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Frequency-modulated continuous wave radar is capable of constant, real-time
detection of human presence and monitoring of cardiopulmonary signals such as
respiration and heartbeat. In highly cluttered environments or when the human
body moves randomly, noise signals may be relatively large in some range bins,
making it crucial to accurately select the range bin containing the target
cardiopulmonary signal. In this paper, we propose a target range bin selection
algorithm based on a mixed-modal information threshold. We introduce a
confidence value in the frequency domain to determine the state of the
human target and employ the range bin variance in the time domain to
determine the range bin change status of the target. The proposed method
accurately detects the state of the target and effectively selects the range bin
containing the cardiopulmonary signal with a high signal-to-noise ratio.
Experimental results demonstrate that the proposed method achieves better
accuracy in cardiopulmonary signal rate estimation. Moreover, the proposed
algorithm is lightweight in data processing and has good real-time performance.
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1 Introduction

Respiration and heartbeat can indicate the basic physiological health status of the human
body and are also adopted for clinical diagnosis (Gu, 2016; Weenk et al., 2017). However,
traditional vital sign detection methods, such as electrocardiography or
photoplethysmography, are contact-based and require electrodes to be in contact with
the body surface, which can cause discomfort with long-term use (Castaneda et al., 2018;
Kebe et al., 2020). Non-contact radar for vital sign detection is a promising approach that
offers increased flexibility in usage. Radars can be placed anywhere in a given space and
provide continuous monitoring without the patient’s perception (Morgan and Zierdt, 2009;
Obeid et al., 2012; Will et al., 2016; Yang et al., 2020). It overcomes the discomfort of the
long-term use of electrodes in wearable sensors and is of great value to newborn babies,
burned patients, and infectious disease patients in hospitals (Zhao et al., 2013). The remote
monitoring of vital signs of the radar system is more and more widely used. Radar can detect
human presence in indoor environments (Mercuri et al., 2013; Gennarelli et al., 2022). Radar
can track the periodic movement of body parts caused by breathing, which can be used for
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system diagnosis of breathing problems such as apnea (Sun, 2019;
Islam et al., 2021; Ishrak et al., 2023). Radar sensing technology can
also perform gesture recognition and classification for human-
computer interaction (Sharma et al., 2023). The latest research
shows that radar systems can also accurately extract cardiac
physiological parameters for estimating heartbeat intervals and
cardiac timing (Xia et al., 2021). Its application scenarios also
incorporate the detection of diseases such as sleep (Hong et al.,
2018); monitoring of the driver’s health status (Park et al., 2019;
Wang et al., 2021); earthquake rescue detection (Liu et al., 2011), etc.

The radars currently used for vital signs detection include
frequency-modulated continuous wave (FMCW) radar (He et al.,
2017; Ahmad et al., 2018), ultra-wideband (UWB) radar (Deng et al.,
2019; Yang et al., 2021; Sharma et al., 2023), continuous wave (CW)
radar (Hong et al., 2018; Gennarelli et al., 2022), etc. The FMCW
radar has a wide range of applications for continuous non-contact
vital sign monitoring in a variety of scenarios. It provides high-
ranging accuracy and can detect micro-displacement of the
abdomen and chest caused by cardiopulmonary activity. Low-
cost low-power radar sensors have advantages in continuous time
cardiopulmonary signal monitoring (Suijker et al., 2014). The radar
intermediate frequency (IF) signal undergoes Fast Fourier
Transform (FFT) to obtain micro-displacement information in
each range bin. For cardiopulmonary signal monitoring, it is
necessary to select the range bin where the target is located to
extract the micro-displacement signal as the cardiopulmonary signal
(He et al., 2017; Lee et al., 2019). Then, the respiration rate (RR) and
heart rate (HR) are extracted separately from the cardiopulmonary
signal. Therefore, the accuracy of respiration rate and heart rate
estimation can be improved from two aspects. One is the precise
selection of range bins to obtain cardiopulmonary signals with high
signal-to-noise ratio (SNR). The other is the separation algorithm of
heartbeat and respiration, which eliminates more noise signals.

Firstly, the accurate selection of the range bin is crucial to extract
the cardiopulmonary signal with high SNR. The traditional range
bin selection method is based on the maximum amplitude or
maximum phase (Li et al., 2013; Van Loon et al., 2016; Alizadeh
et al., 2019; Sacco et al., 2020), which cannot avoid the large noise
caused by the random motion of the human body or other small
displacements, so the accuracy of the cardiopulmonary signal may
be affected. In (Choi et al., 2020), the selection method based on the
magnitude-phase coherence index improves the range bin selection
accuracy, but it requires a lot of computing power and lacks real-
time evaluation performance.

