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Abstract 

 
Physiological monitoring systems that monitor vital sign parameters associated with 

physiological activities are important for health condition prognosis and diagnosis. These systems 

use transducers to detect weak physiological parameters, such as electrical signals (potential, 

impedance, capacitance) and mechanical variations (displacement), for interpretation of vital signs. 

Continuous heart rate monitoring is one of the most important practices by physicians. It assesses 

the cardiovascular condition of a subject and is normally carried out on special medical devices by 

personnel with specified training in hospitals, such as 12-lead electrocardiogram (ECG). Though 

it provides reliable readings of heartbeat signal, the wiring configurations may interfere 

cardiovascular activity pattern as well as refrain subject’s daily activities. And it is hard to be used 

in non-clinical environment without the help of professional personnel.   

In this work, a bio-impedance analysis (BIA) based contact method and Wi-Fi band Doppler 

radar based non-contact method are proposed. The BIA system was able to estimate heart rate from 

the subject’s wrist with only four electrodes. The BIA results agree with the reference, which 

validates the feasibility of the proposed system. To the best of our knowledge, this is the first 

reported BIA heartbeat monitoring system in the wristband configuration. In addition, an 

assessment of a variety of conventional biosensors for vital sign sensing was conducted, which 

evaluated their capabilities of acquiring heart rate or respiration rate from non-conventional 

locations. The extensive data collected and analyzed provided in-depth understanding of each 

sensor’s performance and potential application in wearable healthcare devices. The Doppler radar 

system was intended to detect small displacements on the body surface resulting from cardiac 

activities. Such time dependent variations indicate the impact of the heartbeat on the surface of 

chest wall, thus applicable for heart rate extraction. The lead-free feature of radar sensor eliminates 

any wiring configuration to the subject, and is a good candidate of non-contact physiological 

monitoring.   
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Chapter 1. Introduction 

 
1.1 Overview 

Physiological monitoring systems are commonly used in hospitals and care facilities for patient 

vital sign monitoring. The associated parameters can be used to assess the functionality of the 

physiological activities for health condition prognosis and diagnosis. The electrical or mechanical 

activities associated with the mechanism of human circulation, metabolism and respiration are 

often reflected by weak physiological parameters, such as heart rate, respiration rate, end-tidal 

CO2 level, blood oxygen saturation level, blood pressure, and etc. These parameters are vital 

indicators to the integrity of the human physical condition.  Monitoring systems use transducers to 

detect such weak physiological parameters, such as electrical signals (potential, impedance, 

capacitance) and mechanical signals (displacement), for interpretation of vital signs.   

Heartbeat signal is one of the most important indicators of heart problems. Monitoring heartbeat 

during everyday life not only could be helpful for early detection of heart disease, but also can 

help monitor the health status of subjects suffering from heart disease and patients in rehabilitation 

state. Heart disease (which includes Heart Disease, Stroke and other Cardiovascular Diseases) is 

the NO.1 cause of death in the United States. People with all ages and backgrounds can get the 

condition. According to the National Vital Statistics Reports, about 614,000 people were killed by 

diseases of the heart in 2014 [1]. Early detection of heart disease enables timely and more effective 

treatments, thus opening up the important possibilities of preventing late disease diagnosis or even 

fatal consequences. The rising need of everyday health care at home also makes heartbeat 

monitoring devices necessary. The 12-lead electrocardiogram (ECG) testing is commonly used at 

hospital for continuous heart rate monitoring. Although ECG has high accuracy and can provide 

detailed information about cardiac activity, the need of professional nursing personnel for the 

placement of electrodes makes it difficult to use out of hospitals. Besides, the wiring configuration 
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of the device obstructs patients’ daily activities. And it takes time for the nursing personnel to 

sterilize the skin (sometimes shaving involved), attach electrodes and hook up the cables.  

Respiratory efforts create deformation of the chest wall. As the volume of the thoracic cavity 

increases and decreases due to inhalation and exhalation, rib cage expansion and contraction will 

create a displacement of the chest wall as well as variation in chest circumference. Respiratory 

activity related signal, such as respiratory waveform or respiratory rate, can be measured through 

either respiratory belt or inductive plethysmography attached around the chest. The elevating and 

descending pattern observed in the respiratory waveform is directly associated with lung 

ventilation, which is an indicator of respiratory physiology [2]. The rates can be stored and 

estimated over certain period of time, which can be used for diagnosis. However, it is not always 

the case when a chest belt could be used for respiratory effort monitoring. For example, it cannot 

be an ideal method for burnt injury patients. When it comes to everyday use, the discomfort or 

excessive pressure it may cause could interfere the integrity of the respiration pattern, yielding 

unreliable readings.  

Consequently, a user-friendly and reliable device for heartbeat and respiration monitoring is of 

great potential in medical instrumentation innovation.  

1.2 Contribution 

This work presents a bio-impedance analysis (BIA) based heart rate sensing method, and a non-

contact Wi-Fi band Doppler radar based method. The contact sensing methods with BIA only used 

4 electrodes to measure heart rate from subject’s wrist. The accuracy was evaluated and confirmed 

by comparing with the heartbeat signal concurrently measured from a commercial finger pulse 

transducer, which validates the feasibility of the proposed BIA system. The author also explored 

the feasibility of multiple other biosensors, based on various kinds of measurement principle for 

heart rate sensing and respiratory rate monitoring. Each sensor was tested on more than one 

locations over the subject’s body and repeated multiple times to validate the results. It was the first 

reported attempt to detect such vital signs from locations such as upper arm and wrist with non-

conventional biosensors. A novel BIA-based board level sensing platform was also designed and 

fabricated. The first attempt in the heart rate sensing was successful. Future work on the sensing 

board involves further debugging, circuitry optimization and miniaturization. 
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Doppler radar based non-contact sensing was another area that this thesis focuses. It was 

intended to discern small displacements of a periodically moving target, which potentially could 

be used on measuring body surface movements to extract physiological parameters associated with 

cardiac activities. For example, the time dependent variations of chest wall indicate the impact of 

the heartbeat motion over diastolic and systolic cycles, thus applicable for heart rate extraction and 

related health issue prognosis. The lead free configuration eliminates the wiring issue commonly 

suffered with ECG system, yet provides a reliable reading on heart rate measurement to gold 

standard. It is proven to be a good candidate for non-contact physiological monitoring. 

1.3 Thesis organization 

Chapter 1 has presented an overview of the importance of physiological monitoring system for 

vital sign measurement and focused on heart rate and respiration monitoring. Discussions on 

conventional instrumentation for these two types of vital sign monitoring and their issues were 

presented. User-friendly, novel contact and non-contact methods in detecting weak physiological 

parameters were proposed, and a summary on the contributions of the thesis was addressed.  

Chapter 2 discusses conventional contact and radar-based non-contact sensing methods used 

for physiological parameters monitoring. The measurement principle, common configurations, 

commercially available products and a list of recent work were demonstrated and compared. 

Chapter 3 demonstrates the fundamentals on bio-impedance analysis, the principle of heartbeat 

sensing it based on, and proposed system. Institution Review Board (IRB) approved human testing 

data were collected, and compared with reference for accuracy evaluation. It was the first reported 

BIA heartbeat monitoring system in the wristband configuration. 

Chapter 4 covers an extensive investigation on conventional biosensor detecting heart rate and 

respiratory rate over non-conventional locations on human body. An introduction of the sensors 

involved and their common settings were given, followed by an overview of interested testing 

locations. The measurement results in spatial and spectrum domain demonstrate the performance 

of vital sign detection, which are summarized at the end of the chapter. 

Chapter 5 demonstrates first micrometer resolution Wi-Fi band Doppler radar for sub-

millimeter physiological displacement measurement. It is intended for estimating small 

displacements on the body surface resulting from cardiac activity. A mechanical mover was used 
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as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured 

displacements were compared with a reference system, which indicates a superior performance in 

accuracy for having absolute errors less than 10μm, and relative errors below 4%.  

Chapter 6 summarizes the main contributions of the thesis and matches with the conclusions. 

A list of topics of future work as expansions of some of the preliminary studies is provided. 
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Chapter 2. Literature Review  

 
2.1. Contact sensing 

The Electrocardiography (ECG) is a diagnostic process commonly performed in hospital to 

assess electrical activity of heart over a period of time using electrodes placed on the skin. A 

standardized 12-lead ECG system contains ten electrodes, among which four are placed on limbs 

and six are placed on the chest wall (Figure 2.1). These electrodes are able to provide electrical 

views of heart from 12 different angles. By interpreting the recorded tracing, a large amount of 

information about the structure and electrical function of heart can be obtained. For monitoring 

heart rate, it is obvious that 12-lead ECG is too abundant. In this case, the ECG measurement 

system can be simplified to 3 leads. 

 

 

Figure 2.1  3-lead ECG configuration 

RA = white
LA = black

LL = red
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Piezoelectric-based sensors have been studied by many researchers. This kind of sensor 

produces a voltage when subjected to a physical stress or strain (Figure 2.2(a)).  Piezoelectric-

based sensors can be fabricated with kinds of materials, such as crystals and certain ceramics, for 

different applications. Due to the property of the accumulation of electrical charge in response to 

deformation, some researchers applied piezoelectric sensors to harvest the energy from human 

body [3]-[5]. Also the property of high sensitivity to strain makes piezoelectric sensors popular in 

physiological monitoring [6]. In [7], a piezoelectric sensor embedded wearable system in the form 

of necklace was proposed to detect skin motion in the lower trachea during ingestion. The 

piezoelectric sensor was also used to acquire arterial pulse signal from radial artery on wrist [7] 

and neck [8]. In [9], a piezoelectric sensor was put under the mattress to monitor vital signs (both 

respiration and heart rate) continuously. Figure 2.2(b) gives some samples of piezoelectric pieces. 

 

 
 

(a) (b) 

Figure 2.2 (a) A demonstration of sensor with piezoelectric effect. (b) Samples of piezoelectric pieces 

 

Another increasingly popular way for vital signs measurement is known as 

photoplethysmography (PPG), especially in the form of wearable devices. The PPG technique 

recognizes the pulse wave by illuminating a light-emitting diode (LED) light on the skin and then 

measuring either the reflected or transmitted light intensity by a photodetector (PD). The two types 

of PD placement – transmissive and reflective - are shown in Figure 2.3. The changes in light 

intensity are corresponded with small variations of the blood volume and provide the information 
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on heart rate. Based on optical characteristics of lights and absorption level of biological tissues, 

infrared (IR) or near-infrared light and green light are commonly used in PPG sensors. IR or near-

IR light is suitable for measuring deep-tissue blood flow with transmissive mode. Green light is 

better for the measurement of superficial blood flow in skin with reflective mode [10]. Several 

consumer devices available on the market to monitor heart rate are based on green-light PPG, such 

as Apple Watch, MIO Alpha, Fitbit Wristband, etc. 

