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Abstract: Monitoring cerebral circulation during cardiopulmonary resuscitation (CPR) is essential
to improve patients’ prognosis and quality of life. We assessed the feasibility of non-invasive
electroencephalography (EEG) parameters as predictive factors of cerebral resuscitation in a ventricular
fibrillation (VF) swine model. After 1 min untreated VF, four cycles of basic life support were performed
and the first defibrillation was administered. Sustained return of spontaneous circulation (ROSC) was
confirmed if a palpable pulse persisted for 20 min. Otherwise, one cycle of advanced cardiovascular
life support (ACLS) and defibrillation were administered immediately. Successfully defibrillated
animals were continuously monitored. If sustained ROSC was not achieved, another cycle of ACLS
was administered. Non-ROSC was confirmed when sustained ROSC did not occur after 10 ACLS
cycles. EEG and hemodynamic parameters were measured during experiments. Data measured for
approximately 3 s right before the defibrillation attempts were analyzed to investigate the relationship
between the recovery of carotid blood flow (CBF) and non-invasive EEG parameters, including time-
and frequency-domain parameters and entropy indices. We found that time-domain magnitude
and entropy measures of EEG correlated with the change of CBF. Further studies are warranted to
evaluate these EEG parameters as potential markers of cerebral circulation during CPR.

Keywords: cardiopulmonary resuscitation (CPR); electroencephalogram (EEG); hemodynamic data;
carotid blood flow (CBF); cerebral circulation

1. Introduction

Approximately 395,000 adults experience an out-of-hospital cardiac arrest (OHCA) annually in
the US, and their overall survival rate is only 6–11% [1–3]. To prevent death or irreversible damage to
vital organs, such as the brain, high-quality cardiopulmonary resuscitation (CPR) is necessary [4,5].
Multiple physiologic measurements have been suggested as indicators of the effectiveness of CPR.
End-tidal carbon dioxide (ETCO2) is a widely-used indicator for the pulmonary circulation, and the
ETCO2-directed feedback methods are reported to improve the likelihood of return of spontaneous
circulation (ROSC) [6].

Recently, achieving good neurological recovery has been regarded as one of the major goals of
CPR, because it can influence survivors’ quality of life and their socioeconomic burden [7,8]. However,
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ETCO2 mainly reflects the systemic circulation, and thus is not adequate to monitor the cerebral
circulation or physiological responses of the brain during CPR. Carotid blood flow, the blood supply to
the brain, can reflect the cerebral circulation directly. However, its measurement requires an ultrasonic
volume flow meter, as well as a skilled operator.

Non-invasive electroencephalography (EEG) can be an alternative to overcome these drawbacks.
Portable and low-cost EEG headsets and sensors are currently available out-of-hospital [9]. EEG
activity during CPR is reported to be sensitive to cerebral circulation [10,11]. Once cerebral oxygenation
decreases due to cardiac arrest (CA), the EEG activity gradually enters the isoelectric state [12–14].
However, the EEG activity can return to the pre-arrest state when ROSC was achieved [15,16]. Effective
CPR maintains a certain degree of cerebral electrical activity, changing the EEG activity from isoelectric
status to large-amplitude and low-frequency status with bispectral index score (BIS) above 40 [17].
As an important tool for determining the prognosis of ischemic episodes of CA patients, EEG signal
is routinely monitored for post-resuscitation treatment [18]. The application of EEG monitoring has
expanded to the CPR situation, and distinctive EEG patterns are suggested as possible markers for the
quality of cerebral resuscitation and oxygen delivery [19]. To date, however, the direct relationship
between the carotid blood flow (CBF) recovery and the EEG during CPR has been rarely discussed.

In this study, we focused on the investigation of the relationship between the recovery of carotid
blood flow and non-invasive EEG parameters, including time- and frequency-domain parameters,
and entropy indices between defibrillation attempts. We applied a single-channel EEG measurement
device that was developed in our laboratory and designed a ventricular fibrillation (VF) swine model
with simultaneous measurements of EEG and hemodynamic data, including CBF. We hypothesized
that CBF recovery may improve cerebral electrical activity, which can result in EEG changes, even
during short intervals between defibrillation attempts.

2. Materials and Methods

2.1. Ethical Statement

The animal test protocol was approved by the Institutional Animal Care and Use Committee
of Seoul National University Hospital (IACUC Number: 17-0106). All animal care abided by the
Laboratory Animal Act of the Korean ministry of Food and Drug Safety.

2.2. Study Design and Setting

An animal experiment was designed based on a VF swine model. The LUCAS machine (LUCAS2
Chest Compression System, Jolife AB, Sweden) was exploited for mechanical chest compressions
(Figure 1a). The machine compressed the chest at a rate of 100 compressions/min with a depth of
5 cm. To prevent displacement of the piston, animals were fixed on the table and the back plate was
positioned underneath the animal as a support for the machine. The exact location of the heart was
identified by ultrasonic imaging, and then the piston was placed on the site. One emergency medical
technician held the machine to prevent the displacement of the piston during CPR.

The assumed scenario of this study was a witnessed OHCA. The duration of untreated VF was
determined by considering CA-CALL time (the time of cardiac arrest to call) for bystanders to recognize
CA and call emergency services [20]. In addition, it was estimated that four consecutive basic life
support (BLS) cycles were performed by the bystanders, with the help of an emergency center, before
the dispatched emergency medical team (EMT) arrived at the site. The EMT performed the first
defibrillation shock and checked the electrocardiogram (ECG). If the ECG rhythm was shockable,
a biphasic defibrillation shock of 200 J was applied by the EMT to restart the heart. Monitoring was
initiated when a palpable pulse with organized QRS complexes and systolic blood pressure over
60 mmHg appeared [21]. Sustained ROSC was confirmed if spontaneous circulation continued for
20 min [19]. Once a palpable pulse did not appear after the defibrillation, or VF occurred again during
the monitoring session, one cycle of advanced cardiovascular life support (ACLS) was performed by
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EMT immediately. If the ECG rhythm was still shockable, the defibrillation shock was applied. In case
of pulseless electrical activity or asystole, however, the defibrillation shock was omitted, and the next
cycle of ACLS was initiated immediately. If a palpable pulse appeared after the defibrillation, then
monitoring for 20 min was initiated. Non-ROSC was confirmed if sustained ROSC was not achieved
after 10 cycles of ACLS. During ACLS sessions, epinephrine of 1 mg was injected once every 3 min [22].
After the monitoring sessions or all 10 ACLS sessions, the animals were administered euthanasia, with
an injection of potassium chloride. Simultaneous EEG and hemodynamic data were collected during
the experiments. The entire test scenario, with a timeline, is described in Figure 2.
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Figure 1. Experimental setup: (a) LUCAS2 chest compression system installed on the chest of animals;
(b) A single-channel electroencephalography (EEG) device mounted on the forehead.
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Figure 2. The entire test scenario: (a) flow chart from surgical procedure to basic life support (BLS),
advanced cardiovascular life support (ACLS), and termination; (b) brief timeline of the test protocol.

2.3. Experimental Animals and Housing

Eight domestic cross-bred pigs, approximately 3 months of age (45.6 ± 2.4 kg), were studied.
The animals were maintained in an accredited Association for Assessment and Accreditation of
Laboratory Animal Care (AAALAC) International (#001169) facility, in accordance with the Guide for
the Care and Use of Laboratory Animals [23]. They were judged healthy and fasted overnight.
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2.4. Surgical Preparation and Hemodynamic Measurements

The animals were initially sedated with intramuscular injections of 5 mg/kg of tiletamine
hydrochloride and zolazepam hydrochloride (Zoletil, Virbac, France) and 2 mg/kg of Xylazine
(Rompun, Bayer, Korea), followed by inhaled isoflurane at a dose of 1–1.5%. Endotracheal intubation
was performed on the sedated animals, and a capnography (Capstar-100, CWE Inc., Ardmore, PA, USA)
was installed. Mechanical ventilation was initiated. To continue the anesthesia, a tidal volume of
12 mL/kg, respiratory rate of 10 breaths/min, partial pressure of arterial carbon dioxide at approximately
40 mmHg, and partial pressure of arterial oxygen over 80 mmHg were maintained.

An implantable perivascular probe (MA2PSB, Transonic Systems, Ithaca, NY, USA) combined
with a perivascular flowmeter (T420, Transonic Systems, Ithaca, NY, USA) was placed on the internal
carotid artery to measure the CBF. A pressure catheter (Mikro-tip pressure catheter, Millar, Houston,
TX, USA) was inserted into the left femoral artery and placed in the descending thoracic aorta to
measure the arterial blood pressure. Another Mikro-tip pressure catheter was inserted into the right
atrium to measure the right atrial pressure. The ECG and saturation of percutaneous oxygen were also
measured. All signals except EEG were gathered and saved in a data acquisition system (PowerLab
16/35, ADInstruments, Dunedin, New Zealand) simultaneously.

A pace-making wire was inserted into the right ventricle through the central vein catheter.
Isoflurane was stopped before inducing VF to recover EEG signal. EEG started to recover, and appeared
similar to the recording obtained before the injections. Then, a direct-current shock was applied to
induce VF. Mechanical ventilation was halted, and the animals were left without assistance for 1 min.
Thereafter, CPR and defibrillation attempts were executed, and manual ventilation using a resuscitator
bag (Ambu Resuscitators, Ambu A/S, Ballerup, Denmark) was initiated to provide positive pressure
ventilation to the animal at a rate of once per 10 compressions.

2.5. EEG Measurement

A portable single-channel digital electroencephalograph and disposable surface electrodes (MT100,
Kendall Healthcare, Toronto, Ontario, Canada) were attached to measure the scalp EEG under the
referential montage. Reference and ground electrodes were attached on either side of the mastoid.
Active electrodes connected to the device were placed on the forehead (Figure 1b). The raw EEG signal
was bandpass filtered with a frequency range of 0.5–47 Hz and amplified with a gain of 12,000 v/v.
The amplified signal with a low noise level under ±3 µVp-p was digitized and transmitted to the
laptop via Bluetooth communication at a rate of 250 Hz. The data acquisition software in the laptop
receives and saves the EEG data.

2.6. Data Processing

All data were processed using MATLAB (MATLAB R2017b, Mathworks, Natick, MA, USA).
The EEG and hemodynamic data were synchronized. Approximately 3-s-long pauses right before the
defibrillation shocks were selected for analysis. The selected EEG was segmented into three 2-s-long
sub-epochs with 1.5-s overlaps to reduce variation; 0–2 s, 0.5–2.5 s, and 1–3 s period. The representative
EEG parameters were obtained from the average of three sub-epochs. Segmenting the EEG and
obtaining parameters is similar to the signal processing technique for the BIS monitor [24]. Time and
frequency domain parameters and entropy indices were obtained in this manner. All parameters
considered are listed in Table 1.
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Table 1. EEG parameters considered in this study.

EEG Parameters Definition Domain

Magnitude Maximal Amplitude during the Epoch (unit: µV) Time
SynchFastSlow log(B0.5–47 Hz/B40–47 Hz) Frequency

BetaR log(P30–47 Hz/P11–20 Hz) Frequency
DeltaR log(P8–20 Hz/P1–4 Hz) Frequency

AlphaPR P8–13 Hz/P0.5–47 Hz Frequency
BetaPR P13–30 Hz/P0.5–47 Hz Frequency
DeltaPR P0.5–4 Hz/P0.5–47 Hz Frequency
ThetaPR P4–8 Hz/P0.5–47 Hz Frequency

BG_Alpha+ P8–47 Hz/P0.5–47 Hz Frequency

Log energy entropy
n
∑

i=1
log(p(xi))

2 Entropy

Rényi entropy 1
1−α log(

n
∑

i=1
p(xi)

α) , (α ≥ 0, , 1) Entropy

Abbreviation: Pa–b Hz, the sum of spectral power from a–b Hz; Ba–b Hz, the sum of bispectral activity from a–b Hz;
p(xi), probability distribution function of signal xi; α of Rényi entropy was 0.5.

2.7. Data Analysis

First, CBF recovery during CPR were analyzed to investigate their relationship with resuscitation
rates. The recovery rate was defined as a relative scale of each hemodynamic parameter with respect
to the baseline value in the pre-VF state. Second, the EEG waveforms were scrutinized according to
the test scenario. EEG activity was evaluated, along with the recovery of CBF.

Pearson correlation coefficients between each EEG parameter and the recovery rates of CBF for all
experiments were obtained to inspect whether EEG parameters show similar changes with the CBF. In
addition, the recovery rates of CBF were categorized into four quartile groups: group 1 (<25%); group
2 (25–50%); group 3 (50–75%), and group 4 (>75%). Averages of each EEG parameter among groups
were evaluated through one-way analysis of variance (ANOVA). Significance was considered at a level
of p < 0.05. Receiver operating characteristic (ROC) curve analysis was also performed to measure the
optimal cut-off values of EEG parameters, to discriminate between the higher and the lower group
of the CBF recovery based on the median value, which was approximately 30%. These tests were
performed with SPSS (SPSS Statistics 23, IBM SPSS Statistics, New York, NY, USA).

3. Results

3.1. Results of CPR Process

All eight experiments were performed successfully. Once VF was triggered, mean arterial
pressure (MAP) decreased to almost 0 mmHg, while approximately 20% of baseline MAP remained
as residual pressure in the vessel. CBF dropped rapidly to almost 0% of baseline values during
untreated VF. When BLS sessions began, hemodynamic parameters started to recover. Recovery rates
of hemodynamic parameters over the BLS and ACLS sessions are presented specifically in Supporting
File S1.

Sustained ROSC was achieved in five animals. Among them, one animal was defibrillated after
the last BLS session. Another four animals were defibrillated during the course of the ACLS sessions.
No animals experienced VF again during the monitoring sessions. Three animals were not resuscitated
until the tenth ACLS session was completed. BLS cycles were performed a total of 32 times, and ACLS
cycles were performed 48 times, and data after those sessions were included for analysis.

3.2. EEG Changes with the Recovery of CBF

The EEG waveforms between an ROSC (Test 6) and a non-ROSC (Test 5) case were compared
(Figure 3). Before VF, the amplitude of EEG with irregular morphology exceeding±20 µV was observed.
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Since cerebral oxygenation decreased due to VF, the amplitude started to decrease in 10–15 s and
almost entered the isoelectric state (±5 µV) at the end of untreated VF.                   

 

 

                            ‐
                           
            ‐                  

                               
              μ              

                                   
                               

                     
                       

            ‐                    
                               

                             
                         
                               

                             
       

                         
          ‐                  

                             
                 

                           

     
  ‐  

     
     

  −    
     
     
     
     
  −    
     

         
       

Figure 3. Comparison of EEG over time between return of spontaneous circulation (ROSC) and
non-ROSC cases: (a) EEG waveforms obtained from animals with successful defibrillation after fourth
BLS session and sustained ROSC confirmed after follow-up monitoring for 20 min (Test 6); (b) EEG
waveforms obtained from animals in which ROSC was not achieved until the end of experiment (Test 5).
Dashed lines denote the level of ±5 µV, the limits of the isoelectric state.

The recovery of the EEG was different, depending on the recovery of the CBF. In Test 6,
which showed a better recovery, the recovery rate reached almost 40% during the last two BLS
sessions. Concurrently, an increased background activity with higher amplitude and increased higher
frequency components was observed. EEG activity during the monitoring session appeared similar to
the baseline values during the pre-VF period. This means that the cerebral circulation was restored
successfully, whereas the recovery rates in Test 5 exceeded 30% during the first BLS session but
decreased consistently during the rest of the CPR sessions. The EEG decreased in amplitude and
entered the suppression status and increased lower frequency components during the second BLS
session. The cerebral resuscitation was poor, with the low CBF recovery rates of below 10%. Nearly flat
patterns resulting from electrocerebral inactivity appeared, and EEG did not recover until the end of
the ACLS sessions.

Table 2 shows the Pearson correlation coefficients between EEG parameters and the recovery rates
of CBF. Among them, time-domain magnitude and two entropy indices, log energy entropy [25] and
Rényi entropy [26], showed a correlation coefficient of approximately 0.78. Figure 4 demonstrates the
scatter plots for these three parameters.

Table 2. Pearson correlation coefficients between EEG parameters and the recovery rates of CBF.

EEG Parameters Correlation Coefficient p-Value

Magnitude 0.778 <0.001
SynchFastSlow 0.210 0.228

BetaR −0.329 0.016
DeltaR 0.196 0.032

AlphaPR 0.189 0.048
BetaPR 0.323 0.001
DeltaPR 0.032 0.797
ThetaPR −0.354 0.004

BG_Alpha+ 0.262 0.006
Log energy entropy 0.781 <0.001

Rényi entropy 0.784 <0.001
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Figure 4. Scatter plots between EEG parameters and the recovery of CBF. Correlation coefficients were
denoted above the plots: (a) magnitude; (b) log energy entropy; (c) Rényi entropy.

3.3. Changes in EEG Parameters Depending on Four CBF Groups

Figure 5 illustrates the results of one-way ANOVA tests for three parameters. For magnitude,
the lowest quartile (group 1) showed significant differences to other groups, with p < 0.05. However,
significant difference was not confirmed among the other three groups. Similar patterns were observed
in following two entropy indices. Table 3 demonstrates the results of the post hoc test based on the
Dunnett T3 method.
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Figure 5. Results of one-way ANOVA: (a) magnitude; (b) log energy entropy; (c) Rényi entropy.
Asterisk (*) denotes statistical significance at the p < 0.001 level. Error bars indicate the upper and
lower extreme values of the data.

Table 3. Results of multiple comparisons between groups in three EEG parameters.

Magnitude Log Energy Entropy Rényi Entropy

Group I/
Group II

Mean Difference/Standard
Deviation (p-value)

Mean Difference/Standard
Deviation (p-value)

Mean Difference/ Standard
Deviation (p-value)

1 2
−10.39/1.24

(<0.001)
−1375.15/164.65

(<0.001)
−2.69/0.319

(<0.001)

1 3
−13.34/1.37

(<0.001)
−1590.42/164.87

(<0.001)
−3.13/0.321

(<0.001)

1 4
−15.15/2.39

(0.012)
−1720.80/190.02

(<0.001)
−3.38/0.434

(<0.001)

2 3
−2.95/1.30

(0.169)
−215.27/87.24

(0.108)
−0.442/0.171

(0.084)

2 4
−4.75/2.35

(0.395)
−345.65/128.60

(0.180)
−0.695/0.338

(0.384)

3 4
−1.80/2.41

(0.958)
−130.39/128.87

(0.871)
−0.253/0.340

(0.957)

Differences were obtained by Group I minus Group II.
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3.4. EEG Parameters Depending on the Different CBF Recovery Groups

Figure 6 illustrates the ROC curves for the three EEG parameters. All possible cut-off values are
plotted with a combination of true positive rate (sensitivity) and false positive rate (1 − specificity).
The optimal cut-off points are also denoted. Table 4 presents the results of ROC curve analysis including
area under the curve (AUC), true positive rate, false positive rate, and cut-off values. The AUC values
of all three parameters were over 0.88.
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Figure 6. Receiver operating characteristic (ROC) curves (blue) for three EEG parameters: (a) magnitude;
(b) log energy entropy; (c) Rényi entropy. Red dots indicate the optimal cut-off points, and the diagonal
lines (green) indicate random chance.

Table 4. Results of the ROC curve analysis for EEG parameters.

EEG Parameter AUC Standard Error
True Positive Rate

(Sensitivity)
False Positive Rate

(1-Specificity)
Cut-offValue

Magnitude 0.904 0.033 0.889 0.244 12.802
Log energy

entropy
0.896 0.035 0.833 0.211 739.543

Rényi entropy 0.885 0.037 0.861 0.263 8.919

Abbreviation AUC: Area under the curve.

4. Discussion

This study investigated the relationship between the EEG and CBF, to evaluate the feasibility of
non-invasive EEG parameters as potential predictors of the recovery of CBF in the CA swine model.
The current CPR protocol consists of an ECG rhythm check, chest compression (CC), defibrillation, and
medication [22], while CBF or EEG measurement and analysis have rarely been performed during CPR.
Monitoring cerebral circulation could provide beneficial information to improve patients’ prognosis
and quality of life [7,8]. EEG was considered as one of the possible markers because it could reflect the
level of cerebral circulation [27]. Post-resuscitation care could be seriously disrupted with a sparsity
of EEG activity [28]. If the EEG could reflect the CBF and be measurable in the OHCA setting, CPR
with a feedback of non-invasive EEG parameters could guide EMTs to achieve a higher CBF recovery,
for example, by guiding leg elevation or the Trendelenburg position [29], which is expected to improve
brain perfusion and neurologic outcomes of CA patients after CPR. It is noteworthy that the present
study used only single-channel EEG signals from forehead sites where the installation of EEG sensors
is convenient.

Several studies have attempted to apply the BIS monitor during CPR. However, unwanted
artefacts due to CCs contaminated the original EEG, and generated unreliable outputs [30,31]. The BIS
monitor is not adequate to use for the short intervals between CCs, because it is based on the
moving-average function over 60 s [24]. Prolonged no- or low-flow periods can deteriorate brain
function of CA patients [19,32]. Thus, this study focused on data measured during short pauses
between the defibrillation attempts. We observed that the EEG background activity increased and
became more irregular with the CBF recovery. The frequency distribution of EEG was also affected. As
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the CBF recovered, the higher frequency components including alpha (8–13 Hz) and beta (13–30 Hz)
increased, whereas the lower frequency components including delta (<4 Hz) and theta (4–8 Hz)
decreased. These changes affected the functional dynamics associated with varying amplitudes and
multi-frequency responses, including the level of complexity and the amount of energy, diversity, and
randomness [33], which could be indicated by the increase of log energy entropy and Rényi entropy,
as shown in Figure 4. Entropy parameters have been applied to EEG signals, especially in anesthesia
or epileptic seizure studies [34–36]. A previous study analyzing epileptic EEG signals reported that log
energy entropy of the modulated EEG signals obtained from the epileptogenic area had relatively lower
values [35]. Consistently, another study showed that the complexity derived by Rényi entropy was
also higher in healthy signals [36]. These parameters might also have a potential to identify sufficient
cerebral circulation for satisfying the metabolic requirements of brain cells of CA patients [27].

This study has several limitations. First, the experimental model was finalized assuming a
witnessed OHCA. EEG parameters, such as log energy entropy and Rényi entropy, might be able to
reflect the cerebral resuscitation only with very short no- or low-flow duration (<1 min). The association
between the CBF and EEG recovery is probably less pronounced with a longer untreated VF. Further
research should be performed to validate this method with a longer VF period for at least 5 min.
Second, this study was performed only with the limited sample size of eight animals. Feature analysis
with larger datasets should be performed to confirm our findings. To generalize our findings to real
OHCA patients, moreover, future clinical studies should be guaranteed with the experimental setup
optimized for human anatomy.

5. Conclusions

We measured a single-channel EEG non-invasively during CPR and evaluated the relationship
between EEG parameters and the CBF recovery. Our findings indicated that time-domain magnitude
and entropy indices of EEG, even during the brief pause in CPR, may correlate with the level of
cerebral circulation. Further studies are warranted to evaluate these parameters as potential markers
of cerebral resuscitation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/11/3052/s1,
Figure S1. Experimental setup; Figure S2. The entire test scenario; Figure S3. Comparison of EEG over time
between ROSC and non-ROSC cases; Figure S4. Scatter plots between EEG parameters and the recovery of CBF.
Correlation coefficients were denoted above the plots; Figure S5. Results of one-way ANOVA; Figure S6. ROC
curves (blue) for three EEG parameters; Table S1. EEG parameters considered in this study; Table S2. Pearson
correlation coefficients between EEG parameters and the recovery rates of CBF; Table S3. Results of multiple
comparisons between groups in three EEG parameters; Table S4. Results of the ROC curve analysis for EEG
parameters; Supporting File S1. Hemodynamic changes of individual animals throughout the experiments.
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Abstract: Cardiovascular-related diseases are one of the leading causes of death worldwide.
An understanding of heart movement based on images plays a vital role in assisting postoperative
procedures and processes. In particular, if shape information can be provided in real-time using
electrocardiogram (ECG) signal information, the corresponding heart movement information can
be used for cardiovascular analysis and imaging guides during surgery. In this paper, we propose
a 3D+t cardiac coronary artery model which is rendered in real-time, according to the ECG signal,
where hierarchical cage-based deformation modeling is used to generate the mesh deformation used
during the procedure. We match the blood vessel’s lumen obtained from the ECG-gated 3D+t CT
angiography taken at multiple cardiac phases, in order to derive the optimal deformation. Splines for
3D deformation control points are used to continuously represent the obtained deformation in the
multi-view, according to the ECG signal. To verify the proposed method, we compare the manually
segmented lumen and the results of the proposed method for eight patients. The average distance
and dice coefficient between the two models were 0.543 mm and 0.735, respectively. The required
time for registration of the 3D coronary artery model was 23.53 s/model. The rendering speed to
derive the model, after generating the 3D+t model, was faster than 120 FPS.

Keywords: 3D+t modeling; coronary artery; non-rigid registration; cage deformation; 4D CT

1. Introduction

Cardiovascular disease (CVD) is one of the primary causes of death worldwide, with 22.2 million
deaths expected by 2030. According to National Health and Nutrition Examination Survey (NHANES)
data from 2013 to 2016, the prevalence of CVD was 48.0% in adults over the age of 20. The prevalence
of CVD has a positive correlation with an increase with age [1]. The resulting social cost is estimated to
have been 351.3 billion dollars in the U.S. alone, from 2014 to 2015. In particular, cardiovascular disease
accounted for 14% of total medical spending in U.S., the highest rate among other major diagnostic
groups—even higher than cancer. In the global population, the burden of expenditure is even more
serious [1].

Providing sufficient information through image analysis acquired in the pre-operative diagnosis
stage eliminates unnecessary examination and helps in developing patient-specific treatment plans.
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As the heart is a continuously beating organ and there may be unexpected movements in patients (e.g.,
arrhythmia), if information on this movement can be obtained in advance, coronary artery and heart
procedures may be more efficient.

As shown in Figure 1, the ECG signal is a change in potential that is correlated with the movement
of the heart muscle. Motion of the heart produces changes in volume and pressure in the cardiac
chambers; therefore, ECG provides important information about the movement of the heart. When
CT is reconstructed by performing retrospective ECG synchronization, the movements of the heart
and coronary arteries (according to the cardiac cycle) can be obtained geometrically, and movement
information (e.g., coronary artery distortion), as well as characteristics of the coronary stenosis, can
be obtained.

Figure 1. The ECG signal and volume of the ventricle during the different phases of a cardiac cycle.

Patient-specific 4D heart shape information facilitates the following applications: accurate
coronary artery structure acquisition [2,3], analysis of 4D blood flow and stenosis [4–6], removal
of motion artifacts in the vascular region [7–9], surgical simulation for each patient [10], postoperative
evaluation and analysis [5,6], atrial motion analysis [11,12], vascular motion analysis [13,14], and
real-time deformation prediction during surgery combined with 2D images [8].

In particular, cardiac CT angiography (CTA) has an isotropic spatial resolution of less than 0.5 mm
and, so, can be used to observe the movement of the coronary artery and trabeculae of the ventricle.
In addition to grading the degree of calcification of the coronary artery and the total amount of
plaque from the CT image, it is also possible to measure the torsion of the coronary artery at a high
resolution [15]. This high-resolution spatial information can help the operator perform a procedure
appropriate for each patient before and after surgery. However, despite the high spatial resolution
of the CTA, its temporal resolution is 50–200 ms, which is lower than that of 4D echocardiography
(30–100 Hz) and cardiac MRI (30–50 ms). Therefore, proper shape interpolation for restoring high time
resolution information from CTA imagery is essential for co-operation with the other applications
while preserving high-precision anatomical details.
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One of the essential requirements of cardiac modeling in many of these applications is that
the topology of the mesh model constituting the cardiac model must be consistently preserved.
In particular, in the case of a 4D heart model, the mesh should not cause new problems (e.g.,
self-intersection or mesh degeneration), even if the positions of the vertices constituting the shape
change over time. To address these requirements, many researchers have employed the template-based
registration scheme.

The registration process matches a template model to a target model through geometric
shape deformation. The most popular registration algorithm is the iterative closest point (ICP)
method, which consists of finding the correspondence between two models and finding the optimal
transformation [16]. However, the ICP method is sensitive to the initial position and noise, while
the shape registration is limited up to rigid transformation. Non-rigid registration deals with
the deformation of the shape in addition to rigid transformations. Non-rigid registration is more
challenging, however, as non-rigid transformations not only require more correspondences to be
defined, but the solution space is much more extensive [17]. Research into the registration of 3D
non-rigid shapes has been actively conducted using the methods of delineating shape deformation
and shape correspondence.

To describe the deformation of an object, with respect to its dynamics and material properties,
many researchers have assumed shape deformation to be a physical model, such as a linear elastic
model [18], non-linear elastic model [19,20], viscous fluid [21], or diffusion model [22,23]. In
particular, the Large Deformation Diffeomorphic Metric Mapping (LDDMM) framework provides
robust deformation as a massive flow consisting of diffeomorphisms [24]. However, the physical
models are computationally expensive and sensitive to mechanical properties. On the other hand, the
statistical shape deformation model (SSM) uses a low-dimensional statistical model, in which shape
deformation is inferred from a training data set [25,26]. Although SSM reduces the computational
cost, the shape of variability is limited by the training data. Therefore, the deformation is hardly
representative of the inter-variability of patients, such as the topological discontinuity of coronary
arteries. Nora et al. described the motion modeling problem using the coronary arteries attached to
the SSM of muscles [27]. Due to the representation of the coronary artery, the deformation poorly
described the lumen diameter. Instead of modeling a priori physical and statistical information, there
have been attempts to estimate the shape transformations with landmarks and coherent motions.
Radial basis function methods express shape deformations as weighted sums of distance function for
control point changes [28]. In particular, the thin-plate spline method minimizes the bending energy,
which has a closed-form solution [29]. The most popular form of deformation is known as B-spline
free-form deformation (FFD) [26,30,31]. Rueckert et al. [32] have proved the conditions for FFD to have
diffeomorphic deformation. This method has disadvantages, however: the numerical cost increases
with the number of control points and the degree of freedom of shape deformation is fixed. Therefore,
the deformation has limited representation capacity.

In addition to deformation modeling, establishing correspondences between shapes is a critical
problem in registration. The one-to-one correspondence of the ICP method is sensitive to the
initial position and shape loss. To determine many-to-many correspondence points, Chui et al. [33]
used the fuzzy correspondence between two shapes. The problem of selecting a robust point
matching the correspondence has been interpreted as a combination of a Gaussian mixture model
(GMM) and Expectation Maximization [34]. In the GMM model, one point is the centroid of the
Gaussian distribution for the points constituting the shape, while the other point is regarded as
the data to generate [35]. The variations of GMM have different deformation models, according to
the obtained transformation parameters and the regularization term. For example, regularizing
the second derivative of the transformation leads to a thin-plate spline transformation, while
regularizing according to motion coherence theory leads to a coherent point drift transformation [36,37].
The variations of GMM have been generalized using the generalized Gaussian radial basis function [38].
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To represent the local spatial representation, an L2E estimator has been proposed, which creates a
robust sparse–dense correspondence [39,40].

However, the mixture model requires a high computational cost, as it generates a Gaussian
distribution for each of the points. Furthermore, each Gaussian distribution shares its standard
deviation among the points. The mixture model is thus sensitive to noise and shape loss. Especially
for coronary arteries, narrow and tangled structures are very challenging to model in 3D+t. This
is because the loss of blood vessel morphology can be observed in different heartbeats of the same
patient, through motion artifacts and geometrical deformations.

In this paper, we propose a 3D+t coronary artery model that can be inferred in real-time, according
to ECG signals. The overall structure of the proposed method is shown in Figure 2. The proposed
patient-specific 3D+t coronary artery motion model is divided into two processing blocks, according
to the timing of data processing; (1) a preoperative processing block, and (2) an intraoperative
usage block.

Figure 2. General framework of the proposed method.

At the preprocessing step, we first perform the segmentation of 4D CTA volumes to generate
artery models. After we have multiple coronary artery models, hierarchical cage-based registration is
performed to construct a patient-specific 3D+t model with hyperelastic regularization. The proposed
hierarchical cage deformation model more robustly/accurately registers coronary artery models in
different cardiac phases. When updating the control points of the coronary artery model, we gradually
increase the degrees of freedom of the deformation model. A modified hyper-elastic regularization
term prevents mesh degeneration problems during the control point optimization step. After the
optimal cage control point is obtained—which minimizes the shape dissimilarity of the source shape
and the target shape—we interpolate the shape control point to build a continuous 3D+t model.
The interpolated shape model provides fast shape-inference for intraoperative usage.
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In the intraoperative usage step, the ECG phase can be assessed from the patient’s real-time
signal, which is then correlated to the geometric deformation of cardiac muscles, as shown in Figure 1.
Therefore, the 3D shape of the coronary artery is provided by a continuous 3D+t model, according to
change of the ECG signal and time.

The contributions of the proposed method consist of the following:

1. A hierarchical deformation method to perform robust shape registration, even with incomplete
coronary artery models;

2. Rapid shape interpolation that enables restoring small and complex geometry in a time-varying
coronary artery model;

3. The modified hyper-elastic regularization prevents mesh degeneration during shape registration; and
4. Evaluation of the proposed method using retrospective data for eight patients, both qualitatively

and quantitatively.

2. Pre-Processing ECG-Gated 4D CT Images

In this study, we reconstructed CTA volumes for eight patients at 0% to 95% intervals (in 5%
intervals) between the RR peaks of the heart rate. We took the volumes using a 256-slice multi-detector
CT scanner (BRILLIANCE ICT 256 SLICE, Philips Healthcare) at the Cardiovascular Center of Seoul
National University Bundang Hospital. This retrospective study was approved by the Institutional
Review Board of Seoul National University Bundang Hospital (IRB No. B-2009-637-103).

The cross-sectional size of the image was 512 × 512 pixels, the average number of slices in the
Z-axis direction was 298, and the volume voxel resolution was 0.35 × 0.35 × 0.45 mm. The left
ascending and circumflex coronary arteries were segmented using the ITK-Snap software [41].
The segmented arteries were converted to mesh models using Poisson surface reconstruction, where
the average number of nodes was 10,638. We selected 75% phase mesh models as templates, as the
left ascending and circumflex coronary arteries are most clearly observed at 75% phase [42]. Figure 3
shows the models of the template and other phases.

(a) (b) (c)
Figure 3. Left ascending and circumflex coronary arteries of: (a) patient 1; (b) patient 2; and (c) patient
4. The template phase model is a white solid model, while the other phases are colored with respect to
their cardiac phases.

