
Location-aware online learning for top-k recommendation

Róbert Pálovicsa, Péter Szalaia, Júlia Papa, Erzsébet Frigóa, Levente Kocsisa,
András A. Benczúra

aInstitute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI)

Abstract

We address the problem of recommending highly volatile items for users, both
with potentially ambiguous location that may change in time. The three main
ingredients of our method include (1) using online machine learning for the
highly volatile items; (2) learning the personalized importance of hierarchical
geolocation (for example, town, region, country, continent); finally (3) model-
ing temporal relevance by counting recent items with an exponential decay in
recency.

For (1), we consider a time-aware setting, where evaluation is cumbersome
by traditional measures since we have different top recommendations at different
times. We describe a time-aware framework based on individual item discounted
gain.

For (2), we observe that trends and geolocation turns out to be more im-
portant than personalized user preferences: user-item and content-item matrix
factorization improves in combination with our geo-trend learning methods, but
in itself, they are greatly inferior to our location based models. In fact, since our
best performing methods are based on spatiotemporal data, they are applicable
in the user cold start setting as well and perform even better than content based
cold start methods.

Finally for (3), we estimate the probability that the item will be viewed by
its previous views to obtain a powerful model that combines item popularity
and recency.

To generate realistic data for measuring our new methods, we rely on Twitter
messages with known GPS location and consider hashtags as items that we
recommend the users to be included in their next message.

Keywords: Online learning; geolocation information; geographic hierarchy;
cold start; ranking prediction.

Email addresses: rpalovics@ilab.sztaki.hu (Róbert Pálovics),
pszalai@ilab.sztaki.hu (Péter Szalai), papjuli@ilab.sztaki.hu (Júlia Pap),
fbobee@ilab.sztaki.hu (Erzsébet Frigó), kocsis@ilab.sztaki.hu (Levente Kocsis),
benczur@ilab.sztaki.hu (András A. Benczúr)

Preprint submitted to Elsevier January 21, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/145192966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Geospatial and temporal context information plays an important role in
content recommendation. While context in general can be incorporated in rec-
ommenders as user and item metadata, non-stationary context information can
be highly relevant and require new online learning models.

Ideally, a geographical information based content recommendation system
relies on the knowledge of both user and item geolocation. Indeed, we may
assume that the user mobile device sends its GPS position along with a recom-
mendation query. On the other hand, the geolocation of an item may often be
ambiguous, change in time, or spread to a whole metropolis, state or region. In
addition, some content may have obvious connection to certain locations but
others can have global interest on different levels such as native speakers of a
language, within a continent, or even worldwide.

In this paper we design position based recommender methods that, in ad-
dition to user preferences, also learn item locality by relying on collaborative
filtering by online machine learning [1]. Recommender systems often have to
serve in online environments that can be highly non-stationary. Content and in
particular locality context is non-stationary and may change in time both for
users and items, primarily due to changes in trends and geographic spread of in-
formation. Traditional recommender algorithms may periodically rebuild their
models, but they cannot adjust to quick changes in trends caused for example
by timely information. In our recent experiments [32, 33], we observed that
even a simple, but online trained recommender model can perform significantly
better than its batch version. Our new recommender methods are intended to
be beneficial in information systems with temporal geographical information:

• Content and in particular locality context is non-stationary and may
change in time both for users and items, primarily due to changes in
trends and geographic spread of information, which ask for online ma-
chine learning [1];

• The user feedback is implicit [18, 36]: typically, items are viewed, con-
sumed but probably no feedback of like or dislike is given. The fact that
an item does not appear for a user may mean lack of interest but also lack
of knowledge on the existence of the item;

• Evaluation is top-k [13, 12], i.e. we measure if the next item consumed by
the user appears in the recommended items with highest predicted score.

In this paper, we consider distance, region and location as side information,
with the novel element that neither users nor items are bound to one single
location. Items may in fact relate to certain locations as well as being pop-
ular worldwide. Earlier results on recommendations in location-based social
networks surveyed in e.g. [5, 40] combine spatial ratings for non-spatial items,
nonspatial ratings for spatial items, and spatial ratings for spatial items [28].
Compared to other geographic recommenders that we describe in Section 1.1,
we face the problem of the fuzzy relation of users and items with locations.

2

Some content may have obvious connection to certain locations but others
can have more widespread interest on different levels such as language, continent,
or even worldwide. Dealing with this, our models rely on the hierarchy of
regions from a global or continent-wide level down to a village or city district
to attribute the momentary popularity of an item to levels of locations. The
use of hierarchical structure of locations for recommender systems is surveyed
in [5]. We use the open hierarchical database of Global Administrative Areas
(GADM, http://gadm.org). We also remark that spatial context may not
follow geopolitical boundaries; in this case we may use any tree based hierarchy,
e.g. KD-trees [37] in our procedure. The nodes of the tree may also overlap as
we do not rely on disjoint nodes in our modeling phase.

Our models have two main components. The first is the hierarchical struc-
ture of geographical areas with corresponding node wights that reflect the rele-
vance of the given area. Second, we introduce functions to model the likelihood
of the consumption of a given item at a given area at a given time. Since items
may have a very strong time dependence at a location, we consider methods of
recommendation by online machine learning. Compared to standard collabora-
tive filtering methods, we process events only once and in the order they have
appeared. Immediately after a user consumes an item, the corresponding model
weights are adjusted with a high learning rate. The final prediction arises as the
weighted combination of the item estimated probabilities along the path of the
GADM tree from the leaf location of the user up to the root. In other words,
we build up our models above the location hierarchy. Whenever we recommend
for a user at a given location, we consider the entire path of the location to the
root of the GADM tree.

For our experiments, we construct data based on Twitter, a service that
can be considered as a mix of a social network and news media [24], and in
addition, an information system with geographical information. We investigate
the problem of recommending Twitter hashtags for users, based on the temporal
geolocation information of both the users and the hashtags. Twitter data is
appropriate to demonstrate the novel element in our task in that neither users
nor items (hashtags) are bound to one single location. Hashtags may in fact
relate to certain locations as well as be popular worldwide.

In a system like Twitter both the actual topics, and the interest of the users
rapidly change over time. The main goal of a user on Twitter is to adopt
relevant and new topics. As we have no information on which tweets are read
by the users but we know the new hashtags they tweeted, we use the hashtag
publishing information to measure user topic adoption. Therefore our aim is
to recommend new hashtags, i.e. hashtags that the user has not used before.
Recommending new hashtags can result a more homogenized set of hashtags
in the Twittershpere. This is practically useful both for the users and for the
service provider. The recommendations are obtained by learning online from
the stream of geo-tagged tweets.

