
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

User-Specific Bicluster-based Collaborative Filtering

Miguel Miranda Garção da Silva

Mestrado em Ciência de Dados

Dissertação orientada por:
Prof. Doutor Sara Alexandra Cordeiro Madeira

2020

Agradecimentos

O caminho para a realização de uma tese de mestrado é composto por vários e diversos
momentos. Inúmeros momentos de motivação e alegria, alguns de incerteza. Gostaria de
agradecer a todas as pessoas que direta ou indiretamente me acompanharam durante estes
momentos, e que, com esse apoio, tornaram possível a realização deste trabalho.

Primeiramente, agradeço à minha orientadora, Professora Sara Madeira. Começo por
agradecer por me ter escolhido e confiado em mim para trabalharmos em conjunto neste
projeto. Gostaria de agradecer também o papel vital que teve neste nosso trabalho, onde
destaco a orientação, incentivo, disponibilidade e apoio que sempre transmitiu durante
estes meses. Sinto-me grato por esta experiência, que me fez crescer e proporcionou a
oportunidade de aprender e trabalhar com alguém que respeito e admiro.

Em segundo lugar, um obrigado à minha família, em especial aos meus pais, avô
e Simões, que me transmitem, diariamente, os ideais e valores que me acompanham
e moldam enquanto pessoa. Sinto-me eternamente agradecido por me darem todas as
condições necessárias para que eu conseguisse estar nesta posição onde me encontro hoje.

Num tom de brincadeira, gostaria de agradecer a todos os meus amigos. Se dizem
que somos uma combinação dos nossos amigos mais próximos, então eu tenho de ser
perfeito. Duarte, amigo Engenheiro, o mais correto talvez seria destacar os momentos
de trabalho, esforço e dedicação académica, mas sabes que o politicamente correto não é
o meu forte, prefiro relembrar as nossas parvoíces. Lobo, amigo Data Scientist, incrível
como partilhámos tantas experiências nos últimos anos, influenciaste-me e aprendi muito
contigo, espero que tenha conseguido retribuir. Gil, amigo Hacker, não sei se alguma vez
irás penetrar e deixar a tua marca no meu computador, mas tenho a certeza de que a mim
já me marcaste. Paulo, amigo dos caracóis, sei que mal me referenciaste na tua tese, mas
não faz mal, estás perdoado melhor amigo, não aconteceu nada, eu perdoo-te :). Obrigado
a todos, acredito que foi apenas o início de uma grande amizade. Ou então não, e daqui a
dois meses já somos desconhecidos (mais provável).

Termino agradecendo mais uma vez, a todos os que, mesmo que não mencionados,
contribuíram para a realização deste trabalho, que me permite alcançar um grande objetivo
na minha vida.

3

Dedico esta tese a todos vocês, que acompanham o meu percurso.

Resumo

Os sistemas de recomendação são um conjunto de técnicas e software que têm como
objetivo sugerir itens a um determinado utilizador. Sugestões essas que têm como ob-
jetivo ajudar os utilizadores durante a tomada de decisão. O processo para uma tomada
de decisão pode ser difícil, especialmente quando existe um enorme número de opções
para escolher. Grandes empresas tiram partido dos sistemas de recomendação para me-
lhorar o seu serviço e aumentar as suas receitas. Um exemplo é a plataforma de streaming
Netflix que, utilizando um sistema de recomendação, personaliza os filmes ou séries des-
tacados para cada cliente. As recomendações personalizadas normalmente têm como base
os dados que as empresas recolhem dos utilizadores, que vão desde reações explícitas, por
exemplo através avaliações do utilizador a produtos, a reações implícitas, examinando a
forma como o utilizador interage com o sistema.

Uma das abordagens mais populares dos sistemas de recomendação é a filtragem co-
laborativa. Os métodos baseados em filtragem colaborativa produzem recomendações
personalizadas de itens, tendo por base padrões encontrados em dados de uso ou avalia-
ções anteriores. Os modelos de filtragem colaborativa normalmente usam uma simples
matriz de dados, conhecida como matriz de interação U-I, que contém as avaliações que
os utilizadores deram aos itens do sistema. Explorando os dados da matriz U-I, a filtragem
colaborativa assume que, se um determinado utilizador teve as mesmas preferências que
outro utilizador no passado, é provável que também venha a ter no futuro. Desta forma,
os modelos de filtragem colaborativa têm como objetivo recomendar uma lista de N itens
a um utilizador (denominado utilizador ativo), ou prever o rating que esse utilizador iria
dar a um item que ainda não avaliou. Na literatura, os métodos de filtragem colaborativa
são divididos em duas classes: os baseados em memórias e os baseados em modelos.

Os algoritmos baseados em memória, também conhecidos como algoritmos de vizi-
nhança, usam toda a matriz U-I para realizar as tarefas de recomendação. Os dois prin-
cipais métodos são conhecidos como “User-based” e “Item-based”. O User-based tenta
encontrar utilizadores com preferências parecidas ao utilizador a que se pretende fazer
recomendações e usa os dados dessa vizinhança de utilizadores similares para fazer as
previsões ou recomendações. Por outro lado, os algoritmos Item-based utilizam os itens
já avaliados pelo utilizador ativo, calculam a similaridade entre esses itens e o item que

7

se quer avaliar, construindo assim uma vizinhança de itens. A partir dessa vizinhança de
itens, prevê-se uma futura avaliação do utilizador a esse mesmo item.

Apesar de os algoritmos de vizinhança obterem bom resultados de previsão e reco-
mendação, apresentam duas grandes debilidades que limitam o seu uso em ambientes de
recomendação do mundo real. Os dados de recomendação são normalmente de grandes
dimensões e esparsos, isto é, com muitos valores em falta. Dada a complexidade resul-
tante do facto de terem de comparar todos os utilizadores ou itens entre si, o que se traduz
em n2 comparações, torna-se impraticável o uso de algoritmos deste género em sistemas
com grande quantidade de users e itens. Além disso, o facto de haver muitos valores em
falta, faz que seja recorrente alguns utilizadores/itens terem pequenas vizinhanças.

Para tentar lidar com as fraquezas dos algoritmos baseados em memórias, surgiram os
algoritmos baseados em modelos. Estas abordagens utilizam modelos que aprendem com
os dados e reconhecem padrões para realizar as tarefas de filtragem colaborativa. Téc-
nicas de redução de dimensionalidade como “Singular Value Decomposition” e “Latent
Semantic Analysis” são agora as abordagens standard para reduzir a natureza esparsa da
matriz de interação. Existem ainda abordagens baseadas em aprendizagem automática,
como redes bayesianas, agrupamento de dados, entre outras. Estes modelos de redução
de dimensionalidade, apesar de perderem informação que geralmente resulta em piores
resultados em termos de previsão/recomendação, conseguem lidar com o problema da
escalabilidade apresentado pelos modelos baseados em memória.

O agrupamento de dados, conhecido como “Clustering”, é o processo que agrupa um
conjunto de objetos de dados em múltiplos grupos, sendo que os objetos dentro do mesmo
grupo têm uma grande semelhança entre si, mas são suficientemente dissemelhantes dos
restantes objetos fora do seu grupo. Os algoritmos tradicionais de agrupamento conse-
guem encontrar padrões globais nos dados, por exemplo numa matriz, conseguem criar
grupos de linhas que são similares entre si, tendo em conta toda a dimensão das colunas.
Contudo, existe uma técnica avançada de agrupamento de dados, denominada “Bicluste-
ring” que, para além dos padrões globais, consegue ainda encontrar padrões locais, como
grupos de linhas que são apenas similares em algumas colunas da matriz. Neste trabalho,
explorámos as potencialidades desta técnica de biclustering na área de filtragem colabo-
rativa, considerando uma matriz onde as linhas são utilizadores e as colunas são itens.
O objetivo é encontrar subconjuntos de utilizadores com gostos similares considerando
subconjuntos de itens.

Na literatura, já existem alguns trabalhos que combinam técnicas de biclustering com
filtragem colaborativa. Alguns autores usam o biclustering como uma etapa de pré-processamento
dos dados de forma a reduzir a sua dimensionalidade e, posteriormente, utilizam aborda-
gens clássicas de filtragem colaborativa para realizar as tarefas de recomendação. No
entanto, existem também abordagens que realizam as tarefas de recomendação, usando
apenas biclustering como técnica para prever os valores em falta na matriz de interação.

8

Usando como referência o estado da arte da literatura nas abordagens de filtragem
colaborativa incorporando técnicas de biclustering, desenvolvemos a nossa própria abor-
dagem. Começámos por avaliar as potencialidades de um algoritmo de biclustering, Bic-
PAM, reconhecido como a principal referência dos algoritmos de biclustering baseados
em padrões. De seguida, comparámos a sua performance com outros dois algoritmos de
biclustering, o xMOTIFs e QUBIC, usados anteriormente em abordagens de filtragem
colaborativa, onde concluímos que tanto o BicPAM como o QUBIC conseguiam, eficaz-
mente, encontrar grupos de utilizadores e itens correlacionados numa matriz de interação.

Propomos uma abordagem de filtragem colaborativa que usa biclustering para reduzir
a dimensão dos dados da matriz de interação, aumentando a escalabilidade dos algoritmos
Item-based. A nossa abordagem, denominada “User-Specific Bicluster-based Collabo-
rative Filtering” (USBCF), usa o QUBIC como algoritmo de biclustering para encontrar
grupos de utilizadores com preferências similares em conjuntos de itens. Através dos gru-
pos encontrados, criamos, para cada utilizador, uma submatriz da matriz U-I original. Esta
submatriz contém um pequeno conjunto de dados, personalizado para cada utilizador, que
consideramos conter informação essencial sobre as preferências do utilizador em questão.
Após a criação de uma matriz individual para cada utilizador, um algoritmo de filtragem
colaborativa Item-based é treinado nesse conjunto de dados, criando assim um modelo de
recomendação exclusivo para cada utilizador do sistema.

Seguindo os bons princípios para avaliação de uma nova abordagem de filtragem cola-
borativa, testámos a nossa abordagem no famoso conjunto de dados para recomendação de
filmes, MovieLens. Comparámos a performance da nossa abordagem com os principais
métodos de filtragem colaborativa, utilizando diferentes métricas, incluindo um método
considerado o estado da arte na área de filtragem colaborativa com biclustering (BBCF).

Os resultados da nossa avaliação demonstram que conseguimos superar a maior li-
mitação do método BBCF, uma vez que este método conseguia devolver uma previsão
apenas para uma pequena fração dos utilizadores e itens. Além disso, a nossa aborda-
gem consegue ainda uma qualidade de previsão de avaliações comparáveis aos melhores
algoritmos de filtragem colaborativa.

Concluímos com uma análise crítica à nossa abordagem, identificando atributos que
podem ser adaptados para, no futuro, aperfeiçoar a nossa abordagem. O nosso projeto
demonstra as potencialidades das técnicas de agrupamento avançadas na área de sistemas
de recomendação e acreditamos que produz valor para ajudar a expandir a literatura da
área de filtragem colaborativa, tirando proveito de biclustering.

Palavras-chave: Sistemas de Recomendação, Filtragem Colaborativa, Ténicas de
agrupamento de dados

9

Abstract

Collaborative Filtering is one of the most popular and successful approaches for Rec-
ommender Systems. However, some challenges limit the effectiveness of Collaborative
Filtering approaches when dealing with recommendation data, mainly due to the vast
amounts of data and their sparse nature. In order to improve the scalability and per-
formance of Collaborative Filtering approaches, several authors proposed successful ap-
proaches combining Collaborative Filtering with clustering techniques. In this work, we
study the effectiveness of biclustering, an advanced clustering technique that groups rows
and columns simultaneously, in Collaborative Filtering. When applied to the classic U-I
interaction matrices, biclustering considers the duality relations between users and items,
creating clusters of users who are similar under a particular group of items. We propose
USBCF, a novel biclustering-based Collaborative Filtering approach that creates user-
specific models to improve the scalability of traditional CF approaches. Using a real-
world dataset, we conduct a set of experiments to objectively evaluate the performance
of the proposed approach, comparing it against baseline and state-of-the-art Collaborative
Filtering methods. Our results show that the proposed approach can successfully suppress
the main limitation of the previously proposed state-of-the-art biclustering-based Collab-
orative Filtering (BBCF) since BBCF can only output predictions for a small subset of the
system users and item (lack of coverage). Moreover, USBCF produces rating predictions
with quality comparable to the state-of-the-art approaches.

Keywords: Recommender Systems, Collaborative Filtering, Clustering, Biclustering,
Coclustering, Time information

11

Contents

List of Figures 18

List of Tables 20

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives and Contributions . 2
1.3 Context . 3
1.4 Structure of the document . 3

2 Background 5
2.1 Collaborative Filtering . 5

2.1.1 Classic CF setting and tasks . 6
2.1.2 Methods and Categorization . 8
2.1.3 Challenges . 14

2.2 Evaluating CF-based Recommender Systems 15
2.2.1 Evaluation Protocols . 15
2.2.2 Benchmark datasets . 16
2.2.3 Evaluation Metrics . 17

2.3 Temporal Dynamics in Collaborative Filtering 19
2.3.1 Time-aware . 20
2.3.2 Time-dependent . 21

2.4 Biclustering . 22
2.4.1 Clustering and biclustering . 22
2.4.2 Bicluster Type . 23

3 Related Work 27
3.1 Biclustering Collaborative Filtering . 27

3.1.1 Rating Prediction Approaches 27
3.1.2 Top-N Recommendation Approaches 31

3.2 Time Dimension in Neighborhood-based Collaborative Filtering 33
3.2.1 Temporal CF . 33

13

3.2.2 Time-aware CF . 35

4 Evaluating the Potentialities of BicPAM 37
4.1 BicPAM - State-of-the-art Pattern-based Biclustering 37
4.2 Generating Synthetic Biclustering Benchmark Data - G-Tric 40
4.3 Biclustering Evaluation Methodology 44

4.3.1 Biclustering Methods . 44
4.3.2 Synthetic Data . 46
4.3.3 Performance Metrics . 46
4.3.4 Results and Discussion . 49

4.4 Final Remarks . 53

5 USBCF - A User-Specific Bicluster-based Approach for Collaborative Filter-
ing 55
5.1 Motivation and Main Concept . 55
5.2 USBCF Overview . 56

5.2.1 Discover Biclusters in U-I Matrix 56
5.2.2 Create User-Specific Bicluster-based Matrix 57
5.2.3 Learning User-Specific Recommendation Models 63

5.3 Final Remarks . 63

6 USBCF - A Case Study on Movie Recommendation 65
6.1 Evaluation Methodology . 65

6.1.1 Experimental Platform and Software 66
6.1.2 Benchmark Dataset . 66
6.1.3 Evaluation Metrics . 66
6.1.4 Approaches for Comparative Analysis 67

6.2 Results and Discussion . 68
6.2.1 Baseline Approaches - Models and Parameterization 68
6.2.2 BBCF . 70
6.2.3 USBCF . 72

6.3 Final Remarks . 77

7 Conclusions and Future work 79

A Biclustering Algorithms Study 83

B USBCF 85
B.1 Cross-Validation Results . 85
B.2 User-based split Cross-Validation Results 86

14

Bibliography 100

15

16

List of Figures

2.1 Collaborative Filtering principle illustration. 6
2.2 Sample U-I numeric rating matrix (on a 5-star scale). 6
2.3 The Collaborative Filtering Process (adapted from [96]). 7
2.4 Overview of Collaborative Filtering categorization. 8
2.5 Singular Value Decomposition of the U-I example rating matrix. 13
2.6 User × Item× Time recommendation space. 20
2.8 Clustering and biclustering example. 23
2.9 Examples of different types of biclusters. (a) Constant value, (b) constant-

values on rows, (c) constant-values on columns, (d) coherent values (ad-
dictive model), (e) coherent values (multiplicative model), (f) overall co-
herent evolution, (g) coherent evolution on the rows, (h) coherent evolu-
tion on the columns (adapted from [76]). 24

3.1 Outline of the rating prediction approach (ITCCCF) proposed by Liang
and Leng [70]. 29

3.2 Outline of the rating prediction approach (NBCFu) proposed by Kant and
Mahara [60]. 30

3.3 Outline of the rating prediction approach proposed (BBCF) by Singh and
Mehotra [101]. 31

3.4 Outline of the Top-N recommendation approach (NBCF) proposed by
Symeonidis et al. [105]. 32

3.5 Concept Drift in CF (adapted from [25]) 34

4.1 Methodology of the BicPAM algorithm. 38
4.2 Example of mining constants biclusters from a matrix. 39
4.3 Distribution of the rating values in the MovieLens-1M and Netflix datasets. 41
4.4 Example of two biclustering solutions that we wish to compare using bi-

clustering similarity measures. 47
4.5 Performance of the biclustering algorithms in each synthetic dataset. . . . 51

5.1 USBCF approach applied on a small U-I matrix. 56
5.2 Example of a bicluster and an active user with distinct rating pattern. . . . 58
5.3 Example of aggregating two biclusters to create a new dataset. 62

17

6.1 User-based split cross-validation. 67
6.2 Sensitivity of UBCF and IBCF to the size of the neighborhood. 70
6.3 Sensitivity of BBCF to the size of the biclusters’ neighborhood. 71
6.4 Effect of the number biclusters in the neighborhood on the average size of

the personalized dataset. 72
6.5 Sensitivity of USBCF-CMR to the size of the biclusters’ neighborhood. . 75
6.6 Effect of the number biclusters in the neighborhood on the average size of

the personalized dataset. 76

A.1 Evolution of the biclusters found according to the number of rows and
columns of the input data. 83

18

List of Tables

2.1 Predictive error metrics. 18

4.1 Framework to ensure exhaustive search from the BicPAM algorithm. . . . 42
4.2 Properties of the constant columns biclustering solutions varying the size

of the input data. 43
4.3 Properties of the order-preserving biclustering solutions varying the size

of the input data. 43
4.4 Overlapping statistics from the biclustering solutions of the subsets from

Netflix dataset. 43
4.5 Characteristics of the generated synthetic datasets. 46
4.6 Similarity scores and efficiency of the QUBIC algorithm. 50
4.7 Similarity scores and efficiency of the xMOTIFs algorithm. 50
4.8 Similarity scores and efficiency of the BicPAM algorithm. 51
4.9 General information of the QUBIC’s solutions. 52
4.10 General information of the xMOTIFs’ solutions. 52
4.11 General information of the BicPAM’s solutions. 53

6.1 Results of the basic models. 69
6.2 Results of the User-based CF and Item-based CF varying the maximum

number of neighbors’ parameter . 69
6.3 Results of the Matrix Factorization models with best performance. 70
6.4 Sensitivity of BBCF to the number of biclusters in the neighborhood. . . . 71
6.5 Results of the BBCF-NoWeight model. 73
6.6 Results of the BBCF-CombinedSimilarity-MSR model. 73
6.7 Results of the USBCF-MSR and the USBCF-CMR models. 74
6.8 Sensitivity of the USBCF-MCR to the number of biclusters in the neigh-

borhood . 75
6.9 Results of the Adaptive Bicluster Neighborhood Dimension version of the

USBCF-CMR. 76

A.1 Properties of the constant columns biclustering solutions varying the size
of the input data . 84

19

A.2 Properties of the order-preserving biclustering solutions varying the size
of the input data . 84

B.1 Results of the User-based CF and Item-based CF on the cross-validation
varying the maximum number of neighbors’ parameter. 85

B.2 Results of theMatrix Factorization models on the cross-validation varying
the number of features. 86

B.3 Sensitivity of the BBCF to the number of biclusters in the neighborhood. . 86
B.4 Results of the basic models on the user-based cross-validation. 86
B.5 Results of the User-based CF and Item-based CF on the user-based split

cross-validation varying the maximum number of neighbours’ parameter. 87
B.6 Results of theMatrix Factorizationmodels on the user-based cross-validation

varying the number of features. 88
B.7 Results of the BBCF on the user-based cross-validation varying the num-

ber of nearest biclusters’ parameter. 88
B.8 Results of the BBCF-NoWeight model on the user-based cross-validation. 88

20

Chapter 1

Introduction

1.1 Motivation

Recommender systems (RS) are software tools and techniques that support users in the
decision-making process by suggesting products, services, or other types of items from a
collection [93]. The decision-making process can be complicated, especially for people
who lack sufficient personal experience to evaluate the potentially overwhelming number
of options. Thus, recommender systems can be found in many industries and applications
and are responsible for a big piece of the revenues of many companies. Companies like
Spotify, Netflix, and Amazon depend on their recommendations to allow users to discover
new content and improve the user experience in their services.

This work focuses on Collaborative Filtering (CF), one of the most popular and suc-
cessful classes of the methods used by recommender systems, which recommend items to
users based on the preferences other users have expressed for those items. The informa-
tion domain in CF usually consists of triplets <user, item, rating>, representing how the
user rated an item. The set of triplets forms a sparse matrix referred to as User-Item rating
interaction matrix (U-I matrix), containing all the users and items in the system, together
with the respective ratings. The sparse nature of this matrix results from the unknown
ratings, in cases the user has not (yet) rated the item.

Collaborative Filteringmethods are usually divided into twomain classes, thememory-
based and the model-based. The memory-based algorithms use the user-item system rat-
ings directly to predict ratings for new items. This can be done by User-based or Item-
based recommendation. User-based systems predict the preference of a particular user for
an item, using the ratings that similar users, classed neighbors, gave to that item. On the
other hand, item-based approaches predict the rating based on how the active user rated
similar items.

Some challenges limit memory-based CF effectiveness when dealing with recommen-
dation data, mainly due to the vast amounts of data and their sparse nature. Model-based
approaches try to overcome the limitations of memory-based CF by training models using

1

Chapter 1. Introduction 2

the available data and later use them to predict users’ ratings for new items. Dimension-
ality reduction, such as Matrix Factorization and Clustering are examples of techniques
adopted by model-based approaches.

Cluster analysis or simply Clustering is the process of partitioning a set of data ob-
jects into groups. Each group is a cluster, such that objects in a cluster are similar to one
another yet dissimilar to objects in other clusters. Clustering is fundamental in many ap-
plications, such as business intelligence, image pattern recognition, Web search, biology,
and security [42]. However, traditional clustering techniques can only be applied to ei-
ther the row dimension or the column dimension of the data matrix separately. Moreover,
when computing the clusters of objects, these algorithms use the entire dimension (all the
columns or all the rows). In real-world scenarios, the correlation of a subset of rows is fre-
quently only significant and meaningful for a subset of the overall columns, and vice versa
[100]. Biclustering is an advanced clustering technique that performs Clustering in two
dimensions simultaneously, being able to find these local pattern patterns of correlated
sub-spaces in the data (biclusters). Many biclustering approaches have been proposed,
particularly in the context of gene expression data analysis [16, 41, 80, 107]. Nonetheless,
although the massive impact biclustering is having in biological applications, it is also
showing promising results in many other domains, including in Collaborative Filtering
[34, 60, 101, 105, 123].

In this context, we propose a novel biclustering-based collaborative filtering approach
that uses biclustering to improve the scalability of memory-based CF methods. The ap-
proach, named “User-specific Bicluster-based Collaborative Filtering” (USBCF), uses bi-
clustering to find groups of users with similar preferences under a particular group of
items (biclusters). Then, it uses these biclusters to create user-specific small and denser
U-I matrices used to train traditional CF models.

We evaluated the proposed approach against baseline CF methods as well as the state-
of-the-art approach of biclustering-based Collaborative Filtering (BBCF) [101]. The eval-
uation results that the proposed approach can successfully suppress the main limitation of
the previously proposed state-of-the-art biclustering-basedCollaborative Filtering (BBCF),
since BBCF can only output predictions for a small subset of the system users and item
(small coverage). Moreover, USBCF produces rating predictions with quality comparable
to the state-of-the-art CF approaches.

1.2 Objectives and Contributions

The main goal of this thesis is to investigate and highlight the potentialities of biclus-
tering when applied to the Collaborative Filtering domain, while overcoming limitations
presented by the state-of-the-art of the biclustering-based CF approaches.

Bellow, we list the central contributions of this work:

Chapter 1. Introduction 3

• Presents a comprehensive survey of the approaches developed in the field of biclustering-
based CF. It also reviews significant research contributions regarding temporal dy-
namics in neighborhood-based CF that can easily be included in the biclustering-
based CF methods.

• Evaluates the potentialities of three biclustering algorithms to discover hidden bi-
clusters in synthetic data resembling U-I matrices.

• Proposes a new biclustering-based CF methodology, USBCF, that overcomes the
coverage capability limitation presented by previously proposed related-work.

• Revises the popular bicluster quality measure, Mean-Square-Residue (MSR), so
that the missing-values on the bicluster do not contribute to the residue. Moreover,
it proposes a new quality measure, Mean-Column-Residue, to measure the quality
of biclusters with constant-values on biclusters.

• Exhaustively evaluates the proposed approach on a movie-recommendation real-
world benchmark dataset, comparing it against state-of-the-art CF methods.

• Discusses the challenges of biclustering when applied to recommendation scenarios
and presents potentially relevant research avenues for future work in the field.

1.3 Context

This work was carried out at the research line of excellence of Data and Systems Intel-
ligence at the Laboratory of Large Scale Systems (LASIGE). This work could not have
been done without the guidance of Prof. Sara Madeira.

Fundação para a Ciência e Tecnologia (FCT) partially funded this work through
projects Neuroclinomics2 (PTDC/EEI-SII/1937/2014) and iCare4U (PTDC/EME-SIS/31474/2017),
and plurianual funding to LASIGE (UIDB/00408/2020).

1.4 Structure of the document

This document is organized as follows:

• Chapter 2 introduces the Collaborative Filtering paradigm, focusing on the main
tasks, traditional approaches, and evaluationmethodologies. This chapter also presents
the biclustering task and defines its main concepts.

• Chapter 3 reviews the state-of-the-art concerning biclustering-based CF approaches
and time-exploiter neighborhood-based CF algorithms.

Chapter 1. Introduction 4

• Chapter 4 studies the potentialities of three biclustering algorithms to discover bi-
clusters in an U-I interaction matrix, with special focus on BicPAM, the state-of-
the-art pattern-based biclustering algorithm.

• Chapter 5 proposes a new CF approach that uses biclustering to create user-specific
U-I matrices, improving scalability of traditional CF algorithms.

• Chapter 6 validates and evaluates the proposed approach using a movie recommen-
dation real-world dataset, comparing the approach against baseline and state-of-the-
art CF approaches.

• Chapter 7 concludes the work, drawing conclusions and highlighting major direc-
tions for future work.

Chapter 2

Background

This chapter introduces the theoretical background of this work and is organized as fol-
lows. Section 2.1 provides an overview of the Collaborative Filtering paradigm. Sec-
tion 2.2 introduces the key principles to address the evaluation of Collaborative Filtering
approaches. Section 2.3 explores the benefits of exploiting time information in CF. Fi-
nally, Section 2.4 covers the biclustering technique, defining its main concepts.

2.1 Collaborative Filtering

Decision making plays a vital role in everyone’s lives. Every single day we are confronted
with options and choices for which our decisions determine the outcome of our lives. What
to wear? What to eat? What to buy? What show should I watch? Effective decision-
making can be difficult, especially in domains where the pool of options is massive. There
has been both academic and industry interest in how to automatically recommend items
to individuals. Spotify, Amazon, Netflix, and Facebook are some popular platforms who
actively use recommender systems [28]. From e-commerce to online advertisement, these
systems are unavoidable in our daily online journeys to suggest items in a personalized
way.

A wide variety of methods have been proposed and adopted [93], but this thesis fo-
cuses on the class of Collaborative Filtering methods. Collaborative Filtering (CF), firstly
proposed in 1992 [36], is currently the most familiar, widely implemented, and mature of
the technologies among the traditional ones (e.g., content-based and hybrid-based tech-
niques) used to build recommender systems. It is based on the assumption that users who
had similar likings in the past will have similar likings in the future. Meaning that if a
person P1 and a person P2 both like an item I1, then it assumes it is more likely P1 to
have a similar opinion to P2 on an item I2 than having a similar opinion to a person P3
who does not share opinions with P1. Figure 2.1 illustrates the principle of Collaborative
Filtering.

5

Chapter 2. Background 6

Person 1

Person 2

Item 1

Item 2

Item 3Person 3
Positive interaction
Recommendation

Figure 2.1: Collaborative Filtering principle illustration.

2.1.1 Classic CF setting and tasks

In a classic Collaborative Filtering scenario, we have a set of m users U = {u1, ..., um}
and a set ofn items I = {i1, ..., in}which compose aUser-ItemmatrixRm×n (U-Imatrix).
Each entryRij indicates the inclination of the user i towards the item j, usually in the form
of rating, so the matrixR expresses the preference of each user for the n items ifRij > 0.
Figure 2.2 shows an example of a U-I matrix for five users and four items. The blank cells
indicate unknown values, where the user has yet not rated the item. Equivalently, since
the rating matrix is usually very sparse, it is frequently expressed as a set of <user, item,
rating> triples, instead of a full matrix representation.

4 2 2

5 5 2

4 5 2

5 5

3 3 5

u1
u2
u3
u4
u5

i1 i2 i3 i4

U
se
rs

Items

Figure 2.2: Sample U-I numeric rating matrix (on a 5-star scale).

Depending on the systems in question, the ratings can take many forms, differing in
connotation. Some ratings are obtained by asking feedback from the users explicitly, while
others by observing their interactions implicitly with the system. According to the type of
user feedback, the rating data is usually classified as one of two types [110]:

Chapter 2. Background 7

• Numeric rating feedback. Usually in the form of triples<u, i, r>, which expresses
the event of the rating r given by the user u to the item i. This type of data is usually
gathered from explicit feedback of the user. Some systems use real-valued rating
such as 0-5 stars scale, while others use binary (like/dislike) scales [28]. The U-I
matrix previously presented in Figure 2.2 is an example of a numeric rating feedback
matrix.

• Positive-only/unary feedback. For the most part, a set of (u,i) tuples, represents
a positive interaction between a user u with an item i. This type of data is usually
obtained from implicit interactions of the user, such as users’ views/clicks in videos
of a video-sharing platform.