3. Hierarchical Cage-Based Shape Registration Method

In this section, we address the non-rigid registration method to find the optimal deformation
between coronary artery models. This section is organized as follows: (1) shape representation and
registration problems; (2) gradient descent for shape control point optimization; (3) multi-resolution
cage deformation representation; and (4) diffeomorphism supported by hyper-elasticity regularization;
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3.1. Shape Representation and Registration Problems

This section provides the basic concepts of representation and registration of shapes. Let a shape
V be V = {vi|vi ∈ R3, i = 0, . . . , n − 1}, which contains n of vertices. If Vs and Vt are source and target
shapes, respectively, the registration problem is to find an optimal transformation that minimizes
the dissimilarity between the shapes. Here, an arbitrary transformation T maps the source shape Vs

to the target shape Vt. Through the optimization process, the optimal transformation parameters x∗

minimize disparity measure as follows:

x∗ = arg min
x

d(T(x) ◦ Vs, Vt). (1)

The transformation T is a mapping such that

T : Vs → V̄ = Vs + U(Vs, x), (2)

where V̄ is the deformed shape, x are the local deformation parameters, and U(V, x) is a vertex-wise
mapping.

The shape transformation T may be represented through the modification of a coarse cage mesh
that envelops the source shape. Let a region Ω bound the shape Vs in 3D. The sub-region Ωr is a
sub-divisions of Ω, where Ω =

⋃

∀r Ωr and Ωi ∩ Ωj = ∅, i 6= j. If we create the m × m × m regular
lattice grid on the region Ω, the sub-divisions of Ω contain (m− 1)3 control vertices and m3 sub-regions.
Hereby, the sub-region Ωr is defined as an 8-point cuboid. The eight corner points of Ωr are given
as Pr = {pi|pi ∈ R3, i = 0, . . . , 7}. The linear combination of cage control points and their local
coordinates represent the vertices of the shape Vs. If the vertex v ⊂ Ωr, then the representation of the
vertex by the sub-region control point is given as below:

v = F(v; Pr) =
7

∑
i=0

ϕi(v)pi, (3)

where φi is a trilinear shape function for assigning local coordinates, such as

ϕ0(vx, vy, vz) = (1 − vx)(1 − vy)(1 − vz)/8

ϕ1(vx, vy, vz) = (1 + vx)(1 − vy)(1 − vz)/8

ϕ2(vx, vy, vz) = (1 + vx)(1 + vy)(1 − vz)/8

ϕ3(vx, vy, vz) = (1 − vx)(1 + vy)(1 − vz)/8

ϕ4(vx, vy, vz) = (1 − vx)(1 − vy)(1 + vz)/8

ϕ5(vx, vy, vz) = (1 + vx)(1 − vy)(1 + vz)/8

ϕ6(vx, vy, vz) = (1 + vx)(1 + vy)(1 + vz)/8

ϕ7(vx, vy, vz) = (1 − vx)(1 + vy)(1 + vz)/8. (4)

From the previous definition of a cage representation, the motion of vertex v in the direction v̄ is
given as follows:

u(v, Pr) = v̄ − v

=
7

∑
i=0

ϕi(v)(pi + ∂pi)−
7

∑
i=0

ϕi(v)pi

=
7

∑
i=0

ϕi(v)∂pi,
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where u(v, x) is the motion of vertex v and ∂pi is the motion of control point pi. Therefore, the shape
deformation is only dependent on the change of control points, as shown in Figure 4. Therefore, the
parameter of the cage representation of the transformation T is given as follows:

x = {∂pi|∂pi ∈ R
3, i = 0, . . . , 7}. (5)

(a) (b) (c)

(d) (e) (f)

Figure 4. Hierarchical registration with different deformation depths. (a–c) Level 1; (d–f) Level 2
registration. (a,d) show cage partitioning at different levels. (b,e) show correspondence searching,
while (c,e) show the gradient descent-based deformation update.

3.2. Gradient Descent for Shape Control Point Optimization

The optimization of the transformation is defined as the process of minimizing a metric. If we set
the disparity measure as the squared Euclidean distance between the correspondence pair, then

d(vs, vs, P) = ‖T(P) ◦ vs − vt‖2 (6)

= ‖F(vs; P)− vt‖2 (7)

= ‖
7

∑
i=0

ϕi(vs)pi − vt‖2, (8)

where vs ∈ Vs, vt ∈ Vt, and vs, vt is correspondence pair.
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Thus, the gradient can be denoted as the sum of the difference vector of the corresponding pair
multiplied by the weight of each control point. Therefore, the partial derivative of the disparity
measure for a cage control point pi = (pix, piy, piz) is

∂

∂pi
d(vs, vt, P) =

∂

∂pi
‖vs − vt‖2 (9)

= 2‖vs − vt‖ ·
∂

∂pi
‖

7

∑
i=0

ϕi(vs)pi − vt‖ (10)

= 2‖vs − vt‖ · ϕi(vs). (11)

The Jacobian matrix for the disparity measure of one correspondence pair is

∂

∂P
d(vs, vt, P) =













∂
∂p0

d(vs, vt, P)
∂

∂p1
d(vs, vt, P)

...
∂

∂pm
d(vs, vt, P)













=













∂p0x ∂p0y ∂p0z

∂p1x ∂p1y ∂p1z
...

∂pmx ∂pmy ∂pmz













. (12)

The update of cage control points uses the distribution of the differences of corresponding pairs,
which are the vectors from sources to targets generated inside the sub-regions Ωr. At this time, the
robust correspondence selection potentially supports the update of cage control points. To establish
the correspondence pair robustly, we constrain the correspondence searching process using orientation
filtering, as follows:

{vs, vt} =

{

Paired, if θ(~ns, ~nt) < θThreshold

Not paired, otherwise
, (13)

where θ(·, ·) is angle between the two vectors, and ~ns and ~nt are the vertex normals of vs and vt,
respectively. We set θThreshold = 30◦. The Jacobian matrix for the sum of the squared Euclidean
distance is:

∑
{vs ,vt}∈∀IVs

∂

∂P
d(vs, vt, P) =













∑ ∂p0

∑ ∂p1
...

∑ ∂pm













, (14)

where IVs is the set of correspondence pairs.

3.3. Multi-Resolution Cage Deformation Representation

In this section, we present a cage deformation method using multi-resolution to represent a
gradual deformation. In the registration process, the resolution of the cage determines the degree of
freedom of shape deformation. With increasing resolution of the cage, the deformation model can
represent a more detailed shape change. However, a dense cage has the disadvantage that it can
lose the overall shape. A method for maintaining local shape features through multi-resolution or
hierarchical data structures is, thus, used as a complementary method.

We assumed the generation of the cage based on a regular lattice grid. The primitive shape of
the cage obtained from the lattice structure is a cube with eight vertices and six quadrilateral faces,
where the points inside the cage can be represented as linear combinations of cage control vertices. As
shown in Figure 4, the cage can be partitioned into the inner sub-regions, where the control points
of this sub-region can be created using the control points of the outer region. We denote the vertex v

using cage control points Pn at the deformation depth of n as follows:
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v = F(v; Pn) =
7

∑
i=0

ϕi(v)pn
i , (15)

where pn
i is ith cage control point at the deformation depth n. If we recursively acquire the sub-region

of the region Ω that surrounds the source model, we can denote the higher-level control points using
the lower level control points. The generalized formula presents the corner points of the sub-division,
which are recursively described in the multi-resolution process below:

Pm = F(Pm; Pn) =
7

∑
i=0

ϕi(Pm)pn
i , (16)

where m > n and m, n ∈ N. Thus, if we represent the shape using a chain of cage deformations, the
deformed vertex v̄, with respect to the level n deformation, is

v̄ = F(v; Pn, ∂Pn) =
7

∑
i=0

ϕi(v)(pn
i + ∂pn

i ). (17)

Similarly, the deformed vertex v̄ by level n deformation after level n − 1 deformation is

v̄ = F(v; Pn, Pn−1) (18)

=
7

∑
i=0

ϕi(v)(
7

∑
j=0

ϕj(pi)(pn−1
j + ∂pn−1

j ) + ∂pn
i ).

To cooperate with the gradient descent, we reformulate ∂
∂pi

d(vs, vt, P) as a multi-resolution process.

The partial derivative of the given cost function at the (n − 1)th level is given as follows:

∂

∂pn−1
i

d(vs, vt, P) =
∂

∂pn−1
i

‖
7

∑
i=0

ϕi(vs)pn
i − vt‖2

=
∂

∂pn−1
i

‖
7

∑
i=0

ϕi(vs)
7

∑
j=0

ϕj(pn
i )pn−1

j − vt‖2

= 2‖vs − vt‖ · ‖
7

∑
i=0

ϕi(vs)ϕj(pn
i )‖. (19)

Modification of the control point ∂pi in the multi-resolution cage sub-division is carried out by

∂pi = ∂pn
i + ∂pn−1

i + · · ·+ ∂p1
i . (20)

3.4. Diffeomorphism Supported by Hyper-Elasticity Regularization

Although hierarchical cage deformation recursively represents shape deformation to avoid local
minima, dense cages possibly lead to more cage degeneration. Therefore, an appropriate regularization
process is required when applying hierarchical transformations. For plausible deformation, we used
hyper-elastic regularization, which prevents unexpected partial deformation. We utilized and modified
the study of Burger et al. [20], which can be easily extended to the cage deformation setting. As shown
in Figure 5, the 24 sub-regions of the cage were defined using corner points pi and seven auxiliary
points, which are the volume points pV and face points pF. Tetrahedral sub-regions are defined by the
span of a volume point and corresponding face points. Regularization ensures that the transformation
is a diffeomorphism; that is, it is reversible and smooth. Hyper-elastic regularization, as defined by
Burger et al. [20], is given by
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Shyper(x) =
∫

α1ηvol(x) + α2ηsur(x) + α3ηlen(x)dΩ. (21)

where αi are balancing parameters. The functions ηvol , ηsur, and ηlen penalize changes of volume,
surface, and length, respectively. Here, we set the balancing parameter as 10.0 for all experiments.
Burger et al. [20] utilized the average points to delineate the volume point pV and six face points pF.
However, if the cage is concave (i.e., due to large deformations), the face and volume points are not
maintained inside the cage, as shown in Figure 5. As a result, the functions ηvol and ηsur may have
negative values, which can lead to the failure of gradient descent.

(a) (b) (c) (d)

Figure 5. Cage sub-division with hyper-elastic regularization: (a) A tetrahedral sub-division of the 3D
cage volume, which is the span of face (blue) and volume (green) points; (b) sub-division of cage face;
(c) the average points (red) located outside of the cage and their negative areas (red triangles); and
(d) the equal-area points (blue) located inside of cages despite large deformations and their positive
areas (yellow triangles).

To achieve robust regularization, we define the face and volume vertices of each cage to have the
same sub-area and sub-volume inside of the cage. Assuming that the face point pF = (pFx , pFy , pFz) is
located inside the quadrilateral, the position pF of the points dividing the areas △p0 p1 pF, △p1 p2 pF,
△p2 p3 pF, and △p3 p0 pF is defined as follows;

△pi pi+1 pF = (pi+1 − pi)× (pF − pi)/2 = [pi+1 − pi]×(pF − pi)/2, (22)

where i = {0, 1, 2, 3}. The least-squares solution of the above conditions for all triangles is











[p1 − p0]×
[p2 − p1]×
[p3 − p2]×
[p0 − p3]×

















pFx

pFy

pFz






=











[p1]×p0

[p2]×p1

[p3]×p2

[p10]×p3











. (23)

Similar to the face point, we assume that the volume point is located inside the hexahedron.
The volume point pV = (pVx , pVy , pVz) partitions 24 sub-tetrahedra of the cage. The volume of a single
tetrahedron is given as

Vpi,j pi+1,j pFj
= (pi+1,j − pi,j)× (pFj

− pi,j) · (pV − pi,j)/6, (24)

where pFj
is jth face point of the hexahedron and pi,j is the ith corner point of the jth face.
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The volume point pV is obtained by solving the following least-squares problem:





















[p1,0 − p0,0]×pF0 − [p1,0]×p0,0

[p2,0 − p1,0]×pF0 − [p2,0]×p1,0
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...
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. (25)

The robust face/volume points improve the numerical stability of the cage deformation. The cost
function is a combination of the dissimilarity measurement and regularization functions.

4. Interpolation of Shape Control Points

In this section, we introduce the shape interpolation and restoration for real-time usage of the 3D+t
coronary artery model. According to Equation 3, the shape of the coronary artery relies on the locations
of the control points. Therefore, as we derive the intermediate positions of control points among
cardiac phases, the corresponding shape is restored. To interpolate the positions of control points, we
consider a set of control point at the kth phase as a vector Pk, such that Pk = {p0, p1, . . . , pn−2, pn−1},
where pi ∈ R3 and n is the number of cage control points. From the registration results, we interpolate
the given sets of control points using periodic cubic spline interpolation [43], due to the (cyclic) nature
of the heart’s motion. The number of knots is the same as the number of reconstructions from 4D CTA.

Let a phase-varying vector S(t) = {s0(t), . . . , sn−1(t)} be the set of interpolated control points,
where si(t) is the ith control spline for the cardiac phase t. The spline vector S(t) has C2 continuity
with respect to the phase t. The spline function S(t) maps phase t to the set of cage control points, such
that S : R → R3×n. Then, the vertices of shape are restored using the following equation:

v(t) = F(v; S(t)) = ∑
i∈IV

ϕi(v)si(t). (26)

5. Evaluations and Results

We evaluated the proposed method both qualitatively and quantitatively on data from eight
patients. The proposed method was tested on an Intel (R) Xeon (R) W-2133 workstation with
CPU@3.60 GHz and 32 GB ram. We partially multi-threaded the computation of cost function
measurements using OpenMp [44] and Thread building block [45] during the optimization process.
The proposed method and comparison target methods were written in C++.

5.1. Quantitative Evaluations

In the quantitative evaluation of non-rigid registration, we used metrics considering: (1) the
closest point-mesh Euclidean distance (ED) from the target model to the matching result and (2) the
dice coefficient (DC) obtained from the mesh boolean operation. As we set the number of iterations to
300/maxDepth for each depth, the total number of iterations for different max depths was set to be
the same.

5.1.1. Trade-off between Deformation Depth and Computation Time

First, we observed the trade-off between the degrees of freedom of deformation and computation
time. As shown in Table 1, we compared the different depths of deformation incrementally, from
1 to 5. As shown in Figure 6, the ED and DC worsened, as the phases were far from the template
phase. As the shape of the blood vessel was a thin tube shape, the ED and DC values noticeably
deteriorated with slight movement. As the deformation depth increased, the ED values gradually
decreased and the DC values increased more prominently; both metrics flattened for the other cardiac
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phases. The metrics converged after deformation depth 4. The comparison results for the other patients
are given in Appendix A.

Table 1. Trade-off between computation time and accuracy.

Method Cage Resolution Computation Time (s) Average Distance (mm) Dice Coefficient

HierCage [1, 1, 1] 21.73 0.668 ± 0.255 0.655 ± 0.096
HierCage [2, 2, 2] 23.05 0.597 ± 0.234 0.696 ± 0.077
HierCage [3, 3, 3] 22.91 0.566 ± 0.227 0.721 ± 0.068
HierCage [4, 4, 4] 23.52 0.543 ± 0.222 0.735 ± 0.064
HierCage [5, 5, 5] 33.00 0.534 ± 0.221 0.741 ± 0.064

GRBF_KC [4, 4, 4] 40.99 0.615 ± 0.218 0.666 ± 0.088
GRBF_L2 [4, 4, 4] 40.92 0.600 ± 0.207 0.671 ± 0.084
TPS_KC [4, 4, 4] 33.00 0.553 ± 0.191 0.681 ± 0.080
TPS_L2 [4, 4, 4] 32.21 0.530 ± 0.17 0.690 ± 0.075
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Figure 6. Effect of cage deformation depth for patient 1 in different cardiac phases: (a) dice coefficients;
and (b) average distance from target to deformed model.

5.1.2. Comparison with Other Methods

In the second experiment, the proposed registration method’s performance was compared with
that of other non-rigid matching algorithms. As the comparison target of non-rigid registration, we
selected the variations of GMM methods, which are combinations of a deformation model and a cost
function. The deformation models were thin-plate spline (TPS) and generalized radial basis function
(GRBF), while the cost functions were kernel correlation (KC) or L2 distance. The comparison targets
used L-BFGS-B as an optimization method.

For comparison, each deformation model had the same number of deformation control points.
Considering the convergence of accuracy from the previous analysis, we set the number of grid and
control points as 16 × 16 × 16 and 4913, respectively. As shown in Figure 7, the proposed method
had higher DCs than the comparison targets at the interval [15%, 35%] of cardiac phases, where the
interval had a DC value of less than 0.2 before registration. Although the ED metrics showed a similar
trend, compared with other methods, a significant improvement in DC was observed. The comparison
results for the other patients are given in Appendix A.
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Figure 7. Comparison with other algorithms for patient 1 at the different cardiac phases: (a) dice
coefficients; and (b) average distance from target to deformed model.

5.1.3. Interpolation Accuracy

Furthermore, we evaluated the accuracy of the interpolated 3D+t coronary artery models
by comparing them with the segmented models. The proposed method created a smooth and
non-degenerate 3D model by interpolating the cage control points over sampled cardiac phases,
as shown in Figure 8. Our data sets were evenly reconstructed from 4D CT within the R-R peak with
5% sampling interval. Thus, we had 20 keyframes (V0%, V5%, . . . , V95%). To evaluate the effect of
sampling the cardiac phases, we chose phase sets from the given 20 keyframes as follows: (1) Odd 10:
[5, 15, 25, . . . , 85, 95]; (2) Even 10: [0, 10, 20, . . . , 80, 90]; (3) Odd 5: [5, 25, 45, 65, 85]; and (4) Even 5:
[0, 20, 40, 60, 80]. Figure 9 shows the differences among the phase selections. Although the sampled
phase became sparse, the DC of the interpolated result showed that the results had a lower bound.
The ED still showed a flattened value, when compared to that before registration. The comparison
results for the other patients are given in Appendix A.

(a) (b) (c) (d)
Figure 8. Comparison of the registered model and interpolated model for patient 5: (a) Template
(green) and 40% coronary artery (red); (b) registered model (blue); (c) interpolated model (yellow); and
(d) comparison of registered model and interpolated model.
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Figure 9. Comparison of interpolation sampling for patient 1 in the different cardiac phases: (a) dice
coefficients; and (b) average distance from target to deformed model.

5.2. Qualitative Evaluations

In the qualitative evaluation, the role of the visualization effect of hyper-elastic regularization,
geometrical comparison with other algorithms, comparison of the matching result and interpolation
result model, and the limitations of the interpolation model were investigated.

5.2.1. The Effect of Hyper-Elastic Regularization and Hierarchical Deformation

High-order deformation models often converge to a local minimum, which may look visually
implausible. Figure 10a,b show examples of shape shrinkage when the target model contains loss
of shape. The hyper-elastic regularization constraints lead to shape preservation, thus providing a
plausible result, as shown in Figure 10c,d.

When compared with the other algorithms, Figure 11 shows an example where shape registration
is defective at the excessively deformed and twisted parts. As the registration process converged to
a local minimum, the deformation model represents the further details of local deformation. On the
other hand, hierarchical cage deformation gradually acquired an optimal solution, passing from coarse
to dense resolution, to avoid local minima, as shown in Figure 12. In this process, the low degree of
freedom deformation serves as the initial value for the deformation in the next step. Therefore, local
minima can be avoided more efficiently.

(a) (b) (c) (d)

Figure 10. The effect of modified hyper-elastic regularization. We aligned the source model to the target
model (red), which contains a loss of branch. The figures show effects: (a,b) without regularization
(yellow) and (c,d) with regularization (blue).
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(a) (b) (c)

Figure 11. Qualitative comparison of GMM and the proposed method: (a) Initial template model
(green) and target coronary artery (red); (b) result of the proposed method (blue); and (c) result of
Gaussian mixture modeling with TPS+L2 (yellow).

(a) (b) (c)

(d) (e) (f)
Figure 12. Qualitative comparison of the proposed method while changing the deformation resolution:
(a) Initial template model (blue) and target model (red); (b–f) the results of registration (blue) at
different cage resolutions from [1, 1, 1] to [5, 5, 5], respectively.

5.2.2. The Representation Power of Interpolated Model

The proposed shape interpolation method may have limited representation ability for intermediate
shapes. This limited shape representation is due to the recurring shape of the adjacent phases.
We observed that the shape interpolation method restrictively delineates the intermediate shape.
The shapes of the neighboring phases to the target phase resemble each other, but the target shape and
the neighbor shapes are considerably different, as shown in Figure 13e.
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(a) (b) (c) (d) (e)
Figure 13. Comparison of the registered model and interpolated model for patient 8: (a) Template
(green) and 95% coronary artery (red edges); (b) registered model (blue); (c) interpolated model
(yellow); (d) comparison of registration interpolation; and (e) comparison of neighboring coronary
artery models (90%, dark blue; 0%, light green).

6. Discussion and Conclusions

In this paper, we proposed a method for generating a 3D + time vessel model from 4D CT
images that can be used in real-time. Our purpose was to create a 4D vascular model without mesh
degeneration, interpolate the model at high speed, and express a more precise shape.

To create a 4D vascular model, we matched the diastolic coronary artery model with the coronary
artery model in other phases through hierarchical cage deformation. During the registration process,
hyper-elastic regularization was used as a shape preservation constraint. The shape control points
obtained as a result of registration were interpolated into a cyclic cubic spline to create a 3D+t model.
The shape change depends only on the control points of the cage. The rapid deformation application
and the preservation features of the local information are beneficial in the shape registration process.

To evaluate the precision of the proposed method, quantitative and qualitative evaluation
was performed on 160 CTA volumes acquired from eight patients. In the quantitative evaluation,
we assessed:

1. The trade-off between the shape matching accuracy and calculation time according to the
hierarchical deformation;

2. The comparative evaluation with other methods;
3. The accuracy of the shape interpolation model, according to the time sampling interval.

In the step of measuring the shape matching precision according to the hierarchical deformation,
we observed that the matching precision converged in the fourth step of the hierarchical deformation,
where the calculation time was 23.53 s on average. In the fifth deformation depth of hierarchical
transformation, the matching accuracy slightly increased, but the required time increased by 28.70%
(to 33.00 s). In the hierarchical transformation of the cage creation stage, the control points constituting
the cage increased exponentially, as a regular grid was used. We obtained the mean distance with
precision of a 0.543 mm and standard deviation 0.222 in step 4 of the hierarchical transformation,
where the Dice coefficient obtained an average of 0.754 and a standard deviation of 0.064.

Compared with other algorithms, the GMM method requires the creation of a mixture model for
each point and, so, even with the same degree of freedom of transformation, the calculation time was
as high as 40 s for the GRBF model and 33 s for the TPS model. In addition, in the average distance
index, TPS_L2 was 0.530 mm, which had an error lower than that (0.543) of the proposed method;
however, when comparing the Dice coefficient, TPS_L2 was observed to be 0.690, 0.045 points lower
than the index of the proposed method (0.735).

If the indicators of DC and AD values conflict with each other, it is necessary to determine which
indicator is better to express the accuracy of the matching result; for example, (1) high DC value and
high AD value or (2) low DC Value and low AD value. At this time, we decided case (1) was a better
indicator. This was because, in the vascular model between 15% and 35%, which showed a great
difference with the 75% phase, a difference in AD values between the algorithms was not significantly
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observed, but the difference in DC values was noticeable. This was not only consistently observed in
the quantitative evaluation of patient data, but also explains the differences arising from inappropriate
deformations occurring in excessively twisted blood vessels during the qualitative evaluation.

The precision of the shape interpolation model was measured with different phase-sampling sets,
where the accuracy was worsened with a larger phase-sampling interval. However, this limitation
may be resolved by increasing the temporal resolution and by co-operating with the other real-time
imaging systems, such as X-ray angiography or 4D US.

A qualitative evaluation was performed to support the quantitative evaluation mentioned above,
as well as to observe the effect of the proposed model on the visualization stage. In the qualitative
evaluation, (1) the effect of the modified hyper-elastic regularization and hierarchical transformation,
and (2) the limitations in shape interpolation were observed.

When we observed the effect of hyper-elastic regularization, the shape was transformed to be
visually plausible when hyper-elastic regularization was used. This phenomenon was particularly well
seen in the coronary artery model with loss of shape. This is a characteristic obtained by minimizing
the excessive deformation by robustly obtaining face points and volume points against the rapid
degeneration of the cage mesh due to incorrect correspondence pairs. Compared with other non-rigid
algorithms, the proposed method was able to cope with the local minima that occur during the
optimization process by hierarchically performing the transformation effectively. In particular, it
was shown that, in the vascular model with an excessive twist, optimal deformation was gradually
obtained from low-dimensional deformation.

In summary, the proposed 3D+t vascular modeling method utilized hierarchical deformation
for robust shape registration, while interpolation of the registered vascular structure enabled the
restoration of small and complex geometries due to the cardiac cycle.

The electric potential of the myocardium generates the ECG signal, and the electric potential
of the myocardium is related to movement and contraction of the heart. As an observation tool of
the myocardium, the proposed method can provide an alternative to real-time imaging by using the
ECG signal and 4D CT. In intraoperative situations, invasive coronary angiography is a method for
monitoring the movement of the coronary artery, which provides limited deformation information
(up to the 2D plane). With the proposed method, we expect that 3D contraction and strain of the
myocardium, according to the ECG signal, can be observed, as the coronary arteries are attached to the
epicardium. The ability of motion monitoring is directly related to the evaluation of the physiological
function of the myocardium.

In addition, the modified hyper-elastic regularization prevented implausible deformation and
mesh degeneration, which must be avoided in the analysis of 4D blood flow. We demonstrated the
accuracy of the proposed method by presenting qualitative and quantitative evaluations using data
from eight patients.

Therefore, we expect that the proposed 3D+t vascular model can be utilized in real-time
applications such as (1) pre-operative blood flow analysis, which requires rapid shape creation without
mesh degeneration; and (2) 2D invasive coronary angiography-3D shape registration during the
intervention, where it can be used as an image guidance tool that provides real-time shape information
according to the ECG signal during percutaneous coronary intervention.

As a limitation of this study, since the deformed model of the proposed model is limited to a 3D
mesh, blood vessel segmentation is required in phases other than the template model. In a future study,
we will conduct a study on a volume–template mesh model matching method which can be applied to
volumetric data, including shape loss, in order to eliminate unnecessary repetitive processes.
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Appendix A. Patient-Wise Evaluations

Appendix A.1. Dice Coefficients at Different Levels of Deformation
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Figure A1. (a–h) Dice coefficients at different levels of deformation from patient 1 to patient 8.
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Appendix A.2. Average Distances at Different Levels of Deformation
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Figure A2. (a–h) Average distances between target model and deformed models for Patients
1–8, respectively.
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Appendix A.3. Dice Coefficients for Different Methods

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0
D

ic
e 

C
oe

ffi
ci

en
t

Cardiac Phase (%)

 Initial
 HierCage
 GRBF_KC
 GRBF_L2
 TPS_KC
 TPS_L2

(a)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(b)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(c)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(d)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(e)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(f)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(g)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

D
ic

e 
C

oe
ffi

ci
en

t

Cardiac Phase (%)

(h)
Figure A3. (a–h) Dice coefficients between target model and deformed models for the different
cardiac phases.
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Appendix A.4. Average Distances for Different Methods
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Figure A4. (a–h) Average distances between target model and deformed models for the different
cardiac phases.
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Appendix A.5. Dice Coefficients for Different Phase Sampling Methods
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Figure A5. (a–h) Dice coefficients between target model and deformed models for the different
cardiac phases.
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Appendix A.6. Average Distances for Different Phase Sampling Methods
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Figure A6. (a–h) Average distances between target model and deformed models for the different
cardiac phases.

35



Sensors 2020, 20, 5680

References

1. Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.;

Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics—2020 update a report from

the American Heart Association. Circulation 2020, E139–E596. [CrossRef] [PubMed]

2. Hadjiiski, L.; Zhou, C.; Chan, H.P.; Chughtai, A.; Agarwal, P.; Kuriakose, J.; Kazerooni, E.; Wei, J.; Patel, S.

Coronary CT angiography (cCTA): Automated registration of coronary arterial trees from multiple phases.

Phys. Med. Biol. 2014, 59, 4661. [CrossRef] [PubMed]

3. Zeng, S.; Feng, J.; An, Y.; Lu, B.; Lu, J.; Zhou, J. Towards Accurate and Complete Registration of Coronary

Arteries in CTA Images. In Proceedings of the International Conference on Medical Image Computing and

Computer-Assisted Intervention, Granada, Spain, 16–20 September 2018; pp. 419–427.

4. Biglarian, M.; Larimi, M.M.; Afrouzi, H.H.; Moshfegh, A.; Toghraie, D.; Javadzadegan, A.; Rostami, S.

Computational investigation of stenosis in curvature of coronary artery within both dynamic and static

models. Comput. Meth. Programs Biomed. 2020, 185, 105170. [CrossRef] [PubMed]

5. Wu, X.; von Birgelen, C.; Muramatsu, T.; Li, Y.; Holm, N.R.; Reiber, J.H.; Tu, S. A novel four-dimensional

angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience

in evaluating vessel sites with subsequent plaque rupture. EuroIntervention 2017, 13, e1099–e1103. [CrossRef]

6. Elattar, M.A.; Vink, L.W.; van Mourik, M.S.; Baan Jr, J.; vanBavel, E.T.; Planken, R.N.; Marquering, H.A.

Dynamics of the aortic annulus in 4D CT angiography for transcatheter aortic valve implantation patients.

PLoS ONE 2017, 12, e0184133. [CrossRef]

7. Shi, B.; Katsevich, G.; Chiang, B.S.; Katsevich, A.; Zamyatin, A. Image registration for motion estimation in

cardiac CT. In Proceedings of the 2014 SPIE Medical Imaging, San Diego, CA, USA, 15–20 February 2014;

Volume 9033, p. 90332E.

8. Forte, M.N.V.; Valverde, I.; Prabhu, N.; Correia, T.; Narayan, S.A.; Bell, A.; Mathur, S.; Razavi, R.; Hussain, T.;

Pushparajah, K.; et al. Visualization of coronary arteries in paediatric patients using whole-heart coronary

magnetic resonance angiography: comparison of image-navigation and the standard approach for respiratory

motion compensation. J. Cardiovasc. Magn. Reson. 2019, 21, 1–9.

9. Coppo, S.; Piccini, D.; Bonanno, G.; Chaptinel, J.; Vincenti, G.; Feliciano, H.; Van Heeswijk, R.B.; Schwitter, J.;

Stuber, M. Free-running 4D whole-heart self-navigated golden angle MRI: Initial results. Magn. Reson. Med.

2015, 74, 1306–1316. [CrossRef]

10. Li, S.; Xie, Z.; Xia, Q.; Hao, A.; Qin, H. Hybrid 4D cardiovascular modeling based on patient-specific clinical

images for real-time PCI surgery simulation. Graph. Model. 2019, 101, 1–7. [CrossRef]

11. Lamash, Y.; Fischer, A.; Carasso, S.; Lessick, J. Strain analysis from 4-D cardiac CT image data. IEEE Trans.

Biomed. Eng. 2014, 62, 511–521. [CrossRef]

12. Gupta, V.; Lantz, J.; Henriksson, L.; Engvall, J.; Karlsson, M.; Persson, A.; Ebbers, T. Automated

three-dimensional tracking of the left ventricular myocardium in time-resolved and dose-modulated cardiac

CT images using deformable image registration. J. Cardiovasc. Comput. Tomogr. 2018, 12, 139–148.

13. Li, Q.; Tong, Y.; Yin, Y.; Cheng, P.; Gong, G. Definition of the margin of major coronary artery bifurcations

during radiotherapy with electrocardiograph-gated 4D-CT. Phys. Med. 2018, 49, 90–94. [CrossRef] [PubMed]

14. Liu, B.; Bai, X.; Zhou, F. Local motion-compensated method for high-quality 3D coronary artery

reconstruction. Biomed. Opt. Express 2016, 7, 5268–5283. [CrossRef] [PubMed]

15. Chen, M.Y.; Shanbhag, S.M.; Arai, A.E. Submillisievert median radiation dose for coronary angiography with

a second-generation 320–detector row CT scanner in 107 consecutive patients. Radiology 2013, 267, 76–85.

[CrossRef] [PubMed]

16. Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. In Proceedings of the Robotics ’91, Boston,

MA, USA, 14–15 November 1991.

17. Sorkine, O.; Alexa, M. As-rigid-as-possible surface modeling. In Proceedings of the Symposium on Geometry

Processing, Barcelona, Spain, 4–6 July 2007; Volume 4, pp. 109–116.

18. Davatzikos, C. Spatial transformation and registration of brain images using elastically deformable models.

Comput. Vis. Image Underst. 1997, 66, 207–222. [CrossRef]

36



Sensors 2020, 20, 5680

19. Pennec, X.; Stefanescu, R.; Arsigny, V.; Fillard, P.; Ayache, N. Riemannian elasticity: A statistical

regularization framework for non-linear registration. In Proceedings of the International Conference

on Medical Image Computing and Computer-Assisted Intervention, Palm Springs, CA, USA, 26–29 October

2005; pp. 943–950.

20. Burger, M.; Modersitzki, J.; Ruthotto, L. A hyperelastic regularization energy for image registration. SIAM J.

Sci. Comput. 2013, 35, B132–B148. [CrossRef]

21. Chiang, M.C.; Leow, A.D.; Klunder, A.D.; Dutton, R.A.; Barysheva, M.; Rose, S.E.; McMahon, K.L.;

De Zubicaray, G.I.; Toga, A.W.; Thompson, P.M. Fluid registration of diffusion tensor images using

information theory. IEEE Trans. Med. Imaging 2008, 27, 442–456. [CrossRef]

22. Vercauteren, T.; Pennec, X.; Perchant, A.; Ayache, N. Symmetric log-domain diffeomorphic registration: A

demons-based approach. In Proceedings of the International Conference on Medical Image Computing and

Computer-Assisted Intervention, New York, NY, USA, 6–10 September 2008; pp. 754–761.

23. Yeo, B.T.; Vercauteren, T.; Fillard, P.; Peyrat, J.M.; Pennec, X.; Golland, P.; Ayache, N.; Clatz, O. DT-REFinD:

Diffusion tensor registration with exact finite-strain differential. IEEE Trans. Med. Imaging 2009, 28, 1914–1928.

