle (a 1% perturbation) until an attractor was found. The 1-norm of the
X-coordinate of an orbit with time length 1000 along the attractor is shown in the colormap.
In region 2 this attractor is the original limit cycle, and in region 3 it is the inner torus
arisen through the supercritical Neimark–Sacker curve. In region 1 the original limit cycle is
unstable, and so the trajectory which starts nearby converges to another attractor. Between
regions 1 and 3 and regions 1 and 2 a catastrophic bifurcation happens, i.e., a drastic change
of the attractor, identified from the change of color which varies from blue to red. Right above
the CH point, the catastrophic bifurcation is the subcritical Neimark–Sacker curve, while left
below it is the limit point of tori (Tc) curve. Figure 5 shows that we obtain the scenario which
corresponds to a positive second Lyapunov coefficient.

5.3. The Lorenz-84 system. This model, taken from [36], is a meteorological model
proposed by Lorenz in 1984 in order to describe the atmospheric circulation. The equations
of the model are

(5.4)

⎧⎪⎨
⎪⎩
ẋ = −y2 − z2 − ax+ aF,

ẏ = xy − bxz − y +G,

ż = bxy + xz − z,

where (a, b, F,G) are parameters. We fix a = 0.25 and b = 4. This model, as found in
[40, 43], has most of the analyzed codim 2 bifurcations of limit cycles. We report in Figure 6 a
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Figure 5. Simulations on a parameter grid (black points) of system (5.3). The magenta solid/dotted line is
the supercritical/subcritical Neimark–Sacker curve. The color represents the value of the maximum of the first
coordinate of the attractor reached through simulation from a point close to the limit cycle.

bifurcation diagram recomputed and extended with MATCONT in which the bifurcations of
equilibria (LP stands for limit point and H for Andronov–Hopf) are thicker and the limit cycle
bifurcations are thin. In particular, the blue curve is an LPC bifurcation curve, the green
curves are period-doubling (PD) bifurcation curves, and the magenta curves are Neimark–
Sacker (NS) curves. The codim 2 points are marked with a red dot, and, as can be seen in
the figure, almost all cases, except for the CH bifurcation and the fold-flip bifurcation, are
present in this model. In the remainder of this section we will investigate the normal form
coefficients of each bifurcation.

5.3.1. The swallow-tail bifurcation. The first degeneracy we want to analyze is the van-
ishing of the coefficient c in the CPC normal form. This bifurcation, named the swallow-tail
bifurcation, is in our case characterized by the collision and disappearance of two cusp points
of limit cycles. In order to get this codimension three (codim 3) bifurcation we analyze part
of the blue curve in Figure 6 for different parameter values of b. The result is shown in Figure
7. Part of the LPC branch is plotted in the (G,F )-plane for different values of parameter
b ∈ [2.91, 2.95] (from blue to red). In the table we can see the behavior of the critical normal
form coefficient c, where it exists (the colors correspond to those from the bifurcation dia-
gram). Notice how the behavior of this codim 3 bifurcation is captured by a smooth vanishing
of the normal form coefficient.
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Figure 6. Bifurcation diagram of model (5.4). The thicker curves are bifurcation curves of equilibria; the
thin curves are bifurcation curves of limit cycles and invariant tori (in blue the limit points of cycle curves,
in green period doubling curves, and in magenta Neimark–Sacker curves). Solid/dotted curves correspond to
supercritical/subcritical bifurcations.

5.3.2. The degenerate GPD bifurcation. On the green curve PD2(2) of Figure 6 there
are two GPD points. Computing the normal form coefficient in the first GPD point, with
parameter values (G,F ) = (0.900, 11.145), gives e = −1.318 10−3 < 0. Therefore, there is
an LPC bifurcation curve that starts rightward tangent to the subcritical part of the period-
doubling manifold. In the second case, namely, for (G,F ) = (1.124, 14.129), e = 2.895 10−3 >
0, and so the LPC curve starts rightward tangent to the supercritical part of the PD curve.
These conclusions are clarified in Figure 8; in the upper panels the Poincaré maps of the
limit cycles involved in the bifurcation are sketched. On the LPC4(2) curve the limit cycles
sketched in blue and red collide and disappear, while on the LPC4(1) curve the two involved
limit cycles are sketched in red and green.
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b (G, F )1 c1 (G, F )2 c2
2.95 (0.406176,12.76893) 16.4570 (0.40445,12.79664) -8.83567
2.94 (0.402934,12.74929) 13.3315 (0.40183,12.76712) -7.77721
2.93 (0.399746,12.72891) 10.0534 (0.39917,12.73840) -6.47271
2.92 (0.396624,12.70759) 6.30503 (0.39643,12.71071) -4.67510
2.91

Figure 7. Different limit points of cycle bifurcation curves in the (G,F )-plane for different values of the
third parameter b. The parameter values are reported in the table.

5.3.3. The 1:1 resonance points. Two R1 points are located on the LPC curve. Those
two points should have different products of normal form coefficients. In fact, in the first one,
where (G,F ) = (0.522, 10.718), the Neimark–Sacker curve rooted at the bifurcation point is
supercritical (i.e., the situation depicted in Figure 8.8 of [29]), while in the second one, where
(G,F ) = (2.220, 9.811), the Neimark–Sacker curve is subcritical.