Under this setting, the main problem of CF can be defined as: Given a U-I matrix R
that represents a known set of preferences ofM users toN items, perform a recommenda-
tion task to a user u, called the active user. Recommendation systems, including Collab-
orative Filtering, are primarily used for prediction or recommendation tasks [79, 116].
Figure 2.3 shows a schematic diagram of the CF process.

u1

u2

uu

um

i1 ij ini2

...

...

Input (U-I table) CF-Algorithm Output

Recommendation

Prediction
Pu,j (prediction on item j

for the active user)

Top-N list of items for
the active user

Figure 2.3: The Collaborative Filtering Process (adapted from [96]).

The goal of the prediction task, otherwise called “Annotation in Context” [51], is to
predict the rating a user would give to a target item. In other words, anticipate how much
the user might like a particular item. These systems use known values of the rating matrix
and try to predict the missing ones.

As for the recommendation tasks, the system usually generates and provides an or-
dered list of n items, known as Top-N recommendation list, which is a list including the
most relevant/useful items for the user. This classic recommendation task is also referred
to as “Find Good Items” [51]. There are many subcategories of tasks within the “Find
Good Items” class because, in some contexts, we might not want the n items with the
highest predicted preferences, as preference may not be the only criteria relevant to pro-
duce the recommendation list [28]. This is particularly true in systems that want users to
explore items that differ from their usual choices. However, it is a common practice to use

Chapter 2. Background 8

predictive Collaborative Filtering to perform recommendation by generating predictions
and returning the items with the highest ratings.

2.1.2 Methods and Categorization

In the literature, the authors usually group CF approaches as one of the three major cate-
gories: memory, model, and hybrid-based [102], as illustrated in Figure 2.4. This Section
gives a brief explanation about each one of the categories, discussing their pros and cons
and indicating some popular baseline and state-of-the-art algorithms.

Collaborative Filtering

Memory-based Model-based

Clustering CF

Hybrid

User-based Item-based Bayesian networks
CF Matrix Factorization ...

Figure 2.4: Overview of Collaborative Filtering categorization.

Memory-based CF

Memory-based CF algorithms use the entire U-I matrix, or a sample of it, to generate
predictions for new items [102]. User-based and item-based are the two known techniques
that follow this principle effectively.

A traditional user-based algorithm, such as GroupLens [92], predicts the rating ru,i of
a user u for an item i using the ratings given to i by the k users most similar to u, called
the k-nearest neighbours. The user-based approaches use similarity functions to estimate
how similar the two users u and v are. Popular examples of similarity functions are the
cosine vector similarity:

sim(u, v)cos =
r⃗u · r⃗v
∥r⃗u∥ ∥r⃗v∥

=

∑
i∈I ru,irv,i√∑

i∈I r
2
u,i

√∑
i∈I r

2
v,i

, (2.1)

and the Pearson correlation as:

sim(u, v)corr =

∑
i∈Iu∩Iv (ru,i − r̄u) (rv,i − r̄v)√∑

i∈Iu∩Iv (ru,i − r̄u)
2
√∑

i∈Iu∩Iv (rv,i − r̄v)
2
. (2.2)

Then, the ratings given by the neighbors to the item are aggregated and used to estimate
a rating prediction [116]. This aggregation is typically done by computing the weighted
average of the neighbouring users’ ratings on item i, using similarity as the weights:

r̂u,i = ru +

∑
u′∈N sim(u, u′)(ru′,i − ru′)∑

u′∈N |sim(u, u′)|
, (2.3)

Chapter 2. Background 9

where ru corresponds to the active user’s mean rating, and sim(u, u′) is the similarity
between the active user and a neighbour. This is an enhancement of the original weighted
average, since the ratings are mean-centred by the users’ ratings. This idea compensates
for differences in users’ use of the rating scale because some users tend to give higher
ratings than others [28]. There are some variations of this formula and other types of
aggregating functions, but this is the most common as it is known for producing consistent
results.

Example 2.1.1. Consider the ratings from Figure 2.2 as an example. We want to
predict the rating that the user u1 would give to the item i2, using user-based approach
with the following configuration:

• Similarity measure: Pearson correlation (Equation 2.2).

• Neighbourhood size: 2 users.

• Aggregation function: Weighted average with mean offset. (Equation 2.3).

Users u2, u3, and u5 were the ones who rated the item i2, so if we calculate the sim-
ilarities of each one of them with u1, we obtain: sim(u1, u2) = 0.800, sim(u1, u3) =
0.614, and sim(u1, u5) = −0.800. Then, u2 and u3 are selected since they are the
two most similar users to u1 (neighborhood size = 2), and the rating is predicted as:

r̂u1,i2 = r̄u1 +
sim(u1, u2) (ru2,i2 − r̄u2) + sim(u1, u3) (ru3,i2 − r̄u3)

|sim(u1, u2)|+ |sim(u1, u3)|

= 2.667 +
0.800× (5− 4) + 0.614× (5− 3.667)

0.800 + 0.614

= 3.811.

User-based CF, despite usually producing good results, it suffers from scalability prob-
lems when the number of users grows. This scenario is quite common in real-world appli-
cations, and for that reason, Amazon introduced the item-based CF in 1998, but the first
work describing the approach was only published in 2001 by Sarwar et al. [96]. The ap-
proach introduced by Sarwar et al. popularized the idea of pre-computing and storing all
the similarities before the prediction/recommendation step. In most user-based systems,
this idea is not possible because users are frequently entering and exiting the system, rating
and re-rating items, which results in unstable similarities between users. For this reason,
user-based algorithms usually search for neighbours only during prediction/recommen-
dation phase. On the other hand, this volatility on the users’ ratings affects the similarity
between two items significantly less than the similarity between two users in systems with
a sufficiently high user to item ratio [28]. This is the typical case of real-world systems,
therefore, it is reasonable to pre-compute all the similarities between all the items before
the prediction/recommendation step. Moreover, with an item-based method, the system
can easily justify a recommendation to the user, explaining that it is recommending an

Chapter 2. Background 10

item because he/she in the past positively interacted with similar ones. Whereas in user-
based methods, the active user usually does not know that other users are being used as
neighbours [93].

The item-based algorithms’ main concept is identical to the one we have in the user-
based CF. However, the recommendation of an item depends only on the information about
other items previously rated by the active user. The item-based approach looks into a set
of items the active user has rated, computes the similarities between those items and the
target item i, and then selects the k most similar items. Similarly to user-based CF, there
are many possible functions to compute the similarities. Given two items i and j, common
methods include:

• Pearson correlation.

sim(i, j)corr =

∑
u∈U (rui − r̄i) (ruj − r̄j)√∑

u∈U (rui − r̄i)
2
√∑

u∈U (ruj − r̄j)
2
. (2.4)

Computes statistical correlation between two item’s common ratings. It is more
frequently used in user-based CF, as it usually performs worse than cosine similarity
in item-based CF [96].

• Cosine similarity.

sim(i, j)cos =
r⃗i · r⃗j
∥r⃗i∥ ∥r⃗j∥

=

∑
u∈U ru,iru,j√∑

u∈U r2u,i

√∑
u∈U r2u,j

. (2.5)

Cosine distance between two items’ ratings vectors. It is very efficient and produces
good accuracy results.

• Adjusted-cosine similarity.

sim(i, j)adjcos =

∑
u∈U (ru,i − r̄u) (ru,j − r̄u)√∑

u∈U (ru,i − r̄u)
2
√∑

u∈U (ru,j − r̄u)
2
. (2.6)

Subtracting the user’s mean rating makes the function properly deal with users that
use different rating values to quantify the same level of appreciation for an item.
This is particularly important, as different users have their own underlying scale to
express their preferences.

• Item-mean-centered cosine similarity.

sim(i, j)itemcenteredcos =

∑
u∈U (ru,i − r̄i) (ru,j − r̄j)√∑

u∈U (ru,i − r̄i)
2
√∑

u∈U (ru,j − r̄j)
2
. (2.7)

Chapter 2. Background 11

Despite adjusted-cosine solving the obvious problem of different rating scales be-
tween users, subtracting the item’s mean rating instead of the user’s mean rating
seems to be more effective [27].

Once found the k most similar items, the predicted rated is computed by aggregating
the ratings the active user gave to those items, typically weighting averaging as [96]:

r̂u,i =

∑
j∈N sim(i, j)ru,j∑
j∈N |sim(i, j)|

, (2.8)

where N is the set of the k most similar items to j that the user u had previously rated.

Example 2.1.2. Consider again the ratings from Figure 2.2 as an example. We want
to predict the rating that the user u1 would give to the item i2, using the item-based
approach with the following configuration:

• Similarity measure: Cosine similarity (Equation 2.5).

• Neighborhood size: 2 items.

• Aggregation function: Weighted average (Equation 2.8).

If we calculate the similarities of each one of itemswith i2, we obtain: sim(i2, i1) =
0.865, sim(i2, i3) = 0.427, and sim(i2, i4) = 0.227. Then, i1 and i3 are selected since
they are the two most similar items to i2 (neighborhood size = 2), and the rating is
predicted as:

r̂u1,i2 =
sim(i2, i1)ru1,i1 + sim(i2, i3)ru1,i3

|sim(i2, i1)|+ |sim(i2, i3)|

=
0.865× 4 + 0.427× 2

0.865 + 0.427

= 3.339.

Two drawbacks are typical for memory-based CF approaches. First, the algorithms
usually do not scale due to the computation of similarities between all pairs of users or
items (quadratic time complexity). Secondly, the choice of the similarity function is cru-
cial because it affects the results of the model [116]. In order to compensate for this depen-
dency on the similarity, many modifications have been proposed to improve the traditional
algorithm. For instance, some models incorporate extra features such as information of
the users and items order to improve the recommendations [116]. There is a panoply of
works exploring this idea, but using social networks as side information (i.e., friendship
graph, followers, and trusted users) has been successful in many works because people
tend to share opinions with individuals who are related to them [35, 77].

Chapter 2. Background 12

Model-based CF

Model-based approaches, in contrast to neighbourhood-based systems, use the rating data
to learn a predictive model. The trained models are then able to recognize the patterns in
the data and perform the Collaborative Filtering tasks. There is a vast amount of works
proposing and exploring different model-based techniques, such as Bayesian networks
[14], clustering/biclustering (see Section 3.1), latent semantic [52, 106], mixture models
[62], and transfer learning [68].

State-of-the-art model-based approaches address, for the most part, scalability and
sparsity problems better than memory-based approaches and, also, can produce better rec-
ommendations. However, there is a trade-off between performance and scalability since
the training phase of complex models is usually more costly. Many of these approaches
use dimensionality reduction techniques, but this can come with the cost of potentially
losing useful information, leading to less accurate recommendations.

Latent semantic analysis (LSA) is a natural language processing technique that some
CF models use to find latent/hidden features in the rating data [52]. In these models,
Singular Value Decomposition (SVD) is usually the key dimensionality reduction tool
responsible for uncovering the latent factors in the data. SVD-based models also referred
to as matrix factorization models, became a top option for implementing CF systems, after
becoming popular for playing a significant role in the Netflix Prize competition [11].

For anRm×n input matrix, SVD factorizesR, using r concepts/topics, into an approx-
imation of a product of three matrices with as:

Rm×n ≈ Um×rΣr×r (Vn×r)
⊺ , (2.9)

where U and V are orthogonal matrices that store the left and right singular vectors,
respectively, and Σ is a diagonal matrix whose values are the singular values of the de-
composition. It is possible to reduce the r×r matrixΣ to have only the k largest diagonal
values, obtaining a matrix Σk. Given that, if the matrices U and V are reduced accord-
ingly, then the reconstructed matrixRk = Uk.Σk.V

⊺
k is the closest rank-k matrix toR.

WhenR is a rating matrix, the matrix factorization models map both users and items
to a joint latent factor space of dimensionality r, where r is the number of factors/con-
cepts that try to explain those ratings. If the items of the matrix are movies, the latent
factors could measure, for instance, the amount of action, amount of comedy, character
development, orientation to adults, or completely uninterruptible factors [93]. In this case,
we could interpret the SVD as relationships between “movies”, “users”, and “concepts/-
factors”, where U is the user-to-concept similarity matrix, V is the movie-to-concept
similarity matrix, and Σ stores the “strength” of each concept. Figure 2.5 shows the use
of SVD in the U-I rating matrix from Figure 2.2.

Chapter 2. Background 13

n	=	|I|
m
	=
	|
U
|

r

m

4 0 2 2
5 5 0 2
4 5 2 0
0 0 5 5
3 3 5 0

0.33 0.16 0.38 -0.83
0.54 -0.39 0.53 0.28
0.52 -0.32 -0.25 0.19
0.31 0.84 0.19 0.39
0.49 0.13 0.69 0.20

r
12.06 0 0 0
0 7.01 0 0
0 0 3.79 0
0 0 0 2.65

r r

n
0.63 0.56 0.47 0.27
0.32 -0.45 0.65 0.53
0.28 -0.18 -0.59 0.74
-0.65 0.67 -0.12 0.32

Figure 2.5: Singular Value Decomposition of the U-I example rating matrix.

The purest SVD implementation is undefined when the input matrix has missing val-
ues. In the SVD example of Figure 2.5, we considered the missing values as 0, which
is unreasonable for recommendation scenarios since SVD treats those values as vulgar
rating scores. Sarwar et al. [95] studied the imputation of the item’s average ratings and
found it to work better than the imputation of the user’s average. However, imputation
significantly increases the amount of data, leading to a computationally expensive model
with possibly distorted predictions due to inaccurate imputations. In order to overcome
the drawbacks of the imputation, several approaches have been proposed [10, 32, 63, 121].
Those approaches compute an estimation of the SVD but only using the known ratings.
Alternating Least-Squares method (ALS) [121] and gradient descent-based [32] are two
popular approaches. The gradient descent method for estimating SVD usually has a reg-
ularization factor in order to prevent the model from overfitting. The regularized SVD
tends to predict ratings more accurately than the unregularized SVD [28]. Moreover, this
method can be updated iteratively as new users, items and ratings enter the system. The
baseline rule to predict the preference of a user u for and item i is:

r̂u,i =
F∑

f=1

uf × of × if . (2.10)

However, as in the Memory-based CF, it is common practice to normalize the rating
data before computing the model by subtracting a user and item-bias, bu,i, in order to
optimize the recommender’s accuracy [28]. In this case, the normalization bias has to be
taken into account in the prediction rule as:

r̂u,i = bu,i +
F∑

f=1

uf × of × if . (2.11)

Hybrid-based CF

There are recommender systems that combine two or more recommendation techniques to
gain better performance with fewer of the drawbacks of any individual one. Pure hybrid
Collaborative Filtering systems combine algorithms of both memory and model-based
classes in order to overcome the limitations of the individual approaches. The recommen-
dation performance of hybrid systems is generally better than most pure memory-based
and model-based CF algorithms because they combine the strengths of the component

Chapter 2. Background 14

algorithms [15]. Some systems combine not only Collaborative Filtering algorithms but
also techniques of other types of recommendation systems, such as content-based.

Burke [15] surveyed hybrid recommender systems and grouped them into seven classes:

• Weighted. Combining “votes” of different recommenders into a single output.

• Switching. Switching between algorithms depending on the current context.

• Mixed. Returning the results of the different recommenders.

• Feature-combining. Using various inputs from different data sources.

• Cascade. Chain of recommenders, where one recommender uses the output of the
other as input, in order to refine it.

• Meta-Level. A model trained by one algorithm is used as input by another algo-
rithm.

Each category has pros and cons, and so it is not possible to declare that a specific
category is the best. The choice of the technique and algorithm for the recommender
system should always take into account the environment and context in which we want to
apply it.

2.1.3 Challenges

The primary purpose of a recommender system is to provide fast and accurate predictions
to the user, contributing to better user experience and bringing value for the company.
However, recommendation algorithms are usually applied in challenging environments,
impacting the scalability and accuracy of the systems [79, 102]. The value of a recom-
mender system is directly linked to how well it addresses these challenges:

• Data Sparsity. Recommender systems are usually used in contexts with a large
number of items. When the number of the users is low compared to the number
of items, this leads to a sparse U-I matrix, profoundly affecting the performance of
the algorithms. An example of a data sparsity problem is the cold-start issue that
happens when a user just entered the system. The user’s preferences are not yet
known, so it is not easy to make a trustworthy recommendation.

• Scalability. Scalability problems may occur when the number of users and items
grow. Ideally, the system should maintain the performance even when the size of
the context (U-I matrix) grows tremendously.

• Synonymy. Due to the natural properties of the natural language, sometimes dif-
ferent names can address the same item. For example, ”horror movie” and ”horror

Chapter 2. Background 15

film” both have the same meaning. However, most recommender systems are not
able to detect this association between items, and so they are treated as different
items, affecting the performance.

• Grey Sheep Users. Users whose behaviour is unpredictable. These users do not
consistently agree with any group of people, which goes against the main principle
of Collaborative Filtering. An example of a grey sheep is a user who loves the first
Harry Potter movie but hates the second movie of the saga.

• Shilling Attacks. Some users deliberately try to trick the system. When there are
no restrictions on who can make feedback, some users may want to boost or depress
an item in the recommendation list. An example of a shilling attack is workers of a
company giving excellent feedback to their product and poor feedback to products
of rival companies.

• Explainability. The ability to justify the user why the recommendation system is
recommending him a specific item is valuable.

2.2 Evaluating CF-based Recommender Systems

As previously mentioned, different types of recommender systems are used for differ-
ent tasks and contexts, which makes it challenging to introduce a consensual evaluation
framework. Since an algorithm that is considered adequate for a particular context may be
completely inappropriate in another context, to properly evaluate a recommender system,
it is essential to take into consideration the tasks for which it is going to be used. In this
section, we present an overview of the critical aspects to consider in order to evaluate a
recommender system properly.

2.2.1 Evaluation Protocols

In the recommender systems’ literature, offline experiments play a significant role in
measuring the predictive and classification accuracy of the systems because it is quick
and economical [28]. The models are evaluated using data splitting techniques such as the
train-test-split or cross-validation. There are, however, two significant drawbacks of of-
fline analysis. The sparsity nature of the data limits the set of ratings that can be evaluated
since it is not possible to test the prediction without the “real” rating values. Secondly, this
type of evaluation does not take into consideration environmental variables that may affect
the decision of the user, for example, the aesthetics of the user interface might affect how
the user interacts with the system [51]. Thus, we can not guarantee that an algorithm with
excellent offline performance will have a similar performance in a real-world scenario.

Chapter 2. Background 16

Besides the flaws previously mentioned, when the data is partitioned into the train
and test sets, the data is usually shuffled, which means that we could potentially be using
future ratings to predict older ones. Because of this, some works take advantage of the
rating timestamps in order to evaluate the algorithms more faithfully. One solution to deal
with this problem is treating the dataset as a data stream, which means trying to “replay”
a series of ratings and recommendations. Each time a rating enters the system, the model
can make the recommendation task based only on the data before that “moment”. After
evaluating the result, the actual rating is inserted, and the next moment can be evaluated
[51]. Having this into consideration, Vinagre et al. [109] proposed a framework able to
monitor the accuracy evolution of an algorithm, allowing the detection of phenomena that
the traditional offline evaluations do not consider.

An alternative in order to tackle the downsides of offline evaluations is to conduct
live/online experiments, such as field trials and virtual lab studies [28]. Online evaluation
techniques allow us to evaluate and compare algorithms by simulating user behaviour.
Field trials, such as A/B testing, consist in observing, in sites with already established user
activity, a new feature/algorithm on a subset of the users. For testing in non-deployed
applications, virtual labs can be used, but there is always an artificial interaction with
the users that may affect the results of the study. Although live experiments are more
informative about the real interaction of the user and the performance of the system, in
many cases, they require creating online testing systems that are costly. Moreover, the
reproducibility of the results is not possible [110].

2.2.2 Benchmark datasets

Regarding datasets for CF recommender systems evaluation, some are considered bench-
marks. The majority of studies related to Collaborative Filtering recommender algorithms
have used one of the datasets described below. A few other datasets have been used [110],
but most of them are not publicly available.

• Movielens.1 GroupLensResearch hasmade available rating datasets from theMovie-
Lens, a movie recommendation service [43]. The Movielens-20M dataset is the one
recommended for research purposes. It contains 20,000,263 ratings from 138,493
users for 27,278 movies. The ratings were registered from January 09, 1995, to
March 31, 2015, and the records have timestamp information. All the users in this
dataset had rated at least 20 movies using a 0-5 stars scale with a 1/2 start granular-
ity.

• Jester.2 This dataset is a collection of 4.1 million continuous ratings (-10.00 to
+10.00) of 100 jokes from 73,421. The data was collected between April 1999 to

1https://grouplens.org/datasets/movielens/20m/
2https://goldberg.berkeley.edu/jester-data/

Chapter 2. Background 17

May 2003 from the Jester joke recommender system [37]. This dataset does not
contain any timestamp information.

• BookCrossing.3 It contains 1,149,780 book ratings crawled from the book sharing
and discussion platform bookcrossing.com [122]. The ratings of this dataset are a
mix of explicit real-valued (1-10) and positive-only ratings from 278,858 users to
271,379 different books. This dataset does not contain any timestamp logs.

• Netflix.4 In October 2006, Netflix released a movie rating dataset and challenged,
for a $1M Grand Prize, the research community to develop systems that could beat
the accuracy of Cinematch [11]. The released dataset contains ratings of 480,000
users to 17,770 movies, a total of over 100 million movie ratings on a scale from 1
to 5 stars. The dataset also contains information about the registering of each rating,
in the form of YYYY-MM-DD date, ranging from 1998-11-01 to 2005-12-31.

• Lastfm.5 Last.fm is a music website 6, which provides access to their data through
their web services. Last.fm Dataset - 1K users is a dataset collected from Last.fm
API for research purposes, and represents the whole listening habits (until May,
5th 2009) for 992 users. It consists of 19,150,868 tuples in the form of user-artist-
song-timestamp. Unlike the other benchmarks datasets presented, this one does not
contain rating information so it can not be used for rating prediction evaluation, but
it is viable for Top-N-recommendation evaluation.

2.2.3 Evaluation Metrics

A wide variety of metrics to evaluate Collaborative Filtering algorithms can be found in
the literature because different systems with different purposes require different metrics to
evaluate them. Herlocker et al. [51] divided accuracy metrics into three classes: predic-
tive accuracy, classification accuracy, and ranking accuracy metrics. Apart from those,
there are also some metrics that do not measure the accuracy of the system but rather the
usefulness for the user, however those are not addressed in this work [51].

Predictive metrics measure the closeness of the predicted ratings to the actual user
ratings, and so are mainly relevant when the task of the system is rating prediction. Mean
absolute error (MAE) is the most popular predictive metric, and it measures the average
of the absolute deviation between the predicted and the real rating. There are several
metrics related to MAE, such as the mean square error (MSE), the root mean squared
error (RSME), and the normalized mean absolute error (MAPE) [51]. Table 2.1 shows the
formulas to calculate each of the mentioned predictive errors.

3http://www2.informatik.uni-freiburg.de/~cziegler/BX/
4https://archive.org/download/nf_prize_dataset.tar
5http://ocelma.net/MusicRecommendationDataset/lastfm-1K.html
6http://last.fm

Chapter 2. Background 18

Mean absolute error MAE =
1

n

n∑
i=1

|ei|

Mean squared error MSE =
1

n

n∑
i=1

e2i

Root mean square error RMSE =

√√√√ 1

n

n∑
i=1

e2i

Mean absolute percentage error MAPE =
100%
n

n∑
i=1

∣∣∣∣eiyi
∣∣∣∣

Table 2.1: Predictive error metrics.

It is a widespread practice to evaluate an algorithm with both MAE and RMSE at the
same time since the RMSE penalizes large errors more than the MAE, which gives more
extra information about the performance of the system.

Classification metrics quantify the frequency with which a system makes the correct
or erroneous classification of whether an item should be recommended. So these metrics
are appropriate when the goal is to recommend a list of n items to the user. The precision-
recall framework of the information retrievals is widely used for this type of task [102,
116]. Precision represents the probability that a selected item is relevant [51] as:

precision =
tp

tp + fp
, (2.12)

where tp is the number of items retrieved that were relevant, and fp is the number of
items retrieved which were not relevant for the user. Recall, on the other hand, represents
the probability that a relevant item will be selected:

recall =
tp

tp + fn
, (2.13)

where fn is the number of items that were not retrieved but were considered relevant.
Some works, in addition to the recall and precision metric, also use the F1 score, which
combines both precision and recall into a single score:

F1 = 2× precision × recall

precision+ recall
. (2.14)

An alternative to these metrics is the usage of the ROC model, which measures the
capability of the system to distinguish between relevance and noise [51].

Ranking metrics measure how well the recommendation algorithm produces an or-
dered list of items. There are two popular ways to measure the accuracy of the ranking.

Chapter 2. Background 19

The first approach uses a reference ranking (a correct order) and evaluates how sim-
ilar the ordering of the list produced is when compared to the reference one. Ranking
correlation measures such as Spearman’s p, and Kendall’s Tau are are popular choices
[51, 93].

The other popular approach is to assume that the utility of a list of recommendations is
additive, given by the sum of the utilities of the individual recommendations. The utility
of each recommendation is the utility of the recommended item discounted by a factor that
depends on its position in the ranked list. The half-life utility is an example of a utility-
based ranking metric [14, 45]. The half-life metric is an interesting metric that measures
the utility of the returned ranked list by assuming that the likelihood that a user will view
an item in the list decays exponentially for every successive item. This is done with the us-
age of a decay weight function that give most of the weight to the items from the top of the
list, and successively less to the ones bellow. Therefore, this metric is incredibly conve-
nient in domains where this assumption does verify, such as in e-commerce recommender
systems [28]. Another option, for applications in which the user is expected to read a rel-
atively large portion of the list, is the Normalized Cumulative Discounted Gain (nDCG)
[57], a measure from the information retrieval field, where positions are discounted loga-
rithmically. Assuming each user u has a “gain” guij from the recommendation of the item
i. The average Discounted Cumulative Gain (DCG) for a list of items L is defined as:

DCG =
1

N

N∑
u=1

L∑
j=1

guij
max (1, logb j)

, (2.15)

where the logarithm base is parameter, but a logarithm with base 2 is commonly used
to ensure all positions are discounted. nDCG is the normalized version of DCG given by:

nDCG =
DCG
DCG∗ , (2.16)

where DCG∗ is the ideal discounted cumulative gain.

2.3 Temporal Dynamics in Collaborative Filtering

Besides the typical U-I rating data, it is possible to take into account the time information to
track user interests and item popularity over time. Tracking these features is particularly
meaningful in recommendation algorithms because the preferences of the users usually
evolve throughout time. Trends, contexts, and moods are some factors that can cause
variations in the preferences of the users. For instance, it is reasonable to assume music
taste is profoundly affected by the current mood of the user, if the user is a student listen-
ing to music during the final exams period, the chances of him picking music suitable for
studying are higher during that period. Therefore, to produce more accurate recommen-
dations, the system should be able to detect those types of time drifting patterns, which is

Chapter 2. Background 20

not possible with traditional CF algorithms that discard the time dimension. The winning
solution for the Netflix competition had a big part highlighting the benefit of exploiting
the time context information in Collaborative Filtering [65]. Moreover, Vinagre et al.
[110] recently reviewed time-exploiters contributions and concluded that despite most ap-
proaches not being able to outperform the non-time exploiters’ state-of-the-art algorithms,
it is clear that the usage of time significantly enhances the recommendation capability of
the baseline time-agnostic algorithms.

Figure 2.6: User × Item× Time recommendation space.

Collaborative filtering algorithms that exploit time can be classified into two cate-
gories: time-aware and time-dependent [99, 110]. In the literature, many adaptations of
the traditional Collaborative Filtering algorithms try to capture the temporal dynamics,
especially memory-based and matrix factorization algorithms [5, 66, 67]. For the sake of
simplicity, in this work, we will only focus on memory-based and matrix factorization CF
techniques that use time as contextual information.

2.3.1 Time-aware

Time-aware algorithms generate recommendations for periods (e.g., hours, days, weeks,
months) in a temporal cycle. For instance, if a user is considering watching a movie on the
weekend, the algorithm would only recommend items which are considered appropriate
to watch on the weekends. According to Adomavicius et al. [1] there are three different
methodologies for using contextual information (in our case, temporal information):

1. Pre-filtering. Filtering the input by considering the time phase of the recommen-
dation. For instance, ignoring ratings of movies that were given during the week if
the recommendation is during the weekend.

2. Post-filtering. Filtering the unsuitable items from the output recommendations, for
example, using a traditional time-agnostic model and then removing the items that

Chapter 2. Background 21

are not in the appropriate time phase.

3. Modeling. Including the time features during the learning phase of the model. The
final model should be able to produce relevant recommendations considering the
time phase for which the recommendations are needed.

2.3.2 Time-dependent

Time-dependent or temporal CF refers to algorithms that use time context information
as a chronological sequence, such as a data stream. These algorithms try to capture the
temporal effects that underlie the sequential data. The main objective of time-dependent
algorithms is to adjust rapidly to changes, such as user preference changes or drifts in
item popularity [110]. An example of a simple time-dependent approach is to give more
importance to recent ratings rather than using all the ratings equally.

Memory-based models which were adapted to become time-dependent are mainly
based on the idea of giving more relevance to the recent observations. The proposed
approaches are usually adaptations of the traditional algorithms incorporating decay func-
tions or sliding-time-windows [110].

• Decay functions reduce the importance of past data gradually. An example of a
decay function is:

f(t) = e−αt 0 < α ≤ 1, (2.17)

where t is the time elapsed since a moment in time, andα is a parameter that controls
the decay rate.

The value of the decay function is then used as aweight in the similarity computation
step, causing items to be less similar if their ratings are far apart in time.

• Sliding-time-windows technique instead of considering all the available data, it only
uses a “window” of data that contains K records, for instance, the 50 most recent
ratings, ifK is equal to 50. Alternatively, a window can be defined by a time inter-
val, for example, all the ratings from the past two weeks.

Matrix factorization models have also been modified to capture temporal effects in
sequential rating data. In 2009, Koren [66] proposed an extension to his popular SVD++
model, to deal with temporal effects. In the proposed TimeSVD++ model, the author
uses time-variant biases with decay functions and time-windows techniques. This model
has a big impact in the literature because it played a significant role in the solution that
won the Netflix contest. Xiong et al. [113] presented a Temporal CF based on Bayesian
probabilistic tensor factorization (BPTF). In this approach, Xiong et al. split the time
dimension into w time slices, creating a three-dimensional tensor. Finally, the authors
applied the BPTF model to the tensor.