[CrossRef]

24. Younes, L.; Qiu, A.; Winslow, R.L.; Miller, M.I. Transport of relational structures in groups of diffeomorphisms.

J. Math. Imaging Vis. 2008, 32, 41–56. [CrossRef]

25. Cootes, T.F.; Taylor, C.J.; Cooper, D.H.; Graham, J. Active shape models-their training and application.

Comput. Vis. Image Underst. 1995, 61, 38–59. [CrossRef]

26. Glocker, B.; Komodakis, N.; Navab, N.; Tziritas, G.; Paragios, N. Dense registration with deformation priors.

In Proceedings of the International Conference on Information Processing in Medical Imaging, Williamsburg,

VA, USA, 5–10 July 2009; pp. 540–551.

27. Baka, N.; Metz, C.; Schultz, C.; Neefjes, L.; van Geuns, R.J.; Lelieveldt, B.P.; Niessen, W.J.; van Walsum, T.;

de Bruijne, M. Statistical coronary motion models for 2D+ t/3D registration of X-ray coronary angiography

and CTA. Med. Image Anal. 2013, 17, 698–709. [CrossRef]

28. Yang, X.; Xue, Z.; Liu, X.; Xiong, D. Topology preservation evaluation of compact-support radial basis

functions for image registration. Pattern Recognit. Lett. 2011, 32, 1162–1177. [CrossRef]

29. Donato, G.; Belongie, S. Approximate thin plate spline mappings. In Proceedings of the European Conference

on Computer Vision, Copenhagen, Denmark, 28–31 May 2002; pp. 21–31.

30. Sederberg, T.W.; Parry, S.R. Free-form deformation of solid geometric models. In Proceedings of the 13th

Annual Conference on Computer Graphics and Interactive Techniques, Dallas, TX, USA, August 18–22 1986;

pp. 151–160.

31. Sdika, M. A fast nonrigid image registration with constraints on the Jacobian using large scale constrained

optimization. IEEE Trans. Med. Imaging 2008, 27, 271–281. [CrossRef] [PubMed]

32. Rueckert, D.; Aljabar, P.; Heckemann, R.A.; Hajnal, J.V.; Hammers, A. Diffeomorphic registration

using B-splines. In Proceedings of the International Conference on Medical Image Computing and

Computer-Assisted Intervention, Copenhagen, Denmark, 1–6 October 2006; pp. 702–709.

33. Chui, H.; Rangarajan, A. A new point matching algorithm for non-rigid registration. Comput. Vis. Image

Underst. 2003, 89, 114–141. [CrossRef]

34. Chui, H.; Rangarajan, A. A feature registration framework using mixture models. In Proceedings of the IEEE

Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA-2000), Hilton Head Island, SC,

USA, 11–12 June 2000; pp. 190–197.

35. Jian, B.; Vemuri, B.C. A robust algorithm for point set registration using mixture of Gaussians. In Proceedings

of the 10th IEEE International Conference on Computer Vision (ICCV’05), Las Vegas, NV, USA, 17–21 October

2005; pp. 1246–1251.

36. Myronenko, A.; Song, X.; Carreira-Perpinán, M.A. Non-rigid point set registration: Coherent point drift

(CPD). Adv. Neural Inf. Process. Syst. 2007, 1, 1009–1016.

37. Myronenko, A.; Song, X. Point set registration: Coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell.

2010, 32, 2262–2275. [CrossRef] [PubMed]

38. Jian, B.; Vemuri, B.C. Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal.

Mach. Intell. 2010, 33, 1633–1645. [CrossRef]

39. Ma, J.; Qiu, W.; Zhao, J.; Ma, Y.; Yuille, A.L.; Tu, Z. Robust L2E estimation of transformation for non-rigid

registration. IEEE Trans. Signal Process. 2015, 63, 1115–1129. [CrossRef]

37



Sensors 2020, 20, 5680

40. Ma, J.; Zhao, J.; Yuille, A.L. Non-rigid point set registration by preserving global and local structures.

IEEE Trans. Image Process. 2015, 25, 53–64.

41. Yushkevich, P.A.; Piven, J.; Cody Hazlett, H.; Gimpel Smith, R.; Ho, S.; Gee, J.C.; Gerig, G. User-Guided 3D

Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability.

Neuroimage 2006, 31, 1116–1128. [CrossRef]

42. Seifarth, H.; Wienbeck, S.; Pusken, M.; Juergens, K.U.; Maintz, D.; Vahlhaus, C.; Heindel, W.; Fischbach, R.

Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT.

Am. J. Roentgenol. 2007, 189, 1317–1323. [CrossRef]

43. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific

Computing; Cambridge University Press: New York, NY, USA, 2007.

44. Dagum, L.; Ramesh, M. OpenMP: an industry standard API for shared-memory programming. IEEE Comput.

Sci. Eng. 1998, 5, 46–55. [CrossRef]

45. Pheatt, C. Intel threading building blocks. J. Comput. Sci. Coll. 2008, 23, 298–298.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

38



sensors

Review

Wearable Sensors Incorporating Compensatory
Reserve Measurement for Advancing Physiological
Monitoring in Critically Injured Trauma Patients

Victor A. Convertino 1,2,*, Steven G. Schauer 1,2,3, Erik K. Weitzel 2,3,4 , Sylvain Cardin 5,

Mark E. Stackle 6, Michael J. Talley 7, Michael N. Sawka 8 and Omer T. Inan 8

1 Battlefield Health & Trauma Center for Human Integrative Physiology, US Army Institute of Surgical
Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA; steven.g.schauer.mil@mail.mil

2 Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
erik.k.weitzel.mil@mail.mil

3 Brooke Army Medical Center, JBSA Fort Sam Houston, San Antonio, TX 78234, USA
4 59th Medical Wing, JBSA Lackland, San Antonio, TX 78236, USA
5 Navy Medical Research Unit, San Antonio, TX 78234, USA; sylvain.cardin.civ@mail.mil
6 US Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA;

mark.e.stackle.mil@mail.mil
7 US Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA;

michael.j.talley4.mil@mail.mil
8 Georgia Institute of Technology, Atlanta, GA 30332, USA; michael.sawka@biosci.gatech.edu (M.N.S.);

inan@gatech.edu (O.T.I.)
* Correspondence: victor.a.convertino.civ@mail.mil

Received: 29 September 2020; Accepted: 4 November 2020; Published: 10 November 2020 ����������
�������

Abstract: Vital signs historically served as the primary method to triage patients and resources
for trauma and emergency care, but have failed to provide clinically-meaningful predictive
information about patient clinical status. In this review, a framework is presented that focuses
on potential wearable sensor technologies that can harness necessary electronic physiological signal
integration with a current state-of-the-art predictive machine-learning algorithm that provides early
clinical assessment of hypovolemia status to impact patient outcome. The ability to study the
physiology of hemorrhage using a human model of progressive central hypovolemia led to the
development of a novel machine-learning algorithm known as the compensatory reserve measurement
(CRM). Greater sensitivity, specificity, and diagnostic accuracy to detect hemorrhage and onset of
decompensated shock has been demonstrated by the CRM when compared to all standard vital signs
and hemodynamic variables. The development of CRM revealed that continuous measurements
of changes in arterial waveform features represented the most integrated signal of physiological
compensation for conditions of reduced systemic oxygen delivery. In this review, detailed analysis of
sensor technologies that include photoplethysmography, tonometry, ultrasound-based blood pressure,
and cardiogenic vibration are identified as potential candidates for harnessing arterial waveform
analog features required for real-time calculation of CRM. The integration of wearable sensors with
the CRM algorithm provides a potentially powerful medical monitoring advancement to save civilian
and military lives in emergency medical settings.

Keywords: wearable sensors; physiology; medical monitoring; vital signs; compensatory reserve

1. Introduction

Vital signs are the most rudimentary, yet frequently relied upon physiologic data used by emergency
care clinicians on which they base treatment decisions. In both prehospital and emergency department
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settings, vital signs are used as a primary method for triaging patients and resources for both trauma
and medical encounters [1]. Pulse palpation and blood pressure have been used by physicians dating
back to the 18th century with the documented work of Stephen Hales [2]. Whereas anatomical imaging
diagnostics have enjoyed major advancement with novel diagnostic modalities such as computed
tomography and magnetic resonance imaging in the hospital, physiological monitoring available
in the prehospital and emergency room settings has remained largely unchanged. Blood pressure
is still measured with a sphygmomanometer with only small incremental gains in technology over
the last century. In austere clinical settings where sphygmomanometry may not be readily available
(e.g., military operations, wilderness medicine), patient status is assessed by gross manual measures
such as palpitation for radial pulse character and mental status [3–6]. In this regard, the Special
Operations Medical Association Prolonged Field Care Working Group identified a “monitor to provide
hands-free vital signs data at regular intervals” as a core capability needed to meet the requirement for
prolonged field care on the battlefield [7,8]. New advancements in capturing and analyzing real-time
electronic signals from the body using wearable sensor signals that are integrated with advanced
computer processing capabilities hold great promise for development of novel monitoring technologies.
In this review, we provide evidence for the need to use a photoplethysmographic (PPG) signal as
the most informative ‘vital sign’ to be captured in emergency medical care settings. We introduce
a variety of currently available wearable sensor technologies that could be used to harness PPG
signals for integration with a novel predictive machine-learning algorithm designed to optimize
pathophysiological monitoring and early triage decision support beyond standard vital signs.

2. Need to Identify New Vital Sign Measurements

2.1. Compromised DO2—A Primary Clinical Challenge to Effective Medical Monitoring

Hemorrhage is the primary reason for death after major trauma in both civilian and military
settings [9–13]. If not controlled in its early stages, hemorrhage can result in inadequate systemic
oxygen delivery (DO2) to vital organs (e.g., brain, heart, gut) that without effective intervention can
rapidly lead to organ dysfunction and tissue death [14]. Clinically, DO2 is indirectly assessed by
measurements of standard vital signs such as blood pressure. However, improvement in blood pressure
alone does not correlate with oxygen received at the tissue level as supported by the observation that
crystalloid fluids can elevate systolic pressure while simultaneously worsening patient outcomes [9].
Clinicians frequently define a measurement of systolic pressure <90 mmHg as hypotension incapable
of sustaining adequate DO2. More recent data suggest the use of this threshold may not accurately
represent risk for poor clinical outcome [4,15,16]. To this end, it has been proposed that optimal
assessment of patient status demands actual measurement of systemic DO2 [17–19].

2.2. Current Vital Sign Monitoring

One limitation of most modern monitoring systems is a bias toward capture of only standard vital
signs (Table 1). Standard vital signs exhibit little change during the early stages of volume loss due to
physiological compensatory responses [20–25]. Such responses (e.g., deep inspiration, tachycardia,
and vasoconstriction) regulate and maintain blood pressure and tissue perfusion prior to the onset of
decompensated shock during the early stages of hemorrhage, sepsis, dehydration, and other forms of
central hypovolemia [26–29].
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Table 1. Qualitative timing of changes in traditional vital signs and blood chemistries during progressive
central hypovolemia. Modified from Convertino et al. [14,22] and Moulton et al. [30].

Vital Sign or Measurement Change During Progressive Central Hypovolemia

Systolic blood pressure Late

Diastolic blood pressure Late

Mean blood pressure Late

Heart rate Non-specific

Shock index (heart rate/systolic pressure) Late

Oxygen saturation Late

Radial pulse character assessment Late

End-tidal CO2 Late, Non-specific

Respiratory rate Late, Non-specific

Glasgow Coma Scale Late, Non-specific

Blood pH, PCO2, Base Excess Late, Non-specific

Blood Lactate Late, Non-specific

Hematocrit, Hemoglobin Late, Non-specific

In an effort to identify and compare the time course of changes in standard vital signs and
physiological compensatory responses during the early stages of blood loss, lower body negative
pressure (LBNP) has emerged as a validated model for controlled progressive reductions in central blood
volume that mimics the physiology of hemorrhage in humans [14,31,32]. Like hemorrhage, LBNP leads
to reduced filling of the heart which in turn reduces cardiac stroke volume and output, resulting in lower
DO2 (Figure 1). Using this model of human hemorrhage has consistently revealed that commonly relied
upon vital signs are not specific to the condition of blood loss or do not change until too late in the clinical
course of reduced central blood volume to allow optimized patient care (Table 1).

 

 

Figure 1. Human subject placed in the lower body negative pressure (LBNP) chamber used to induce
progressive reductions in cardiac filling (preload), stroke volume, cardiac output and DO2 similar
to hemorrhage.

Currently used monitors track limited vital sign measurements and chemistries on an interval
basis (e.g., blood pressure) with limited capability for providing continuous, real-time physiological
assessments (e.g., electrocardiogram, pulse, oxygen saturation) and are often non-specific to magnitude
of hypovolemia. In addition, current commercial monitoring systems for emergency settings are bulky,
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power hungry, have wires interfering with patient care, and sensitive to motion artifact. Despite the
above findings and limitations, clinicians continue to rely upon standard vital signs or blood chemistries
when deciding to intervene because new and more effective monitoring technologies are not available.

2.3. Accuracy, Sensitivity, and Specificity

The effectiveness of any monitoring technology relies on its ability to provide accurate, sensitive,
and specific information about the clinical condition of the patient. In this regard, it is critical that
there be an assessment of the number of cases correctly identified as unhealthy (True Positive or
TP rate), correctly identified as healthy (True Negative or TN rate), incorrectly identified as healthy
(False Negative or FN), and incorrectly identified as unhealthy (False Positive or FP). Of course, all of
this requires an agreed upon reference gold standard. Once these parameters are quantified, accuracy,
sensitivity and specificity of the measurement can be assessed. Within this framework, an estimation
of accuracy can be calculated as the ratio of true positive and negative cases (TP plus TN) to the sum of
all measured cases. Mathematically, this can be stated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Since sensitivity of a measurement represents its ability to correctly identify unhealthy cases,
it can be calculated as the ratio of TP to the sum of both true positive and false negative unhealthy
cases. Mathematically, sensitivity can be stated as:

Sensitivity =
TP

TP + FN
(2)

Specificity refers to the ability of a diagnostic modality to correctly identify or predict those
individuals who are healthy. That is, specificity can be calculated as the ratio of TN to the sum of all
healthy cases and can be stated mathematically as:

Specificity =
TN

TN + FP
(3)

In addition to accuracy, sensitivity and specificity, Youden’s J statistic was first described in 1950 as
a way to capture a single measurement performance assessment of a dichotomous diagnostic test [33].
The Youden’s J statistic is calculated as:

J =
TP

TP + FN
+

TN

TN + FP
− 1 (4)

Or in its simplistic form:
J = Sensitivity + Speci f icity− 1 (5)

The values of the J statistic range from 0 to 1. A test that has as zero value gives the same
proportion of positive results for both those with the disease state and those without the disease state.
In other words, a J value of 0 is useless in assessing the status of a patient because it provides a positive
result for the same number of patients that are experiencing the disease state as those that are not.
Conversely, a J value of 1 demonstrates that an assessment modality accurately identifies all subjects
with a disease state and those without. Quantitative comparisons of sensitivity, specificity, and the J
statistic will be used in a subsequent section of this review for comparisons between standard vital
signs and hemodynamic measurements in order to identify those physiological signals required by
wearable sensors to optimize diagnostic accuracy.
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3. New Monitoring Approach: The Compensatory Reserve

3.1. Defining the Compensatory Reserve

The compensatory reserve is a concept that represents the sum total of all physiological mechanisms
that contribute to the maintenance of systemic DO2 to the body’s tissue. Conceptually, a compensatory
reserve can be calculated as the difference between a baseline value at rest (100% reserve) and the
value at the onset of hemodynamic instability (i.e., 0% reserve) [14,22–25,30,34–36]. In this regard,
each individual has a finite ‘reserve’ consisting of physiological feedback mechanisms designed to
compensate for low blood flow states. The complexity of this compensatory reserve is reflected by the
reported observation that the physiology of integrated compensation is unique for each individual [37].
When this capacity to compensate becomes depleted, a state of decompensated shock occurs. Clinically,
a compensatory reserve measurement (CRM) can be obtained from assessment of changing arterial
pressure waveform morphology associated with changes in compensation [14,18,21,23,30,38–54].
Figure 2 illustrates that each arterial waveform consists of two primary waves: (1) an ‘ejected’ wave
with features that are dictated by all compensatory mechanisms that influence myocardial function;
and (2) a ‘reflective’ wave with features that are influenced by all compensatory mechanisms involved
in the control of peripheral blood flow [14,22]. The LBNP model of hemorrhage has been used to
generate a large reference database of more than 650,000 arterial pressure analog waveforms generated
from noninvasive photoplethysmographic techniques and collected from more than 260 healthy men
and women with age range of 18 to 55 years across various stages of reduced central blood volume
to the point of decompensated shock (0% compensatory reserve) [22]. With application of advanced
machine-learning technology to this large physiologically-diverse database, the CRM algorithm
has ‘learned’ to provide rapid and continuous measures of changing arterial pressure waveform
morphology to the clinical caregiver with the ability to gain an early and accurate assessment of the
individual patient’s medical status without the need for demographic data or measures of the patient’s
baseline physiology (as depicted in Figure 3) [21,24].

 

 

Figure 2. Illustration of changes in features of the ejected and reflected arterial waveforms progressing
from a normal blood volume state to a state of reduced central blood volume (i.e., hypovolemia) such as
that experienced during hemorrhage. The red line indicates the integrated waveform that is clinically
observed. Modified from Convertino et al. [14,22,23].
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Figure 3. Diagram illustrating the overall framework envisioned for using the compensatory reserve
measurement (CRM) in pre-hospital care, including the details on the CRM machine learning algorithm
for assessing beat-to-beat analog arterial pressure waveform features in an individual patient unknown
to the algorithm. The unknown arterial waveform is compared to a large waveform “library” collected
from a diversity of human subjects exposed to progressive reductions in central blood volume.
The algorithm identifies the most similar waveform in the waveform library with the unknown sample
to generate a CRM value. Modified from Convertino et al. [14,18,21–23,55].

3.2. Performance Comparisons: Compensatory Reserve versus Vital Signs

Clinical measurements that inform and change the medical management of critically injured and
sick patients should demonstrate high diagnostic accuracy. One approach to assess diagnostic accuracy
includes direct comparisons of sensitivity and specificity across various monitoring capabilities.
Table 2 presents such comparisons for the prediction power of standard vital signs and hemodynamic
measurements for the onset of decompensated shock from data generated from LBNP experiments.
The measurement of compensatory reserve displayed by far the greatest sensitivity, indicating its
superior ability to correctly predict the onset of decompensated shock. Similarly, a greater specificity
generated from the measurement of compensatory reserve indicated its superiority compared to the
other vital signs and hemodynamic measures in the ability to identify patients who will not experience
decompensated shock. The higher specificity of CRM reflects the failure of standard vital signs
and hemodynamic measures alone to recognize the difference between individuals who are ‘good’
compensators from those who are ‘poor’ compensators [18,21–23,31,56–59]. Perhaps most striking
is that standard vital signs and hemodynamic measurements have consistently been shown to lack
sufficient accuracy as diagnostic tools to provide reliable clinical information [18,23,38,39,54,60,61].
In contrast, the ability of CRM to provide early reliable information with acceptable diagnostic accuracy
is reflected by it being the only measurement with a Youden’s J index above the discriminative threshold
value of 0.5 that confirms a useful clinical result [33,62] (Table 2).
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Table 2. Sensitivity, specificity and Youden’s J index of traditional vital signs and hemodynamic
responses for prediction of the onset of decompensated shock secondary to progressive central
hypovolemia. Modified from Convertino et al. [14,22,23,25].

Vital Sign Sensitivity Specificity Youden’s ‘J’ Index

Systolic Blood Pressure 0.80 0.17 0.03

Diastolic Blood Pressure 0.40 0.53 0.07

Mean Blood Pressure 0.60 0.33 0.07

Heart Rate 0.80 0.02 0.18

Stroke Volume 0.60 0.33 0.07

Cardiac Output 0.80 0.02 0.18

Pulse Pressure Variability 0.78 0.69 0.47

Peripheral Capillary Oxygen Saturation (SpO2) 0.60 0.00 0.40

Deep Muscle Oxygen Saturation (SmO2) 0.65 0.63 0.28

Compensatory Reserve 0.84–0.87 0.78–0.86 0.62–0.73

Note: For Youden’s Index, a value of 1 represents a perfect diagnostic test, while a value of 0 represents a test
with poor diagnostic accuracy. Stroke volume (SV), systolic, diastolic and mean blood pressures were measured
by finger photoplethysmograpy; heart rate (HR) was measured by standard electrocardiogram; cardiac output
was calculated as SV times HR; Pulse pressure variability and SpO2 was measured with standard pulse oximetry;
SmO2 was measured with near-infrared spectroscopy; compensatory reserve was measured by pulse oximetry.

The performance of standard vital signs and hemodynamic measurements to provide an early
and accurate prediction for onset of decompensated shock can also be assessed with comparisons
of sensitivity and specificity calculated using the Area Under the Curve (AUC) Receiver Operating
Characteristic (ROC) statistical analysis. Figure 4 provides ROC AUC comparisons of CRM with
various hemodynamic (top panel), metabolic (middle panel), and autonomic cardiac (bottom panel
as represented by metrics of heart rate variability and complexity) responses. The ROC AUC data in
Figure 4 are based on human data generated from experimentally-controlled progressive reductions
in central blood volume using the LBNP hemorrhage model [38,39,54,56,57,63]. Similar results have
been reported from experiments involving controlled hemorrhage in humans [25,61,64]. These latter
data corroborate the results presented in Table 2 that arterial waveform feature analysis provides
a monitoring technology with the greatest ability for early and accurate prediction for the onset of
decompensated shock.

Optimal management of significant traumatic hemorrhage and other compromising clinical
conditions is often delayed by failure to recognize a medical crisis due to the current reliance
on traditional vital signs and/or other standard physiological measures that represent a limited
assessment of a totally integrated compensatory response [22,24–29,54,61,64]. In this regard, the value
of monitoring the arterial waveform morphology for early detection of a clinical crisis using a CRM
algorithm has been well documented during actual controlled human hemorrhage in the laboratory
setting [14,22,25,38–42,44,50,52,53,61,64,65], and translated to early recognition of hypovolemia and
hypotension when used by first responders during simulated emergencies training exercises [66,67],
and in hospital critical care settings [20,21,43,45–47,49,51,60,68–72]. The comparative data regarding
sensitivity, specificity and diagnostic accuracy of various monitoring technologies presented in this
review provide compelling support for the notion that the development of wearable sensors must
include an ability to capture analog signals that allow for continuous real-time analysis of changes
in features of the analog arterial waveform. It should be recognized that a functional FDA-cleared
monitoring system with the CRM algorithm integrated into a standard finger pulse oximeter has
been developed and tested [20,22,30,69]. However, such technology has proven to provide limited
information to the clinical caregiver about patient status because of unstable positioning and movement
artifact. In this regard, we use the following sections of this review to emphasize the need for developing
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new wearable sensor technologies that can be integrated with the established CRM algorithm in order
to advance vital sign monitoring for emergency critical care.

 

 

Figure 4. ROC AUC comparisons for prediction of onset of decompensated shock between measures
of compensatory reserve (CRM) and standard vital signs (top panel), metabolic metrics (middle panel),
and autonomic nervous system responses measured by indices of heart rate variability (HRV) and
complexity (HRC) (bottom panel). SBP, systolic blood pressure; HR, heart rate; PI, perfusion index; PPV,
pulse pressure variability; RR, respiratory rate; StO2, tissue oxygen saturation; EtCO2, end-tidal carbon
dioxide; RRISD, R-to-R interval standard deviation; HF, high frequency; LF, low frequency; RMSSD,
root mean square standard deviation; pNN50, percentage of RRI that vary by at least 50 ms; DFA detrended
fluctuation analysis; SampEn, sample entropy; StatAv, stationarity.
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4. Current Sensor Technology

4.1. Arterial Waveform Measurement Modalities Amenable to Wearable Technology: Obtaining Reliable High
Signal-to-Noise Features

The original studies establishing the basis for CRM [30] used arterial waveforms measured by
volume-clamping based continuous blood pressure measurement technology (i.e., Finapres) [73].
Such arterial waveforms have been demonstrated to accurately represent corresponding peripheral
blood pressure waveforms obtained using arterial lines [74], and are thereby considered to be a reference
standard for non-invasive continuous blood pressure measurement. While the volume-clamping
technique is quite accurate at acquiring analog arterial pressure waveforms, the system required is
expensive, large, and power-hungry, and thus unsuitable for point-of-care settings. Accordingly,
to facilitate translation of CRM outside the lab, investigators have explored other techniques for
obtaining analog arterial waveforms that resemble blood pressure waveforms; namely, the most
commonly employed signal has been the photoplethysmogram (PPG) [39].

Example sensing modalities that provide arterial pressure waveforms (or analogs) that are directly
amenable to CRM are summarized in Figure 5. Figure 5a shows volume-clamping based finger cuff BP
measurement (i.e., Finapres), which uses an LED and photodiode (PD) to capture the blood volume as
a function of time in the finger, and uses a servo controller to modify cuff pressure (Pcuff) dynamically
to set the finger blood volume to a constant level. The output pressure required from the controller is
thus the hemodynamic pressure inside the artery, and a waveform can be outputted representing the
continuous arterial BP signal. The measurement can only be obtained from the finger.

 

 

 

Figure 5. Illustration of different waveforms capture techniques that can provide a blood pressure
(BP(t)) or blood volume pulse (BVP(t)) signal. (a) Volume-clamping based finger-cuff BP measurement
(i.e., Finapres). (b) Photoplethysmography (PPG) based blood volume pulse measurement. (c) Tonometry
based arterial pulse measurement. Image created based on Lee and Nam [75]. (d) Ultrasound array
based arterial pulse measurement. Image created based on Wang and Xu [76].

Note that the approaches besides volume-clamping based BP measurement would result in
waveform characteristics that would differ from the existing library of LBNP based arterial waveform
measures used for CRM. Thus, a small data collection of approximately ten subjects may be needed
with the new modality such that transfer learning or fine tuning methods for retraining the algorithm
can be implemented. Following such methodology, the existing database can still be leveraged with
the new sensing modality to yield accurate CRM results.
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4.1.1. PPG Signals

Figure 5b shows PPG measurement, which hinges on the acquisition of the BVP waveform,
by illuminating a tissue volume with an LED and measuring the transmitted light through the
tissue with a PD (PDT) or the light reflected back from the tissue volume with a PD (PDR) [53,77].
The measurement is most commonly obtained from the finger in transmissive mode, but in reflective
mode can be measured from other well perfused sites on the body (e.g., forehead, forearm, wrist).
PPG is the basis for pulse oximeters, used ubiquitously for measuring arterial oxygen saturation in
clinical settings. With each heartbeat, the volume of arterial blood in the tissue being illuminated
decreases during diastole and increases during systole, and thus the light passing through the tissue
is brighter (diastole) and dimmer (systole) at the photodiode. Since the volumetric expansion and
contraction of the arteries is dependent on pulse pressure and arterial compliance, the PPG waveform
closely resembles the underlying arterial blood pressure waveform in shape. While PPG waveforms
are captured on commercially available pulse oximeter instrumentation, such waveforms may not be
reliable for CRM since the PPG signals are heavily filtered and processed [77]. PPG can be measured in
both transmissive and reflectance mode: for transmissive mode operation, the LED and photodiode
are on opposite sides of the tissue (typically the earlobe, fingertip, or toe); for reflectance mode
operation, the LED and photodiode are adjacent to one another on the same side of the tissue, and thus
the locations for measurement can theoretically be anywhere on the body with sufficient perfusion
(e.g., forehead, forearm, chest, and wrist). The main disadvantages of reflectance-mode PPG are that the
signal quality is lower [78], the measurement varies with positioning and the distance between the LED
and the photodiode, and the signal is more affected by motion artifacts [79,80]. Recent developments in
device fabrication have allowed PPG sensing systems to be flexible and skin-interfaced for comfortable
use in long-term care scenarios [81,82]. Soft and stretchable optoelectronics sensing for transmissive
PPG measurement was demonstrated by Biswas, et al. [83]. An interesting approach not requiring
an LED but rather using ambient light for PPG sensing was demonstrated by Han, et al.; with this
approach, PPG signals with distinguishable heartbeat peaks were recorded and corresponding pulse
oximetry readings were obtained [84].

4.1.2. Tonometry Signals

Figure 5c shows tonometry measurement, which involves the application of a force to flatten
(or applanate) an artery with a given applanation force (Fappl), and a pressure sensor applied to the
skin above the artery then records the time varying fluctuations in pressure applied by the blood on
the arterial wall [85,86]. With perfect applanation, this pressure waveform (BP(t)) is exactly equal
to arterial pressure; however, in practice, applanation is usually imperfect and thus the waveform
simply resembles BP. The most common measurement site is the radial artery. The advantage in
tonometer measurements as compared to PPG is that substantially lower power consumption is
required [87]—PPG employs active sensing where light is delivered to the tissue and then the resultant
transmitted or reflected light level is detected; tonometry is a passive measurement where a transducer
simply records the distension of the arterial wall. However, the major disadvantage in tonometry as
compared to PPG is that the measurement is highly dependent on the location, and the transducer
must be reliably placed over a superficial artery.

4.1.3. Wearable Ultrasound

Figure 5d shows ultrasound array based measurement, which uses an array of ultrasound
transducers in a flexible form factor placed on the skin to measure arterial diameter changes versus
time for a large artery (e.g., the carotid artery). Changes in arterial diameter correspond to the BVP,
but are measured from a deeper artery as compared to PPG or tonometry, and thus may be less
affected by vasoconstriction. A common measurement site is the carotid artery. Recent work has
demonstrated that a blood pressure waveform can be measured from the surface of the skin based on
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this principle using a nano-engineered flexible ultrasound array [88]. The device acquires time-varying
changes in blood vessel diameter, which are then mapped to an estimate of the underlying blood
pressure waveforms. By employing ultrasound to measure this pulsating blood vessel diameter,
the device can focus on larger arteries, namely the carotid, which are deeper under the skin than PPG-
or tonometer-based approaches can access. Accordingly, reduced sensitivity to sensor positioning has
been demonstrated as compared to tonometry, and accurate extraction of arterial pressure waveforms
has been achieved [88]. Note that this approach requires calibration to acquire the absolute blood
pressure values (i.e., systolic, diastolic, and mean arterial pressure), but the waveforms measured are
likely the closest to the underlying blood pressure waveforms of the three prior modalities discussed
here. An additional concern that should be noted with this approach is that the detection of the
artery may require manual positioning and/or image annotation in broad use; however, the array of
transducers employed on the device may limit such a need for expert annotation.

4.1.4. Cardio-Mechanical Vibrations

While CRM to date has focused on arterial pulse waveforms measured peripherally, there have
also been studies employing cardiogenic vibration signals as an index of hypovolemia based on
machine learning techniques in both human subjects (LBNP) [89] and animal models [90]. Note that
since these measurements to do not directly yield an arterial pulse waveform, they are not depicted
in Figure 5 to avoid confusion. Cardiogenic vibration signals include the seismocardiogram (SCG)
and ballistocardiogram (BCG), both of which originate from the vibrations of the chest (SCG) or
whole body (BCG) in response to the ejection of blood from the heart and movement of blood
through the vasculature [91]. SCG and BCG signals can be measured accurately with inexpensive and
commercially available sensors [92,93], and have been demonstrated to be reliable even in the presence
of movement [94,95]. As with the other sensing modalities described above, soft, conformal patch
based sensing of SCG signals is also possible: Liu, et al. describe an epidermal sensing system for
providing mechano-acoustic measurements of cardiovascular health, including heart sounds and SCG
signals [96]. Machine learning based analyses performed on these waveforms demonstrated that high
quality estimation of blood volume status (analogous to CRM) could be obtained in a pig model of
hemorrhage [90]. Importantly, for persons suffering polytraumatic injuries who may not have an
available digit or ear, and may have extensive vascular damage that could reduce PPG waveform
quality due to increased wave reflections, such cardiogenic vibrations may provide an alternative
waveform for CRM-based volume status assessment.

4.1.5. Other Emerging Wearable Sensing Devices

The field of wearable sensing has seen a myriad of new devices over the past several years, driven by
the use of new materials and fabrication approaches, developments in chemical sensing, and the
advent of soft, flexible, and stretchable electronics. These new devices promise to deliver comfortable
and high-performance sensing of cardiovascular health parameters with thin, flexible, and stretchable
mechanical footprints that resemble the properties of human skin. Emerging technologies of interest
also include biodegradable sensors such as the one described in Boutry, et al., for tonometry-based pulse
signature sensing [97], and combined chemical/electrophysiological hybrid biosensing systems such as
the one presented in Imani, et al. [98]. Additionally, while not discussed in detail here, wearable sensing
systems measuring impedance plethysmogram waveforms [99], or magnetic inductance based cardiac
waveforms [100], may also be employed.

Table 3 provides a comparison of state-of-the-art sensing technologies for arterial pulse waveform
analogs, including summarizing the principle of operation, the typical locations on the body where the
signals are captured, and the advantages and disadvantages of each method for application to CRM.
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Table 3. Comparison of Sensing Technologies for Arterial Pulse Waveform Analogs.