Then, various signal processing algorithms are employed for
heartbeat and respiration signal separation, each with its advantages
and limitations (Singh et al., 2020). The most straightforward way to
extract RR and HR is to use an FFT on a segment of the phase signal
and find the peaks in the spectrum. However, the leakage problem
due to the limited data length of FFT leads to degraded detection
performance. Both the FFT algorithm and the autocorrelation
function are applied to the received signal to extract the
cardiopulmonary signal (Chioukh et al., 2011). In (Lee et al.,
2016), the authors addressed the FFT smearing and leakage
problem by using the multiple signal classification algorithm. In
(Lv et al., 2021), an algorithm combining complete ensemble
empirical mode decomposition with adaptive noise and fast
independent component analysis was employed to investigate

short-term heart rate measurement techniques. In order to obtain
higher estimation accuracy, these methods increase the complexity
of the algorithm and require more computing power.

There are currently few research algorithms for
cardiorespiratory monitoring at the low sampling rate of low-
power radars. To meet the real-time and lightweight
requirements of the algorithm, this paper proposes a target state
detection method based on mixed-modal thresholds that accurately
selects the target range bin and extracts cardiopulmonary signals
with high SNR. In the frequency domain, the target energy
confidence value is compared to a threshold to precisely identify
the target state. In the time domain, the range bin variance is
compared to a threshold to select the optimal range bin in each
data frame. For respiration rate and heart rate estimation, this paper
utilizes the FFT algorithm, the most commonly used spectral
analysis method. While assuming a static human body relative to
the radar, this approach provides acceptable accuracy and requires
minimal computing power, making it suitable for embedded systems
with low-power radars. Furthermore, the proposed method
demonstrates robust performance even with lower sampling rate
data. The main contributions of this work are summarized as the
following:

The proposed method performs well for human target state
detection and can select range bins containing cardiopulmonary
signals with high SNR. We estimate respiration rate and heart rate
with the FFT method. The results demonstrate that the proposed
method is more accurate than traditional range bin localization
methods.

The proposed method only needs lightweight calculations and
has certain adaptability and real-time performance under low
sampling rate data, which is extremely valuable for realizing low-
cost low-power radar chip embedded systems.

The rest of this paper is organized as follows. Methods are
introduced in Section 2. The experimental results are described in
detail in Section 3. In Section 4, the conclusion is drawn.

2 Methods

The process of radar signal processing is presented in Figure 1,
which consists of three parts: signal pre-processing, target state
detection, and cardiopulmonary signal processing. The innovative
part of our proposed algorithm is mainly the target state
detection part.

2.1 FMCW radar signal model in
cardiopulmonary measurements

Any object in the radar path will reflect the echo signal, and the
radar system can detect the distance, speed, and angle of the target
by capturing and processing the reflected signal. The experimental
setup for radar cardiopulmonary signal monitoring is presented in
Figure 2A. Assume that in a chirp period Tc, the frequency of the
radar transmit signal f(t) and the transmit wave signal sT(t) are
denoted as:

f t( ) � fc + γt, 0≤ t<Tc (1)
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sT t( ) � AT exp j2π fct + γt2/2( )( ), 0≤ t<Tc (2)
where fc is the carrier frequency, γ is the slope of the chirp and
indicates the change rate of the modulation frequency over time, t is
the sweep time, Tc is the chirp period, AT is the transmit signal
power, and j is an imaginary unit. The radar received signal sR(t)
corresponds to a delay in the transmit signal of time τ can be
described as (Alizadeh et al., 2019):

sR t( ) � AR exp j2π fc t − τ( ) + γ t − τ( )2/2( )( ), τ ≤ t<Tc (3)
τ � 2 R0 + x t( )( )/c (4)

where AR represents the received signal power, τ is the received time
delay, R0 stands for the initial distance when the human body remains
relatively stationary from the radar, x(t) is the micro-displacement of
the body surface caused by respiration and heartbeat, and c is the speed
of light. The transmit signal and the receive signal overlap on [τ, Tc],
and the IF signal sIF(t) is obtained by inputting these two signals into
the mixer. The definition of sIF(t) is expressed as:

sIF t( ) � sT t( )s*R t( ) ≈ ATAR exp j2π γτt + fcτ( )( )
� ATAR exp j 2πfIFt + φ t( )( )( ), τ < t≤Tc (5)

FIGURE 1
The overall signal processing flow. (A) Pre-processing. (B) Target state detection flow. (C) Cardiopulmonary signal processing.