 

  

(a) Transmissive way of PD placement (b) Reflective way of PD placement 

Figure 2.3 Transmissive and reflective ways 

 

Although several green-light-based PPG heart rate monitoring devices have already been 

available commercially now, research on optimizing PPG measurement is still popular and 

necessary. Extensive studies have been conducted for PPG sensors measurements on different sites, 

including index finger [11], wrist [12]-[14], brachia [15][16], ear [17][18], neck [19], forehead 

[20]. Besides, motion artifacts caused by random body movement mainly consist of low-frequency 

components, which might overlap with pulse signal and interfere heart rate measurement result. 

Therefore, an effective signal processing algorithm for motion artifacts reduction is necessary. One 

of widely used techniques for removing motion artifacts is adaptive filtering which needs a suitable 

reference signal. Signal decomposition is shown recently to be a powerful approach to remove 

motion artifacts. Recently, the widely used techniques for removing motion artifacts include 

independent component analysis (ICA) [21], adaptive filter [22][23], signal decomposition 

[24][25], etc. 

Bio-impedance analysis (BIA) is also a potential contact sensor worth being studied due to its 

noninvasive feature, low cost, and portability. Many researchers have conducted studies on bio-
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impedance analysis and applied it in a wide range of areas, such as physiological variables 

monitoring (e.g. heart rate [26] and respiratory rate), tissue state assessment [27], detection of 

ischemia [28] or cancer cells [29], etc. In cardiovascular studies, bio-impedance measurements 

enable the acquisition of information on stroke volume [30]. [31] employed BIA to measure the 

pulse wave velocity (PWV) from the radial artery in the wrist to the middle finger. In [32], 

researchers combined BIA, ECG and continuous wave (CW) radar together to measure pulse 

transit time (PTT) at the central arteries for estimating cuffless blood pressure. In [33] and [34], 

heart rate was detected from bio-impedance variation on feet by standing on a bathroom weighing 

scale intended for body composition measurement. These systems were easy to use but its 

configuration limited the possibility of continuous heart rate monitoring. [35] measured heart rate 

on the wrist based on bio-impedance analysis with electrodes placed along the artery. 

2.2. Radar-based non-contact sensing 

2.2.1. Non-contact physiological sensing 

Radar based physiological monitoring has been demonstrated in many studies for the feasibility 

of vital sign detection and physiological monitoring. Its wireless sensing capability eliminates 

electrodes attachment and offers comparable readings on a number of physiological parameters. 

Researchers have proved the feasibility of measuring respiration rate and heart rate via various 

types of radar, such as continuous-wave (CW) [36][37][38], frequency-modulated CW (FMCW) 

[39][40], pulse [41][42] radars. Tidal volume change was found to be linearly correlated to chest 

wall displacement, which was detectable by CW Doppler radar under DC coupled mode [43][44]. 

From reconstructed respiratory signal, Doppler radar was able to extract indices of heart rate 

variability (HRV) and respiratory sinus arrhythmia (RSA) [45]. Palpable physiological movements 

over the skin surface or even beneath can also be detected with Doppler radar. Non-invasive 

arterial pulse wave measurement was first reported in [46] by sensing arterial wall movement from 

three different sites. A non-contact PWV sensor was developed by simultaneously measuring 

pulse-related displacement over breath-holding chest wall and lower limb under calf pressure [47]. 

Similar principle was applied by using an ultra-wide band (UWB) radar sensor to measure PWV 

between brachial artery and foot [48].  

The feasibilities of cardiopulmonary, arterial, and mechanical activity detection using 

microwave Doppler radar enable tracks of various practical applications, such as fall detection 
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[49], respiratory pattern analysis [50], sleep study [51], occupancy sensing [52][53], in vivo tumor 

targeting and speech monitoring [54]. Due to its penetration ability, Doppler radar signal not only 

can go through clothing or skin surface for physiological parameter detection, it is also able to 

penetrate concrete walls or obstacles for through-wall sensing and rescue operations [55][56][57]. 

Tissue sensing of the medical radar system utilize the penetration feature and enables 2D imaging 

of the area of interest [58]. Some of the pioneer work have presented achievements in breast 

imaging [59], breast cancer detection [60].  

2.2.2. Physiological parameter extraction 

In general, cardiopulmonary activities create periodic deformation on chest wall, the time 

varying displacement of which in superior-posterior direction ranges from 4mm to 12mm for 

respiration [61], and 0.035mm to 1mm for heartbeat [2]. The extraction of displacement 

information holds the key to vital sign signal reconstruction, which depends on full phase recovery. 

If physiological rate information is desired, single channel radar receiver is sufficient because 

phase changes are proportional to amplitude variation of the reflected signal [62][63]. From the 

temporal characteristics of baseband signals, the rate of respiration or heartbeat is accessible by 

counting total peaks in the waveform in given time. Spectral analysis is another option by 

performing Fourier Transform and converting the signals to frequency domain, where the most 

significant peak’s frequency indicates the rate.  

If accurate displacement over time is to be assessed, arctangent demodulation (AD) reported in 

[64][65][66], as well as complex signal demodulation (CSD) introduced in [67] can be used. The 

CSD method has the advantages of simple radar architecture, calibration-free and self-verification. 

It employs single-channel homodyne receiver and resolves displacement in frequency domain. The 

difficulty lies in its rigorous mathematical analysis, yet the minimum displacement detectable is 

limited to one third of the carrier wavelength for fixed frequency radar. Reported measurement 

resolution is around 50μm for 2mm sinusoidal movement. When the AD method is applied, 

quadrature receiver is needed. Its in-phase/quadrature-phase (I/Q) outputs are processed 

concurrently to demodulate phase information, which can be used to recover displacement in time 

domain. The challenge associated with AD method is the necessity of center estimation, dc-offset 

removal and data calibration. A heuristic estimator based center estimation method [68][69],  a 

Levenberg–Marquardt method based circle fitting approach [70], and a dispersion minimization 
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method [65] are the most prominent methods for quadrature Doppler radar related center 

estimation. Though [70] and [65] outperforms [68][69] in accuracy of finding arc center while 

spanning a wide phase rotation angle according to [71], limited angle still poses a challenge to all 

three methods. This is especially crucial for 2.4GHz radar system measuring weak physiological 

displacements. In [72], radius correction method was introduced for calibrating I/Q transcribed arc 

in cases when detected target displacement is relatively small. In [65] and [70], hardware 

calibration method was discussed that involves I/Q imbalance error estimation and compensation. 

The only published chest displacement from heartbeat was found in [66], which enabled the 

detection of sub-millimeter scale results using a network analyzer at three transmitting frequencies. 

However, the measurements were conducted without a reference to compare its accuracy with.  

2.3. Summary  

This chapter summarized some of the contact sensing principle and instrumentations, including 

ECG, plethysmography, PPG, piezoelectric-based sensor and BIA. Their performances in vital 

sign sensing were analyzed and compared. Some of the recent advances in using these sensors for 

physiological sensing and wearable applications were presented. Radar based physiological 

monitoring was also demonstrated in many state-of-the-art works for the feasibility of vital sign 

detection and physiological monitoring. Detailed information on displacement extraction, the 

approaches and their performances were briefly overviewed.  
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Chapter 3. Bio-impedance Based 

Physiological Monitoring 

 
3.1. Introduction to Bio-impedance Analysis 

Bio-impedance refers to the electrical properties of biological tissues, which are primarily 

composed of cells and fluids. A cell is formed by a membrane enclosing cytoplasm inside. The 

cell membrane isolates the Intracellular (IC) medium from the Extracellular (EC) medium. The 

equivalent electrical impedance model of blood cells is illustrated in Figure 3.1. The resistance of 

the inner part of the blood cell is denoted in 𝑅𝑖 , while 𝑅𝑒  represents the resistance of the 

extracellular medium. The cell membrane behaves as a capacitor, which is represented in 𝐶𝑚. Due 

to the resistive and reactive behavior of each component, electrical current that passes through 

blood cells behaves differently according to frequencies. The current at low frequencies will flow 

mainly through the extracellular medium. At higher frequencies, the modeled cell membrane 

capacitor will act as shunt that allows current flow through intracellular medium of blood cells. 

  
(a) (b) 

Figure 3.1 (a) Electrical model of blood cells. (b) Flow paths of alternative current with different 

frequencies. 
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Bio-impedance analysis (BIA) is a widely used method for body composition measurement, i.e. 

estimating fat, muscle, bone and fluid levels in the human body. By injecting a small constant 

alternating current into human body, the voltage across designated locations is measured. And the 

impedance is obtained by applying Ohm’s Law.  The chosen excitation current should ensure 

users’ safety and the effectiveness of measurement.  

Four-electrode (tetrapolar) configuration is commonly used in bio-impedance measurement, 

where two electrodes known as driving electrodes are used for sending current into human body, 

and the others are called sensing electrodes for obtaining voltage across designated locations. 

Figure 3.2 shows the 4-electrode configuration of body composition measurement using bio-

impedance analysis.  

 

 

Figure 3.2 4-elecrode configuration. 

 

3.2. Heartbeat measurement principle based on BIA 

When heart pumps blood from chamber, there is a pulse wave flowing throughout the whole 

body via the circulatory system. This propagation of blood flow causes a small variation of bio-

impedance change on a localized area of human body. It has been reported that low-level heart 
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beat associated impedance variations can be measured in limbs [73]. Heart rate thus can readily be 

detected from wrist by measuring such impedance variations. As shown in Figure 3.3, 𝑍0 indicates 

the constant impedance of wrist tissues, and ΔZ(t) represents the impedance variations directly 

related to heartbeat.  

 

 

Figure 3.3 Electrical impedance model for blood including impedance variation related to heartbeat [73]. 

 

To measure impedance of a small area on wrist, 4-electrode configuration will be used, as 

shown in Figure 3.4. When a small constant alternating current is sent through two driving 

electrodes (represented as red dots), the resulting voltage signal across the sensing electrodes 

(represented as black dots) is expressed as 

                                           (3.1) 

where I0cos(w0t) is a small AC current with constant amplitude injected into the wrist. From (3.1) 

it can be seen that measured voltage 𝑉(𝑡) is a sinusoidal signal whose amplitude is modulated by 

the impedance variation resulted from heartbeat pulses. With appropriated signal processing 

method, the small variation of impedance ΔZ(t) can be extracted. 

 

V(t)=(Z0 +DZ(t))I0 cos(w0t)
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Figure 3.4 Wrist model and tetra-polar configuration for bio-impedance sensing, where red dots 

represent driving electrodes and black ones represent sensing electrodes [74]. 

 

3.3. Measurement system design 

The proposed architecture of bio-impedance measurement system is shown in Figure 3.5. 

Instead of directly demodulating the output signal for ΔZ(t), a down-converting structure with a 

mixer is used, which is similar to the direct conversion in the radar receiver. A constant alternating 

current with an amplitude of 425μA and a frequency of 50kHz is injected through driving 

electrodes. The amplitude and frequency of the applying current is generated by a standard bio-

impedance analyzer so that the system is able to detect low-level impedance variations without 

harming human subject [75]. 
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Figure 3.5 Block diagram of heart-related impedance variation measurement. 