Sensing Modality Principle of Operation
Typical

Location(s)
Advantages Disadvantages

PPG
Optical sensing of blood

volume changes in a
small volume of tissue

Transmissive:
Finger, Earlobe, Toe

Reflective: Wrist,
Forehead, Forearm

Waveform resembles arterial
pressure curves; signal

quality is typically high;
well-established sensing

modality and already used
in many clinical settings (i.e.,

pulse oximetry)

Signal originates mainly from
the cutaneous vasculature and

thus is affected by
hypoperfusion (peripheral
vasoconstriction); reflective
PPG is more convenient in

terms of placement but suffers
from motion artifacts and

placement-based variability in
signal shape; requires

substantial current
consumption (active sensing)

Tonometry

Force/pressure sensing of
arterial wall

displacement at the
surface of the skin

Wrist (Radial
Artery)

With applanation of the
artery, captures true blood

pressure waveform and does
not require calibration; low

power measurement since it
is a passive sensing

approach

Applanation is challenging in
practice and not reliable;

measurement depends highly
on placement; coupling to a
superficial artery is needed

Ultrasound-Based BP
Ultrasound sensing of

arterial diameter changes
in deeper/larger arteries

Neck (Carotid
Artery)

Measurements can be
obtained from deeper

arteries (e.g., carotid) and
thus are less affected by
hypoperfusion and/or

vasoconstriction; arrayed
sensing approach may

reduce the variability in
signal shape due to sensor

positioning

Active measurement which
requires substantial power

consumption to deliver
ultrasound energy to the body

and process the resultant
signals; may require manual

approaches to annotating
images

Cardiogenic
Vibration

Mechanical vibration
sensing of blood

movement through
vasculature

Chest (Sternum)

Passive measurements that
can be captured

non-intrusively with sensors
on the chest; represent more
central cardiac activity since

the origination is from
cardiac vibrations rather

than peripheral blood
volume pulse; minimal
affects due to peripheral

vasoconstriction

Not a direct arterial pressure
waveform analog; requires

coupling to the chest with an
adhesive; may be sensitive to
positioning of the sensor on

the body

4.2. Mitigating the Effects of External Vibrations and Motion Artifacts

In point-of-care settings, sensing systems for obtaining arterial pulse waveforms often encounter
external vibration or motion related artifacts (e.g., battlefield settings or civilian patient transport).
These artifacts can greatly impact the quality of the waveforms that are measured, and result in errors
in the computation of clinically relevant information (e.g., CRM). External vibrations from transport
vehicles during en route care, for example, can be quite large (e.g., on an ambulance or helicopter).
Motion artifacts will always be present in the measured signals, unless the patient is unconscious,
and may result from either whole-body movements or even more subtle sources such as respiration,
talking, or coughing. There are many approaches for mitigating the effects of vibration and motion
artifacts in arterial waveform measurements, but the most common techniques involve: (1) improving
the signal quality at the source as much as possible, (2) providing auxiliary sensors to detect and cancel
motion artifacts from the measured waveforms, and (3) quantifying signal quality on a beat-by-beat
basis to facilitate rejection of lower quality waveforms from the subsequent data analysis. Figure 6
shows an example of BP and PPG signals (green, red, and infrared wavelength) captured from a
representative subject using a wearable watch technology [101] (a) while at rest (b) and following
vigorous exercise with example motion artifacts (c).
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Figure 6. Example PPG signals taken together with electrocardiogram (ECG) and BP measurements as
a reference for comparison. (a) The signals were obtained by the Georgia Tech SeismoWatch hardware
as described in Ganti, et al. [102]. The BP waveforms shown for comparison were obtained with the
ccNexfin volume-clamping based finger cuff BP system (Edwards Lifesciences). (b) Signals measured
from a subject at rest. Note that the PPG waveforms closely resemble the BP waveforms in shape,
with the red and IR (PPGr and PPGi, respectively) containing many of the same characteristics expected
in an arterial pulse waveform, while green (PPGg) appears to be a smoothed version of the BP waveform.
(c) Signals measured from the same subject following heavy exercise with motion artifacts corrupting
the waveforms. The red and IR signals are corrupted heavily while the green PPG signal quality
remains high.

4.2.1. Improving the Signal Quality at the Source

For reflectance-mode PPG signals, signal quality is optimized at the source against motion artifacts
through the use of green wavelengths rather than red or infrared (IR) [79,102,103]; green penetrates
less deeply into the skin, and thus is less attenuated through the forward and backward path through
the tissue. Providing non-zero contact pressure between the PPG sensor and the skin can also increase
the amplitude of the measured waveforms [53,104]. Specifically, the PPG amplitude is maximized
when the contact pressure is equal to the mean arterial pressure (i.e., the transmural pressure is zero).
Thus, to reduce the impact of motion artifacts, green wavelengths can be employed for PPG detection,
and a non-zero contact pressure can be applied between the sensor and the skin to optimize signal
level. The waveforms shown in Figure 6c visually demonstrate this relationship between wavelength
and resultant PPG signal quality during motion artifacts. While the red and IR PPG signals are quite
heavily affected by the motion artifacts, the green PPG signal quality remains high. Nevertheless,
note that many of the key waveform features captured by the red and IR PPG are missing in the green
PPG signal due to the fact that the green signal captures primarily the superficial cutaneous vasculature
while red and IR penetrate deeper into the skin.

For tonometry-based arterial pulse waveform measurements, optimizing signal quality at
the source fundamentally requires robust coupling between the superficial artery and the sensor.
Tonometry requires a backing force such that the sensor remains consistently in contact with the arterial
wall throughout the measurement duration. Thus, a strap is typically used to provide such backing
force, for example for radial artery tonometry, and the tightness of the strap must be optimized to be
high enough such that the sensor remains in contact with the artery but not high enough to occlude the
artery [105]. To reduce the variability due to sensor placement, arrayed sensors are also often used for
tonometry based recordings [106]. The sensing system can thus be placed over the palmar aspect of
the wrist near the radius bone, and software based approaches can be used to find the waveform with
the highest signal quality from the array of sensors.
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Techniques for optimizing wearable ultrasound array based arterial pulse waveforms are not
yet well understood since the measurement modality is relatively new. However, from an intuitive
perspective it is likely that the ability to accurately place the ultrasound array in the proximity of the
artery from which measurements will be taken (e.g., the carotid artery), and the coupling between
the sensor array and the skin (likely requiring acoustic matching such as ultrasound gel), will play
important roles in ensuring high quality waveforms are obtained.

For cardiogenic vibration signals, there are also several aspects that must be considered to optimize
signal quality at the source. First, the sensing system should use a sensor with sufficiently low noise
floor to capture the micro-vibrations. In the case of SCG signals for example, only accelerometers with
input-referred noise of 50 µgrms/

√
Hz or lower should be used. The standard accelerometers deployed

on wearable sensing systems and smartphones for inertial measurement have much higher noise than
this, with values typically in the 150–300 µgrms/

√
Hz range. Second, leveraging the information from

all three axes of the SCG signal, or even including rotational components (i.e., gyrocardiography) as
captured with a gyroscope, has been demonstrated to yield greater information than the dorso-ventral
axis alone [107]. Third, and perhaps most importantly, the sensor should be rigidly adhered to the
body such that movement of the person wearing the sensor does not lead to detachment or other major
mechanical disturbances.

4.2.2. Providing Auxiliary Sensors to Detect and Cancel Motion Artifacts

A commonly-used technique for reducing the impact of motion artifacts on PPG signals is
the inclusion of an auxiliary accelerometer to detect and provide digital subtraction of motion
artifacts [108–110]. The captured acceleration signal provides a noise reference that can be used via
adaptive noise cancellation or other signal processing approaches to remove such artifacts from the PPG
signal. An alternative approach to reducing motion artifact influence on wearable cardio-mechanical
signals leverages auxiliary sensing to capture other signals of cardiovascular origin, namely the
electrocardiogram (ECG) [111,112]. Subsequently, rather than removing motion artifacts, the signal
strength itself can be bolstered. While the authors are not aware of such auxiliary sensor-based methods
for increasing robustness to motion artifacts in tonometry and ultrasound-based arterial waveform
capture modalities, intuitively such methods should be directly applicable to these modalities as well.
The fundamental approach of either providing a noise reference for noise cancellation or a timing
reference for ensemble averaging or otherwise strengthening the signal characteristics are valid for
these modalities similarly as for PPG signals.

For cardiogenic vibration waveforms, several approaches have been demonstrated in the existing
literature for detecting and cancelling artifacts due to motion or external vibration. Auxiliary sensors
for detecting or cancelling motion artifacts from BCG signals include foot electromyogram (EMG)
sensing to determine periods of elevated motion as well as external geophone based recordings
of floor vibrations for subsequent cancellation [113,114]. Furthermore, signal enhancement using
concurrent ECG signals for ensemble averaging, synchronized moving averaging, and otherwise beat
segmentation is standard practice.

4.2.3. Quantifying Signal Quality for Rejecting Lower Quality Waveforms

A third approach that can be leveraged to mitigate the effects of external vibrations and motion
artifacts on arterial pulse waveforms is the automatic quantification of signal quality on a beat-by-beat
basis. Such signal quality assessment is an important tool towards quantifying when the waveforms
should be inputted to subsequent machine learning steps (e.g., CRM computation) or, alternatively,
when waveform segments should be rejected. Signal quality indices have thus been developed
for PPG and cardio-mechanical signals, and have been validated in recent literature [115–117].
The challenge in such algorithms is that both the signal (of cardiac origin) and the noise are
non-stationary, and there is substantial variability in signal shape across subjects and also sensor
locations. Thus, conventional approaches such as matching the morphology of measured PPG
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(or tonometry, ultrasound, cardiogenic vibration signals, etc.) to previous recordings or a database
of recordings is not an appropriate technique. Rather, waveform matching must be accomplished
using techniques such as dynamic time warping (DTW) [118], which allow for stretching of each beat
against the templates with which the beat is compared. DTW-based approaches have demonstrated
promise for arterial pulse signals [116]. The establishment of such automated techniques for signal
quality assessment—as compared to manual annotation which has been employed in many studies
in the existing literature—will represent an important step towards facilitating translation of these
sensing approaches to point-of-care settings. Note that, whenever possible, techniques for improving
signal quality should be employed rather than techniques for only assessing signal quality. However,
in practical settings, many sources of artifacts, noise, and interference corrupting physiological
measurements cannot be completely attenuated by signal capture optimization, nor can they be
completely removed by auxiliary sensors and associated noise reduction algorithms; thus, the ability to
detect and remove low quality events is a key element in delivering robust and reliable CRM outputs
to caregivers for subsequent clinical decision making.

4.3. Eliminating the Need for Baseline Measures/Calibration

The use of wearable sensors for CRM-based hypovolemia assessment in field settings may not
allow for baseline data to be obtained; for example, if one envisions a person injured in a major car
accident, an emergency medical technician (EMT) may simply apply a wearable patch or system to
the person when arriving on the scene after exsanguination has begun. Accordingly, algorithms for
quantifying compensatory reserve based on machine learning should be globalized rather than
designed in a patient-specific manner (see Figure 3). Features leveraged by the algorithm should thus
be based on relative measures (e.g., timing intervals, variability measures, etc.) rather than absolute
measures (e.g., absolute amplitude of the signal). Moreover, machine learning algorithms should be
trained using leave-one-subject-out cross-validation (LOSO-CV) rather than n-fold CV, with at least
one subject deliberately left out of the training set such that the algorithm focuses on global trends in
the sensed waveforms. Finally, since sensor placement can impact the shape of waveforms measured
for many reflective PPG [79], tonometry, ultrasound-based blood pressure, and cardiogenic vibration
signals [117], such placement-dependent changes should be thoroughly quantified, and methods for
harnessing underlying dynamics should be leveraged as compared to features that require manual
annotation [118].

4.4. Real-Time Measurements and Processing for Display

An important consideration is how to display the resultant information derived from the arterial
waveforms to the physician or caregiver. One option is to provide a dashboard type display with
perhaps a single numerical value indicating the compensatory status of the person (i.e., a CRM value).
Another option might be a red, yellow, or green indicator to provide information regarding the clinical
decisions to be made during triage (Figure 3). An exciting opportunity exists in the pairing of the
volume status information delivered through the automatic analysis of the arterial pulse waveforms
with autonomous critical care systems for combat casualty care. Scientists in the academic and
commercial domain are conducting research designed to develop systems and methods for providing
fluids autonomously to combat casualties based on physiological data [119–122]; providing more
in-depth measurements of volume status beyond traditional vital signs to such systems may yield
improved results in managing fluid for hemorrhaging patients or casualties. As different applications
and use cases emerge, it will be important to determine what processing will be applied at what stage
in the system. For example, in one implementation the signals may be wirelessly transmitted from the
wearable sensing system to a local smartphone, tablet, laptop, or other dedicated receiver, at which
point algorithms may be implemented on that receiver device to output a CRM to be displayed to
the caregiver. Another implementation that is possible is to incorporate the CRM machine learning
algorithm into the wearable hardware itself (i.e., computing on the edge), in which case the CRM value
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itself may be transmitted wirelessly or a readout may be provided on the hardware itself. Regardless
of where in the signal chain the processing is implemented, it will be necessary to consider security
and privacy concerns of the patient, as well as power consumption and associated battery life on the
wearable hardware itself.

4.5. Electronic Documentation in the Prehospital Setting

The ability to collect and analyze large quantities of data from trauma patients, particularly in
austere prehospital settings such as the battlefield, hinder the potential for understanding and
improving clinical process and performance [123]. In situations where battery life must be extended for
as long as possible, or when wireless transmission is otherwise not feasible, data storage locally on the
sensing system may be desired and implemented using micro secure digital (microSD) cards or other
non-volatile memory on board the system. The advantage to such local storage of all physiological
waveforms is that a detailed record can be kept of the data for subsequent analysis and/or evaluation
of the treatment approaches employed. Data extracted from all patients could then be used to
retrospectively determine which approaches were most successful, and care can then be optimized
accordingly with this evidence. In some instances, the amount of data being stored may be quite large,
and may necessitate compressed sensing approaches prior to digitization [124,125]. However, in most
cases—since physiological signals such as the PPG are typically of low bandwidth (<100 Hz)—direct
digitization and storage of data are feasible for many weeks of continuous recording.

4.6. Military Perspectives and Implications

In December 2013, the Director of the former Directorate of Combat and Doctrine Development
(currently the Capability Development Integration Directorate) signed a ‘Requirements Adjudication
Team’ memorandum that documented a military medical requirement for the measurement of
compensatory reserve. The Committee on Tactical Combat Casualty Care reaffirmed this requirement
by recommending “continued development and expedited fielding of technologies (such as the
compensatory reserve) that enable prehospital combat medical personnel to better evaluate the need
for and the adequacy of fluid resuscitation” [55]. As military missions of the future will be performed
in complex multi-domain operations (MDO) and/or involve large scale combat operations (LSCO)
with a possibility of limited air superiority, delays in early and rapid medical evacuation in addition
to mass casualty scenarios will require individualized triage decision support that will prove critical
for successful execution of prolonged field care. In the military setting, warfighters could wear a
sensor embedded on a wrist watch (e.g., Figure 6) or as part of their fighting ensemble system so
that the clinical status of injured casualties could support continuous hands-free documentation by
a combat medic using a remote monitoring device (e.g., phone). Since previous research has also
identified the CRM with the capability to track physical and physiological performance [70,126,127],
a military wearable sensor system that integrates the continuous monitoring of CRM could be used by
unit commanders as a real-time metric of performance readiness (e.g., manage impact of heat strain
and/or dehydration) as well as its use for optimizing combat casualty care of warfighters in austere
battlefield settings.

4.7. Future Directions

Future work is required to collectively advance the vision of enabling CRM-based assessment
of hypovolemia in field settings. Wearable sensing systems are needed with minimally obtrusive
form factors facilitating the accurate measurement of arterial pulse or cardio-mechanical waveforms
outside of laboratory settings. Such systems should likely employ multi-modal sensing approaches:
for example, PPG sensing can be combined with tonometry and/or cardiogenic vibration sensing to
ensure that if one modality experiences artifacts from motion or other confounding variables, the other
modality might still accurately capture cardiac signatures. The physiological origins of the signals
being measured, and the manner in which confounding variables such as environmental factors
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(e.g., ambient temperature), arrhythmias, other cardiovascular disease conditions, and high body mass
index of the patient may impact the algorithms and/or sensor design should be investigated further.
The specific features and signal modalities that might offer the most salient information regarding
volume status should continue to be studied through LBNP, heat stress/dehydration, and other
hypovolemia inducing protocols. These wearable sensing systems must be paired with state-of-the-art
machine learning algorithms to reduce noise and interference, automatically assess signal quality,
and output a reliable and robust indication of CRM. Designers of such hardware, firmware, and software
required for this framework should collaborate closely with subject matter experts such as medical
professionals and EMTs such that the user interface and display offered to these professionals provides
the information needed for rapid decision making in the challenging environment of prehospital
trauma care. Finally, extensive validation of these technologies as a whole must be conducted to ensure
that the performance of all components of the overall system are sufficiently robust to obtain regulatory
approval and ultimately improve outcomes.

5. Conclusions

As technology advances to facilitate the emergence of autonomous medical treatment systems as
well as early and accurate diagnosis and triage, the incorporation of sensors capable of supporting
measurements of CRM can ensure that patients who require emergency medical care (e.g., civilian
trauma patients or wounded service members) receive appropriate treatment interventions, even when
medical personnel are not available. As such, the development and availability of a single advanced
monitoring system that includes wearable sensors capable of capturing analog arterial waveforms
and integrating them with application of machine-learning algorithms (i.e., artificial intelligence) can
provide clinical and/or performance decision-support with the goal of optimizing health, safety and
wellbeing in prehospital and emergency room settings. In addition to offering robust performance,
human factors aspects of the sensing system design must be prioritized such that both the hardware
and clinician-facing displays seamlessly integrate into the workflow, making it easier for decisions to
be made in time-critical, challenging situations. Finally, such systems and associated algorithms as
described in this review paper may be applied to the diagnosis or management of other cardiovascular
conditions, such as heart failure management.

Author Contributions: Conceptualization, V.A.C., S.G.S., E.K.W., S.C., M.N.S., and O.T.I.; writing—original draft
preparation, V.A.C., S.G.S., O.T.I.; writing—review and editing, V.A.C., S.G.S., E.K.W., S.C., M.E.S., M.J.T., M.N.S.,
and O.T.I. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the U.S. Army Medical Research and Development Command and the
Congressionally Directed Medical Research Program (award number DM180240).

Acknowledgments: The authors thank Aiyana Helme for her assistance in preparing the manuscript and Venu
Ganti for his assistance with figure preparation.

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: Opinions or assertions contained herein are the private views of the authors and are not to be
construed as official or as reflecting the views of the Departments of the Army, Navy, and Air Force, or the
Department of Defense.

Copyright: V.A.C., S.G.S., E.K.W., S.C., M.E.S., and M.J.T. contributed to this manuscript as part of their official
duties for the federal government. Therefore, copyright is not applicable.

References

1. Charlari, E.; Intas, G.; Stergiannis, P.; Vezyridis, P.; Fildissis, G. The importance of vital signs in the triage of

injured patients. Crit. Care Nurs. Q. 2013, 35, 292–298. [CrossRef] [PubMed]

2. Booth, J. A short history of blood pressure measurement. Proc. R. Soc. Med. 1977, 70, 793–799. [CrossRef]

[PubMed]

55



Sensors 2020, 20, 6413

3. Schauer, S.G.; Naylor, J.F.; April, M.D.; Fisher, A.D.; Cunningham, C.W.; Fernandez, J.R.D.; Shreve, B.P.;

Bebarta, V.S. Prehospital resuscitation performed on hypotensive trauma patients in afghanistan:

The prehospital trauma registry experience. Mil. Med. 2019, 184, e154–e157. [CrossRef] [PubMed]

4. Naylor, J.F.; Fisher, A.D.; April, M.D.; Schauer, S.G. An analysis of radial pulse strength to recorded blood

pressure in the Department of Defense Trauma Registry. Mil. Med. 2020. [CrossRef]

5. Holcomb, J.B.; Salinas, J.; McManus, J.M.; Miller, C.C.; Cooke, W.H.; Convertino, V.A. Manual vital signs

reliably predict need for life-saving intervention in trauma patients. J. Trauma 2005, 59, 821–829. [CrossRef]

6. McManus, J.; Yershov, A.L.; Ludwig, D.; Holcomb, J.B.; Salinas, J.; Dubick, M.A.; Convertino, V.A.; Hinds, D.;

David, W.; Flanagan, T.; et al. Radial pulse character relationships to systolic blood pressure and trauma

outcomes. Prehospital Emerg. Care 2005, 9, 423–428. [CrossRef]

7. Keenan, S.; Riesberg, J.C. Prolonged field care: Beyond the “Golden Hour”. Wilderness Environ. Med. 2017,

28, S135–S139. [CrossRef]

8. Ball, J.A.; Keenan, S. Prolonged field care working group position paper: Prolonged field care capabilities.

J. Spec. Oper. Med. 2015, 15, 76–77.

9. Bickell, W.H.; Wall, M.J., Jr.; Pepe, P.E.; Martin, R.R.; Ginger, V.F.; Allen, M.K.; Mattox, K.L. Immediate versus

delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N. Engl. J. Med. 1994,

331, 1105–1109. [CrossRef]

10. Griggs, J.E.; Jeyanathan, J.; Joy, M.; Russell, M.Q.; Durge, N.; Bootland, D.; Dunn, S.; Sausmarez, E.D.;

Wareham, G.; Weaver, A.; et al. Mortality of civilian patients with suspected traumatic haemorrhage receiving

pre-hospital transfusion of packed red blood cells compared to pre-hospital crystalloid. Scand. J. Trauma

Resusc. Emerg. Med. 2018, 26, 100. [CrossRef]

11. Huang, G.S.; Dunham, C.M. Mortality outcomes in trauma patients undergoing prehospital red blood cell

transfusion: A systematic literature review. Int. J. Burns Trauma 2017, 7, 17–26. [PubMed]

12. Bellamy, R.F. The causes of death in conventional land warfare: Implications for combat casualty care

research. Mil. Med. 1984, 149, 55–62. [PubMed]

13. Eastridge, B.J.; Hardin, M.; Cantrell, J.; Oetjen-Gerdes, L.; Zubko, T.; Mallak, C.; Wade, C.E.; Simmons, J.;

Mace, J.; Mabry, R.; et al. Died of wounds on the battlefield: Causation and implications for improving

combat casualty care. J. Trauma 2011, 71, S4–S8. [CrossRef] [PubMed]

14. Convertino, V.A.; Koons, N.J.; Suresh, M. The physiology of human hemorrhage and Compensation. Comp.

Physiol. 2020, in press.

15. April, M.D.; Becker, T.E.; Fisher, A.D.; Naylor, J.F.; Schauer, S.G. Vital sign thresholds predictive of death in

the combat setting. Am. J. Emerg. Med. 2020. [CrossRef] [PubMed]

16. Eastridge, B.J.; Salinas, J.; McManus, J.G.; Blackburn, L.; Bugler, E.M.; Cooke, W.H.; Convertino, V.A.;

Wade, C.E.; Holcomb, J.B. Hypotension begins at 110 mm Hg: Redefining “hypotension” with data. J. Trauma

2007, 63, 291–297. [CrossRef] [PubMed]

17. Koons, N.J.; Nguyen, B.; Suresh, M.R.; Hinojosa-Laborde, C.; Convertino, V.A. Tracking DO2 with

compensatory reserve during whole blood resuscitation in baboons. Shock 2020, 53, 327–334. [CrossRef]

18. Convertino, V.A.; Koons, N.J. The compensatory reserve: Potential for accurate individualized goal-directed

whole blood resuscitation. Transfusion 2020, 60, S150–S157. [CrossRef]

19. Thiele, R.H.; Nemergut, E.C.; Lynch, C. The physiologic implications of isolated alpha(1) adrenergic

stimulation. Anesth. Analg. 2011, 113, 284–296. [CrossRef] [PubMed]

20. Convertino, V.A.; Wampler, M.R.; Johnson, M.; Alarhayem, A.; Le, T.D.; Nicholson, S.; Myers, J.G.; Chung, K.K.;

Struck, K.R.; Cuenca, C.; et al. Validating clinical threshold values for a dashboard view of the compensatory

reserve measurement for hemorrhage detection. J. Trauma Acute Care Surg. 2020, 89, S169–S174. [CrossRef]

21. Convertino, V.A.; Grudic, G.; Mulligan, J.; Moulton, S. Estimation of individual-specific progression to

impending cardiovascular instability using arterial waveforms. J. Appl. Physiol. 2013, 115, 1196–1202.

[CrossRef] [PubMed]

22. Convertino, V.A.; Wirt, M.D.; Glenn, J.F.; Lein, B.C. The compensatory reserve for early and accurate

prediction of hemodynamic compromise: A review of the underlying physiology. Shock 2016, 45, 580–590.

[CrossRef] [PubMed]

23. Convertino, V.A.; Schiller, A.M. Measuring the compensatory reserve to identify shock. J. Trauma Acute

Care Surg. 2017, 82, S57–S65. [CrossRef] [PubMed]

56



Sensors 2020, 20, 6413

24. Convertino, V.A.; Moulton, S.L.; Grudic, G.Z.; Rickards, C.A.; Hinojosa-Laborde, C.; Ryan, K.L. Use of

advanced machine-learning techniques for non-invasive monitoring of hemorrhage. J. Trauma 2011,

71, S25–S32. [CrossRef] [PubMed]

25. Convertino, V.A.; Cardin, S.; Batchelder, P.; Grudic, G.Z.; Mulligan, J.; Moulton, S.L.; MacLeod, D.

A novel measurement for accurate assessment of clinical status in patients with significant blood loss:

The compensatory reserve. Shock 2015, 44, 27–32. [CrossRef]

26. Orlinsky, M.; Shoemaker, W.; Reis, E.D.; Kerstein, M.D. Current controversies in shock and resuscitation.

Surg. Clin. N. Am. 2001, 81, 1217–1262. [CrossRef]

27. Wo, C.C.; Shoemaker, W.C.; Appel, P.L.; Bishop, M.H.; Kram, H.B.; Hardin, E. Unreliability of blood pressure

and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit. Care Med. 1993,

21, 218–223. [CrossRef]

28. Bruijns, S.R.; Guly, H.R.; Bouamra, O.; Lecky, F.; Lee, W.A. The value of traditional vital signs, shock index,

and age-based markers in predicting trauma mortality. J. Trauma Acute Care Surg. 2013, 74, 1432–1437.

[CrossRef]

29. Parks, J.K.; Elliott, A.C.; Gentilello, L.M.; Shafi, S. Systemic hypotension is a late marker of shock after trauma:

A validation study of advanced trauma life support principles in a large national sample. Am. J. Surg. 2006,

192, 727–731. [CrossRef]

30. Moulton, S.L.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A. Running on empty? The compensatory reserve

index. J. Trauma Acute Care Surg. 2013, 75, 1053–1059. [CrossRef]

31. Hinojosa-Laborde, C.; Howard, J.T.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A. Comparison of comensatory

reserve during lower-body negative pressure and hemorrhage in nonhuman primates. Am. J. Physiol. Regul.

Integr. Comp. Physiol. 2016, 310, R1154–R1159. [CrossRef] [PubMed]

32. Hinojosa-Laborde, C.; Shade, R.E.; Muniz, G.W.; Bauer, C.; Goei, K.A.; Pidcoke, H.F.; Chung, K.K.; Cap, A.P.;

Convertino, V.A. Validation of lower body negative pressure as an experimental model of hemorrhage.

J. Appl. Physiol. 2014, 116, 406–415. [CrossRef] [PubMed]

33. Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [CrossRef]

34. Convertino, V.A.; Rickards, C.A.; Ryan, K.L. Autonomic mechanisms associated with heart rate and

vasoconstrictor reserves. Clin. Auton. Res. 2012, 22, 123–130. [CrossRef]

35. Engelke, K.A.; Doerr, D.F.; Crandall, C.G.; Convertino, V.A. Application of acute maximal exercise to protect

orthostatic tolerance after simulated microgravity. Am. J. Physiol. 1996, 271, R837–R847. [CrossRef] [PubMed]

36. Convertino, V.A. G-Factor as a tool in basic research: Mechanisms of orthostatic tolerance. J. Gravit. Physiol.

1999, 6, 73–76.

37. Carter, R., III; Hinojosa-Laborde, C.; Convertino, V.A. Variability in integration of mechanisms associated with

high tolerance to progressive reductions in central blood volume: The compensatory reserve. Physiol. Rep.

2016, 4, e12705. [CrossRef]

38. Howard, J.T.; Janak, J.C.; Hinojosa-Laborde, C.; Convertino, V.A. Specificity of compensatory reserve and

tissue oxygenation as early predictors of tolerance to progressive reductions in central blood volume. Shock

2016, 46, 68–73. [CrossRef]

39. Janak, J.C.; Howard, J.T.; Goei, K.A.; Weber, R.; Muniz, G.W.; Hinojosa-Laborde, C.; Convertino, V.A. Predictors

of the onset of hemodynamic decompensation during progressive central hypovolemia: Comparison of

the peripheral perfusion index, pulse pressure variability, and compensatory reserve index. Shock 2015,

44, 548–553. [CrossRef]

40. Chew, M.S.; Aneman, A. Haemodynamic monitoring using arterial waveform analysis. Curr. Opin. Crit. Care

2013, 19, 234–241. [CrossRef]

41. Convertino, V.A. Blood pressure measurement for accurate assessment of patient status in emergency medical

settings. Aviat. Space Environ. Med. 2012, 83, 614–619. [CrossRef] [PubMed]

42. Convertino, V.A.; Cooke, W.H.; Holcomb, J.B. Arterial pulse pressure and its association with reduced stroke

volume during progressive central hypovolemia. J. Trauma 2006, 61, 629–634. [CrossRef] [PubMed]

43. Davies, S.J.; Vistisen, S.T.; Jian, Z.; Hatib, F.; Scheeren, T.W.L. Ability of an arterial waveform analysis-derived

hypotension prediction index to predict future hypotensive events in surgical patients. Anesth. Analg. 2020,

130, 352–359. [CrossRef] [PubMed]

44. Hametner, B.; Wassertheurer, S. Pulse Waveform Analysis: Is it ready for prime time? Curr. Hypertens. Rep.

2017, 19, 73. [CrossRef]

57



Sensors 2020, 20, 6413

45. Hatib, F.; Jian, Z.; Buddi, S.; Lee, C.; Settels, J.; Sibert, K.; Rinehart, J.; Cannesson, M. Machine-learning

algorithm to predict hypotension based on high-fidelity arterial pressure waveform analysis. Anesthesiology

2018, 129, 663–674. [CrossRef]

46. Kendale, S.; Kulkarni, P.; Rosenberg, A.D.; Wang, J. Supervised machine-learning predictive analytics for

prediction of postinduction hypotension. Anesthesiology 2018, 129, 675–688. [CrossRef]

47. Kim, S.K.; Shin, W.J.; Kim, J.W.; Park, J.Y.; Hwang, G.S. Prediction of hyperdynamic circulation by arterial

diastolic reflected waveform analysis in patients undergoing liver transplantation. Blood Press. Monit. 2016,

21, 9–15. [CrossRef]

48. Thiele, R.H.; Durieux, M.E. Arterial waveform analysis for the anesthesiologist: Past, present, and future

concepts. Anesth. Analg. 2011, 113, 766–776. [CrossRef]

49. Wasicek, P.J.; Teeter, W.A.; Yang, S.; Hu, P.; Gamble, W.B.; Galvagno, S.M.; Hoehn, M.R.; Scalea, T.M.;

Morrison, J.J. Arterial waveform morphomics during hemorrhagic shock. Eur. J. Trauma Emerg. Surg. Off.

Publ. Eur. Trauma Soc. 2019. [CrossRef]

50. Van der Ster, B.; Westerhof, B.; Stock, W.; Van Lieshout, J. Detecting central hypovolemia in simulated

hypovolemic shock by automated feature extraction with principal component analysis. Physiol. Rep. 2018,

6, e13895. [CrossRef]

51. Holder, A.L.; Clermont, G. Using what you get: Dynamic physiologic signatures of critical illness. Crit. Care Clin.

2015, 31, 133–164. [CrossRef] [PubMed]

52. Esper, S.A.; Pinsky, M.R. Arterial waveform analysis. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 363–380.

[CrossRef] [PubMed]

53. Reisner, A.; Shaltis, P.A.; McCombie, D.; Asada, H.H. Utility of the photoplethysmogram in circulatory

monitoring. Anesthesiology 2008, 108, 950–958. [CrossRef] [PubMed]

54. Schiller, A.M.; Howard, J.T.; Lye, K.R.; Magby, C.G.; Convertino, V.A. Comparisons of traditional metabolic

markers and compensatory reserve as early predictors of tolerance to central hypovolemia in humans. Shock

2018, 50, 71–77. [CrossRef] [PubMed]

55. Convertino, V.A.; Sawka, M.N. Wearable compensatory reserve measurement for hypovolemia sensing.

J. Appl. Physiol. 2018, 124, 442–451. [CrossRef]

56. Schiller, A.M.; Howard, J.T.; Convertino, V.A. The physiology of blood loss and shock: New insights from a

human laboratory model of hemorrhage. Exp. Biol. Med. 2017, 242, 874–883. [CrossRef] [PubMed]

57. Schlotman, T.E.; Akers, K.S.; Nessen, S.C.; Convertino, V.A. Differentiating compensatory mechanisms

associated with low tolerance to central hypovolemia in women. Am. J. Physiol. Heart Circ. Physiol. 2019,

316, H609–H616. [CrossRef]

58. Wenner, M.M.; Hinds, K.; Howard, J.; Nawn, C.D.; Carter, R., III; Hinojosa-Laborde, C.; Stachenfeld, N.S.;

Convertino, V. Differences in compensatory response to progressive reductions in central blood volume of

African American and Caucasian women. J. Trauma Acute Care Surg. 2018, 85, S77–S83. [CrossRef]

59. Wenner, M.M.; Hinds, K.A.; Howard, J.T.; Nawn, C.D.; Stachenfeld, N.S.; Convertino, V.A. Measurement of

compensatory reserve predicts racial differences in tolerance to simulated hemorrhage in women. J. Trauma

Acute Care Surg. 2018, 85, S77–S83. [CrossRef]

60. Johnson, M.; Alarhayem, A.; Convertino, V.; Carter, R., 3rd; Chung, K.; Stewart, R.; Myers, J.; Dent, D.;

Liao, L.; Cestero, R.; et al. Compensatory reserve index: Performance of a novel monitoring technology to

identify the bleeding trauma patient. Shock 2018, 49, 295–300. [CrossRef]

61. Stewart, C.L.; Mulligan, J.; Grudic, G.Z.; Convertino, V.A.; Moulton, S.L. Detection of low-volume blood loss:

The compensatory reserve index versus traditional vital signs. J. Trauma Acute Care Surg. 2014, 77, 892–897.

[CrossRef]

62. Schisterman, E.F.; Perkins, N.J.; Liu, A.; Bondell, H. Optimal cut-point and its corresponding Youden Index

to discriminate individuals using pooled blood samples. Epidemiology 2005, 16, 73–81. [CrossRef] [PubMed]

63. Schlotman, T.E.; Suresh, M.; Koons, N.J.; Howard, J.T.; Convertino, V.A. Comparisons of measures of

compensatory reserve and heart rate variability as early indicators of hemodynamic decompensation in

progressive hypovolemia. J. Trauma Acute Care Surg. 2020, 89, S161–S168. [PubMed]

64. Nadler, R.; Convertino, V.A.; Gendler, S.; Lending, G.; Lipsky, A.M.; Cardin, S.; Lowenthal, A.; Glassberg, E.

The value of non-invasive mesurement of the compensatory reserve index in monitoring and triage of

patients experiencing minimal blood loss. Shock 2014, 42, 93–98. [CrossRef] [PubMed]

58



Sensors 2020, 20, 6413

65. Moulton, S.L.; Mulligan, J.; Santoro, M.A.; Bui, K.; Grudic, G.Z.; MacLeod, D. Validation of a noninvasive

monitor to continuously trend individual responses to hypovolemia. J. Trauma Acute Care Surg. 2017,

83, S104–S111. [CrossRef] [PubMed]

66. Koons, N.J.; Owens, G.A.; Parsons, D.L.; Schauer, S.G.; Buller, J.L.; Convertino, V.A. Compensatory reserve:

A novel monitoring capability for early detection of hemorrhage by combat medics. J. Trauma Acute Care Surg.

