
University of Windsor University of Windsor 

Scholarship at UWindsor Scholarship at UWindsor 

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 

3-10-2021 

Improving E-Commerce Recommendations using High Utility Improving E-Commerce Recommendations using High Utility 

Sequential Patterns of Historical Purchase and Click Stream Data Sequential Patterns of Historical Purchase and Click Stream Data 

Komal Virk 
University of Windsor 

Follow this and additional works at: https://scholar.uwindsor.ca/etd 

Recommended Citation Recommended Citation 
Virk, Komal, "Improving E-Commerce Recommendations using High Utility Sequential Patterns of 
Historical Purchase and Click Stream Data" (2021). Electronic Theses and Dissertations. 8578. 
https://scholar.uwindsor.ca/etd/8578 

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor 
students from 1954 forward. These documents are made available for personal study and research purposes only, 
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, 
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder 
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would 
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or 
thesis from this database. For additional inquiries, please contact the repository administrator via email 
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208. 

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8578&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8578?utm_source=scholar.uwindsor.ca%2Fetd%2F8578&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca


Improving E-Commerce Recommendations using High Utility Sequential Patterns of Historical 

Purchase and Click Stream Data  

By 

 

Komal Virk 

 

 

 

A Thesis  

Submitted to the Faculty of Graduate Studies  

through the School of Computer Science 

in Partial Fulfillment of the Requirements for 

the Degree of Master of Science 

 at the University of Windsor 

 

 

Windsor, Ontario, Canada 

2021 

© 2021 Komal Virk 

 

 

 

 

        

 

 



 

Improving E-Commerce Recommendations using High Utility Sequential Patterns of Historical 

Purchase and Click Stream Data  

By 

 

Komal Virk 

 

APPROVED BY: 

 

 

E. H. Kim  

Department of Physics 

 

 

A. Biniaz 

School of Computer Science 

 

 

 

C. Ezeife, Advisor 

School of Computer Science 

 

 

 

 

January 15, 2021 

 



iii 

 

DECLARATION OF ORIGINALITY 
 

I hereby certify that I am the sole author of this thesis. I certify that, to the best of my 

knowledge, my thesis does not infringe upon anyone’s copyright nor violate any proprietary rights 

and that any ideas, techniques, quotations, or any other material from the work of other people 

included in my thesis, published or otherwise, are fully acknowledged in accordance with the 

standard referencing practices. Furthermore, to the extent that I have included copyrighted material 

that surpasses the bounds of fair dealing within the meaning of the Canada Copyright Act, I certify 

that I have obtained a written permission from the copyright owner(s) to include such material(s) 

in my thesis and have included copies of such copyright clearances to my appendix.  

I declare that this is a true copy of my thesis, including any final revisions, as approved by 

my thesis committee and the Graduate Studies office, and that this thesis has not been submitted 

for a higher degree to any other University or Institution. 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 



iv 
 

ABSTRACT 
Recommendation systems not only aim to recommend products that suit the taste of consumers 

but also generate higher revenue and increase customer loyalty for e-commerce companies (such 

as Amazon, Netflix). Recommendation systems can be improved if user purchase behaviour are 

used to improve the user-item matrix input to Collaborative Filtering (CF). This matrix is mostly 

sparse as in real-life, a customer would have bought only very few products from the hundreds of 

thousands of products in the e-commerce shelf. Thus, existing systems like Kim11Rec, HPCRec18 

and HSPRec19 systems use the customer behavior information to improve the accuracy of 

recommendations. Kim11Rec system used behavior and navigations patterns which were not used 

earlier.  HPCRec18 system used purchase frequency and consequential bond between click and 

purchased data to improve the user-item frequency matrix. The HSPRec19 system converts 

historic click and purchase data to sequential data and enhances the user-item frequency matrix 

with the sequential pattern rules mined from the sequential data for input to the CF. HSPRec19 

system generates recommendations based on frequent sequential purchase patterns and does not 

capture whether the recommended items are also of high utility to the seller (e.g., are more 

profitable?). 