Chapter 2. Background 22

2.4 Biclustering

2.4.1 Clustering and biclustering

Clustering, or cluster analysis, is the process of grouping a set of data objects into multi-
ple groups or clusters so that objects within a cluster have high similarity (high intra-cluster
similarity), but are very dissimilar to objects in other clusters (low inter-cluster similar-
ity). These (dis)similarities are estimated based on the attribute values which describe the
objects [42].

In Machine Learning, clustering is considered an unsupervised task, as it looks for
previously undetected patterns in a dataset with no pre-existing labels/outcomes. Hence,
clustering can lead to the discovery of previously unknown groups of objects inherent in
the data. Clustering can also be used for outlier detection, as it permits to identify val-
ues that significantly deviate from any of the discovered clusters. Clustering has been
widely used in countless applications from different fields (e.g., bioinformatics, social
science, business marketing, fraud detection) [42]. However, traditional clustering meth-
ods exhibit some limitations when applied to specific problems. Some of these limitations
result from the fact that traditional clustering algorithms mislay some valuable informa-
tion because they can only be applied either to the rows or the columns of a data matrix,
separately, disregarding the other dimension. For instance, considering a U-I matrix from
the recommendation scenario, traditional clustering methods are only able to group users
based on their ratings for all the items in the matrix or to cluster items based on the ratings
from all users, which means that these methods can not find groups of users that only share
preferences under a subset of the items.

In this context, clustering algorithms find global patterns in data, such as users who
have similar taste across all the items, but, they miss local patterns, as a subset of users
who rated a similarly a subset of items. To deal with this limitation, an advanced clustering
technique, called biclustering, was developed.

As opposed to one-way clustering techniques that can be applied to either the rows or
the columns of the data matrix, separately, biclustering is a technique that clusters rows
and columns simultaneously. Consequently, biclustering produces local models, instead
of a global model, and as a result, can identify subgroups of objects that are similar only
under a specific subgroup of attributes. Figure 2.8 illustrates the main differences be-
tween clustering and biclustering methods. Figure 2.8 a) and b) shows an example of
applying clustering to the rows and columns of a data matrix, individually. We can see
that clustering was able to discover a cluster of rows ({x1, x2}), and a cluster of columns
({y3, y5}). Whereas, the biclustering technique in Figure 2.8 c), can discover different
sub-matrices (biclusters) in the matrix, that show similar or coherent behaviour, such as
({x2, x4}, {y1, y3, y5}).

Co-clustering, simultaneous clustering, block clustering, subspace clustering, bidi-

Chapter 2. Background 23

1 2 3 4 3
5 3 2 4 2
5 5 3 4 3
5 1 2 1 2
1 2 3 4 3

x1
x2
x3
x4
x5

y1 y2 y3 y4 y5
1 2 3 4 3
5 3 2 4 2
5 5 3 4 3
5 1 2 1 2
1 2 3 4 3

x1
x2
x3
x4
x5

y1 y2 y3 y4 y5

a) b) c)

1 2 3 4 3
5 3 2 4 2
5 5 3 4 3
5 1 2 1 2
1 2 3 4 3

x1
x2
x3
x4
x5

y1 y2 y3 y4 y5

3 3
2 2
3 3
2 2
3 3

x1
x2
x3
x4
x5

y3 y5
1 2 3 4 3
1 2 3 4 3

x1
x5

y1 y2 y3 y4 y5
1 2 3 4 3
1 2 3 4 3

x1
x5

y1 y2 y3 y4 y5

3 3
2 2
3 3
2 2
3 3

x1
x2
x3
x4
x5

y3 y5
5 2 2
5 2 2

x2
x4

y1 y3 y5

3 4 3
3 4 3
3 4 3

x1
x3

y3 y4 y5

x5

Figure 2.8: Clustering and biclustering example.

mensional clustering, and two-way clustering are some examples of terms that are often
used to address the same task as biclustering. Bellow, we present a more formal definition
of this advanced clustering technique.

Definition 2.4.1. Given a matrix A = (X,Y), with a set of rows X = {x1, ..., xn} and
a set of columns Y = {y1, ..., ym}, where the element aij relates row i and column j,
the biclustering task is to identify a biclustering solution which is a set of biclusters
B = {B1, ..., Bp} so that each Bk = (Ik, Jk) satisfies a particular criteria of homogeneity
and significance, where Ik ⊆ X , Jk ⊆ Y , and k ∈ N [47, 48].

Definition 2.4.2. A bicluster B = (I, J) is a r × s submatrix of a matrix A = (X,Y),
where I = (i1, ..ir) ⊆ X is a subset of rows and J = (j1, ..., js) ⊆ Y is a subset of
columns.

In Figure 2.8 c) wewe highlighted four different biclusters: ({x1, x5}, {y1, y2, y3, y4, y5});
({x2, x4}, {y1, y3, y5}); ({x1, x2, x3, x4, x5}, {y3, y5}); ({x1, x3, x5}, {y3, y4, y5}). How-
ever, it is possible to identify many others, even for this simplistic example, for instance,
all the possible sets, with size larger than 1, obtained through the combinations of the el-
ements that compose the found biclusters. The complexity of the biclustering problem
may depend on the problem formulation, however, finding all the biclusters through an
exhaustive search is an NP-complete task [76]. Given this, the majority of the biclustering
algorithms use heuristic mechanisms to reduce its complexity.

2.4.2 Bicluster Type

Different biclustering algorithms with different parameterizations usually find different
clustering solutions. Thus, whenever one wants to apply a biclustering technique to a

Chapter 2. Background 24

specific domain, it needs to ao consider the type of biclusters relevant to solve the problem.
Madeira and Oliveira [76] identified four major classes of biclusters:

1. Biclusters with constant values.

2. Biclusters with constant values on rows or columns.

3. Biclusters with coherent values.

4. Biclusters with coherent evolutions.

The first three classes evaluate the numeric values directly in the data matrix and try
to find subsets of rows and subsets of columns with similar behaviours. These behaviours
can be observed on the rows, on the columns, or in both dimensions of the datamatrix, as in
Figure 2.9 a), b), c), d), and e). The fourth class aims to find coherent behaviours regardless
of the exact numeric values in the data matrix. As such, biclusters with coherent evolutions
consider the elements in the data matrix as symbols that correspond to a given order. An
example of coherent evolutions are the order-preserving biclusters, as in Figure 2.9 f), g),
and h).

Figure 2.9: Examples of different types of biclusters. (a) Constant value, (b) constant-
values on rows, (c) constant-values on columns, (d) coherent values (addictive model),
(e) coherent values (multiplicative model), (f) overall coherent evolution, (g) coherent
evolution on the rows, (h) coherent evolution on the columns (adapted from [76]).

In this work, we perform the biclustering task on U-I matrix from feedback data. This
means that biclustering allows us to identify sets of users sharing preferences across a
subset of items.

Chapter 2. Background 25

The first type of biclusters, constant-value biclusters, is the simplest form of a biclus-
ter. This type of bicluster is described in Def. 2.4.3. In the U-I matrix, a constant-value
bicluster exists when each user in the bicluster gave the exact same constant rating to each
item in the bicluster.

Definition 2.4.3. Given a matrix A = (X,Y), with a set of rows X = {x1, ..., xn} and
a set of columns Y = {y1, ..., ym}, a submatrix B = (I, J) (where I ⊆ X , J ⊆ Y) is a
constant bicluster iff ∀x ∈ I , ∀y ∈ J , the elements ax,y = c where c is a constant.

Biclusters with constant-values on rows or columns are another type of biclusters that
can be valuable when applied in Collaborative Filtering contexts. In the case of biclusters
with constant values on the columns, we identify groups of users who have the same
preference about the items in the bicluster. Whereas in the case of biclusters with constant
values on the rows, we can recognize items which are usually rated with the same value
by some users. These types of biclusters are defined in Def. 2.4.4.

Definition 2.4.4. Given a matrix A = (X,Y), with a set of rows X = {x1, ..., xn} and
a set of columns Y = {y1, ..., ym}, a submatrix B = (I, J) (where I ⊆ X , J ⊆ Y) is a
constant-values on rows bicluster iff ∀x ∈ I , ∀y, h ∈ J , the elements ax,y = ax,h; or a
constant-values on columns bicluster iff ∀x, u ∈ I , ∀y ∈ J , the elements ax,y = au,y.

Biclusters with coherent values, defined in Def. 2.4.5 are a more relaxed variation of
the previously defined biclusters. It allows to group users that, despite having different
rating standards, share coherent behaviours across the items, assuming there is an additive
or multiplicative model in the pattern. For instance, in Figure 2.9 d), all the values can be
obtained by additive adjustments in the rows and columns.

Definition 2.4.5. Given a matrix A = (X,Y), with a set of rows X = {x1, ..., xn} and
a set of columns Y = {y1, ..., ym}, a submatrix B = (I, J) (where I ⊆ X , J ⊆ Y)
is a coherent addictive bicluster iff ∀x, u ∈ I ,∀y, h ∈ J , the elements ax,y − ax,h =

au,y − au,h; or a coherent multiplicative bicluster iff ∀x, u ∈ I ,∀y, h ∈ J , the elements
ax,y/ax,h = au,y/au,h.

Finally, order-preserving biclusters are the most relaxed version of biclusters that we
consider. A group of users and items are an order-preserving bicluster if there is a linear
order across the rows/columns, regardless of the uniformity of the actual values in the
bicluster. This means that order-preserving biclusters group users that have a similar order
of preference in the items. This type of biclusters is defined in Def. 2.4.6.

Definition 2.4.6. Given a matrix A = (X,Y), with a set of rows X = {x1, ..., xn} and a
set of columns Y = {y1, ..., ym}, a submatrix B = (I, J) (where I ⊆ X , J ⊆ Y) is an
order-preserving on rows bicluster iff there exists a sequence of rows (x1, ..., x|I|), ∀xi ∈
I , such that the elements axi,y < axi+1,y; or an order-preserving on columns bicluster

Chapter 2. Background 26

iff there exists a sequence of columns (y1, ..., y|J |), ∀yi ∈ J , such that the elements ax,yi <
ax,yi+1

.

As pointed out by Madeira and Oliveira in [76], different biclustering algorithms are
designed not only to discover specific types of biclusters but also different bicluster struc-
tures. While some algorithms are designed to find only one bicluster, others assume the
existence of several. Madeira and Oliveira enumerate eight different types of bicluster
structures. In this work, we do not have any restrictions regarding the bicluster structure,
and the overlapping between biclusters should be allowed. Biclusters overlapping, in the
context of aU-Imatrix, means that a usermay belong tomore than one group, whichmakes
sense because it is plausible that a user might share some preferences with other users on
a subset of items, despite disagreeing with them in another subset of items. Having this
in mind, we are interested in algorithms that discover arbitrarily positioned overlapping
biclusters [76]. A final aspect to consider when choosing a biclustering algorithm is the
tolerance to noise and missing values. In real-world scenarios, it is rare to find “perfect”
clusters, the data is usually noisy, and so we might need to tolerate a certain amount of
noise in order to find interesting biclusters that can be masked by noise.

Chapter 3

Related Work

This chapter describes the dominant streams of research related to our project. In Sec-
tion 3.1, we discuss the research works that explored the usage of biclustering in CF ap-
proaches. Then, in Section 3.2, we provide an overview of how some neighborhood-based
CF algorithms have been adapted to exploit the time information in Collaborative Filter-
ing.

3.1 Biclustering Collaborative Filtering

In this section, we present the most notorious contributions in the field of Collaborative
Filtering incorporating the biclustering technique. We separate the approaches accord-
ing to their recommendation task, describing the main ideas, and identifying some of its
advantages and limitations.

3.1.1 Rating Prediction Approaches

George and Merugu first introduced biclustering as a tool to improve Collaborative Filter-
ing in 2005 [34]. In this work, they used weight Bregman co-clustering [8] to group users
and items. This algorithm focus on a variation of bicluster (partial co-clustering) that as-
sumes the existence of a fixed number of non-overlapping biclusters, firstly introduced by
Hartigan, [44]. Their co-clustering CF approach is based on the idea that the input data’s
missing ratings can be predicted using a suitable low parameter approximation of the in-
put rating matrix, similar to SVD-based CF approaches. Following this concept, they use
co-clustering as a tool to find low parameter approximations. The Bregman co-clustering
returns co-clusters and summary statistics derived from the co-clustering that are used to
construct a matrix approximation for the input data matrix. For this particular application,
the summary statistics are the rating averages of the users, items, and co-clusters. Accord-
ing to the authors, it permits a more reasonable rating approximation than just considering
the average value of the co-cluster corresponding to the value we want to predict, which
is plausible since it takes into account the biases of individual users and items. After

27

Chapter 3. Related Work 28

computing the reconstructed approximate matrix, its values are considered for the rating
prediction task. The authors designed incremental and parallel versions of the original
co-clustering algorithm to build an efficient real-time CF mechanism, capable of updating
the biclusters as new users and ratings enter the system. The results of the work show that
their approach achieves satisfactory accuracy compared with baseline matrix factorization
models but at a lower computational cost.

In 2007, Castro et al. [123] suggested a biclustering CFmethodology, using a heuristic
immune-inspired biclustering technique, denoted BIC-aiNet, that finds biclusters with co-
herent values. Their methodology is based on two main stages: the biclusters’ generation,
and the similarity computation between the users and the resulting biclusters. After their
artificial immune-inspired network generates the biclusters, they are used to predict how
the active user would rate a specific item. The rating prediction is performed by searching
for the biclusters that include the active user and item, and then, calculating the residue of
each bicluster through mean-squared residue (MSR) [18]. The mean-squared residue of a
bicluster, MSR(b) , is defined as:

MSR(b) =
1

|I||J |
∑
i∈I

∑
j∈J

(aij − aIj − aiJ − aIJ)
2, (3.1)

where |I| is the number of rows (users) of the bicluster, |J | is the number of columns
(items), aij is the value in row i and column j, aIj and aiJ represent the mean value of
row i and column j, respectively, and aIJ is the mean value of the entire bicluster. Finally,
the bicluster with the smaller residue value is selected, and the average of its movies’
ratings is used as the prediction. This methodology was evaluated in both rating prediction
and Top-N recommendation scenarios, achieving better scores than the methods used for
comparison, being the constant version of BCF [104], one of those.

França et al. [21] also used an immune inspired biclustering algorithm, MOM-aiNET
[20] to obtain biclusters used to predict missing ratings for recommendation purposes.
Their algorithm generates biclusters with a controlled percentage of missing values. Then,
they use a quadratic programming approach to predict those values based on trying to
minimize the mean-squared residue of the bicluster. This approach is viewed as an im-
provement of the one developed by Castro et al. [123] (described above), as the latter
simply replaces the missing values in a bicluster by the average of the bicluster’s values,
not reflecting the trends obtained by coherent biclusters. Whereas, in this approach, the
missing values are viewed as variables that should be obtained to minimize the residue.

Amore recent work in the direction of biclustering CF was published in 2014 by Liang
and Leng [70], who proposed a CF algorithm utilizing information-theoretic co-clustering
(ITCC) [23] as biclustering algorithm. Their approach (ITCCCF) consists in performing
two-way clustering to discover a set of user clusters and a set of item clusters. After that,
they compute the preference of a user u for an item cluster î, (Pu,̂i), for each pair user-item
cluster as:

Chapter 3. Related Work 29

Dataset Biclustering
Algorithm

Item Clusters

K-nearest
UsersUser Clusters

Clustering
Preference
Similarity

User Rating
Similarity

User-based
Prediction

K-nearest
Items

Clustering
Preference
Similarity

Item Rating
Similarity

Item-based
Prediction

Final Rating
Prediction

Figure 3.1: Outline of the rating prediction approach (ITCCCF) proposed by Liang and
Leng [70].

Pu,̂i =
|Iu ∩ î|
|Iu|

, (3.2)

where Iu are the items that the user u rated and î are the items from the cluster. A ma-
trix of user-cluster preferences is constructed and its values are used to obtain the cosine
similarity between each pair of users, simp(u1, u2). This approach then combines the pre-
vious clustering preference similarity with a rating similarity determined through Person’s
correlation coefficient to find the k most similar users. The k-nearest users are selected
and the User-based CF is used to generate the rating prediction. Moreover, the whole pro-
cess is also repeated for the item clusters and the Item-based CF is used to generate a new
rating prediction. The final rating prediction is a linear combination that fuses the ratings
from the user-based and item-based approaches. In order to evaluate their approach, using
real-world datasets, the authors compared it with 5 state of the art methods, some already
mentioned in this work (UBCF [92], IBCF [96], CBCF [97], SF1 [111], BCC [34]), being
able to surpass all of them regarding prediction accuracy. Figure 3.1 provides an overview
of how this fusion rating technique works.

In 2017, Kant and Mahara [60] also proposed a fusion-based approach called Near-
est Biclusters Collaborative Filtering with Fusion (NBCFu), to address rating prediction
using biclustering. In this approach, the xMOTIFs algorithm [81] is used to generate the
biclusters that are viewed as quality neighbors of users and items. After the biclusters’ gen-
eration, the authors use the CjacMD measure [103] (Equation 3.3) to obtain the k-nearest
biclusters of the users and items. This similarity measure combines Mean Measure of
Divergence (MMD) [56], Jaccard Similarity, and Cosine Similarity.

sim(u, Ub)JacMD = sim(u, Ub)cos + sim(u, Ub)Jaccard + sim(u, Ub)MMD. (3.3)

After that, User-based CF and Item-based CF using cosine similarity are applied to
the users/items found in most similar biclusters. Finally, the rating prediction of both
approaches is combined through a weighted sum, optimized using gradient descent, to

Chapter 3. Related Work 30

Dataset Biclustering
Algorithm

User's K-
nearest

Biclusters

Biclusters

User-Bicluster
Similarity

User-Based
CF

Final Rating
Prediction

Item's K-
nearest

Biclusters
Item-based

CF
Item-Bicluster

Similarity

Figure 3.2: Outline of the rating prediction approach (NBCFu) proposed by Kant and
Mahara [60].

generate a final and more accurate rating prediction. The authors claim that their approach
has better accuracy results than some state of the art methods, including SVD++ [64].
Figure 3.2 shows an overview of the NBCFu.

Elnabarawy et al. [29] examined the viability of using biclusteringARTMAP (BARTMAP)
[114] for recommendation purposes. BARTMAP is a biclustering algorithm that utilizes
the Adaptive Resonance Theory neural network model [39]. The ratings are predicted
through a normalized weighted sum of the ratings that the other users gave to the item in
the same bicluster, weighted by their correlation value with that user. The similarity score
between an active user ux and other user uy belonging to the same bicluster is given by
the person correlation coefficient of their ratings in the bicluster. The rating prediction is
computed as:

rux,it = r̄ux +

∑
y∈Ub

(ruy ,it − r̄uy) · s(ux, uy)∑
y∈Ub

|s(ux, uy)|
, (3.4)

where rux,it is the rating of an user ux to an item it. This formula is an adaptation of the
prediction used in User-Based CF in order to only use data from the bicluster, instead of
relying on the entire dataset. Using this prediction approach, the users with the highest
positive correlation with that user, have the most impact on the prediction. The algo-
rithm’s performance was compared against other collaborating filtering techniques, and it
performed similarly to the previously mentioned approach, BIC-aiNet [123].

Recently, Singh andMehotra [101] introduced a new biclustering based CF technique,
BBCF. In this work, the authors use biclustering as a preprocessing step to scale CF ap-
proaches. Once the biclustering algorithm is executed, the users are compared with the
found biclusters using the similarity defined in Equation 3.5, based on the items they have
in common.

sim(u, b) =
|Iu ∩ Ib|
|Ib|

(3.5)

Then, similarities between users and biclusters are weighted with the number of users
in the bicluster so that biclusters with more users are privileged, as:

WF(i, b) = sim(u, b) · |Ub|. (3.6)

Chapter 3. Related Work 31

Dataset Biclustering
Algorithm Biclusters User-Bicluster

Similaritiy
K-nearest
Biclusters

Merge
Biclusters

Nearest
Neighbor

Setup
CF-approachFinal Rating

Prediction

Figure 3.3: Outline of the rating prediction approach proposed (BBCF) by Singh and
Mehotra [101].

After that, the K-nearest biclusters of each user are merged, creating a larger biclus-
ter, for each one, referred to as Nearest Neighbor Setup (NSS). The NSS of each user is
viewed as a denser subspace of the U-I matrix, that includes users similar to the respective
user, in a subset of items. Finally, a classic CF-approach, such as the Item-based, uses
the personalized NSS of each user, as a smaller input U-I matrix, instead of the entire
dataset, to generate the rating prediction. According to the authors, this approach tackles
the scalability and sparsity problems that deteriorate the performance of memory-based
CF methods, through the usage of the personalized NSSs instead of the entire U-I matrix.
The authors evaluated BBCF using QUBIC and Item-based CF as biclustering and CF ap-
proaches, respectively, using both predictive and classification metrics against CF base-
line approaches, achieving better scores in most scenarios. However, they also highlight
a clear drawback of their methodology. They point out that their approach cannot gen-
erate a prediction/recommendation for as many users/items as traditional methods. This
handicap occurs because the CF algorithm will be using only a subset of the users/items
as database, so it can not consider all the users/items when modelling.

3.1.2 Top-N Recommendation Approaches

Symeonidis et al. [105] proposed a neighborhood-based CF algorithm (NBCF) that uses
biclustering to improve scalability and accuracy of CF. They also created a similarity
measure, defined in Equation 3.5, to identify biclusters that better reflect the users’ pref-
erences. Their approach can be combined with biclustering algorithms that find biclusters
with either constant or coherent values. The authors used Bimax and xMOTIFs, respec-
tively. However, if we consider biclusters with constant values, we can only discover sets
of users and items correlated by the same rating values. Whereas, a coherent pattern al-
lows to find users and items correlated with more complex behaviors, such as users that,
for a subset of items, exhibit coherent ratings. After biclusters computation, they measure
the similarity of the active user with each bicluster, finding the k-nearest-biclusters to the
user. Then, to capture the influence that each item belonging to a bicluster has to the active
user, they use Weighted Frequency (WF), as in Equation 3.6. Finally, after having all the
Weighted Frequencies scores, they sumWF values of each item. The final Top-N recom-

Chapter 3. Related Work 32

Dataset Biclustering
Algorithm

Preprocessing

Biclusters User-Bicluster
Similarity

K-nearest
biclusters

Most Frequent
Items

Top-N
items list

Figure 3.4: Outline of the Top-N recommendation approach (NBCF) proposed by Syme-
onidis et al. [105].

mended items are the N items with the highest sum of WF . Figure 3.4 summarizes the
process of this Top-N recommendation approach. The authors reported that both proposed
approaches (using constant or coherent biclusters) achieved better results in terms of ac-
curacy and efficiency than classic CF algorithms such as User-based CF [14], Item-based
CF [96], and clustering-based CF (CBCF) [115]. They also concluded that despite being
slightly less efficient, the approach using coherent biclusters discovery could outperform
the one using constant biclusters discovery regarding accuracy.

Specially for the Top-N recommendation task, Alqadah et al. in 2015 [4] also pro-
posed a biclustering neighborhood-based CF method (BCN). In this work, the authors use
properties from the field of Formal Concept Analysis (FCA) [33]. FCA is related to bi-
clustering since both discover sub-matrices with regularities among their elements [58],
and FCA algorithms can be adapted to enumerate and order biclusters, which can be used
to identify neighborhoods of closely related biclusters. Alqadah et al. took advantage
of these FCA properties to build neighborhoods/personalized biclusters for active users.
Their approach finds the “smallest” bicluster containing the active user u, which is the
bicluster containing the fewest number of users and the greatest number of items. Then,
exploring the bicluster neighborhood through FCA properties, it finds similar users to u,
and appends the items in the neighborhood to a candidate set of items. Finally, the can-
didate items are ranked by combining a global and a bicluster neighborhood similarity,
and the top n items are returned as recommendations. The global distance between a user
and an item, g(u, i′), measures the similarity between a user u and and item i′ in the entire
matrix as:

g(u, i′) =

∑
i∈I

J(i, i′)

|I|
, (3.7)

where J(i, i′) is the Jaccard index defined over the set of all users who interact with
i and the set of those who interact with i′, and I is the set of items belonging to biclus-
ters. On the other hand, the local/neighborhood similarity, l(u, i′), captures similarities
between locally similar users and items, aggregating the bicluster similarity [3] of all bi-
clusters in which i occurs to the smallest bicluster. The authors claim that their approach

Chapter 3. Related Work 33

is superior to those computing the biclusters offline since, in BCN, they map a user to a
bicluster on demand. However, the BCN framework was designed to work on implicit
feedback recommendations, and thus it can only be applied to binary data. Nevertheless,
to surpass this limitation, it could be an interesting research stream to study the potential of
an FCA adaptation capable of dealing with numerical rating data. For instance, Juniarta in
a very recent thesis [58] proposed and FCA extension to deal with numerical matrices and
discover various types of biclusters which could be very interesting for recommendation
purposes.

3.2 Time Dimension in Neighborhood-based Collabora-
tive Filtering

In this section, we review some significant research contributions regarding temporal dy-
namics in neighborhood-based CF, highlighting how the time information was handled
and how it impacted the solutions.

3.2.1 Temporal CF

Ding and Li contribution [24] was one of the first Collaborative Filtering works to study
the impact of the temporal information in the recommendation scenario. In their work,
the authors presented a new item-based CF algorithm that assigns weights to the items
in the recommendation, so that an item that was rated recently has a bigger impact on the
prediction phase than an item that was rated longer ago. During the prediction phase, each
rating is assigned with a weighted to the time t defined by:

f(t) = e−αt 0 < α ≤ 1, (3.8)

where t is the time elapsed since a particular moment, and α is the decay parameter
that controls how fast old data decays. Higher values of α mean lower importance of
historical data compared to the more recent one. The authors studied what would be the
optimal values for the parameter α and reported that a fixed value for this parameter does
not guarantee good prediction performances. It is claimed that this behaviour is justified
by the instability of the users’ purchase habits. Furthermore, the interest in some items
lasts longer than in other sets of items. In order to get around this issue, their methodology
assumes that to each user, similar items have similar decay rates. Thus, they use k-means
to find item clusters and compute an α value for each pair user-item cluster. Each α value
is obtained by searching for the value that better explains the user’s behaviour in each
item cluster (see [24] for more details about the optimization problem). After finding the
optimal α values, the rating prediction is obtained by:

Chapter 3. Related Work 34

r̂u,i =

∑
j∈N f(tu,j)sim(i, j)ru,j∑
j∈N |f(tu,j)sim(i, j)|

, (3.9)

where tu,j is the time that the rating from the user u to the item j was produced. The
empirical studies in this work suggest that their approach improves the prediction capa-
bility of the item-based CF algorithms.

In 2006, the same authors [25] proposed a new CF algorithm, namely recency-based
weighting method. Instead of discounting data using a time-weight decay function such in
[24], this approach takes into account the data distribution, rather than just considering the
time of the records. This recency-based technique intends to tackle a problem known as
concept drifting. In CF, concept drift means that user purchase preferences that we want
to predict are sensitive to time, thus in constant drifting. For example, imagine Figure 3.5
represents the ratings that a user (Bob) gave to comedy movies. From Figure 3.5, we can
see that Bob’s preferences for comedy movies changes in time. From the timestamp t0 to
t1, and from t2 to t3, we can see that Bob liked comedy since he rated the movies with
high scores. However, during the period from t1 to t2, the scores were significantly lower.
This type of drifts in the users’ data is particularly common in CF scenarios, so Ding et al.
’s approach addresses this issue by assigning a higher weight to data that follow the same
trend as the most recent ratings. In the example from Figure 3.5, the data points from t2

to t3 are considered the latest trend, so, their approach assigns more weight not only to the
data from t2 to t3, but also to the data from t0 to t1 (because it has a similar distribution).

Score

Timet1 t2 t3

1

2

3

4

5

t0

Figure 3.5: Concept Drift in CF (adapted from [25])

Their approach is a adaptation of the item-based CF that assigns different weights to
different items, taking into account the deviation of the rating on the item from the most
recent rating as:

wu,i = (1− |ru,i − ru,n|
M

)α (3.10)

Chapter 3. Related Work 35

where ru,i is the rating of the target user on the i-th item, and ru,n represents the most
recent rating of the target user on the nearest neighbour items. M is the maximum value in
the rating scale, and α a parameter that can be adjusted to tune the performance. So, from
this function, we can observe that the more a item’s rating deviates from the most recent
neighbor rating, the lower the weight of the item. Finally, the prediction phase considers
the weight from Equation 3.10:

r̂u,i =

∑
j∈N wu,jsim(i, j)ru,j∑
j∈N |wu,jsim(i, j)|

, (3.11)

where wu,j represents the weight assigned to item j. Besides the introduction of a
weight for each item, they also designed and tested a new similarity function that they
considered to be appropriate for the item-based CF algorithms. Their experimental re-
sults show that their approach can substantially improve the prediction accuracy of the
traditional item-based CF.

In a more recent work, Liu et al. [73] introduced decaying time functions in both the
similarity computation and in the rating prediction steps of the item-based CF.

3.2.2 Time-aware CF

Yuan et al. [119] in 2013 adapted the traditional User-based CF in order to incorpo-
rate temporal information. Their system recommends places for users to visit, referred
as points-of-interest (POIs). Their approach is motivated by the fact the humans tend to
have periodic behaviour throughout the day. They started by augmenting their user-POI
(U-I) data, incorporating time slots based on the hour of the day the user visited the POI.
Hence, their input data is a binary user-timeslot-POI data cube, where each element ru,t,i
represents the activity of a user u, at a POI i at time slot t, where ru,t,i = 1 if the user u
has visited/interacted with the POI i at the time slot t, and ru,t,i = 0 otherwise.