Since hashtag usage is highly volatile, the problem calls for an online method.
Whenever a user sends a geo-tagged tweet with a hashtag she has not used
earlier, we consider the event as a trigger for recommendation. We measure the

3

accuracy of our methods in the online evaluation framework of [32] based on
discounted cumulative gain (DCG) computed individually for each event and
averaged over time.

Our baseline methods include online matrix factorization [32] and content
based methods [17]. Surprisingly, it turns out that these baselines perform
much weaker than the distance based methods and contribute relatively little
to the final prediction. This observation justifies the importance of the temporal
and geographic item context. The locality of Twitter hashtag adoption in both
spatial and temporal sense was observed among others by Kamath et al. [20].
They state that “hashtags are a global phenomenon [. . .] but distance between
locations is a strong constraint on the adoption [. . .] and follow a spray-and-
diffuse pattern”.

Our methods are applicable in the user cold start situation as well, when
only the location but no prior actions of the user is known. Observe that the new
methods use item and location information and user-item matrix factorization
adds little to the overall accuracy. Hence our method is capable of recommend-
ing items to new users, given that their location is known. To justify, we will
measure recommendation quality as the function of the items consumed by the
users.

The paper is organized as follows. After the related results, in Section 2 we
describe our online evaluation framework for our highly time sensitive implicit
top-k recommendation task. We describe our methods in Section 3, including
the notion of the Global Administrative Areas hierarchy, the models for item
temporal behavior, and the combination of recommender methods by online
learning. In Section 4 we describe the matrix factorization, nearest neighbor,
and content based baseline methods. Finally we give the Twitter based data
generation procedure and the results of our experiments in Section 6.

1.1. Related work
In our results, the key factor for recommendation quality is location. Surveys

on recommendations in location-based social networks [5, 40] combine spatial
ratings for non-spatial items, nonspatial ratings for spatial items, and spatial
ratings for spatial items [28]. In [22], an architecture of a location based recom-
mender system is described with dynamic as well as static attributes both for
users and for items. They illustrate their architecture with hotel recommenda-
tion, a task that would fit into our models by replacing the current location of
a user by a potentially ambiguous tentative trip location. By using the same
architecture as [22], we give location based models in this paper.

In our geographic recommender method, neither users nor items have direct
well-defined geolocation. We are aware of no other results that use external
data to define the hierarchy of locations for recommendation tasks. Regions-
of-Interest partitioning is examined in [26]. Instead of administrative districts,
the authors establish natural regions by applying k-means clustering on the
dataset. Other results propose Optics [46] and grid-based [45] clustering to
compile a structure of locations for GPS trajectory mining. Similar to our

4

result, in [15], GADM is used over the same Twitter data set, but only for
visualization purposes.

Most of previous publications on geographic recommender systems work with
check-in data, where each of the items has a predefined static location. Bao et
al. [4] build a hierarchy tree based on the text content to define user similarity
for collaborative filtering. They combine local and distant event comparison
with finding local experts. Probabilistic Matrix Factorization [9] relies on the
geographic information of the items and the typical location of the users. They
observe that “users tend to check in around several centers, where the check-in
locations follow a Gaussian distribution at each center [. . . and] the probability
of visiting a place is inversely proportional to the distance from its nearest
center; if a place is too far away from the location a user lives, although he/she
may like that place, he/she would probably not go there.” As seen by the
above quote, check-in physical locations, unlike the geographic aspects of tweets,
primarily determine user behavior and enable very different methods that cannot
be applied in our task.

Other check-in recommendation results [7, 16] use matrix factorization, the
latter also combines it with geographic regularization. Note that factor model
recommenders [14] perform much weaker than our geographic models, hence
we concluded that location information has to be used in a different way in
our hashtag recommendation task. Several results consider similarity based
recommenders [47]; for example, they exploit that closer locations have much
higher probability of being visited [5]. Note that our recommender task is
very different from check-in data, since physical constraints of distance are not
necessarily affecting Twitter content.

In [23], Flickr geotags are used for travel route recommendation, concentrat-
ing on routes and not individual places. User similarity based methods may
combine friendship information with the distance of the user home locations
[42, 43].

While we use Twitter mainly to simulate the task, we survey Twitter analysis
and in particular, hashtag recommendation results next to compare with our
methods. Twitter is a mixture of a social network and news media [24], where
users follow each other [19] and use hashtags [20] to organize their messages. The
complexity of Twitter data gives rise to a number of prediction tasks with a wide
variety of possible techniques and solutions. Lerman and Gosh give an empirical
comparison of information contagion on Digg vs. Twitter [27]. Several results
predict retweet count : Cheng et al. [10] based on network features, Bakshy et
al. [2, 3] on bit.ly URLs, and [34] on time sensitive modeling.

Hashtag recommendations are addressed in several recent papers: Chen et
al. [8] give methods for efficiently maintaining a sliding window for time aware
recommendation, and Diaz et al. [14] introduce methods to compute matrix
factorization online. These results are orthogonal to our exploitation of the
location information, and these approaches can be combined to yield a scalable
recommender architecture.

Hashtag recommendation is proposed to help the users in allocating terms
to their posts and increase the homogeneity of hashtag usage in [44, 17, 25].

5

These methods recommend after the user finished writing a new target tweet.
All these results use user or item based similarity search over the tf-idf by using
cosine distance as one method. In [44], several other distance metrics are tested,
but apparently cosine of tf-idf performed best. In [25], combinations of user and
item content similarity are tested with roughly 20-30% improvement in hit rate
by using user and not just item content.

We use the method of [17] as a content based baseline in our experiments.
They also use terms in the past tweets of the user. Time is considered by
separating hashtags used over long periods of time vs. only for a short lifespan;
however for both sets of hashtags, they observe an exponential decay of relevance
in time.

In a more complex content based recommender, [29, 30] solve a different task:
they predict the future popularity of hashtags by using feature engineering, La-
tent Dirichlet Allocation and also combining with information on the mention
graph. No experiments are known whether more complex content feature engi-
neering would significantly improve hashtag recommendation performance.

In the hashtag recommendation literature [14, 8, 44, 17, 25, 29, 30], we ob-
serve that the differences in recommendation quality are much smaller than
the difference between our location models compared to the baselines. Conse-
quently, we concentrate on exploring the use of location in recommenders and
their combination with simple baselines.