• For the first R1 point (a, b) = (2.577,−1.266), so the product ab = −3.262 is negative.
• For the second R1 point (a, b) = (−9.887,−2.005), so the product ab = 19.819 is

positive.
These results are in accordance with the theory.

5.3.4. The 1:2 resonance points. At the R2 point at (G,F ) = (1.593, 6.106) shown
in Figure 6, the incoming Neimark–Sacker curve NS is subcritical (therefore, we must have
b > 0), while the outgoing curve NS2 (which exists and thus a < 0) is supercritical; i.e., we are
in the time reversed case of Figure 9.10 of [29]. The coefficients computed at the 1:2 resonance
point are (a, b) = (−0.633, 0.179), in accordance with the theory.

At the R1 point located at (G,F ) = (2.220, 9.811) starts a resonance 1:2 cascade, as shown
in Figure 9. On the cascade we find many resonance points which we will analyze in what
follows. In particular, since the R2 points belong to a cascade, they are of the type presented
in Figure 9.10 of [29] (so a < 0), with at each step a change of criticality of the incoming
Neimark–Sacker curve. The Neimark–Sacker curve born at the R1 point is subcritical, so for
the first R2 point we expect that b > 0, while for the second one b < 0.
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Figure 8. Two generalized period-doubling points with different normal form coefficients on the period-
doubling bifurcation curve PD2(2) of Figure 6.

• For the first R2 point at (G,F ) = (2.298, 9.916) we have that (a, b) = (−1.316, 0.111).
• For the second R2 point at (G,F ) = (2.298, 9.920) we have that (a, b) = (−2.623,

−5.641 10−2).
Results are in accordance with the theory.

5.3.5. The 1:3 resonance points. There are several 1:3 resonance points at which we can
have a closer look. There is one R3 point located on the NS curve and two R3 points are
detected on the NS2 curve. The R3 bifurcation corresponding to the first iterate happens at
(G,F ) = (1.624, 4.628), with a positive normal form coefficient of the Neimark–Sacker bifur-
cation. The R3 points corresponding to the second iterate are at (G,F ) = (1.235, 7.072) and
(G,F ) = (0.739, 8.989), where the Neimark–Sacker bifurcation is in both cases supercritical,
so we are in the situation depicted in Figure 9.12 of [29].

• For the R3 point at (G,F ) = (1.624, 4.628) we have that (b,�(c)) = (0.191 − 0.546i,
6.186 10−2).

• For the R3 point at (G,F ) = (1.235, 7.072) we have that (b,�(c)) = (−0.446 −
0.190i,−3.612 10−2).

• For the R3 point at (G,F ) = (0.7394, 8.989) we have that (b,�(c)) = (−0.129 +
1.681 10−2i,−1.951 10−2).

All these results are in accordance with the theory.
There are also R3 points on the cascade, shown in Figure 9. The first one corresponds

with a subcritical Neimark–Sacker curve, while the second one corresponds with a supercritical
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Figure 9. Zoom on the resonance 1 : 2 cascade that starts at the right R1 point in Figure 6. In blue are the
limit points of cycle bifurcation curves, in green the period-doubling curves, and in violet the Neimark–Sacker
curves. Solid/dotted curves correspond to supercritical/subcritical curves.

Neimark–Sacker curve.
• For the first R3 point, at (G,F ) = (2.279, 9.889) we have that (b,�(c)) = (−2.958 −

0.360i, 0.738).
• For the second R3 point, at (G,F ) = (2.297, 9.919) we have that (b,�(c)) = (2.745 +

3.539i,−0.385).
Also in this case all results are in accordance with the theory.

5.3.6. The 1:4 resonance points. There are five 1:4 resonance points at which we will
have a closer look. One is located on the NS curve, two others are on the NS2 curve, and the
last two lie on the resonance cascade (see Figure 9).

• For the R4 point at (G,F ) = (1.647, 3.376) we have that (c, d) = (5.0045 10−2 −
7.459 10−2i, 0.110 + 0.534i), and so A = 9.179 10−2 − 0.137i (subcritical Neimark–
Sacker curve, case I).

• For the R4 point at (G,F ) = (0.595, 9.777) we have that (c, d) = (−1.513 10−2 −
0.135i,−2.665 10−2−4.112 10−2i), and so A = −0.308−2.753i (supercritical Neimark–
Sacker curve, case VIII).

• For the R4 point at (G,F ) = (1.390, 6.620) we have that (c, d) = (−4.172 10−2 −
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0.992i,−0.428 − 1.082i), and so A = −3.584 − 0.852i (supercritical Neimark–Sacker
curve, case I).