They extended the traditional cosine similarity between to users (presented in Sec-
tion 2.1) and modified it as:

sim(u, v)twarecos =

∑
t∈T

∑
i∈I ru,t,irv,t,i√∑

t∈T
∑

i∈I r
2
u,t,i

√∑
t∈T

∑
i∈I r

2
v,t,i

, (3.12)

which takes into account the time slot of the records when computing the similar-
ity between the users. This means that if two users usually visit the same POIs at the
same time, the similarity score between the two will be high. However, the authors found
out that the system’s performance suffered from the sparsity of the data. To address this
weakness, they studied the similarity between time slots and discovered that some time
slots were similar (users visiting the same POIs at the two different time slots). So they en-
hanced their methodology introducing a smoothing component that includes the similarity
between time slots. Specifically, computing a new interaction r̃u,t,i as:

Chapter 3. Related Work 36

r̃u,t,i =
∑
t′∈T

ρt,t′∑
t′′∈T ρt,t′′

ru,t′,i, (3.13)

where ρt,t′ is the similarity between two time slots. This new interaction r̃u,t,i replaces
the original interaction ru,t,i in the similarity computation, creating a new smoothed sim-
ilarity function:

sim(u, v)stwarecos =

∑
t∈T

∑
i∈I r̃u,t,ir̃v,t,i√∑

t∈T
∑

i∈I r̃
2
u,t,i

√∑
t∈T

∑
i∈I r̃

2
v,t,i

. (3.14)

This new similarity function returns high values not only if two users visited the same
POIs during the same time slot but also in different but similar time slots. The authors
concluded that their time-aware methodology surpassed the classic time-agnostic User-
based CF when recommending points-of-interest, as well as the Dings et al.’s temporal
approach [24] that we already described above.

Chapter 4

Evaluating the Potentialities of BicPAM

In this chapter, we study the potentialities of BicPAM, a biclustering algorithm proposed
byHenriques andMadeira [48], which seems to be a valid option for the biclustering-based
CF, since it can efficiently discover constant, coherent, and order-preserving bicluster so-
lutions with varying levels of overlapping, missing values, and noise. We also compare
it against two state-of-the-art biclustering approaches that were already adopted by other
authors to find biclustering in recommendation scenarios, using our own synthetic bench-
mark datasets.

4.1 BicPAM - State-of-the-art Pattern-based Biclustering

The BicPAM algorithm is a state of the art biclustering algorithm proposed in 2014 by
Henriques andMadeira [48]. BicPAM relies on derived principles from the pattern mining
field. Therefore it is classified as a pattern-based biclustering algorithm. Pattern mining-
based biclustering approaches usually perform efficient, exhaustive searches and produce
flexible bicluster solutions (an arbitrary number, structure, and position of biclusters).

Most of the previously proposed pattern-based approaches assume that the biclusters
in the data follow the constant model [83, 85, 98]. However, BicPAM can discover more
complex types of patterns in the biclusters such as coherent (addictive/multiplicative) or
order-preserving patterns, which can be essential for the discovery of more interesting
groups in the recommendation data. Moreover, BicPAM relies on strategies that allow the
algorithm to handle noise and missing values in the data.

BicPAM consists of an ordered conjunction of three major phases: mapping, mining,
and closing, Figure 4.1 summarizes the main principles of each phase. The first phase,
mapping, is responsible for itemizing a real-value matrix into an itemset matrix. There
are available normalization and discretization options that can be used depending on the
properties of the input data. This step is also responsible for offering different methods for
handling missing and noisy elements in the data. To deal with missing values, BicPAM
provides tree strategies: Removal, Replacement, None (consider it as a special value). As

37

Chapter 4. Evaluating the Potentialities of BicPAM 38

Mapping Mining Closing Biclustering
Solution

Normalization
Discretization
Tackling varying levels of noise
Handling missing values

Pattern Miner
Pattern Representation
Search Options
Allow flexible types of biclusters

Extension
Merging
Filtering

Figure 4.1: Methodology of the BicPAM algorithm.

for the noise in the data, BicPAM offers three methods that can identify noisy elements
in the data, but the default strategy consists in considering two or more possible discrete
values to an element, based on a threshold.

Themining phase is the core of the algorithm, as it is responsible for finding the biclus-
ters. The mining of the biclusters depends on three settings: the pattern-based approach,
the pattern representation, and the search strategy. BicPAM uses Frequent Itemset Mining
(pattern-based approach) to search for frequent closed (pattern-representation) itemsets in
the data, as the default setting. Association rule mining can also be used in the presence
of domain knowledge to produce more insightful solutions. Regarding the pattern repre-
sentation, considering different types of patterns lead to structurally different biclustering
solutions, as Figure 4.2 highlights. While retrieving all the frequent itemsets may lead
to a biclustering solution with a large number of redundant biclusters, considering only
maximal itemsets can lead to incomplete solutions since it discards itemsets with fewer
items/columns but higher support. The usage of closed itemsets allows overlapping biclus-
ters if a reduction in the number of columns results in a bicluster with a higher number of
rows (support of the itemset). Mining closed itemsets is usually the preferred option since
it enables the algorithm to discover all the maximal biclusters in the data (see def. 4.1.4).
Lastly, as for the search strategy, the choice of using an apriori-based, pattern-growth, or
both combined, mostly depends on the size and density of the input data. The efficiency
of the searching algorithms is profoundly affected by those factors.

Figure 4.2 is an illustration of howBicPAM, using a FIM approach, mines itemsets that
are subsequently traduced into constant biclusters. In this example, we used the apriori
algorithm with a minimum support threshold of 2 to search for the itemsets, however,
notice that the initial matrixA needs to be transformed so that the items have their column
identification. This step of concatenating the identification of the columns to the item is
essential as it allows the algorithm to distinguish between values of different columns. At
the end of the process, the obtained (frequent) itemsets are used to derive the resulting
biclusters from the corresponding itemsets in the original matrix.

Definition 4.1.1. Given a set B = {i1, ..., in} of items, a set X ⊆ I is called and item-
set. A transaction database D is a multiset of itemsets, where each itemset, called a

Chapter 4. Evaluating the Potentialities of BicPAM 39

1 2 3
1 2 3
1 2 1

tid Items

 1 {1_1 ,2_2, 3_3}
 2 {1_1, 2_2, 3_3}
 3 {1_1, 2_2, 1_3}

 Itemset Supp

{1_1} 3
{2_2} 3
{3_3} 2
{1_3} 1Min sup (θ) = 2

 Itemset Supp

{1_1, 2_2} 3
{1_1, 3_3} 2
{2_2, 3_3} 2

Transaction Database D

 Itemset Supp

{1_1, 2_2, 3_3} 2

Matrix A
1 - itemset

2 - itemset

1 2
1 2
1 2

1 2 3
1 2 3

1 2 3
1 2 3

3 - itemset

1 2
1 2
1 2

1 3
1 3

2 3
2 3

1 2 3
1 2 3

Min cols = 2

from maximal itemsets

from closed itemsets
from frequent itemsets

Generate candidates
Create database

including the column ID

Generate candidates

Generate candidates

Get biclusters

Figure 4.2: Example of mining constants biclusters from a matrix.

transaction, has a unique identifier, called a tid [120].

Definition 4.1.2. Given a transaction databaseD the support of an itemsetX in a dataset
D, denoted supp(X), is the number of transactions inD whereX appears as a subset. The
support of an itemset X in D can also be represented as the fraction of transactions in D
where X appears as a subset.

Definition 4.1.3. Given a transaction database D and a minimum support threshold θ,
Frequent Itemset Mining (FIM) is the problem of computing frequent itemsets, that is,
itemsets having support ≥ θ.

• a closed itemset is a frequent itemset that has no (frequent) superset with the same
support.

• a maximal itemset is a frequent itemset for which none of supersets are frequent.

Definition 4.1.4. A maximal bicluster is a bicluster that is not included in any other
bicluster. This means that it cannot be extended without the need of removing rows and
columns.

Finally, the closing step is composed of techniques used to post-process the discovered
bicluster in order to generate and manipulate the structure and quality of the final biclus-
tering solution. One post-process technique is to extend the biclusters, including rows
or columns as long as it still satisfies a criteria. Another option is to merge biclusters.
Merging biclusters is based on the idea that if two biclusters overlap/share a significant

Chapter 4. Evaluating the Potentialities of BicPAM 40

area, it could be interesting to produce a larger bicluster that would result from merging
those biclusters despite introducing some noise to it. Finally, filtering procedures can also
be applied, for instance, to remove duplicated and non-maximal biclusters that could be
created through previously mentioned post-processing options.

Regarding effectiveness and efficiency, BicPAM has been submitted to extensive ex-
perimental evaluations [47, 48]. In these evaluations, BicPAMwas compared against peer
pattern-based biclustering approaches, as well as state of the art biclustering algorithms in
both synthetic and real-world datasets with different levels of size and noise. BicPAMwas
able to find optimal solutions, even in noisy environments, outperforming the rest of the
algorithms in most of the metrics assessed. However, due to the inherent characteristics
of the pattern-based algorithms, BicPAM seems to suffer in terms of performance when
confronted with large datasets.

Despite the extensiveness of the evaluations made in the previously mentioned works,
to our knowledge, the algorithm was never evaluated in recommendation datasets, known
for the extreme sparseness of the data. As a result, in this work, we want to validate
if BicPAM is the best biclustering algorithm option for recommendation purposes. One
effective way to evaluate biclustering algorithms is by using synthetic data. Synthetic data
allows us to generate data with planted hidden biclusters, which can be used as ground
truth to test the capabilities of the algorithms. In this chapter, we use synthetic data to
compare the capabilities of BicPAM to discover constant columns and order-preserving
biclustering solutions against the peers previously used the related-work studies.

4.2 Generating Synthetic Biclustering Benchmark Data -
G-Tric

To create synthetic data that resembles real-world data, we used a synthetic biclustering
and triclustering data generator called G-Tric1 [75]. G-Tric is a freshly developed im-
provement of the BiGen2 software, proposed by Henriques and Madeira [46], which is,
to our knowledge, the most comprehensive generator of synthetic biclustering data. G-
Tric offers the user the possibility of creating highly particular datasets, planting not only
biclusters but also triclusters (3D biclusters) through the setting of a complete parameter-
ization. Bellow, we enumerate the main parameters of G-Tric and explain the process for
choosing the values for each one.

• Data size (|X| × |Y |). Regarding the size of the synthetic matrix, we use the same
row and column proportion that we find in the popular recommendation Netflix
dataset. This dataset has around 27 times more rows (users) than columns (movies),

1https://github.com/jplobo1313/G-Tric/
2http://web.ist.utl.pt/~rmch/software/bigen/

Chapter 4. Evaluating the Potentialities of BicPAM 41

following the proportion, in our experiment, we considered two matrices with dis-
tinct sizes: 1, 620× 60 and 8, 100× 300.

Our initial idea was also to contemplate a much larger matrix 48, 000× 1, 800, but
that was not possible due to the high computational demands needed to produce
such data.

• Alphabet / Set of values (L). The values in the data represent ratings from the users
from a 1 to 5 rating scale (L ∈ {1, 2, 3, 4, 5}). A float representation with 0.5

increments for each value can also be found in some rating datasets. However, for
ease of simplicity and interpretability of the results, we chose to use the integer
scale.

• Distribution of the values. To determinate realistic probabilities, we examined how
many times each rating occurs in our real-world datasets. We found that there are
rating values that are more common than others, as Figure 4.3 highlights. Thus,
having this in mind, we decided to express the chances of each value of the alphabet
to occur as approximate weighted probabilities extrapolated from the real-world
datasets. The probabilities chosen were 0.05; 0.10; 0.30; 0.35; 0.20 to the values of
1; 2; 3; 4; 5, respectively.

4.03.0 5.03.5 4.52.0 2.51.0 1.50.5
Rating Value

0.00

0.05

0.10

0.15

0.20

0.25

Re
la

tiv
e

Fr
eq

ue
nc

y

(a) MovieLens-1M

1 2 3 4 5
Rating Value

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
la

tiv
e

Fr
eq

ue
nc

y

(b) Netflix

Figure 4.3: Distribution of the rating values in the MovieLens-1M and Netflix datasets.

• Model of the biclusters. Wealready identified constant columns and order-preserving
biclusters as the most interesting patterns for recommendation purposes. Thus,
for each of the data sizes considered, we created one dataset with hidden constant
columns biclusters and another with hidden order-preserving biclusters.

• Number and Size of biclusters. To find out an appropriate number and size of bi-
clusters to plant in the dataset, we used the BicPAMS (Biclustering based on Pattern
Mining Software) [49]. This software makes available pattern-based biclustering

Chapter 4. Evaluating the Potentialities of BicPAM 42

algorithms, including the BicPAM algorithm proposed by the same authors. An ex-
haustive run on the input data finds all maximal biclusters. Thus, the idea was to
use the biclustering solution of BicPAMS to extrapolate the amount biclusters we
would plant in the synthetic data, as well as the size of each one.

Due to the problem complexity of the biclustering task, the biclustering algorithms
usually do not perform exhaustive searches. However, with BicPAMS, we can set
some parameters that inflict the algorithm to perform a near exhaustive search. As
suggested by the authors of BicPAMS, to guarantee an adequate exploration of the
input dataset, we set the stopping criteria, minimum number of dissimilar biclusters
to a high value, 1, 000, 000, 000. We also increased the number of iterations of the
algorithm to 2, which, after the first iteration, removes highly coherent regions in
the dataset that could be preventing the discovery of less-trivial biclusters. There
are, however, other parameters, already discussed in Section 4.1, that need to be
determined. Table 4.1 compiles the settings established for those parameters and,
additionally, it includes brief notes supporting the reasoning behind it. These set-
tings can be viewed as a framework to ensure that BicPAMS performs an exhaustive
search on an input matrix.

Parameter Value Note

Covergence Minimum number of biclusters 1,000,000,000 A high value that does not limit the search, resulting in an exhaustive search.
Iterations 2 Run two times ensures the discovery of relevant biclusters that could be

masked by dense coherent regions.

Mapping Discretization None Rating values are already discrete in the Netflix dataset.
Normalization None Normalization is not required since all the data is on the same scale and

lie within an [1, 5] interval.
Missings handler Remove Ignore the missing values of the input data.

Mining Pattern Order-preserving Order-preserving is the most interesting pattern for our problem.
Orientation Pattern on rows The goal is to identify users (rows) with coherent rating pattern, this means,

searching for patterns on rows.
Minimum number 2 All the maximal biclusters present in the input data, regardless
of rows bicluster of the number of rows each bicluster has, so parameter set to the minimum value.
Minimum number 2 All the maximal biclusters present in the input data, regardless
of cols bicluster of the number of columns each bicluster has, so parameter set to the minimum value.

Closing Minimum quality 100% Consider only non-noisy biclusters.
Minimum similarity 100% Consider all the unique biclusters that were mined.

Table 4.1: Framework to ensure exhaustive search from the BicPAM algorithm.

We started by running the BicPAMalgorithm on a random 1, 620×60 and scaled five
times until we reached the 8, 100×300 subset of theNetflix dataset. We then decided
only to consider the biclusters with a p − value less than 1 × 10−3 and analyzed
the biclustering solution, including the distribution of the sizes of the biclusters.
Tables 4.2 and 4.3 present a summary of the results obtained for those subsets when
searching for both constant columns and order-preserving biclusters. Regarding the
parameters of G-Tric to handle the size of the planted biclusters, we used the normal
distribution option with the average and standard deviation values that we found in
our biclustering solutions for the 1, 620× 60 and 8, 100× 300 matrices.

As we mentioned before, the initial intention was to perform the same analysis on

Chapter 4. Evaluating the Potentialities of BicPAM 43

Number of
rows

Number of
cols #biclusters found #significant biclusters

(p < 0.001)
Avg. #rows per bicluster
(p < 0.001)

Avg. #cols per bicluster
(p < 0.001)

1,620 60 118 8 2.75 ± 1.30 2.88 ± 0.60
3,240 120 914 172 2.27 ± 0.58 3.26 ± 0.79
4,860 180 5,203 1,213 2.41 ± 1.03 3.79 ± 0.86
6,480 240 21,730 5,064 2.50 ± 0.98 4.32 ± 1.06
8,100 300 55,477 17,145 2.74 ± 1.29 4.45 ± 1.14

Table 4.2: Properties of the constant columns biclustering solutions varying the size of the
input data.

Number of
rows

Number of
cols #biclusters found #significant biclusters

(p < 0.001)
Avg. #rows per bicluster
(p < 0.001)

Avg. #cols per bicluster
(p < 0.001)

1,620 60 166 44 4,05 ± 3.86 2.66 ± 0.64
3,240 120 1,650 950 3.36 ± 3.40 3.11 ± 0.81
4,860 180 10,237 6,009 3.62 ± 5.16 3.58 ± 0.94
6,480 240 47,512 26,657 3.66 ± 5.81 4.05 ± 1.07
8,100 300 135,806 86,921 3.76 ± 5.81 4.24 ± 1.11

Table 4.3: Properties of the order-preserving biclustering solutions varying the size of the
input data.

larger datasets such as the 48, 000 × 1, 800, but it would require too many com-
putational resources to perform an exhaustive search on the dataset. As an alter-
native, we decided to pursue another approach to speculate the properties for the
48, 000×1, 800 subset. More details on this attempt can be found in the Figure A.1,
and in Tables A.1 and A.2 from the Appendix A, but we resolved to continue the
study with only the 1, 620× 60 and 8, 100× 300 sizes.

• Overlapping settings. G-Tric allows the user to specify some features about the
overlapping between biclusters, from those we highlight: the percentage of biclus-
ters that overlap in the data; the maximum of biclusters that overlap together in at
least one element; and the maximum percentage of biclusters’ elements that can be
overlapped by another bicluster. For each one of those parameters, we examined
the biclustering solutions we previously got from BicPAMS to our datasets and set
the values accordingly, as Table 4.4 exhibits.

Data Size Type of bicluster
pattern

% of biclusters
overlapping

Maximum number of
biclusters overlapping
together

Maximum % of
bicluster’s elements
overlapped by other bicluster

1,620×60 Constant columns 62.5% 3 75%
1,620×60 Order-preserving 97.8% 10 75%
8,100×300 Constant columns 99.9% 391 93.3%
8,100×300 Order-preserving 99.9% 2,157 93.3%

Table 4.4: Overlapping statistics from the biclustering solutions of the subsets fromNetflix
dataset.

Chapter 4. Evaluating the Potentialities of BicPAM 44

• Missing values. There are two different parameters to produce the missing values
in the data.

1. Missing values in the background.
This parameter represents the percentage of missing values in the background
of the generated data. The authors of the generator define background as the
dataset’s elements that do not belong to any of the hidden biclusters. Ideally,
we wanted to create synthetic datasets with the same missing value percentage
as the Netflix dataset, 98.8%. However, the current version of the generator
(G-Tric’s Beta version), does not support a parameter to force the number of
missing values in the whole dataset. Hence, the overall percentage of miss-
ings cannot be controlled as it depends on the area that the planted biclusters
occupy. Regardless, we set the percentage of missings in the background to
99% for every generated dataset.

2. Missing values in biclusters.
In this study we did not allow the planted biclusters to contain any missing
values.

• Noise. This field specifies the maximum number of noisy elements in a bicluster.
In this task, we used BicPAMS to discover the number and characteristics of the
perfect biclusters in the real-world data. Accordingly, for the sake of coherency, we
did not allow any deviations from the expected pattern on the planted biclusters in
the synthetic data.

4.3 Biclustering Evaluation Methodology

This section presents the evaluation of the biclustering algorithms using the synthetic
benchmark data. We start by describing the biclustering algorithms, as well as the datasets
and metrics used in the evaluation. Then, we introduce and discuss the results. Finally,
we conclude the evaluation, justifying our chosen biclustering algorithm based on the ob-
tained results.

4.3.1 Biclustering Methods

BiMax [9], xMOTIFs [81], and QUBIC [69] are three state-of-the-art biclustering ap-
proaches that were already adopted in the literature to find biclusters for recommendation
purposes [101, 105, 118]. In this experiment, we use our synthetic data to simulate a rec-
ommendation dataset environment and evaluate the xMOTIFs, QUIBIC, and BicPAM to
retrieve the hidden biclusters. BiMax was discarded because it only deals with binary
data.

Chapter 4. Evaluating the Potentialities of BicPAM 45

xMOTIFs is a nondeterministic greedy biclustering algorithm that searches for what
the authors call xMOTIFs - conserved gene expression motifs. In the gene expression con-
text, the algorithm searches for a subset of conserved genes across a subset of samples.
In a more general context, xMOTIFs can be seen as biclusters. Therefore, the xMOTIFs
algorithm can find biclusters with rows that have the same value over the columns - con-
stant columns pattern. The procedure to search for the largest xMOTIFs can be described
as follows. It selects ns columns at random from all the samples to act as seeds. For
each one of the selected columns, it creates nd sets of sd samples at random. These sets
are candidates for the discriminating set. For each seed-discriminating set pair, the cor-
responding xMOTIF is computed as in [81]. The xMOTIF is discarded if it has fewer
columns than the minimum α-fraction of the dataset columns defined. Finally, it returns
the largest xMOTIF [61]. Note that this procedure is run as many times as the number
of biclusters, num_biclusters, desired in the output solution. In our experiments, we set
the number of seeds ns = 10 and the number of determinants nd = 100. The authors
of xMOTIFs, in their original work, use nd = 1, 000 as the number of determinants, but
since we want to retrieve a high volume of biclusters, using nd = 1000 would be compu-
tationally impracticable. The size sd of the discriminating set was varied from 2 to 10, but
the best results were achieved with sd = 2. Since we want biclusters with a minimum of
two columns, we chose α = 0.02 for the 1, 620× 60 and α = 0.005 for the 8, 100× 300

datasets. Finally, we adjusted the number of biclusters retrieved according to the number
of biclusters hidden in each of the input datasets.

QUBIC, on the other hand, is a greedy deterministic algorithm. It represents the data
as a bipartite graph and treats the biclustering problem as finding heavy sub-graphs in
the data. Similarly to BicPAM and xMOTIFs, this algorithm finds constant columns bi-
clusters. One essential feature of the QUBIC algorithm is that, according to the authors,
it can identify all statistically significant biclusters. Moreover, it solves the biclustering
task very efficiently [69]. QUBIC offers some flexibility by allowing the user to adjust the
value of some parameters. The parameter o affects the number of biclusters in the output.
Similar to what we did with the xMOTIFs algorithm, we established its value according
to the input dataset’s hidden biclusters. Regarding the parameter c that determines the
required consistency level of the bicluster, since we are interested in non-noisy biclusters,
we set c = 1. Besides, we ensure that the retrieved biclusters are maximal, setting the
maximal overlap parameter, f = 0.99. Finally, the size of the biclusters is controlled by
the parameter k, and we set to k = 2 so that the biclusters have at least two columns.

We already introduced BicPAM and its parameterization in Section 4.1. The settings
used in the experiment were the same used in Table 4.1, except for the minimum number
of biclusters and patterns that were set according to the number and pattern of biclusters
we were looking for in each dataset. The iterations parameter was also decreased to 1
since we believe the possible benefits of running the algorithm two times do not justify

Chapter 4. Evaluating the Potentialities of BicPAM 46

the downgrade of performance.
To run the xMOTIFs and theQUBIC algorithm, we used the implementations available

in a Python library of biclustering algorithms, biclustlib3 [84]. This library provides an
xMOTIFs implementation that follows precisely the pseudo-code described in the original
paper. As for the QUBIC, the library wraps an executable of the QUBIC original code 4

implemented in ANSI C by its developers.

4.3.2 Synthetic Data

To generate our synthetic benchmarks datasets, we used the previously described G-Tric
generator using the settings detailed in Section 4.2. We produced four datasets that we
named alphabetically from “Synthetic-A” to “Synthetic-D”. The main characteristics of
the generated datasets are displayed in Table 4.5. It is crucial to notice that the current
version of the generator (G-Tric’s Beta version) cannot fully replicate all the features in-
tended to have in our datasets. For example, regarding the Synthetic-D, the generator
could not plant all the 86,921 biclusters. Moreover, since G-Tric parameterization does
not allow the user to control the number of missing values in the data, we noticed that the
sparseness of our datasets was compromised, especially in Synthetic-D, where the density
reaches 63.1%.

Dataset Alfabet (L) Data Size Number of
hidden bics

Pattern of
the biclusters Density Area of biclusters

Synthetic-A {1, 2, 3, 4, 5} 1,620 × 60 8 CC 0.013 0.07%
Synthetic-B {1, 2, 3, 4, 5} 1,620 × 60 44 OP 0.016 0.63%
Synthetic-C {1, 2, 3, 4, 5} 8,100 × 300 17,145 CC 0.091 8.18%
Synthetic-D {1, 2, 3, 4, 5} 8,100 × 300 66,341 OP 0.631 62.79%

Table 4.5: Characteristics of the generated synthetic datasets.

4.3.3 Performance Metrics

We evaluated the solutions of each algorithm through an external evaluation methodol-
ogy, using similarity measures to compare the found solutions against a ground truth (the
hidden biclusters in each of the synthetic datasets). During the past years, several compar-
ative biclustering studies addressed external evaluation using different similarity measures
[13, 30, 84, 89]. Prelić et al. [89] proposed two clustering comparison match scores, Pre-
lić relevance (Sprel) and Prelić recovery (Sprec), that have been vastly adopted. Another
popular measure is the relative non-intersecting area (Srnia), proposed by Patrikainen and
Meila [86], and its extensionClustering Error (Sce). Horta and Campello, in a recent work

3https://github.com/padilha/biclustlib
4https://github.com/maqin2001/qubic

Chapter 4. Evaluating the Potentialities of BicPAM 47

[53], reviewed sixteen of the most popular biclustering measures and warned that some of
them could easily lead to misleading evaluations. In this work, the authors perform a the-
oretical comparison of the sixteen similarity measures and conclude highlighting two of
them, the Clustering Error (Sce)) [86] and the Campello Soft Index (Scsi) [17]. In terms of
eight properties relevant for evaluating biclustering solutions, these measures, were rec-
ognized as being the top similarity measures, and therefore, the ones recommended by the
authors for comparing biclustering solutions. In this experiment, we adopt the measures
recommended by Horta and Campello to evaluate biclustering solutions. But we also use
the Srnia that despite being theoretically inferior to Sce, it still considered as a top measure.
Moreover, we complement our evaluation with the measures proposed by Prelić because
the Sprel and Sprec measures evaluate specific properties, allowing its results can be easily
interpreted.

Both Prelić relevance (Sprel) [89] and Prelić recovery (Sprec) [89] scores are based
on Jaccard index. The Sprel is a measure that reflects how well the predicted biclusters
represent the reference biclusters in both dimensions (completeness). Whereas, the Sprec

defines to what extent each of the reference is recovered by the predicted biclustering
(precision).

Assuming that B = {bi}ki=1 and B̂ = {bi}qi=1 are, respectively, the reference and the
found biclustering solutions in an input matrix A ∈ Rn×p.

1 2 3 2 3 4
1 2 3 1 2 1
1 2 3 5 2 5
1 2 3 1 2 5
5 1 4 1 2 5

b1

b2
b3

(a) Reference biclustering solution B.

b̂1

b̂2 b̂3
b̂4

1 2 3 2 3 4
1 2 3 1 2 1
1 2 3 5 2 5
1 2 3 1 2 5
5 1 4 1 2 5

(b) Found biclustering solution B̂.

Figure 4.4: Example of two biclustering solutions that we wish to compare using biclus-
tering similarity measures.

Let Sr(B, B̂) (Equation 4.1) be the match score for the rows, and Sc(B, B̂) an equiv-
alent score for the columns dimension. The overall Sprel and Sprec are defined by Equa-
tion 4.2 and Equation 4.3, respectively.

Sr(B, B̂) =
1

k

i=1∑
k

max
l∈N1,q

{
Br

i ∩ B̂r
l

Br
i ∪ B̂r

l

}
(4.1)

Sprel(B, B̂) =

√
Sr(B, B̂)× Sc(B, B̂) (4.2)

Sprec(B, B̂) = Sprel(B̂, B) (4.3)

Chapter 4. Evaluating the Potentialities of BicPAM 48

Considering Figure 4.4 as an example. We have k = 3, and q = 4, which are the
number of biclusters in the biclustering solutions. To calculate Sr(B, B̂), we need to
determine, for each of the biclusters in B, the maximum Jaccard Index with a bicluster in
B̂. The maximum Jaccard Indexes are J(b1, b̂1) = 0.5, J(b2, b̂3) = 0.667, and J(b3, b̂4) =
1. So, following Equation 4.1, Sr(B, B̂) = 1

3
× (0.5+0.667+1) ≈ 0.72. Using the same

procedure for the columns dimension, we get Sc(B, B̂) = 1
3
× (1 + 1 + 1) ≈ 1. Finally,

the overall Sprel(B, B̂) =
√
0.72× 1 ≈ 0.85. If we follow the same reasoning for Sprec,

we obtain Sprec(B, B̂) =
√
0.625× 1 ≈ 0.79.

The Relative non-intersecting Area (Equation 4.6) [86] and Clustering Error (Equa-
tion 4.7) [86] are very similar measures. To take the overlapping between biclusters into
account, both these measures use a redefined definition of union and intersection sets of
biclusters. Let Nj1,j2 and N̂j1,j2 be the number of biclusters belonging to B and B̂, re-
spectively, at the i-th row and j-th column entry of the input matrix, A. The size of the
redefined union set, is the sum of the maximum number of biclusters in each entry of
the input matrix between the reference and found biclustering solutions (Equation 4.4).
Whereas the size of the intersection is the sum of the minimum number of biclusters in
each entry (Equation 4.5). TheClustering Error differs from the Relative non-intersecting
Area in a sense that it considers the number of elements shared by biclusters. It constructs
a matrix M , as in Equation 4.8, with the elements shared by each bicluster bi ∈ B and
b̂i ∈ B̂, and aims to find a permutation of biclusters such that the sum of the diagonal
elements ofM , dmax, is maximized. For example, in the case of the two biclustering solu-
tions in Figure 4.4 we have |U | = 24 and |I| = 22. The maximal permutation of biclusters
in Equation 4.8 would be {b1, b̂1}, {b2, b̂3}, {b1, b̂4}}, deriving dmax = 6 + 4 + 6 = 16.
Thus Srnia(B, B̂) = 22

24
≈ 0.92, and Sce(B, B̂) = 16

24
≈ 0.67.

|U | =
∑
j1,j2

max{Nj1,j2 , N̂j1,j2} (4.4)

|I| =
∑
j1,j2

min{Nj1,j2 , N̂j1,j2} (4.5)

Srnia(B, B̂) = 1− |U | − |I|
|U |

=
|I|
|U |

(4.6)

Sce(B, B̂) = 1− |U | − dmax

|U |
=

dmax

|U |
(4.7)

b̂1 b̂2 b̂3 b̂4
b1 6 6 0 0
b2 0 0 4 2
b3 0 0 2 6

(4.8)

The Campello Soft Index [53] uses the elements of the input matrix to represent the bi-
clustering solution. The input matrixA is viewed as a set of objectsO = {õ1, õ2, ..., õn,p},

Chapter 4. Evaluating the Potentialities of BicPAM 49

where õk represents an element Ai,j . Therefore, a bicluster can be defined as a set of the
objects, ṗ, that compose it. Horta and Campello use this representation to transform any
biclustering solution Ḃ into an augmented set, given by Equation 4.9. Each of the biclus-
ters in Ḃ are translated into a cluster ṗ, and the elements in A that do not belong to any
bicluster are singletons in this Ṗ .