As additional relevant results addressing hashtag use, Spatial statistics of
hashtag adoption are analyzed by Kamath et al. [20]. Cheng et al. [11] give
methods to geolocalize tweets based on content. Mocanu et al. [31] use a data
set similar to ours to analyze geographical properties like homogeneity and sea-
sonal patterns of language usage at scales ranging from country-level to city
neighborhoods. Similar to our use of the Global Administrative Areas, regions-
of-interests partitioning is examined in [26] by applying k-means clustering to
establish natural regions over Twitter data. None of these papers exploit the
results in recommender systems.

Our method is capable of handling the cold start recommendation problem
as we rely only on the user location and not necessarily the past set of user items.
The cold start problem was introduced in [38] as the task of recommending items
not yet rated by the users. A very similar task is to recommending for users with
no past activity. Cold start recommendation is known to be difficult: in [35] it is
observed that metadata based recommendation has much lower quality if ratings
exist. We separately measure the performance of our location based methods
for users with no past events, ratings even implicit, and show the strength of
geolocation for cold start recommendation.

We consider the task of top-k recommendation first introduced in [39]. The
difficulty in top-k recommendation compared to individual item rating predic-
tion is that the ratings of potentially all candidate items have to be computed
to find those best fitting to the preference of the user. In [13], item similarity
based recommenders are given where the list of similar items are maintained to
reduce the candidates. In [12], popular items are used as candidates to limit the
number of ratings to be computed to obtain the top-k recommendation. In our

6

location based methods, candidates are maintained at the nodes of the location
hierarchy tree. The methods of [12, 13] are orthogonal to our procedure and
could be used in combination, especially with the baselines, to speed up the
recommendation phase.

2. Online recommendation and evaluation

We use the online recommendation framework described in [32], in which
model training and evaluation happen simultaneously, iterating over the dataset
only once, in chronological order. Whenever we see a new user-item pair, we as-
sume that the user becomes active and reveals her location to the recommender
system. In this case, we recommend items of potential interest for the user that
we match against the actual item consumed. The recommendation is online,
hence it depends on the context at the exact time instance of the item. If a
user u views item i at time t in location `, our models give a score r̂(u, i′, `, t)
for each item i′ seen so far, and recommend to u the k items with the largest
values from those that u has not seen before.

2.1. Online top-k recommendation
We address the top-k recommendation task [13, 12], where the goal is not to

rate some of the individual items but to provide the best candidates. In a time
sensitive or online recommender that potentially recomputes prediction after
each and every new item, we have to generate a new top-k recommendation list
for every single event in the test period. The online top-k task is hence different
from the standard recommender evaluation settings, since there is always a
single item only in the ground truth and the goal is to aggregate the rank of
these single items over the entire testing period.

2.2. Average DCG for online evaluation
We use the quality metric of [32]. If i is the next item for the user, DCG@k

is defined as the following function of the rank of i returned by the recommender
system,

DCG@k(i) =

{
0 if rank(i) > k;

1
log2(rank(i) + 1)

otherwise. (1)

The overall evaluation of a model is the average of the DCG@k values over all
items of the testing period.

Since DCG is a slow decreasing function of the rank, our DCG evaluation
may consider a large number of tags of potential interest to each user. Note that
in our unusual setting of DCG evaluation, there is a single relevant item and
hence for example no normalization is needed as in case of the DCG measure.
Also note that the DCG values will be small since the nDCG of a relative short
sequence of actual messages will roughly be equal to the sum of the individual
DCG values. Furthermore, we never recommend the same item used in the
training set, and for this reason, the best DCG average could reach the value

7

World

Europe

Hungary

Budapest

` =

Gyor . . .

Austria . . .

Africa Asia . . .

Figure 1: First three levels of the tree and the user location `.

of 1 even if the only modification to the top-k recommendation would be the
removal of the previous relevant results.

2.3. Ramifications for the Twitter data
The online evaluation framework described in this section applies to general

user-item setting. Since we use Twitter hashtag recommendation to generate
a realistic task for our experiments, next we describe some specific elements of
interpreting the online evaluation metric.

First, we have no access to the list of tweets read by the user. For this
reason, we approximate the evaluation by assuming that the user includes the
relevant new hashtags in the next message.

Furthermore, we never recommend hashtags already appearing in some ear-
lier tweet of the user. We could easily modify our method by periodically revis-
iting hashtags not used for a given time. However actively used hashtags depend
more on external information beyond the scope of a recommender system.

Also, we give no recommendation when a user tweets but includes no new
hashtag. In this case, DCG would be zero, which would modify all our results by
the fraction of the messages with no new hashtags but leave the relative power
of the methods the same.

Finally note that in a single event, the user may include more than one
items, i.e. add more than one new hashtag to the same tweet. In this case, for
uniformity, we add the DCG values without normalization, unlike in nDCG.

3. Modeling

3.1. Recommendation by location hierarchy
Our recommendation model assumes the existence of a hierarchical structure

over the geographical locations, for example the GADM tree that will be shown
in Section 6.2. We denote the leaf of the tree that is closest to the current GPS
location of the user by `, and the path in the tree from the root node to location
` by Path(`). For illustration, an example subtree is given in Figure 1.

We further assume a function s(i, n, t) that scores the likelihood of an item i
being used in node n of the tree at time t. In Sections 3.2–3.4, we propose three
variants of such scoring functions that depend on the history of the given item

8

in the particular node. The individual scores along the path corresponding to
the users location are combined linearly:

r̂(u, i, `, t) =
∑

n∈Path(`)

wn,t · s(i, n, t), (2)

where wn,t are node specific weights that aim to capture the relevant level of
granularity for a given location or region. The weights wn,t are independent of
the items and characterize the area n only. The weights along the current path
are adapted by online gradient descent, optimizing for RMSE:

wn,t = wn,t−1 + η (r(u, i, `, t)− r̂(u, i, `, t)) s(i, n, t),

where η is a learning rate and r(u, i, `, t) is the target value, that is set to 1,
if the item was consumed at time t, and 0 if not. The gradient of wn,t in the
RMSE is 2 · sn · error, where error is the difference of the predicted and actual
score.

We have to take special consideration for the zero target values r(u, i, `, t) = 0
for implicit feedback data. In our tasks, the events imply only user interest but
no feedback of like and dislike. In most of our models, we need negative instances
as well for training. In order not to saturate the model with an overwhelming
majority of zero score items, the typical method that we apply in our models
is that we generate negative training instances by selecting N random items
uniformly corresponding to the time of the positive instance. Negative instances
correspond to items that the user did not see at the given time and location.
Only the positive items and negative sample elements i are given to (2).

In our experiments we also investigate models where we set all wn,t values
constant, i.e. we do not learn the weights. Several variants are investigated for
setting the weights: (1) world: only the root of the three has non-zero weight,
(2) continent: only nodes corresponding to continents have non-zero weights, (3)
country: same for countries, (4) leaves: only the leaves have non-zero weights,
and (5) tree: all weights are set equal.