    The thesis proposes a system called High Utility Sequential Pattern Recommendation System 

(HUSRec System), which is an extension to the HSPRec19 system that replaces frequent 

sequential patterns with use of high utility sequential patterns. The proposed HUSRec generates a 

high utility sequential database from ACM RecSys Challenge dataset using the HUSDBG (High 

Utility Sequential Database Generator) and HUSPM (High Utility Sequential Pattern Miner) mines 

the high utility sequential pattern rules which can yield high sales profits for the seller based on 

quantity and price of items on daily basis, as they have at least the minimum sequence utility. This 

improves the accuracy of the recommendations. The proposed HUSRec mines clicks sequential 

data using PrefixSpan algorithm to give frequent sequential rules to suggest items where no 

purchase has happened, decreasing the sparsity of user-item matrix, improving the user-item 

matrix for input to the collaborative filtering. Experimental results with mean absolute error, 

precision and graphs show that the proposed HUSRec system provides more accurate 

recommendations and higher revenue than the tested existing systems. 

 

Keywords: Data mining, Sequential pattern mining, Collaborative filtering, High utility pattern 

mining, E-commerce recommendation systems. 
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CHAPTER 1: INTRODUCTION 
 

Recommendation Systems (RS) provide a suggestion of items to the user in various 

decision-making processes such as what item to buy, what movies to watch, what music to listen 

to what online news to read (Ricci, Rokach, & Shapira, 2011). Recommender systems (Agrawal, 

2016) have evolved into a fundamental tool for helping users make informed decisions and 

choices, especially in the era of big data in which customers must make choices from many 

products and services. A lot of RS models and techniques have been proposed and most of them 

have achieved great success. Among them, the content-based RS and collaborative filtering RS 

(Melville, Mooney & Nagarajan, 2002) are two major ones. Recommendation systems use data 

mining technologies such as classification, clustering, association rule mining, frequent pattern 

mining, and sequential pattern mining (Han, Pei & Kamber, 2011) to generate a meaningful 

representation of user purchase data. 

Traditionally, collaborative filtering is the most used technique in recommendation systems and it 

has as its input, user item rating matrix containing the explicit ratings given to the items (products) 

by the users. Most of the users do not give ratings to the products because there are too many 

products and each user may have interacted with only a very small percentage of products. So, the 

user-item rating matrix becomes sparse. To resolve this issue, (Choi, Yoo, Kim, & Suh, 2012) used 

the other available information about the purchase and customer behavior (such as basket 

placement, clicks etc). The clickstream analysis techniques like KimRec05 (Kim, Yum, Song, & 

Kim, 2005) and LiuRec09 (Liu, Lai &Lee, 2009) proved that these behaviors are dynamic in nature 

and purchase of items could be different in each purchase. The introduction explains importance 

of recommendation systems, mostly used recommendation techniques (Content based and 

Collaborative filtering), data mining and its techniques to gather useful information from the 

available e-commerce datasets. 

 

1.1 Why we need E-commerce Recommender System 

 

       In addition to the common goals of recommendation systems, (Schafer, Frankowski, 

Herlocker & Sen, 2007) gave three important goals for recommendation systems in E-commerce 

as follows: 
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1. Increase the sale of the products: This is probably the most important reason for popularity of 

commercial RS, i.e., to be able to sell an additional set of items compared to those usually sold 

without any kind of recommendation. The increase in the sales can be achieved if the 

recommended items are likely to suit the user’s needs and wants. 

2. Sell more diverse items: Another major role of a RS is to enable the user to select items that might 

be hard to find without a precise recommendation. For instance, in a movie RS such as Netflix, the 

service provider is interested in renting all the movies in the catalogue, not just the most popular 

ones. 

3. Increase the loyalty between user and customer: A well designed RS can also improve the 

experience of the user with the site or the application. The user will find the recommendations 

interesting, relevant and, with a properly designed human-computer interaction, they will also 

enjoy using the system. 

 

1.2  Types of Recommendation systems (RS) 

1.2.1 Content Based Filtering (CBF) 

     Content Based Filtering is a domain-dependent algorithm and it emphasizes more on the 

analysis of the attributes of items to generate predictions. In this technique, recommendation is 

made based on the user profiles using features extracted from the content of the items the user has 

evaluated in the past. The CBF uses different similarity techniques to generate meaningful 

recommendations among items to recommend (Pazzani, Muramatsu & Billsus, 1996). It could use 

similarity techniques such as Vector Space Model such as Term Frequency Inverse Document 

Frequency (TF-IDF) for information retrieval (Musto, 2010) to model the relationship between 

different documents within a corpus. If the user profile changes, CBF technique still has the 

potential to adjust its recommendations within a very short period. The major disadvantage of this 

technique is the need to have an in-depth knowledge and description of the features of the items in 

the profile.  
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1.2.2 Collaborative Filtering (CF) 

      Collaborative filtering is one of the most widely used recommendation technique, and it 

depends on explicit rating of items provided by users, but many users may not be ready to provide 

the items ratings. The similarity in taste of two users is calculated based on the similarity in the 

rating history of the users. This is the reason why refers to collaborative filtering as “people-to-

people correlation.” Collaborative filtering systems are usually categorized into two subgroups: 

memory-based and model-based methods (Agrawal, 2016), (Ekstrand, Riedl & Konstan ,2011). 