Ṗ = {ṗ1, ṗ2, ..., ṗk} (4.9)

Using Figure 4.4 as an example, applying the object representation and Equation 4.9,
we have p1 = {õ1, õ2, õ3, õ4, õ6, õ7, õ8, õ9, õ11, õ12, õ13, õ14}, p2 = {õ23, õ24, õ25, õ28, õ29, õ30},
p3 = {õ19, õ20, õ24, õ25, õ29, õ30}, p4 = {õ5}, p5 = {õ10}, p6 = {õ15}, p7 = {õ16},
p8 = {õ17}, p9 = {õ18}, p10 = {õ21}, p11 = {õ22}, p12 = {õ26}, p13 = {õ27}, and
P = {p1, p2, ..., p13} for the biclustering solution B. Proceeding likewise for the solution
B̂, we get P̂ = {p̂1, p̂2, ..., p̂14}. After transforming both biclustering solutions, the CSI
measure is calculated comparing the sum of agreements, aP,P̂G , and disagreements,dP,P̂G ,
between the objects from both solutions regarding biclusters, as in Equation 4.10. More
information on how the agreements and disagreements are calculated can be found in the
author’s supplementary material5, available online. Taking the solutions in Figure 4.4 as
an example, we have aP,P̂G = 109 and dP,P̂G = 103, resulting in Scsi =

109
212
≈ 0.51.

Scsi(P, P̂) =
aP,P̂G

aP,P̂G + dP,P̂G

(4.10)

Besides the external evaluation, we believe that the algorithm’s efficiency should also
be taken into account since, in a recommendation scenario, some applications may have
time requirements in the presence of large volumes of data. Thus, in this experiment, we
measure the time the algorithms took to return the biclustering solution. Furthermore, we
also measured how much memory was allocated during the execution of the algorithms.
Note, however, that the algorithms’ time and space efficiency are highly dependent on
many factors, including its implementations. So, this type of experimental measurement
can only be viewed as a superficial evaluation of the implementations we used, instead of
a precise evaluation of the algorithms.

4.3.4 Results and Discussion

Below, we introduce the results of our analysis to assess the three biclustering algorithms’
ability to recover hidden biclusters. We start by presenting the results of each algorithm
for each one of the synthetic datasets considering the performance metrics described in
Section 4.3.3. Then, we discuss the results and exhibit a summary of the characteristics
of the produced solutions. The experiments were performed using the biclustlib6 Python

5https://horta.github.io/biclustering/paper/appendix.pdf
6https://github.com/padilha/biclustlib

Chapter 4. Evaluating the Potentialities of BicPAM 50

library on a machine with Intel Xeon 2.40GHz having thirty-two cores and 32GBs of
RAM.

Tables 4.6, 4.7, and 4.8 show the performance results of each algorithm. Due to com-
putational resources constraints, we were not able to calculate the Sce and the Scsi scores
for some of the datasets.

QUBIC was able to produce interesting solutions, especially for the Synthetic-A and
Synthetic-D datasets. The solution for the Synthetic-A dataset had the best scores for
the Sprel, Srnia, Sce similarities, being surpassed only by BicPAM in the Sprec and Scsi.
QUBIC also achieved the best Sprel, and the best Sprel, Srnia, Scsi for the Synthetic-C and
Synthetic-D, respectively. In terms of time and memory efficiency, QUBIC was not the
best in neither, but it was decent overall.

Dataset Time (s) Max Memory (MB) Sprel Sprec Srnia Sce Scsi

Synthetic-A 1.561 531.570 0.9798 0.6124 0.6892 0.6892 0.0005
Synthetic-B 1.587 537.152 0.5344 0.4108 0.2642 0.1812 0.0572
Synthetic-C 35.479 833.086 0.3575 0.1021 0.0186 0.0042 0.0057
Synthetic-D 477.380 3,223.422 0.2245 0.1539 0.1555 - 0.1017

Table 4.6: Similarity scores and efficiency of the QUBIC algorithm.

The xMOTIFs, under the settings described in Section 4.3.1, was not able to generate
satisfactory solutions, compared with QUBIC and BicPAM. The peers outperformed it in
all of the scores except for Sprel in Synthetic-D’s solution. xMOTIFs, despite being the
worst in computation speed, it had undoubtedly the best results regarding memory used
for all solutions.

Dataset Time (s) Max Memory (MB) Sprel Sprec Srnia Sce Scsi

Synthetic-A 198.162 448.711 0.3227 0.2141 0.0588 0.0588 < 0.0001
Synthetic-B 1,241.306 448.719 0.4390 0.3513 0.1676 0.1332 < 0.0001
Synthetic-C 87,453.563 454.008 0.3439 0.1753 0.0570 0.0083 < 0.0001
Synthetic-D 1,037.261 449.664 0.2453 0.0492 0.0088 - < 0.0001

Table 4.7: Similarity scores and efficiency of the xMOTIFs algorithm.

On the other hand, BicPAM obtained the best similarity results on most of the solu-
tions, particularly in the Synthetic-B and Synthetic-C datasets. The results for the Synthetic-
A, were only slightly surpassed by the QUBIC’s results in some similarities. In terms of
time and memory efficiency, BicPAM was the fastest to create a solution for Synthetic-A,
B, and C.

Chapter 4. Evaluating the Potentialities of BicPAM 51

Dataset Time (s) Max Memory (MB) Sprel Sprec Srnia Sce Scsi

Synthetic-A 0.236 512.000 0.6862 0.9464 0.6442 0.6250 0.0557
Synthetic-B 0.394 512.000 0.6896 0.4774 0.4411 0.3089 0.1000
Synthetic-C 32.633 1,556.000 0.3143 0.2595 0.1994 - 0.0405
Synthetic-D 10,899.418 29,012.000 0.0677 0.0483 0.0072 - -

Table 4.8: Similarity scores and efficiency of the BicPAM algorithm.

A more evident visualization can be found in Figure 4.5, where we can easily compare
the performances from each algorithm in each of the datasets through radar charts.

Sprel

Sprec

Srnia Sce

Ssci

0.2

0.4

0.6

0.8

QUBIC
xMOTIFs
BicPAM

(a) Synthetic-A

Sprel

Sprec

Srnia Sce

Ssci0.2

0.4

0.6
QUBIC
xMOTIFs
BicPAM

(b) Synthetic-B

Sprel

Sprec

Srnia Sce

Ssci

0.2

QUBIC
xMOTIFs
BicPAM

(c) Synthetic-C

Sprel

Sprec

Srnia Sce

Ssci0.2

0.4

0.6
QUBIC
xMOTIFs
BicPAM

(d) Synthetic-D

Figure 4.5: Performance of the biclustering algorithms in each synthetic dataset.

Regarding the similarity metrics, from a generalist point of view, BicPAM was the
best among the biclustering techniques evaluated. This superiority was mainly reflected
in Synthetic-B and Synthetic-D, where none of the peers was able to match the BicPAM’s
solutions. The poor performances in those datasets were already expected since the hid-
den biclusters in both of these datasets followed an order-preserving pattern that neither
QUBIC nor xMOTIFs can identify. In Synthetic-A and Synthetic-D, QUBIC’s solutions

Chapter 4. Evaluating the Potentialities of BicPAM 52

contested the ones from BicPAM, primarily if we focus on the Sprel, Srnia and Sce. These
results indicate that QUBIC may produce solutions with more correct/precise biclusters
(higher Sprec value), but the ones from BicPAM are more complete (higher Sprel value).
We believe that a possible explanation for the completeness of the BicPAM solutions is
the exhaustive nature of the algorithm. When analyzing the Scsi values, which evaluates
many aspects of the solutions, BicPAM was superior. The fact that this measure takes
into account many features of the solution, evaluating it in a generalist way, makes it
challenging to identify the exact properties that made the BicPAM’s solutions better than
the remaining ones. Hence, a possible future improvement to the biclustering field could
be the creation and adoption of new similarities that focus on the measurement of more
specific solution’s features.

As for the efficiency of biclustering algorithms, there is usually a trade-off between
the quality of the solution and the time it takes to be produced, caused by the complexity
of the biclustering task. When it comes to pure speed to produce the results, the size of the
dataset seems to influence all of the algorithms. As they tookmore time in Synthetic-C and
Synthetic-D. If we look at the number of biclusters returned by each algorithm in Tables
4.9, 4.10, and 4.11, it seems there is a direct relation between the number of biclusters and
the time the algorithm needs to compute. BicPAMwas the fastest technique for three of the
four synthetic datasets, but QUBIC took considerably less time to produce the Synthetic-
D’s solution.

Dataset #biclusters found Avg. #rows per bicluster Avg. #cols per bicluster

Synthetic-A 5 3.40 ± 1.02 3.00 ± 0.00
Synthetic-B 30 2.07 ± 0.25 3.23 ± 0.50
Synthetic-C 147 2.00 ± 0.00 16.92 ± 2.18
Synthetic-D 6,830 3.95 ± 0.25 17.33 ± 2.51

Table 4.9: General information of the QUBIC’s solutions.

Dataset #biclusters found Avg. #rows per bicluster Avg. #cols per bicluster

Synthetic-A 4 2.00 ± 0.00 2.00 ± 0.00
Synthetic-B 23 2.87 ± 0.90 2.09 ± 0.28
Synthetic-C 810 9.29 ± 12.15 2.06 ± 0.30
Synthetic-D 40 202.5 ± 408.11 3.08 ± 2.63

Table 4.10: General information of the xMOTIFs’ solutions.

Chapter 4. Evaluating the Potentialities of BicPAM 53

Dataset #biclusters found Avg. #rows per bicluster Avg. #cols per bicluster

Synthetic-A 14 3.50 ± 1,00 2.62 ± 0.48
Synthetic-B 47 7.43 ± 1.62 2.02 ± 0.14
Synthetic-C 26,347 19.60 ± 9.84 2.01 ± 0.09
Synthetic-D 57,336 2,015.14 ± 798.39 2.43 ± 0.50

Table 4.11: General information of the BicPAM’s solutions.

Another aspect to note is that even though we configured all algorithms to return
the same number of biclusters, neither QUBIC nor xMOTIFs retrieved as many biclus-
ters, in any of the solutions, as BicPAM. This behaviour was already anticipated for the
Synthetic-B and Synthetic-D, since BicPAM is the only algorithm able to identify order-
preserving biclusters. However, for Synthetic-A and Synthetic-C, we believe that the
techniques’ intrinsic features are the main cause of these results. For instance, xMOTIFs’
non-deterministic nature led its solutions to include many empty or non-valid biclusters,
with less than 2 rows or columns.

Focusing on the average size of the found biclusters, it is clear that QUBIC tends
to discover bicluster with more columns than rows. On the other hand, xMOTIFs and
BicPAM tend to discover biclusters with more rows than columns.

Concerning memory consumption, the performance of QUBIC and BicPAM degraded
as the number of biclusters in the datasets increased, whereas xMOTIFs was not affected
by the characteristics of the input dataset, which is in agreement with other studies [30, 84].

4.4 Final Remarks

This chapter evaluated the potentialities of the biclustering algorithm BicPAM to discover
biclusters in classic U-I interaction matrices of the Collaborative Filtering scenario. Using
synthetic data resembling real-world U-I matrix data, we evaluated BicPAM and two other
biclustering algorithms (QUBIC and xMOTIFs).

From the results discussed in the Section 4.3, we conclude that QUBIC and BicPAM
are both able to produce biclustering solutions with better quality than xMOTIFs. Regard-
ing the quality of the bicluster solutions, it is very difficult to determine which biclustering
algorithm is the best for the evaluated task. QUBIC was able to produce more correct bi-
clustering solutions, whereas BicPAM created more complete solutions. However, from
a generalist perspective, considering all the evaluation metrics, BicPAM seems to create
superior biclustering solutions.

As for the characteristics of the biclusters found, there is a clear difference between
QUBIC andBicPAM.QUBIC has a clear tendency to discover biclusters withmore columns
than rows, while BicPAM has the opposite tendency.

Chapter 4. Evaluating the Potentialities of BicPAM 54

Despite our evaluation showing that both QUBIC and BicPAM could be viable options
to include in a biclustering-based CF approach, we decided to continue this work adopting
QUBIC as our default biclustering algorithm. The reasoning behind this decision is not
based on BicPAM’s ability to recover the hidden biclusters, but rather the nature of those
biclusters. For the specific approach that we propose in Chapter 5, the biclusters should
include as many items as possible, instead of including many users, as it is the natural
nature of BicPAM’s discovered biclusters. Further details about this decision can be found
in Chapter 5.

Chapter 5

USBCF - A User-Specific
Bicluster-based Approach for
Collaborative Filtering

This chapter proposes a novel Collaborative Filtering approach, which uses biclustering
to create user-specific U-I matrices (USBCF). We start by motivating our approach and
explaining the main idea behind it. Then, we focus individually on the approach’s main
components, highlighting the design and implementation decisions. Finally, we conclude
by reviewing the proposed approach, discussing its strengths and limitations, and intro-
ducing research avenues to further improve the USBCF methodology.

5.1 Motivation and Main Concept

Most Collaborative Filtering systems, especially memory-based such as user-based and
item-based, have issues when dealing with the nature of today’s feedback data. Those
systems operate in environments with a large number of items, which leads to huge spar-
sity in the feedback data, affecting the systems’ scalability and accuracy. Clustering tech-
niques, including biclustering, can be an excellent option to tackle both of these issues.
USBCF is a new Collaborative Filtering approach that uses the biclustering technique to
reduce the entire U-I matrix into much smaller, user-specific U-I matrices. The concept
of creating user-specific U-I matrices using biclustering was already adopted in another
approach (BBCF) [101]. However, the BBCF method has a minimal coverage capability
for producing predictions/recommendations, which means it can produce noticeable rec-
ommendations but only for a small subset of users and items. USBCF tries to overcome
this significant limitation while maintaining reliable performance results.

Our methodology consists of three main steps. We start by discovering biclusters in
the data. Then, using the biclusters, we create a smaller and denser dataset personalized
for each user. Once the personalized dataset is created, a CF algorithm is used to originate
a unique CF model for each system user.

55

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 56

5.2 USBCF Overview

In this section, we detail each of the three main steps composing the USBCF approach.
Besides discussing our solution’s implementation technicalities, we also mention other
alternatives that could be viable for implementation. Figure 5.1 presents and overview of
the USBCF methodology when applied to a simple U-I matrix to create a personalized CF
model for the user u6.

(1, 0.50, 0.50, 0.50, 0, 1) (2, 0.06, 0.16, 0.36, ∞, 0)

U-I Matrix

Bic1, Bic6, Bic2, Bic3, Bic4, Bic5 Bic6, Bic2, Bic3, Bic4, Bic1, Bic5

Bic6, Bic2, Bic1, Bic3, Bic4, Bic5

Biclustering Solution

Bic6, Bic2

User-Bicluster
Similarities

Combine orders

4 2
4 2

u1
u3

i1 i3

4 5
4 5

u3
u7

i1 i2
3 3
3 3

u5
u8

i2 i5
3 1
3 1

u6
u8

i4 i6

5 3
5 3

u4
u5

i3 i5
2 1
2 1
2 1

i4 i5
u1
u2
u7

Bic1 Bic2 Bic3

Bic4 Bic5 Bic6

Run Biclustering
 Algorithm

u1
u2
u3
u4
u5

i1 i2 i3 i4

4 2 2 1

5 5 2 1 5

4 5 2

5 5 3

3 3 5 3

1 5 1

4 5 2 1 4

3 3 1

i5

u6
u7

i6

3

3u8

3 -u6

2 1
2 1
2 1

i4 i5
u1
u2
u71 5u6

4 2
4 2

u1
u3

i1 i3

3 1
3 1

u6
u8

i4 i6

- -

3 3
3 3

u5
u8

i2 i5

u61 -

4 5
4 5

u3
u7

i1 i2

u6

NNBics = 2

Add active user (u6)
to each bicluster

add active
user if not
present

Combine k-nearest
Biclusters

5 -u6

5 3
5 3

u4
u5

i3 i5

User-Specific Item-
Based Model

Train Item-based
Approach

Rating PatternItem's Rating Interception

User-Specific
U-I matrix

u1
u2
u6
u7
u8

i4 i5 i6
2 1
2 1 5
3 1
2 1 4
3 3 1

Figure 5.1: USBCF approach applied on a small U-I matrix.

5.2.1 Discover Biclusters in U-I Matrix
Biclustering Algorithm

The first step of the approach consists of running a biclustering algorithm to the U-I dataset
to discover biclusters. The goal is to obtain a biclustering solution that highlights the

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 57

maximum amount of correlations in the dataset. It is also essential that it contains most
of the original dataset elements because we need information from most users and items
in the system. To decide which biclustering algorithm we would choose to include in
our approach, we conducted the study in Chapter 4, in which we concluded that both
QUBIC and BicPAM are viable options. During the development of the approach, we
decided to useQUBIC due to its nature of creating biclusters withmore columns than rows,
contrarily to BicPAM that tends to generate biclusters with more rows than columns. This
natural behavior of QUBIC is particularly essential because, during the creation of a user-
specific dataset, we need the dataset to contain most of the items present in the system. A
Collaborative Filtering model trained in only a subset of the items would necessarily lead
to a lack of coverage in the predictions since it would not even recognize that some items
existed in the system.

QUBIC Settings

QUBIC algorithm is a greedy deterministic algorithm that finds constant-values on columns
biclusters. In our approach, we considered only non-noisy biclusters, setting the parame-
ter c = 1 and controlling the maximal overlap with f = 0.99, making sure the biclusters are
maximal. However, it could be interesting to understand how different algorithm setups
can impact the approach’s performance. A detailed description of the algorithm and its
parameterization can be found in Section 4.3.1 and in QUBIC’s original work [69].

5.2.2 Create User-Specific Bicluster-based Matrix

The goal of this second step is to create, for each user, a new data-region with meaningful
and personalized information. To do so, we take advantage of the biclusters found by the
biclustering algorithm in the previous module. After the biclusters are generated, we can
expect that some of those biclusters represent a user’s preferences better than others. From
this perspective, we try to find a “neighborhood” of biclusters, in other words, a subset
of biclusters that individually are “similar” to a specific user. Then, we aggregate the
neighborhood biclusters and create a user-specific dataset. Singh and Mehrotra also used
the concept of similarity between a bicluster and a user in their methodology. However,
their similarity is solely based on the rated items’ interception. We propose a different user-
bicluster similarity that, besides the rated items’ interception, also considers the value of
those ratings. Bellow, we explain the details of our new similarity.

User-Bicluster “Similarity”

To find the k-nearest biclusters to the active user, USBCF does not use a similarity in its
“true” concept. Instead, we obtained the k-nearest biclusters by combining two distinct

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 58

measures. We refer to these measures as rated items’ interception (measureintercept) and
rating pattern (measurepattern).

In the previous related-work approaches [101, 105], some authors highlighted how
a viable similarity between a user and a bicluster could be obtained by the interception
between the items the user rated and the items of the bicluster, as indicated in Section 3.1.
Similarly to these previous works, we also consider a version of this type of similarity,
but, for our approach, we do not weight the number of users of the bicluster, as we do not
need to favor the biclusters that have more users. Our rated items’ measure is given by:

measureintercept(u, b) =
|Iu ∩ Ib|
|Ib|

. (5.1)

Its values range between [0,1], with 1 meaning that the user and the bicluster are very
similar. Nevertheless, we argue that a similarity entirely based on rated items’ can be
enhanced since it completely disregards those ratings’ values. For instance, in Figure 5.2,
we have an example of bicluster and an active user that rated all the items in the bicluster.
If we stick to the measure in Equation 5.1, we will obtain a similarity of value 1, which
indicates a maximum similarity. Notice, however, that despite the active user rated all
bicluster items, the values of those ratings follow a completely different rating pattern.
Thus, we propose an augmentation of the procedure previously adopted by other authors.

Bicluster (B1) Active User

5 1 1 5u11

i5 i6 i9i72 3 4 1
2 3 4 1
2 3 4 1

i5 i6 i9
u4
u5
u6

i7

Figure 5.2: Example of a bicluster and an active user with distinct rating pattern.

We believe that if a user is “similar” to a bicluster, then the user should belong to that
bicluster. This comes directly from the definition of bicluster since, for a group of users to
be in the same bicluster, there has to be a correlation in their rating pattern. Exploring this
idea, we decided to create a new “similarity”, which measures how a bicluster’s quality is
affected if we include the active user in it. We calculate this new measure as:

measurepattern(u, b) = residueb+u − residueb, (5.2)

where residueb is the amount of bicluster’s residue, and residueb+u is the residue
of the bicluster with the row of the active user in it. By subtracting the residue of the
final bicluster (with the user) for the initial bicluster (without the user), we measure the
amount of residue that the user is responsible for producing. The range of values the
measurepattern takes depends on the quality measure adopted. However, a higher value
means a more significant impact from the user on the quality, and thus a lower “similarity”

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 59

between user and bicluster. Note that in some cases, the active user already belongs to to
the bicluster. In those situations the value of the rating pattern measure is zero, since the
bicluster is the same before and after introducing the user.

To evaluate the quality of the biclusters, we considered the Mean Squares Residue
(MSR). The MSR, popularized by Cheng and Church [18], is a robust measure to evaluate
the coherence of bicluster’s rows and columns. MSR is capable of detecting shifting ten-
dencies within the bicluster [88]. Besides, biclusters with constant-values on the columns
obtain maximum quality in this measure.

Nevertheless, MSR is not defined for biclusters with missing values. Even if we do not
allow missing values when discovering the biclusters, we may introduce missing values
whenwe include the active user since hemay not have rated all of the items. We considered
four different options to deal with the missing values in the biclusters:

1. Replace the missing values with a constant value. It is a simple solution, but we
would be introducing residue in the biclusters. Since the rated items’ interception
already “penalizes” biclusters with items the user did not rate, introducing residue
with the missing values, we would be “penalizing” the same biclusters twice.

2. Replace the missing values with mean, mode, or median of the bicluster’s row, col-
umn, or elements. Simply replacing missing values with an average may not reflect
the real trends of the bicluster.

3. Adapt MSR to ignore missing values when computing the residue. We can make
sure only the remaining elements contribute to the residue estimation by ignoring
the missing values, reducing the missing values’ impact.

4. Implement a new quality measure well defined for biclusters with missing values.
The QUBIC only produces biclusters with constant values on columns. Thus, we
can create a quality measure specific to this type of pattern.

We decided to pursue with only the third and fourth option, since the first and second
option would penalize biclusters with missing values. We adapted the MSR measure so
that it does not take into account the missing entries when computing the residue. We refer
to this new MSR as MSR-missing-adaptation. Algorithm 2 shows the implementation of
this new adapted measure.

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 60

Algorithm 1: Determine MSR adapted to biclusters with missing values.
Data: A bicluster in the form of a matrix.
Result: The MSR-missing-adaptation of the matrix.

/* means without missing values */
rows_means← rows_nan_means(matrix)
cols_means← columns_nan_means(matrix)
matrix_mean← matrix_nan_mean(matrix)
/* count non missing values */
count← 0
/* residue accumulator */
residue← 0

/* iterate elements of the bicluster */
for row in matrix do

for col in row do
elem← matrix[row,col]
/* only non missing elements contribute */
if elem not nan then

elem_res = elem - rows_means[row] - cols_means[col] +
matrix_mean
residue← residue + pow((elem - elem_res), 2)
count← count + 1

end
end
return 1/count * residue

We also created a new quality measure, the Column-Mean-based Residue (CMR). The
proposed biclustering solution only contains biclusters with constant-values on columns,
so a simple residue based on the difference between the elements and the means of the
columns can be used if it handles the missing values in biclusters. The CMR quality mea-
sure is very similar to theMSR-missing-adaptation. However, since it is was implemented
specifically for a unique type of biclusters, we believe it can produce more accurate results
specifically for our approach. The pseudocode for CMR is available in Algorithm 2.

Algorithm 2: Determine Column-Mean-based Residue of a bicluster.
Data: A bicluster in the form of a matrix.
Result: The CMR of the matrix.

/* columns' means without missing values */
cols_means← columns_nan_means(matrix)
/* count non missing values */
count← 0
/* residue accumulator */
residue← 0

/* iterate elements of the bicluster */
for row in matrix do

for col in row do
elem← matrix[row,col]
/* only non missing elements contribute */
if elem not nan then

residue← residue + pow((elem - cols_means[col]), 2)
count← count + 1

end
end
return 1/count * residue

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 61

There is one particular situation when computing the value of rating pattern measure.
When the rated items’ interception is zero, meaning the active user did not rate any biclus-
ter items, it does not make sense to compute the measure since we would only be creating
missing values in the bicluster. In those cases, we consider the value of the rating pattern
to be infinite.

Combine User-Bicluster “Similarities”

After the similarities computation, each user has two similarity values for each bicluster
(rated items’ interception, and rating pattern). Combining both values into one, for in-
stance, multiplying both values, does not seem a reasonable solution. Unlike the rated
items’ interception, the range of the rating pattern measure is not bounded between zero
and one, which means the combination of both values could lead to unpredictable and
undesirable results.

Instead of combining these two values, we use them to create two ranked lists of biclus-
ters for each user. This means that each user has two lists of biclusters, each one ordered
by how “similar” the biclusters are to the user according to the respective measure. After
that, we combine the orders of both ranked lists and create a single list with the final order
of biclusters.

The process to merge both bicluster ranking lists is based on the mean position the
biclusters on both lists. For instance, recall the User-Bicluster Similatities module in
Figure 5.1, in which the ranked lists are: l1 = [Bic1, Bic6, Bic2, Bic3, Bic4, Bic5]

and l2 = [Bic6, Bic2, Bic3, Bic4, Bic1, Bic5]. The mean positions of each biclusters
are Bic1 = 1+5

2
= 3, Bic2 = 3+2

2
= 2.5, Bic3 = 4+3

2
= 3.5, Bic4 = 4, Bic5 =

6, Bic6 = 1.5. Sorting the mean positions of each bicluster, we obtain the final rank-
ing: lfinal = [Bic6, Bic2, Bic1, Bic3, Bic4, Bic5]. Finally, we select k first biclusters
of the final list, where k is the number of nearest biclusters we want to consider as the
neighborhood of the user (NNBics). Algorithm 3 summarizes the whole process.

Algorithm 3: Find the active user’s k-nearest-bics.
Data: The active user, a list of biclusters, and a value k.
Result: The k-biclusters most “similar” to the active user.
result_intercept← list()
result_pattern← list()
for bic in biclustering_solution do

intercept← obtain_sim_intercept(user, bic)
pattern← obtain_sim_pattern(user, bic)
result_intercept.append(intercept)
result_pattern.append(pattern)

end
ordered_bics_sim_intercept← reverse(sort(result_intercept))
ordered_bics_sim_pattern← sort(result_pattern)
nearest_bics← combine(ordered_bics_intercept, ordered_bics_pattern)
return filter(nearest_bics, k)

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 62

Aggregating the Neighborhood

After selecting the k most similar biclusters to each user, we aggregate the biclusters in
each neighborhood in order to create a personalized dataset for each user. The procedure
to obtain the personalized dataset consists in merging all the users and items of the bi-
cluster and obtaining the submatrix of the original U-I that corresponds to those rows
and columns. For example, considering Bic2 = {{u1, u2, u7}, {i4, i5}} and Bic6 =

{{u6, u8}, {i4, i6}} from Figure 5.1, the union set of the users of both biclusters is
U = {u1, u2, u6, u7, u8} and the union set of the items is I = {i4, i5, i6}. Figure 5.3
illustrates the process.

2 1
2 1
2 1

i4 i5
u1
u2
u7

Bic2

u1
u2
u6
u7
u8

i4 i5 i6
2 1
2 1 5
3 1
2 1 4
3 3 1

3 1
3 1

u6
u8

i4 i6
Bic6

User-Specific
U-I matrix

(Bic2 + Bic6)

Figure 5.3: Example of aggregating two biclusters to create a new dataset.

Additionally, we add the active user when he is not in the set of users of his own user-
specific dataset. This step is crucial because if the active user is not in the dataset, no
Collaborative Filtering approach will be able to generate recommendations for him since
he would not be in the training data, covering none of the predictions or recommendations.

Adaptive Bicluster Neighborhood Dimension

A critical aspect of the neighborhood approaches is the choice of the hyperparameter k, the
number of nearest neighbors. This hyperparameter usually has an enormous impact on the
performance of the algorithms, so we created a version of our approach that, for each user,
decides how many biclusters should be included in his neighborhood. The choice of the
number of nearest bicluster neighbors impacts the dimensions of the resulting personalized
matrix directly. Thus, we believe there are two imperative guidelines to follow when
deciding how many biclusters should be included.

Firstly, the biclusters should contain data regarding most system items. For our ap-
proach, it is decisive that the personalized matrices contain at least most of the system
items. Otherwise, the CF models would never be able to output recommendations of the
items they did not know existed.

Secondly, the number of biclusters should be controlled so that the dimensions of the
personalizedmatrix does not grow tremendously, damaging the scalability of the approach.

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 63

To maximize the coverage of the approach, ideally, each personalized matrix should
have a small fraction of the system users, but the entire system items. However, to create
the personalized matrix, we use data from the biclusters, which means that USBCF is
limited to the items the biclustering algorithm included in the biclustering solution.