3.2. Temporal popularity
To determine popularity, for each location in the tree, we compute the num-

ber of occurrences of the item i at the given location. For defining time in-
tervals, we use a predefined time discretization that we test between a minute
and a day. As it follows power-law distribution, we use the logarithm of the
temporal popularity values as node scores: s(i, n, t) = log(pop(i, n, t)), where
pop(i, n, t) denotes the number of occurrences of item i in node n in the time
interval ending at time t.

3.3. Item recency
Our next method estimates the chance of the appearance of an item by

considering its most recent usage. The advantage of this method is that it is
more sensitive to changes in trends. While it may more aggressively overfit to

9

Figure 2: Inter-event distribution.

single events, overall it performs similar to and combines very well with the
popularity based method. As we will observe in our experiments, the inter-
event time distribution follows power law, in accordance with several earlier
observations [6, 41, 21]

P (τ = t) = (α− 1) · t−α and P (1 ≤ τ ≤ t) = 1− t(1−α). (3)

Given the distribution of the time between consecutive appearances, we may
estimate the chance that the item appears in the next ∆t time if we have not
observed it for time frame t by

P (t < τ ≤ t+ ∆t|τ > t) =
P (τ ≤ t+ ∆t)− P (τ ≤ t)

1− P (τ ≤ t)
(4)

=
(1− (t+ ∆t)(1−α))− (1− t(1−α))

t(1−α)
= 1−

(
1 +

∆t

t

)(1−α)

.

For location sensitive prediction we maintain the last appearance of each item
for every node in the geolocation tree. We compute the estimate of (4) in each
node by using a global α value.

3.4. Exponentially weighted decay
This method estimates the probability of an item by assuming a gradient

descent update:

p̂(i, n, t+ 1) = p̂(i, n, t)− (1− γ)
∂(p̂(i, n, t)− y(i, n, t))2

∂p̂(i, n, t)
,

where y(i, n, t) equals 1, if item h was used for node n at time t, and 0 otherwise.
By simple computation, with p̂(i, n, 0) = 0 we get the familiarly looking

p̂(i, n, t) = (1− γ)
∑

τ :y(i,n,t)=1,τ<t

γt−τ .

10

Since the probability of an item also has a power-law distribution we temper the
large values by using a logarithm transform. By dropping constant scaling, the
score function will be s(i, n, t) = log(1 +

∑
τ :y(i,n,t)=1,τ<t γ

t−τ). To give more
insight in the parameter, in the experiment we replace γ by the halving time
t1/2: γ = 0.51/t1/2 .

While the first method estimates popularity over longer time, the second
is expected to react better to items gaining rapidly in popularity. This third
method can be seen as a compromise between the two, i.e. it is estimating pop-
ularity (in fact, p̂(i, n, t) converges to the expected probability, if the popularity
is stationary), but gives exponentially larger weight to the more recent events.

3.5. Method combination by online learning
We blend our individual methods to form a stronger recommendation. We

combine some of our models linearly by learning the combination weights by
stochastic gradient descent. The learning algorithm is similar to the one we
applied for the node weights (see Section 3.1).

4. Baseline methods

The most popular and successful approaches to recommendation are ma-
trix factorization, and nearest neighbor methods. These will be included as
baselines in the experiments, and their implementation is described in the next
subsections. Besides matrix factorization, we apply two different nearest neigh-
bor methods in our experiments. First, we define distance based on time and
geolocation. Next, we introduce a content based recommender that uses the
text of the tweets to compute similarity and distance.

4.1. Online matrix factorization
A matrix factorization model characterizes each user u by a vector Pu and

each item i by a vector Qi. The score for a given item is represented by the
scalar product PuQi.

For batch evaluation, it is standard to iterate several times over the training
set until convergence. However, it was shown in [32] that for online scenar-
ios stochastic gradient descent is more efficient (which is consistent with the
experience in online learning, in general).

We apply online matrix factorization for implicit feedback problems. As in
Section 3.1, after each moment when a user considers an item, that item becomes
a positive instance and we sample N items uniformly as negative instances.
Then, the user and item vectors are updated by gradient descent on the mean
square error between the target and the predicted score. The target of positive
instances is 1, and for the negative instances is 0.

11

4.2. Nearest neighbor model
While many neighborhood approaches rely on finding users with similar

behavior, on our dataset this is less efficient since too many users have only
a few tweets. Alternatively, we rely on the geographical closeness. Thus, we
consider the geographically nearest k occurrences of the item. The score of the
item arises by aggregating the function of the time elapsed and the geographic
distance of past occurrences,

k∑
i=1

f(ti)dist−1i , (5)

where ti is the time elapsed since tweet i and disti is the distance. For the
time function f , we give an estimate in Section 3.3, but in fact any decreasing
function would suffice.

4.3. Content based recommendation
To provide an information rich baseline, we let our content based recom-

mender access, with the exception of the hashtag, the full text of the actual
tweet to recommend hashtags. Note that none of our other methods have infor-
mation beyond user, time and location.

Our method is based on [17], who use the cosine similarity of tf-idf. We do
not separate hashtags used over longer periods of time: for simplicity, we use a
global exponential decay over all hashtags. Also for simplicity of implementa-
tion, we do not consider the past items of the users. Note that in [17, 44], the
differences between content based recommender quality are much smaller than
the difference between our location models compared to the baselines.

One component of [17] that resulted in significant gains in our experiment
is the TemporalTweetMax strategy that we implemented as our baseline. We
multiply the similarity of the new tweet with one in the history by N(t) = e−ηt,
where t is the difference of the time between the new and the old tweet and η is a
constant as in [17]. Similar to the exponentially weighted method of Section 3.4,
we replace η by the halving time.

5. Overview of the recommendation architecture

Our recommender system processes each user request by producing a top list
of recommendations, and then updates the recommender model by the actual
item taken by the user in an online learning fashion. The pseudocode is given
in Algorithm 1 and an overview diagram in Fig. 3.

Next we analyze the computational complexity of our algorithms. Note that
our algorithms are top-k recommenders, where computational costs depend on
the candidate generation procedure [12]. In our analysis, we will use c, the
number of candidate items, as a parameter. Candidates may potentially be all
items. Note that in our baseline experiments, we used all items as candidates
to provide as strong as possible baselines.