FIGURE 2
Radar cardiopulmonary monitoring. (A) Experimental setup. (B) FMCW radar signal model.
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where the term τ2 (τ≪ 1) is neglected, fIF is the frequency of the IF
signal, and φ(t) is the phase of the IF signal, as drawn in Equation
(6) (Alizadeh et al., 2019).

φ t( ) � 2πfcτ � 4π R0 + x t( )( )/c (6)
An FFT calculation is performed on each chirp sample of the

radar-acquired IF signal, this FFT reveals range information, called
the Range FFT. Each chirp (time axis) is sampled N times (range
axis), and a distance block (range bin) is generated for each sample.
Each Range FFT bin represents a specific distance, and this process is
repeated for each chirp, so it will produce a Range FFT block of
N × M dimensions, as displayed in Figure 2B where N is the
number of FFT points and M is the number of chirps per frame.
We need to locate the range bin where the target is located, and then
extract the cardiopulmonary signals from that range bin.

In Figure 1A, chirp integration is performed for each Frame. The
average value of n chirps in each Frame is used as the Chirp selected
by this Frame. This operation assists to eliminate phase noise. Only
one chirp is selected per frame, which reduces the sampling rate. It
also reduces the amount of data processing calculations. We propose
a lightweight algorithm for subsequent processing.

The proposed target state detection algorithm.
The proposed target state detection algorithm based on mixed-

modal information is demonstrated in Figure 1B, which consists of
three procedures: static clutter removal, confidence value
calculation, and range bin variance. Static clutter removal is used
to remove static background noise in the signal. The confidence
value calculation is used to determine whether the target exists. The
range bin variance is used to determine whether the target is stable
or moving after detecting the presence of the target. The proposed
algorithm can accurately detect three human target states.

1) Stable state is a stable human target state. It indicates that the
range bin containing cardiopulmonary signal information with
high SNR can be accurately selected;

2) Motion state is an intermediate state. It demonstrates that a
human target can be detected. However, the human body has
relatively large movements, with a large noise signal, and it is
difficult to accurately extract cardiopulmonary signal
information;

3) Unmanned state means that no human target is detected.

When the human target is in a stable state, the range bin is
selected, and the cardiopulmonary signal with a higher SNR is
extracted. Then we employ a simple FFT spectral analysis
method to estimate the cardiorespiratory rate.

2.1.1 Static clutter removal
In real environments, radar signals regularly contain a lot of

noise. Radar receives reflected signals not only from the target but
also from the environment and unwanted targets. Before locating
potential live targets and extracting weak cardiopulmonary signal
signals, static environmental noise needs to be removed from
the data.

Then perform static clutter removal on the Range FFT
information to remove more static points from the background.
The model is expressed in Equation 8.

X′
m k[ ] � αXm k[ ] + 1 − α( )Xm−1′ k[ ] (7)

Ym k[ ] � Xm k[ ] −X′
m k[ ] (8)

where m is the frame index, k is the range bin index, α is the filter
coefficient, the larger the α value the stronger the clutter filtering
effect, X is the Range FFT value, which is a complex number, X′ is
the calculated filtering parameter, and Y is the filtered Range FFT
value.

Calculate the Range FFT amplitude of each frame after clutter
removal, and obtain the range profile matrix containing the
instantaneous distance information. Figure 3B manifests the
range profile of the slow time dimension. The human target is
located near the 25th range bin. The distance between the human
and the radar is about 1.5 m.

2.1.2 Confidence value calculation
Based on the set range bin scan range, the target range bin is

searched from the range bin start index to the range bin end index.
Constant False Alarm Rate (CFAR) (Kronauge and Rohling, 2013) is
a technique for radar systems to detect the presence of target signals.
We refer to this method to design a human target detection method
based on confidence value. The range bin where the human target is
located has much larger energy than other bins, and the range bin
with the peak energy in the range profile is selected as the detection
cell. The target confidence value is the energy ratio of detection cells
to training units, as in Equation 9.