 

The resistor R in series with the human body is to obtain the local oscillator (LO) signal. The 

reason of using the resistor of 100Ω is that the parallel connection between R and the input 

impedance of instrumentation amplifier (IA) has minimal affection on the actual voltage across 

the resistor R. Thus, the voltage across it can be represented as  

                                                     (3.2)  

High-gain amplification is desired for both voltage signals because the impedance variation is 

on the order of mΩ and the corresponding voltages change is on the order of μV when a 425μA of 

AC current is applied. Sufficient amplification of these two voltage signals not only can increase 

the accuracy of the measurement, but also can effectively reduce the conversion loss of the mixer. 

The amplified Vr(t) and V(t) are sent to LO port and radio-frequency (RF) port of a mixer, 

respectively. After mixing them, the intermediate frequency (IF) signal is obtained at IF port, 

which is 

                 (3.3) 

where G1 and G2 are the gains of the IA following the resistor R and the human body respectively, 

and G = G1G2. 

0 0( ) cos( )rV t RI t

IF =G1RI0 cos(w 0t) ×G2(Z0 + DZ(t))I0 cos(w 0t)

=GR(Z0 + DZ(t))I0
2 cos2 (w 0t)

=
G

2
I0

2Z0R+
G

2
I0

2DZ(t)R+
G

2
I0

2R(Z0 + DZ(t))cos(2w 0t)
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The bandpass filter is used to remove the DC offset related to basal impedance Z0 and the 

double-frequency component in the mixer output. By sending the IF signal into the bandpass filter 

with the corner frequency of 0.3Hz and 3Hz, the heart-related signal S(t) can be obtained, which 

is  

              (3.4) 

Since the impedance change related to heart pulse wave is very small, a high gain amplifier is 

necessary before S(t) is sent to analog-to-digital converter (A/D). 

3.4. Experiment set-up 

Before turning the proposed bio-impedance measurement system into a full printed circuit 

board (PCB) circuit, an initial experiment was conducted to validate the feasibility and accuracy 

of this architecture for extracting heartbeat signal. The RJL Quantum II Bio-impedance Analyzer 

was used as the AC source for desired constant alternating current. Covidien CA-610 electrodes 

were placed on the wrist for current driving and voltage detection. The electrodes were attached 

to the same side of the wrist, which were perpendicular to the artery like a wristband. Both upper 

and lower wrists were tested for validation. Figure 3.6 shows the settings of electrodes. The pair 

at the two ends induced AC current through the wrist, while the pair in the middle with 3.7cm 

separation from their centers were used to sense voltage across their locations. A Model 1010 

piezoelectric finger pulse transducer was attached on the index finger of the subject to obtain a 

reference pulse signal synchronously. To build the direct conversion architecture, a 100Ω resistor 

was connected in series with the subject that served as the local oscillator (LO) source. When 

running the same current through the subject and the resistor, voltage signals sensed across them 

will have the same frequency and phase, which were fed to mixer input ports after proper 

conditioning.  

 

S(t) =
G

2
I0

2Z0R+
G

2
I0

2DZ(t)R+
G

2
I0

2R(Z0 + DZ(t))cos(2w 0t)

=
G

2
I0

2DZ(t)R
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Figure 3.6 Settings of electrodes 

 

The amplification of the voltage signals were achieved by Stanford SR-560 low-noise 

amplifiers (LNA). They also performed filtering function in order to rule out noises in these two 

channels. For human subject induced voltage signal (RF), it was amplified by 50 times after a 

band-pass filter with cutoff frequencies at 10kHz and 100kHz. As for the resistor voltage (LO), it 

was amplified by 200 times, and band-pass filtered at same cutoff frequencies. Both of the signals 

were AC coupled in SR-560 to remove DC. After the low-noise amplifier (LNA), human subject’s 

AC voltage was fed to radio frequency (RF) port of a mixer (Mini-Circuits ZLW-6+), while the 

resistor’s AC voltage was fed to the LO port for mixing. The intermediate frequency (IF) port 

output the mixed components to a band-pass filter. The function of the BPF was to remove double 

frequency components in the mixer products, leaving only the baseband signal that contained 

heartbeat related signal. The BPF’s cutoff frequencies were selected to be 0.3Hz-3Hz, which was 

realized by another SR-560 LNA. The filtered signal was AC coupled as well, and amplified by 

50 times to increase its resolution. The final heart beat related signal demodulated from mixer and 

the finger pulse signal were sent to NI USB-6218 for analog-to-digital conversion, and further 

processing was performed in MATLAB. 
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3.5. Human testing results and discussions 

The experiments were conducted according to the Committee on Human Studies (CHS) under 

protocol number 19176 and HRPO A-18177. In the conduct of research where humans are the 

subjects, investigators adhered to the policies regarding the protection of human subjects as 

prescribed by Code of Federal Regulations (CFR) Title 45, Volume 1, Part 46; Title 32, Chapter 

1, Part 219; and Title 21, Chapter 1, Part 50 (Protection of Human Subjects).  

Two subjects were recruited in this study. Experiment results of subject #1 from lower wrist 

are presented in Figure 3.7. It can be seen from Figure 3.7(a) that there is power line noise in the 

raw bio-impedance signal. But it is evident that the envelope of the bio-impedance signal is in 

good agreement with the finger pulse signal. After filtering and peak detection of bio-impedance 

signal in MATLAB, there are 35 peaks detected in both finger pulse and bio-impedance signals 

during the 30-second duration. Thus, the heart rate acquired from BIA system is 70BPM (beats 

per minute), which matches its reference. 

 

 

(a) 
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(b) 

 

(c) 

Figure 3.7 Experiment results of subject #1 from lower wrist (a) (b) (c) 

 

From the spectrum plots of the two signals shown in Figure 3.7(c), it can be seen that accurate 

heart rate can also be obtained, which is 1.16 ∗ 60 = 70BPM. The consistency of results obtained 

from both time and frequency domains indicates that (1) heart rate can be monitored from the 

lower side of wrist by measuring the heart-related impedance variation in a wristband 
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configuration; (2) direct down-conversion structure of bio-impedance measurement system is 

feasible. 

The same experiment procedure was repeated on the upper side of wrist for the two subjects, 

which conforms with the same configuration as the lower wrist experiment. A summary of 

experiment results of subject #1 and #2 from both lower and upper wrist is listed in Table 3.1, 

where heart rates detected from the proposed monitoring system are obtained and compared with 

finger pulse transducer results. It can be seen that the bio-impedance measurement system yields 

reliable results that agree with the reference. 

 

Table 3.1 Heart Rate Experiment Results 

Configuration Subject 

Heart Rate Measured 

Bio-impedance 

Measurement 

System 

Finger Pulse 

Transducer 

Lower Wrist 
#1 70BPM 70BPM 

#2 64BPM 64BPM 

Upper Wrsit 
#1 70BPM 70BPM 

#2 64BPM 66BPM 

 

3.6. Summary 

In this chapter, a bio-impedance analysis based heart rate monitoring system was presented. 

The design used only four electrodes to sense heartbeat related signal on wrist where wristband is 

normally placed. Measurements were taken with the proposed setting and analyzed in time domain 

as well as on frequency spectrum. The measured results showed that impedance variation at wrist 

closely matched with the heartbeat signal acquired from a standard finger pulse transducer, which 

proved the feasibility of heart rate sensing by the system.   
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Chapter 4. Comparison of Contact 

Sensors 

 
The location of sensor attachment is an important design issue that affects the signal quality 

and robustness against motion artifacts. Therefore, suitable attachment sites for different types of 

sensors must be located to optimize sensor performance. This chapter presents results of three 

sensors (ECG, PPG, and BIA) for measuring heart rate and respiratory rate on different body 

locations. Experimental data were analyzed in both time domain and frequency domain. A 

summary of the detection performance is consolidated at the end of the chapter. 

4.1. Measurement overview 

The bio-sensors tested, instrumentation and accessories involved are summarized in Table 4.1. 

Data acquisition system was also used to log measurement data for further processing. 

 

Table 4.1 Summary on biosensors, instrumentations and accessories 

Bio-sensor Instruments Accessory Function Test Sites 

ECG Biopac ECG100C 
3M Resting ECG 

Electrodes 

Electrical 

activity 

sensing 

Front chest 

Side chest 

Back chest 

Upper arm 

PPG TI AFE4403 Watch EVM N/A 
Infrared 

sensing 

Front chest 

Side chest 

Back chest 

Upper arm 

Upper wrist 

Lower wrist 

BIA 
RJL Quantum II Bio-impedance 

Analyzer, Amplifiers, Mini-

Circuits Frequency Mixer 

Kendall CA-610 

Electrodes 

Bio-impedance 

variation 

sensing 

Front chest 

Side chest 

Back chest 

Upper arm 

Upper wrist 

Lower wrist 
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Reference measurements were conducted to verify the accuracy of each sensor. A Model 1010 

piezoelectric pulse transducer was used to obtain heart rate reference signal at finger (Figure 

4.1(b)). For that of the respiratory rate signal, an inductive plethysmography belt (Figure 4.1(a)) 

was used since the piezoelectric based chest belt (UFI Model 1132 Pneumotrace II, see Figure 

4.1(c)) is unreliable in some cases due to firm contact requirement.  

 

 

4.2. Sensor measurement for heart rate and respiratory rate 

4.2.1. Electrocardiogram (ECG) 

 
(a) 

 
(b) 

 
(c) 

Figure 4.1 Reference sensors (a) Piezoelectric pulse transducer, (b) inductive plethysmography belt, 

(c) piezoelectric chest belt 
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3-lead ECG with Biopac ECG100C module was tested on four different sites: including three 

locations around the chest area (Figure 4.2(a)-(c)), and one location on the upper arm (Figure 

4.2(d)). The illustrations in Figure 4.2 demonstrate locations where electrodes are placed. Since 

the ECG module requires three leads connection (+, -, and ground), the pad connected to ground 

lead is attached to the opposite side of the body for the first three sites at the same level, and the 

inner side of upper arm for the fourth site.  

 

    

(a) (b) (c) (d) 

Figure 4.2 Electrode positions of ECG testing. (a) chest front, (b) chest left side, (c) chest back, (d) upper 

arm 

 

Biopac MP150WSW was used for data acquisition. The sampling rate was selected as 1kHz, 

with a gain of 5000. The piezoelectric pulse transducer was wrapped around subject’s index finger 

to measure pulse concurrently as a reference. Measurement results are shown below.  
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(a)                                                                       (b) 

  

 (c)                                       (d) 

Figure 4.3 Time domain ECG measurement results in comparison with finger pulse sensor results. (a) chest 

front, (b) chest left side, (c) chest back, (d) upper arm. 