2020, 89, S146–S152.

67. Muniz, G.W.; Wampler, D.A.; Manifold, C.A.; Grudic, G.Z.; Mulligan, J.; Moulton, S.; Gerhardt, R.T.;

Convertino, V.A. Promoting early diagnosis of hemodynamic instability during simulated hemorrhage with

the use of a real-time decision-assist algorithm. J. Trauma Acute Care Surg. 2013, 75, S184–S189. [CrossRef]

68. Benov, A.; Yaslowitz, O.; Hakim, T.; Amir-Keret, R.; Nadler, R.; Brand, A.; Glassberg, E.; Yitzhak, A.;

Convertino, V.A.; Paran, H. The effect of blood transfusion on compensatory reserve: A prospective clinical

trial. J. Trauma Acute Care Surg. 2017, 83, S71–S76. [CrossRef]

69. Benov, A.; Brand, A.; Rozenblat, T.; Antebi, B.; Ben-Ari, A.; Amir-Keret, R.; Nadler, R.; Chen, J.; Chung, K.K.;

Convertino, V.A.; et al. Evaluation of sepsis using compensatory reserve measurement: A prospective clinical

trial. J. Trauma Acute Care Surg. 2020, 89, S153–S160. [CrossRef]

70. Stewart, C.L.; Nawn, C.D.; Mulligan, J.; Grudic, G.; Moulton, S.L.; Convertino, V.A. The Compensatory

Reserve for Early and Accurate Prediction of Hemodynamic Compromise: Case Studies for Clinical Utility

in Acute Care and Physical Performance. J. Spec. Oper. Med. 2016, 16, 6–13.

71. Stewart, C.L.; Mulligan, J.; Grudic, G.Z.; Talley, M.E.; Jurkovich, G.J.; Moulton, S.L. The Compensatory

reserve index following injury: Results of a prospective clinical trial. Shock 2016, 46, 61–67. [CrossRef]

[PubMed]

72. Stewart, C.L.; Mulligan, J.; Grudic, G.Z.; Pyle, L.; Moulton, S.L. A noninvasive computational method for

fluid resuscitation monitoring in pediatric burns: A preliminary report. J. Burn Care Res. 2015, 36, 145–150.

[CrossRef] [PubMed]

73. Imholz, B.P.M.; Wieling, W.; van Montfrans, G.A.; Wesseling, K.H. Fifteen years experience with finger

arterial pressure monitoring. Cardiovasc. Res. 1998, 38, 605–616. [CrossRef]

74. Parati, G.; Casadei, R.; Groppelli, A.; Di Rienzo, M.; Mancia, G. Comparison of finger and intra-arterial blood

pressure monitoring at rest and during laboratory testing. Hypertension 1989, 13, 647–655. [CrossRef]

75. Lee, J.; Nam, K.C. Tonometric Vascular Function Assessment; INTECH Open Access Publisher: London, UK, 2009.

76. Wang, Z.; Xu, Y. Design and optimization of an ultra-sensitive piezoresistive accelerometer for continuous

respiratory sound monitoring. Sens. Lett. 2007, 5, 450–458. [CrossRef]

77. Shelley, K.H. Photoplethysmography: Beyond the calculation of arterial oxygen saturation and heart rate.

Anesth. Analg. 2007, 105, S31–S36. [CrossRef]

78. Li, K.; Warren, S. A wireless reflectance pulse oximeter with digital baseline control for unfiltered

photoplethysmograms. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 269–278. [CrossRef]

79. Maeda, Y.; Sekine, M.; Tamura, T. Relationship between measurement site and motion artifacts in wearable

reflected photoplethysmography. J. Med. Syst. 2011, 35, 969–976. [CrossRef]

80. Asada, H.H.; Shaltis, P.; Reisner, A.; Rhee, S.; Hutchinson, R.C. Mobile monitoring with wearable

photoplethysmographic biosensors. IEEE Eng. Med. Biol. Mag. 2003, 22, 28–40. [CrossRef]

81. Chung, H.U.; Rwei, A.Y.; Hourlier-Fargette, A.; Xu, S.; Lee, K.; Dunne, E.C.; Xie, Z.; Liu, C.; Carlini, A.;

Kim, D.H.; et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and

pediatric intensive-care units. Nat. Med. 2020, 26, 418–429. [CrossRef]

82. Jeong, H.; Wang, L.; Ha, T.; Mitbander, R.; Yang, X.; Dai, Z.; Qiao, S.; Shen, L.; Sun, N.; Lu, N. Modular and

reconfigurable wireless E-tattoos for personalized sensing. Adv. Mater. Technol. 2019, 4. [CrossRef]

83. Biswas, S.; Shao, Y.; Hachisu, T.; Nguyen-Dang, T.; Visell, Y. Integrated soft optoelectronics for wearable

health monitoring. Adv. Mater. Technol. 2020, 5, 2000347. [CrossRef]

84. Han, D.; Khan, Y.; Ting, J.; Zhu, J.; Combe, C.; Wadsworth, A.; McCulloch, I.; Arias, A.C. Pulse oximetry

using organic optoelectronics under ambient light. Adv. Mater. Technol. 2020, 5, 1901122. [CrossRef]

85. Drzewiecki, G.M.; Melbin, J.; Noordergraaf, A. Deformational Forces in Arterial Tonometry; IEEE: New York, NY, USA,

1984; Volume 28.

86. Eckerle, J.S. Tonometry, arterial. In Encyclopedia of Medical Devices and Instrumentation; Webster, J.G., Ed.;

John Wiley & Sons: New York, NY, USA, 1988.

59



Sensors 2020, 20, 6413

87. Schwartz, G.; Tee, B.C.-K.; Mei, J.; Appleton, A.L.; Kim, D.H.; Wang, H.; Bao, Z. Flexible polymer transistors

with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 2013,

4, 1859. [CrossRef]

88. Wang, C.; Li, X.; Hu, H.; Zhang, L.; Huang, Z.; Lin, M.; Zhang, Z.; Yin, Z.; Huang, B.; Gong, H. Monitoring of

the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687–695.

[CrossRef] [PubMed]

89. Tavakolian, K.; Dumont, G.A.; Houlton, G.; Blaber, A.P. Precordial vibrations provide noninvasive detection

of early-stage hemorrhage. Shock 2014, 41, 91–96. [CrossRef] [PubMed]

90. Zia, J.; Kimball, J.; Rolfes, C.; Hahn, J.-O.; Inan, O.T. Enabling the assessment of trauma-induced hemorrhage

via smart wearable systems. Sci. Adv. 2020, 6, eabb1708. [CrossRef] [PubMed]

91. Inan, O.T.; Migeotte, P.F.; Kwang-Suk, P.; Etemadi, M.; Tavakolian, K.; Casanella, R.; Zanetti, J.; Tank, J.;

Funtova, I.; Prisk, G.K.; et al. Ballistocardiography and seismocardiography: A review of recent advances.

IEEE J. Biomed. Health Inform. 2015, 19, 1414–1427. [CrossRef]

92. Etemadi, M.; Inan, O.T. Wearable ballistocardiogram and seismocardiogram systems for health and

performance. J. Appl. Physiol. 2017, 124, 452–461. [CrossRef]
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Abstract: A frequency-shift keying (FSK) radar in the 2.45-GHz band is proposed for highly accurate
vital-signs detection. The measurement accuracy of the proposed detector for the heartbeat is
increased by using the cross-correlation between the phase differences of signals at two frequencies
used by the FSK radar, which alternately transmits and receives the signals with different frequencies.
Two frequencies—2.45 and 2.5 GHz—are effectively discriminated by using the envelope detection
with the frequency control signal of the signal generator in the output waveform of the FSK radar.
The phase difference between transmitted and received signals at each frequency is determined after
calibrating the I/Q imbalance and direct-current offset using a data-based imbalance compensation
algorithm, the Gram–Schmidt procedure, and the Pratt method. The absolute-distance measurement
results for a human being show that the vital signs obtained at each frequency using the proposed
FSK radar have a cross-correlation. The heartbeat detection results for the proposed FSK radar at a
distance of < 2.4 m indicate a reduction in the error rate and an increase in the signal-to-noise ratio
compared with those obtained using a single operating frequency.

Keywords: frequency-shift keying radar; cross-correlation; envelope detection; continuous-wave
radar; frequency discrimination; vital-signs monitoring; heartbeat accuracy improvement; heartbeat
detection; absolute distance measurement; radar signal processing

1. Introduction

Research on vital-signs detection using radar technology has been performed since the short-range
radar system was introduced for the detection of human vital signs in the 1970s [1]. A vital-signs
detector based on radar technology can measure the vital signs without electrode contacts or restriction
of the measurement environment, in contrast to contact-type detectors [2]. Owing to these advantages,
the radar sensor for vital-signs detection is promising as a key element in continuous monitoring
systems for home-care service, local positioning and tracking in disaster scenes such as earthquakes
and fires, as well as disease identification using heartrate variability (HRV) analysis, e.g., sleep apnea
and angina pectoris [3–5]. In particular, the study on a vital-signs detector using radar technology
aims to achieve a level of detection accuracy so as to fully replace the electrocardiogram (ECG) sensor
in medical applications, such as HRV analysis.

Among the radar technologies, continuous-wave (CW) Doppler radars are useful for vital-signs
monitoring based on periodic motions in the human body because of their simple hardware
configuration and signal processing [3–6]. However, CW radars have a limitation in that noise
can be increased or the receiver can be saturated by the movement of the target or surrounding
clutters, as signals caused by all movements are collected by the antenna [7]. This limitation causes
particularly significant degradation of accuracy in heartbeat detection compared with respiration
detection, because the chest movement caused by the heartbeat is 0.2–0.5 mm, whereas the chest

63



Sensors 2020, 20, 5516

movement caused by respiration is 4–12 mm [8,9]. It is important to implement the CW radar with
a high signal-to-noise ratio (SNR) for heartbeat detection to increase the detection accuracy [10].
The SNR in the CW radar can be improved by increasing the transmitted power, but the maximum
allowable effective isotropic radiated power is restricted by the regulation in each frequency band.
It is not easy to implement a radar front-end with a high SNR by using a low-noise and high-gain
design methodology, and a complex radar architecture including calibration circuits and a calibration
process could be needed to improve the SNR [10]. The accuracy of vital-signs detection can be also
improved by using signal-processing techniques such as autocorrelation, the wavelet transform, and
cross-correlation [11–14]. The autocorrelation method improves the detection accuracy for the periodic
signal by converging signals to the most representative period frequency but has limitations for
accurately monitoring heartbeat signals that change over time and evaluating their variability [11,14].
The wavelet transform is useful for increasing the accuracy by effectively extracting peaks of the
heartbeat signal, but it is difficult to develop a generalized wavelet function that can improve the
accuracy while being independent of the measurement environment, such as the characteristics of
the subject and the clutter in the surroundings [12,14]. The cross-correlation method was proposed
for increasing the detection accuracy by exploiting the similarity between vital signs independently
measured at multiple frequencies by using a dual-band antenna and commercialized measurement
equipment [13]. Although this approach is useful for achieving a high accuracy because the vital signs
are independent of the characteristics of the radar and the operation frequency, it is necessary to use
several radars with different operating frequencies, and customized components such as a dual-band
antenna are required.

In this work, a vital-signs detector with improved accuracy based on frequency-shift keying (FSK)
radar technology is proposed. An FSK radar is used for a highly accurate range detection based on
the phase difference between the transmitting and receiving signals separately obtained at more than
two operating frequencies [15]. The vital-signs detection in the FSK radar is performed by using the
same method as the CW Doppler radar as the FSK radar can be regarded as operating with several CW
signals in the same hardware configuration. The proposed FSK radar improves the detection accuracy
and SNR by using the cross-correlation between the vital signs independently obtained from each
operating frequency. A method of effectively discriminating two frequency signals at the baseband
output is necessary for accurately obtaining the results of the cross-correlation in the FSK radar [16].
This work presents the signal discrimination technique based on envelope detection in synchronization
with a frequency control signal as a method for separately obtaining each operating frequency signal.
The proposed technique can discriminate the phase information at each operating frequency from the
FSK radar in a short period, and the cross-correlation for improving the detection accuracy can be
easily implemented in the single radar by using this technique. The imbalance between the in-phase (I)
and quadrature (Q) signals and a direct-current (DC) offset, which are critical characteristics for the
accuracy of the phase measurement, are calibrated by modifying the method used by the CW Doppler
radar sensor for the FSK radar. Distance measurements with the proposed radar indicate that the
phase difference of vital signs at each operating frequency have a cross-correlation. The measurement
results of heartbeat detection have high accuracy relative to the reference electrocardiogram (ECG)
signal owing to the cross-correlation of the proposed FSK radar. The measurement results for the
distance and heartbeat show that the detection accuracy at each frequency depends on the distance,
owing to the characteristics of the FSK radar. The operating principles of the FSK radar for vital-signs
detection are described in Section 2. Section 3 shows the implementation method of the proposed
FSK radar, including the calibration process and digital signal processing. The measurement results
for vital signs and distances and an analysis of the results discussed in Section 4. Conclusions are
presented in Section 5.
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2. Vital-Signs Detection Using FSK Radar

2.1. Operating Principles for FSK Radar

An FSK radar measures the information of the target from the phase differences between two
operating frequencies. The phase difference is obtained by comparing the transmitted and received
signals at a single CW operating frequency. Accurate information can be obtained by increasing the
measurement accuracy of the phase difference at each frequency. A block diagram of the FSK radar
is shown in Figure 1. A quadrature architecture is adopted in the proposed FSK radar to avoid the
null point problem in the CW Doppler radar [17,18]. Two discrete frequencies f 1 and f 2 are alternately
transmitted for the switching time period of T with a duty cycle of 50% by a signal generator. A short
time period is advantageous for increasing the measurement accuracy because the FSK radar assumes
that the information of the target is constant during the period. However, a sufficient period for
sampling baseband signals is needed to obtain the phase difference at each frequency. Thus, the time
period should be optimized with consideration of the maximum velocity of the movement in the target
and the maximum sampling frequency of the synchronous data-acquisition (DAQ) device.

 

𝑇𝑥(𝑡)  =  {𝐴𝑇1 ∙ cos [2𝜋𝑓1𝑡 +  𝜑1(𝑡)], 0 < 𝑡 ≤ 𝑇2𝐴𝑇2 ∙ cos [2𝜋𝑓2𝑡 +  𝜑2(𝑡)], 𝑇2 < 𝑡 ≤ 𝑇 ,
φ φ

𝑅𝑥(𝑡)  ≈  {  
  𝐴𝑅1 ∙ cos [2𝜋𝑓1𝑡 −  4𝜋𝑑0𝜆1  −  4𝜋𝑥1(𝑡)𝜆1  +  𝜑1 (𝑡 − 2𝑑0𝑐 )], 0 < 𝑡 ≤ 𝑇2𝐴𝑅2 ∙ cos [2𝜋𝑓2𝑡 − 4𝜋𝑑0𝜆2  −  4𝜋𝑥2(𝑡)𝜆2  +  𝜑2 (𝑡 − 2𝑑0𝑐 )], 𝑇2 < 𝑡 ≤ 𝑇 ,

λ λ

𝐼𝑘(𝑡)  =  𝐴𝐼 ∙ cos [4𝜋𝑑0𝜆𝑘  +  4𝜋𝑥𝑘(𝑡)𝜆𝑘  +  Δ𝜑𝑘(𝑡)] + 𝐷𝐶𝐼𝑘 , 𝑘 = 1,2, and

Figure 1. Block diagram of the proposed frequency-shift keying (FSK) radar.

The transmitted signals Tx(t) in FSK radar can be expressed as follows:

Tx(t) =

{

AT1· cos[2π f1t + ϕ1(t)], 0 < t ≤ T
2

AT2· cos[2π f2t + ϕ2(t)], T
2 < t ≤ T

, (1)

where AT1 and AT2 represent the amplitudes of the transmitted signals, and ϕ1(t) and ϕ2(t) represent
the phase noises of the two transmitted frequencies in the signal generator, respectively. The receiving
signals in the radar are modulated to the Doppler frequencies produced by the chest movements
caused by the respiration and heartbeat [18]. The received signals Rx(t) in FSK radar can be expressed
as follows:

Rx(t) ≈



















AR1· cos
[

2π f1t− 4πd0
λ1
− 4πx1(t)

λ1
+ ϕ1

(

t− 2d0
c

)

]

, 0 < t ≤ T
2

AR2· cos
[

2π f2t− 4πd0
λ2
− 4πx2(t)

λ2
+ ϕ2

(

t− 2d0
c

)

]

, T
2 < t ≤ T

, (2)

where AR1 and AR2 represent the amplitudes of the received signals; c represents the velocity of light, λ1

and λ2 represent the wavelengths of the two frequencies, respectively; d0 represents the fixed distance
between the radar and the target; and x1(t) and x2(t) represents the displacements of the chest caused
by the respiration and the heartbeat. The phase noise of the received signal is described with the time
delay of 2d0/c by considering the time of the round trip of the signal at the distance. The in-phase (I1
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and I2) and quadrature (Q1 and Q2) baseband signals, which are obtained from the down-conversion
quadrature mixers, can be expressed as follows:

Ik(t) = AI· cos

[

4πd0

λk
+

4πxk(t)

λk
+ ∆ϕk(t)

]

+ DCIk, k = 1, 2, and (3)

Qk(t) = AIAE· sin

[

4πd0

λk
+

4πxk(t)

λk
+ ∆ϕk(t) + φE

]

+ DCQk, k = 1, 2, (4)

where AI represents the amplitude of the I-channel baseband signal; AE and φE represent the errors
of the amplitude and phase, respectively; DCIk and DCQk represent the DC offset voltages in the I

and Q channels, respectively; and ∆ϕk represents the residual phase noise, which is the difference in
the phase noise between the transmitted and received signals. The residual phase noise in the radar
system can generally be neglected in the measurement of the distance and vital signs, owing to the
range correlation effect [19]. The phase difference θk between the transmitted and received signals at
each frequency can be represented by using (3) and (4) as follows:

θk �
4π
λk

(d0 + xk(t)), k = 1, 2, (5)

which is identical to the difference of the CW Doppler radar. The detectable range in the phase difference,
which is 0–2π, is determined by the characteristics of the trigonometric function, as indicated by
(5). The distance d0 can be measured from the subtraction in each phase difference using the two
frequencies in the FSK radar, as follows:

d0 =
c

4π( f1 − f2)
(θ1 − θ2) − [x1(t) − x2(t)]. (6)

If the difference in the vital signs generated during the transmitting and receiving signals of each
frequency can be neglected, the absolute distance can be obtained as follows:

d0 �
c

4π( f1 − f2)
(θ1 − θ2). (7)

Thus, the error of the distance measurement in the FSK radar can show the cross-correlation of the
vital signs at each operating frequency, and a low error corresponds to a high correlation rate between
two vital signals. The periodic signals in the baseband can represent the vital signs included in the
phase difference, because the FSK radar can be regarded as a CW Doppler radar with independent
single-frequency operation. When the human motion does not have periodicity or is located outside of
the frequency band of the vital signs, the vital signs can be detected through fast-Fourier transform
(FFT) if the receiver is not saturated by the motion. The measured vital signs in the frequency band can
be expressed as follows:

X( f ) =
λk

4π

∫ ∞

−∞
θk(t)e

− j2π fmtdt. (8)

2.2. Cross-Correlation Method

The cross-correlation method can be used for increasing the power of a periodic signal in a noisy
environment [20]. Respiration and heartbeat, which are vital signs obtained directly from the CW
radar, are both periodic signals, but the heartbeat of a stationary subject has a relatively low SNR
compared with the respiration of the subject. In the proposed FSK radar, the cross-correlation method
is used for accurately extracting the heartbeat from the raw data. The cross-correlation between the
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phase differences of signals at two operating frequencies can be mathematically expressed in the digital
domain as follows:

R̂θ1θ2 [m] =
N−m−1
∑

n=0

θ1[n + m]θ∗2[n], m = 1, 2, . . . , 2N − 1, (9)

where R̂θ1θ2 represents the result of the raw correlation between the nth element of θ1 and the mth
element of θ2, and N represents the product of time and the sampling frequency [20]. The power
levels of the elements simultaneously present in the two phase-different signals are increased using
the cross-correlation method. The cross-correlated signal is expanded to double the length of the
phase-difference signal in the time domain, as shown in Figure 2a. The frequency resolution of the
signal is also increased in the frequency domain, as shown in Figure 2b, because the number of sampled
data is increased at the same sampling frequency by the cross-correlation. Both white noise and
noise signals caused by the hardware components that have different frequency characteristics are
reduced by the cross-correlation. The proposed FSK radar can easily improve the vital-signs detection
performance without additional signal processing, because the FSK radar uses the same hardware
configuration to obtain the cross-correlated signal with the measured phase differences at the two
operating frequencies. Thus, the peak detection accuracy of the heartbeat can be improved in the
frequency domain because the SNR of the heartbeat in the proposed FSK radar is improved by the
enhancement of the signal power level and the suppression of the noise level.

 
(a) 

 
(b) 

  Figure 2. Cross-correlation method: (a) In the time domain; (b) in the frequency domain.

2.3. Frequency Discrimination Using Envelope Detection for Proposed FSK Radar

The discrimination of phase-difference signals at two different operating frequencies is the most
important process for implementing the FSK radar. However, the signals at two frequencies are
not continuous by the FSK operation, and the sampling points at each frequency are not identical.
An envelope detection method can discriminate two nonoverlapped signals with different DC offsets
at each frequency, because the offset characteristics of the radar components depend on the operating
frequency [16]. This method is implemented using spline interpolation with not-a-knot conditions over
local maxima separated by 10 samples. The baseband signals can be discriminated in each frequency by
using the envelope detection method, but it cannot be known whether the discriminated signal shows
anything of the two frequencies. The control signal for frequency switching in the signal generator is
used to store each data-set of I/Q channel signals with each discriminated frequency in four data-sets.
In the initial state, the stored data-set is regarded as the signals at f 1 when the control signal is high,
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and the data-set is regarded as the signals at f 2 when the control signal is low. The frequency is adjusted
to ensure that the distance obtained from each data-set is positive. Figure 3a,b show the baseband I/Q

signals for each frequency extracted from the raw data by the envelope detection method.

 
(a) 

 
(b) 

–

Figure 3. Proposed envelope detection method for discriminating the baseband signals at each operating
frequency of the FSK radar. The frequency-control signal of the signal generator, which is indicated by
red and blue shaders in the waveform, is used for synchronous data acquisition: (a) In-phase channel
signals; (b) quadrature channel signals.

3. Implementation

3.1. Digital Signal Processing

The detection accuracies of both the vital signs of the subject and the distance to the subject
are determined by how accurately the phase difference is measured in the FSK radar, and they are
significantly affected by the I/Q imbalance and DC offset in the baseband. The I/Q imbalance in the
amplitude and phase caused by the imperfections of the quadrature receiver can be measured by
phase shifters and calibrated by the Gram–Schmidt procedure [21]. The phase shifter is used to
generate a circle trajectory by varying the phases of the signal on the complex plane, and several
other methods can be employed to implement this function. When the target is mechanically moved
within a displacement similar to the half wavelength of the operating frequency, baseband signals can
draw the circle trajectory on the complex plane as in the case of using the phase shifter [22]. However,
an elliptical trajectory is generated owing to the change in the distance to the target, in contrast to the
circle trajectory using phase shifters. The elliptical trajectory can be compensated by the data-based
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quadrature imbalance compensation technique using the ellipse fitting method [23]. Figure 4a,b present
the calibrated I/Q channels after the imbalance calibration.

 
(a) (b) 

  
Figure 4. In-phase/quadrature (I/Q) imbalance calibration on the complex plane using the reference
distance and the known periodic movement: (a) At the frequency of 2.45 GHz; (b) at the frequency of
2.5 GHz.

DC offsets are generated by stationary clutters in the surroundings as well as the imperfection
of the hardware configuration of the radar. The FSK radar receives the vector-sum signals reflected
from all objects located in the antenna beamwidth [15]. The accuracy of the phase difference can
decrease as the measurement distance increases because the DC offsets increase with the amount of
clutters received on the radar. The DC offsets on the radar can be eliminated while preserving vital
signs, which are located near DC in the frequency domain, using a dynamic DC offset compensation
algorithm [24]. Figure 5 presents the baseband I/Q signals at each frequency measured by the proposed
FSK radar on the complex plane. The trajectory at each frequency is a part of each circle on the complex
plane, and the DC offset voltage is indicated by the center of the circle by the circle fitting method using
the trajectory. The DC offset can be effectively calibrated by this procedure, which is known as the
Pratt method, when the circle trajectory is obtained from the measured data [25].

The phase difference in each frequency is extracted by demodulating the calibrated signals. In the
proposed FSK radar, the arc-sine demodulation and the complex signal demodulation (CSD) techniques
are used for detecting the vital signs of the subject and the distance to the subject, respectively [26,27].
The arc-sine demodulation technique is generally used as a demodulation technique, but is not suitable
for distance measurement with the FSK radar, because the measurement error can significantly increase
with the decreasing accuracy of the DC offset when accurate circle fitting cannot be realized via either
the random body movement or the curved chest wall of the human body. The CSD technique is an
appropriate demodulation method in distance measurement of the FSK radar, because an accurate circle
fitting process is not mandatory in the CSD, in contrast to the arc-sine demodulation technique [28].
Bandpass filters with cutoff frequencies ranging from 0.8 to 2 Hz and from 0.1 to 0.8 Hz are used after
the demodulation process to extract the respiration and heartbeat signals, respectively, in these two
techniques. Considering the characteristics of the vital signs, which vary irregularly, FFT with a sliding
window of 30 s is performed every 10 s with a measurement time of 90 s. Figure 6 shows the signal
processing procedure to obtain the vital signs from the raw data of the proposed radar.
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(a) 

 
(b) 

  
Figure 5. Direct-current (DC) offset calibration on the complex plane: (a) Uncalibrated signals of each
frequency in the baseband; (b) Calibrated signals of each frequency based on the Pratt method.

Figure 6. Signal processing procedure in the proposed vital-signs detector.
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3.2. Implemented FSK Radar Module

For vital-signs and distance measurement, the frequencies of 2.45 and 2.5 GHz are used in the
proposed FSK radar, which operates in the 2.45 GHz ISM band. The maximum unambiguous range
of the FSK radar is 3 m, which is determined by the frequency difference of 50 MHz. The radar
front-end circuit and two patch antennas are implemented on an FR4 printed circuit board (PCB) with
a thickness of 1 mm, as shown in Figure 7. The FSK signals with a frequency spacing of 50 MHz and
an output power of 15 dBm are generated by an N5183B signal generator manufactured by Keysight
Technologies Inc. The FSK operation is realized by using the internal function of the signal generator.
The generated signals are divided by a Wilkinson power divider into the reference and transmitting
signals. Quadrature signals are generated by a hybrid power divider with a phase difference of 90◦

between two outputs. The signal of each frequency is radiated toward the subject and received by
the separated patch antennas with a directivity of 5.9 dBi. The received signal is amplified using a
low-noise amplifier (LNA) with a power gain of 13.7 dB and noise figure of 5.3 dB. In-phase and
quadrature signals in the baseband are generated by mixing the received signals with the reference
and filtering them with low pass filters having a cut-off frequency of 80 MHz.

 
Figure 7. Implemented radar module with two patch antennas on an FR4 printed circuit board (PCB).

4. Measurement Results and Discussions

Figure 8 shows the measurement setup for obtaining both the vital signs and the distance to the
subject. The switching time of the two CW frequencies was set as 0.1 s in the generator. The maximum
unambiguity range was determined to be 3 m by the frequency space of 50 MHz between the two
operating frequencies. By using two low-noise preamplifiers manufactured by Standford Research
Systems Inc., the in-phase and quadrature signals from the module were amplified with a voltage
gain of 17 dB. Signal conditioning and processing in the digital domain were implemented using NI
LabVIEW and MATLAB on a personal computer after quadrature signals were simultaneously obtained
with a sampling rate of 1 k samples per second from the DAQ board of NI USB-6009. A range finder
(Bosch, Gerlingen, Germany) and a three-electrodes ECG sensor (Vernier Software and Technology,
Beaverton, OR, USA.), were used as the reference sensors to measure the accuracies of the distance and
vital signs, respectively, of the proposed FSK radar. In the surroundings, there were only fixed clutters;
the moving objects (except for the subject) were limited in number. The distance to the subject was
measured from 1 to 2.4 m at the intervals of 15 cm, and the vital signs were measured as respiration and
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heartbeat per minute for 90 s at each distance. The detection range for the demonstration is determined
by considering both the nearfield effect on the radar and the maximum unambiguity range of the FSK
radar. The subjects were three males in their twenties who did not suffer from cardiac diseases. They
did not consume caffeine, alcohol, or nicotine, which may affect the vital signs, before measurement of
the vital signs. Detailed information of the subjects is presented in Table 1.

 

Figure 8. Measurement setup for detecting the distance and vital signs using the proposed FSK radar.

Table 1. Information relevant to the subjects.

Subjects Gender Age Weight Height BMI

A Male 25 90 177 28.73
B Male 28 76 182 22.94
C Male 25 83 172 28.06

The single-frequency in-phase signals obtained after the discrimination using the proposed
envelope detection method and the signals digitally filtered by the passband from 0.1 to 0.8 Hz are
shown in Figure 9. According to the operation of the CW Doppler radar, the phase information for
the movement generated by the vital signs is clearly reflected by the raw data. As shown in Figure 9,
the respiration is dominant in the raw data because the data are similar to the signal filtered by only
the frequency band of the respiration.

The absolute distances measured by using the proposed FSK radar are shown in Figure 10.
The initial phase differences in the radar front-end are calibrated with measurement results for
the reference distance of 1 m, and the relative distance obtained by the radar is modified to an
absolute distance after the calibration. The accuracy of the distance measurement is expressed by the
root-mean-square error (RMSE) relative to the distance measured by the reference sensor. The RMSE

in the distance measurement can be expressed as

RMSE =

√

√

1
n

n
∑

i=1

(di − r fi)
2 (10)

where n is the number of subjects, di is the absolute distance measured using the proposed radar, and rfi
is the reference distance measured using the laser-based range finder. The RMSE is ≤0.1 m at a distance
of ≤ 1.7 m, corresponding to ≤ 6.6% of the measurement distance. The accuracy is increased with an
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RMSE of 0.3 m at a distance of 1.8–2.4 m, which corresponds to 14.3% or less of the measurement
distance. The increase in the measured distance error at the distances of >1.6 m is explained as follows:
The phase difference of the FSK radar is determined by the vector sum of the overall signal received
through the antenna. When the measurement distance increases, more information resulting from
clutters is included in the received signal by the beamwidth of the receiving antenna, and it has an
effect on the increase of the measurement error in the phase detection. Additionally, the SNR of the
radar decreases as the measurement distance increases. The FSK radar measures the distance using the
phase difference obtained from the vector sum of the overall reflected signals, including those from the
surface and inside of the human body, while the reference sensor measures the absolute distance to the
skin surface of the subject. The uncertainty of the phase difference obtained by the vector sum in the
FSK radar results in an intrinsic error in the distance measurement for the human body. Additionally,
the switching time of 0.1 s in the FSK radar is sufficiently short to neglect the changes in the vital signs,
which occur less than 2 times per second. Considering the uncertainty of the phase difference and the
short switching time, the error in the distance measurement of the radar is attributed to the detection
accuracy of the phase in the radar. If the phase error of the FSK radar, including the uncertainty, is 5◦

in the measurement, the RMSE is 0.04 m for the frequency spacing. The distance measurement shows
that vital signs obtained for each frequency at different times have a correlation at a similar level of the
phase error in the measured distance.

 

Figure 9. Raw and filtered waveforms measured at a distance of 1 m using the proposed radar.

Vital-signs detection using the proposed radar are performed by varying the subjects’ position by
1 to 2.4 m at intervals of 0.15 m for a measurement time of 90 s. The respiration rate and heartbeat
measured by the proposed radar are presented in the spectrum. The respiration rate per minute shown
in Figure 11 for one subject is clearly measured at 12, but the heartbeat per minute (BPM) is not easily
obtained in Figure 11 because of the low SNR of the heartbeat signal and the low resolution in the
dynamic range to represent the respiration signal. The heartbeat signal may be measured by using
high-pass filtering to reduce the respiration signal in the baseband pre-amplifier block, but this method
has a limitation in increasing the measurement accuracy because it does not improve the heartbeat
SNR itself. Figure 12 shows the frequency spectra of the heartbeat signals measured at a distance of
1 m using the proposed FSK radar. The raw data of the measured heartbeat show that signals due
to the respiration and its harmonics might have been generated mostly around the frequency band
of the heartbeat signal in the single CW radar operation. It is difficult to identify the frequency peak
representing the heartbeat, because there are several peaks in the spectrum obtained at each operating
frequency. The noise fluctuation level obtained at each frequency is approximately a quarter of the
maximum frequency. However, the cross-correlated signals obtained using the proposed FSK radar
exhibit the same frequency peak as those obtained using the reference ECG sensor and both higher
SNR and lower noise level compared to those obtained at each frequency. The number of data points in
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Figure 10 (based on a comparison between the single frequency and cross-correlated signals) indicates
that the frequency resolution can be increased by the cross-correlation.

𝑅𝑀𝑆𝐸 = √1𝑛 ∑(𝑑𝑖 − 𝑟𝑓𝑖)2𝑛
𝑖=1  

is ≤
≤ ≤

–

(a) 

(b) 

(c) 

(d) 

sed radar are performed by varying the subjects’ position 

Figure 10. Measured distance and the root-mean-square error (RMSE) in the measurement using the
proposed FSK radar with a frequency spacing of 50 MHz and switching time of 0.1 s: (a) Subject A; (b)
Subject B; (c) Subject C; (d) averaged data.
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sed radar are performed by varying the subjects’ position 

Figure 11. Spectra of the vital signals measured at a distance of 1 m using the proposed FSK radar.