      Memory-based collaborative filtering utilizes the entire user-item data to generate 

predictions. The system uses statistical methods to search for a set of users who have similar 

transactions history to the active user. This method is also called nearest-neighbor or user-based 

collaborative filtering (Sarwar, Karypsis, Konstan & Riedl, 2001).  

       Model-based collaborative filtering provides recommendations by developing a model from 

user ratings (Sarwar, Karypsis, Konstan & Riedl, 2001). In addition to using explicit data such as 

ratings, collaborative filtering can also use implicit information by observing the habits of users, 

such as music played, applications downloaded, websites visited, or books read (Bobadilla, Ortega, 

Hernando, & Gutiérrez, 2013).  

       The user-item rating matrix (e.g. Table 1.1) in E-commerce usually contains part 

information of the historical transaction records. In Table 1.1, each row records a purchase (a 

collection of item names) happened in a session, and there may be multiple products for each 

purchase.  

 

Problem 1.2.1: Given a user- item matrix as in Table 1.1, which has ratings between 1- 5 given 

by each user for items they have interacted with, while for other items their ratings are unknown. 

The task here is to predict the unknown ratings for user “7” on item “e” for purposes of 

recommendation using Collaborative filtering algorithm.  
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Solution 1 for Problem 1.2.1: 

The solution for problem 1.2.1 using user-based collaborative filtering algorithm is as follows:  

 

Table 1.1 User-item matrix for rating. 

Input: A user-item rating matrix (Table 1.1) where ratings are specified in the range from 1-5 such 

as {1, 2, 3, 4, 5} which indicates users likeliness for the items {a, b, c, d, e}. 

Output: Predictions of User “7” ratings on item “e”. 

Step 1:  Compute the mean ratings 𝑟𝑢 (𝑟1, 𝑟2, . . . , 𝑟𝑚) for each user where 𝑟𝑢𝑖 is the observed    

rating of user u for item i, only consider the specified ratings. 

Mean rating (𝑟u) = ∑i𝟄I 𝑟ui / |𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑚𝑠| 

Equation 1. 1 Equation to compute mean rating 

The average ratings for user 1, 3, 4 and 7 are 10/3, 3, 8/3, 2 respectively. 

Step 2: Compute similarity between the user “7” and other users using Cosine (u, v) which is 

known as Cosine similarity. 

Cosine (u, v) =  
�⃗⃗� .  �⃗⃗� 

||𝑢||.||𝑣||
 = 

𝑟𝑢1 ⋅ 𝑟𝑣1 + 𝑟𝑢2 ⋅ 𝑟𝑣2+ … +𝑟𝑢𝑛 ⋅ 𝑟𝑣𝑛

√𝑟𝑢1
2+𝑟𝑢2

2+⋯+𝑟𝑢𝑛
2  ∗ √𝑟𝑣1

2+𝑟𝑣2
2+⋯+𝑟𝑣𝑛

2
 

Equation 1. 2 Formula to Compute Cosine similarity 

For example, the cosine similarity between user “1”and user “7” is (1, 7) = 

following Equation 1.2. Similarly, 𝑠im (3, 7) = 0.553, 𝑠𝑖𝑚 (4, 7) = 0.707; the correlation similarity 

between user “1” and “7” is 𝑠𝑖𝑚 (1, 7) = . Similarly, 𝑠𝑖m (3, 

7) = −0.878, 𝑠𝑖𝑚 (4, 7) = −0.196.  

Step 3: Select the Top –N neighbors of User “7” which has highest similarity to it, in our case 

where N is set to 2, user “1” and user “4” has the highest similarity to user “7”. 
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Step 4: Compute the raw ratings using the Top-N users (User 1 and User 4). 