V m( ) � PD m( )/PT m( ) (9)
PT � ∑D−G

i�D−G−T Pi/T( ) +∑D+G+T
j�D+G Pj/T( ) (10)

whereV is the confidence value,m is the frame index, PD is the peak
energy of detection cells, PT is the average energy of training cells,D
is the range bin index of peak energy, G is the number of single-side
guard cells, and T is the number of single-side training cells.

Each window consists of cells as expressed in Figure 4, and the
detection cells are the range bins of peak energy. Guard cells are on
both sides of the detection cells and are used to prevent target signal
energy from leaking into the training cells. When the target has a
large random motion, some noise signal energy will enter the guard
cells. Training cells are background noise energy cells. The number
of guard cells and training cells is determined according to the
environmental noise. Confidence calculations are performed on the
range profile of each frame to detect targets. The edge range bin is
processed in a circular supplementary manner, which can keep the
same number of guard cells and training cells on both sides of the
detection cells. Copy the range profile three times and merge it to
generate a new matrix, and do calculations on the middle range
profile. The cells that are not enough on the left are supplemented
with the cells at the end of the first range profile, and the cells on the
right are supplemented with the cells at the front of the third range
profile.

There is an error in the determination of a single frame due to
the influence of background noise and random body movements. A
method of doing a cumulative calculation ofV value data of v frames
window is used, which can reduce the error, as in Equation 11.

Vsum m( ) � ∑m+v
i�m V i( ) (11)
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Figure 5 presents the effect of confidence value accumulation on
human presence detection. The false detection rate decreases after
accumulation.

In our work, we set a sliding window of 2 s (40 frames) and a step
size of 1 frame for human presence detection, which provides real-
time detection. The parameter of Vsum greater than the set threshold
means that the human target is detected. Otherwise, noise signals are
detected and no human target signals are detected. The threshold is
trained according to the background scene without people, which
has a certain scene adaptive performance. To avoid target signals
with small amplitudes being classified as noise, set the threshold
lower.

2.1.3 Range bin variance
In our proposed algorithm, the target should be in a stable state

to extract the cardiopulmonary signal accurately. We introduce the
variance s2 to analyze the dispersion of the range bin in the time

domain. After detecting a human target, it can be used to determine
whether the target is in stable state or motion state.

s2 � ∑n

i�1 ri − r( )2/ n − 1( ) (12)

where s2 is the range bin variance, n is the number of frames, ri
represents the index of the range bin of the îth frame, and r stands
for the mean value of the range bin of the n frames.

Figure 6B shows that human objects are detected in the 60-s
time. we set a sliding window of 2 s range bin variance buffer
updated with 1 frame step size, which stores the state of the
target every frame. After a human target is detected at each
frame, the target state is determined by comparing the variance
with a set threshold. The variance is less than the threshold,
indicating that the human target is in stable state. If the variance
is greater than the threshold, the human target is in motion state.
Ideally, the human body should not move very much during the 1-
frame period, so the range bin position and the current state will not

FIGURE 3
Target range bin localization. (A) Range FFT for a single frame. Some static clutter is suppressed after clutter removal. (B) Range profile across slow
time.

FIGURE 4
Confidence value calculation window.

Frontiers in Physiology frontiersin.org05

Zhang et al. 10.3389/fphys.2023.1206471

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1206471


FIGURE 5
Effect of confidence value accumulation on human presence detection. (A) before the accumulation. (B) after the accumulation.

FIGURE 6
(A) Range profile across slow time. (B) Confidence value calculation results. (C) Range bin variance. (D) Target state detection.
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change. When the proportion of any state in the buffer exceeds 80%,
it is determined that the frame is in that state.

The time in the first 20 s of Figure 6C indicates that the range
bins of the human body were detected to be cluttered, which means
that the person is in a state of relatively large motion. The human
body may have a large movement with excessive noise signals, which
is not suitable for cardiopulmonary signal extraction. In the last 40 s,
the human body is in a stable sitting state, which is stable state. We
perform median smoothing of the 2 s window on the target range
bin of stable state. Then select the range bin where the target is
located, and extract the cardiopulmonary signal information. Our
algorithm can make a target state decision within 2 s. The selection
of range bins also has the same real-time performance.

2.2 Cardiopulmonary signal processing

Cardiopulmonary signals are processed using a sliding window
of 20 s and a stepping update of 1 s to estimate respiration rate and
heart rate. Cardiopulmonary signal processing consists of the
following parts.