 

Table 4.2 Heart rate measurement for ECG over chest and finger pulse transducer 

ECG Electrode Location ECG Heart Rate (beats in 30s) Finger Pulse Heart Rate (beats in 30s) 

Chest Front 35 36 

Chest Left Side 37 37 

Chest Back 36 36 

 

Table 4.2 indicates a good agreement of ECG measurement to finger pulse reference. The slight 

time difference in each beat between measurement and reference is caused by geological difference. 
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ECG was measured from electrodes that are placed on the chest and upper arm, while finger pulse 

transducer measures the pulse at the tip of index finger. The pulse pressure wave takes time to 

propagate through a length of the arterial tree.  

The time-domain performance of ECG on upper arm is inferior than the rest of the 

measurements, because it has a worse SNR and drifting. However, the Fast-Fourier transform (FFT) 

of ECG signal from upper arm and reference present a good agreement, shown in Figure 4.4. Both 

measurements obtain the same heart rate of 1.129Hz.  

 

 

Figure 4.4 Frequency domain ECG measurement result of upper arm in comparison with finger pulse sensor. 

 

4.2.2. Infrared wrist watch 

TI AFE4403EVM watch works with AFE4403EVM GUI on PC to measure and record data. 

Figure 4.5 shows the photos of the watch, revealing its sensor location at the back and PC 

connector at side. Its inbuilt block diagram enables configuration of sample rates, sensing signal 

type, amplifier setting, and Infrared (IR) sensors selection. By adjusting these parameters, clear 

heart beat data can be obtained. AFE4403EVM GUI also allows us to export data into Excel files 

and further processing can be achieved in Matlab. 
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(a) 

 

(b) 

Figure 4.5 (a) Back view of the AFE4403 watch showing the infrared sensor. (b) Right-side view of the 

watch showing microUSB connector. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 4.6  Testing locations for IR watch. (a) chest front, (b) chest left side, (c) chest back, (d) upper arm, 

(e) lower wrist, (f) upper wrist. 

Six positions (front chest, side chest, back chest, upper arm, upper wrist, and lower wrist) 

were tested to measure heart rate and respiratory rate using infrared watch, shown in Figure 4.6. 
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The infrared watch was in tight contact with the skin and fixed with paper tape. Piezoelectric chest 

belt and finger pulse transducer were used to measure respiratory rate and heart rate concurrently 

as references. The infrared signal is sampled and recorded with AFE4403EVM GUI, whereas the 

reference signals are acquired with an NI USB-6218 data acquisition (DAQ) device. The NI DAQ 

was set with a delayed start time, which served as a time stamp to synchronize IR watch with 

references. However, it is possible that click on the start button of watch GUI for recording is not 

exactly on the same start time as the DAQ. Thus, there might be some slight time differences 

between infrared signals and reference signals. When doing the experiments, the subject put both 

hands on thighs while breathing normally in a relaxed state. Each measurement lasted 30 seconds. 

Figure 4.7 – Figure 4.12 show the performance of infrared watch’s heart rate measurement by 

comparing with reference in frequency domain, and its respiratory rate measurement in time 

domain. 

From the spatial and spectrum representations, one can easily tell that heart rate can be 

measured from both sides of wrist, upper arm, and back chest. Whereas respiratory signal can be 

captured from all six locations, including the wrist locations, as validated by the bumps of IR signal 

in time domain corresponding well with those of the chest belt reference.  

From an anatomical point of view, subject’s chest expands during calm respiration and it will 

cause both shoulders move synchronously. When shoulders are lifted or relaxed, the arms and 

wrists will move in sync. Therefore, the respiratory rate can be measured from the upper arm and 

both sides of the wrist. Since such movement is relatively smaller than large body motion, pulse 

pressure wave that travels along the artery during each heart beat can be detected by the IR sensor, 

yielding accurate heart rate.  

However, as for the measurements on front chest and side chest, heartbeat signal could be buried 

under the respiratory signal due to the large expansion on the chest. Therefore, it is difficult to 

extract heart rate from these two locations. When it comes to the back chest, since the expansion 

of back chest is relatively smaller than that of front and side chest, both rates can be measured at 

the same time.  
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(a) (b) 

Figure 4.7 Upper wrist measurement results with IR watch. (a) heart rate in frequency domain (b) 

respiratory rate in time domain. 
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(a) (b) 

Figure 4.8 Lower wrist measurement results with IR watch. (a) heart rate in frequency domain (b) 

respiratory rate in time domain.  

 

Time (s) 

Time (s) 

Frequency (Hz) 

Frequency (Hz) 

|Y
(f

)|
 

|Y
(f

)|
 

A
m

p
lit

u
d

e 
(V

) 
A

m
p

lit
u

d
e 

(V
) 



30 
 

 

 

 
(a) (b) 

Figure 4.9 Upper arm measurement results with IR watch. (a) heart rate in frequency domain (b) respiratory 

rate in time domain 
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(a) (b) 

Figure 4.10 Front chest measurement results with IR watch. (a) heart rate in frequency domain (b) 

respiratory rate in time domain. 

 

Time (s) 

Time (s) 

Frequency (Hz) 

Frequency (Hz) 

|Y
(f

)|
 

|Y
(f

)|
 

A
m

p
lit

u
d

e 
(V

) 
A

m
p

lit
u

d
e 

(V
) 



32 
 

 

 
(a) (b) 

Figure 4.11 Side chest measurement results with IR watch. (a) heart rate in frequency domain (b) respiratory 

rate in time domain.  
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(a) (b) 

Figure 4.12 Back chest measurement results with IR watch. (a) heart rate in frequency domain (b) 

respiratory rate in time domain. 

 

4.2.3. Bio-impedance analyzer (BIA) 

The bio-impedance analyzer (BIA) configured in direct conversion structure was used to 

measure respiration on five locations, including lower wrist, upper arm, front chest, side chest, 

back chest (see Figure 4.13). Reference signals were taken synchronously for heart rate and 

respiratory rate during each measurement. Each measurement lasts 30 seconds. 
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(a) (b) (c) 

   

  

 

(d) (e)  

Figure 4.13 Tetrapolar configurations of bio-impedance analyzer for respiration and heartbeat measurement. 

(a) wrist lower, (b) upper arm, (c) chest front, (d) chest side, (e) chest back. 

 

The summary of the respiration and heartbeat measurement results are illustrated in Fig. 4.14 – 

Fig. 4.18. Spectrum plots are used to reflect heart rate measurement, for which the strongest peak 

indicates the signal frequency. Time domain plots are used to demonstrate respiratory rate 

measurement, where vertical axes are measured signal amplitudes in voltage, and horizontal axes 

indicate time of the measurement in second. Detailed analysis on the measurement results are as 

follows. 

To begin with, the sensitivity of BIA on measuring respiration varies among testing locations. 

The three locations on the chest are proven to be the most sensitive locations to detect clean 

respiration-related BIA signals. As indicated by Fig. 4.16 - Fig. 4.18, BIA signals captured at these 

locations have unbiased signals reflecting respiratory motion that match well with the references. 

Measurement results on upper arm for BIA show evident distortion over the 30-second 

measurement. However, approximating the most prominent peaks yield seven events, which 
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agrees with seven respirations measured by reference. Thus the respiratory rate can still be detected 

from upper arm. The BIA measurement in lower wrist could not pick up respiration signal. 

The most reliable heart rate measurements by BIA were on lower wrist and front chest. The 

subject was breathing normally when doing the experiment. Frequency spectrum of BIA signals 

on upper arm and front chest are in good agreement with the finger pulse reference. We can also 

see a regular fluctuation from two time-domain plots of bio-impedance signal, which is very likely 

to be related to rhythmic breath.  

 

 

 
 

(a) (b)  

Figure 4.14 Lower wrist measurement results with BIA. (a) heart rate in frequency domain (b) respiratory 

rate in time domain. 
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(a) (b) 

Figure 4.15 Upper arm measurement results with BIA. (a) heart rate in frequency domain (b) respiratory 

rate in time domain. 
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(a) (b)  

Figure 4.16 Front chest measurement results with BIA. (a) heart rate in frequency domain (b) respiratory 

rate in time domain. 
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(a) (b)  

Figure 4.17 Side chest measurement results with BIA. (a) heart rate in frequency domain (b) respiratory 

rate in time domain. 
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(a) (b)  

Figure 4.18 Back chest measurement results with BIA. (a) heart rate in frequency domain (b) respiratory 

rate in time domain. 
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4.3. Summary 

This chapter summarizes the performance of three bio-sensors, including ECG, infrared watch 

and bio-impedance analyzer, for heart rate and respiratory rate detection. Each sensor was tested 

in sync with a piezoelectric-based reference (chest belt for respiratory rate, whereas finger pulse 

transducer for heart rate). The performance on vital sign sensing for each sensor and detectable 

locations are listed in Table 4.3. Note that in Chapter 3.5 (Table 3.1) upper wrist was tested with 

BIA, which was able to detect heart rate. We have marked × for BIA heart rate detection on upper 

wrist. 

 

Table 4.3 Heart rate and respiratory rate detectable location summary 

Sensor 

Type 

Vital 

Sign* 

Detectable Locations 

Lower 

Wrist 

Upper 

Wrist 
Upper Arm 

Front 

Chest 

Side Chest 

(Left) 
Back Chest 

ECG 
HR   × × × × 

RR       

Infrared 

Watch 

HR × × ×   × 

RR × × × × × × 

BIA 
HR × ×  ×   

RR   × × × × 

* HR = Heart rate, RR = Respiratory rate, X = detectable 

 

The ECG with Biopac ECG100C module was proven to be reliable on locations around chest 

circumference and upper arm, whereas not able to pick up pulses from wrist or any respiratory 

signals. The captured heartbeat signals showed clear QPRS signatures and are relatively less 

sensitive to motion artifacts when measured on chest, while likely to be affected on upper arm. 

Though only 3 leads were used for sensing, the sticky resting electrodes and extended wiring 



41 
 

remain an issue that may cause skin irritation, mobility restriction and possible interference on 

physiological behavior patterns.  

The infrared watch was the most capable candidate among the three tested biosensing 

techniques. The inbuilt commercial TI AFE4403 chip and infrared sensing unit can be configured 

for robust performance on measuring heart rate and respiratory rate. However, it is still susceptible 

to motion interferences and should be tested against a variety of scenarios among large population. 

The wrist watch design and removable infrared sensor evaluation module (EVM) offers potentials 

for wearable applications. 