Compute the rating value of rating for user 7 on item e (𝑟7, 𝑒) using user “1” and user “4” with the 

cosine similarity formula in Equation 1.2, 

 

Step 5: Compute prediction value using sum of mean rating and rating value for the item.  

For example, mean centric rating of User “7” is 2 as calculated in step 1 and value of raw ratings 

for user 7 on item e (r7, e) gives, 2+1.5 = 3.5. 

CF recommendation systems have some limitations such as: 

(1) Cold Start problem: When new items or new users appear in the database, these items are not 

rated yet by any users, and the users' preferences are unknown;  

(2) Sparsity problem: When the known rating data (Sarwar, Karypis, Konstan& Riedl, 2000) 

takes only a very small proportion in the user-item rating matrix.  

(3) Scalability problem: As the numbers of users and products grow rapidly, the time complexity 

and space complexity issues become more prominent. 

1.2.3 Hybrid filtering 

      Both CF and CBF have their benefits and demerits; therefore, if we combine both together, 

then the benefits of both can be used to overcome the demerits of others (Kumar & Fan, 2015). 

For example, according (Fan, Pan, & Jiang, 2014), CF provides recommendations using rating 

matrix now what happens when there is no rating given by a user (new user) then in such case the 

contents of user-item (CBF filtering) can be used with CF for recommendations. To resolve the 

rating problem, implicit rating system like ChoiRec12 (Choi, Yoo, Kim, & Suh, 2012) derived 

from user behaviors (for example, purchases, clicks) across E-commerce and clickstream data 

analysis techniques like KimRec05 (Kim, Yum, Song, & Kim, 2005) and LiuRec09 (Liu, Lai 

&Lee, 2009) are used. However, users purchase behavior is always dynamic in nature and purchase 

of items may be different in each purchase (Moe & Fader, 2004). So, one of the main challenges in 

the field of recommendation system is to integrate sequential patterns of purchases with 

collaborative filtering because collaborative filtering finds closest neighbors between users or 

items without considering i) sequential purchase patterns ii) click and purchase behaviors iii) 
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possible reasons for changes in user purchase habits. While Collaborative filtering (CF) does not 

take into account the properties of the items but uses only the preference (rating or voting) provided 

by users for items, the content-based approach makes recommendation based on the user profiles 

(such as age, class) and product features (such as price, product attributes) (Mooney & Roy,  

(1999)). These user or item features serve as contents that can be modeled to discover the 

relationship between different items similarity values using Vector Space Model such as Term 

Frequency Inverse Document Frequency (TF-IDF) for information retrieval (Musto, 2010), or 

Probabilistic models such as Naïve Bayes Classifier, Decision Trees or Neural Networks 

(Xhemali, Hinde & Stone, 2009) extracted from those contents. Hybrid approach allows 

recommendation with both collaborative filtering and content-based approach to be used for 

recommendation and can serve to solve the cold start problem when there is no rating information 

by a user on an item. However, such approaches suffer from a major drawback because they are 

not able to capture the E-commerce domain with sequential information of customer purchase 

behavior. Furthermore, sequential data may be available in a historical form, clickstream form. So, 

one of the main challenges in E-commerce recommendation is to generate the best 

recommendation suggestions from historical or clickstream sequential data to capture customer 

shopping behavior with respect to time. 

 

1.3 Need for Sequential Purchase Data in E-commerce Recommendation 
 

1) User purchase habit changes with time: Collaborative filtering (CF) methods make a 

recommendation to a target customer based on the purchase behavior of other customers whose 

preferences are like those of the target customer. Thus, CF cannot capture the changes in purchase 

behavior of the customer over time and integrating sequential rule in E-commerce can capture the 

customer purchase behavior over time.  

2) Integrating frequency, price factor in recommendation: Traditional collaborative filtering 

technique, only consider the rating of an item for making a recommendation. Only considering the 

rating factor cannot provide a good recommendation to user because user choice depend altogether 

on product quantity, price and overall rating of the purchased product.  

3) Taking care of timing factor during E-commerce recommendation generation: In E-

commerce, some users may purchase items regularly, while other users may purchase items 
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irregularly. So, recommendation generation by considering irregular users may provide a wrong 

recommendation to regular users. 

