473 research outputs found

    Improving E-Commerce Recommendations using High Utility Sequential Patterns of Historical Purchase and Click Stream Data

    Get PDF
    Recommendation systems not only aim to recommend products that suit the taste of consumers but also generate higher revenue and increase customer loyalty for e-commerce companies (such as Amazon, Netflix). Recommendation systems can be improved if user purchase behaviour are used to improve the user-item matrix input to Collaborative Filtering (CF). This matrix is mostly sparse as in real-life, a customer would have bought only very few products from the hundreds of thousands of products in the e-commerce shelf. Thus, existing systems like Kim11Rec, HPCRec18 and HSPRec19 systems use the customer behavior information to improve the accuracy of recommendations. Kim11Rec system used behavior and navigations patterns which were not used earlier. HPCRec18 system used purchase frequency and consequential bond between click and purchased data to improve the user-item frequency matrix. The HSPRec19 system converts historic click and purchase data to sequential data and enhances the user-item frequency matrix with the sequential pattern rules mined from the sequential data for input to the CF. HSPRec19 system generates recommendations based on frequent sequential purchase patterns and does not capture whether the recommended items are also of high utility to the seller (e.g., are more profitable?).The thesis proposes a system called High Utility Sequential Pattern Recommendation System (HUSRec System), which is an extension to the HSPRec19 system that replaces frequent sequential patterns with use of high utility sequential patterns. The proposed HUSRec generates a high utility sequential database from ACM RecSys Challenge dataset using the HUSDBG (High Utility Sequential Database Generator) and HUSPM (High Utility Sequential Pattern Miner) mines the high utility sequential pattern rules which can yield high sales profits for the seller based on quantity and price of items on daily basis, as they have at least the minimum sequence utility. This improves the accuracy of the recommendations. The proposed HUSRec mines clicks sequential data using PrefixSpan algorithm to give frequent sequential rules to suggest items where no purchase has happened, decreasing the sparsity of user-item matrix, improving the user-item matrix for input to the collaborative filtering. Experimental results with mean absolute error, precision and graphs show that the proposed HUSRec system provides more accurate recommendations and higher revenue than the tested existing systems. Keywords: Data mining, Sequential pattern mining, Collaborative filtering, High utility pattern mining, E-commerce recommendation systems

    Rank and relevance in novelty and diversity metrics for recommender systems

    Full text link
    This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in RecSys '11 Proceedings of the fifth ACM conference on Recommender systems, http://dx.doi.org/10.1145/2043932.2043955The Recommender Systems community is paying increasing attention to novelty and diversity as key qualities beyond accuracy in real recommendation scenarios. Despite the raise of interest and work on the topic in recent years, we find that a clear common methodological and conceptual ground for the evaluation of these dimensions is still to be consolidated. Different evaluation metrics have been reported in the literature but the precise relation, distinction or equivalence between them has not been explicitly studied. Furthermore, the metrics reported so far miss important properties such as taking into consideration the ranking of recommended items, or whether items are relevant or not, when assessing the novelty and diversity of recommendations. We present a formal framework for the definition of novelty and diversity metrics that unifies and generalizes several state of the art metrics. We identify three essential ground concepts at the roots of novelty and diversity: choice, discovery and relevance, upon which the framework is built. Item rank and relevance are introduced through a probabilistic recommendation browsing model, building upon the same three basic concepts. Based on the combination of ground elements, and the assumptions of the browsing model, different metrics and variants unfold. We report experimental observations which validate and illustrate the properties of the proposed metrics.This work is supported by the Spanish Government (TIN2011- 28538-C02-01), and the Government of Madrid (S2009TIC-1542)

    Integration of a recommender system into an online video streaming platform

    Get PDF
    The ultimate goal of this project is to develop a recommender system for the SmartVideo platform. The platform streams different content of local channels for the Grand Est Region of France to a large public. So, we aim to propose a solution to alleviate the data representation and data collection issue of recommender systems by adopting and adjusting the xAPI standard to fit our case of study and to be able to represent our usage data in a formal and consistent format. Then, we will propose and implement a bunch of recommendation algorithms that we are going to test in order to evaluate our developed recommender system.Le but ultime de ce projet est de développer un système de recommandation dédié à la plateforme SmartVideo de diffusion de vidéo en ligne. En effet, la plateforme met à disposition diverses contenus des chaînes locales de la région Grand Est du France. Alors, nous allons présenter une solution pour alléger le problème de représentation et de collecte de données d’usages par adopter et ajuster le standard xAPI pour représenter et collecter les données de façon simple et formelle. Ensuite, nous allons proposer et implanter des algorithmes de recommandation que nous allons les tester pour évaluer notre système de recommandation