The BIA based monitoring system evaluated a novel method for vital sign sensing. It offers 

comparable heart rate readings to that of referencing finger pulse transducer and IR watch on the 

lower wrist, which presented the first BIA heartbeat monitoring system in the wristband 

configuration. Similar to IR watch, the BIA sensing system is also subject to motion artifact, and 

requires bulky instrumentations for signal conditioning. Thus a compact BIA platform with small 

form factor and robust signal conditioning algorithm is needed in future research.  
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Chapter 5. Continuous-wave Radar for 

Physiological Monitoring 

 
5.1.  Doppler radar measurement system 

5.1.1. Measurement Principle 

By the principle of Doppler Effect, when a target is moving radially (either toward or away 

from the transmitter), a radio signal that bounces off the surface of the moving target will carry a 

Doppler shift in the backscattered signal. The shift is reflected in form of a frequency difference 

between the transmitting signal and echo. This component is expressed as [76]: 

        (5.1) 

where 

is the Doppler frequency carried in echo signal in Hz 

 is the frequency of the transmitting signal in Hz 

 is the radial velocity of the moving target in m/s 

 is the speed of light (300,000km/s), which is also the speed of radio wave through air  

Since the wavelength of the transmitter carrier signal is  

      (5.2) 

thus (5.1) can be rewritten as 

     (5.3) 
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From (5.3), we know that from the Doppler frequency shift in echo signal and wavelength of the 

transmitting signal, radial velocity of the moving target can be measured. If is integrated over 

time, while ignoring the constant term of integration, the instantaneous phase variation can 

be expressed as 

             (5.4) 

where is the time varying displacement of the moving target. From (5.4), it indicates that the 

displacement of the moving target is also accessible by extracting the time varying phase 

component (Doppler phase shift) from the echo signal. In theory, any physiological displacement 

can thus be estimated by demodulating the Doppler phase shift from the echo signal. 

5.1.2. Doppler Radar Fundamentals 

5.1.2.1. CW Quadrature radar 

In general, cardiopulmonary activities create periodic changes on chest wall, such minute 

motions can be detected by Doppler radar in a form of phase modulation in echo signals.  
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Figure 5.1 Architecture of CW Quadrature Doppler radar 

 

To demodulate rate information from baseband signals, single channel radar receiver is 

sufficient because phase changes are proportional to amplitude variation of the reflected signal 

[62][63]. If accurate displacement over time is to be assessed, quadrature radar receiver is needed. 

Both in-phase/quadrature-phase (I/Q) outputs are processed concurrently to demodulate phase 

information, which can be used to recover displacement in time domain. 

Figure 5.1 shows the architecture of a continuous-wave (CW) quadrature Doppler radar. The 

signal source, or the local oscillator (LO), generates a single tone signal continuously. It can be 

represented as a sinusoid of carrier frequency f, shown as 

       (5.5) 

or 

      (5.6) 

TX/RX
0o Splitter 0o Splitter

90o Splitter Iout Qout

0o Splitter
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where AT is the amplitude of transmitting signal in voltage, is the phase noise inherent to the 

local oscillator, is the angular frequency in radian. It then goes through a passive 

component 0° splitter, which splits the transmitting signal into two identical half-the-power 

components. One of the divided signal is sent to the summing port of a 0° splitter, routed to the 

TX/RX antenna and radiated through the air. When a moving target intercepts the propagating 

signal at distance d0, a portion of the transmitting signal will be reflected immediately. The 

backscattered signal R(t) carries a Doppler phase shift associated to the time-varying motion of the 

target, which is represented in a displacement function over time x(t). The total distance between 

TX/RX antenna and the moving target is relevant to time.  

                     (5.7) 

It is necessary to consider time delay of the propagation between the antenna and the target, 

which is basically the time cost for transmitting signal to reach surface of the moving target. At 

the time of reflection, the actual distance is modified as 

.    (5.8) 

Thus the round-trip time cost during the propagation is  

       (5.9) 

Backscattered signal R(t) can be expressed as 

     (5.10) 

where  is constant phase shift associated with the distance between radar and the target. 

Considering the other divided part of the LO signal in Figure 5.1, when delivered to a 90° 

splitter it is branched up into in-phase and quadrature-phase (90°) components. The I channel 

signal takes the same format as (5.6), while the Q channel signal has a 90° phase difference. I/Q 

signals can thus be represented as 
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    (5.11) 

They are then fed to two passive mixers individually, and each mixed with half of the backscattered 

signal R(t) to generated down-converted baseband signals. Taking I(t) as an example, in the mixer, 

I(t) and R(t) are multiplied as 

    (5.12) 

Following the output port of the mixer, a low-pass filter will remove the term with double 

carrier frequency ( ), leaving the baseband signal of interest BI(t) as 

  (5.13) 

Substituting (5.9) into (5.13), I channel baseband signal can be rewritten as 

(5.14) 

Assume the term  in phase noise is negligible as x(t )<< d0, and the term  can 

be approximated to zero so that  [77]. (5.14) is then modified as 

         (5.15) 

where  

 is the amplitude of the baseband signal in channel I, 

  is the Doppler phase shift modulated from x(t), 
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  is residual phase noise, 

 is the total constant phase shift due to the distance between target and radar. 

Under similar deduction, baseband signal in Q channel can be obtained as 

           (5.16) 

The I/Q channel signals will be amplified, sampled in data-acquisition system (DAQ), and sent 

to PC for processing. 

5.1.2.2. Displacement estimation 

As shown in (5.15)(5.16), Quadrature radar outputs of I/Q channels contain the same Doppler 

shift, which transcribe an arc when they are plotted as (I + i*Q) in complex plane (see Figure 5.2). 

When the arc center is located on the origin of the complex plane, arctangent function can be used 

to demodulate phase shift [64][65][66]. 
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Figure 5.2 Complex plane demonstration of I/Q channel baseband signal transcribing an arc (AB represents 

baseband signal amplitude) 

 

When there’s no amplitude imbalance between channels, the amplitude of I/Q channel outputs 

should be the same. Assume residual phase noise can be ignored, and total constant phase  can 

be eliminated by arc rotation, the arctangent function will yield the following term 

 
4 ( )x t




       (5.18) 

Displacement function over time x(t) can thus be extracted by 

( )
4

x t
 




      (5.19) 

5.1.2.3. Demodulation challenges  

In actual measurement, however, inherent dc offset commonly exist in both channels due to 

stationary target reflection, LO chain leakage and RF chain reflection [78]. The expressions of 

baseband I/Q signals are then modified as 

I

Q


AB
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   (5.20) 

where VI and VQ are dc offsets associated with I and Q channel. An illustration of IQ formed arc 

with dc offset is shown in Figure 5.3. 

 

 

Figure 5.3 Arc with dc offset 

 

Center estimation is performed in order to put arc center back to the origin of the complex plane 

for arctangent demodulation [79]. The aim of using this method is to find the correct center of the 

arc so that it can be tracked back to origin of the complex plane.  

Since cardiac pulse induced movement on the body surface is at sub-millimeter level, its 

associated phase shift at carrier frequency of 2.4GHz is only a few degrees. The limitation of arc 

length imposes another challenge of accurately recovering arc center based on above method, 
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which may cause ambiguity and error in estimation. Thus radius correction [72] is adopted to 

calibrate radar data. It can estimate the correct center of a short arc by using the radius of a longer 

arc transcribed from a larger displacement of the same target. To satisfy this theory, the target has 

to be carefully aligned in line-of-sight to the antenna probing direction, and placed in far-field 

region.  

During center estimation, when arc center is tracked back to origin, its radius is obtained by 

finding its crossing point on the I-axis, as shown in Figure 5.4. Due to the fact that arc radius AB 

is essentially the amplitude of I/Q channel baseband signals, it correlates to received power level. 

In theory, if a target is measured under same measurement settings in the far field, estimated radius 

originated from a larger motion would be the same as that of a shorter motion. In other words, a 

short arc’s correct radius is indirectly accessible by estimating the radius from the longer arc 

generated by the same target in a larger motion (see Figure 5.5). Detailed procedure of radius 

correction can be found in [72]. 

 

 

Figure 5.4 Finding arc radius 
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Figure 5.5 Long arc and short arc sharing the same radius 

 

As described in [65][70], quadrature channel imbalances (phase/amplitude imbalances) often 

cause signal distortion and estimation error. Nonetheless, the phase changes discussed in this work 

are very small, imbalance distortion on the transcribed arc can be neglected. 

5.1.3. Summary  

This chapter discusses the fundamentals of Doppler radar measurement. Mathematical 

deduction on how displacement information can be estimated using CW quadrature Doppler radar 

transceiver was presented. During the process of radar signal propagation and demodulation, 

several factors got involved including dc offset, limited phase angle and channel imbalance, which 

poses challenges in the estimation. Radius correction was adopted to calibrate center estimation 

process, in which correct radius information associated with data of interest should be determined 

in the first place. Experimental evaluation of the calibration method on sub-millimeter 

displacement measurement will be presented in the following chapter. 
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5.2. Doppler Radar Sub-Millimeter Physiological Displacement Estimation 

5.2.1. Experiment set-up 

This chapter presents the estimation of sub-millimeter displacement by measuring a 

programmable mechanical mover that outputs a series of sinusoidal movements. They range from 

0.1mm to 1mm at an oscillation frequency of 1Hz, which represent heartbeat activity induced 

displacements on the surface of the body. An infrared camera based motion tracking system is also 

used to synchronously measure the same motions, with a reported accuracy on the order of 10μm. 

The results indicate the feasibility of estimating displacement of heart motion on chest wall using 

quadrature Doppler radar with high accuracy. 

 

 

Figure 5.6 Linear stage displacement measurement 

 

Figure 5.6 demonstrates the measurement on a mechanical phantom emulating chest motion. 

The TX/RX antenna is part of the CW Quadrature Doppler radar system shown in Figure 5.1. It 

was operated at 2.4GHz with an output power of 10dBm. It is composed of an ASPPT 2988 patch 

antenna used for both transmitting and receiving (TX/RX) signals, three ZFSC-2-2500 0°splitters, 

one ZX10Q-2-25-S+ 90° splitter, and two ZFM-4212+ mixers. The quadrature receiver outputs 

were fed to Stanford SR560 LNA for DC coupling, low-pass filtering and amplification. The cutoff 

frequency of the filter was set to 3Hz to eliminate noises from hardware and stationary object 

reflection. After A/D sampling, the raw data will be stored through LabVIEW in PC and processed 

in Matlab.  

The moving target is carefully aligned with the antenna at 1 meter distance, which is located 

in the far field. A Griffin Motion MLS series linear stage is used for simulating chest wall 

TX/RX
X(t)

1m
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movement, which is able to output fine periodic motions with an accuracy of 4μm. It varies in 

displacements to cover a spectrum of possible heart activities. 

An Advanced Realtime Tracking (ARTrack) System composed of a pair of infrared cameras 

was used for reference. It is capable of capturing three-dimensional coordinates of a retro-

reflective marker, of which y-axis data were computed for superior-posterior motion displacement. 

To track target motion, the marker is attached to the center point of the measured target surface. 

The data from reference system and radar system were synchronously obtained. It is achieved by 

feeding the internal sync signal from camera data acquisition platform to DAQ to be concurrently 

digitized with radar analog outputs. It is crucial to include these set of data for it serves to validate 

the real outputs of linear stage. 

Figure 5.7 shows the experimental set-up configuration, with radar placed in the mid-point 

between camera pairs, and linear stage located at line-of-sight of TX/RX antenna’s probing 

direction. Linear stage mounts a metallic plate as the target of interest for both sensing systems. It 

is placed at a spot where infrared rays from camera pairs formulate a right angle for best tracking 

performance. 
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Figure 5.7 Experimental set-up configuration of quadrature Doppler radar, ARTrack infrared camera 

system, and linear stage. 