1.4 Data Mining  

        Data mining targets to explore information or patterns hidden in the large data set, but not 

people finding easily recognizable patterns during their daily life. According to (Chen, Han, & Yu, 

1996) “ Data mining, which is also referred to as knowledge discovery in databases, means a 

process of non - trivial extraction of implicit, previously unknown and potentially useful 

information (such as knowledge rules, constraints, regularities) from data in databases”. Some of 

the unsupervised learning data mining techniques include Clustering, Association Rule Mining 

and supervised learning data mining technique like Classification. 

1.4.1 Clustering 

       Clustering is a process of grouping several similar objects together (Jain & Dubes, 1998), 

clustering is unsupervised data mining technique, which does not need to be labeled manually and 

can automatically divide the data into set or group of clusters of similar objects using techniques 

such as distance measures to decide the closeness of data objects. The K-means clustering 

(Hartigan & Wong, 1979) is one of the used clustering approaches in the field of data mining 

(Steinbach, Karypis, & Kumar, 2000). K-means clustering is used, when we have unlabeled data 

which cannot be defined into categories or groups. The K-means algorithm works iteratively to 

assign each data point to one of K groups based on the features that are given.  

Problem 1.4.1: Consider the Table 1.2 as Input data with Height and Weight, the two important 

attributes. Using the K-means algorithm for clustering, we aim to find the possible clusters using 

the Table 1.2. 

Height (cm) Weight (kg) 

185 72 

170 56 

168 60 

179 68 

182 72 

188 77 

Table 1.2 Input data to clustering algorithm 
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Solution for problem 1.4.1: The K-means clustering algorithm consists of five major steps: 

Input: a set of objects O = {I1, I2, I3, … In}and each object has n-dimensional attributes Oi such 

as Height and Weight, 1<= i <=n. 

Output: subsets of objects such as [{O1, O4}; {O2, O6, O3} …]. 

Step 1:  Randomly pick centroid from available objects. Initialize cluster centroid. Let’s 

consider, two centroids one containing minimum value of Height, Weight and another containing 

maximum value of Height, Weight as given in Table 1.3.  and name then H1 and W1. 

Cluster Initial Centroid 

Height Weight 

Cluster 1 185 72 

Cluster 2 170 56 

Table 1.3 Maximum and minimum cluster centroids 

Step 2: Calculate the distance between the centroid and other objects. The distance can be 

calculated using the Euclidean distance formula (Equation 1.3).  

E. D=√(AH − H1)2 + (Aw − W1)2 

Equation 1. 3 Euclidean distance formula 

Where, XH= Observation value of height, H1= Centroid value of cluster 1 for height, Xw = 

Observation value of height, W1= Centroid value of cluster 1 for weight. Here, we are using 

(Height: 168, Weight: 60) as object value from input data. 

Euclidian Distance from Cluster 1  Euclidian Distance from Cluster 2  Chosen cluster  

√ (168−185)2+60−722= 20.808  √ (168−185)2+(60−72)2 = 4.472  Cluster 2  

Table 1.4 Table showing computation of Euclidean distance 

From Euclidean distance, we can see that record with (168, 60) is very close to cluster 2.  

 

Step 3: Update centroid of each new cluster, by computing the average attributes of all object in 

a cluster.  

 Cluster  Updated Centroid  

Height  Weight  

Cluster 1  185  72  

Cluster 2  (170+168)/2=

169  

(56+60)/2=58  

Table 1.5 Table showing update of centroid in new cluster in K-means method 
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Step 4: Repeat step 1, 2 and step 3 until the centroids stop changing.  The output created in 

our example is present in Table 1.6. 

Objects  Cluster  

{(185,72), (179,68), 

(182,72), (188,77)}  

Cluster 1  

{(170,56), (168,60)}  Cluster 2  

Table 1.6 Cluster created by K-means method 

Step 5: Return the k clusters. In this case, clusters returned are {(185,72), (179,68), (182,72), 

(188,77)} and {(170,56), (168,60)}. 

 

1.4.2 Association Rule Mining 

      In data mining, association is useful for analyzing and predicting customer behavior. (Agarwal 

& Srikant, 1994) play an important part in shopping basket data analysis. Association rule mining 

is primarily focused on finding frequent co-occurring associations among a collection of items. It 

is sometimes referred to as “Market Basket Analysis”, since that was the original application area 

of association mining. Apriori (Agrawal & Srikant, 1996), is an algorithm for frequent item set 

mining and association rule learning over transactional databases. A general survey of association 

rule mining techniques is given by (Hipp, Güntzer & Nakhaeizadeh, 2000). An association rule 

expression is of the form   X ⇒ Y, where “⇒” is intended to give a direction to the nature of 

correlation between the set of items X and Y.  