1) Range bin selection: After using the proposed target state
detection algorithm, select the range bin where the target is
located. And extract the cardiopulmonary signal phase and
amplitude information of the target.

2) Phase signal processing: Phase unwrapping recovers continuous
phase changes. Then do the phase difference processing, which
helps to eliminate the phase drift caused by the noise signal.

3) Separation of respiration and heartbeat: Respiration and
heartbeat signals occupy different frequency ranges, which can
be separated with appropriate band-pass filters. A fourth-order
IIR cascaded biquad filter limits the frequency range to
0.1–0.6 Hz for respiration detection and 0.8–4 Hz for
heartbeat detection. Figure 7 exhibits the comparison between

the extracted heartbeat signal and the ECG collected by the
wearable sensor.

4) Respiration rate estimation: FFT spectrum analysis is performed
on the separated respiration signal. The respiration rate is
selected by the largest peak within the spectrum. It can also
be estimated by calculating the distance between the peaks of the
time-domain waveform.

5) Heart rate estimation: FFT spectrum analysis is performed on the
separated heartbeat signal. Respiratory harmonics will overlap
with the spectrum of the heartbeat signal, which will affect the
heart rate estimation, as shown in Figure 8. Where fr is the
respiratory rate and fh is the heart rate. Extract N peaks (from
large to small) in the frequency spectrum of the heartbeat signal,
and eliminate the peaks corresponding to the respiratory
harmonics. Then, the heart rate is selected by the largest peak
within the spectrum.

The reference data collected by the wearable sensor is processed
in the time domain, and the respiration rate and heart rate are
estimated through a sliding window of the same size.

3 Experimental results

3.1 Experimental setup

The measured experimental scene is presented in Figure 2A. The
FMCW radar has 1 Rx antenna and 2 Tx antennas. It has two
receiving channel data, and we only select one of them for
processing. The operating frequency of the radar is
23.5GHz–27.5 GHz. Each frame period is 50 ms, and each frame
has 32 chips. The reference value data was collected using the
Shimmer3 wearable wireless sensor, which is considered a
reliable sensor for measuring vital rates, with a sampling
frequency of 250 Hz.

FIGURE 7
Comparison of extracted heartbeat signal by radar with ECG.
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There were 20 subjects tested. Each subject was fully informed of
the experimental procedure and purpose and agreed to share
measurement data anonymously. The patient experimental
protocols of the First Affiliated Hospital of Nanjing Medical
University were approved by the Ethics Committee (Reference
code: 2020-SRFA-183). Each subject had a normal vital rate and
rested for at least 10 min before the recording procedure. The radar
was fixed in front of the subject at the same chest height to capture
chest displacement. The subjects sat on a chair about 1.0 m away
from the radar, and each subject was measured for 3 min.

3.2 Experimental results

To evaluate the work of the proposed method, we tested three
states of the human target. The method can make an accurate
decision on the target state within 2 s, as displayed in Figure 9A. In
order to accurately extract the cardiopulmonary signal of the target,
we test the person in a resting state and let the target leave the test

area after a certain period. Figure 9B exhibits the results obtained
before and after using the proposed method. Other objects and
random background noise can interfere with range bin extraction.
Before the proposed algorithm, we use the range bin selection
method based on the maximum amplitude as a comparison
method. Other objects and random background noise interfere
with range bin extraction, so range bin extraction is accompanied
by random jitter. After applying the proposed method, the smooth
range bin information can be accurately obtained.

We performed spectral analysis using the FFT method on the
extracted cardiopulmonary signal with a sliding window of 20 s
and a step size of 1 s. The reported beats per minute (BPM) for
respiration and heartbeat are averaged over 1-min segments. The
mean absolute error (MAE) and root mean square error (RMSE)
for all 5 subjects who participated in the experiments are
compared with their related reference signals. They are
represented as:

MAE � 1
n
∑n

i�1 yi − xi

∣∣∣∣ ∣∣∣∣ � 1
n
∑n

i�1ei (13)

FIGURE 8
Extracted cardiopulmonary signal (after unwrapping and difference) and its spectrum.

FIGURE 9
Human target localization. (A) Range bin selection before and after the proposed algorithm. (B) Target state detection.
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RMSE �














1
n
∑n

i�1 yi − xi( )2√
(14)

where yi is the radar-measured value, xi is the reference value and ei
is their absolute error.

