487 research outputs found

    Doppler radar-based non-contact health monitoring for obstructive sleep apnea diagnosis: A comprehensive review

    Get PDF
    Today’s rapid growth of elderly populations and aging problems coupled with the prevalence of obstructive sleep apnea (OSA) and other health related issues have affected many aspects of society. This has led to high demands for a more robust healthcare monitoring, diagnosing and treatments facilities. In particular to Sleep Medicine, sleep has a key role to play in both physical and mental health. The quality and duration of sleep have a direct and significant impact on people’s learning, memory, metabolism, weight, safety, mood, cardio-vascular health, diseases, and immune system function. The gold-standard for OSA diagnosis is the overnight sleep monitoring system using polysomnography (PSG). However, despite the quality and reliability of the PSG system, it is not well suited for long-term continuous usage due to limited mobility as well as causing possible irritation, distress, and discomfort to patients during the monitoring process. These limitations have led to stronger demands for non-contact sleep monitoring systems. The aim of this paper is to provide a comprehensive review of the current state of non-contact Doppler radar sleep monitoring technology and provide an outline of current challenges and make recommendations on future research directions to practically realize and commercialize the technology for everyday usage

    Novel Methods for Weak Physiological Parameters Monitoring.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    Adaptive Signal Processing Techniques and Realistic Propagation Modeling for Multiantenna Vital Sign Estimation

    Get PDF
    Tämän työn keskeisimpänä tavoitteena on ihmisen elintoimintojen tarkkailu ja estimointi käyttäen radiotaajuisia mittauksia ja adaptiivisia signaalinkäsittelymenetelmiä monen vastaanottimen kantoaaltotutkalla. Työssä esitellään erilaisia adaptiivisia menetelmiä, joiden avulla hengityksen ja sydämen värähtelyn aiheuttamaa micro-Doppler vaihemodulaatiota sisältävät eri vastaanottimien signaalit voidaan yhdistää. Työssä johdetaan lisäksi realistinen malli radiosignaalien etenemiselle ja heijastushäviöille, jota käytettiin moniantennitutkan simuloinnissa esiteltyjen menetelmien vertailemiseksi. Saatujen tulosten perusteella voidaan osoittaa, että adaptiiviset menetelmät parantavat langattoman elintoimintojen estimoinnin luotettavuutta, ja mahdollistavat monitoroinnin myös pienillä signaali-kohinasuhteen arvoilla.This thesis addresses the problem of vital sign estimation through the use of adaptive signal enhancement techniques with multiantenna continuous wave radar. The use of different adaptive processing techniques is proposed in a novel approach to combine signals from multiple receivers carrying the information of the cardiopulmonary micro-Doppler effect caused by breathing and heartbeat. The results are based on extensive simulations using a realistic signal propagation model derived in the thesis. It is shown that these techniques provide a significant increase in vital sign rate estimation accuracy, and enable monitoring at lower SNR conditions

    Physiological Parameter Sensing with Wearable Devices and Non-Contact Dopper Radar.

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2017

    Doppler Radar Techniques for Distinct Respiratory Pattern Recognition and Subject Identification.

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2017

    Sensors for Vital Signs Monitoring

    Get PDF
    Sensor technology for monitoring vital signs is an important topic for various service applications, such as entertainment and personalization platforms and Internet of Things (IoT) systems, as well as traditional medical purposes, such as disease indication judgments and predictions. Vital signs for monitoring include respiration and heart rates, body temperature, blood pressure, oxygen saturation, electrocardiogram, blood glucose concentration, brain waves, etc. Gait and walking length can also be regarded as vital signs because they can indirectly indicate human activity and status. Sensing technologies include contact sensors such as electrocardiogram (ECG), electroencephalogram (EEG), photoplethysmogram (PPG), non-contact sensors such as ballistocardiography (BCG), and invasive/non-invasive sensors for diagnoses of variations in blood characteristics or body fluids. Radar, vision, and infrared sensors can also be useful technologies for detecting vital signs from the movement of humans or organs. Signal processing, extraction, and analysis techniques are important in industrial applications along with hardware implementation techniques. Battery management and wireless power transmission technologies, the design and optimization of low-power circuits, and systems for continuous monitoring and data collection/transmission should also be considered with sensor technologies. In addition, machine-learning-based diagnostic technology can be used for extracting meaningful information from continuous monitoring data

    Contact-free Measurement of Heart Rate Variability via a Microwave Sensor

    Get PDF
    Measures of heart rate variability (HRV) are widely used to assess autonomic nervous system (ANS) function. HRV can be recorded via electrocardiography (ECG), which is both non-invasive and widely available. However, ECG needs three electrodes touching the body of the subjects, which makes them feel nervous and uncomfortable, thus potentially affecting the recording. Contact-free detection of the heartbeat via a microwave sensor constitutes another means of determining the timing of cardiac cycles by continuous monitoring of mechanical contraction of the heart. This technique can measure the heartbeat without any electrodes touching human body and penetrate the clothes at some distances, which in some instances may prove a practical basis for HRV analysis. Comparison of 5-minute recordings demonstrated that there were no significant differences in the temporal, frequency domains and in non-linear dynamic analysis of HRV measures derived from heartbeat and ECG, which suggested this technique may prove a practical alternative to ECG for HRV analysis

    A novel target state detection method for accurate cardiopulmonary signal extraction based on FMCW radar signals

    Get PDF
    Frequency-modulated continuous wave radar is capable of constant, real-time detection of human presence and monitoring of cardiopulmonary signals such as respiration and heartbeat. In highly cluttered environments or when the human body moves randomly, noise signals may be relatively large in some range bins, making it crucial to accurately select the range bin containing the target cardiopulmonary signal. In this paper, we propose a target range bin selection algorithm based on a mixed-modal information threshold. We introduce a confidence value in the frequency domain to determine the state of the human target and employ the range bin variance in the time domain to determine the range bin change status of the target. The proposed method accurately detects the state of the target and effectively selects the range bin containing the cardiopulmonary signal with a high signal-to-noise ratio. Experimental results demonstrate that the proposed method achieves better accuracy in cardiopulmonary signal rate estimation. Moreover, the proposed algorithm is lightweight in data processing and has good real-time performance

    Doppler Radar Vital Signs Detection Method Based on Higher Order Cyclostationary

    Get PDF
    Due to the non-contact nature, using Doppler radar sensors to detect vital signs such as heart and respiration rates of a human subject is getting more and more attention. However, the related detection-method research meets lots of challenges due to electromagnetic interferences, clutter and random motion interferences. In this paper, a novel third-order cyclic cummulant (TOCC) detection method, which is insensitive to Gaussian interference and non-cyclic signals, is proposed to investigate the heart and respiration rate based on continuous wave Doppler radars. The k-th order cyclostationary properties of the radar signal with hidden periodicities and random motions are analyzed. The third-order cyclostationary detection theory of the heart and respiration rate is studied. Experimental results show that the third-order cyclostationary approach has better estimation accuracy for detecting the vital signs from the received radar signal under low SNR, strong clutter noise and random motion interferences
    corecore