Support(s): The support of an itemset X ⊆ I is the fraction of transactions in (T) that contain both 

X and Y. The support count of an Itemset in a transaction database can be calculated as the number 

of transactions of the database that contain the itemset. 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑖𝑡𝑒𝑚𝑠𝑒𝑡)  =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚𝑠𝑒𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑢𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
 

Equation 1. 4 Equation to compute support of an itemset 

 

  X. The confidence of the rule X ⇒ Y is the conditional probability that a transaction in T contains 

Y, given that it also contains X. 

  Confidence (X -> Y) = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝑋 𝑈 𝑌)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡 (𝐴)
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Problem 1.4.2: Consider for the given transactions, let say T= {T1, T2, T3, T4} given in Table 1.7, 

some items are bought in all these transactions, where candidate set (C1) = {A, B, C, D} using 

association rule mining (Apriori algorithm), we can find the set of frequent patterns from large 

itemsets (Li) iteratively by computing the support of each itemset in the candidate set Ci. 

Transaction Id (TID)  Items  

T1  A,B,C,D  

T2  A,B,D  

T3  A,B  

T4  B,C,D  

T5  B,C  

T6  C,D  

T7  B,D  

Table 1.7 Transaction database for Apriori Algorithm 

Solution for Problem 1.4.2:  

Input: Transaction database with transaction id and items purchased as given in Table 1.7 and 

minimum support =2. 

Output: Frequent pattern items 

Step 1: Find frequent item (L1) from candidate set (C1). 

The principal step in Apriori process is to find frequent item by the counting occurrence of 

each item. The items that don’t satisfy the minimum support count are pruned and produced 

frequent item (L1). In our case, frequent item (L1) = {A:3, B:6, C:4, D:5}.  

Step 2: Generate candidate set (C2) from frequent item (L1) by Apriori join (L1 App-join L1). 

We can generate a candidate set (C2) by L1 App-join L1. Frequent item (L1) can be joined 

only with an item that comes after it in frequent item (L1). Which will give candidate set (C2) 

= {AB, AC, AD, BC, BD, CD}.  

Step 3: Find frequent item (L2) from candidate set (C2). 

Frequent item (L2) is obtained by following the same procedure as in step 1. We can 

count the occurrence of each item in candidate set (C2), and infrequent items are 

removed to create frequent itemset (L2) = {AB: 3, BC: 3, BD: 4, CD: 3}.  

Step 4: Generate candidate set (C3) from frequent item (L2) by Apriori join (L2 App-join L2). 
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We can apply the same process as in step 2 to generate candidate set (C3) by joining L2 with L2 

using Apriori join and it produces candidate set (C3) = {ABC, ABD, BCD}. 

Step 5: Find frequent item (L3) from candidate set (C3). 

None of the item in candidate set (C3) satisfied minimum support. So, we need to stop here and 

join frequent item to get the final frequent item (L) =L1 U L2= {A, B, C, D, AB, BC, BD, CD}. 

1.4.3 Classification 

       Classification is a data mining function that assigns items in a collection to target categories 

or classes. The objective of classification is to accurately predict the target class for each record 

in the data. For example, a classification model used to identify loan applicants as low, medium, 

or high credit risks (Kotsiantis, Zaharakis & Pintelas, 2007). The classification using decision 

tree induction (Apté & Weiss, 1997) is one of the most widely used classification technique. The 

decision tree has two types of nodes, decision node (internal nodes) and a leaf node. A decision 

node specifies test (asks a question) on a single attribute. A leaf node indicates a class.  

Example of Classification by decision tree. 

Consider the client data which comprises of attributes (Age, Job Status, House Owned, Credit 

Score, Credit offer), using the decision tree classification we must determine whether the person 

is eligible for credit card offer. 

TID  Age Job Status  House Owned  Credit Score  Credit Offer  

1  Young  Jobless No Fair  No  

2  Young  Jobless No  Good  No  

3  Young  Employed Yes Fair  Yes  

4  Middle  Employed Yes Good  Yes  

5  Middle  Jobless Yes Excellent  Yes  

Table 1.8 Dataset to be classified by the decision tree 

 

Therefore, the decision tree is used to determine the credit card eligibility based on their Credit 

Score and house ownership. 