 

𝑅𝑀𝑆𝐸 = √1𝑚∑(ℎ𝑖 − 𝐸𝐶𝐺𝑖)2𝑚
𝑖=1

Figure 12. Spectra of the heartbeat signals measured by the proposed FSK radar at each operating
frequency and with cross-correlation. The frequency peak of the cross-correlated signals is almost
identical to that of the reference electrocardiogram (ECG) signals.

The measurement accuracy for a subject wearing a contact-type reference ECG sensor is evaluated
using the RMSE and the SD. The RMSE in the heartbeat measurement can be expressed as

RMSE =

√

√

1
m

m
∑

i=1

(hi − ECGi)
2 (11)

where m is the number of windows, hi is the heartbeat (BPM) measured using the proposed radar, and
ECGi is the reference BPM measured using the commercialized ECG sensor. The BPM is measured for
three subjects using the proposed FSK radar. The heartbeat measurement results in Figure 13 are the
RMSEs and SDs of the subjects depending on the measurement distance. The results of the proposed
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FSK radar typically exhibit a smaller RMSE and SD than those measured at individual operating
frequencies, i.e., those for the CW Doppler radar. When the measurement distance is increased, both
the RMSE and SD of the heartbeat measurement increase corresponding to the reduction in the SNR.
At a distance of 2.05 m, the accuracy obtained from the cross-correlated signals is similar to that
obtained from the single-frequency signals. This indicates that the accuracy improvement due to the
cross-correlation for the proposed FSK radar might not be significant when the effect of the low SNR
and the uncertainty of the phase measurement increase owing to the increase in distance from the radar.
Table 2 presents the average RMSEs and SDs for all BPM measurements for each subject. As shown,
the cross-correlated signals had small RMSEs and SDs for all the subjects. In the proposed FSK radar,
the average RMSEs and SDs of the heartbeat obtained using the cross-correlation method are improved
by 2.42 and 2.36 BPM, respectively, compared to those measured at each frequency. With regard
to the operating principle and the procedure, heartbeat measurement with only a single frequency
using the proposed radar is identical to that using the CW Doppler radar. The measurement results
demonstrate that the proposed FSK radar with the cross-correlation in a single hardware configuration
is advantageous for improving the accuracy of vital-signs detection compared to the CW Doppler
radar. Table 3 summarizes the performance comparison of the proposed radar with the radars from our
previous studies, which were employed for vital-signs detection in similar measurement surroundings.

Table 2. Average root-mean-square error (RMSE) and standard deviation (SD) of overall heartbeat per
minute measured for each subject by using the proposed FSK radar.

Subject
RMSE in BPM SD in BPM

2.45 GHz 2.5 GHz CC 1 2.45 GHz 2.5 GHz CC 1

A 11.970 9.347 6.260 11.814 9.324 6.264
B 7.160 7.478 5.599 7.032 7.524 5.640
C 5.037 5.609 4.393 5.034 5.550 4.422

Average 8.562 7.632 5.472 8.550 7.602 5.460
1 The cross-correlation method.

Table 3. Performance comparison of the proposed radar with the radars from our previous studies,
which were used for vital-signs detection in a similar measurement environment.

[5] [10] [14] This Work

Type CW CW CW FSK
Operating Frequency (GHz) 2.45 0.915 2.45 2.45 & 2.5

Distance to target (m) 0.4 0.2–1.4 1.0 1.0–2.4
Signal Processing Peak detection Fast-Fourier transform Wavelet transform Cross-correlation

Detectable Information Respiration, heartbeat Respiration, heartbeat Respiration, heartbeat Respiration, heartbeat, distance
Mean absolute error in HR 1 (%) 3.22 1.37 3.93 6.00

Reference ECG sensor
Three-electrodes sensor

manufactured by Vernier Software and Technology

1 Calculated by using the average error of heartrate (BPM) measured in all detectable ranges.
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Figure 13. Measured accuracies of the signals obtained at each operating frequency and signals
processed with the cross-correlation method in the proposed FSK radar depending on the distance to
the subjects: (a) Root-mean-square error (RMSE) of subject A; (b) standard deviation (SD) of subject A;
(c) RMSE of subject B; (d) SD of subject B; (e) RMSE of subject C; (f) SD of subject C; (g) RMSE of the
averaged data; (h) SD of the averaged data.

5. Conclusions

A remote vital signs detector based on FSK radar with the cross-correlation method implemented
in a single radar architecture is presented for accurately detecting heartbeat signals. The proposed FSK
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radar can increase the SNR of vital signs and the frequency resolution in the FFT spectrum by using
cross-correlation between the phase differences individually obtained at two operating frequencies.
An envelope detection method for controlling the frequency-switching signal for FSK operation is
proposed for phase-difference discrimination, which is mandatory for obtaining vital signs at each
operating frequency. Distance measurements for human subjects shows that the vital signs obtained at
each operating frequency of the proposed FSK radar can be correlated with each other while producing
an acceptable distance error. The measurement results for the number of heartbeats per minute for
subjects at a distance of 1–2.4 m demonstrate that the proposed radar can improve the vital-signs
detection accuracy and SNR via cross-correlation.
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Abstract: The aim of this paper is to find the optimal mother wavelet function and wavelet decompo-

sition level when denoising the Doppler cardiogram (DCG), the heart signal obtained by the Doppler

radar sensor system. To select the best suited mother wavelet function and wavelet decomposition

level, this paper presents the quantitative analysis results. Both the optimal mother wavelet and

decomposition level are selected by evaluating signal-to-noise-ratio (SNR) efficiency of the denoised

signals obtained by using the wavelet thresholding method. A total of 115 potential functions from

six wavelet families were examined for the selection of the optimal mother wavelet function and

10 levels (1 to 10) were evaluated for the choice of the best decomposition level. According to the

experimental results, the most efficient selections of the mother wavelet function are “db9” and

“sym9” from Daubechies and Symlets families, and the most suitable decomposition level for the

used signal is seven. As the evaluation criterion in this study rates the efficiency of the denoising

process, it was found that a mother wavelet function longer than 22 is excessive. The experiment also

revealed that the decomposition level can be predictable based on the frequency features of the DCG

signal. The proposed selection of the mother wavelet function and the decomposition level could

reduce noise effectively so as to improve the quality of the DCG signal in information field.

Keywords: doppler cardiogram; wavelet transform; denoising; mother wavelet function; decomposi-

tion level; signal decomposition; signal-to-noise-ratio

1. Introduction

Cardiovascular diseases (CVDs) are the leading and rapidly increasing cause of death
in modern society. They caused 32.1% of annual global deaths in 2015 and the occurrence
is growing [1]. According to this trend, research on heartbeat detection and heart rate
variability analysis has been gaining increasing attention. As the basic method of the heart
signal recording, the electrocardiogram (ECG) test is used for measuring the electrophysio-
logical signal of the heart activity to diagnose symptoms of cardiovascular problems [2].
The ECG test can improve the diagnosis and therapy of the most prevalent cardiac diseases
if it does not interfere with daily activities [3]. However, some requirements of the ECG
test make subjects uncomfortable. For example, subjects are required to attach multiple
electrodes on their skin and remain in static state for quite some time [4]. In addition as
the abnormal heartbeat signal appears for a very short time, the ECG test could miss these
short and temporary symptoms because this test only records in limited circumstances.

Doppler radar sensors detect the electrophysiological signal of the heart and the
variation of blood vessel movement by differences of the electromagnetic signal that is
a few dozens of centimeters away from a subject [5–8]. Due to the non-contactable and
flexible measurement condition, as opposed to ECG sensing, the Doppler radar sensors are
studied for the alternative of ECG electrodes [9]. However, the noise occurs in the output
signal obtained by the radar sensors due to the limitation of the non-contact measurement.
Since the noise has a negative effect on data acquisition and processing, it leads to a
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decrease in information accuracy. Therefore, the method for signal denoising is essential
and a considerable amount of research related to denoising has been studied [10–14].
Among them, the noise reduction methods using the wavelet analysis are widely studied
not only for the radar signal but also for various multi-dimensional signals [15–20].

Noise reduction methods using the wavelet transform and thresholding can improve
the quality of the Doppler cardiogram (DCG) and overcome the limits of remote sensors.
To successfully enhance signal quality, the noise reduction technique should satisfy the
performance of removing the noise components and maintaining useful signal components.
In comparison to other noise removal methods such as average filtering or frequency
smoothing using the fast Fourier transform, the wavelet denoising method shows a supe-
rior performance for preserving the features of the original signal when removing noise
components. In particular, it is effective in regards to the problem of non-stationary signals
such as a heart signal, respiration signal, and ocular artifacts [21–25]. The multiresolution
decomposition of the wavelet transform makes it possible to maintain the original informa-
tion during the process of removing noise components. Meanwhile, since various scaling
factors and features of the wavelet functions are available, the optimal selection procedure
of the mother wavelet function is a significant step to the wavelet denoising method [26,27].
Traditionally, the mother wavelet function is selected to represent the characteristics of the
signal by empirical research [28,29]. Since this method does not provide the actual optimal
selection of the mother wavelet [30], studies of the mother wavelet selection for various
signals such as the electroencephalography (EEG) signal, vibration signal of turbine, human
voice signal, and many kinds of radar signal have been occurring [26,28,31–36]. However,
to the best of the author’s knowledge, studies on the optimal selection of the mother
wavelet function and the decomposition level for the denoising of the DCG signal are rarely
reported. Though selection of the mother wavelet function and the decomposition level on
other radar signals were presented [35,36], distinctive features of each kind of radar signal
require an individualized selection respectively, which is the motivation behind this study.

In this study, the optimal selection of the mother wavelet function and the decom-
position level for the cardiac signal obtained by the Doppler radar sensors is proposed
with quantitative analysis results. The result of the denoising process is defined with the
signal-to-noise-ratio (SNR) efficiency of the denoised signal. The candidates for the optimal
mother wavelet function are composed of 115 functions from six different wavelet families
and the decomposition level has 10 candidates from 1 to 10. To determine the optimal
mother wavelet function and the optimal decomposition level, the denoising process is
repeated to examine all candidates and then all results are accumulated. The optimal
choice of the mother wavelet function and the decomposition level is selected among the
accumulated results which perform the highest SNR efficiency. The experiment is executed
in two steps to find out the optimal selection of the mother wavelet function and the
decomposition level. For the first step, the optimal mother wavelet function is determined
by using the arbitrary wavelet decomposition level. Then the optimal decomposition level
is obtained by using the optimal mother wavelet function which is selected at the first step.
In this study, the arbitrary decomposition level in the first step is predicted based on the
distribution of the signal components in the frequency domain. With these experiments, it
is found that the length of the mother wavelet function is one of the key determinants for
the optimal selection. The noisy signals were generated by adding white Gaussian noise to
the original signals. The DCG dataset has 28 recordings that have been recorded for 160 s
with a sampling frequency of 1000 Hz.

From the experimental results, it can be seen that the optimal mother wavelet func-
tion is found as db9 and sym9, and the optimal wavelet decomposition level is seven,
respectively. The main contributions of this study can be described as follows:

• The optimal selection of the mother wavelet function and the decomposition level for
the DCG (Doppler cardiogram) is introduced in this study;

• The optimal wavelet decomposition level is predicted based on the distribution of the
signal components in frequency domain;
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• The new criterion is suggested to evaluate both the denoising performance and the
denoising efficiency in once.

2. Materials and Methods

2.1. Wavelet Transform

The wavelet transform, a linear transformation with the mother wavelet function,
is an efficient signal analysis method for both time and frequency resolution [22,23,37].
The wavelet transform has advantages over traditional Fourier transforms for accurately
deconstructing and reconstructing finite, non-periodic, and non-stationary signals such as
DCG signals. The wavelet transform decomposes the input signal into detail coefficients
(cD) and approximation coefficients (cA) that can be defined as high frequency coefficients
(yhigh[n]) and low frequency coefficients (ylow[n]), respectively [38]. The frequency band
coefficients of the wavelet transform are expressed mathematically as follows [38]:

yhigh[n] =
∞

∑
i= −∞

s[i]h[2n − i], (1)

ylow[n] =
∞

∑
i= −∞

s[i]g[2n − i], (2)

where i is a sampling data point; n is the number of the sampling data; s[i] is the discrete
radar signal with noise; and g[2n − i] and h[2n − i] are low-pass and high-pass filters
that vary depending on the mother wavelet function [39]. With frequency filters, the
wavelet transform enables one to extract the particular frequency band from the original
signal [40,41]. Figure 1 shows the x level decomposition process into the approximation
coefficients cA and the detail coefficients cD of the N Hz signal:







𝑐𝐷 𝑐𝐴𝑦ℎ𝑖𝑔ℎ[𝑛] 𝑦𝑙𝑜𝑤[𝑛]
𝑦ℎ𝑖𝑔ℎ[𝑛] = ∑ 𝑠[𝑖]ℎ[2𝑛 − 𝑖]∞

𝑖= −∞ ,
𝑦𝑙𝑜𝑤[𝑛] = ∑ 𝑠[𝑖]𝑔[2𝑛 − 𝑖]∞

𝑖= −∞ ,
𝑖 𝑛 𝑠[𝑖]𝑔[2𝑛 − 𝑖] ℎ[2𝑛 − 𝑖]

𝑥 𝑐𝐴 𝑐𝐷 𝑁 

Figure 1. Illustration of the 𝑥 level decomposition process. 

𝜙(𝑥) 𝜓(𝑥)
Figure 1. Illustration of the x level decomposition process.

The wavelet function is composed with the scaled and translated copies of the scal-
ing function φ(x) and the mother wavelet function ψ(x) [26,38] which is a continuously
differentiable function with compact support. Since there are many different types of
mother wavelet functions, finding the optimal mother wavelet is essential for the best
performance not only in denoising but also in other signal processing. The coefficients
of the discrete wavelet transform represent the projection of the signal over a set of basis
functions generated as the translation and dilation of the mother wavelet function and the
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scaling function [42]. More specifically, the low-pass coefficients are related to the scaling
function and the high-pass coefficients are related to the mother wavelet function as in
Equations (3)–(5) [38]:

g(h) = (−1)nh(1 − n), (3)

φ(x) = ∑
n

h(n)
√

2φ(2x − n), (4)

ψ(x) = ∑
n

g(n)
√

2φ(2x − n). (5)

The low-pass and high-pass filters are distinctive variables for each mother wavelet
function. Since the selection of the mother wavelet function and the decomposition level
affects the noise reduction performance, the suitable mother wavelet function and the
decomposition level could be optimizing the performance of the processing methods based
on the wavelet transform.

2.2. Doppler Cardiogram Signal Dataset and Recording Procedure

A total of 28 DCG signals from 11 subjects were examined in this study. The datasets
were recorded from healthy control subjects composed of 6 females and 5 males aged
24.08 ± 2.35 years (mean ± standard deviation). The subjects were recruited from the
Electronic Engineering department of Yeungnam University. The subjects have no history
of CVDs. Each signal data was recorded for 160 s and 1 k samples per second. The
measurement system was constructed with a Doppler radar sensor, which measured the
cardiogram of the subject at a distance of 30 cm. Table 1 shows the socio-demographic and
clinical data of the control subjects. Permission to use the DCG data was granted from
all subjects.

Table 1. Sociodemographic data of the control subjects (Age in years, mean ± standard deviation, SD).

Demographic and Clinical Features Control

Number 11
Age 24.08 ± 2.35

Female/Male 6 F/5 M

The DCG signals were detected by using the radar sensor module with two discrete
patch antennas, which was implemented on an FR4 printed circuit board with a thickness
of 0.6 mm, as shown in Figure 2 [43]. A total of 5.8 GHz of signals were generated by a
voltage-controlled oscillator (HMC431LP4, Analog Devices) with an output power of 7.8 dBm
radiating from the transmitting antenna with a directivity of 4.0 dBi. The received signals
modulated by respiration and heartbeat were incident by using the receiving antenna, and
they are down-converted to baseband signals by using quadrature mixers with low-pass
filters with a cut-off frequency of 500 MHz. The overall noise figure in the receiver path was
calculated to approximately 1.9 dB. The baseband signals were collected on a PC by using
the data acquisition board with a sampling frequency of 1 kHz. Vital signs were obtained
by filtering the baseband signals with a high-order band-pass filter in the digital domain.
The multi-phase mixing in the radar module was used in the DC offset compensation in the
received signals to improve the accuracy of the phase demodulation in signal processing [43].
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Figure 2. A 5.8 GHz continuous-wave Doppler radar sensors for the measurement of vital signs [43].

Figure 3 shows the experimental setup for vital signs detection with a 5.8 GHz CW
Doppler radar. The vital signs detected by the radar, which is located at a distance of 30 cm
from the thorax of the subject and fixed on the bottom of the table above the subject, were
obtained by using the data acquisition board (NI USB-6366, National Instruments, Austin, TX,
USA) at a sampling rate of 1 kHz. A three-electrode ECG sensor (Vernier Software and Tech-
nology, Beaverton, OR, USA.), which was used as the reference sensor for heartbeat detection
of the radar, was obtained at a sampling rate of 200 Hz. Heartbeat signals simultaneously
obtained by the radar and ECG sensors were compared using NI LabVIEW and MATLAB
on a computer. The vital signals of 11 subjects (5 males and 6 females in their 20 s) lying on
the bed were continuously measured for 160 s. The movement of the subjects were limited to
minimize the effect of the noise generated by motion on the ECG and radar sensors.

 

Figure 3. Block diagram of the experimental setup for vital signal detection using the 5.8 GHz CW radar. 
Figure 3. Block diagram of the experimental setup for vital signal detection using the 5.8 GHz CW radar.

Though the ECG signals were not used in this study, ECG and DCG signals were measured
from each subject once due to the structure of the sensor system. The corresponding matches of
the ECG and DCG were obtained as a dataset for the future work of cardiogram analysis.
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2.3. Evalution Measures

In this section, the optimal choice will be derived based on the quantitative exper-
imental results. Since the SNR is one of the measures that evaluates the denoising per-
formance [44,45], the following performance indexes were used to evaluate the denoised
signal with j and k.

SNRj, k = 10log10
∑

N
i=1 s2[i]

∑
N
i=1

∣

∣

∣
s[i] − ŝj, k[i]

∣

∣

∣

, (6)

η(k) = log10((sl − l(m[k]))× l(m[k])), (7)

e f f (j, k) =
SNRj,k

η(k)
(8)

where ŝj,k[i] and SNRj, k in (10) denote the denoised signal and the SNR when the decom-
posed level is j and the wavelet function index is k. The η(k) (11) is the execution complexity
of the wavelet transform in case the wavelet function index is k. The η(k) is defined as
the common logarithm value of the number of multiplication operations required for the
wavelet transform that can be obtained by the length of the signal sl and the length of the
mother wavelet function l(m[k]). For the denoising process, the higher SNR value shows
that a better performance and lower execution complexity represents higher efficiency [46].
Therefore, the new criterion e f f (j, k) (12) is proposed in this study to evaluate denoising
performance efficiency.

3. Experiment

3.1. Additive White Gaussian Noise

Additive white Gaussian noise is the fundamental noise model in the information
signal processing with three important characteristics manifested in its term. First, additive
means the way in which noise joins in the signal. The noisy signal sN [n] is generated by
adding the noise components N[n] to the original signal s[n] [47]. This process is described
in Figure 4 and the mathematical expression is described as below:

sN [n] = s[n] + N[n]. (9)

 

–

𝑗 𝑚[𝑘]

𝑗 𝑚[𝑘]
𝑗𝑚[𝑘] 𝑘

–
, Stein’s Unbiased Risk Estimate

–

𝑦𝑠(𝑐) =  {𝑠𝑔𝑛(𝑐) ∙ (|𝑐| − 𝑇𝑈),0,    |𝑐| >  𝑇𝑈|𝑐| ≤  𝑇𝑈},
𝑇𝑈 =  �̂�√2 𝑙𝑜𝑔(𝑁),�̂� = 𝑀𝐴𝐷/0.6745,𝑐 𝑇𝑈𝑁𝑀𝐴𝐷�̂�

Figure 4. The block diagram of the denoising method.

Second, white denotes the power spectrum density of the noise is a constant value
across the frequency range and the noise exists at almost every frequency [48]. Finally,
Gaussian represents that the distribution of the noise is the Gaussian random process. The
additive white Gaussian noise consists of normal distribution in the time domain and
independent and identical distribution (i.i.d) in the frequency domain [49]. In this study,
the additive white Gaussian noise components follow the distribution of N(0, σ), which is
copied to the electromagnetic noise distribution of the original signal. Since the distribution
is identical, the generated noisy signal sN [n] can represent comparable features with the
real world noisy signal [50]. In the experiment, the white Gaussian noise is added to each
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original DCG signal with a SNR of 10 dB by the signal processing tool that is provided
from Mathworks MATLAB.

3.2. Denoising Process with Wavelet Transform and Thresholding

To improve the quality of the noisy signal, the denoising process should hold the real
data factors and remove the additive noise components [27]. In the previous studies, the
noise reduction methods are generally based on the model simulation or spectral analysis,
in which it is difficult to keep the complicated features of the signal [27,51–53]. On the
other hand, the wavelet decomposition thresholding method can control the noisy signal to
maintain the original signal components and separate the noise components more precisely.
In this study, the denoising method is composed of three steps as follows [54,55]:

1. Wavelet Decomposition Select the decomposition level j and the mother wavelet
function m[k]. Produce the wavelet coefficients through discrete wavelet transform
with these two factors.

2. Thresholding Set the threshold value, which is calculated by the wavelet coefficients.
Threshold the decomposed wavelet coefficients.

3. Wavelet Reconstruction Reconstruct the wavelet coefficients after thresholding using
j and m[k].

Figure 4 describes the whole denoising process as a block diagram with an illustration
of the three steps of the denoising method. j denotes the decomposition level of 1 to 10, m[k]
is the mother wavelet function, and k is the function index from 1 to 115. Meanwhile, at the
thresholding step, the soft thresholding is used for its superior thresholding performance
to the hard thresholding [56]. There are various threshold methods for noise elimination
such as Empirical Bayes [57], Block James–Stein [58], False Discovery Rate [59], Minimax
Estimation [60], Stein’s Unbiased Risk Estimate [61], and Universal Threshold [62,63]. As
the threshold method affects the denoising performance, studies on the powerful threshold
determination method are kept reported [64,65]. In this study, the Universal Threshold is
selected for its simple operation and powerful performance. The mathematical expressions
for the soft thresholding are described in Equations (10)–(12) [51]:

ys(c) =

{

sgn(c)·(|c| − TU),
0,

|c| > TU

|c| ≤ TU

}

, (10)

TU = σ̂
√

2log(N), (11)

σ̂ = MAD/0.6745, (12)

where c is the wavelet coefficient of the decomposed noisy signal [65,66] and TU is the
universal threshold value proposed by Donoho and Johnstone [51,67]. N is the number of
samples in the signal and MAD is the median absolute deviation of the wavelet coefficients.
The meaning of σ̂ is the estimate of the standard deviation of the noise. Following these
equations, the threshold value is produced with the median value of the wavelet coefficients
and the number of the sampling ratio in the signal.

3.3. The Process of the Optimal Selection of the Mother Wavelet Function and the
Decomposition Level

As the decomposition level and mother wavelet function have various candidates, the
optimal selection not only evaluates a superior performance of denoising but also rates the
execution efficiency to reduce unnecessary calculation. Table 2 and Figure 5 described the
process of the optimal selection. First, the denoising process is repeated to accumulate the
evaluation results for all candidates. Then, the optimal decomposition level and wavelet
function index are obtained by finding the arguments of the maxima from the accumulated
results. In Figure 5, j∗ denotes the optimal decomposition level and m[k∗] denotes the optimal
mother wavelet function, where k∗ is the function index of the optimal mother wavelet.
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Table 2. The table of algorithm step for the analysis process of the optimal selection.

Algorithm Step

• Accumulate the denoising result using 115 mother wavelet functions and decomposition
level 7 (prediction).

• Find out the most efficient mother wavelet function m[k∗].

• Accumulate the denoising result using the optimal mother wavelet function m[k∗] and
10 decomposition levels.

• Find out the most efficient wavelet decomposition level j∗.

• Set the optimal selection of the mother wavelet function m[k∗] and the wavelet
decomposition level j∗.

𝑗∗ 𝑚[𝑘∗]𝑘∗


 𝑚[𝑘∗]
 𝑚[𝑘∗]
 𝑗∗
 𝑚[𝑘∗] 𝑗∗

 𝑚[𝑘∗]𝑗∗Figure 5. The block diagram of the optimal selection process for the mother wavelet function m[k∗] and decomposition
level j∗.

4. Result

4.1. Wavelet Decomposition Level Prediction

To determine the optimal mother wavelet function, the arbitrary decomposition level
should be estimated. In this study, the decomposition level is estimated based on the
dominant frequency range of the original signal. At the data analysis step, the original
DCG signal has the dominant frequency band at 0 to 5 Hz. The approximation coefficients
of the decomposition level seven obtain a frequency band of about 0 to 4 Hz, depending on
the frequency decomposition rule [68]. Tables 3–8 show the evaluation criterion e f f (j, k)
values for the candidates of the wavelet families at decomposition levels 3 to 8. According
to Tables 3–8, it can be shown that each wavelet family has the maximum e f f (j, k) at seven.
Thus, the estimated optimal decomposition level is set to seven.
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Table 3. The e f f (j, k) value of the Coiflets family (wavelet length 18–30).

3 4 5 6 7 8

18 3.5903 4.0369 4.4724 4.9091 5.0815 3.7178
24 3.5252 3.9538 4.3936 4.8243 5.1840 3.6898
30 3.4757 3.8981 4.3334 4.7615 5.1429 3.6670

Table 4. The e f f (j, k) value of the Daubechies family (wavelet length 18–22).

3 4 5 6 7 8

18 3.5902 4.0328 4.4719 4.9322 5.2873 3.7658
20 3.5671 4.0081 4.4414 4.8843 5.2838 3.7557
22 3.5439 3.9737 4.4199 4.8498 5.2496 3.7590

Table 5. The e f f (j, k) value of the Fejer–Korovkin family (wavelet length 18–22).

3 4 5 6 7 8

18 3.5910 4.0327 4.4659 4.8763 4.9468 3.8317
22 3.5438 3.9782 4.4147 4.8194 4.9721 3.8463

Table 6. The e f f (j, k) value of the Biorthogonal Spline family (wavelet length 18–20).

3 4 5 6 7 8

18 3.5894 4.0377 4.4704 4.9072 5.1879 3.7663
20 3.5521 3.9645 4.3828 4.7759 4.8445 3.8774

Table 7. The e f f (j, k) value of the Reverse Biorthogonal Spline family (wavelet length 18–20).

3 4 5 6 7 8

18 3.5867 4.0361 4.4688 4.9040 5.1384 3.4258
20 3.5602 3.9910 4.4374 4.8952 4.9568 3.0319

Table 8. The e f f (j, k) value of the Symlets family (wavelet length 18–20).

3 4 5 6 7 8

18 3.5914 4.0267 4.4733 4.9256 5.3099 3.7781
20 3.5657 4.0102 4.4428 4.8765 5.2783 3.7603
22 3.5450 3.9741 4.4176 4.8723 5.2523 3.7297

4.2. Most Efficient Mother Wavelet Selection

In this section, the analytic results of the denoising performance using 115 wavelet
functions are presented. The examined wavelet functions are selected from the six wavelet
families including Coiflets (coif1-coif5), Daubechies (db1-db45), Fejer–Korovkin (fk4-fk22),
Biorthogonal Spline (bior1.1-bior6.8), Reverse Biorthogonal Spline (rbio1.1-rbio6.8), and
Symlets (sym2-sym30) [69,70]. The length of the wavelet varies by the number of the
mother wavelet function name in range of 2 (db1, coif1, etc.) to 90 (db45), only even
numbers. Traditionally, the optimal mother wavelet for noise reduction should satisfy the
properties of orthogonality, symmetry, regularity, similarity of the shape with the signal,
and so on [29,49,71]. According to the experiment result, however, the wavelet length
of the mother wavelet function was the key determinant for the noise elimination of the
DCG signal. The blue plot of the Figure 6 shows that the SNRj, k of the denoised signal
increases with the wavelet length of the mother wavelet function and is saturated at a
wavelet length of 18. Although the values of the SNRj, k from the wavelet length of 22
to 90 are similar, execution complexity keeping up with the wavelet length makes the
longer wavelet function excessive. As the evaluation criterion e f f (j, k) includes both
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the denoising performance SNRj, k and the execution complexity η(k), the most efficient
wavelet length can be selected as 18 from the red plot of Figure 6. Not only does the
execution efficiency become worse but the required length of the signal also increases when
the wavelet length grows.

𝑆𝑁𝑅𝑗,𝑘𝑆𝑁𝑅𝑗,𝑘 𝑒𝑓𝑓(𝑗, 𝑘)𝑆𝑁𝑅𝑗,𝑘 𝜂(𝑘)

 𝑆𝑁𝑅𝑗,𝑘𝑒𝑓𝑓(𝑗, 𝑘) 𝑗

𝑒𝑓𝑓(𝑗, 𝑘)
“ 8”

“ 8”

“ 9” “ 9”
“ “ “ ”

Figure 6. Denoising performance of the wavelet length (2 to 90), blue plot denotes SNRj, k values
and red plot denotes e f f (j, k). The used decomposition level j is 7.

However, the wavelet length is not the only feature that represents the characteristic of
the mother wavelet function. Though few numbers of the wavelet functions share the same
wavelet length, the basis functions and basic features are distinctive. Therefore, even with the
same wavelet length, the denoising performance e f f (j, k) will vary depending on the basis
function of the mother wavelet function. At a wavelet length of 16, “db8” and “sym8” scored
5.28 and 5.31 which are higher than other wavelets and the average performance of a wavelet
length of 16 is 4.92 (Figure 7a). In the case a wavelet length of 18, “db9” and “sym9” perform
better again (Figure 7b). For a wavelet length of 20 (Figure 7c), “db“ and “sym” are always
the optimal wavelet functions. On the contrary with the Daubechies and Symlets families, the
function from the Biorthogonal family shows the lowest performance at all three graphs.

  
(a) (b) (c) 𝑒𝑓𝑓(𝑗, 𝑘) 𝑗

𝑒𝑓𝑓(𝑗, 𝑘)𝑥 𝑒𝑓𝑓(𝑗, 𝑘) “ ”𝑦 𝑒𝑓𝑓(𝑗, 𝑘)
𝑒𝑓𝑓(𝑗, 𝑘)

“ ” 𝑒𝑓𝑓(𝑗, 𝑘) “ ”𝑒𝑓𝑓(𝑗, 𝑘)
“ ”

𝑒𝑓𝑓(𝑗, 𝑘)

Figure 7. e f f (j, k) values of six wavelet families (db, sym, coif, fk, bior, and rbio) for wavelet lengths of: (a) 16, (b) 18, and
(c) 20. The used decomposition level j is 7.
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4.3. Optimal Decomposition Level

To optimize the performance of the denoising method using the wavelet transform
and thresholding, determining the proper decomposition level is also necessary. However,
the optimal decomposition level was first estimated in Section 4.1 based on the dominant
frequency range and the sampling ratio of the signal. In this subsection, we will cover the
results of the quantitative analysis for the optimal decomposition level. Figure 8 represents
e f f (j, k) of the denoised signal. The decomposition level in range from 1 to 10 is denoted
as the x-axis, the e f f (j, k) from the optimal mother wavelet “db9” is indicated as the y-axis.
Figure 9 shows the e f f (j, k) of the six wavelet families at decomposition level 1 to 10. Each
wavelet function is fixed to a wavelet length of 18, which is the most efficient wavelet
length obtained in the previous subsection. Through the experimental result analysis of
Figures 8 and 9, the denoising process with decomposition level seven achieves the best
performance among all candidates but a higher decomposition level apparently gives less
e f f (j, k) performance. Although Figure 9 shows that the “bior” graph has a maximum
value at level six, still the maximum e f f (j, k) of the “bior” family is far less than the
maximum e f f (j, k) of other families, the wavelet functions from the “bior” family are
out of consideration in this study. This incident happens when the wavelet length of the
mother wavelet function is too short for the length of the input signal.

𝑒𝑓𝑓(𝑗, 𝑘) 𝑗

𝑒𝑓𝑓(𝑗, 𝑘)𝑥 𝑒𝑓𝑓(𝑗, 𝑘) “ ”𝑦 𝑒𝑓𝑓(𝑗, 𝑘)
𝑒𝑓𝑓(𝑗, 𝑘)

“ ” 𝑒𝑓𝑓(𝑗, 𝑘) “ ”𝑒𝑓𝑓(𝑗, 𝑘)
“ ”

 𝑒𝑓𝑓(𝑗, 𝑘)
Figure 8. e f f (j, k) values of 10 decomposition levels (1 to 10) for db9.

The approximation coefficients at the optimal decomposition level is cA7, which
are composed of a partial signal whose frequency range is approximately 0~4 Hz. This
frequency range is the subset of the dominant frequency band (0~5 Hz) of the original
signal. Therefore, the decomposition level, which can extract the dominant frequency band
of the original signal at approximation coefficients, is the optimal decomposition level for
signal denoising. To prove this, the same denoising process was performed to the DCG
signals with different sampling ratios. The DCG signals with a sampling frequency of 1000
Hz were sampled to different sampling ratios to provide identical DCG characteristics
but different frequency features. The e f f (j, k) values of these sampled signals with four
different sampling ratios (500 Hz, 250 Hz, 125 Hz, and 62 Hz) are described in Figure 10. As
shown in Figure 10a, in case of a sampling ratio of 500 Hz, the most effective decomposition
level lowered 1 step to level 6 as the sampling ratio decreased to half of the original. At this
time, the denoising performance also decreased. Likewise, the plot of the signal with the
sampling frequency of 125 Hz in Figure 10c represents that the optimal decomposition level
is four, which is three levels lower than the original. Moreover, the maximum e f f (j, k)
of the denoised signal decreases as the sampling ratio falls off (Figure 11). To summarize,
the optimal decomposition level is determined by the dominant frequency band and the
sampling ratio of the original signal. It is also shown that the sampling frequency of the
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signal affects to the denoising performance because the higher sampling rate can obtain
more useful information components than the signal with a lower sampling rate.