For the first and the last points no further bifurcation analysis is possible to confirm the
correctness of the results since the curves rooted at the bifurcation point are global bifurcations
of limit cycles. Instead, it is possible to continue all local bifurcations of limit cycles rooted
at the second R4 point, obtaining the result shown in Figure 10. The curve T in is shown in
the bifurcation diagram of the R4 point, given in [29]. These diagrams are also presented in
[13]. Curve T corresponds to the fold bifurcation of the 4T -periodic cycle, which happens in
the “big” cycle. For curve T in, the fold bifurcation happens in the “big” cycle. Note that we
have not made the distinction between regions VII and VIII.
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Figure 10. Bifurcation diagram at the R4 point at (G,F ) = (0.595, 9.777). In blue are the limit points of
cycle bifurcation curves and in violet the Neimark–Sacker curves. Solid/dotted curves correspond to supercrit-
ical/subcritical curves.

The first R4 point of the resonance cascade lies on a subcritical Neimark–Sacker curve,
while the second one lies on a supercritical Neimark–Sacker curve. Moreover, since they are
part of a cascade, we expect them to be of type I.

• For the first R4 point at (G,F ) = (2.298, 9.916) we have that (c, d) = (5.185 10−2 −
1.763i,−2.014 + 0.455i), and so A = 2.510 10−2 − 0.854i.

• For the first R4 point at (G,F ) = (2.298, 9.919) we have that (c, d) = (−2.821 10−2 −
6.815i,−10.845 + 2.146i), and so A = −2.550 10−3 − 0.616i.

Also in this case the results are in accordance with the theory.

5.4. The extended Lorenz-84 system. As done in [33], it is possible to extend the Lorenz-
84 system (5.4) by adding a fourth variable which takes the influence on the jet stream and the
baroclinic waves of external parameters like the temperature of the sea surface into account.
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The resulting system is

(5.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ = −y2 − z2 − ax+ aF − γu2,

ẏ = xy − bxz − y +G,

ż = bxy + xz − z,

u̇ = −δu+ γux+K.

We use the parameter values mentioned in [33], i.e.,

a = 0.25, b = 1, G = 0.2, δ = 1.04, γ = 0.987, F = 1.75, K = 0.0003.

Time integrating this system from the origin leads to the detection of a stable limit cycle.
In a continuation with K as free system parameter the limit cycle undergoes a supercritical
period-doubling bifurcation. Now, we can perform a two-parameter continuation in (F,K)
and obtain the bifurcation diagram reported in Figure 11 (cf. [33]).

5.4.1. The fold-flip point. As can be seen in Figure 11, a fold-flip point is detected for
(F,K) = (1.762, 2.806 10−4). Since there is a Neimark–Sacker curve of the period-doubled
limit cycle rooted at the bifurcation point and the NS2 curve and the LPC curve lie on
different sides of the PD curve, we are in the situation represented in Figure 9.25 of [29];
i.e., we have a20b11 < 0 and a02b11 < 0. Moreover, since the NS2 curve is supercritical,
CNS should be negative. Numerically, we obtain that b11 = 562.222, a20 = −0.576, a02 =
−1.784 10−5, CNS = −1.076 107. Hence, these results are in agreement with the theory. They
also agree with [33], where the LPPD bifurcation was analyzed by computing the normal form

1.75 1.76 1.77
2

3

4 x 10

NS2

PD

LPC

F

K

LPPD

Figure 11. Bifurcation diagram of limit cycles in model (5.5). The blue curve is a limit point of the cycle
curve, the green one is a period-doubling curve (solid/dotted parts correspond to supercritical/subcritical parts),
and the magenta curve is a supercritical Neimark–Sacker bifurcation curve of the period-doubled limit cycle.



786 DE WITTE, DELLA ROSSA, GOVAERTS, AND KUZNETSOV

coefficients for the critical Poincaré map, using the numerical integration of the variational
equations to compute the multilinear forms in the Taylor expansion of this map.

6. Discussion. In this paper, we have applied the approach from [30] to codim 2 bifur-
cations of limit cycles in generic autonomous ODE systems (1.1). This approach is based on
the periodic normalization by Iooss [25]; see also [26].

Although in [10, 25] periodic normal forms for some codim 2 bifurcations of limit cycles
were presented, neither of these publications treated all 11 codim 2 local bifurcations of
limit cycles. We derived the normal forms for eight cases when the center manifold is either
two- or three-dimensional. Moreover, we have provided the explicit formulas for the normal
form coefficients. These formulas are directly suitable for numerical implementation using
orthogonal collocation. They perfectly fit into the continuation context, where limit cycles and
their bifurcations are computed using the BVP approach, without numerical approximation
of Poincaré maps. Full details of the implementation of the developed method in MATCONT
were given, together with several numerical examples.

The three remaining codim 2 cases with four- and five-dimensional center manifolds, i.e.,
fold-NS (LPNS), period doubling-NS (PDNS), and double NS (NSNS) bifurcations, will be
treated in a separate paper.
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[8] H. Broer, C. Simó, and R. Vitolo, Bifurcations and strange attractors in the Lorenz-84 climate model
with seasonal forcing, Nonlinearity, 15 (2002), pp. 1205–1267.

[9] M. Capinski, Z. Galias, T. Kapela, M. Mrozek, P. Pilarczyk, D. Wilczak, and P. Zgliczyński,
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