 

1.5 Sequential Pattern 

      A sequence occurring in an ordered list of events with respect to time are called the Sequential 

Pattern (Agrawal & Srikant, 1995). A sequential Pattern is generally enclosed within the angular 
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brackets (< >), and each itemset contains sets of items separated by commas (,). For example, a 

sequential pattern in an e-commerce system such as < (Bread, Milk), (Bread, Milk, Sugar), (Milk), 

(Tea, Sugar)> means customer has bought(Bread, Milk )together in his first purchase transaction, 

(Bread, Milk and Sugar) in the second purchase, Milk alone in the third purchase and (Tea and 

Sugar) together in the fourth purchase. An item can occur at most once in an event of a sequence 

but can occur multiple times in different events of a sequence. The number of instances of items 

in a sequence is called the length of the sequence. A sequence with length l is called an l-sequence 

(Han, Pei & Kamber, 2011). 

 

1.6 Sequential Database  

Sequence database is composed of a collection of sequences {s1, s2, …, sn} that are arranged 

with respect to time (Han, Pei & Kamber, 2011). A sequence database can be represented as a 

tuple <SID, sequence-item sets>, where SID: represents the sequence identifier and sequence-

item sets specifies the sets in item enclosed in parenthesis (). Let us consider a very common 

example of a grocery store as shown in Table 1.9, which contains <CustomerID, PurchasedItem, 

Timestamp>. 

CustomerID PurchasedItem Timestamp 

01 Bread, Milk  13, Dec 2018 00:48:44  

01 Bread, Milk, Sugar  19, Dec 2018 09:48:44  

02 Bread  14, Dec 2018 1:48:44  

01 Milk  21, Dec 2018 00:48:44  

02 Bread, Milk, Sugar  18, Dec 2018 10:48:44  

Table 1.9 Item-Purchase Database 

The above is a historical database from which we can generate the sequential database, which 

could be interpreted as in Table 1.10 where SID represents the Sequence Identifier.  

SID Sequences 

01 < (Bread, Milk), (Bread, Milk, Sugar), (Milk)> 

02 < (Bread), (Bread, Milk, Sugar)> 

Table 1.10 Sequential Database 
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The above Table 1.10 is the sequential database created from the historic data, the SID (01) has 

the purchase sequences for the customer (01) such as < (Bread, Milk), (Bread, Milk, Sugar), 

(Milk)>. In the first purchase, he bought (Bread, Milk), then (Bread, Milk, Sugar) and finally 

(Milk). 

1.7 Sequential Pattern Mining  

      Sequential Pattern Mining is a process of discovering all frequent sequential subsequences 

from transactions of items with minimum threshold support (Agrawal & Srikant, 1996). 

Sequential Pattern Mining discovers repeating patterns (known as frequent sequences) from 

input E-commerce historical sequential database that can be used later to analyze the user 

purchase behavior by finding the association between items. In other words, it is a process of 

extracting sequential patterns whose support exceeds a predefined minimum support threshold 

discussed in (Mabroukeh & Ezeife, 2010) survey. Formally, Given (i) a set of sequential records 

(called sequences) representing a sequential database D, (ii) a minimum support threshold (iii) a 

set of k unique items or events I = {i1, i2, . . . , ik}, the problem of mining sequential patterns is 

of finding the set of all frequent sequences S in the given sequence database D of items I at the 

given minimum support. The SPM can be divided into four main categories of SPM algorithms, 

namely, apriori-based: AprioriAll (Agrawal & Srikant, 1995), GSP (Srikant & Agrawal, 1996), 

PSP (Masseglia, Poncelet & Cicchetti, 1999), SPAM (Ayres, Flannick, Gehrke & Yiu, 2002); 

pattern-growth: FreeSpan (Han et al., 2000), PrefixSpan (Pei. et al, 2001), WAP-mine (Pei, 

Han, Mortazavi & Zhu, 2000); early-pruning: LAPIN (Yang, Wang & Kitsuregawa, 2007), 

HVSM (Song, Hu & Jin, 2005) and hybrid algorithms: SPADE (Zaki, 2001). 