 

5.2.2. Measurement results and discussions 

Linear stage was programmed to perform sinusoidal motions with fixed frequency of 1Hz and 

varied displacements ranging from 0.1mm to 1.0mm, in order to emulate cardiac pulse 

displacement on the body surface. For each displacement, the measurement was repeated 3 times, 

for 60 seconds each with a sampling frequency of 1000Hz. Their results were averaged to yield 

final estimations. When processing measured radar data in Matlab, an FIR low-pass filter with 

cutoff frequency of 5Hz was used to remove clutter noise. Then the filtered radar data were 

corrected using radius correction method mentioned in Section 5.1.2.3 for accurate displacement 

estimation. The estimated radius is 1.118V, which is acquired from a sinusoidal motion of metallic 

plate with displacement of 40mm and frequency of 0.3Hz. This radius was made equal to that of 

the shorter arcs. 

Quadrature Doppler 
Radar System

I/Q Outputs

45° 45°
TX/RX
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Table 5.1 shows a comparison of displacement measurement results between radar system and 

reference infrared cameras. Absolute error in μm is defined as the difference between measured 

value and the nominal one. Relative error evaluates the severity of error in estimation, which is 

defined as absolute error over nominal value. Values listed here are averages from the three 

repeated measurements. 

 

Table 5.1 Comparison of displacement measurement results 

Nominal 

Displaceme

nt (mm) 

Radar Measurement Camera Measurement 

Standard 

Deviation 

(μm) 

Estimated 

Displace

ment Ave. 

(mm) 

Absolute 

Error 

(μm) 

Relative 

Error 

Standard 

Deviation 

(μm) 

Estimated 

Displace

ment Ave. 

(mm) 

Absolute 

Error 

(μm) 

Relative 

Error 

1.0 1.87 0.992 7.81 0.78% 2.69 1.037 37.28 3.73% 

0.9 2.08 0.898 2.44 0.27% 1.06 0.941 40.67 4.52% 

0.8 0.30 0.801 1.03 0.13% 1.17 0.838 38.44 4.80% 

0.7 2.83 0.704 4.00 0.57% 0.40 0.739 39.48 5.64% 

0.6 2.81 0.607 7.47 1.24% 10.93 0.629 29.06 4.84% 

0.5 2.98 0.507 6.72 1.34% 4.39 0.524 24.33 4.87% 

0.4 1.42 0.407 6.86 1.72% 1.21 0.423 22.87 5.72% 

0.3 1.85 0.307 6.99 2.33% 5.97 0.332 31.96 10.65% 

0.2 0.38 0.205 4.52 2.26% 0.90 0.238 37.73 18.86% 

0.1 2.03 0.096 3.88 3.88% 0.56 0.136 35.52 35.52% 

 

Measurement results in displacement for two systems are plotted in Figure 5.8. Radar 

measurement results show a good agreement with its nominal values, while camera system 

presents an overestimation throughout all measurements. Detailed analysis on measurement 

accuracy is as follows. 

To start with, standard deviation of repeated measurements evaluates the performance of each 

system. It is scaled in unit of μm to better reflect how much variation each measurement differs 

from the average. As shown in Figure 5.9, both systems show good repeatability in that their 

deviations over three measurements are no more than 6μm for displacements within 1000μm, 

except for 0.6mm measurement of camera system.  

In Figure 5.10, a clear distinction of absolute errors between radar and camera measurement 

shows that radar system has superior estimation accuracy. Similar comparison was demonstrated 
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in Figure 5.11, showing less than 5% error rate was achieved by radar measurement. However, 

both systems have their limitations in maintaining accuracy when nominal displacement continues 

to decrease, as the estimation error begins to intensify. For radar measurements, if nominal 

displacement value decreases by 10 times, relative estimation error increases by 5 times. However, 

it gets worse for camera measurements, because the associated increase in relative error is double 

of its counterpart. By comparing only the absolute errors in measured displacements, radar 

measurement has well maintained its results under 10μm, while those of the camera estimations 

range from 20μm to 40μm. 

 

 

Figure 5.8 Measured displacement comparison 
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Figure 5.9 Standard deviation comparison 

 

Figure 5.10 Absolute error comparison 
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Figure 5.11 Relative error comparison 

 

Time domain displacement plots of 1.0mm and 0.3mm estimation are selected as examples, 

and plotted in Figure 5.12. Linear stage output is simulated in Matlab and plotted as red dotted 

line. It is a sinusoid of frequency at 1Hz. Camera estimation of y-axis coordinates over time are 

adjusted to make their mean at zero, plotted as dashed line in black. Blue solid line represents the 

radar-recovered displacement variations. It can be seen that for 1.0mm case, both radar trace and 

camera trace fit closely with the reference. Peak detection results reveal that negative peaks of 

radar measured displacement don’t quite overlap with simulation at the beginning of the 

measurement, so does camera estimation. And for 0.3mm case, camera measured displacement 

trace carries spikes in some of its peaks as shown in Figure 5.12(b), causing unwanted 

overestimation errors. As indicated in Table 5.1, Doppler radar measurements achieve higher 

accuracy.  
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(a) 

 
(b) 

Figure 5.12 Time domain comparison of (a) 1.0mm displacement and (b) 0.3mm displacement 

estimations with reference. Dotted line is computer simulation of standard sinusoid with same 
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displacement and 1Hz frequency, which represents the output of linear stage. Solid line is the 

reconstructed displacement measured by radar. Dash line stands for camera results. 

 

5.2.3. Summary 

This chapter discusses the feasibility of measuring sub-millimeter displacement with Doppler 

radar with high accuracy. An infrared camera motion tracking system is employed for comparison. 

Measurements took place on the target displacements of one or only fractions of a millimeter. 

Quantitative results were compared, as well as reconstructed time domain displacement traces. 

Overall, although infrared camera was used initially as a reference, Doppler radar system 

performance is superior for all the measurements. 
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Chapter 6. Conclusion 

 
6.1. Challenges 

Physiological monitoring systems monitors vital sign parameters for health condition prognosis 

and diagnosis. These systems extract weak physiological signals from human subjects via 

transducers that are conditioned by various signal processing techniques. The challenges lie in the 

difficulties of acquiring the signals at full strength over the optimum position. Both contact and 

non-contact methods have shown adequacy in obtaining heart rate and respiration rate with 

sufficient accuracy when compared with gold standards. This thesis aimed to tackle the hurdle of 

acquiring the weak physiological parameters accurately via novel instrumentation and signal 

processing techniques. 

6.2. Summary  

In this thesis, a BIA based heart rate sensing method was proposed. Under direct conversion 

architecture, the system was able to detect very weak pulse-related impedance changes over the 

wrist via four electrodes, which matches well beat-to-beat measurement results from finger pulse 

transducer. Such a configuration confines a wristband design, which has potential application 

merits in wearable heart beat sensor. 

A comprehensive comparison was also provided in this work, which covers a wide range of 

biosensors for heart rate and respiration rate sensing over conventional and non-conventional 

locations. Extensive data collection and analysis provided in-depth understanding of each 

biosensor’s performance and offered insights in implementation in vital sign monitoring wearable 

devices. 

Quadrature Doppler radar displacement estimation is of interests in non-invasive physiological 

sensing. It was proposed to detect small displacements on the body surface resulting from cardiac 
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activities. Incorporated with radius correction method, fine motion created by a linear mover with 

sub-millimeter displacements can be accurately measured without ambiguity. The accuracies for 

0.1mm – 1mm measurements were maintained on the same order, and an error rate within the 

range of 0.13% and 3.88%. Such technique could serve as an approach for high accuracy torso 

displacement measurement, and potentially be applied to cardiopulmonary motion pattern tracking 

and pulse pressure monitoring. The lead-free feature of radar sensor eliminates any wiring 

configuration to the subject, and is a good candidate of non-contact physiological monitoring. 

6.3. Future work 

Future work of the thesis research will be focused on the feasibility of implementing BIA vital 

sign sensing on a wearable, the consideration of improving physiological signal quality, and novel 

calibration methods for Doppler radar displacement estimation. They can be categorized into 

following tracks: 

• A BIA sensing unit will be developed, including part selection, schematic and layout 

design, fabrication and assembly. Extensive debugging and parts selection are needed 

to increase the stability of the measurement and minimize the board form factor. The 

consideration of acquiring more reliable data from large population of human subjects 

will be taken into account. The performance of other types of electrodes will be studied 

and evaluated in the future. 

• Since physiological monitoring with contact or non-contact sensors commonly face 

motion artifacts due to unwanted and unpredictable body motions. A cancellation 

technique will be sought in order to implement an algorithm in the hardware or signal 

processing. 

• Novel radius correction method for reliable center estimation without using linear stage. 

Since using linear stage as a calibration tool is not always possible in practical 

application, by shifting the radar antenna incrementally at a few stops could essentially 

create additional data points. It offers an alternative solution for small motion recovery, 

which can be used for torso displacement estimation. 
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• Since IR watch and BIA are good candidates in optimum location sensing measurement, 

it is promising to develop arm-based wearable device that can extract respiration rate 

without using respiratory chest belt. 
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Appendix A. Bio-impedance Analysis 

Human Testing Protocol 

 
A.1. CHS #19176 Research Protocol 

Title of Project:  Respiratory Effort Sensing and Harvesting 

 

Principal Investigator:  Olga Boric-Lubecke; Ph.D.; Electrical Engineering Department   

Co-Principal Investigator:    Jia Xu; Electrical Engineering Department  

 

Abstract 

Unobtrusive sensing of respiratory effort and heartbeat can be valuable for continuous medical 

monitoring.  Our research group is developing low-cost zero-net energy wearable biosensors for 

unobtrusive, continuous, respiratory effort and heart beat sensing and harvesting. The goal is to 

produce self-powered unobtrusive sensors suitable for continues (24/7) health monitoring. The 

advantages of this technique is that first; the patient is not wired to monitoring equipment, and 

second; there is no battery to be replaced or disposed. A large sample of human subjects is needed 

to better understand how variations in the population affect the performance of our biosensors.  

The objectives of our project and the proposed experiment methods on human subjects are 

elaborated below.   

 

1. Specific Aims 

 

The objectives of this project are to develop and implement zero-net energy wearable 

biosensors that can sense and harvest energy from respiratory effort. The goal is to produce self-

powered unobtrusive sensors suitable for continuous (24/7), unobtrusive health monitoring. Our 

system consists of three components, 1) physiological sensing/harvesting module, 2) local module 

that will condition and store harvested potentials, and extract physiological data, and communicate 

this information to the third part of the system which is 3) a remote module, via a short range, low 

data rate wireless link.  
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However, a good understanding of how variations in the population affect the performance of 

our systems is needed, thus we propose to conduct human testing for better understanding and 

improvement of our works.  The experiment requires a human subject wearing a shirt with our 

embedded system. The system detects his/her respiratory rhythm and heart beat data and harvests 

the energy from his/her breathing and heart beat. Then the harvested energy will be conditioned 

and stored to be distributed to other parts of the system when needed and sends the physiological 

data to the wireless link. Wireless link then collects the data and sends it via a low data rate wireless 

link to a remote computer to be further processed and analyzed.  Each experiment will be done in 

a human performance laboratory and is expected to be two one-hour sessions. 