We propose a user-adaptive bicluster neighborhood, which instead of filtering the first
k biclusters from the ordered list, it selects as many biclusters it needs until it ensures
the personalized dataset covers a certain portion of the items included in the biclustering
solution.

Despite not being a parameter-free approach (we still have to establish the portion of
items we want to guarantee), this type of parameterization is much more intuitive since it
does not depend on the size of the biclusters found by the biclustering algorithm.

5.2.3 Learning User-Specific Recommendation Models

Once the personalized datasets are created, a Collaborative Filtering algorithm is trained
with them, creating a unique recommendation model for each individual. Despite any
Collaborative Filtering approach could be combined with the USBCF approach, we be-
lieve the User-based CF and the Item-based CF are suitable choices. These approaches
are the basis of CF, recognized for producing rating predictions with exceptional quality.
When allied with USBCF, the USBCF approach can create smaller and denser U-I matri-
ces which allow the models to scale and perform the recommendation tasks effectively.

5.3 Final Remarks

This chapter proposed USBCF, a user-specific Collaborative Filtering approach that uses
biclustering as a step to scale and improve traditional CFmethods. The biclustering task is
used to group users with similar rating patterns in a subset of items. Then, a personalized
U-I matrix is created for each user, resulting from the aggregation of some biclusters.
Finally, a classic CF approach is trained for each of the personalized U-I matrices.

The USBCF was designed to enhance traditional Collaborative Filtering approaches
and overcome the major limitation of the state-of-the-art biclustering-based CF (BBCF),
the coverage capability. The proposed approach offers scalability in large-scale datasets
by dividing it into smaller personalized U-I matrices. Both the training and recommen-
dation phases can be performed in an embarrassingly parallel manner since each user has
its own model. Besides scalability, biclustering can also improve the traditional U-I ap-
proaches in high data sparsity environments since it creates denser matrices to train the
approaches. Moreover, biclustering offers a solution that can be used to promote compre-
hensibility and explainability of the recommendation.

For upcoming work on the USBCF, we intend to follow these major directions:

Chapter 5. USBCF - A User-Specific Bicluster-based Approach for Collaborative
Filtering 64

• Memory-dependency. The biclustering algorithm adopted, QUBIC, needs to have
the entire U-I matrix in memory to perform the biclustering task, which can be
impractical when dealing with large-scale recommendation datasets. We believe a
solution to this problem is adopting a biclustering algorithm that takes advantage of
matrix sparsity, such as BicNET [50].

• Adapt to new biclustering solutions. We want to understand how different bi-
clustering solutions can enhance the performance, for instance, discovering order-
preserving biclusters instead of the constant-values on the columns like the ones
discovered by QUBIC.

• Upgrade the user-bicluster “Similarity”. We intend to develop a new user-bicluster
measure that, in a single step, privileges biclusters with items the active user rated,
as well as considers the values of those ratings.

• Maximize coverage. Even though we significantly improved the BBCF regard-
ing coverage, some systems items are still discarded during the biclustering phase.
By including those items in some biclusters, we can maximize the coverage of the
models.

• Enhance scalability. Even though our method improves the scalability of CF mod-
els by dramatically reducing the number of users in each matrix, it still needs to
covermost system items. Thismeans that using an Item-based approach, themodel’s
training phase still makes n2 comparisons between item vectors.

Chapter 6

USBCF - A Case Study on Movie
Recommendation

In this chapter, we discuss the issues related to the evaluation of our approach. In order to
develop and evaluate our proposed methodology of Collaborative Filtering, we conducted
a set of experiments on the MovieLens-100k dataset, provided by the GroupLens research
lab1. In this case study, we compare the proposed approach’s performance against baseline
and state-of-the-art methods for both rating prediction and Top-N recommendation tasks.
In particular, we intend to answer the following research questions:

• RQ1. How does each module/feature of our approach affect the performance of the
model?

• RQ2. How does the number of biclusters chosen for each user influence the perfor-
mance of our approach?

• RQ3. How does USBCF compare against baseline CF approaches in terms of qual-
ity of predictions, quality of recommendations, ranking relevance and coverage?

• RQ4. Can USBCF surpass the main limitations presented by state of the art biclus-
tering based CF (BBCF) [101]?

• RQ5. What are the main limitations of the proposed approach?

6.1 Evaluation Methodology

We first introduce the details of the experimental platform, including the used software.
Then, we describe the dataset and evaluation metrics. Lastly, we specify the approaches
that served as a benchmark to compare with our model.

1https://grouplens.org/datasets/movielens/20m/

65

Chapter 6. USBCF - A Case Study on Movie Recommendation 66

6.1.1 Experimental Platform and Software

The models were trained on a machine with Intel Xeon 2.40GHz having thirty-two cores
and 32GBs of RAM. For generating the predictions and recommendations, Google Co-
laboratory was used with 2-core Xeon 2.20GHz and 13GBs of RAM. Regarding the im-
plementation of the approaches, the USBCF and the BBCF were implemented in Python.
As for the remaining approaches, it was used their available implementation in LensKit
[26] (version 0.10.1), a Python-based toolkit for recommender systems.

6.1.2 Benchmark Dataset

All the experiments were run on the MovieLens-100k dataset because it is one of the
most popular publicly available benchmark datasets to serve as domain testing for new
approaches. This version of the MovieLens’ datasets contains 100,000 ratings (1-5) from
943 users on 1682 movies. The data is in the form of triplets <user, item, rating>. Each
user has a minimum of 20 ratings made and a maximum of 737, but the average is 106
ratings per user with a standard deviation of 100 ratings. The sparsity of the MovieLens-
100K is 93.6%, in other words, approximately 6.4% of the entries are filled.

6.1.3 Evaluation Metrics

To measure the rating prediction accuracy of the recommendation algorithms, we used
two standard metrics, namelyMean Absolute Error (MAE) and Root Mean Squared Error
(RMSE), already defined in Chapter 2. As the prediction accuracy of a recommendation
system in many cases, especially in collaborative filtering systems, grows with the amount
of data, some algorithms may provide recommendations with high quality, but only for a
small portion of the items. In this work, we also evaluate the overall coverage capability
of the models, which is defined as the percentage of user-item pairs for which a prediction
can be made [95].

To evaluate the approach in the context of Top-N recommendation, we opted for using
the classic precision/recall framework. As these metrics are often conflicting in nature (a
more extensive recommendation list tends to increase recall but decrease precision), we
also include the standard F1 metric in our evaluation. We compute the precision, recall,
and F1 score for each individual user and calculate the average values to obtain the preci-
sion, recall, and F1 score of the model in the test-set. We also include the nDCG score in
our evaluation to evaluate the ranking relevance of the generated recommendations.

The results reported in this evaluation are the values obtained over runs of five-fold
cross-validation with 80% of the ratings as training data and the remaining 20% for test-
ing in each run. Besides the traditional cross-validation, in Appendix B we also report
the results for five-fold cross-validation where the users are the basis of splitting, instead
of the rows. When we use the user-based splitting, we make sure that each test set has a

Chapter 6. USBCF - A Case Study on Movie Recommendation 67

predefined fraction of each user’s ratings, allowing us to control the experimental condi-
tions on a user-by-user basis. For instance, avoiding that, by chance, all the ratings from
a user are put in the test set (and no data from some users in the training set). In these
experiments, we decided to use 20% of each users’ data for testing, this means that if a
user u has 20 ratings in the entire dataset, 4 ratings are randomly sampled to be in the test
set, and the remaining are put in the training set. An illustration of this user-based split
cross-validation is shown in Figure 6.1.

|U| = 943 users

E2Test2nd iteration
20% rows

20% rows

u189

u376
...

E1Test1st iteration
20% rows

20% rows

u1

u188
...

E3Test3rd iteration
20% rows

20% rows

u377

u565
...

E4Test4th iteration
20% rows

20% rows

u366

u754
...

E5Test5th iteration
20% rows

20% rows

u755

u943
...

E =

Figure 6.1: User-based split cross-validation.

6.1.4 Approaches for Comparative Analysis

To compare the performance of the USBCF approach, we also evaluated some popular
rating prediction methods:

• Baseline Rating Predictor (Bias) [32]. A user-item bias rating prediction algo-
rithm, denoted by : ru,i = µ+ bi + bu, where µ is the global mean rating, bi is item
bias, and bu is the user bias.

• User-based CF (USCF) [92]. User-based CF using normalized cosine-similarity
as similarity function and weighted-average as aggregation function.

• Item-based CF (IBCF) [96]. Item-based CF using normalized cosine-similarity as
similarity function and weighted-average as aggregation function.

• Singular Value Decomposition (SVD-ALS) [121]. Classic Matrix Factorization
algorithm that uses Alternating-Least-Squares withWeighted Regularization to cre-
ate a low-rank approximation of the U-I matrix.

Chapter 6. USBCF - A Case Study on Movie Recommendation 68

• Singular Value Decomposition (SVD-SGD) [26]. Standard Matrix Factorization
algorithm like SVD-ALS, but themodel’s parameters are learnedwith TensorFlow’s
gradient descent instead of the alternating-least-squares algorithm.

• SVD Model by Simon Funk (FunkSVD) [32]. The famous SVD-inspired ap-
proach popularized by Simon Funk during the Netflix Prize contest. It uses reg-
ularized stochastic gradient descent to train the user-feature and the item-feature
matrix.

• Biclustering-based CF (BBCF) [101]. Biclustering based CF proposed by Singh
and Mehrotra in 2018.

We also include the following Top-N-only approaches:

• Random Item Recommendation (Random) [26]. Model that recommends items
randomly.

• Most Popular (Popular) [26]. Model that recommends themost frequently-consumed
items a user has not yet interacted with.

• Implicit Matrix Factorization (ImplicitMF) [54]. Implicit matrix factorization
trained with alternating least squares. This approach binarizes the I-U matrix, con-
sidering all the ratings as positive-interactions and the missing values as zero.

6.2 Results and Discussion

This section presents the experiments conducted to evaluate the proposed approach, as
well as its results and discussion.

6.2.1 Baseline Approaches - Models and Parameterization

Correctly setting up methods by tuning its hyperparameters is central for a fair evaluation.
Rendle et al. [91] highlighted this by carefully setting up baseline methods and showing
that they outperformed numerous recent publications of approaches reported as being su-
perior to the baselines on the MovieLens-10M dataset. Thus, we start our evaluation by
testing how the baseline approaches’ parameterization setup affects their performance in
theMovieLens-100k dataset. Then, we select a tunedmodel from each approach, compare
it, and use it to serve as a benchmark to evaluate the USBCF model.

Chapter 6. USBCF - A Case Study on Movie Recommendation 69

Basic Models

Regarding the basic non-Collaborative Filteringmethods, there are nomajor hyper-parameters
to optimize. In Table 6.1 we present the results we obtained with these models basic mod-
els.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

Bias 0.948 ± 0.004 0.748 ± 0.003 100.00 0.012 ± 0.004 0.002 ± 0.001 0.016 ± 0.001 0.002 ± 0.001

Random - - - 0.014 ± 0.001 0.002 ± 0.000 0.017 ± 0.001 0.004 ± 0.000

Popular - - - 0.155 ± 0.002 0.034 ± 0.001 0.059 ± 0.001 0.061 ± 0.001

Table 6.1: Results of the basic models.

UBCF and IBCF

The maximum number of users/items in the neighborhood (NNBRS) for both UBCF and
IBCF is known for significantly impacting the quality of the produced model [96]. So,
we studied the sensitivity of both approaches to this parameter. Table 6.2 summarizes the
main results of this experiment.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

UBCF

nnbrs=10 0.950 ± 0.005 0.743 ± 0.004 99.72 0.016 ± 0.002 0.002 ± 0.000 0.017 ± 0.000 0.004 ± 0.001
nnbrs=20 0.938 ± 0.006 0.733 ± 0.005 99.72 0.009 ± 0.002 0.001 ± 0.000 0.015 ± 0.001 0.002 ± 0.000
nnbrs=30 0.936 ± 0.005 0.732 ± 0.005 99.72 0.007 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.002 ± 0.000
nnbrs=40 0.936 ± 0.006 0.732 ± 0.005 99.72 0.006 ± 0.001 0.001 ± 0.000 0.015 ± 0.001 0.001 ± 0.000
nnbrs=50 0.937 ± 0.005 0.733 ± 0.005 99.72 0.005 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000
nnbrs=60 0.937 ± 0.005 0.733 ± 0.005 99.72 0.004 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000
nnbrs=70 0.938 ± 0.005 0.734 ± 0.005 99.72 0.004 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000

IBCF

nnbrs=10 0.919 ± 0.003 0.718 ± 0.002 99.51 0.042 ± 0.003 0.007 ± 0.001 0.026 ± 0.001 0.013 ± 0.001
nnbrs=20 0.911 ± 0.003 0.713 ± 0.003 99.51 0.042 ± 0.003 0.007 ± 0.001 0.026 ± 0.001 0.012 ± 0.001
nnbrs=30 0.911 ± 0.002 0.714 ± 0.002 99.51 0.040 ± 0.004 0.006 ± 0.001 0.025 ± 0.002 0.011 ± 0.002
nnbrs=40 0.912 ± 0.003 0.715 ± 0.002 99.51 0.040 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.011 ± 0.001
nnbrs=50 0.913 ± 0.003 0.717 ± 0.003 99.51 0.039 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.010 ± 0.001
nnbrs=60 0.914 ± 0.003 0.718 ± 0.003 99.51 0.038 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.010 ± 0.001
nnbrs=70 0.914 ± 0.003 0.718 ± 0.003 99.51 0.037 ± 0.004 0.006 ± 0.001 0.024 ± 0.001 0.010 ± 0.001

Table 6.2: Results of the User-based CF and Item-based CF varying the maximum number
of neighbors’ parameter

As we can observe in Figure 6.2, regarding prediction accuracy, there are significant
improvements in both approaches when we grow the neighborhood size, especially be-
tween 5 to 20/25 for the number of neighbors’ parameter, which is similar to the results
obtained by Sarwar et al. in the same dataset [96]. Concerning the quality of Top-N rec-
ommendations, a smaller neighborhood tends to generate better recommendations. So,
for the rest of the evaluation, we set the maximum number of neighbors to 20 in both the
UBCF and the IBCF approaches.

Chapter 6. USBCF - A Case Study on Movie Recommendation 70

5 10 15 20 25 30 35 40 45 50 55 60 65 70
NNBRS

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98
Ro

ot
 M

ea
n

Sq
ua

re
 E

rro
r (

RM
SE

)
UBCF
IBCF

(a) RMSE of different NNBRS setups.

5 10 15 20 25 30 35 40 45 50 55 60 65 70
NNBRS

0.72

0.73

0.74

0.75

0.76

0.77

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

UBCF
IBCF

(b) MAE of different NNBRS setups.

Figure 6.2: Sensitivity of UBCF and IBCF to the size of the neighborhood.

Matrix Factorization Methods

For the Matrix Factorization-based approaches, we performed a grid search over the two
main hyperparameters: the number of features and the regularization factor of their re-
spective optimization algorithm. For the number of features we set up a grid search over
seven values {5, 10, 20, 50, 100, 200, 500}. Whereas for the regularization factor the used
grid was {0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.5}. In Table 6.3 we present the setup with
best performance for each method. The complete results of this grid-search can be found
in Table B.2.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

FunkSVD
(f=10, reg=0.2) 0.939 ± 0.003 0.742 ± 0.003 99.81 0.068 ± 0.002 0.011 ± 0.001 0.034 ± 0.001 0.021 ± 0.001

SVD-ALS
(f=100, reg=0.1) 0.915 ± 0.003 0.719 ± 0.003 99.81 0.071 ± 0.002 0.012 ± 0.000 0.035 ± 0.001 0.026 ± 0.001

SVD-SGD
(f=100, reg=0.5) 0.965 ± 0.006 0.759 ± 0.004 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001

ImplicitMF
(f=500, reg=0.01) - - - 0.252 ± 0.002 0.064 ± 0.002 0.095 ± 0.002 0.112 ± 0.003

Table 6.3: Results of the Matrix Factorization models with best performance.

We can not guarantee that those models’ setups are optimal as a more exhaustive grid
search could deal to better performances. Moreover, we did not contemplate all the hyper-
parameters of each method, for instance, the learning-rate of the optimization algorithm
could also further improve the performance of the models.

6.2.2 BBCF

Singh and Mehrotra in their BBCF work [101] used an Item-based approach as the recom-
mendation algorithm. To evaluate BBCF, the authors fixed the neighborhood of the IBCF

Chapter 6. USBCF - A Case Study on Movie Recommendation 71

to 10 and used adjusted-cosine as the similarity measure. They also studied how the al-
lowed overlapping percentage between biclusters affected the performance of BBCF and
concluded that a higher degree of overlap tends to lead to better results.

In our experiments, instead of the IBCF with the adjusted-cosine similarity, we used
IBCF with normalized cosine similarity and a neighborhood size of 20 because those were
the settings we set in the comparative IBCF baseline method. Regarding overlapping per-
centage between biclusters, Singh and Mehrotra concluded that higher values of overlap-
ping significantly improve the performance of the approach, so we set it to 99%, so that
it considers maximal biclusters. Similarly to Singh and Mehrotra, we also investigate the
impact that the number of nearest biclusters (NNBics) has on the quality of predictions
and recommendations. Table 6.4 summarizes the results.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

BBCF

NNBics=10 0.935 ± 0.006 0.731 ± 0.007 27.85 0.248 ± 0.010 0.020 ± 0.001 0.038 ± 0.001 0.053 ± 0.004
NNBics=20 0.917 ± 0.005 0.719 ± 0.005 35.30 0.232 ± 0.013 0.018 ± 0.001 0.035 ± 0.002 0.049 ± 0.003
NNBics=30 0.908 ± 0.005 0.712 ± 0.004 38.95 0.218 ± 0.012 0.017 ± 0.001 0.033 ± 0.002 0.047 ± 0.002
NNBics=40 0.904 ± 0.005 0.708 ± 0.003 41.61 0.211 ± 0.011 0.017 ± 0.001 0.032 ± 0.001 0.045 ± 0.003
NNBics=50 0.902 ± 0.006 0.706 ± 0.004 43.55 0.203 ± 0.010 0.016 ± 0.001 0.031 ± 0.001 0.044 ± 0.002
NNBics=60 0.899 ± 0.006 0.705 ± 0.004 44.96 0.196 ± 0.011 0.015 ± 0.001 0.030 ± 0.001 0.043 ± 0.002
NNBics=70 0.897 ± 0.005 0.703 ± 0.003 46.16 0.188 ± 0.011 0.015 ± 0.001 0.029 ± 0.001 0.040 ± 0.002

Table 6.4: Sensitivity of BBCF to the number of biclusters in the neighborhood.

Our experiments’ results are very similar to the ones Singh and Mehrotra obtained in
their work, as prediction accuracy tends to be better when the number of nearest biclusters
is between 50 and 100. In Figure 6.3 we can see that in our experiments both, RMSE and
MAE are minimal for the largest biclusters’ neighborhoods. Due to experimental con-
straints, we were not able to test the approach with even larger neighborhoods. However,
according to the BBCF’s original work, that it would not result in further accuracy gains.

10 20 30 40 50 60 70
NNBics

0.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

BBCF

(a) RMSE of different NNBics setups.

10 20 30 40 50 60 70
NNBics

0.705

0.710

0.715

0.720

0.725

0.730

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

BBCF

(b) MAE of different NNBics setups.

Figure 6.3: Sensitivity of BBCF to the size of the biclusters’ neighborhood.

On the other hand, the recommendation quality peaks with lower numbers of nearest
biclusters. Coverage of the predictions is clearly the major limitation of the BBCF ap-

Chapter 6. USBCF - A Case Study on Movie Recommendation 72

proach. It tends to improve as the number of biclusters per neighborhood increases, but
even for NNBics=70 it covers only 46% of the prediction pairs which is considered poor.

The purpose of this approach is to provide quality predictions in an acceptable time,
tackling the scalability issues of the traditional memory-based approaches. So, we also
examine the average dimensions of the personalized dataset produced for each user. In
Figure 6.4, we can see the dimensions of the personalized datasets increases as we use
larger values for the NNBics parameter. These results show that, as expected, larger values
of NNBics lead to more complex personalized models, impacting the scalability of the
approach.

10 20 30 40 50 60 70
NNBics

20

30

40

50

60

70

80

Av
er

ag
e

nu
m

be
r o

f u
se

rs

 p
er

 n
ei

gh
bo

rh
oo

r

BBCF

(a) Average number of users per NNBics setup.

10 20 30 40 50 60 70
NNBics

350

400

450

500

550

600

650

700

750

Av
er

ag
e

nu
m

be
r o

f i
te

m
s

 p
er

 n
ei

gh
bo

rh
oo

r

BBCF

(b) Average number of items per NNBics setup.

Figure 6.4: Effect of the number biclusters in the neighborhood on the average size of the
personalized dataset.

For the remaining of the experiments, we set the number of nearest biclusters to 50.
From our experiments, it appears to be a value that balances the performances of the al-
gorithm and maintains a reasonable average size of the personalized datasets.

6.2.3 USBCF

To assess the impact of each USBCF feature in the performance of the proposed approach,
we conducted some experiences. We start with the BBCF (NNBics=50) as a baseline,
and then we individually add the new features that assemble the USBCF, evaluating its
performance.

BBCF-NoWeight

We start by investigating if, as we stated in Section 5.2.2, our adaptation to the previously
adopted rated items’ interception does not damage the performance of the model. Here
we evaluate the BBCF approach with the slight modification of not favoring the biclusters
with more users. We refer to this model as “BBCF-NoWeight”.

Chapter 6. USBCF - A Case Study on Movie Recommendation 73

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

BBCF-NoWeight
(NNBics=50) 0.904 ± 0.007 0.708 ± 0.004 45.30 0.184 ± 0.007 0.018 ± 0.008 0.034 ± 0.001 0.044 ± 0.003

Table 6.5: Results of the BBCF-NoWeight model.

As Table 6.5 shows, the simplification to the rated items’ interception similarity had
minimal impact on the model’s performance. It even improved the coverage of BBCF
(NNBics=50) by almost 2%, maintaining the prediction and recommendation tasks’ over-
all quality. This result supports our decision of adapting the user-bicluster similarity mea-
sure.

BBCF-CombineSimilaritity-MSR

Another important feature of our approach is the new user-bicluster similarity which com-
bined the rated items’ interception with the rating pattern measure. In this approach
we include our user-bicluster similarity in the BBCF (NNBics=50) baseline to under-
stand if it improves the original BBCF approach. We refer to this new model as “BBCF-
CombinedSimilaritity-MSR”.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

BBCF-CombineSimilaritity-MSR
(NNBics=50) 0.855 ± 0.256 0.694 ± 0.238 0.30 0.287 ± 0.025 0.011 ± 0.002 0.020 ± 0.003 0.039 ± 0.010

Table 6.6: Results of the BBCF-CombinedSimilarity-MSR model.

From Table 6.6 we can see an improvement regarding the average quality of the pre-
dictions followed by a significant increase in the standard deviation. This result is mainly
caused by the immense lack of coverage from the model, being able to rate only 3% of the
user-item pairs.

Concerning the lack of coverage of this model, we believe it can be explained by
the characteristics of the new similarity measure. The similarity measure adopted by the
BBCF, despite not considering the biclusters’ rating pattern, ensures the chosen biclusters
include items that the user had previously rated. When we combine it with the rating pat-
tern measure, we reduce its influence, and the model creates personalized sparser matrices,
which leads to a lack of coverage from the resulting model.

USBCF-MSR and USBCF-CMR

To measure the rating pattern “similarity” between users and biclusters, we tested the pro-
posed USBCF approach with two different quality measures as described in Section 5.2.2.
The main difference to the “BBCF-CombineSimilarity-MSR” model tested previously, is
the step responsible for adding the user to his user-specific dataset. This experiment,

Chapter 6. USBCF - A Case Study on Movie Recommendation 74

demonstrates the importance of adding the user to his dataset regarding the models’ cov-
erage capability and understand if the small differences between the two quality measures
can impact the performance of the models. We refer as “USBCF-MSR” to the model using
the Mean-Square-Residue adaptation, and as “USBCF-CMR” to the model using the pro-
posed Mean-Column-based-Residue. Table 6.7 presents the results obtained for models
with using a bicluster neighborhood of 50 biclusters.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

USBCF-MSR
(NNBics=50) 0.927 ± 0.004 0.725 ± 0.003 84.55 0.073 ± 0.001 0.012 ± 0.001 0.035 ± 0.001 0.024 ± 0.001

USBCF-CMR
(NNBics=50) 0.927 ± 0.005 0.725 ± 0.003 85.71 0.073 ± 0.001 0.012 ± 0.000 0.035 ± 0.001 0.024± 0.000

Table 6.7: Results of the USBCF-MSR and the USBCF-CMR models.

Both USBCF-MSR and USBCF-CMR models obtained very similar prediction and
recommendation quality. USBCF-CMR covered slightly more test predictions. When
compared with the ones from the baseline methods, these results were only surpassed by
the IBCF and the SVD-ALS regarding the predictions’ accuracy. In terms of recommenda-
tions, the USBCFmodels had similar performance to the SVD-ALS, being only surpassed
by the Top-N-only baselines (Popular and ImplicitMF).

Compared to the BBCF (NNBic=50), the USBCF models could not maintain the im-
pressive MAE and RMSE results of the BBCF. Nevertheless, while the BBCF approach
was only able to cover 43.55% of the test predictions, the USBCF covered 85.71%, which
is an immense improvement. We believe the upper hand of the BBCF regarding accu-
racy is directly linked to the model’s lack of coverage. The lack of coverage of the BBCF
approach derives from the fact user-specific neighborhood not containing the active user
neither some items, which means the bicluster algorithm did not cluster the active user nor
similar users with those items. A possible reason for this to happen is the fact that there
are no strong correlations connecting the active user and the items, making it harder for
any method to predict those pairs. If the model could predict the remaining user-item test
pairs, it would necessarily produce less accurate outputs.

These results show that the proposed methodology can successfully improve the cov-
erage of the state-of-the-art biclustering-based Collaborative Filtering while continuing to
produce good quality predictions.

USBCF-CMR NNBics Sensitivity

To further evaluate the proposed approach, we tested the impact the number of neighbor-
hood biclusters parameter has on the USBCF-CRM performance. Table 6.8 presents the
obtained results.

Chapter 6. USBCF - A Case Study on Movie Recommendation 75

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

USBCF-CMR

NNBics=10 0.959 ± 0.009 0.750 ± 0.008 61.44 0.090 ± 0.003 0.015 ± 0.000 0.040 ± 0.001 0.029 ± 0.001
NNBics=20 0.944 ± 0.003 0.739 ± 0.003 72.91 0.083 ± 0.002 0.014 ± 0.000 0.037 ± 0.000 0.027 ± 0.001
NNBics=30 0.936 ± 0.004 0.732 ± 0.003 78.74 0.080 ± 0.001 0.013 ± 0.000 0.037 ± 0.001 0.026 ± 0.001
NNBics=40 0.930 ± 0.004 0.728 ± 0.003 82.38 0.076 ± 0.001 0.012 ± 0.000 0.036 ± 0.000 0.025 ± 0.001
NNBics=50 0.927 ± 0.005 0.725 ± 0.003 85.71 0.073 ± 0.001 0.012 ± 0.000 0.035 ± 0.001 0.024 ± 0.000

Table 6.8: Sensitivity of the USBCF-MCR to the number of biclusters in the neighborhood

The results from Table 6.8 show very similar behaviour to the ones obtained when
we varied the value of NNBics parameter in the BBCF approach. The rating prediction
quality improves as the number of NNBics increases, as Figure 6.5 shows. On the other
hand, the quality decreases, which is the standard behaviour for all the rating prediction
approaches included in this evaluation. Focusing on the coverage capability, when com-
pared to the results obtained by BBCF in Table 6.4 these results strengthen the argument
that our proposed methodology can overcome the major limitation of the BBCF approach,
covering a munch larger portion of the user-item test pairs.

10 20 30 40 50
NNBics

0.930

0.935

0.940

0.945

0.950

0.955

0.960

Ro
ot

 M
ea

n
Sq

ua
re

 E
rro

r (
RM

SE
)

USBCF-CMR

(a) RMSE of different NNBics setups.

10 20 30 40 50
NNBics

0.725

0.730

0.735

0.740

0.745

0.750

M
ea

n
Ab

so
lu

te
 E

rro
r (

M
AE

)

USBCF-CMR

(b) MAE of different NNBics setups.

Figure 6.5: Sensitivity of USBCF-CMR to the size of the biclusters’ neighborhood.

Similarly to the BBCF experiment, we also examined the average dimensions of the
bicluster-based personalized matrices. In Figure 6.6 a) and b), we see that as the value of
NNBics increases, the average number of users per bicluster grows linearly, whereas the
growth of number of items seems to dissolve for larger values of NNBics.

Chapter 6. USBCF - A Case Study on Movie Recommendation 76

10 20 30 40 50
NNBics

20

30

40

50

60
Av

er
ag

e
nu

m
be

r o
f u

se
rs

 p

er
 n

ei
gh

bo
rh

oo
r

USBCF-CMR

(a) Average number of users per NNBics setup.

10 20 30 40 50
NNBics

400

450

500

550

600

650

700

Av
er

ag
e

nu
m

be
r o

f i
te

m
s

 p
er

 n
ei

gh
bo

rh
oo

r

USBCF-CMR

(b) Average number of items per NNBics setup.

Figure 6.6: Effect of the number biclusters in the neighborhood on the average size of the
personalized dataset.

The results of this experiment show the importance of the hyperparameter that controls
the number of biclusters that form a neighborhood. Increasing this hyperparameter seems
to lead to better prediction quality and coverage, which is expected since if we used all
of the discovered biclusters, we would be creating a matrix similar to the original U-I
matrix, instead of smaller and personalizedmatrices. There is an evident trade-off between
scalability (with smaller neighborhoods), and performance (with larger neighborhoods).