    Signed Distance-based Deep Memory Recommender

    Full text link
    Personalized recommendation algorithms learn a user's preference for an item by measuring a distance/similarity between them. However, some of the existing recommendation models (e.g., matrix factorization) assume a linear relationship between the user and item. This approach limits the capacity of recommender systems, since the interactions between users and items in real-world applications are much more complex than the linear relationship. To overcome this limitation, in this paper, we design and propose a deep learning framework called Signed Distance-based Deep Memory Recommender, which captures non-linear relationships between users and items explicitly and implicitly, and work well in both general recommendation task and shopping basket-based recommendation task. Through an extensive empirical study on six real-world datasets in the two recommendation tasks, our proposed approach achieved significant improvement over ten state-of-the-art recommendation models

    PEEK: A Large Dataset of Learner Engagement with Educational Videos

    Get PDF
    Educational recommenders have received much less attention in comparison to e-commerce and entertainment-related recommenders, even though efficient intelligent tutors have great potential to improve learning gains. One of the main challenges in advancing this research direction is the scarcity of large, publicly available datasets. In this work, we release a large, novel dataset of learners engaging with educational videos in-the-wild. The dataset, named Personalised Educational Engagement with Knowledge Topics PEEK, is the first publicly available dataset of this nature. The video lectures have been associated with Wikipedia concepts related to the material of the lecture, thus providing a humanly intuitive taxonomy. We believe that granular learner engagement signals in unison with rich content representations will pave the way to building powerful personalization algorithms that will revolutionise educational and informational recommendation systems. Towards this goal, we 1) construct a novel dataset from a popular video lecture repository, 2) identify a set of benchmark algorithms to model engagement, and 3) run extensive experimentation on the PEEK dataset to demonstrate its value. Our experiments with the dataset show promise in building powerful informational recommender systems. The dataset and the support code is available publicly

    User-Specific Bicluster-based Collaborative Filtering

    Get PDF
    Tese de mestrado, CiĂŞncia de Dados, Universidade de Lisboa, Faculdade de CiĂŞncias, 2020Collaborative Filtering is one of the most popular and successful approaches for Recommender Systems. However, some challenges limit the effectiveness of Collaborative Filtering approaches when dealing with recommendation data, mainly due to the vast amounts of data and their sparse nature. In order to improve the scalability and performance of Collaborative Filtering approaches, several authors proposed successful approaches combining Collaborative Filtering with clustering techniques. In this work, we study the effectiveness of biclustering, an advanced clustering technique that groups rows and columns simultaneously, in Collaborative Filtering. When applied to the classic U-I interaction matrices, biclustering considers the duality relations between users and items, creating clusters of users who are similar under a particular group of items. We propose USBCF, a novel biclustering-based Collaborative Filtering approach that creates user specific models to improve the scalability of traditional CF approaches. Using a realworld dataset, we conduct a set of experiments to objectively evaluate the performance of the proposed approach, comparing it against baseline and state-of-the-art Collaborative Filtering methods. Our results show that the proposed approach can successfully suppress the main limitation of the previously proposed state-of-the-art biclustering-based Collaborative Filtering (BBCF) since BBCF can only output predictions for a small subset of the system users and item (lack of coverage). Moreover, USBCF produces rating predictions with quality comparable to the state-of-the-art approaches

    Location-aware online learning for top-k recommendation

    Get PDF
    We address the problem of recommending highly volatile items for users, both with potentially ambiguous location that may change in time. The three main ingredients of our method include (1) using online machine learning for the highly volatile items; (2) learning the personalized importance of hierarchical geolocation (for example, town, region, country, continent); finally (3) modeling temporal relevance by counting recent items with an exponential decay in recency.For (1), we consider a time-aware setting, where evaluation is cumbersome by traditional measures since we have different top recommendations at different times. We describe a time-aware framework based on individual item discounted gain. For (2), we observe that trends and geolocation turns out to be more important than personalized user preferences: user-item and content-item matrix factorization improves in combination with our geo-trend learning methods, but in itself, they are greatly inferior to our location based models. In fact, since our best performing methods are based on spatiotemporal data, they are applicable in the user cold start setting as well and perform even better than content based cold start methods. Finally for (3), we estimate the probability that the item will be viewed by its previous views to obtain a powerful model that combines item popularity and recency.To generate realistic data for measuring our new methods, we rely on Twitter messages with known GPS location and consider hashtags as items that we recommend the users to be included in their next message. © 2016 Elsevier B.V

    A Survey of Sequential Pattern Based E-Commerce Recommendation Systems

    Get PDF
    E-commerce recommendation systems usually deal with massive customer sequential databases, such as historical purchase or click stream sequences. Recommendation systems’ accuracy can be improved if complex sequential patterns of user purchase behavior are learned by integrating sequential patterns of customer clicks and/or purchases into the user–item rating matrix input of collaborative filtering. This review focuses on algorithms of existing E-commerce recommendation systems that are sequential pattern-based. It provides a comprehensive and comparative performance analysis of these systems, exposing their methodologies, achievements, limitations, and potential for solving more important problems in this domain. The review shows that integrating sequential pattern mining of historical purchase and/or click sequences into a user–item matrix for collaborative filtering can (i) improve recommendation accuracy, (ii) reduce user–item rating data sparsity, (iii) increase the novelty rate of recommendations, and (iv) improve the scalability of recommendation systems
    • …
    corecore