12

Algorithm 1 Overall Pseudocode of the Recommender System

procedure Recommend(user u, location `, timestamp t, text T)
for all location nodes n containing ` do

for all items i in n do
Pop(i, n) = log(pop(i, n, t)) as in Section 3.2
Rec(i, n) = 1− (1 + ∆t/t)(1−α) as in (4).
Dec(i, n) = log(1 +

∑
τ :y(i,n,t)=1,τ<t γ

t−τ) as in Section 3.4

r̂(u, i)← combine Pop(i, n), Rec(i, n), Dec(i, n) by wn,t as in (2).
for all items i do

MF(u, i) =
∑
k PukQik

NN(u, i) =
∑k
i=1 f(ti)dist−1i as in (5)

for all items i similar to T do
Cont(u, i) = e−ηt cos(i, T) as in Section 4.3

Return top i of linear combination r̂(u, i), MF(u, i), NN(u, i), Cont(u, i)
procedure Update(user u, location `, item i, timestamp t)

for all location nodes n containing ` do
Store (i, t) at n
Update pop(i, n, t) in sliding window
Update wn,t by gradient descent

Generate negative items
for all positive and negative items j do

for all factors k do
Update Puk, Qjk by gradient descent

Update combination weights by gradient descent

Figure 3: The recommender architecture.

Recency, popularity and decay. In our new methods, each node n of the GADM
tree stores a candidate set Cn of most popular items at the location, much
smaller than the set of all items. The recommendation procedure is linear in
|
⋃
n Cn| while update is O(1).

13

Table 1: Properties of the original dataset.

number of tweets 1,423,278,863 (100%)
tweets with coordinates 1,266,004,930 (88.95%)

tweets with hashtags 173,493,860 (12.19%)
tweets with mentions 655,340,289 (46.04%)

Matrix factorization. We have to maintain k factors of all candidates, with
complexity O(c · k) for recommendation and O(1) for update.

Nearest neighbor. Recommendation complexity is linear in the number of can-
didates. The set

⋃
n Cn suffices. There is no update step.

Content based. We compute the similarity of each candidate to the text T of
the new tweet. Recommendation complexity is O(c · |T |). Candidate generation
may be improved by using text index to include only tweets with at least one
common word. Also, old tweets may be discarded. There is no update step.

6. Experiments

6.1. Data set
We use a four-month collection of 400 million geo-tagged Twitter messages

detailed in [15]. We mention that the metadata of tweets may contain not only
GPS coordinates but also a place attribute that can contain the name and type
of the place. However, we found the place attribute often ambiguous and less
reliable. We summarized the properties of the full data in Table 1. Due to the
irregularities of their collection procedure, we used the data between February
1 and May 30, 2012, hence the online learning period lasts three months (see
Fig. 4).

Since hashtag count follows power-law distribution, most of the hashtags are
quite rare and we use only the hashtags that appear more than 5 times. This
way we exclude about 90% of the hashtags, but most of the hashtag timeline
remains. We also exclude the hashtags that appear in the first month of the
collection to recommend newly spreading hashtags for the users. The properties
of the final cleansed dataset are summarized in Table 2 and we show the final
number of posted hashtags for each day in Figure 5.

6.2. Global Administrative Areas
We collected all 214,230 nodes from the GADM database, from which 190,315

are leaves. The depth of the tree is 6, and includes 5 levels from the GADM
tree plus continent-country relations. The first three levels are visualized in
Figure 1. The hashtag time series data covered 30,450 leaves from the tree.

14

nu
m

be
r

of
 n

ew
ha

sh
ta

gs

0

50,000

100,000

150,000

200,000

time (days)
0 50 100 150 200 250 300 350

Figure 4: Daily count of new hashtags.

co
un

t

0
20,000
40,000
60,000
80,000

100,000
120,000

time(days)
0 20 40 60 80

Figure 5: Daily number of posted hashtags in the final cleansed dataset.

Table 2: Properties of the cleansed dataset.

number of records 6,978,478
number of unique user-hashtag pairs 2,993,183

number of users 792,860
number of hashtags 268,489
number of countries 49

6.3. Parameter analysis
In this subsection, we analyze the effect of the model parameters specific to

the methods such as learning rate, negative rate, dimension, or time frame. In
this set of graphs the performance in measured as the average DCG@100 over
the testing period.

6.3.1. Matrix factorization
The factor model have four parameters: the dimension of the latent vectors

d, the learning rate η, the regularization rate λ, and the number of negative

15

av
er

ag
e

D
C

G
@

10
0

0

0.05

0.1

0.15

0.2

learning rate (lRate)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

av
er

ag
e

D
C

G
@

10
0

0.15

0.16

0.17

0.18

number of negative samples (nRate)
0 50 100 150 200 250 300 350

Figure 6: Left: average DCG@100 for SGD based MF with different learning rates. Right:
average DCG@100 as the function of the number of negative samples generated for all positive
instances in the test set.

samples N . We show the performance of the factor model by varying the the
learning rate and the negative rate in Figure 6. Increasing the learning rate
improves the performance up to a certain point, since it helps to adapt to the
non-stationarity of the data. If the learning rate takes values higher than 0.4, the
algorithm becomes unstable with many latent vectors diverging to infinity. The
optimal number of negative samples seems to be consistent to previous studies
that suggest an optimal range from 60 to 100. We do not show graphs for
the remaining two parameters as did not appeared of interest. In the following
experiments, the parameters will be set as follows: d = 10, η = 0.4, λ = 0.001
and N = 99.

6.3.2. Nearest neighbor
Nearest neighbor has as main parameter the number of neighbors k, and

the parameters of the recency function. The former is set to 1000, while the
parameters of the recency function is discussed in Section 6.3.5. This model has
the weakest performance of all models, and no other parameter setting seemed
to improve it.

6.3.3. Content based recommendation
Content based method has the halving time as main parameter (see 4.3). In

Figure 7 we show the overall performance of the model measured in DCG@100
as the function of the halving time. Note that if we do not include the time-
decaying term in the model, the average performance is roughly 0.08. As a
result, including the time decaying term is important, but the performance is
then less sensitive to the halving time.

6.3.4. Temporal popularity
The tree-based temporal popularity has the size of the time frame ∆t as

leading parameter, and additionally the parameters of the learning algorithm,
such as the learning rate, and the negative rate. The performance of the al-
gorithm while varying the time frame is shown in Figure 8. Computing the
popularity on time frame less then 1 hour leads to poor performance, since it
gives a too noisy evaluation, while increasing the time frame for longer than a
few hours also harms the performance giving too much influence to past events.