 

2. Background and Significance 

 

Human energy harvesting for wearable and portable electronics was proposed in the mid 

1990’s [1]. While a number of potential human energy sources were identified in [1], human 

energy harvesting has mostly been focused on kinetic energy [2-4], and more recently on thermal 

energy [5]. Primary self-powered electronic devices have included self winding wrist watches and 

more recently laptops with hand cranks and foot pedals [1-2]. The recent efforts to scavenge human 

kinetic energy using piezoelectric sensors and electromagnetic generators placed in shoes, and 

backpacks with spring-loaded straps have shown promise [2-3]. Also it has been demonstrated that 

electromagnetic scavenging is more efficient than piezoelectric [3, 6].  

Perhaps the most readily available form of human power is respiration, yet no significant work 

has been done on energy harvesting from movement of the chest walls due to respiratory effort. 

Similarly, human electrical signals have been identified as a potential energy source [1, 7], with 

no published efforts to date. On the other hand; wearable biosensors have been investigated for 

remote health and fitness monitoring, including applications ranging from wound healing to 

athletic training [8]. Wearable sensors have included ring, ear, and body sensors [8-11]. To power 

these systems, simple batteries and proximity RF power scavenging [12] have been used.  Our 

approach is to use self-powered biosensors, through sensing and harvesting methods for respiratory 

effort, and electro-cardiogram (ECG) potentials. 

Movements of the chest due to quiet unforced respiration are mostly determined by 

movements of the rib cage and the abdominal wall. Studies have found that average chest wall 

displacement due to respiratory effort is on the order of cm [13]. Since respiratory effort itself is a 

valuable physiological parameter, the method that combines sensing and energy harvesting would 

enable efficient biosensing.  

 Our break-through approach is to concurrently harvest and sense physiological signals by 

reusing the hardware components to perform both functions, managed through a highly efficient 

control and communication protocol.  
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3. Preliminary Studies  

 

Our recent work [14-16] to implement self-powered biosensors includes applying a method to 

detect and harvest respiration signals. However, we do not have a good understanding of how 

variations in the population affect the performance of our systems, thus we propose the 

experiments on a large number of subjects for better understanding and improvement of our works. 

 

4. Research Design and Methods 

 

The research experiments consist of measuring and categorizing data from our self-powered 

wearable biosensor system design.  Each experiment will be done in the human performance 

laboratory located in the Kinesiology Department and is expected to be two one-hour sessions.  

The list of experimental instruments can be found in Table A.1.  

5. Experimental Methods: 

 

5.1 Human Subjects Involvement 

  

 Participants for the pilot will be 100 healthy, physically active adults 18 to 85 years of age 

recruited from the University of Hawaii (UH) student population and the Oahu community.  

Experimental protocol will include one on-site session.  Participants will be instructed to report to 

the University of Hawaii Human Performance Laboratory in a well-hydrated state.  Participants 

will complete health history and exercise questionnaires and sign the approved informed consent 

form.  A healthcare professional (BOC Certified Athletic Trainer) will review each questionnaire 

and identify exclusion criteria.  The subject's weight, height, and thorax dimensions will be 

measured.  Thorax dimensions will be measured both at full inhale and full exhale – including 

waist circumference, chest circumference, chest breadth, and chest depth. 

Inclusion criteria for all participants includes classification as low risk (ACSM Risk 

Stratification Categories) for exercise testing and free from any cardiovascular, coronary artery, 

pulmonary, or metabolic diseases (Mahler DA, Froelicher VF, Miller NH, York TD. ACSM’s 

Guidelines for Exercise Testing and Prescription. 7th ed. Baltimore: Lippincott Williams and 

Wilkins; 2009.). Also being pregnant will exclude the participants from experiment. 
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Changes to the current protocol do not significantly increase participant risk and qualify as 

eligible for expedited review since the procedures being added would qualify for expedited review 

within any new IRB applications. 

Participants will be informed of potential risks and that involvement is voluntary.  Participants 

will also be informed they may refuse to participate at any time prior to or during the study without 

penalty. 

 

5.2 Testing Protocol 

  

 Prior to test initiation, participants will be fitted with a heart rate monitor; 2 self-powered 

wearable respiratory effort sensors (one worn around the chest, and one worn around the stomach), 

a piezoelectric belt as a chest motion reference, headgear, and breathing mask to assess respiratory 

gas exchange throughout the test.  Participants will breathe through the mask throughout the 

duration of the test which is connected to a metabolic cart through ventilation tubes.  The metabolic 

cart will be used to determine oxygen consumption (VO2) and respiratory exchange ratio (RER).   

 Testing conditions will include a range of respiratory effort in order to determine if any 

effect of biosensor application is consistent across the activity range. Surface EMG electrode 

placements will be in pairs in the seventh or eighth intercostal space on the right side of the body 

at the midclavicular line to record the activity of the diaphragm and in the 2nd or 3rd intercostal 

space at the midclavicular line for the external intercostals muscles.  

 Testing will begin in the resting condition, followed by assessment during a 

hyperventilatory condition. The hyperventilatory condition will include forced hyperventilation at 

a prescribed respiratory rate between 75-100% above resting respiratory rate for a period of less 

than one minute in each state. Increases in the metabolic cost of the hyperventilatory condition 

above the resting condition represent the respiratory effort. This condition will be followed by a 

10-minute rest before completing the final condition. The final condition will include metabolic 

and EMG analysis during a submaximal exercise ramp protocol on a cycle ergometer. Subjects 

will complete 3-minute stages with increasing workloads of 50 Watts per stage until reaching 70% 

age-predicted-maximum heart rate (=191.5-(0.007*age)). Cycle ergometer testing is expected to 

last 9-12 minutes for each subject. The headgear and breathing mask will be removed at this time.    

 Variables of interest between the "control" and "scavenger application" state will include 

VO2, RER, KCAL expenditure, metabolic efficiency, ratings of perceived exertion (RPE), 

changes in respiratory muscle activation and indices of breathing economy (e.g. tidal volume, 

inspiratory time, etc.). For each condition, the control vs. sensor application state will be 

implemented using a counterbalanced design to determine which state the subject will complete 

first. Subject testing will include two one-hour sessions. During each session, each subject will be 

tested in both states for the resting and hyperventilatory condition. The changes between states 
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will be determined as the average of the 2 sessions. The exercise protocol will be conducted in 

only one state (control or sensor application) per testing session based on a counterbalanced design.     

 

5.3 Outcome Measures 

 

• Cardiovascular responses will be collected via standard open circuit spirometry.  

Inspired ventilation was measured with a previously calibrated dry gas meter (Rayfield 

RAM-9200) fitted with a potentiometer.   

• Expired ventilation will be channeled through Hans Rudolf high velocity valve 

through low resistance plastic tubing into a 5-liter mixing chamber.   

• The concentrations of oxygen and carbon dioxide will be continuously sampled with 

an Applied Electrochemistry Oxygen analyzer S-3A/1, Oxygen sensor N-22M, carbon 

dioxide analyzer CD-3A, and a carbon dioxide sensor P-61B which will be calibrated 

with commercially available primary standard grade gases.   

• Heart rate will be measured via Model Q710 electrocardiogram (Quinton Instrument 

Co., Bothell, Washington).  

• Respiratory rate and tidal volume will be measured by both spirometry and the self-

powered respiratory sensor during all stages.    

• Participants will use the 6-20 point Borg Scale (attached) at the end of each stage by 

pointing to the appropriate RPE value while continuing to exercise. 

 

Table A.1 The experiments consist of the following equipment 

Type of Equipment Equipment Name Amount 

Heart Rate/Respiratory Rate 

Sensors 

Piezoelectric chest belt 1 

(incorporated into 

shirt/belt/upper arm cuff/wrist 

cuff modules) 

 

 

 

 

 

 

 

Data Processing and 

Transmission  

Module 

 

Electrocardiogram Quinton Instrument Co 

Model Q710 

Inductive plethysmography sensor 

Impedance plethysmography sensor 

Resistive elastomers 

Photometry sensor 

Acoustic (impedance-matched) microphone 

Galvanic skin response sensor 

 

1 

 

1 

1 

1 

1 

1 

1 

Customized low voltage rectifier 

TI CC430 Wireless link Texas Instruments  

 

6-20 point Borg Scale 

 

1 

1 

 

1 
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Type of Equipment Equipment Name Amount 

RPE reference 

 

Velocity Valve 

 

 

 

Electrochemistry Oxygen 

analyzer 

 

Oxygen sensor 

 

Carbon dioxide analyzer 

 

Carbon dioxide sensor  

 

References 

Hans Rudolf high velocity valve  

Low resistance plastic tubing  

5-liter mixing chamber 

 

Electrochemistry Oxygen analyzer S-3A/1 

 

Oxygen sensor N-22M  

 

Carbon dioxide analyzer CD-3A 

 

Carbon dioxide sensor P-61B 

 

1 

1 

1 

 

1 

 

1 

 

1 

 

1 

Spirometer 1 

Polar wear link chest belt 1 

 

5.4 Risk and hazardous evaluations:  

 

If you have a pacemaker or defibrillator, or have health issues which requires that you wear 

electronics of any sort, avoid using magnet generators. To be on the safe side we would advise 

pregnant women to avoid any exposure to magnetic fields. So if you are sexually active you should 

be in a birth control program in order to be in this study. 

 

6. Data and Safety Monitoring Plan  

 

1. All experiments will be logged. 

2. All complaints from the participants will be logged and reported to the PI and CHS. 

3. All unanticipated adverse events will be logged and reported to the PI and CHS. 

 

7. Literature Cited 

[1] Jansen, A.J.; Stevels, A.L.N., “Human power, a sustainable option for electronics,” 

Proceedings of the 1999 IEEE International Symposium on Electronics and the 

Environment, ISEE 1999.11-13 May 1999 Page(s):215– 218. 

[2] J. Kymisis, C. Kendall, J. Paradiso, and N. Gershenfeld, “Parasitic Power Harvesting 

in Shoes, Second International Conference on Wearable Computing, 1998.  

[3] L. C. Rome, L. Flynn, E. M. Goldman, and T.D. Yoo, “Generating electricity while 

walking with loads,” Science, Vol. 309, Sept. 2005, Page(s): 1725-1728. 



70 
 

[4] C.R. Saha, T. O’Donnell, N.Wang, P. McCloskey, “Electromagnetic generator for 

harvesting energy from human motion” Elsevier Sensors and Actuators A: Physical 

Vol. 147, Issue 1, 15 Sep. 2008, pp: 248-253. 

[5] V. Leonov, T. Torfs, P. Fiorini, and C. Van Hoof, “Thermoelectric Converters of 

Human Warmth for Self-Powered Wireless Sensor Nodes,” IEEE Sensors Journal, 

Vol. 7, No. 5, May 2007. 