One of the comparison results of heart rate estimation is shown in
Figure 10. The average heart rate was 75.0 BPM estimated by the
wearable sensor. Before applying the proposed method, the estimated
average heart rate was 67.5 BPM, the overallMAEwas 7.4 BPM, and the
RMSE was 7.4 BPM. After applying the proposed method, the
estimated average heart rate is 75.6 BPM, the overall MAE is
1.5 BPM, and the RMSE is 0.6 BPM. Due to the influence of small
body randommotion and background noise, the range bin selectionwill
have a large error, which leads to an increase in the cardiopulmonary
signal estimation error. After applying the proposed algorithm, the
accuracy of range bin selection is improved, and the signal-to-noise
ratio of the extracted cardiopulmonary signal is improved. It can be seen
from Figure 10 that the estimated heart rate values are in good

agreement with the reference heart rate after applying the proposed
algorithm. The results show that the range bins selected by this method
contain cardiopulmonary signals with higher SNR.

The results of the heart rate and respiration rate estimation errors
before and after applying the proposedmethod are displayed in Table 1.
The results were measured with 5 subjects with different situations in
this experiment. The results give the averageMAE and average RMSEof
1.0 BPM and 0.5 BPM for respiration rate estimation, and 1.9 BPM and
1.3 BPM for heart rate estimation after applying the proposed method.
The results are all better than the comparison method. Before applying
the algorithm, the heart rate estimation errors of targets A and D are
both large. Because the background noise of the test environment and
the randommovement of the body are large, it interferes with the range
bin selection of the human target. Therefore, the SNR of the extracted
cardiopulmonary signal is low, and the estimation error of the
cardiopulmonary rate is large.

Respiration rate accuracy was defined as the proportion of instances
where the radar estimated respiration rate was within 2 BPM of the
reference sensor, and heart rate accuracy was defined as within 5 BPM.
Our experiments demonstrate an accuracy of 90.8% for respiration rate
and 94.1% for heart rate. This result is better than the respiration rate
accuracy of 83.7% and the heart rate accuracy of 70.7% reported by
(Choi et al., 2020). Therefore, the proposed algorithm can accurately
select the range bins containing cardiopulmonary signals with high
SNR, and the accuracy performance is better in the respiration rate and
heart rate estimation.

4 Conclusion

In this paper, we propose a target state detection algorithm based
on a mixed-modal threshold for target state detection and
cardiopulmonary signal range bin selection. First, the algorithm
can accurately detect the target state in different scenarios in real

FIGURE 10
Comparison of heart rate estimates before and after applying the algorithm and the reference value.

TABLE 1 Measurement error results before and after applying the proposed
algorithm. (MAE ± RMSE, BPM).

Subject Respiration Heartbeat

Before After Before After

A 3.6 ± 3.1 1.5 ± 0.9 10.3 ± 10.3 2.8 ± 2.3

B 0.8 ± 0.3 0.8 ± 0.3 2.8 ± 1.1 2.7 ± 1.0

C 0.2 ± 0.1 0.2 ± 0.1 1.3 ± 1.0 1.2 ± 1.0

D 1.2 ± 0.9 1.1 ± 0.8 7.4 ± 7.4 1.5 ± 0.6

E 1.9 ± 1.6 1.3 ± 0.3 1.8 ± 1.7 1.5 ± 1.4

Average 1.5 ± 1.2 1.0 ± 0.5 4.7 ± 4.3 1.9 ± 1.3
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time. It can avoid range bins with larger noise signals and select
range bins containing cardiopulmonary signals with high SNR,
which improves the accuracy of respiration rate and heart rate
estimation. In the experimental results, we analyze the radar
recordings of 5 subjects in different scenarios and different
motion states. We select range bins and extract cardiopulmonary
signals by the proposed algorithm, and estimate respiration rate and
heart rate by the FFT method. The results demonstrate that the
proposed algorithm has better performance than traditional range
bin selection methods in terms of cardiopulmonary signal
estimation. Furthermore, it performs well on low sampling rate
data. it requires less computing power and high performance for
real-time evaluation, which is of great value for forming a
lightweight embedded system on a low-cost low-power radar chip.

Nevertheless, this work also has some limitations. During the
experiment, the subjects were required to remain relatively still.
Because the vibration noise of the environment with a frequency
close to the heart rate will interfere with the heart rate estimation. In
future research, we intend to conduct embedded system testing
experiments in various practical situations such as home care,
medical monitoring, driver monitoring systems, etc.
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