16

av
er

ag
e

D
C

G
@

10
0

0.135

0.14

0.145

0.15

0.155

0.16

half-life (sec)
1,000 10,000 100,000

Figure 7: Average DCG@100 as the function of the half life parameter for the content based
recommender.

av
er

ag
e

D
C

G
@

10
0

0.29
0.3

0.31
0.32
0.33
0.34
0.35
0.36

time (hours)
0.1 1 10 100

Figure 8: Average DCG@100 for the geolocation based popularity model as the function of
the length of the time frame.

In the following we set ∆t = 2h. For the online SGD that adapts the node
weights, we set η = 0.0001, λ = 0.0001, N = 4.

6.3.5. Item recency
The parameters of the hashtag recency are the time frame ∆t, and the

exponent α. For the later, one could look at the inter-event distribution of the
data set, and find the exponent with the best fit. The distribution is shown in
Figure 2 is indeed power-law as suggested in Section 3.3, and α = 1.2 results in
the best interpolation. The ranking performance for the parameters are shown
is Figure 9. The time frame does not appear to have a strong influence on the
performance, except for shorter ones. The optimal value for the exponent seems
to be around 2, and the corresponding performance is considerably better than
for the value of 1.2 suggested from interpolation of the data. In what follows,
we set ∆t = 2h, and α = 2. For the online SGD that learns the node weights,
we set η = 0.0001, λ = 0.0001, N = 4.

6.3.6. Exponentially weighted decay
This method has the halving time t1/2 as main parameter. The optimal value

for the halving time appears to be around 15 minutes (see Fig. 10), decaying for
values larger than half hour. The performance with respect to the negative rate
is interesting, because this is the only method for which increasing the negative
rate to large values improves the performance. The chosen set of parameters
are: t1/2 = 900, η = 0.0001, λ = 0.0001, N = 10, 000.

17

av
er

ag
e

D
C

G
@

10
0

0.2
0.22
0.24
0.26
0.28
0.3

0.32
0.34

time (hours)
0 2 4 6 8 10 12 14 16 18 20 22 24

av
er

ag
e

D
C

G
@

10
0

0.3
0.31
0.32
0.33
0.34
0.35
0.36

exponent
1 1.2 1.4 1.6 1.8 2 2.2 2.4

Figure 9: Average DCG@100 as the function of parameter ∆t (left), and α (right) for the
recency and tree based recommender.

av
er

ag
e

D
C

G
@

10
0

0.3
0.31
0.32
0.33
0.34
0.35
0.36
0.37
0.38
0.39
0.4

half-life (sec)
500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Figure 10: Average DCG@100 as the function of the half-life parameter of the exponentially
weighted tree based recommender.

6.4. Performance comparison
In this section, we compare the performance of the various models. In the

graphs we show the average cumulative DCG, that is the average DCG until a
certain number of days.

For the tree based methods we show the variant with learned weight and the
variants with fixed weight (see Section 3.1): world, continent, country, leaves,
and tree. The graphs for the three scoring functions (temporal popularity,
hashtag recency, and exponentially weighted decay) are shown in Figures 11,
12, and 13. For the popularity and the exponentially weighted functions the
relative performance of the variants are rather similar: leaves performs the
poorest, then world and continents, with the tree and country variants being
close to each-other as best performers. It seems that country is the right level
of granularity here, going higher or lower in the tree impairing the performance.
The similarity between the two functions is not surprising since both estimate
popularity.

For hashtag recency, the relative performance is different. The country still
seems as the best level of granularity, but the tree variant with learned weights
is considerably better. Overall, we can conclude that the learning algorithm is
able to find the right level of granularity (in terms of performance at least), and
is able to outperform it in some cases.

The performance of the tree based methods with learned weights, and the
three baselines, nearest neighbor and matrix factorization, are compared in
Figure 14. The three baselines perform much worse than the tree based methods,
with the factor model being the better of the three over longer period. Of the
tree based methods, the exponentially weighted decay outperforms the other

18

av
er

ag
e

cu
m

ul
at

iv
e

D
C

G
@

10
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (days)
2 4 6 8 10 12 14 16 18 20

3
3
3
3
3
3

world leaves
continents countries
tree tree with learned node weights

Figure 11: Average cumulative DCG@100 for the tree based popularity model and its baseline
variants.

av
er

ag
e

cu
m

ul
at

iv
e

D
C

G
@

10
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (days)
2 4 6 8 10 12 14 16 18 20

3
3
3
3
3
3

world leaves
continents countries
tree tree with learned node weights

Figure 12: Average cumulative DCG@100 curves of the recency based methods.

two, which have similar performance. In the beginning temporal popularity
has similar performance to the exponentially weighted decay, while later its
performance decreases relative to the latter. This can be explained by the fact
that the exponentially weighted functions can remember past events for a longer
time, while the popularity forgets the events that are out of its time window. In
this sense, it can be seen that the exponential scoring function takes advantage
of the ideas from the other two scoring functions.

6.5. Cold start users
In this section we consider how the number of tweets in the dataset for a user

influences the recommendation performance. The average DCG for the hashtag
recency, the content, and the factor model is shown if Figure 15. The same
dataset is used for training as before, but the DCG is averaged for users that
have a certain number of posted hashtags during the measurement. It can be
seen that the factor model performs poorly for users that have only a few tweets.

19

av
er

ag
e

cu
m

ul
at

iv
e

D
C

G
@

10
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (days)
2 4 6 8 10 12 14 16 18 20

3
3
3
3
3
3

world leaves
continents countries
tree tree with learned node weights

Figure 13: Average cumulative DCG@100 curves of the exponential decay methods.

av
er

ag
e

D
C

G
@

10
0

0

0.1

0.2

0.3

0.4

time (days)
2 4 6 8 10 12 14 16 18 20

2
2
2
2
2
2

factor
content
neighbor

popularity
recency
exponentially weighted

Figure 14: Best performances of the models.

av
er

ag
e

D
C

G
@

10
0

0

0.1

0.2

0.3

0.4

0.5

user activity
1 10 100

2
2
2

content
factor
tree recency

Figure 15: Performance of the recency, the content, and the matrix factorization model as the
function of user activity.

This is natural since it is personalized model, and it has little information about
these users. The factor model performs worse than the tree based model even
for users with higher activity, but the difference between the two is becoming
smaller. The content based model is better than the factor model for new users,
but in general it performs significantly worse compared to the tree based model
for all types of users.s

20

av
er

ag
e

cu
m

ul
at

iv
e

D
C

G
@

10
0

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

time (days)
2 4 6 8 10 12 14 16 18 20

3
3
3

exponentially weighted
exponentially weighted+recency
exponentially weighted+recency+matrix factorization

Figure 16: Combination of the best three different models.

Table 3: Best performance methods and their combination.