USBCF-CMR-Adaptive

As described in Section 5.2.2, we created a version of USBCF which tries to overcome
the dependency of the NNBics hyper-parameter. This version of the proposed approach
instead of the NNBics parameter, it uses a parameter that controls the minimum percentage
of the items, discovered by the biclustering algorithm, to include in each neighborhood.
We refer to this parameter as “ItemsPortion”. In this experiment, we evaluate the adaptive
bicluster neighborhood version of USBCF using ItemsPortion = 0.7, which adds biclusters
to the neighborhoods until the neighborhood has data about 70% of the possible items. In
Table 6.9, we summary the results obtained for this version of the approach.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

USBCF-CMR-Adaptive
(ItemsPortion=0.7) 0.923 ± 0.006 0.723 ± 0.004 88.01 0.069 ± 0.001 0.012 ± 0.000 0.034 ± 0.001 0.023 ± 0.001

Table 6.9: Results of the Adaptive Bicluster Neighborhood Dimension version of the
USBCF-CMR.

The results show that the USBCF-CMR-Adaptive (ItemsPortion=0.7) surpassed the
USBCF-CRM (NNBics=0.5) regarding prediction quality, including coverage capability.
We analyzed the average dimensions of the personalized matrices produced by USBCF-

Chapter 6. USBCF - A Case Study on Movie Recommendation 77

CMR-Adaptive (ItemsPortion=0.7) and it included, on average, 71 users and 770 items,
which is around 7.1% of the system users and 45% of the system items.

6.3 Final Remarks

In this case study, we performed a set of experiments on the MovieLens-100k benchmark
dataset with the USBCF approach. In particular, we studied the proposed approach, com-
paring it against baseline CF methods and the state-of-the-art biclustering-based CF.

In Collaborative Filtering literature, it is challenging to standardize performance val-
ues for the CF methods. It is prevalent for different authors to obtain different results for
the same approaches in the same dataset since each work opts for a particular evaluation
methodology, using different parameterizations. However, for the MovieLens-100k, to
our knowledge, the best accuracy values are around 0.91/0.92 of RMSE, and 0.71/0.72 of
MAE [55, 90]. Our evaluation of the USBCF approach confirms that our method can ob-
tain state-of-the-art accuracy results. When using a bicluster neighborhood size of 50, the
USBCFmodel obtained an RMSE of 0.927, only slightly outperformed by Item-Based CF
and SVD-ALS. We believe that our approach can produce even lower prediction errors, as
we did not fully explore it regarding its different setups. The biclustering algorithm plays
a significant role in the BBCF approach, as its solution is based on the entire method.
It could be interesting to evaluate the approach with QUBIC under different parameteri-
zation settings, for instance, reducing the biclusters’ quality by allowing missing values.
Alternatively, we could try USBCF using a different biclustering algorithm, finding types
of biclusters.

Nevertheless, the primary goal of the USBCF approach is not to obtain the best predic-
tion errors but rather enhance the traditionalmethod by improving its scalability. Clustering-
based Collaborative Filtering methods are known for producing worse prediction quality
than the baseline-neighborhood methods. However, while dividing the data into clusters
may reduce the recommendations’ accuracy, it may be a worthy trade-off between accu-
racy and throughput in a real application.

The results of our experiments show that despite the fact that the state-of-the-art biclustering-
based CF (BBCF) outperformed USBCF regarding prediction accuracy, the proposed ap-
proach was able to successfully overcome BBCF’s major limitation, improving its cover-
age capability by 43%.

To further validate our approach, we intend to further evaluate USBCF in a larger
dataset with different characteristics (MovieLens-1M), with even more exhaustive experi-
ments, including throughput, measuring the time taken by model’s training and prediction
phases. A more in-depth evaluation is needed to understand if USBCF can effectively
scale traditional memory-based approaches, supporting its applicability in real-world rec-
ommender systems.

Chapter 6. USBCF - A Case Study on Movie Recommendation 78

Chapter 7

Conclusions and Future work

Biclustering has gained increasing attention in the literature as an effective advanced clus-
tering technique with applicability not only in gene expression data but also in different
contexts, such as text-mining and marketing analysis [76].

In the Collaborative Filtering (CF) domain, clustering-based approaches are popular as
a dimensionality reduction mechanism to work with large-scale datasets. Despite the fact
that fewworks explored biclustering in a CF scenario, biclustering has shown potentialities
to further improve the clustering-based CF literature by taking advantage of the existent
duality between users and items, instead of considering only the similarities between users
or items, individually, like most CF algorithms.

In this context, this work provides a review of the traditional Collaborative Filter-
ing recommendation scenario, presenting CF’s standard settings, tasks, and challenges.
Moreover, it describes state-of-the-art approaches and discusses the standard evaluation
methodology.

Then, we survey the biclustering domain, define the main concepts, and interpret how
different authors included this clustering task in the Collaborative Filtering domain. We
also reviewed some works incorporating the time-dimension in classic neighborhood-
based CF algorithms, as we believe it can also be easily incorporated in bicluster-based
CF approaches.

Themain contribution of this work is a user-specific CF approach that uses biclustering
as a sub-step to scale and improve traditional CF methods. The process to develop the
USBCF approach included three main stages.

The first stage evaluated the potentialities of BicPAM, a state-of-the-art pattern-based
biclustering algorithm. We tested its performance against two other biclustering algo-
rithms, which had already been used in the discovery of biclusters in U-I interaction ma-
trices (xMOTIFs and QUBIC).

In the second stage, and using as reference the state-of-the-art biclustering-based CF
approach (BBCF), we proposed a novel bicluster-basedmethod, which overcomes the cov-
erage limitation presented by BBCF. During the process of developing USBCF, we created

79

Chapter 7. Conclusions and Future work 80

a new methodology to measure the “similarity” between a user and a bicluster. Further-
more, we adapted the Mean-Square-Residue (MSR) measure, which evaluates the residue
within a bicluster, so that it does not consider missing values when computing the residue.
We also created our own bicluster quality measure, Mean-Column-Residue (MCR), which
is a novel measure specific for biclusters with constant-values on the columns, and adapted
it so that missing values do not contribute to the biclusters’ residue.

Finally, we validated the approach using the MovieLens-100k benchmark dataset. We
demonstrate that USBCF is an improvement when compared to the previously proposed
bicluster-based CF methods and can obtain similar accuracy scores to the state-of-the-art
CF methods while improving scalability.

We believe this work displays the potentialities of the biclustering technique for rec-
ommendation purposes. Despise the promising results of these primary tests, we want to
further improve and validate the USBCF approach in the future. Bellow, we highlight
potentially relevant research avenues for future work:

• Incorporate a time-exploiter technique in USBCF. There is strong scientific ev-
idence showing that including time-information in the CF algorithms can signifi-
cantly improve the methods’ accuracy [66, 110]. To our knowledge, there is still
no work in the literature in the direction of studying a bicluster-based CF technique
exploiting the temporal dynamics of the data. In Section 2.3 we already identified
some techniques which could easily be included in the USBCF approach.

• Explore different QUBIC’s parameterization setups. The biclustering algorithm
plays a significant role in the USBCF approach. In Chapter 5 we proposed the
usage of QUBICwith a standard parameterization. However, we could, for instance,
allow a controlled percentage of noisy elements to be included in the biclusters. By
investigating how its parameterization affects the CF approach’s quality, it may be
possible to improve the USBCF methodology.

• Different biclustering algorithms. In Chapter 5 we used QUBIC as our biclus-
tering algorithm for the USBCF approach. However, any algorithm could be used
instead, with minor modifications to the overall methodology. During this project’s
development, new biclustering algorithms were proposed, from which we highlight
QUBIC2 [112] and RecBic [74]. Moreover, the usage of BicPAM [48] to explore
the same methodology on order-preserving biclusters can also be an interesting ex-
periment.

• Incremental version of USBCF. The training phase of most CF approaches, in-
cluding USBCF, is usually computationally expensive, which prohibits frequent
re-training of the model. This type of CF approaches can only be deployed in static

Chapter 7. Conclusions and Future work 81

settings where the known preferences do not vary with time. An incremental ver-
sion of USBCF by automatically adding new users and items to biclusters would
improve the applicability of the approach to more real-world applications.

• Exhaustive evaluations. Evaluate the robustness of the approach in larger datasets,
with an especial focus on studying the scalability-accuracy trade-off, to validate the
applicability of the proposed approach.

Chapter 7. Conclusions and Future work 82

Appendix A

Biclustering Algorithms Study

1000 2000 3000 4000 5000
Input dataset's number of rows

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f s
ig

ni
fic

at
iv

e
bi

clu
st

er
s f

ou
nd constant columns

order-preserving

(a) Incrementing rows

20 40 60 80 100 120 140 160 180
Input dataset's number of columns

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f s
ig

ni
fic

at
iv

e
bi

clu
st

er
s f

ou
nd constant columns

order-preserving

(b) Incrementing columns

Figure A.1: Evolution of the biclusters found according to the number of rows and
columns of the input data.

83

Appendix A. Biclustering Algorithms Study 84

Number of
rows

Number of
cols #biclusters found #significant biclusters

(p < 0.001)
Avg. #rows per bicluster
(p < 0.001)

Avg. #cols per bicluster
(p < 0.001)

480 180 280 46 2.11 ± 0.31 3.76 ± 0.79
960 692 137 2.18 ± 0.44 3.62 ± 0.84
1440 1212 244 2.27 ± 0.62 3.60 ± 0.91
1920 1729 396 2.30 ± 0.62 3.66 ± 0.91
2400 2097 471 2.31 ± 0.64 3.62 ± 0.90
2880 2625 587 2.34 ± 0.78 3.67 ± 0.89
3360 3239 748 2.37 ± 0.85 3.68 ± 0.90
3840 3830 884 2.41 ± 0.98 3.72 ± 0.89
4320 4378 1030 2.44 ± 1.07 3.76 ± 0.90
4800 5075 1180 2.42 ± 1.05 3.78 ± 0.87

4800 18 18 0 - -
36 72 1 2.00 ± 0.00 3.00 ± 0.00
54 230 11 2.36 ± 0.64 2.91 ± 0.79
72 809 106 2.39 ± 0.90 3.30 ± 0.66
90 1067 177 2.34 ± 0.79 3.34 ± 0.71
108 1428 280 2.40 ± 1.09 3.37 ± 0.74
126 2204 494 2.41 ± 1.05 3.52 ± 0.77
144 4223 891 2.40 ± 0.97 3.78 ± 0.83
162 4433 962 2.41 ± 0.98 3.78 ± 0.85

Table A.1: Properties of the constant columns biclustering solutions varying the size of
the input data

Number of
rows

Number of
cols #biclusters found #significant biclusters

(p < 0.001)
Avg. #rows per bicluster
(p < 0.001)

Avg. #cols per bicluster
(p < 0.001)

480 180 759 340 2.52 ± 1.11 3.47 ± 1.11
960 1678 788 2.75 ± 1.75 3.41 ± 1.00
1440 2668 1309 3.01 ± 2.87 3.44 ± 0.96
1920 3825 2058 3.11 ± 3.22 3.49 ± 0.97
2400 4502 2454 3.22 ± 3.60 3.47 ± 0.96
2880 5445 3049 3.31 ± 3.88 3.49 ± 0.94
3360 6622 3782 3.38 ± 4.18 3.50 ± 0.95
3840 7657 4379 3.48 ± 4.64 3.53 ± 0.94
4320 8836 5164 3.52 ± 4.78 3.56 ± 0.95
4800 9968 5802 3.60 ± 5.13 3.58 ± 0.94

4800 18 16 1 34.00 ± 0.00 2.00 ± 0.00
36 67 9 5.89 ± 9.96 2.56 ± 0.50
54 250 61 5.85 ± 9.20 2.84 ± 0.66
72 1071 504 4.29 ± 6.13 3.14 ± 0.71
90 1646 889 3.91 ± 5.21 3.17 ± 0.74
108 2427 1425 3.71 ± 4.60 3.21 ± 0.79
126 3905 2333 3.69 ± 4.72 3.32 ± 0.83
144 7773 4367 3.74 ± 5.62 3.58 ± 0.92
162 8243 4660 3.71 ± 5.54 3.58 ± 0.93

Table A.2: Properties of the order-preserving biclustering solutions varying the size of the
input data

Appendix B

USBCF

B.1 Cross-Validation Results

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

UBCF

nnbrs=5 0.981 ± 0.003 0.768 ± 0.002 99.72 0.023 ± 0.004 0.004 ± 0.001 0.020 ± 0.001 0.006 ± 0.001
nnbrs=10 0.950 ± 0.005 0.743 ± 0.004 99.72 0.016 ± 0.002 0.002 ± 0.000 0.017 ± 0.000 0.004 ± 0.001
nnbrs=15 0.941 ± 0.005 0.736 ± 0.004 99.72 0.011 ± 0.002 0.002 ± 0.000 0.016 ± 0.001 0.003 ± 0.001
nnbrs=20 0.938 ± 0.006 0.733 ± 0.005 99.72 0.009 ± 0.002 0.001 ± 0.000 0.015 ± 0.001 0.002 ± 0.000
nnbrs=25 0.937 ± 0.005 0.732 ± 0.005 99.72 0.008 ± 0.002 0.001 ± 0.000 0.014 ± 0.001 0.002 ± 0.000
nnbrs=30 0.936 ± 0.005 0.732 ± 0.005 99.72 0.007 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.002 ± 0.000
nnbrs=35 0.936 ± 0.005 0.732 ± 0.005 99.72 0.006 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000
nnbrs=40 0.936 ± 0.006 0.732 ± 0.005 99.72 0.006 ± 0.001 0.001 ± 0.000 0.015 ± 0.001 0.001 ± 0.000
nnbrs=45 0.936 ± 0.005 0.733 ± 0.005 99.72 0.005 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000
nnbrs=50 0.937 ± 0.005 0.733 ± 0.005 99.72 0.005 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000
nnbrs=55 0.937 ± 0.005 0.733 ± 0.005 99.72 0.004 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000
nnbrs=60 0.937 ± 0.005 0.733 ± 0.005 99.72 0.004 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000
nnbrs=65 0.937 ± 0.005 0.734 ± 0.005 99.72 0.004 ± 0.001 0.001 ± 0.000 0.014 ± 0.002 0.001 ± 0.000
nnbrs=70 0.938 ± 0.005 0.734 ± 0.005 99.72 0.004 ± 0.001 0.001 ± 0.000 0.014 ± 0.001 0.001 ± 0.000

IBCF

nnbrs=5 0.947 ± 0.003 0.737 ± 0.002 99.51 0.041 ± 0.002 0.007 ± 0.000 0.026 ± 0.001 0.013 ± 0.001
nnbrs=10 0.919 ± 0.003 0.718 ± 0.002 99.51 0.042 ± 0.003 0.007 ± 0.001 0.026 ± 0.001 0.013 ± 0.001
nnbrs=15 0.913 ± 0.003 0.715 ± 0.003 99.51 0.042 ± 0.003 0.007 ± 0.001 0.026 ± 0.001 0.012 ± 0.001
nnbrs=20 0.911 ± 0.003 0.713 ± 0.003 99.51 0.042 ± 0.003 0.007 ± 0.001 0.026 ± 0.001 0.012 ± 0.001
nnbrs=25 0.910 ± 0.002 0.713 ± 0.002 99.51 0.041 ± 0.004 0.006 ± 0.001 0.026 ± 0.001 0.011 ± 0.001
nnbrs=30 0.911 ± 0.002 0.714 ± 0.002 99.51 0.040 ± 0.004 0.006 ± 0.001 0.025 ± 0.002 0.011 ± 0.002
nnbrs=35 0.911 ± 0.002 0.715 ± 0.002 99.51 0.040 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.011 ± 0.001
nnbrs=40 0.912 ± 0.003 0.715 ± 0.002 99.51 0.040 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.011 ± 0.001
nnbrs=45 0.912 ± 0.003 0.716 ± 0.003 99.51 0.039 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.011 ± 0.002
nnbrs=50 0.913 ± 0.003 0.717 ± 0.003 99.51 0.039 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.010 ± 0.001
nnbrs=55 0.913 ± 0.003 0.717 ± 0.003 99.51 0.038 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.010 ± 0.001
nnbrs=60 0.914 ± 0.003 0.718 ± 0.003 99.51 0.038 ± 0.004 0.006 ± 0.001 0.025 ± 0.001 0.010 ± 0.001
nnbrs=65 0.914 ± 0.003 0.718 ± 0.003 99.51 0.038 ± 0.004 0.006 ± 0.001 0.024 ± 0.001 0.010 ± 0.001
nnbrs=70 0.914 ± 0.003 0.718 ± 0.003 99.51 0.037 ± 0.004 0.006 ± 0.001 0.024 ± 0.001 0.010 ± 0.001

Table B.1: Results of the User-based CF and Item-based CF on the cross-validation vary-
ing the maximum number of neighbors’ parameter.

85

Appendix B. USBCF 86

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

FunkSVD
(reg = 0.02)

nfeatures = 5 0.940 ± 0.003 0.743 ± 0.003 99.81 0.069 ± 0.002 0.012 ± 0.001 0.035 ± 0.001 0.023 ± 0.001
nfeatures=10 0.939 ± 0.003 0.742 ± 0.003 99.81 0.068 ± 0.002 0.011 ± 0.001 0.034 ± 0.001 0.021 ± 0.001
nfeatures=20 0.939 ± 0.004 0.741 ± 0.003 99.81 0.069 ± 0.002 0.010 ± 0.000 0.033 ± 0.001 0.021 ± 0.001
nfeatures=50 0.940 ± 0.003 0.742 ± 0.003 99.81 0.043 ± 0.004 0.008 ± 0.001 0.028 ± 0.002 0.015 ± 0.001
nfeatures=100 0.943 ± 0.004 0.745 ± 0.003 99.81 0.005 ± 0.002 0.002 ± 0.001 0.025 ± 0.003 0.002 ± 0.001
nfeatures=200 0.945 ± 0.004 0.746 ± 0.003 99.81 0.001 ± 0.000 0.000 ± 0.000 0.011 ± 0.003 0.000 ± 0.000
nfeatures=500 0.946 ± 0.005 0.746 ± 0.003 99.81 0.000 ± 0.000 0.000 ± 0.000 0.010 ± 0.004 0.000 ± 0.000

SVD-ALS
(reg=0.1)

nfeatures=5 0.927 ± 0.001 0.726 ± 0.001 99.81 0.053 ± 0.002 0.009 ± 0.000 0.031 ± 0.001 0.018 ± 0.001
nfeatures=10 0.927 ± 0.004 0.725 ± 0.003 99.81 0.057 ± 0.001 0.010 ± 0.000 0.031 ± 0.000 0.019 ± 0.000
nfeatures=20 0.924 ± 0.004 0.724 ± 0.003 99.81 0.062 ± 0.002 0.011 ± 0.000 0.032 ± 0.001 0.021 ± 0.001
nfeatures=50 0.917 ± 0.004 0.720 ± 0.003 99.81 0.069 ± 0.003 0.012 ± 0.000 0.034 ± 0.001 0.025 ± 0.001
nfeatures=100 0.915 ± 0.003 0.719 ± 0.003 99.81 0.071 ± 0.002 0.012 ± 0.000 0.035 ± 0.001 0.026 ± 0.001
nfeatures=200 0.915 ± 0.003 0.718 ± 0.003 99.81 0.071 ± 0.002 0.012 ± 0.000 0.035 ± 0.001 0.026 ± 0.001
nfeatures=500 0.915 ± 0.003 0.718 ± 0.003 99.81 0.070 ± 0.002 0.012 ± 0.000 0.035 ± 0.001 0.026 ± 0.001

SVD-SGD
(reg=0.5)

nfeatures=5 0.970 ± 0.006 0.762 ± 0.005 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001
nfeatures=10 0.969 ± 0.007 0.762 ± 0.005 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001
nfeatures=20 0.967 ± 0.006 0.760 ± 0.005 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001
nfeatures=50 0.965 ± 0.006 0.759 ± 0.004 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001
nfeatures=100 0.965 ± 0.006 0.759 ± 0.005 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001
nfeatures=200 0.965 ± 0.006 0.759 ± 0.004 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001
nfeatures=500 0.965 ± 0.006 0.759 ± 0.004 99.81 0.022 ± 0.006 0.003 ± 0.001 0.018 ± 0.002 0.005 ± 0.001

ImplicitMF
(reg=0.01)

nfeatures=5 - - - 0.149 ± 0.003 0.045 ± 0.001 0.070 ± 0.001 0.067 ± 0.001
nfeatures=10 - - - 0.136 ± 0.004 0.045 ± 0.001 0.069 ± 0.001 0.062 ± 0.001
nfeatures=20 - - - 0.138 ± 0.002 0.048 ± 0.001 0.071 ± 0.001 0.063 ± 0.001
nfeatures=50 - - - 0.165 ± 0.001 0.053 ± 0.002 0.077 ± 0.001 0.076 ± 0.002
nfeatures=100 - - - 0.201 ± 0.001 0.057 ± 0.001 0.084 ± 0.001 0.091 ± 0.001
nfeatures=200 - - - 0.231 ± 0.002 0.061 ± 0.001 0.090 ± 0.001 0.103 ± 0.002
nfeatures=500 - - - 0.252 ± 0.002 0.064 ± 0.002 0.095 ± 0.002 0.112 ± 0.003

Table B.2: Results of the Matrix Factorization models on the cross-validation varying the
number of features.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

BBCF

nnbics=10 0.935 ± 0.006 0.731 ± 0.007 27.85 0.248 ± 0.010 0.020 ± 0.001 0.038 ± 0.001 0.053 ± 0.004
nnbics=20 0.917 ± 0.005 0.719 ± 0.005 35.30 0.232 ± 0.013 0.018 ± 0.001 0.035 ± 0.002 0.049 ± 0.003
nnbics=30 0.908 ± 0.005 0.712 ± 0.004 38.95 0.218 ± 0.012 0.017 ± 0.001 0.033 ± 0.002 0.047 ± 0.002
nnbics=40 0.904 ± 0.005 0.708 ± 0.003 41.61 0.211 ± 0.011 0.017 ± 0.001 0.032 ± 0.001 0.045 ± 0.003
nnbics=50 0.902 ± 0.006 0.706 ± 0.004 43.55 0.203 ± 0.010 0.016 ± 0.001 0.031 ± 0.001 0.044 ± 0.002
nnbics=60 0.899 ± 0.006 0.705 ± 0.004 44.96 0.196 ± 0.011 0.015 ± 0.001 0.030 ± 0.001 0.043 ± 0.002
nnbics=70 0.897 ± 0.005 0.703 ± 0.003 46.16 0.188 ± 0.011 0.015 ± 0.001 0.029 ± 0.001 0.040 ± 0.002

Table B.3: Sensitivity of the BBCF to the number of biclusters in the neighborhood.

B.2 User-based split Cross-Validation Results

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

Bias 0.945 ± 0.028 0.745 ± 0.022 100.00 0.015 ± 0.006 0.013 ± 0.004 0.054 ± 0.008 0.008 ± 0.003

Random - - - 0.013 ± 0.001 0.013 ± 0.002 0.048 ± 0.004 0.011 ± 0.001

Popular - - - 0.154 ± 0.007 0.167 ± 0.005 0.158 ± 0.006 0.167 ± 0.011

Table B.4: Results of the basic models on the user-based cross-validation.

Appendix B. USBCF 87

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

UBCF

nnbrs=5 0.977 ± 0.034 0.763 ± 0.024 99.79 0.026 ± 0.004 0.020 ± 0.002 0.063 ± 0.004 0.017 ± 0.003
nnbrs=10 0.947 ± 0.033 0.741 ± 0.024 99.79 0.019 ± 0.004 0.015 ± 0.001 0.055 ± 0.003 0.013 ± 0.002
nnbrs=15 0.937 ± 0.033 0.733 ± 0.024 99.79 0.015 ± 0.003 0.011 ± 0.002 0.053 ± 0.005 0.009 ± 0.002
nnbrs=20 0.934 ± 0.032 0.730 ± 0.024 99.79 0.012 ± 0.003 0.009 ± 0.002 0.051 ± 0.005 0.007 ± 0.001
nnbrs=25 0.932 ± 0.032 0.729 ± 0.024 99.79 0.011 ± 0.002 0.008 ± 0.002 0.048 ± 0.007 0.007 ± 0.001
nnbrs=30 0.931 ± 0.032 0.728 ± 0.023 99.79 0.009 ± 0.002 0.008 ± 0.002 0.047 ± 0.007 0.006 ± 0.001
nnbrs=35 0.931 ± 0.032 0.728 ± 0.024 99.79 0.009 ± 0.002 0.007 ± 0.002 0.045 ± 0.005 0.006 ± 0.001
nnbrs=40 0.931 ± 0.032 0.728 ± 0.024 99.79 0.008 ± 0.002 0.006 ± 0.001 0.044 ± 0.003 0.005 ± 0.001
nnbrs=45 0.931 ± 0.031 0.728 ± 0.023 99.79 0.008 ± 0.002 0.006 ± 0.001 0.044 ± 0.003 0.005 ± 0.001
nnbrs=50 0.931 ± 0.031 0.728 ± 0.023 99.79 0.007 ± 0.002 0.006 ± 0.002 0.043 ± 0.003 0.004 ± 0.001
nnbrs=55 0.931 ± 0.031 0.728 ± 0.023 99.79 0.006 ± 0.002 0.005 ± 0.002 0.043 ± 0.004 0.004 ± 0.001
nnbrs=60 0.932 ± 0.031 0.729 ± 0.023 99.79 0.006 ± 0.002 0.005 ± 0.001 0.042 ± 0.004 0.003 ± 0.001
nnbrs=65 0.932 ± 0.031 0.729 ± 0.023 99.79 0.005 ± 0.002 0.004 ± 0.001 0.042 ± 0.004 0.003 ± 0.001
nnbrs=70 0.932 ± 0.031 0.730 ± 0.023 99.79 0.005 ± 0.001 0.004 ± 0.001 0.041 ± 0.005 0.003 ± 0.001

IBCF

nnbrs=5 0.940 ± 0.029 0.731 ± 0.022 99.65 0.046 ± 0.006 0.038 ± 0.004 0.083 ± 0.006 0.038 ± 0.004
nnbrs=10 0.914 ± 0.027 0.715 ± 0.020 99.65 0.047 ± 0.009 0.039 ± 0.006 0.084 ± 0.009 0.042 ± 0.007
nnbrs=15 0.906 ± 0.028 0.709 ± 0.021 99.65 0.047 ± 0.008 0.038 ± 0.006 0.084 ± 0.006 0.041 ± 0.006
nnbrs=20 0.904 ± 0.028 0.709 ± 0.021 99.65 0.046 ± 0.009 0.038 ± 0.007 0.081 ± 0.010 0.040 ± 0.007
nnbrs=25 0.904 ± 0.029 0.709 ± 0.021 99.65 0.047 ± 0.010 0.038 ± 0.007 0.081 ± 0.011 0.039 ± 0.008
nnbrs=30 0.904 ± 0.029 0.710 ± 0.021 99.65 0.046 ± 0.009 0.037 ± 0.007 0.082 ± 0.009 0.038 ± 0.007
nnbrs=35 0.905 ± 0.029 0.710 ± 0.021 99.65 0.046 ± 0.010 0.037 ± 0.007 0.082 ± 0.010 0.037 ± 0.008
nnbrs=40 0.906 ± 0.029 0.711 ± 0.021 99.65 0.045 ± 0.010 0.036 ± 0.008 0.080 ± 0.011 0.036 ± 0.008
nnbrs=45 0.906 ± 0.029 0.712 ± 0.022 99.65 0.045 ± 0.010 0.036 ± 0.008 0.080 ± 0.012 0.036 ± 0.008
nnbrs=50 0.907 ± 0.029 0.712 ± 0.022 99.65 0.043 ± 0.009 0.035 ± 0.007 0.077 ± 0.011 0.035 ± 0.007
nnbrs=55 0.908 ± 0.029 0.713 ± 0.022 99.65 0.043 ± 0.009 0.035 ± 0.007 0.077 ± 0.012 0.034 ± 0.007
nnbrs=60 0.908 ± 0.029 0.713 ± 0.022 99.65 0.043 ± 0.009 0.035 ± 0.007 0.078 ± 0.012 0.034 ± 0.007
nnbrs=65 0.908 ± 0.029 0.714 ± 0.022 99.65 0.043 ± 0.009 0.035 ± 0.007 0.078 ± 0.011 0.034 ± 0.007
nnbrs=70 0.909 ± 0.029 0.714 ± 0.022 99.65 0.042 ± 0.009 0.035 ± 0.007 0.077 ± 0.011 0.033 ± 0.007

Table B.5: Results of the User-based CF and Item-based CF on the user-based split cross-
validation varying the maximum number of neighbours’ parameter.