[6] www.numetrex.com 

[7] T. Starner and J. Paradiso, “Human Generated Power for Mobile Electronics,” in Low 

Power Electronics Design, CRS Press, Fall 2004. 

[8] Morris, Deirdre; Schazmann, Benjamin; Wu, Yangzhe; Coyle, Shirley; Brady, Sarah; 

Fay, Cormac; Hayes, Jer; Lau, King Tong; Wallace, Gordon; Diamond, Dermot; , 

"Wearable technology for biochemical analysis of body fluids during exercise," 

Engineering in Medicine and Biology Society, EMBS. 30th Annual International 

Conference of the IEEE , vol., no., pp.5741-5744, 2025 Aug. 2008. 

[9] Asada, H.H.; Shaltis, P.; Reisner, A.; Sokwoo Rhee; Hutchinson, R.C.; , "Mobile 

monitoring with wearable photoplethysmographic biosensors," Engineering in 

Medicine and Biology Magazine, IEEE, vol.22, no.3, pp. 28- 40, May-June 2003.  

[10]Ming-Zher Poh; Swenson, N.C.; Picard, R.W.; , "Motion-Tolerant Magnetic Earring 

Sensor and Wireless Earpiece for Wearable Photoplethysmography," Information 

Technology in Biomedicine, IEEE Transactions on , vol.14, no.3, pp.786-794, May 

2010  

[11]J. Yoo, L. Yan, S. Lee, Y. Kim, and H. J. Yoo, “A 5.2 mW Self-Configured 

Wearable Body Sensor Network Controller and a 12uW Wirelessly Powered Sensor 

for a Continuous Monitoring System,” IEEE Journal of Solid State Circuits, Vol. 45, 

No. 1, January 2010, pp. 178-188. 

[12]C.R. Saha, T. O’Donnell, N.Wang, P. McCloskey, “Electromagnetic generator for 

harvesting energy from human motion” Elsevier Sensors and Actuators A: Physical 

Vol. 147, Issue 1, 15 Sep. 2008, pp: 248-253. 

[13]T. Kondo, T. Uhlig, P. Pemberton, P. D. Sly, “Laser monitoring of chest wall 

displacement,” EurRespir J. 1997; 10: 1865-9. 

[14]O. Boric-Lubecke, V. Lubecke, I. Mostafanezhad, and E. Shahhaidar, “Zero-Net 

Energy Wearable Biosensors,” ISCA25th International Conference on Computers and 

Their Applications (CATA- 2010), April 2010. 

[15]E. Shahhaidar, M. Wolfe, R. Ghorbani, and O. B. Lubecke, “Electromagnetic 

Generator as Respiratory Effort Energy Harvester,” IEEE Power and Energy 

Conference, Urbana-Champaign, Illinois, February 2011. 

[16]B. Padasdao, O. B. Lubecke, “Respiratory Rate Detection Using a Wearable 

Electromagnetic Generator “, EMBC 2011. 

 

 

  

http://www.numetrex.com/


71 
 

A.2. CHS #19176 Consent Form 

UNIVERSITY OF HAWAI`I 

 

INFORMED CONSENT AND PRIVACY AUTHORIZATION 

TO TAKE PART IN A RESEARCH STUDY 

 

Study Title: Respiratory Effort Sensing and Harvesting 

 

Principal Investigator (PI): 

Name: Dr. Olga Boric-Lubecke 

Institutional Affiliation: Electrical Engineering Department, University of Hawaii at Manoa 

Address: POST 205K, 1680 East-West Rd Honolulu, HI 96822 

Phone Number: (808) 956-9648 

 

Sponsor: REIS 

Sponsor Name: Anthony Kuh 

Sponsor Address: 2540 Dole Street, Honolulu, Hawaii, 96822 

 

Sponsor: Archinoetics DoD SBIR Phase II subaward 

Sponsor Name: Alan Furuno 

Sponsor Address: Bldg. 1054 Patchel Street, Fort Detrick, Maryland 21702-5012 

Voice: 808-433-3602, E-mail: alan.s.furuno.civ@mail.mil 

 

 

Abbreviations Used:  

 

UH:  University of Hawaii 

RA:  Research Assistant 
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      BOC: Board of Certification 

ECG: Electrocardiogram 

      EMG: Electromyogram 

 

Before you decide whether or not you would like to take part in this study, you should 

understand its purpose, how it may help, any risks, and what you will be asked to do. This 

process is called informed consent. If you agree to take part in the study, you will be asked to 

sign this consent form.   

Before you learn about the study, it is important that you know the following: 

▪ Taking part in this study is completely voluntary. 

▪ If you decide to take part in the study, you can change your mind at any time and 

withdraw from the study. 

 

What is the purpose of this study? 

 

The objective of this project is to develop and verify self-powered unobtrusive wearable 

biosensors, in the form of a belt and a shirt, that can sense and harvest energy from breathing 

and/or heartbeat.  

 

Department of Defense (DoD) is the study sponsor, and the representatives of the DoD will have 

access to research records as they are the study sponsor. 

 

Why are you being asked to participate in this study? 

  

You are being asked to participate in this study because you are above 18 years old and do not 

have any significant medical problems.  

 

Researchers plan to enroll a total of 100 participants from Hawaii. 

 

How long will the study take and what procedures will be performed on you? 
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Each experiment will be done in the human performance laboratory in the Stan Sheriff Center at 

UH, and is expected to be two sessions, one hour each.  

 

First, participants will undergo the consent process which provides participants time to read the 

consent form and ask questions. Then, if they agree to participate, participants will sign the 

consent form. 

 

Next, participants will fill out a health history questionnaire and an exercise questionnaire. The 

questionnaire will be reviewed by a healthcare professional (BOC certified athletic trainer) to 

make sure you are healthy enough to participate. 

 

Then the participant's weight, height, and thorax (the part of the human body between the neck 

and the diaphragm, partially encased by the ribs and containing the heart and lungs; the chest) 

dimensions will be measured. The thorax dimensions will be measured both at full inhale and 

full exhale including waist circumference, chest circumference, chest breadth, and chest depth. 

 

Prior to test initiation, participants will be fitted with a heart rate monitor, a sensing module 

(incorporated into a shirt belt, upper arm cuff, and wrist cuff) comprising heart rate (ECG) and 

respiratory rate sensors, headgear, and breathing masks to assess respiratory gas exchange 

throughout the test. Participants will breathe through the mask throughout the duration of the test 

which is connected to a metabolic cart through ventilation tubes. The metabolic cart will be used 

to determine oxygen consumption and respiratory exchange ratio.  

Testing conditions will include a range of breathing rates in order to determine if any effect of 

using sensors is observed for all activities. Participants will breathe through the mask throughout 

the duration of the test to measure parameters of respiration. Surface EMG electrode placements 

on the chest will be used to monitors muscle movement related to breathing.  

 

Testing will begin in the resting condition, followed by assessment during exercise. The exercise  

condition will include heavier breathing  for a period of less than one minute in each state. This 

condition will be followed by a 10 minute rest before completing the final condition. The final 

condition will include walking on an exercise ramp. This testing is expected to last 9-12 minutes 

for each subject.  

 

 

What are the risks and discomforts that you may experience? 
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If you have a pacemaker or defibrillator, or have health issues which require that you wear 

electronics of any sort, you should not participate in this study.  

 

We would advise pregnant women to not participate in this study. If you are sexually active, you 

should be in a birth control program if you want to participate in this study. 

 

People who are uncomfortable in confined spaces, have a tendency to be claustrophobic, or who 

might have a stress reaction to wearing the head gear and mask should not participate in this 

study. 

 

How will your  information be used? 

 

There may not be direct benefit to the participants. However, the results from this project will 

help better identify and address the issues with respiratory effort sensing and harvesting. Mainly 

the researchers will look into the differences of the attainable energy from different people of 

various ages, gender, and physical characteristics. 

 

Representatives of the DoD will have access to research records as they are the study sponsor. 

 

How will my study data be kept confidential? 

 

Research data will be confidential to the extent allowed by law. Agencies with research 

oversight, such as the UH Human Studies Program, have the authority to review research data. 

All research records will be stored on a password-protected computer in a locked room in the 

primary investigator’s lab for the duration of the research project, and will be destroyed upon 

completion of the project. 

 

The results of this research may be presented at meetings or in publications; however, you will 
not be identified. 

 

Will you be given the results of the study? 
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The study PI or research assistant will not provide any individual study results to you or any 

member of your family, other doctors involved in your care, your insurance company, or your 

employer. 

 

How will this study benefit you? 

 

It is unlikely that you will benefit directly from participating in this study.  

 

Are there costs or payments involved in this study? 

 

There will be no costs or payments for your examination and tests in this study.  

 

Can you revoke your consent for your participation in this study? 

 

If you enter the study and you later change your mind, you can revoke (take away) your consent 

at any time, and there will be no penalty for you. This means that you can leave the study at any 

point as you are a voluntary research participant. 

 

The study RA will decide if it is not possible or appropriate for you to continue to participate in 

this study due to unexpected health concerns or reactions to the experiment. If the study RA 

observes or believes that you are experiencing significant discomfort or fatigue, and that 

continuation of the study would be detrimental to your health and safety, your participation in the 

study will be immediately discontinued.   

 

Will you learn about new findings about risks of this study?  

 

You will be told of any new information learned during the study that may change your 

willingness to continue in this study. At that time, you will be able to decide whether to continue 

your participation in this research study.  
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If you have any questions about this study, whom do you contact?  

 

If you feel that you have been injured as a result of taking part in this study, or if you have any 
questions about the study, you should call the study PI, [Dr.Olga Boric-Lubecke], at [(808) 956-
9648].  

 

If you have questions about your rights as a research participant in this study, you should contact 

the University of Hawaii Human Studies Program at 808.956.5007 or by email at 

uhirb@hawaii.edu 

 

Authorization to Use and Disclose (Release) Personal Health Information 

 

 The federal government has created a “Privacy Rule” under the Health Insurance 

Portability and Accountability Act (HIPAA). This Rule gives you the right to decide who can use 

and release your personal health information (also called “protected health information” or 

“PHI”) for the purposes of research.  

 

 PHI is health information about study participants that could be linked to their identity. 

But we will not use your PHI in this study. 

 

What happens if you do not sign this authorization? 

 

Signing this authorization form is voluntary. If you do not sign this form, you will not take part 

in this research study.  

 

 

Consent for You to Take Part in this Research Study 

 

 

My signature indicates that I have read and understand this research consent/authorization form 

and that my questions have been satisfactorily answered. I understand that if at any time I have 

other questions, I can contact the study PI listed on page 1 and page 4 of this form. I further 

understand that I will be given a copy of this signed consent/authorization form for my records.   

mailto:uhirb@hawaii.edu
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_________________________________________   

Name of the Participant  

 

 

 

 

_________________________________________  __________________________ 

Signature of the Participant     Date 
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A.3. CHS #19176 Approval Letter 
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