 𝑒𝑓𝑓(𝑗, 𝑘)
𝑐𝐴7

𝑒𝑓𝑓(𝑗, 𝑘)

𝑒𝑓𝑓(𝑗, 𝑘)

Figure 9. e f f (j, k) values of 10 decomposition levels (1 to 10) for six mother wavelet functions (db9, sym9, coif3, fk18, bior,
and rbio).
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(c) (d) 𝑒𝑓𝑓(𝑗, 𝑘) 𝑒𝑓𝑓(𝑗, 𝑘)𝑒𝑓𝑓(𝑗, 𝑘) 𝑒𝑓𝑓(𝑗, 𝑘)𝑒𝑓𝑓(𝑗, 𝑘)
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–
author’s knowledge, 

Figure 10. e f f (j, k) values of 10 decomposition levels (1 to 10) for db9. (a) e f f (j, k) values for a sampling frequency of
500 Hz; (b) e f f (j, k) value for a sampling frequency of 250 Hz; (c) e f f (j, k) values for a sampling frequency of 125 Hz; and
(d) e f f (j, k) values for a sampling frequency of 62 Hz.
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Figure 11. Maximum e f f (j, k) values of signals with five sampling ratios (1000 Hz, 500 Hz, 250 Hz,
125 Hz, and 62 Hz).

5. Discussions

In this study, the denoising process using wavelet decomposition and thresholding
method is performed to improve the quality of the DCG signal. Although there are many
studies of the denoising process using the wavelet function [35,72–74], to the best of the
author’s knowledge, previous studies have yet to provide the optimal mother wavelet
selection for the DCG signal. The purpose of this study is proposing the optimal selection
of the mother wavelet function and the decomposition level for the DCG signal to optimize
the performance of the denoising process.

Xu et al. [35] and Srivastava et al. [36] proposed the selection of the mother wavelet
function and the decomposition level of the object radar signal, respectively. However the
proposed mother wavelet function and decomposition level for their object radar signal
performed less powerfully on the DCG signal than the proposed selection from this study
(Table 9). As a consequence, the optimal mother wavelet function and the decomposition
level should be selected identically by analyzing the characteristics of the object signal.

Table 9. The table for the comparison of the SNRj, k performance between the Xu et al., Srivastava
et al., and proposed selection.

Proposed Selection
Xu et al. Selection

[35]
Srivastava et al.
Selection [36]

SNRj,k/dB 35.726 27.191 33.153
Wavelet db9 db4 coif 3

level 7 4 6

The denoising process with the optimal selection for the DCG signal enhanced the
quality of the DCG signals in the information field. As the DCG signals can be obtained in
a more flexible condition than the ECG signals, the improvement of the DCG signals could
enhance the diagnosis of the CVDs.

6. Conclusions

The wavelet decomposition thresholding is a powerful denoising method. The perfor-
mance of the denoising method can be optimized by using the optimal set of the mother
wavelet function and the decomposition level. For the DCG signal, this study suggested
the optimal selection of the mother wavelet function and the decomposition level based
on the signal analysis. To select the optimal mother wavelet function, the wavelet length
of the mother wavelet function is an important element. In this study, the length of the
examined signal was 160,000, with a 1000 Hz sampling rate signal recorded for 160 s and
the most efficient wavelet length was 18. There are six wavelet families with wavelet length
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18; “db9”, “sym9”, “coif3”, “fk18”, “bior”, and “rbio”. Most of these six functions recorded
superior performance to other functions with a different wavelet length and “db9” and
“sym9” were selected for the optimal mother wavelet functions among all 115 wavelet
candidates. The optimal decomposition level for the DCG signal was determined as seven,
which shows that the estimation of the decomposition level based on the length of the
signal was precise.

Since the noise reduction method based on the wavelet decomposition and the thresh-
olding with optimal parameters successfully removes the noise from the DCG signal, the
quality of the heart rate signal obtained by Doppler radar sensors was improved in the
information field. Therefore, analyzing a DCG signal using artificial neural networks for
the diagnosis of CVDs is conducted as the aim of the future work following to this study.

The major findings in this study is denoted as follows:

• The wavelet length of the mother wavelet function was the important element for the
selection of the most efficient mother wavelet. The longer mother wavelet function
did not provide a better denoising performance. As the longer wavelet function
requires more performance complexity, the optimal wavelet length for the performance
efficiency should be considered;

• The optimal decomposition level was determined by the sampling frequency and
dominant frequency range of the original signal. The level that could decompose the
dominant frequency range from the signal was the optimal decomposition level. For
this reason, the optimal decomposition level could be predicted based on the signal
analysis in the frequency domain. The appropriate decomposition level produced a
modest threshold value for noise removal;

• The higher the sampling frequency of the DCG signal, the more powerful the perfor-
mance of the denoising process. The higher sampling frequency enabled the signal to
obtain more useful components.
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Abstract: In this paper, we propose a Doppler spectrum-based passenger detection scheme for a CW
(Continuous Wave) radar sensor in vehicle applications. First, we design two new features, referred to
as an ‘extended degree of scattering points’ and a ‘different degree of scattering points’ to represent
the characteristics of the non-rigid motion of a moving human in a vehicle. We also design one newly
defined feature referred to as the ‘presence of vital signs’, which is related to extracting the Doppler
frequency of chest movements due to breathing. Additionally, we use a BDT (Binary Decision Tree)
for machine learning during the training and test steps with these three extracted features. We used a
2.45 GHz CW radar front-end module with a single receive antenna and a real-time data acquisition
module. Moreover, we built a test-bed with a structure similar to that of an actual vehicle interior.
With the test-bed, we measured radar signals in various scenarios. We then repeatedly assessed
the classification accuracy and classification error rate using the proposed algorithm with the BDT.
We found an average classification accuracy rate of 98.6% for a human with or without motion.

Keywords: passenger detection; CW radar; radar feature vector; radar machine learning

1. Introduction

The fact that children are dying in hot vehicles has recently become a major social issue. Thus,
the European NCAP (New Car Evaluation Program) has recommended the installation of CPD (Child
Presence Detection) technology on all new cars starting in 2020 [1]. Moreover, many countries’ safety
regulators have also considered rules that could mandate CPD systems aimed to detect a child left
in a vehicle. To support such a system, various sensors capable of detecting objects in vehicles or
monitoring vehicle body status are required [2,3].

Another application of passenger detection is in electric vehicles. In electric vehicles, the heating
and air conditioning functions depend on the efficiency of the battery [4]. If heating and cooling
systems in vehicles can be automatically controlled for each seat, battery consumption can be decreased.
Thus, to support these functions, technology to detect passengers in each seat is required.

One additional application for occupant recognition is in self-driving vehicles. The driving
operation for an autonomous vehicle strongly depends on the presence or absence of passengers.
That is, when occupants are riding, the comfort and reliability of passengers become very important
issues [5]. Moreover, depending on whether the occupant is sleeping or moving, the self-driving style
can differ. Thus, it is very important to assess the occupancy and status of passengers in every seat.

For the various applications described above, the performances capabilities of sensors to detect
passenger are very important. The characteristics of these sensors are described below.
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Among various methods, one very simple approach is to use a pressure sensor. However,
when any object is placed on a seat, it is impossible to determine whether or not the object is a human.
Another solution is to measure and use the distance from the object by means of an ultrasonic sensor.
However, this method also cannot distinguish between different types of objects.

Recently, thermal infrared sensors have been attracting attention given their ability to check for
the presence of passengers using human temperature. However, this method is highly sensitive to a
person’s clothing or to the external temperature condition.

The use of a camera is also a very effective solution for these applications. Specifically,
because stereo cameras and depth cameras can measure the distance to an object, they can
recognize various motions of a human when applying deep learning with image features. However,
camera sensors are limited due to the external lighting conditions. Another disadvantage is that the
amount of computation for image processing is excessive. Moreover, the installation of a camera inside
their vehicles may cause consumers to reject these vehicles due to privacy issues.

Recently, a radar sensor-based occupant detection system has attracted attention, as radar is
robust to external conditions [6]. Moreover, radar can distinguish between a moving object and a
stationary object, and these systems can also monitor vital signal of sleeping or non-moving humans in
a vehicle [7].

To detect the motion of an object and to detect human vital signs using a radar sensor, popular
types currently in use are impulse UWB (Ultra Wide Band) radar, FMCW (Frequency Modulated
Continuous Wave) radar, and CW (Continuous Wave) radar.

In impulse UWB radar, because it is possible to measure a high-resolution range, we can distinguish
chest movements due to breathing by measuring changes in distance values. Because high-resolution
range detection is most advantageous, UWB radar is widely used for vital sign recognition [8,9].
Earlier work proposed the concept of detecting the vital signals of a passenger by mounting a UWB
radar sensor in a vehicle [8]. In another approach [9], a UWB radar sensor was used to detect human
vital signs for each seat, applying the features extracted from the detected range into the machine
leaning approach, such as a SVM (Support Vector Machine). However, these two related works only
focused on non-moving humans, and did not consider moving humans or other objects.

Although UWB radar is very popular, the Doppler component cannot be detected in order to
distinguish between a stationary object and a moving object. Thus, an additional algorithm is required
using measured distances. In addition, because this type transmits an impulse-shaped waveform in
the time domain, high peak transmission is limited. This can result in a low SNR (Signal-to-Noise
Ratio) over a certain distance.

Recently, because FMCW radar can measure both the distance and the Doppler information,
FMCW radar has come to be commonly used in commercial applications. Moreover, when detecting
changes in phases over several periods, the respiration period was extracted in earlier works [10,11].
In addition, one related study [10] presented a method that separated the vital signs reflected from
two humans using a high-resolution algorithm, in that case the MUSIC (Multiple Signal Classifier)
algorithm. However, neither method focused on only vital sign signal detection, nor were they
intended for in-vehicle applications.

Despite the fact that the FMCW radar is widely used in commercial applications, a PLL (Phase
Loop Lock) circuit is also required to synchronize the transmit waveform phases and to ensure linearity
during the modulation step. Moreover, because FMCW radar can detect moving and stationary objects,
extra algorithms to distinguish them are necessary.

Finally, the CW radar sensor is a popular radar sensor due to its very simple hardware structure.
However, because CW radar can only receive Doppler signals, these sensors can only detect moving
objects, and cannot detect the range. Thus, in CW radar, breathing signals can be measured by
analyzing the Doppler signal generated from the chest movements [7,12,13]. One earlier study [12]
presented the concept of recognizing a human remaining in a vehicle using CW radar by cancelling
the background noise. In another work [13], an algorithm for detecting not only respiration, but
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also the heartbeat, was proposed. Because CW radar is somewhat sensitive to external noise, one
study [7] proposed attaching an accelerometer to the radar sensor to record vibrations of the vehicle
itself. However, these three related works also considered stationary humans when extracting human
vital signs.

Although though CW radar sensors have various disadvantages, they can be easily applied in
various applications as a low-cost senor compared to UWB radar and FMCW radar. Thus, in this paper,
we employ the CW radar type to realize a passenger detection system with a very simple architecture.

To effectively confirm the existence of a human in a vehicle, we can recognize a human who is still,
sleeping, or moving using the Doppler signal measured using the CW radar sensor. That is, we can
determine whether or not the detected moving object is a human and can extract vital signals from a
non-moving human on the seat.

If a human is moving on a seat, the echo signal of the human’s vital signs can be masked by the
Doppler signal of the human’s motion. In such cases, it is difficult to determine whether a human is
present or not in a vehicle using only the detected vital signal.

Moreover, if an inanimate object is moving on a seat or if the vehicle itself has vibration, the radar
system should be able to recognize a Doppler signal. Thus, when using only the presence of the
Doppler echo, it is impossible to determine whether or not a human is occupying a seat.

Thus, in this paper, we propose a human recognition concept as part of our effort to implement a
proper passenger detection system, as shown in Figure 1. The wait mode transmits the received radar
signal into the motion-detection mode and the vital sign detection mode, with both modes operating
in parallel.

If a human is moving on a seat, the echo signal of the human’s 
Doppler signal of the human’s motion. In such 

 

of the human’s torso, head, shoulders, arms, waist, and thighs, micr

Figure 1. Human recognition concept for in-vehicle application. Here, the car photo on the left, also
used in an earlier work [2], was modified somewhat.

Based the results of both modes, in the decision mode, human recognition is determined, and the
system reverts back to the wait mode.

For the vital sign detection mode, we design a simple vital sign detection algorithm to determine
whether breathing is present or not. Thus, we extract one feature vector to indicate the presence of
vital signs.

For the motion detection mode, we propose algorithms to determine whether or not a moving
object in a vehicle is a human. In the proposed method, we use the human characteristics of non-rigid
motion. That is, in the case of a human, because the radar signal is reflected from various components
of the human’s torso, head, shoulders, arms, waist, and thighs, micro-Doppler effect appears. Thus,
in paper, we initially generate a micro-Doppler image in the time-frequency domain. Next, we design
two new feature vectors that suitably represent the characteristics of a moving human in a vehicle
from the micro-Doppler image.

Finally, in the decision mode, we conduct machine learning using a BDT (Binary Decision Tree),
which has a very simple structure, and the proposed three features to determine the presence of
passengers in vehicles.

Thus, we extract three features using actual measurement data from a CW radar transceiver and
verify the proposed machine learning-based human recognition scheme.
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In Section 2, we present the proposed human recognition scheme with machine learning.
In Section 3, we present the verification results using actual data from a 2.45 GHz CW radar front-end
module and a real-time data acquisition module. Finally, we present the conclusion of our study and
the suggestions for future work in the final Section.

2. Proposed Human Recognition Scheme in a Vehicle

2.1. Problem Definition of Human Detection in a Vehicle

In this paper, Figure 2 shows the information detected via radar sensor according to the increased
level of motion of passengers in a vehicle. Here, the x-axis indicates the amount of movement by a
human and the y-axis represents the Doppler frequency of the echo signal.

 

object using the echo generated by the human’s 

Figure 2. Information detected from a radar sensor according to amount of movement by a human on
a seat in the vehicle.

In a vehicle, when a passenger is sleeping or a still human is sitting on a seat, Doppler radar
sensors can detect breathing signals from vital sign detection area in Figure 2. Accordingly, we can
easily distinguish between a human and an inanimate object using the echo generated by the
human’s respiration.

However, if a passenger moves with much motion on the seat, as shown in the motion detection
area of Figure 2, the Doppler components issued by the body motion can mask most of the weak vital
sign signals. In such cases, if an object is moving with considerable motion, we can detect the object
using the Doppler echo level. However, with only the Doppler component, it is impossible to confirm
whether or not a human has been detected.

Moreover, in the motion and vital sign hazard area, the detection of vital signs depends entirely
on the amount of human movement. In other words, when a human is moving with relatively slight
motion, motion and vital signals can appear together, whereas the vital signals can be immediately
masked when a passenger is moving with a Doppler volume above a certain level.

Therefore, in both the motion detection area and the motion and vital sign hazard area, we cannot
distinguish between a human and another object by the presence of vital signals or Doppler signals
alone. To overcome this problem, we propose here a human recognition scheme using the characteristics
of the echoed Doppler spectra of the object.

Generally, in signals reflected from a walking or running human, sidebands appear around the
Doppler frequency due to the non-rigid motion. That is, various Doppler echoes can be extracted as
reflected scatters of human components, such as the body, arms, and feet. Moreover, the distribution of
Doppler scattering points received from a human can vary greatly during the measurement time [14,15].
In one earlier study [14], based on the FMCW radar, we proposed a concept to distinguish between
pedestrians and vehicles on a road by detecting the range and velocity and analyzing the pattern of
the Doppler spectrum. In addition, in another study [15], we proposed a classification algorithm for
humans and vehicles that extracted feature vectors from the received FMCW radar signal and applied
them to machine learning.
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From these hints, in vehicle applications, although the received power is weak and there are
fewer scattering points compared to the case of a walking human, the received signal has multiple
reflection points echoed from the head, torso, waist, arms, pelvis, and other parts of the passenger’s
body. Moreover, because the human in the vehicle cannot move constantly, the Doppler spectrum will
vary more over time.

Thus, we can find certain patterns in the micro-Doppler image of a moving passenger. In this
paper, we distinguish between humans and other objects by using feature vectors extracted from this
pattern, together with the vital signal extracted through additional signal processing, and applying the
features to machine learning.

2.2. Concept of Proposed Human Recognition

Figure 3a presents the proposed concept of recognizing a passenger in a vehicle based on the
Doppler spectra and vital signs of the passenger. In Figure 3b, we illustrate an example of the scattering
points reflected from the passenger and from a box. In this case, we cannot know which aspects of the
human’s various components are reflected. Moreover, we cannot know the extent to which individual
parts of body contribute to the reflection.

’s

’

(a) 

 

(b) 

 

(c) 

 

Figure 3. Proposed human recognition scheme together with micro-Doppler and vital signals using
machine learning for a Doppler radar sensor: (a) top block diagram of the proposed algorithm,
(b) example of Doppler scattering points of a human, (c) example of Doppler scattering points of a
non-human and a non-human object.

However, as explained above, if a human is moving, the Doppler spectrum reflected by the human
is expected to spread and change over time due non-rigid motion, as shown in Figure 3b. On the
other hand, echoes from a non-human object such as a moving box are expected to have a sharp type
of Doppler spectrum, as shown in Figure 3c. These characteristics are the motivation behind the
algorithm proposed in this paper.

The proposed human recognition scheme is divided into two parallel signal processing parts:
the micro-Doppler-based motion feature extraction part and the Doppler frequency-based vital sign
feature extraction part.

The I and Q signals reflected from the object are sampled through an ADC (Analog Digital
Converter). In this paper, we set the ADC sampling rate to 1 kHz, which is a high enough value to
digitalize the received signal form the CW radar system.
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The corresponding digitized data are inputted into two signal processing parts. In the
micro-Doppler-based motion feature extraction part, we can extract two feature vectors (x1 and
x2) that can determine whether or not human motion appears. Details are presented below in
Figures 4 and 5.

𝑓ℎ,𝑚𝑁𝑤𝑖𝑛,𝑚𝐾𝑚
𝑁𝑤𝑖𝑛,𝑚𝑡𝑤𝑖𝑛,𝑚 passenger’s 𝑡𝑠𝑡𝑒𝑝,𝑚𝑁𝑠𝑡𝑒𝑝,𝑚

𝐿

Figure 4. Detail algorithm steps for micro-Doppler-based motion feature extraction.

 

𝑓ℎ,𝑣 𝑁𝑤𝑖𝑛,𝑣 𝐾𝑣
𝑡𝑠𝑡𝑒𝑝,𝑣𝑁𝑠𝑡𝑒𝑝,𝑣𝑁𝑤𝑖𝑛,𝑣𝑡𝑤𝑖𝑛,𝑣

𝑓ℎ,𝑣

Figure 5. Concept of sliding window-based micro-Doppler generation for motion feature extraction.

In the Doppler frequency-based vital sign feature extraction part, the third vector x3 is extracted
to determine whether the vital signs exist. Figure 6 shows the detailed flow of the signal processing
together with a corresponding description.

𝑓ℎ,𝑣 𝑁𝑤𝑖𝑛,𝑣 𝐾𝑣
𝑡𝑠𝑡𝑒𝑝,𝑣𝑁𝑠𝑡𝑒𝑝,𝑣𝑁𝑤𝑖𝑛,𝑣𝑡𝑤𝑖𝑛,𝑣

𝑓ℎ,𝑣

Figure 6. Detailed algorithm steps for Doppler frequency-based vital sign feature extraction.

Figure 4 shows the proposed signal processing flow of the micro-Doppler-based motion feature
extraction part. The process has four steps, as shown below.

First, in the pre-filtering step, from the I and Q signals, the DC and high-frequency components
are removed using a DC filter and an LPF (Low Pass Filter), respectively. In the paper, the DC filter is
implemented by subtracting the average value from the raw signal. We also design the LPF on the 64th
order with a cut-off frequency fh,m of 30 Hz.
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Second, we conduct the Fourier transform by multiplying the coefficients of a Hamming window
with Nwin,m to suppress the side-lobe of the frequency spectrum and the FFT (Fast Fourier Transform)
with Km points for conversion to the frequency domain.

For a detailed explanation of the Fourier transform step, we illustrate the data processing timing
flow of the original raw signal in Figure 5.

We employ the STFT (Short Time Fourier Transform) technique based on a sliding window.
Because the required Doppler frequency resolution used to separate motion and vital signs is set to
approximately 0.5 Hz, we select a window size Nwin,m of 2000, which means that the measurement
time has a twin,m value of 2 s. Moreover, because the maximum Doppler frequency of a passenger’s
motion is about 10 Hz, we set the sliding step time tstep,m to 0.1 s for sliding window, indicating Nstep,m

sample of 100.
Thus, in this paper, a Doppler spectrum with 2048 FFT points is generated from 2000 samples

of the original signal. This procedure is repeated continuously with a sliding window in 0.1 s steps,
as shown in Figure 5.

Next, in the micro-Doppler generation step, the magnitude of the Doppler frequency spectrum
is calculated using the root-square function, and then the background noise is removed using the
previously measured noise spectral distribution information. The generated Doppler frequency
spectrum is saved into FIFO (First Input First Output) memory, and the micro-Doppler image is
composed by each Doppler spectrum such as the right side of Figure 4. Here, FIFO memory can store
as many Doppler spectra as the number of sub-frames L.

Finally, in the motion feature extraction step, as shown in Figure 4, we can obtain two feature
vectors by analyzing the distribution of the Doppler scattering points over all sub-frames. This
procedure is carried out in a Doppler scattering point analyzer, which will be described later and is
shown in Section 2.3.

Figure 6 shows the procedure of the Doppler frequency-based vital sign feature extraction part,
which is a simple technique. The process has also four steps, as shown below.

The roles of the pre-filtering step and the Fourier transform step are identical to those in the case
of Figure 4. However, the LPF is on the 32th order with a cut-off frequency fh,v of 1 Hz. Moreover,
the length of the Hamming window and the number of FFT points are expressed by Nwin,v and
Kv, respectively.

We also employ STFT technique with a sliding window, as shown in Figure 7. Here, because the
maximum Doppler frequency of human vital signs is less 1 Hz, the sliding step time tstep,v is set to 1
sec, with reference to a Nstep,v sample of 1000.

 

first frame’s {𝑋𝑚(𝑖, 𝑗), 𝑖 = 1~𝐾𝑚, 𝑗 = 1~𝐿} 𝐾𝑚 𝐿𝐾𝑚 𝐿2048 𝑌(𝑗)
𝑌(𝑗) = Count{𝑋𝑚(𝑖, 𝑗) > 0}    for 𝑖 = 1~𝐾𝑚

‘extended degree of scattering points’ 𝑥1
over time, the passenger’s movements may not be continuous. Thus, the distribution of 

‘different degree of scattering points’ 𝑥2𝑥2

𝑥1 = {∑ 𝑌(𝑗)𝐿𝑗=1 } 𝐿⁄
𝑥2 = {∑ |𝑌(𝑗 + 1) − 𝑌(𝑗)|𝐿−1𝑗=1 } (𝐿 − 1)⁄{𝑋𝑣(𝑖), 𝑖 = 1~𝐾𝑣}𝐾𝑣

Figure 7. Concept of sliding window-based Doppler frequency extraction for vital sign
feature extraction.

Moreover, for vital sign signals, because the minimum frequency is bounded in the range of 0.1 Hz
to 0.5 Hz, the window size Nwin,v is set to 8000. Thus, we measure the received signal during a twin,v

time of 8 s in order to confirm the presence of a breathing signal. As a result, the FFT point is set to 8192.
Next, in the Doppler frequency selection step, the absolute values are calculated as the Doppler

spectrum, and rectangular windowing is applied in the frequency domain in order to consider only
values below the fh,v frequency, such as the right side of Figure 6.
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Finally, in vital sign feature extraction step, as shown in Figure 6, we can set a threshold of
scattering points with a magnitude greater than the noise, and we determine vital signs based on
survival values. The details pertaining to this are described later and are shown in Figure 8.

𝑍 = Count{𝑋𝑣(𝑖) > reference value}    for 𝑖 = 1~𝐾𝑣𝑥3 ‘presence of s’𝑥3
𝑥3 = { if 𝑍 > 0, then logic ′1′else logic ′0′                   

the three features proposed in this paper, using only the “if–else” syntax in real time [15]. 

using NI’s LabVIEW tool 

Figure 8. Process of extracting both motion and vital sign features from the micro-Doppler and Doppler
spectra with the same time interval.

As explained in Figures 5 and 7, while the Doppler spectra for motion and vital signs are generated
every 0.1 s and 1 s, respectively, according to the step time of the sliding window. That is, while one
Doppler spectrum for vital sign detection is generated, ten Doppler spectra for motion detection are
completed. Thus, in order to synchronize the two parts and effectively recognize human motion,
we generate a micro-Doppler image using ten sub-frame spectra.

2.3. Proposed Feature Vector Extraction Scheme

As explained above, because the maximum Doppler frequency of human vital signs is less 1 Hz,
in our design, the update time of vital sign detection is 1 sec. In a previous study [13], vital signs were
analyzed every one second. Thus, in this paper, we generate a micro-Doppler image for human motion
detection every second to synchronize the update time with the vital sign extraction point.

Figure 8 shows the timing diagram used to synchronize the micro-Doppler image for motion
detection and the Doppler spectrum for vital sign detection. In this case, the data collection time is
initially set to 8 s to generate the first frame’s Doppler spectrum for vital sign detection.

For a detailed explanation of the motion feature extraction process, we define the data stored in
FIFO as

{

Xm(i, j), i = 1 ∼ Km, j = 1 ∼ L
}

, where Km is the Doppler-bin size and L is the number of
sub-frames. In this paper, because we set Km to 2048 and L to 10, the size of the micro-Doppler image
in one frame is 2048 by 10.

To extract the first and second feature vectors, we first count the number of scattering points
stored in FIFO memory every sub-frame, which is expressed as Equation (1). From Y( j), we can obtain
the corresponding count value in the jth sub-frame.

Y( j) = Count
{

Xm(i, j) > 0
}

for i = 1 ∼ Km (1)

While the vital sign signals of a non-moving passenger or the Doppler signal of another moving
object have a narrow distribution of the frequency spectrum, a wide Doppler spectrum can appear
when a human moves on the seat of the vehicle. In this paper, to express these characteristics, we define
the ‘extended degree of scattering points’ as the first feature, x1,. This is expressed by Equation (2),
which indicates the average number of scattering points of all sub-frames.
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In addition, while the Doppler signals from the breathing of a still human are mostly maintained
over time, the passenger’s movements may not be continuous. Thus, the distribution of the Doppler
scattering points can vary over the sub-frames. Thus, in this paper, we define these characteristics as
the ‘different degree of scattering points’, i.e., as the second feature x2. Equation (3) is used to solve
x2, which is obtained by averaging the differences between the numbers of scattering points of two
consecutive sub-frames.

These two feature vectors make it possible to determine whether or not a moving object on a seat
in a vehicle is human.

x1 =
{

∑L

j=1
Y( j)
}

/L (2)

x2 =
{

∑L−1

j=1

∣

∣

∣Y( j + 1) −Y( j)
∣

∣

∣

}

/(L− 1) (3)

Next, we define the Doppler frequency spectrum as
{

Xv(i), i = 1 ∼ Kv
}

to process the results of
the Doppler frequency-based vital sign feature extraction, where Kv is the Doppler-bin size. That is,
we count the number of scattering points with values greater than reference value for noise thresholding.
The reference value can be obtained as the measured noise signal in blank space.

Z = Count
{

Xv(i) > reference value
}

for i = 1 ∼ Kv (4)

Using the results of Equation (4), we define x3 as the ‘presence of vital signs’, and the third feature
is expressed in Equation (5). When using the feature vector x3, we can determine whether or not a
non-moving or slightly moving object is a human.

x3 =

{

if Z > 0, then logic ′1′

else logic ′0′
(5)

The three extracted feature vectors are fed into the machine learning engine for learning and
testing. In this paper, we employ a BDT (Binary Decision Tree) as the machine learning method.

The BDT is a popular and simple machine learning algorithm based on a sequential decision
process because a feature is evaluated as one of two branches, which is selected starting from the root
of the tree. Thus, we can easily implement the BDT in an embedded system for machine learning based
on the three features proposed in this paper, using only the “if–else” syntax in real time [15].

3. Measurement Results

3.1. Radar Sensor and Measurement Environment

To verify the proposed algorithm, we established a test-bed in the DGIST lab, as shown in Figure 9.
The test-bed is composed of a Doppler radar FEM (Front-end Module) with antennas, a DAQ (Data
Acquisition) module, a power supply, and a PC.

The radar antennas are mounted to face the vehicle seats, and the transmitted and received ports
are connected to the FEM using SMA (Sub Miniature type-A) cables. The received baseband signals are
logged by the DAQ module, the data are sent to the PC through a USB (Universal Serial Bus) interface.
To control DAQ module and obtain the data in real time, we developed DAQ software using NI’s
LabVIEW tool on the PC.

For the purposes of this paper, the FEM and antennas were manufactured by Yeungnam University.
In the FEM, a VCO (Voltage Controlled Oscillator) is added, which is different from the board in an
earlier circuit version [12]. A photo is shown in Figure 10.
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. In NI’s DAQ module
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Figure 9. Photo of the test-bed built in the DGIST lab.

. In NI’s DAQ module
−

 

–

Figure 10. Photo of the 2.45 GHz CW radar prototype.

The detailed specifications are presented in Table 1. The center frequency is 2.45 GHz and the
FOV (Field of View) of the antenna is 80 degrees. In NI’s DAQ module used here, we set the sampling
rate to 1 kHz and the input dynamic range to −5~5 V through the LabVIEW tool.

Table 1. Parameters of the radar system used in this paper.

Parts Specifications Units Symbols Values

FEM/antennas
Center frequency GHz fc 2.45

Field of view Degree - 80

DAQ module
ADC frequency MHz fs 1

Dynamic range V - −5~5

Signal processing

Motion detection
Cut-off frequency Hz fh,m 10

FFT point point Km 2048

Vital sign detection Cut-off frequency Hz fh,v 1

FFT point point Kv 8192

In addition, the LPF and FFT parameters for the signal processing described above are also shown
in Table 1. For the 2.4 GHz Doppler radar system, because the Doppler frequencies of passenger
motion and breathing do not exceed 10 Hz and 1 Hz, we select the cut-off frequencies shown in Table 1.
The FFT points are also selected such that they support the resolution of the Doppler frequency.
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3.2. Measurement Scenarios

To verify the proposed human recognition scheme, we designed eight cases as scenarios to be
carried out on the test-bed. A photo of each case is presented in Figure 11. In this paper, we measure the
radar signal for 60 s in every case. That is, in each case, measurements were conducted for 60 frames.
However, in each case, the number of the extracted feature vectors is 52, because of the initial data
collection time of 8 s, as described in Section 2.3.
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Figure 11. (a–h) Test scenarios represented as eight cases in a vehicle.

In this paper, we only consider humans as living creatures. That is, we do not discuss other living
creatures such as companion animals, because the recognition of the passenger as a human is most
important. Moreover, we considered the seats in the vehicle, a box on a seat, and the vehicle body itself
as inanimate objects. A detailed description of the scenario is given below.

• Case #1: Empty seat without any objects.

• Case #2: A still human on a seat; for example, a passenger who is sleeping without any motion on
the seat.

• Case #3: A human moving his neck slightly on a seat; for example, a passenger who is dozing
with neck movement.

• Case #4: A human making slight motion on a seat, such as a passenger who is looking around,
talking with hand gestures, or has light body movements.

• Case #5: Humans making more than slight motions on the car seat, such as a passenger who
is listening to music with the head or body moving slightly in a wavy motion, shaking leg,
keeps moving his body, or has additional body movements.

• Case #6: Still box on a seat.

• Case #7: Slightly wobbly box on a seat, such as when a box on the seat is lightly shaken by vehicle
vibration; this scenario is virtually simulated by connecting a string to the box.

• Case #8: Vibrating vehicle such as when the vehicle itself vibrates while driving; this scenario is
virtually simulated by actually shaking the test bed.

For the measurements of cases #2–#5, we conducted the experiments with three males.
The characteristics of these participants are given below. The photos in Figure 11 show human
#2. In the experimental results in Sections 3.3 and 3.4, we present the results from human #2.

• Human #1 is 27 years old, 183 cm tall, and weighs 78 kg.
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• Human #2 is 37 years old, 176 cm tall, and weighs 80 kg.

• Human #3 is 47 years old, 179 cm tall, and weighs 90 kg.

The CW Doppler radar operates at the 2.45 GHz ISM band, which is freely used for the purpose
of industrial, science, and medical applications. The transmitted power of the radar is less than 5 dBm,
which meets the regulation for human bodies. All the subjects joining in the experiment agreed with
protocol, procedure, and process in the measurement.

3.3. Pre-Processing Results

Figure 12 shows the received raw signal for a set time of eight seconds for all cases, where the
x-axis and y-axis correspondingly indicate the time (s) and amplitude (voltage level).
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–

Figure 12. Cont.
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Figure 12. Received signals in the time domain; (a–h) indicate cases #1~#8.

In Figure 11a,f, only noise is found, since there are no moving objects (cases #1 and #6). While a
breathing signal appears as a sine wave for the human without motion in Figure 11b, we find that the
breathing and motion signals are mixed due to the slight movement of the neck (case #3) in Figure 11c.

In Figure 11d,e, because more human motion exists, aperiodic signals are displayed with a higher
frequency than the respiration of a human.

Finally, Figure 11g,h show periodic vibration signals that appear due to the shaking of the box
and vehicle (cases #7 and #8).

Figure 13 shows a micro-Doppler image generated from the micro-Doppler-based motion feature
extraction part described in Figure 4. Figure 12a–h are the signal processing results of Figure 12,
showing the results for the eight aforementioned cases. Here, the x-axis is the time (s) and the y-axis is
the frequency (Hz).

In Figure 12a,f, no scattering points higher than the background noise are seen because there is no
moving object.

In Figure 12b,c, because the human has no movement or only slight motion, mostly breathing
signals are extracted. In this case, Doppler spectra with a narrow shape appear almost continuously
over time.

Interestingly, in Figure 12g,h, sharp patterns appear, similar to those in Figure 12b,c. This occurs
because other objects do not have multiple scattering points.

On the other hand, in Figure 12d,e, a wide distribution of scattering points is found due to various
components of human movement. In addition, it can be seen that the distribution of the scattering
points varies over time.

Based on these micro-Doppler images, we can extract two feature vectors x1 and x2 as the ‘different
degree of scattering points’ and the ‘extended degree of scattering points’ through processing, as shown
in Figure 8.

Figure 14 shows the Doppler spectra of the Doppler frequency-based vital sign feature extraction
part shown in Figure 6. These results are also measured based on the signals in Figure 12 for all eight
scenarios. Here, the x-axis is frequency (Hz) and the y-axis denotes the magnitude. In addition,
the red-dotted boxes indicate the area of the frequency below 1 Hz, occupied by the breathing signal.
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Figure 13. Extracted micro-Doppler image of µ-Doppler-based motion feature extraction part;
(a–h) correspondingly indicate cases #1 to #8.