Appendix B. USBCF 88

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

FunkSVD
(reg=0.01)

nfeatures=5 0.937 ± 0.030 0.740 ± 0.023 99.86 0.072 ± 0.006 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=10 0.936 ± 0.030 0.739 ± 0.023 99.86 0.072 ± 0.006 0.066 ± 0.004 0.101 ± 0.010 0.066 ± 0.005
nfeatures=20 0.937 ± 0.030 0.740 ± 0.023 99.86 0.072 ± 0.006 0.065 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=50 0.935 ± 0.031 0.737 ± 0.024 99.86 0.071 ± 0.007 0.063 ± 0.005 0.101 ± 0.010 0.065 ± 0.005
nfeatures=100 0.936 ± 0.030 0.738 ± 0.023 99.86 0.039 ± 0.007 0.032 ± 0.005 0.072 ± 0.008 0.030 ± 0.005
nfeatures=200 0.938 ± 0.030 0.739 ± 0.023 99.86 0.001 ± 0.000 0.001 ± 0.001 0.045 ± 0.016 0.001 ± 0.000
nfeatures=500 0.939 ± 0.030 0.740 ± 0.022 99.86 0.000 ± 0.000 0.000 ± 0.000 0.038 ± 0.026 0.000 ± 0.000

SVD-ALS
(reg=0.5)

nfeatures=5 0.940 ± 0.029 0.744 ± 0.022 99.86 0.072 ± 0.007 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=10 0.940 ± 0.029 0.744 ± 0.022 99.86 0.072 ± 0.007 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=20 0.940 ± 0.029 0.744 ± 0.022 99.86 0.072 ± 0.007 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=50 0.940 ± 0.029 0.744 ± 0.022 99.86 0.072 ± 0.007 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=100 0.940 ± 0.029 0.744 ± 0.022 99.86 0.072 ± 0.007 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=200 0.940 ± 0.029 0.744 ± 0.022 99.86 0.072 ± 0.007 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005
nfeatures=500 0.940 ± 0.029 0.744 ± 0.022 99.86 0.072 ± 0.007 0.066 ± 0.004 0.101 ± 0.010 0.065 ± 0.005

SVD-SGD
(reg=0.5)

nfeatures=5 0.960 ± 0.029 0.756 ± 0.024 99.86 0.023 ± 0.004 0.018 ± 0.003 0.057 ± 0.005 0.014 ± 0.002
nfeatures=10 0.960 ± 0.029 0.756 ± 0.024 99.86 0.023 ± 0.004 0.018 ± 0.003 0.057 ± 0.005 0.014 ± 0.002
nfeatures=20 0.958 ± 0.029 0.754 ± 0.024 99.86 0.023 ± 0.005 0.018 ± 0.003 0.057 ± 0.005 0.014 ± 0.002
nfeatures=50 0.957 ± 0.029 0.753 ± 0.024 99.86 0.023 ± 0.005 0.018 ± 0.004 0.057 ± 0.005 0.014 ± 0.002
nfeatures=100 0.957 ± 0.029 0.753 ± 0.024 99.86 0.024 ± 0.005 0.018 ± 0.004 0.057 ± 0.004 0.014 ± 0.002
nfeatures=200 0.957 ± 0.029 0.753 ± 0.024 99.86 0.023 ± 0.005 0.018 ± 0.003 0.057 ± 0.004 0.014 ± 0.002
nfeatures=500 0.957 ± 0.029 0.753 ± 0.024 99.86 0.023 ± 0.005 0.018 ± 0.003 0.056 ± 0.005 0.014 ± 0.002

ImplicitMF
(reg=0.01)

nfeatures=5 - - - 0.152 ± 0.013 0.227 ± 0.009 0.175 ± 0.007 0.183 ± 0.001
nfeatures=10 - - - 0.145 ± 0.013 0.231 ± 0.020 0.168 ± 0.013 0.175 ± 0.013
nfeatures=20 - - - 0.144 ± 0.005 0.245 ± 0.019 0.171 ± 0.006 0.174 ± 0.010
nfeatures=50 - - - 0.170 ± 0.008 0.276 ± 0.016 0.190 ± 0.004 0.210 ± 0.010
nfeatures=100 - - - 0.206 ± 0.014 0.302 ± 0.014 0.216 ± 0.007 0.252 ± 0.010
nfeatures=200 - - - 0.237 ± 0.017 0.319 ± 0.012 0.236 ± 0.009 0.289 ± 0.012
nfeatures=500 - - - 0.255 ± 0.017 0.327 ± 0.012 0.248 ± 0.009 0.307 ± 0.012

Table B.6: Results of the Matrix Factorization models on the user-based cross-validation
varying the number of features.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

BBCF

nnbics=10 0.908 ± 0.059 0.705 ± 0.038 16.71 0.342 ± 0.033 0.124 ± 0.012 0.183 ± 0.021 0.206 ± 0.021
nnbics=20 0.897 ± 0.046 0.701 ± 0.029 24.61 0.307 ± 0.036 0.117 ± 0.012 0.168 ± 0.017 0.190 ± 0.023
nnbics=30 0.888 ± 0.039 0.694 ± 0.027 30.02 0.279 ± 0.034 0.111 ± 0.010 0.158 ± 0.014 0.179 ± 0.018
nnbics=40 0.880 ± 0.036 0.687 ± 0.024 34.14 0.253 ± 0.026 0.104 ± 0.007 0.146 ± 0.012 0.171 ± 0.015
nnbics=50 0.884 ± 0.030 0.690 ± 0.018 37.47 0.241 ± 0.030 0.102 ± 0.009 0.142 ± 0.015 0.164 ± 0.016
nnbics=60 0.886 ± 0.035 0.692 ± 0.022 40.24 0.230 ± 0.035 0.099 ± 0.012 0.138 ± 0.016 0.163 ± 0.017
nnbics=70 0.882 ± 0.034 0.688 ± 0.022 43.22 0.224 ± 0.033 0.098 ± 0.012 0.140 ± 0.018 0.158 ± 0.017

Table B.7: Results of the BBCF on the user-based cross-validation varying the number of
nearest biclusters’ parameter.

Model Prediction Recommendation

RMSE MAE Coverage (%) Precision Recall F1-Score nDCG

BBCF-NoWeight
(nnbic=40) 0.895 ± 0.033 0.700 ± 0.021 46.90 0.242 ± 0.030 0.108 ± 0.009 0.150 ± 0.013 0.168 ± 0.015

Table B.8: Results of the BBCF-NoWeight model on the user-based cross-validation.

Bibliography

[1] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender
systems. In TCF-ContextAwareRC-Adomavicius, RecSys ’08, pages 335–336, New
York, NY, USA, 2008. ACM.

[2] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar Ragha-
van. Automatic subspace clustering of high dimensional data for data mining ap-
plications. SIGMOD Rec., 27(2):94–105, June 1998.

[3] Faris Alqadah and Raj Bhatnagar. Similarity measures in formal concept analysis.
Ann. Math. Artif. Intell., 61:245–256, 01 2011.

[4] Faris Alqadah, Chandan K. Reddy, Junling Hu, and Hatim F. Alqadah. Biclus-
tering neighborhood-based collaborative filtering method for top-n recommender
systems. Knowledge and Information Systems, 44(2):475–491, Aug 2015.

[5] Cigdem Bakir. Collaborative filtering with temporal dynamics with using singular
value decomposition. Tehnicki Vjesnik, 25:130–135, 02 2018.

[6] Linas Baltrunas and Xavier Amatriain. Towards time-dependant recommendation
based on implicit feedback. Proceedings of the Third ACM Conference on Recom-
mender Systems, 01 2009.

[7] Linas Baltrunas and Xavier Amatriain. Towards time-dependant recommendation
based on implicit feedback. In Workshop on context-aware recommender systems
(CARS’09), pages 25–30. Citeseer, 2009.

[8] Arindam Banerjee, Inderjit Dhillon, Joydeep Ghosh, Srujana Merugu, and Dhar-
mendra S. Modha. A generalized maximum entropy approach to bregman co-
clustering and matrix approximation. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’04,
page 509–514, New York, NY, USA, 2004. Association for Computing Machin-
ery.

[9] Simon Barkow-Oesterreicher, Stefan Bleuler, Amela Prelic, Philip Zimmermann,
and Eckart Zitzler. Bicat: A biclustering analysis toolbox. Bioinformatics (Oxford,
England), 22:1282–3, 06 2006.

89

Bibliography 90

[10] Robert Bell, Yehuda Koren, and Chris Volinsky. Modeling relationships at multiple
scales to improve accuracy of large recommender systems. In Proceedings of the
13th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 95–104, 2007.

[11] J. Bennett and S. Lanning. The netflix prize. In Proceedings of the KDD Cup
Workshop 2007, pages 3–6, New York, August 2007. ACM.

[12] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The
million song dataset. In Proceedings of the 12th International Conference onMusic
Information Retrieval (ISMIR 2011), pages 591–596, 2011.

[13] DorukBozdağ, Ashwin S. Kumar, andUmit V. Catalyurek. Comparative analysis of
biclustering algorithms. In Proceedings of the First ACM International Conference
on Bioinformatics and Computational Biology, BCB ’10, page 265–274, NewYork,
NY, USA, 2010. Association for Computing Machinery.

[14] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive
algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, UAI’98, pages 43–52, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc.

[15] Robin Burke. Hybrid recommender systems: Survey and experiments. User Mod-
eling and User-Adapted Interaction, 12(4):331–370, Nov 2002.

[16] Sara C . Madeira, Miguel Cacho Teixeira, Isabel Sá-Correia, and Arlindo Oliveira.
Identification of regulatory modules in time series gene expression data using a lin-
ear time biclustering algorithm. IEEE/ACM transactions on computational biology
and bioinformatics / IEEE, ACM, 7:153–65, 04 2010.

[17] R.J.G.B. Campello. Generalized external indexes for comparing data partitions
with overlapping categories. Pattern Recognition Letters, 31(9):966 – 975, 2010.

[18] Yizong Cheng and George M Church. Biclustering of expression data. In Ismb,
volume 8, pages 93–103, 2000.

[19] Papers With Code. Papers with code - movielens 100k benchmark (recommenda-
tion systems). Accessed: 2020-11-05.

[20] Guilherme Palermo Coelho, Fabrício Olivetti de França, and Fernando J.
Von Zuben. A multi-objective multipopulation approach for biclustering. In Pe-
ter J. Bentley, Doheon Lee, and Sungwon Jung, editors, Artificial Immune Systems,
pages 71–82, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Bibliography 91

[21] Fabricio Olivetti De França, Guilherme Palermo Coelho, and Fernando J
Von Zuben. Coherent recommendations using biclustering. In Proc. of the XXX
Congresso Ibero-Latino-Americano de Métodos Computacionais em Engenharia
(CILAMCE), pages 1–15, 2009.

[22] Inderjit Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 05 2001.

[23] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.
Information-theoretic co-clustering. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’03,
pages 89–98, New York, NY, USA, 2003. ACM.

[24] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of the
14th ACM International Conference on Information and Knowledge Management,
CIKM ’05, page 485–492, New York, NY, USA, 2005. Association for Computing
Machinery.

[25] Yi Ding, Xue Li, and Maria E Orlowska. Recency-based collaborative filtering. In
Proceedings of the 17th Australasian Database Conference-Volume 49, volume 49,
pages 99–107, 2006.

[26] Michael D. Ekstrand. The LKPY package for recommender systems experi-
ments: Next-generation tools and lessons learned from the lenskit project. CoRR,
abs/1809.03125, 2018.

[27] Michael D. Ekstrand, Michael Ludwig, Joseph A. Konstan, and John T. Riedl.
Rethinking the recommender research ecosystem: Reproducibility, openness, and
lenskit. In Proceedings of the Fifth ACM Conference on Recommender Systems,
RecSys ’11, page 133–140, NewYork, NY, USA, 2011. Association for Computing
Machinery.

[28] Michael D. Ekstrand, John T. Riedl, and Joseph A. Konstan. Collaborative filtering
recommender systems. Foundations and Trends® in Human–Computer Interac-
tion, 4(2):81–173, 2011.

[29] Islam Elnabarawy, Donald C. Wunsch, and Ashraf M. Abdelbar. Biclustering
artmap collaborative filtering recommender system. In 2016 International Joint
Conference on Neural Networks (IJCNN), pages 2986–2991, Vancouver, BC,
Canada, 2016. IEEE Computer Society.

Bibliography 92

[30] Kemal Eren, Mehmet Deveci, Onur Küçüktunç, and Umit Catalyurek. A com-
parative analysis of biclustering algorithms for gene expression data. Briefings in
bioinformatics, 14, 07 2012.

[31] Liang Feng, Qianchuan Zhao, and Cangqi Zhou. Improving performances of top-n
recommendations with co-clustering method. Expert Systems with Applications,
143:113078, 2020.

[32] Simon Funk. Netflix update: Try this at home. https://sifter.org/ simon/jour-
nal/20061211.html, 2006.

[33] Bernhard Ganter and Rudolf Wille. Formal concept analysis: mathematical foun-
dations. Springer Science & Business Media, 2012.

[34] T. George and S. Merugu. A scalable collaborative filtering framework based on
co-clustering. In Fifth IEEE International Conference on Data Mining (ICDM’05),
pages 4 pp.–, Nov 2005.

[35] Jennifer Ann Golbeck. Computing and Applying Trust in Web-based Social Net-
works. PhD thesis, University of Maryland at College Park, College Park, MD,
USA, 2005. AAI3178583.

[36] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Using collab-
orative filtering to weave an information tapestry. Commun. ACM, 35(12):61–70,
December 1992.

[37] Ken Goldberg, Theresa Roeder, Dhruv Gupta, and Chris Perkins. Eigentaste: A
constant time collaborative filtering algorithm. Information Retrieval, 4(2):133–
151, Jul 2001.

[38] Songjie Gong. A collaborative filtering recommendation algorithm based on user
clustering and item clustering. JSW, 5:745–752, 07 2010.

[39] Stephen Grossberg. Adaptive resonance theory: How a brain learns to consciously
attend, learn, and recognize a changing world. Neural Networks, 37:1 – 47, 2013.
Twenty-fifth Anniversay Commemorative Issue.

[40] Asela Gunawardana and Guy Shani. A survey of accuracy evaluation metrics of
recommendation tasks. J. Mach. Learn. Res., 10:2935–2962, December 2009.

[41] Neelima Gupta and Seema Aggarwal. Mib: Using mutual information for biclus-
tering gene expression data. Pattern Recognition, 43(8):2692 – 2697, 2010.

Bibliography 93

[42] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition,
2011.

[43] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and
context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–19:19, December 2015.

[44] J. A. Hartigan. Direct clustering of a datamatrix. Journal of the American Statistical
Association, 67(337):123–129, 1972.

[45] David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Roun-
thwaite, and Carl Kadie. Dependency networks for collaborative filtering and data
visualization. arXiv preprint arXiv:1301.3862, 2013.

[46] Rui Henriques. Learning from high-dimensional data using local descriptive mod-
els. PhD thesis, PhD thesis, Instituto Superior Tecnico, Universidade de Lisboa,
Lisboa, 2016.

[47] Rui Henriques, Cláudia Antunes, and Sara C.Madeira. A structured view on pattern
mining-based biclustering. Pattern Recognition, 48(12):3941 – 3958, 2015.

[48] Rui Henriques and Sara C . Madeira. Bicpam: Pattern-based biclustering for
biomedical data analysis. Algorithms for Molecular Biology, 9:27, 12 2014.

[49] Rui Henriques, Francisco Ferreira, and Sara C . Madeira. Bicpams: Software for
biological data analysis with pattern-based biclustering. BMC Bioinformatics, 18,
02 2017.

[50] Rui Henriques and Sara C Madeira. Bicnet: Flexible module discovery in large-
scale biological networks using biclustering. Algorithms for Molecular Biology,
11(1):14, 2016.

[51] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5–53, January 2004.

[52] Thomas Hofmann. Latent semantic models for collaborative filtering. ACM Trans.
Inf. Syst., 22(1):89–115, January 2004.

[53] D. Horta and R. J. G. B. Campello. Similarity measures for comparing biclus-
terings. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
11(5):942–954, 2014.

Bibliography 94

[54] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In 2008 Eighth IEEE International Conference on Data Mining,
pages 263–272. Ieee, 2008.

[55] Nicolas Hug. Surprise: A python library for recommender systems. Journal of
Open Source Software, 5(52):2174, 2020.

[56] Joel Irish. The mean measure of divergence: Its utility in model-free and model-
bound analyses relative to the mahalanobis d-2 distance for nonmetric traits. Amer-
ican journal of human biology : the official journal of the Human Biology Council,
22:378–95, 05 2010.

[57] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir
techniques. ACM Trans. Inf. Syst., 20(4):422–446, October 2002.

[58] Nyoman Juniarta.Mining complex data and biclustering using formal concept anal-
ysis. PhD thesis, Université de Lorraine, 2019.

[59] Kai Yu, A. Schwaighofer, V. Tresp, Xiaowei Xu, and H. . Kriegel. Probabilistic
memory-based collaborative filtering. IEEE Transactions on Knowledge and Data
Engineering, 16(1):56–69, Jan 2004.

[60] Surya Kant and Tripti Mahara. Nearest biclusters collaborative filtering framework
with fusion. Journal of Computational Science, 25:204 – 212, 2018.

[61] Adetayo Kasim, Ziv Shkedy, Sebastian Kaiser, Sepp Hochreiter, and Willem Tal-
loen. Applied biclustering methods for big and high-dimensional data using R.
CRC Press, 10 2016.

[62] Jon Kleinberg and Mark Sandler. Using mixture models for collaborative filtering.
Journal of Computer and System Sciences, 74(1):49 – 69, 2008. Learning Theory
2004.

[63] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 426–434, 2008.

[64] YehudaKoren. Factorizationmeets the neighborhood: Amultifaceted collaborative
filteringmodel. InProceedings of the 14th ACMSIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’08, pages 426–434, New York,
NY, USA, 2008. ACM.

[65] Yehuda Koren. The bellkor solution to the netflix grand prize. Netflix prize docu-
mentation, 81(2009):1–10, 2009.

Bibliography 95

[66] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, pages 447–456, New York, NY, USA, 2009. ACM.

[67] Neal Lathia, Stephen Hailes, and Licia Capra. Temporal collaborative filtering with
adaptive neighbourhoods. In Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval, pages 796–797,
2009.

[68] Bin Li, Qiang Yang, and Xiangyang Xue. Transfer learning for collaborative fil-
tering via a rating-matrix generative model. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 617–624, New
York, NY, USA, 2009. ACM.

[69] Guojun Li, Qin Ma, Haibao Tang, Andrew H. Paterson, and Ying Xu. QUBIC:
a qualitative biclustering algorithm for analyses of gene expression data. Nucleic
Acids Research, 37(15):e101–e101, 06 2009.

[70] Changyong Liang and Yajun Leng. Collaborative filtering based on information-
theoretic co-clustering. International Journal of Systems Science, 45(3):589–597,
2014.

[71] Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:
Item-to-item collaborative filtering. Internet Computing, IEEE, 7:76–80, 01 2003.

[72] Nathan N. Liu, Bin Cao, Min Zhao, and Qiang Yang. Adapting neighborhood and
matrix factorization models for context aware recommendation. In Proceedings
of the Workshop on Context-Aware Movie Recommendation, CAMRa ’10, pages
7–13, New York, NY, USA, 2010. ACM.

[73] Nathan N Liu, Min Zhao, Evan Xiang, and Qiang Yang. Online evolutionary col-
laborative filtering. In Proceedings of the fourth ACM conference on Recommender
systems, pages 95–102, 2010.

[74] Xiangyu Liu, Di Li, Juntao Liu, Zhengchang Su, and Guojun Li. RecBic: a fast
and accurate algorithm recognizing trend-preserving biclusters. Bioinformatics, 07
2020. btaa630.

[75] Joao Lobo, Rui Henriques, and Sara C Madeira. G-tric: generating three-way syn-
thetic datasets with triclustering solutions. BMC Bioinformatics, 2021.

[76] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data anal-
ysis: a survey. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 1(1):24–45, Jan 2004.

Bibliography 96

[77] Paolo Massa and Paolo Avesani. Trust-aware recommender systems. In Proceed-
ings of the 2007 ACM Conference on Recommender Systems, RecSys ’07, pages
17–24, New York, NY, USA, 2007. ACM.

[78] Arnd Kohrs-Bernard Merialdo. Clustering for collaborative filtering applications.
Intelligent Image Processing, Data Analysis & Information Retrieval, 3:199, 1999.

[79] Abdul Mohd, Mohd Hameed, Omar al jadaan, and Ramachandram Sirandas. Col-
laborative filtering based recommendation system: A survey. International Journal
on Computer Science and Engineering, 4, 05 2012.

[80] TMurali and Simon Kasif. Extracting conserved gene expression motifs from gene
expression data. Pacific Symposium on Biocomputing. Pacific Symposium on Bio-
computing, 8:77–88, 02 2003.

[81] TMurali and Simon Kasif. Extracting conserved gene expression motifs from gene
expression data. Pacific Symposium on Biocomputing. Pacific Symposium on Bio-
computing, 8:77–88, 02 2003.

[82] Xia Ning and George Karypis. Slim: Sparse linear methods for top-n recommender
systems. In Proceedings of the 2011 IEEE 11th International Conference on Data
Mining, ICDM ’11, page 497–506, USA, 2011. IEEE Computer Society.

[83] Yoshifumi Okada, Wataru Fujibuchi, and Paul Horton. A biclustering method for
gene expression module discovery using a closed itemset enumeration algorithm.
IPSJ Digital Courier, 3:183–192, 2007.

[84] Victor A Padilha andRicardo JGBCampello. A systematic comparative evaluation
of biclustering techniques. BMC Bioinformatics, 18(1):55, 2017.

[85] Gaurav Pandey, Gowtham Atluri, Michael Steinbach, Chad L. Myers, and Vipin
Kumar. An association analysis approach to biclustering. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’09, page 677–686, New York, NY, USA, 2009. Association for
Computing Machinery.

[86] A. Patrikainen and M. Meila. Comparing subspace clusterings. IEEE Transactions
on Knowledge and Data Engineering, 18(7):902–916, 2006.

[87] David M. Pennock, Eric J. Horvitz, Steve Lawrence, and C. Lee Giles. Collabo-
rative filtering by personality diagnosis: A hybrid memory- and model-based ap-
proach, 2013.

[88] Beatriz Pontes, Ral Girldez, and Jess S Aguilar-Ruiz. Quality measures for gene
expression biclusters. PloS one, 10(3):e0115497, 2015.

Bibliography 97

[89] Amela Prelić, Stefan Bleuler, Philip Zimmermann, Anja Wille, Peter Bühlmann,
Wilhelm Gruissem, Lars Hennig, Lothar Thiele, and Eckart Zitzler. A system-
atic comparison and evaluation of biclustering methods for gene expression data.
Bioinformatics, 22(9):1122–1129, May 2006.

[90] Ahmed Rashed, Josif Grabocka, and Lars Schmidt-Thieme. Attribute-aware non-
linear co-embeddings of graph features. In Proceedings of the 13th ACM Confer-
ence on Recommender Systems, pages 314–321, 2019.

[91] Steffen Rendle, Li Zhang, and Yehuda Koren. On the difficulty of evaluating base-
lines: A study on recommender systems. arXiv preprint arXiv:1905.01395, 2019.

[92] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John
Riedl. Grouplens: An open architecture for collaborative filtering of netnews. In
Proceedings of the 1994 ACM Conference on Computer Supported Cooperative
Work, CSCW ’94, pages 175–186, New York, NY, USA, 1994. ACM.

[93] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender
Systems Handbook. Springer-Verlag, Berlin, Heidelberg, 1st edition, 2010.

[94] Aghiles Salah, Nicoleta Rogovschi, and Mohamed Nadif. A dynamic collaborative
filtering system via a weighted clustering approach. Neurocomputing, 175:206 –
215, 2016.

[95] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Application of
dimensionality reduction in recommender system-a case study. Technical report,
Minnesota Univ Minneapolis Dept of Computer Science, 2000.

[96] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based col-
laborative filtering recommendation algorithms. In Proceedings of the 10th Inter-
national Conference on World Wide Web, WWW ’01, pages 285–295, New York,
NY, USA, 2001. ACM.

[97] Badrul M Sarwar, George Karypis, Joseph Konstan, and John Riedl. Recommender
systems for large-scale e-commerce: Scalable neighborhood formation using clus-
tering. In Proceedings of the fifth international conference on computer and infor-
mation technology, volume 1, pages 291–324, 2002.

[98] Akdes Serin and Martin Vingron. DeBi: Discovering Differentially Expressed Bi-
clusters using a Frequent Itemset Approach. Algorithms for Molecular Biology,
6(1):18, 2011.

[99] Yue Shi, Martha Larson, andAlanHanjalic. Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges. ACM Comput.
Surv., 47(1):3:1–3:45, May 2014.

Bibliography 98

[100] Kelvin Sim, VivekanandGopalkrishnan, Arthur Zimek, andGaoCong. A survey on
enhanced subspace clustering. Data Mining and Knowledge Discovery, 26(2):332–
397, Mar 2013.

[101] Monika Singh and Monica Mehrotra. Impact of biclustering on the performance of
biclustering based collaborative filtering. Expert Systems with Applications, 113,
06 2018.

[102] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering tech-
niques. Adv. in Artif. Intell., 2009:4:2–4:2, January 2009.

[103] Suryakant and Tripti Mahara. A new similarity measure based on mean measure of
divergence for collaborative filtering in sparse environment. Procedia Computer
Science, 89:450 – 456, 2016. Twelfth International Conference on Communication
Networks, ICCN 2016, August 19– 21, 2016, Bangalore, India Twelfth Interna-
tional Conference on Data Mining and Warehousing, ICDMW 2016, August 19-
21, 2016, Bangalore, India Twelfth International Conference on Image and Signal
Processing, ICISP 2016, August 19-21, 2016, Bangalore, India.

[104] Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, and
Yannis Manolopoulos. Nearest-biclusters collaborative filtering with constant val-
ues. In Olfa Nasraoui, Myra Spiliopoulou, Jaideep Srivastava, BamshadMobasher,
and Brij Masand, editors, Advances in Web Mining and Web Usage Analysis, pages
36–55, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

[105] Panagiotis Symeonidis, Alexandros Nanopoulos, Apostolos Papadopoulos, and
Yannis Manolopoulos. Nearest-biclusters collaborative filtering based on constant
and coherent values. Inf. Retr., 11:51–75, 02 2008.

[106] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Investigation
of various matrix factorization methods for large recommender systems. In Pro-
ceedings of the 2Nd KDD Workshop on Large-Scale Recommender Systems and
the Netflix Prize Competition, NETFLIX ’08, pages 6:1–6:8, New York, NY, USA,
2008. ACM.

[107] Amos Tanay, Roded Sharan, and Ron Shamir. Discovering statistically significant
biclusters in gene expression data. Bioinformatics (Oxford, England), 18 Suppl
1:S136–44, 02 2002.

[108] João Vinagre and Alípio Jorge. Forgetting mechanisms for scalable collaborative
filtering. Journal of the Brazilian Computer Society, 18, 11 2012.

[109] João Vinagre, Alípio Jorge, and João Gama. Evaluation of recommender systems
in streaming environments. CoRR, abs/1504.08175, 2015.

Bibliography 99

[110] João Vinagre, AlípioMário Jorge, and João Gama. An overview on the exploitation
of time in collaborative filtering. WIREs Data Mining and Knowledge Discovery,
5(5):195–215, 2015.

[111] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. Unifying user-based and
item-based collaborative filtering approaches by similarity fusion. In Proceedings
of the 29th Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’06, pages 501–508, New York, NY, USA,
2006. ACM.

[112] Juan Xie, Anjun Ma, Yu Zhang, Bingqiang Liu, Sha Cao, Cankun Wang, Jennifer
Xu, Chi Zhang, and Qin Ma. QUBIC2: a novel and robust biclustering algo-
rithm for analyses and interpretation of large-scale RNA-Seq data. Bioinformatics,
36(4):1143–1149, 09 2019.

[113] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell.
Temporal collaborative filtering with bayesian probabilistic tensor factorization. In
Proceedings of the 2010 SIAM International Conference on Data Mining, pages
211–222. SIAM, 2010.

[114] Rui Xu and Donald Wunsch. Bartmap: a viable structure for biclustering. Neural
networks : the official journal of the International Neural Network Society, 24:709–
16, 04 2011.

[115] Gui-Rong Xue, Chenxi Lin, Qiang Yang, WenSi Xi, Hua-Jun Zeng, Yong Yu, and
Zheng Chen. Scalable collaborative filtering using cluster-based smoothing. In
Proceedings of the 28th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’05, pages 114–121, New York,
NY, USA, 2005. ACM.

[116] Xiwang Yang, Yang Guo, Yong Liu, and Harald Steck. A survey of collaborative
filtering based social recommender systems. Computer Communications, 41:1 –
10, 2014.

[117] Kevin Y Yip, David W Cheung, and Michael K Ng. Harp: A practical projected
clustering algorithm. IEEE Transactions on knowledge and data engineering,
16(11):1387–1397, 2004.

[118] Mehmet Türkay Yoldar and Uğur Özcan. Collaborative targeting: Biclustering-
based online ad recommendation. Electronic Commerce Research and Applica-
tions, 35:100857, 2019.

Bibliography 100

[119] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thalmann.
Time-aware point-of-interest recommendation. In Proceedings of the 36th Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’13, page 363–372, New York, NY, USA, 2013. Association for
Computing Machinery.

[120] Mohammed J. Zaki. Closed Itemset Mining and Non-redundant Association Rule
Mining, pages 365–368. Springer US, Boston, MA, 2009.

[121] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale
parallel collaborative filtering for the netflix prize. In Rudolf Fleischer and Jinhui
Xu, editors, Algorithmic Aspects in Information and Management, pages 337–348,
Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[122] Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, and Georg Lausen. Im-
proving recommendation lists through topic diversification. In Proceedings of the
14th International Conference on World Wide Web, WWW ’05, pages 22–32, New
York, NY, USA, 2005. ACM.

[123] F. Zuben, H. M. Ferreira, F. França, and P. Castro. Applying biclustering to perform
collaborative filtering. In 2007 7th International Conference on Intelligent Systems
Design and Applications, pages 421–426, Los Alamitos, CA, USA, oct 2007. IEEE
Computer Society.

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives and Contributions
	Context
	Structure of the document

	Background
	Collaborative Filtering
	Classic CF setting and tasks
	Methods and Categorization
	Challenges

	Evaluating CF-based Recommender Systems
	Evaluation Protocols
	Benchmark datasets
	Evaluation Metrics

	Temporal Dynamics in Collaborative Filtering
	Time-aware
	Time-dependent

	Biclustering
	Clustering and biclustering
	Bicluster Type

	Related Work
	Biclustering Collaborative Filtering
	Rating Prediction Approaches
	Top-N Recommendation Approaches

	Time Dimension in Neighborhood-based Collaborative Filtering
	Temporal CF
	Time-aware CF

	Evaluating the Potentialities of BicPAM
	BicPAM - State-of-the-art Pattern-based Biclustering
	Generating Synthetic Biclustering Benchmark Data - G-Tric
	Biclustering Evaluation Methodology
	Biclustering Methods
	Synthetic Data
	Performance Metrics
	Results and Discussion

	Final Remarks

	USBCF - A User-Specific Bicluster-based Approach for Collaborative Filtering
	Motivation and Main Concept
	USBCF Overview
	Discover Biclusters in U-I Matrix
	Create User-Specific Bicluster-based Matrix
	Learning User-Specific Recommendation Models

	Final Remarks

	USBCF - A Case Study on Movie Recommendation
	Evaluation Methodology
	Experimental Platform and Software
	Benchmark Dataset
	Evaluation Metrics
	Approaches for Comparative Analysis

	Results and Discussion
	Baseline Approaches - Models and Parameterization
	BBCF
	USBCF

	Final Remarks

	Conclusions and Future work
	Biclustering Algorithms Study
	USBCF
	Cross-Validation Results
	User-based split Cross-Validation Results

	Bibliography