DCG@100 DCG@10
content based 0.1555 0.1490
nearest neighbor 0.1464 0.0970
matrix factorization (mf) 0.1827 0.1638
popularity (pop) 0.3601 0.3370
recency (rec) 0.3571 0.3233
exponentially weighted (exp) 0.3865 0.3577
exp + rec 0.3916 0.3619
exp + rec + mf 0.3989 0.3693

6.6. Online combination
In our final experiments we compared and combined our strongest methods.

In Figure 16 we plotted the average cumulative DCG@100, for the standalone
exponential weighted method, in combination with the recency method, and in
combination with the recency method and the factor method. The popularity
method did not improved the exponentially weighted method and it is not in-
cluded. It is easy to see that the hashtag recency method (where the tree and
learning is crucial) improves in combination with the base method. Similarly,
personalization with the factor model improves as well in combination with the
tree based methods. Table 3 summarizes the performances of the standalone
methods and their best combinations.

6.7. Recommending items already seen
While our aim is to recommend new hashtags for the user, for reference we

include results when we recommend hashtags that the given user have already
seen. In these experiments, we evaluate our recommendation on all events in
the time series. The performance of the six different models with best parame-
ters are shown in Fig. 17. In general, DCG@100 is higher for all models as this

21

av
er

ag
e

cu
m

ul
at

iv
e

D
C

G
@

10
0

0

0.1

0.2

0.3

0.4

0.5

time (days)
1 2 3 4 5 6 7 8 9 10 11 12 13 14

2
2
2
2
2
2

factor popularity
content recency
neighbor exponentially weighted

Figure 17: Best methods for predicting new as well as already used hashtags.

is task is easier compared to the new hashtag recommendation. The relative
performance of the models are roughly the same as for the new hashtag recom-
mendation. The only exception is that the recency model that performs better
than the exponentially weighted model.

7. Conclusions

We described new general online, location based learning methods that are
beneficial for recommending items with ambiguous geolocation that may change
in time. While we believe that our methods apply for most geographic infor-
mation systems, e.g. hotels, restaurants, etc., for illustration, we measured our
methods for Twitter hashtags by, at a given time instance, recommending a top
list of hashtags to adopt for users with known GPS position. Since hashtags
are not directly bound to a location, may be geographically spread, and vary
in popularity at different times, we designed methods that exploit the time and
location context.

In our main findings, it has turned out that traditional methods such as ma-
trix factorization, nearest neighbor and event content based hashtag recommen-
dation perform weak for this task. Our best methods are based on measuring
popularity and recency over a geographical hierarchy and learn the importance
of the locations. Surprisingly, user personalization has little contribution to
recommendation quality, hence our best methods apply in the user cold start
setting as well. When restricting our findings to the task of hashtag recommen-
dation, we emphasize that the location based recommenders outperform content
even without having access to the text of the actual candidate tweet.

An important finding is that recency, the information on the very last occur-
rence of an item, has an element orthogonal to temporal popularity that combine
well in recommenders. The exponential decay method gives a good compromise
between mid-range more stable popularity and very recent but noisy activity,
but even combining all three methods gives additional gains. Also, recency
captures very well the particular events happening at the GADM tree location

22

nodes and for recency, learning the relevance of a node for a user gives strong
improvement. On the other hand, popularity and exponential decay already sat-
urates with information near the resolution of countries and little improvement
is reached beyond.

In future work, we would like to use our method for contextualized geo-
graphic recommendation in other tasks such as hotel or restaurant recommen-
dation. We stated our method in a general way independent of Twitter char-
acteristics. In fact, we only used Twitter as an easy-to-access data set for
illustrating our methods.

Some particular ideas that can be easily added to our experimentation in-
clude (1) Comparing cluster and KD-tree based methods to the predefined
GADM tree to test whether items obey geopolitical boundaries or follow differ-
ent patterns; (2) Include content based similarity in the location tree nodes, by
combining the nearest neighbor formula (5) with content similarity, or even use
popularity and recency for the terms and not just the hashtags.

8. Acknowledgments

The publication was supported in part by the Momentum Grant of the Hun-
garian Academy of Sciences, by OTKA NK 105645, and the PIAC_13-1-2013-
0197 projects. The projects are supported by Hungarian Government, managed
by the National Development Agency, and financed by the Research and Tech-
nology Innovation Fund.
[1] J. Abernethy, K. Canini, J. Langford, and A. Simma. Online collaborative filtering.

University of California at Berkeley, Tech. Rep, 2007.

[2] E. Bakshy, J. M. H., W. A. Mason, and D. J. Watts. Everyone’s an influencer: quantifying
influence on twitter. In WSDM, pages 65–74. ACM, 2011.

[3] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts. Identifying influencers on
twitter. In WSDM, 2011.

[4] J. Bao, Y. Zheng, and M. F. Mokbel. Location-based and preference-aware recommen-
dation using sparse geo-social networking data. In SIGSPATIAL, pages 199–208. 2012.

[5] J. Bao, Y. Zheng, D. Wilkie, and M. F. Mokbel. A survey on recommendations in
location-based social networks. ACM Transaction on Intelligent Systems and Technology
(to be published), 2013.

[6] A.-L. Barabasi. The origin of bursts and heavy tails in human dynamics. Nature,
435(7039):207–211, 2005.

[7] B. Berjani and T. Strufe. A recommendation system for spots in location-based online
social networks. In Proceedings of the 4th Workshop on Social Network Systems, page 4.
ACM, 2011.

[8] C. Chen, H. Yin, J. Yao, and B. Cui. Terec: A temporal recommender system over tweet
stream. Proceedings of the VLDB Endowment, 6(12):1254–1257, 2013.

[9] C. Cheng, H. Yang, I. King, and M. R. Lyu. Fused matrix factorization with geographical
and social influence in location-based social networks. In AAAI, volume 12, page 1, 2012.

23

[10] J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec. Can cascades be
predicted? In WWW, pages 925–936. 2014.

[11] Z. Cheng, J. Caverlee, and K. Lee. You are where you tweet: a content-based approach
to geo-locating twitter users. In CIKM, pages 759–768. ACM, 2010.

[12] P. Cremonesi, Y. Koren, and R. Turrin. Performance of recommender algorithms on
top-n recommendation tasks. In RecSys, pages 39–46. ACM, 2010.

[13] M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM
Transactions on Information Systems (TOIS), 22(1):143–177, 2004.

[14] E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl. Real-time top-n recom-
mendation in social streams. In RecSys, pages 59–66. ACM, 2012.