In Figure 14a,f, no dominant spectrum is found due to the absence of motion or vital sign.
In Figure 14b,c, the Doppler spectrum is sharp in the red box due to the breathing signal. However,
the spectrum of Figure 14c is slightly widened compared to that in Figure 14b due to the motion of
the neck.

In Figure 14g,h, sharp-type Doppler spectra are also found, but most of them are located outside
of 1 Hz.

On the other hand, in Figure 14d,e, we find that the Doppler spectra are spread across the red
box. Occasionally, maximum peaks can be found at less than 1 Hz according to the Doppler volume of
human movement.

Based on these Doppler spectra, we can determine whether or not vital signals exist, and obtain
the third feature vector x3. In this paper, a simple algorithm that can extract the breathing signal is
employed. If we use a very fine algorithm, we can extract vital signs with a high detection probability.

Figure 15 shows two motion features extracted from micro-Doppler images of Figure 13 for eight
cases. Figure 15a,b indicate the first feature x1 as the ‘extended degree of scattering points’ and x2 as the
“different degree of scattering point”. Here, the x-axis is the time (sec) and the y-axis is the number of
the detected scatters. The results for cases #1 to #8 are correspondingly represented by the green-solid,
red-solid, red-dotted, blue-solid, blue-dotted, green-dotted, black-solid, and black-dotted lines.
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Figure 14. Doppler spectrum extracted from the Doppler frequency-based vital sign feature extraction
part; (a–h) indicate cases #1 to #8.
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Figure 15. Motion feature extraction results for eight cases: (a) results of the extended degree of
scattering points and (b) the results of the different degree of scattering point.

Figure 15a shows that the number of scatters in cases #2 and #3 is mostly lower compared to cases
#4 and #5 due to the different levels of human movement. That is, for a still or slightly moving human,
only a few scattering points are reflected.

In cases #7 and #8, we can find similar patterns to those in cases #2 and #3. In cases of inanimate
objects, the Doppler spectra are narrow, because multiple components do not exist.

Finally, when there is no motion component, the number of extracted features is 0, such as in cases
#1 and #6.

In Figure 15b, when the passenger is moving on a seat for cases #4 and #5, we find that the
distribution of the Doppler spectrum varies more than those of a still human (case #2), a slightly
moving human (case #3), and other objects (cases #7 and #8).

Figure 16 shows the extracted Doppler frequency spectra for the third vital sign feature in Figure 14.
That is, Figure 16a,h indicate the presence or absence of vital sign. For all cases, the x-axis and the
y-axis denote the time (s) and logic value (true or false), respectively.

As shown in Figure 16a,f, no signal is detected in the cases without motion
In Figure 16b,c, vital signals are recognized at all times, despite the fact that the passenger moves

his neck only slightly. However, from the results in Figure 16d,e, we find that breathing signs may or
may not be extracted depending on the movement level of the human.

Finally, for inanimate objects, we can find that vital signals are mostly not detected, as shown in
Figure 16g,h. However, in the results, false detections occasionally occur due to noise. This problem
will be resolved by employing a fine breathing detection algorithm in the future.
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–Figure 16. Vital sign feature extraction results; (a–h) indicate cases #1 to #8.

3.4. Proposed Feature-Based Human Recognition Results

Figure 17 presents the three-dimensional distributions of the features extracted from the
micro-Doppler image and the vital sign frequency spectrum.

𝑥3
𝑥3𝑥3 𝑥1 𝑥2

 

 We labeled the features of the actual human as ‘ ′ and other cases as ‘ ′



label ‘1′
label ‘0′








Figure 17. Three-dimensional distribution of three features extracted from the proposed algorithm
scheme for a human and other objects.

In cases #1 and #6, without any moving object, the three features are positioned at zero, as shown
by the purple boxes.

We can distinguish between a human with no or little motion (cases #2 or #3) and an inanimate
object with movement (cases #7 and #8) using only the vital sign feature x3. Here, cases #2 and #3 are
displayed with red-star marks, and the blue-cross marks are used to present cases #7 and #8. However,
as mentioned above, even in cases #7 and #8, a few incorrect results appear, as if vital signals are
detected due to noise.

As shown by the green circle marks in cases #4 and #5, because the x3 values for the passenger
with movement are distributed between 1 and 0, it is impossible to determine whether the detected
object is human or not if using only x3. However, in these two cases, the first and second features
extracted from the micro-Doppler image are positioned in an area far from the origin, while the results
for the inanimate object appear around the origin. Thus, when using x1 and x2, we can distinguish
between a human with motion and other objects with movement.
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In this paper, we use three feature vectors to train and test the process using machine learning
with the BDT, as shown in Figure 18. The procedure we used for all programming for machine learning
and verification is described below. Here, we coded all procedures using the Matlab library.

 

‘extended degree 

Figure 18. Structure of features comprising the training data set and the test set for machine learning.

• We labeled the features of the actual human as ‘1’ for 208 frames and other cases as ‘0′ for
208 frames, respectively. Here, one frame was measured every one second, as shown in Figure 8.

• We then randomly separated the three features for the human cases and the others, with 80% for
the training data set and 20% for the test set. This means that 80% of the total 208 frames with
label ‘1’ were used for the training set, with the remaining 20% being allocated to the test set.
Moreover, among the feature vectors of 208 frame times with the label ‘0’, the data of 166 s and
42 s were used for training and test, respectively.

• We optimized the machine learning engine of the BDT library via a 30-trial loop with the training
data set.

• We input the test set into the optimized machine learning engine.

• We repeated the three-step procedure described above ten times, while also dividing the data set,
training, and testing steps.

• We checked the performance by averaging the results of the ten aforementioned trials.

In the typical methods [7,12], vital sign monitoring of breathing in vehicle applications is used.
That is, the sampled radar echo signal is analyzed for the presence of periodic breathing while
separating vital signs form background noise. Thus, previous works considered only the scenario of a
human being asleep in a vehicle. In this paper, we define instances that use only vital sign signals as
the typical method.

In Table 1, the human recognition performances outcomes are presented for the typical method
and with the proposed algorithm. In the typical algorithm, only the vital signals are used in cases for a
human with no motion and with slight motion. However, in the proposed algorithm, we use not only
the characteristics of the Doppler scattering points, but also the breathing signals.

We present two performance metrics: the classification accuracy (%) and the classification error
rate (%).

The classification accuracy indicates whether or not an actual human has been accurately classified
as a human. On the other hand, the classification error rate represents the rate at which an inanimate
object is mistakenly determined to be a human.

While the classification accuracy of the typical algorithm using only vital signs is approximately
70%, the classification accuracy of the proposed method is improved to 98.6%, as shown in Table 2.
That is, the performance is enhanced by nearly 28%.
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Table 2. Classification performance for human recognition.

Metrics Algorithm
Performance

Classification Accuracy (%) Classification Error Rate (%)

typical method 70.7 4.8

proposed method 98.6 5.3

Regarding the classification error rate, the performance of the proposed method is decreased by
0.5% compared to the typical method. In this paper, because we employ a very simple algorithm to
detect vital signs, the noise of an inanimate object can be occasionally incorrectly recognized as vital
signs. If the vital sign detection algorithm is advanced in the future, this problem will be resolved.

In this paper, we conducted this experiment with three people, and similar performance outcomes
were obtained. This occurred because the measuring distance is very close, at about 1 m, and the
shapes of the human bodies of the participants are similar.

4. Conclusions

In this paper, we defined three new features and proposed a human recognition scheme based
on machine learning using a CW radar sensor. To do this, we initially measured the ‘extended
degree of scattering points’ from micro-Doppler images, after which we calculated the mean of
the Doppler reflection points over sub-frames. Second, in order to extract the ‘different degree of
scattering points’, we calculated the mean of the difference in the Doppler reflection points between
two successive sub-frames.

While the two feature vectors described above were meant to recognize a human’s motion, the last
feature vector is for human vital sign recognition. Hence, we defined the ‘presence of vital signs’ as
extracted from the Doppler frequency spectrum as the breathing signal of a human.

To verify the performance of the proposed algorithm, we built a test-bed similar to the interior of
an actual vehicle and defined eight cases, consisting of non-moving objects, a still or moving human,
and inanimate moving object scenarios. For these cases, we used a commercial real-time DAQ module
and a 2.45 GHz CW radar front-end module with antennas developed by Yeungnam University. Then,
in order to extract three features from the received radar signals, we obtained the raw data using
the test-bed.

The extracted features were used as input data for a BDT as machine learning engine, and we
verified the proposed algorithm through randomly repeated verification trials.

The results with the typical method using only vital signs show that the classification accuracies
for a human were 70.7%. However, with the proposed human recognition scheme using motion and
vital sign features, the classification accuracy was found to be 98.6%. That is, compared to the typical
method, the performance of the proposed method is improved by approximately about 28%.

Moreover, because the proposed algorithm has very low complexity, we can implement a passenger
detection radar system with a simple structure.

In the future, using radar sensors with multiple receiving antennas, we will conduct research to
determine the presence and status of occupants for each seat. In the addition, we plan to employ a new
vital sign detection algorithm to improve the classification error rate for humans. We will also verify
the proposed algorithm together with the various types of human forms. Moreover, we will install the
test-bed in an actual vehicle in order to verify the proposed recognition scheme more practically.
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Abstract: In this study, the effect of filter schemes on several low-contrast materials was compared
using standard and ultra-high-resolution (UHR) cone-beam computed tomography (CBCT) imaging.
The performance of the UHR-CBCT was quantified by measuring the modulation transfer function
(MTF) and the noise power spectrum (NPS). The MTF was measured at the radial location around the
cylindrical phantom, whereas the NPS was measured in the eight different homogeneous regions of
interest. Six different filter schemes were designed and implemented in the CT sinogram from each
imaging configuration. The experimental results indicated that the filter with smaller smoothing window
preserved the MTF up to the highest spatial frequency, but larger NPS. In addition, the UHR imaging
protocol provided 1.77 times better spatial resolution than the standard acquisition by comparing the
specific spatial frequency (f 50) under the same conditions. The f 50s with the flat-top window in UHR mode
was 1.86, 0.94, 2.52, 2.05, and 1.86 lp/mm for Polyethylene (Material 1, M1), Polystyrene (M2), Nylon (M3),
Acrylic (M4), and Polycarbonate (M5), respectively. The smoothing window in the UHR protocol
showed a clearer performance in the MTF according to the low-contrast objects, showing agreement
with the relative contrast of materials in order of M3, M4, M1, M5, and M2. In conclusion, although the
UHR-CBCT showed the disadvantages of acquisition time and radiation dose, it could provide greater
spatial resolution with smaller noise property compared to standard imaging; moreover, the optimal
window function should be considered in advance for the best UHR performance.

Keywords: ultra-high resolution; cone-beam computed tomography; low-contrast object; optimal
filter; modulation transfer function; noise power spectrum

1. Introduction

Ultra-high-resolution (UHR) computed tomography (CT) has been used in commercial applications
since 2017 due to it features of higher image spatial resolution [1]. Kakinuma et al. used a
prototype UHR-CT that was operated with 0.25 mm detector pixel size and 0.1 mm reconstructed
image pixel interval at 0.25 mm slice thickness [2]. Another experiment with a clinical UHR-CT
scanner (Aquilion Precision, Canon Medical Systems) reported that the system was operated in
the same condition of that in the previous paper [3]. The clinical UHR-CT has three scan modes:
normal, high-resolution (HR), and super-high-resolution (SHR) modes, which support 512 × 512,
1024 × 1024, and 2048 × 2048 image matrixes, respectively, in a given reconstruction field of view
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(FOV) [4]. Judging from the previously published papers, UHR-CT generally can be distinguished
from conventional high-resolution CT (CHR-CT) because it makes use of pixel sizes below 0.25 mm at
image matrixes above 512. It has been reported that CHR-CT uses pixel sizes ranging from 0.23 mm [5]
to 0.35 mm [6]. The clinical aspects of UHR-CT include reduction of vascular continuity of the coronary
arteries, visualization of fine structures of lungs, such as peripheral pulmonary vessels less than 1 mm
in size, and artifact reduction such as blooming [7,8].

Recent X-ray detector technology in both multi-row and the flat-panel detectors (FPDs) enables
high-resolution acquisition at a small pixel size of less than 0.25 mm [9]. Following these efforts,
dedicated UHR cone-beam CT (CBCT), e.g., the OnSight 3D system (Carestream Healthcare, Rochester,
NY, USA), has been introduced for extremity scans at lower cost and radiation doses compared
to multi-detector CT (MDCT) systems [10]. The OnSight 3D system are mounted with a CsI:Tl
scintillator-based complementary metal-oxide semiconductor (CMOS) FPD with a pixel size of 139 µm.
UHR-CBCT can ultimately improve the visualization of bone morphometry and contribute to the
diagnosis of osteoporosis and osteoarthritis, and detection of fine fractures, which typically require
measurements in the range of 0.05–0.2 mm [11]. In general, the FPD could be operated in detector
pixel binning mode, which is the process of combining the adjacent electric charges into one pixel [12].
This can reduce both the electronic and quantum noise, and decrease the image readout time at a higher
frame rate. The user selects the FPD operation in either full or binning mode, which can optimally
satisfy the need of correlation between the resolution and frame rate.

However, the image at higher resolution is not always good, especially for low-contrast detection
tasks due to the enhanced noise level during the process of filtered back-projection (FBP) image
reconstruction [13]. The “low contrast” of the image can be described as low discrimination between
the target and background. The spatial resolution measurement in high-density materials, such as
bar pattern and tungsten wire, is an easy task for both standard and UHR CT imaging. However,
medical image quality of low-contrast objects is defined in terms of how well the tradeoff relationship
between the resolution and noise is obtained from the image [14]. The amount of noise suppression at
high frequencies is adjustable by setting either different cutoff frequency levels or different smoothing
functions implemented on the CT sinogram. The higher the cutoff frequency level, the sharper but
noisier the reconstructed image [15]. This, in turn, results in reconstructed image quality, thereby greatly
influencing the detectability of objects by human observers [16]. Unfortunately, choosing an optimal
filter scheme relies on experience, because there is no global function that can accept all principal
signals underlying the entire frequency range. Therefore, the effect of the reconstruction filters on
different materials in UHR-CBCT should be studied to provide useful information when observing a
tiny amount of information during UHR acquisition.

In this study, we measured the spatial resolution of five different cylindrical objects according to
four different UHR acquisition modes using six different filter schemes. The self-developed UHR-CBCT
system, which is installed at the authors’ institution (Korea Electrotechnology Research Institute,
Ansan, Korea) was used for acquiring the CBCT images in both standard and high-resolution modes.
This study aimed to evaluate the effect of filter schemes on the spatial resolution that underlies each
imaging object and to suggest the optimal filter scheme in UHR-CBCT depending on the different
object materials.

2. Materials and Methods

2.1. Ultra-High-Resolution Cone-Beam Computed Tomography System and Imaging Configurations

A photograph and a specification of a prototype CBCT system are provided in Figure 1 and
Table 1. Our system was mounted with an amorphous silicon (aSi)-based thin-film transistor (TFT)
array FPD (PaxScan 4030CB, Varian Imaging Products, Palo Alto, CA) and was operated in full and
binning acquisition modes. As shown in Table 2, the imaging configuration was categorized into four
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subsections according to the two acquisition resolution setups and two reconstructed image resolutions.
Each configuration was named depending on the row and column number of the matrix.

–

 

–
–

Figure 1. Photograph of the prototype cone-beam computed tomography (CBCT) system capable of
both standard and ultra-high resolution (UHR) acquisition.

Table 1. Specifications of the imaging conditions.

Gantry
Sweep angle 0◦ to 360◦ with 1◦ step

Source-to-detector
distance

1330 mm

Isocenter-to-detector
distance

660 mm

X-ray tube
Tube voltage 40–120 kVp

Tube current 10–500 mA

Exposure duration 16 ms

FPD

Standard acquisition UHR acquisition

Image matrix 1024 × 768 2048 × 1536

Pixel interval 0.388 mm 0.194 mm

Framerate 7.5 fps 30 fps

Readout time per view ~55 ms ~220 ms

Total acquisition time 24 s 48 s

Total entrance surface
dose (ESD)

2.82 mGy 11.3 mGy

Reconstruction
Standard reconstruction UHR reconstruction

Image matrix 512 × 512 1024 × 1024

Pixel interval 0.3 mm 0.15 mm

The center of rotation of the system was registered using the calibration phantom while rotating
a full 360◦ with a 1◦ angle step for projection view image acquisition of 361 images. The 0.25 and
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0.5 mm slice thicknesses were chosen based on previous studies [2–4]. The readout time of FPD with a
2 × 2 binning mode acquisition was four times faster than that of a full mode acquisition; therefore,
a lower total acquisition time and lower radiation exposure were achievable owing to the higher
framerate in the binning mode. All FBP reconstruction algorithms were self-programmed and coded
in C++ with the CUDA toolkit version 10.0 using a single GPU card (GTX Titan-Xp, NVIDIA Co., Ltd.,
Santa Clara, CA, USA).

Table 2. Each configuration protocol with different resolution settings.

Standard Reconstruction UHR Reconstruction

Standard acquisition Configuration (1, 1) Configuration (1, 2)
UHR acquisition Configuration (2, 1) Configuration (2, 2)

2.2. CT Performance Phantom

We used the CIRS Model 610 American Association of Physicists in Medicine (AAPM) CT
performance phantom to measure spatial resolution and noise property. The CT number linearity
insert (Part No. 610-02), which includes five cylinders with different densities, was a targeted imaging
object for resolution measurement. The detailed specifications of the inserted cylinders are given in
Table 3. Each cylinder has the same size and shape and has a low contrast against the background
material, thus presenting a small absolute signal difference between the two materials. The larger
the material index, the smaller the difference between the background and target material densities.
Note that a small absolute difference between the densities of two materials does not always guarantee
a small image contrast because the CT numbers are represented by the linear attenuation coefficients
which are dependent on both X-ray energy and density.

Table 3. Material index and name of each cylinder embedded in the American Association of Physicists
in Medicine (AAPM) phantom.

Material Index Material Name (Density (g/cc))

M1 Polyethylene (0.95)
M2 Polystyrene (1.05)
M3 Nylon (1.10)
M4 Acrylic (1.19)
M5 Polycarbonate (1.20)

Background PMMA * (1.18)

* Poly methyl methacrylate (PMMA).

The insert (Part No. 610-01-05) is comprised of a uniform material with an aluminum pin at the
center, and is a good candidate for measuring noise power. We assumed that the noise behaviors were
the same for all materials because quantum and electronic noise, which are both stochastic events,
are dominant over the entire area.

2.3. Ramp Filter Design in Spatial Domain and Six Different Window Functions

Linear filtering can be categorized into two methods: applying the convolution kernel in the
spatial domain and linear multiplication of a transfer function in the Fourier domain. A band-limited
ramp filter constructed in the Fourier domain is defined as follows:

RAMP(ω)A =

{

|ω|,
0,

if |ω| ≤ 0.5 lp/mm
otherwise

(1)

where ω is the discretized spatial frequency by considering the Nyquist frequency. However, the ramp
filter in Equation (1) has a zero at ω = 0 lp/mm such that the signals at the DC offset (zero frequency
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component) after linear multiplication go to zero. The Fourier transform of the ramp convolution
kernel constructed in the spatial domain can be defined as follows [17]:

RAMP(ω)B = FT
{

ramp(n)
}

=

∫ ∞

−∞
ramp(n)e−i2πωdω (2)

ramp(n) =























1/4,
0,

−1/(nπ)2,

if n = 0
if n is an even number
if n is an odd number

(3)

The ramp filter in Equation (2) does not include a zero, as shown in the comparison of the two
shapes in Figure 2. Filtering with non-zero conditions avoids the zero signals that might have occurred
if the filters were used with zero conditions.

(a) (b) 

1 √1 + (𝜔𝑓𝑐)2𝑝⁄0.5 (1 + cos (2𝜋𝜔𝐿 ))0.54 − 0.46 cos (2𝜋𝜔𝐿 )
{1 − 6 ( |𝜔|𝐿 2⁄ )2 + 6 ( |𝜔|𝐿 2⁄ )3

2 (1 − |𝜔|𝐿 2⁄ )3  if 0 ≤ |𝜔| ≤ (𝐿 − 1) 4⁄  if (𝐿 − 1) 4⁄ ≤ |𝜔| ≤ (𝐿 − 1) 2⁄
1 √1 + (𝜔𝑓𝑐)2𝑝⁄

0.21 − 0.41 cos ( 2𝜋𝜔𝐿 − 1) + 0.27 cos ( 4𝜋𝜔𝐿 − 1) − 0.08 cos ( 6𝜋𝜔𝐿 − 1) + 0.006 cos ( 8𝜋𝜔𝐿 − 1)

Figure 2. (a) Comparison of the ramp filters designed in different domains and (b) its magnified plot
near the DC (zero frequency) component.

Many window functions have been introduced depending on the strength of noise suppression
at different cutoff frequencies for each purpose [18]. However, the reduction of the critical signal is
inevitable during noise suppression; therefore, the optimal window function is often heuristically
chosen after multiple reconstruction trials. Six different smoothing windows were implemented herein
in the ramp filter. Each window function was followed by the equation summarized in Table 4, where a
term L in (b), (c), (d), and (f) indicates the length of the window.

2.4. Modulation Transfer Function (MTF)

Spatial resolution for each imaging configuration and each filter scheme was evaluated by the
MTF measurement of the cylindrical materials as conducted by Richard et al. [19]. After subtracting the
two-dimensional planar fit from the original region of interest (ROI) of each targeted cylinder, the radial
pixel values around the edge of the circular shape were rearranged to yield a one-dimensional edge
spread function (ESF). When converting the image grid from a Cartesian to polar map, the center
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of each disk was measured on a binary image through a gray-level threshold. The ESF, which is
equivalent to the radial profile of the circle, was resampled with one-tenth of the reconstructed pixel
size to reduce the non-uniformly distributed pixel noise [20]. The final ESF was derived by averaging
the ESFs measured from consecutive axial slices. The MTF was the Fourier amplitude of the derivative
of the ensemble-averaged ESF. In addition, the high-frequency noise of the ESF derivative was relieved
through a Hanning window having the same length as the ESF size. The overall process of radial MTF
measurement is depicted in Figure 3.

Table 4. Description of each window that was implemented with the ramp filter.

Window Title Equation

(a) Butterworth A 1
1/

√

1 +
(

ω
fc

)2p

if

(b) Hanning 0.5
(

1 + cos
(

2πω
L

))

if

(c) Hamming 0.54− 0.46 cos
(

2πω
L

)

if

(d) Parzen


















1− 6
( |ω|

L/2

)2
+ 6
( |ω|

L/2

)3

2
(

1− |ω|L/2

)3
if 0 ≤ |ω| ≤ (L− 1)/4

if (L− 1)/4 ≤ |ω| ≤ (L− 1)/2

(e) Butterworth B 2
1/

√

1 +
(

ω
fc

)2p

(f) Flat Top 0.21− 0.41 cos
(

2πω
L−1

)

+ 0.27 cos
(

4πω
L−1

)

− 0.08 cos
(

6πω
L−1

)

+ 0.006 cos
(

8πω
L−1

)

1 p = 6, fc = 0.4, 2 p = 2, fc = 0.15.

𝑁𝑃𝑆(𝑓𝑥, 𝑓𝑦 , 𝑓𝑧) = 12 𝑑𝑥𝑑𝑦𝑑𝑧𝑁𝑥𝑁𝑦𝑁𝑧 〈|ℱ[𝑆(𝑖, 𝑗, 𝑘) − 𝑆̅]|2〉,𝑓𝑥 𝑓𝑦 𝑓𝑧 − 𝑑𝑥 𝑑𝑦 𝑑𝑧 𝑁𝑥 𝑁𝑦𝑁𝑧 ℱ[∙]𝑆(𝑖, 𝑗, 𝑘) 𝑆̅

Figure 3. A depicted workflow for 1D edge spread function (ESF) measurement of the targeted
low-contrast material.

2.5. Normalized Noise Power Spectrum

The normalized noise power spectrum (NNPS) was measured to quantify the noise level in
the homogeneous volume of interest (VOI) of the poly methyl methacrylate (PMMA) background.
The three-dimensional (3D) NPS was measured as described in Figure 4. The eight different VOIs
without interference of any structure with the size of 150 × 150 × 45 (300 × 300 × 90 for high-resolution
reconstruction) were selected for measuring the 3D NPS. Each sub-volume overlapped with others
to evaluate the radially and symmetrically distributed noise property (location independent noise
pattern) [21].

Each mean subtracted sub-volume patch was Fourier transformed, absolute squared, and ensemble
averaged to yield the power spectrum as follows [22]:

NPS
(

fx, fy, fz
)

=
1
2

dxdydz

NxNyNz

〈∣

∣

∣

∣

F
[

S(i, j, k) − S
]

∣

∣

∣

∣

2〉

, (4)

where fx, fy, and fz are spatial frequencies (mm−1), dx, dy, and dz are pixel sizes (mm), Nx, Ny, and Nz are
the numbers of voxels in the sub-volume patch, F [·] is the fast Fourier transform operator, and S(i, j, k)
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and S indicate each voxel value and the mean intensity of the sub-volume patch, respectively. The 1D
NNPS can be derived by radially averaging the 3D NPS [23].

 
Figure 4. A schematic illustration for deriving 3D NPS.

3. Results

3.1. Filter Shape

Six different Fourier transformed and band-limited filters designed in the spatial domain with
regard to the frequency response are depicted in Figure 5. Because the Fourier transformed sinograms
were forced to be band limited with a band width of 0.5, the signals outside of the band frequency
range went to zero, as shown in Figure 5. Similarly, each window function was also band limited and
multiplied by the band-limited ramp filter. The magnitude of the filter at high frequencies was rejected
when going from scheme (a) to (f) in Table 4, which is generally interpreted as noise suppression.
Unlike other filters, some of the value of the flat-top window are negative.

Figure 5. Different band-limited filter shapes as a function of frequency response.

3.2. Reconstructed Images with Different Filters and Configurations

Figure 6 shows the reconstructed images with configuration (1, 1) using the Hanning window
and its cropped ROI images around the centers of five different materials. The relative contrast
between each material and background with standard deviation error are plotted in Figure 6f. All five
materials showed a low contrast, showing a small relative contrast below 0.15 (maximum contrast is 1).
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As mentioned above, the higher density material does not always represent the higher CT number
when we measure the contrast between each material and the background (PMMA). M2 and M5
showed the lowest contrast among the five materials.

–Figure 6. Reconstructed image with configuration (1, 1) using the Hanning window. (a–e) The cropped
region of interest (ROI) around the center of each material, and (f) relative contrast between the target
and background with standard deviation error bar as a function of each material.

The reconstructed cropped images of M1 with different configurations using the Hanning window
are shown in Figure 7a. Figure 7b shows the radial profiles of each image grid in Figure 7a. The images
reconstructed using standard detector resolution (configuration (1, 1) and (1, 2)) showed an unstable
fluctuation in their radial profiles at the initial radial location. On the contrary, the images of
configurations (2, 1) and (2, 2) showed relatively flat signals.

–

Figure 7. (a) Reconstructed image with different configurations using the Hanning window and (b) the
radial profile of each configuration.

To understand the effect of filter schemes on image quality, the reconstructed images of M1 with
different filters using configurations (1, 1) and (2, 2) are shown in Figure 8a. The radial profiles in
Figure 8b correspond to the bottom row images in Figure 8a (configuration (2, 2)). The fluctuations
of the radial profiles are gradually smoothed with an increase in the index number of filter schemes,
demonstrating that the high-frequency noise was rejected by using the smoothing windows. The more
oscillations in the signal, the coarser the MTF curve, as shown in Figure 9a.

3.3. Modulation Transfer Function

Six different MTFs for each filter scheme measured in the reconstructed images of M1 are shown in
Figure 9. The higher the resolution of the reconstructed images, the better the MTF is preserved up to the
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high frequencies. In Figure 9f, f 50, which indicates the specific spatial frequency when the MTF is dropped
to 0.5, was 1.39, 1.40, 2.52, and 2.57 lp/mm for the configurations (1, 1), (1, 2), (2, 1), and (2, 2), respectively.
The effect of detector resolution on the reconstruction image resolution was minor when we compared the
curves between configurations (1, 1) and (1, 2) (or (2, 1) and (2, 2)).

 

Figure 8. (a) Reconstructed image of M1 with different configurations according to the different
windows and (b) the radial profile of configuration (2, 2).

 
Figure 9. Modulation transfer functions (MTFs) for different filter schemes from the (a) Butterworth A,
(b) Hanning, (c) Hamming, (d), Parzen, (e) Butterworth B, and (f) Flat Top windows with different
configurations. The f 50s measured in the images implemented with the flat top window were 1.39, 1.40,
2.52, and 2.57 lp/mm for the configuration (1, 1), (1, 2), (2, 1), and (2, 2), respectively.
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The MTF curves measured in the reconstructed images of each material using configurations (1, 1)
and (2, 2) are shown in Figures 10 and 11. As shown in Figure 11f, the f 50s were 0.94, 1.86, 2.05, and 2.52
and 1.86 lp/mm from M1 to M5, respectively, which demonstrates that MTFs were preserved up to high
frequencies of the order of M3, M4, M1, M5, and M2; that is, in the order of the relative contrast in Figure 6f.
In contrast, the imaging configuration (1, 1) not only did not follow the order of contrast, but also presented
different orders of f 50s for the different filter schemes.

Figure 10. MTFs for different materials with the configurations (1, 1) using different filter schemes
from the (a) Butterworth A, (b) Hanning, (c) Hamming, (d), Parzen, (e) Butterworth B, and (f) Flat Top
windows. The orders of f 50s as a function of different materials were different for each filter scheme.

Figure 11. MTFs for different materials with the configurations (2, 2) using different filter schemes
from the (a) Butterworth A, (b) Hanning, (c) Hamming, (d), Parzen, (e) Butterworth B, and (f) Flat Top
windows. The order of f 50s as a function of different materials was M3, M4, M1, M5, and M2.
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3.4. Normalized Noise Power Spectrum

Figure 12 shows the radially averaged 1D NPS for each configuration with different filter schemes.
The standard reconstructed image resolution (configuration (1, 1) and (2, 1)) gave higher noise
properties compared to the high-resolution images (configuration (1, 2) and (2, 2)). We also observed
that the peak of the 1D NNPSs from the higher detector resolution was at larger spatial frequencies,
which demonstrates that the noise was distributed up to a higher frequency when the smaller pixels
were used in the detector. The NPSs decreased as the intensity of high-frequency smoothing increased.

 
Figure 12. Radially averaged 1D NPS for each configuration from (a) (1, 1), (b) (1, 2), (c) (2, 1), and (d) (2, 2)
with different filter schemes.

4. Discussion

We herein designed band-limited filters for all schemes. These can effectively retrieve the sampled
projections because the projections are discretized into each detector pixel so that it is band limited
in the Fourier domain [24]. As a result, band-limited filters lead to the removal of unnecessary noise
signals at high frequencies.

There is no universal filter in CT imaging; therefore, the user should select an optimal smoothing
window to observe the detailed internal structure with a purpose. Selecting an optimal window
function is often based on experience rather than theory because we do not have a high level of
knowledge about whether the imaging object is lying under a low-, mid-, or high-frequency range [25].
Thus, comparing the initial imaging performance of different filters and choosing the best solution for
one’s purpose is a good approach [25]. The most important factor when selecting the filter scheme
is the manner in which the filter removes as many of the unnecessary components as possible in
the frequency domain. In this experimental study, the signals near the edge of each material that
we aimed to observe mostly lie in the low-frequency range, and show severe MTF distortion in the
images applied with a high-pass filter, such as Butterworth A in Figure 9a. In contrast, the results in
Figure 11f indicate that the flat-top window preserved the MTF up to a high frequency without an
aliasing among the six filter schemes in our experiment. This is because the reconstructed images
applied with the flat-top window not only resulted in uniform pixel values but also showed small
oscillations (less noise) in both the target and background, as shown in the radial profiles in Figure 8b.

The flat-top window is used for cases in which a frequency component is required to be measured
with great accuracy, e.g., a fixed-sine source [26]. Measuring the MTFs in the frequency domain could
be interpreted as a discrimination of the signals spreading near the circular edge region. If a much larger
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signal difference exists between the target and the background, such as the tungsten edge, filter selection
would not have been significant. However, we measured the MTFs for materials having no significant
signal difference against the background material (low-contrast imaging); therefore, the amplitude
accuracy was a key factor because the principal components in the Fourier domain were largely
positioned in the low-frequency area [27].

The MTFs were preserved well at higher frequencies from the images reconstructed with a higher
resolution. We observed that there was an MTF preservation loss up to 1.77 times by comparing the f 50

between configurations (1, 1) and (2, 2) in Figures 10f and 11f when using the same target material
and detector resolution. Therefore, using a UHR imaging protocol rather than a standard imaging
configuration is recommended to understand the fine sharpness of low-contrast material if the detector
is available to be operated at a higher resolution.

However, the high-level smoothing window is not recommended for standard resolution imaging
configuration, as shown by the disagreement in the order of relative contrast in Figure 10. As shown in
Figure 10, the flat-top window provided little difference in f 50s for different materials even though
there was a clear discrimination in UHR imaging protocol. This was because the flat-top window
overly smoothed the low-contrast object in the standard imaging, whereas the smoothing was still
effective in UHR mode.

The trend of 1D NNPS in the configuration (2, 1) showed that the noise was distributed over all of
the spatial frequencies. This demonstrates the back-projection from the high-resolution to small-image
array would largely reduce the quantum noise and result in uniformly distributed noise.

The main drawback of this study is that all materials used to measure the MTFs had low contrast
against the background PMMA intensity. This limits the study of higher-object-contrast materials such
as bone and contrast-enhanced imaging. Our future study will be directed toward the effect of various
filter setups on higher-object-contrast materials.

5. Conclusions

In summary, we observed the effect of filter schemes on several low-contrast materials using
standard and UHR imaging protocols. Although UHR image acquisition requires a higher acquisition
time and greater radiation exposure, we obtained spatial resolution up to 1.77 times higher than that of
standard acquisition. In addition, the performance of UHR was affected by the FBP filter schemes,
showing different f 50 values and different noise patterns for different filters. Therefore, one should
consider the optimal window function that can provide the best performance when observing the fine
structure of the imaging object before UHR acquisition while comparing both the MTF and NPS.
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