[15] L. Dobos, J. Szule, T. Bodnár, T. Hanyecz, T. Sebok, D. Kondor, Z. Kallus, J. Stéger,
I. Csabai, and G. Vattay. A multi-terabyte relational database for geo-tagged social
network data. In CogInfoCom, pages 289–294. IEEE, 2013.

[16] H. Gao, J. Tang, X. Hu, and H. Liu. Exploring temporal effects for location recommen-
dation on location-based social networks. In RecSys, pages 93–100. ACM, 2013.

[17] M. Harvey and F. Crestani. Long time, no tweets! time-aware personalised hashtag
suggestion. In Advances in Information Retrieval, pages 581–592. Springer, 2015.

[18] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets.
In ICDM, Data Mining, 2008. ICDM’08. Eighth IEEE International Conference on,
pages 263–272. IEEE, 2008.

[19] B. Huberman, D. Romero, and F. Wu. Social networks that matter: Twitter under the
microscope. Available at SSRN 1313405, 2008.

[20] K. Y. Kamath, J. Caverlee, K. Lee, and Z. Cheng. Spatio-temporal dynamics of online
memes: a study of geo-tagged tweets. In WWW, pages 667–678. 2013.

[21] M. Kivelä and M. A. Porter. Estimating inter-event time distributions from finite obser-
vation periods in communication networks. arXiv preprint arXiv:1412.8388, 2014.

[22] M.-H. Kuo, L.-C. Chen, and C.-W. Liang. Building and evaluating a location-based
service recommendation system with a preference adjustment mechanism. Expert Systems
with Applications, 36(2):3543–3554, 2009.

[23] T. Kurashima, T. Iwata, G. Irie, and K. Fujimura. Travel route recommendation using
geotags in photo sharing sites. In CIKM, pages 579–588. ACM, 2010.

[24] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news
media? In WWW, pages 591–600. ACM, 2010.

[25] S. M. Kywe, T.-A. Hoang, E.-P. Lim, and F. Zhu. On recommending hashtags in twitter
networks. In Social Informatics, pages 337–350. Springer, 2012.

[26] R. Lee and K. Sumiya. Measuring geographical regularities of crowd behaviors for twitter-
based geo-social event detection. In SIGSPATIAL, pages 1–10. ACM, 2010.

[27] K. Lerman and R. Ghosh. Information contagion: An empirical study of the spread of
news on digg and twitter social networks. In ICWSM, 2010.

[28] J. J. Levandoski, M. Sarwat, A. Eldawy, and M. F. Mokbel. Lars: A location-aware
recommender system. In ICDE, pages 450–461. IEEE, 2012.

24

[29] Z. Ma, A. Sun, and G. Cong. Will this# hashtag be popular tomorrow? In SIGIR, pages
1173–1174. ACM, 2012.

[30] Z. Ma, A. Sun, and G. Cong. On predicting the popularity of newly emerging hashtags
in twitter. Journal of the American Society for Information Science and Technology,
64(7):1399–1410, 2013.

[31] D. Mocanu, A. Baronchelli, N. Perra, B. Gonçalves, Q. Zhang, and A. Vespignani. The
twitter of babel: Mapping world languages through microblogging platforms. PloS one,
8(4):e61981, 2013.

[32] R. Pálovics and A. A. Benczúr. Temporal influence over the last.fm social network. Social
Netw. Analys. Mining, 5(1):4, 2015.

[33] R. Pálovics, A. A. Benczúr, L. Kocsis, T. Kiss, and E. Frigó. Exploiting temporal influence
in online recommendation. In RecSys, pages 273–280. ACM, 2014.

[34] S. Petrovic, M. Osborne, and V. Lavrenko. Rt to win! predicting message propagation
in twitter. In ICWSM, 2011.

[35] I. Pilászy and D. Tikk. Recommending new movies: even a few ratings are more valuable
than metadata. In RecSys, pages 93–100. ACM, 2009.

[36] I. Pilászy, D. Zibriczky, and D. Tikk. Fast als-based matrix factorization for explicit and
implicit feedback datasets. In RecSys, pages 71–78. ACM, 2010.

[37] F. Preparata and M. Shamos. Computational geometry: an introduction. Texts and
monographs in computer science Show all parts in this series, 1988.

[38] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods and metrics for
cold-start recommendations. In SIGIR, pages 253–260. ACM, 2002.

[39] U. Shardanand and P. Maes. Social information filtering: algorithms for automating
“word of mouth”. In SIGCHI, pages 210–217. ACM, 1995.

[40] P. Symeonidis, D. Ntempos, and Y. Manolopoulos. Location-based social networks. In
Recommender Systems for Location-based Social Networks, pages 35–48. Springer, 2014.

[41] A. Vazquez, B. Racz, A. Lukacs, and A.-L. Barabasi. Impact of non-poissonian activity
patterns on spreading processes. Physical review letters, 98(15):158702, 2007.

[42] M. Ye, P. Yin, and W.-C. Lee. Location recommendation for location-based social net-
works. In SIGSPATIAL, pages 458–461. ACM, 2010.

[43] M. Ye, P. Yin, W.-C. Lee, and D.-L. Lee. Exploiting geographical influence for collabo-
rative point-of-interest recommendation. In SIGIR, pages 325–334. ACM, 2011.

[44] E. Zangerle, W. Gassler, and G. Specht. On the impact of text similarity functions on
hashtag recommendations in microblogging environments. Social Network Analysis and
Mining, 3(4):889–898, 2013.

[45] V. W. Zheng, Y. Zheng, X. Xie, and Q. Yang. Collaborative location and activity
recommendations with gps history data. In WWW, pages 1029–1038. ACM, 2010.

[46] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel
sequences from gps trajectories. In WWW, pages 791–800. ACM, 2009.

[47] D. Zhou, B. Wang, S. M. Rahimi, and X. Wang. A study of recommending locations
on location-based social network by collaborative filtering. In Advances in Artificial
Intelligence, pages 255–266. Springer, 2012.

25

	Introduction
	Related work

	Online recommendation and evaluation
	Online top-k recommendation
	Average DCG for online evaluation
	Ramifications for the Twitter data

	Modeling
	Recommendation by location hierarchy
	Temporal popularity
	Item recency
	Exponentially weighted decay
	Method combination by online learning

	Baseline methods
	Online matrix factorization
	Nearest neighbor model
	Content based recommendation

	Overview of the recommendation architecture
	Experiments
	Data set
	Global Administrative Areas
	Parameter analysis
	Matrix factorization
	Nearest neighbor
	Content based recommendation
	Temporal popularity
	Item recency
	Exponentially weighted decay

	Performance comparison
	Cold start users
	Online combination
	Recommending items already seen

	Conclusions
	Acknowledgments