1.8 Utility Framework 

      Utility is a quantitative representation of user preference and can be defined as “A measure of 

how ‘useful’ (i.e. profitable) an itemset is” (Yao & Hamilton, 2006). In simpler words, the utility 

of an item in a transaction is an importance value of the item in that particular transaction computed 

from the product of the per unit price value and quantity of item bought. Utility is introduced into 

frequent pattern mining to mine for patterns of high utility measured over various kinds of 

objective criterias such as cost, profit, or other measures of user preference of itemsets. This has 

led to high utility pattern mining, which selects interesting patterns based on minimum utility 

rather than minimum support (Yin, Zheng & Cao, 2012). A high utility itemset is a set of values 
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that appears in a database and has a high importance to the user, as measured by a utility function. 

High utility itemset mining generalizes the problem of frequent itemset mining by considering 

item quantities and weights. The goal of utility mining is to discover all the itemsets whose utility 

values are higher than the user specified threshold in a transaction database. We start with the 

definition of a set of terms that leads to the formal definition of utility mining problem considering. 

Assume I = {i
1
, i

2
, …, i

n
} is a set of items and  D = {TS

1
, TS

2
, …, TS

n
} be a transaction database D 

where each transaction sequences (TS), TS
i 
∈ D is a subset of I given in Table 1.11 for P = {p1, 

p2, …, pl} be a pattern (itemset), where P⊆I and l∈ [1, n].  Table 1.12 contains the price or quality 

of each item in the transaction database D. 

TID Transactions Transaction Utility (TU) 

T1 (a,2) (d,4) (e,1) 15 

T2 (e,2) (f,2) 4 

T3 (a,1)(b,1)(c,4)(d,5) 34 

T4 (b,2)(d,5)(e,3) 23 

T5 (a,1)(c,2)(d,5)(e,3) 24 

                                                                             

Table 1.11 Transaction Database 

 
 

ITEM a b c d e f 

Weight/Quality 

($) 

3 5 4 2 1 1 

 

Table 1.12 Quality Table 

1.8.1 High Utility Itemset Mining (HUIM) 

Mining high utility itemsets from databases refers to finding the itemsets which can bear high 

profits. Here, the meaning of itemset utility is the interestingness, importance, or profitability of 

an item to users (Tseng, Wu, Fournier & Yu, 2016). The utility of items in a transaction database 

consists of two aspects, namely external utility, and internal utility. Every item in the itemsets 

is associated with an additional value, called internal utility which is the quantity (i.e. count) of 

the item. An external utility is attached to an item, showing its quality (e.g. price) (Yin, Zheng & 

Cao, 2012). Utility of an itemset is defined as the sum of all the product of its external utility and 

its internal utility of all items. An itemset is called a high utility itemset if its utility is no less than 
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a user-specified minimum utility threshold; otherwise, it is called a low-utility itemset. The authors 

first defined the problem of mining high utility itemsets, and a theoretical model of utility mining 

was proposed. 

Problem 1.8.1: For a Transaction Table 1.11 (input database D) where each transaction has items 

and its internal utility (count of item bought) . The quality table in the Table 1.12, which contains 

the external utilities of all the items, namely I = {a, b, c, d, e, f} and a user specified minimum 

utility threshold ξ. itemset = {a, b, c, d, e, f}, find the high utility itemsets. 

Solution for problem 1.8.1: 

Input: Transaction table (Table 1.10.1) and Quality table (Table 1.10.2),  Output: The High 

Utility Itemset Patterns. 

     The problem of mining high utility itemset is to discover all the itemsets whose utility is no less 

than ξ, from example, (a, 2) in T1 means the quantity of ‘a’ is 2. Therefore, the utility of (a, 2) in 

T1 is u (a, T1) = 3 × 2 = 6, which indicates the profit/price of ‘a’ is 6. Furthermore, the utility of 

T1 is u (T1) = u (a, T1) +u (d, T1) +u (e, T1) = 6+8+1 = 15. It is also called the transaction utility 

of T2. The utility of the whole database is the sum of all the transactional utilities of the whole 

database. Therefore, u (D) = u (T1) + u (T2) + ... + u (T5) = 15+4+... + 24 = 100. The utility of 

itemset {ad} in T1 is u ({ad}, T1) = 6 + 8 = 14, and the utility in the database is u ({ad}) = 

14+13+13 = 40. Assume ξ = 35, then {ad} is a high utility itemset. Other high utility itemsets are 

{acd}, {bd}, {cd}, {d} and {de} with the utilities of 50, 35, 44, 38 and 35 respectively. According 

to the downward closure property, a pattern’s support is no less than that of its super-pattern. 

The downward closure property does not hold in high utility pattern mining. However, when it 

comes to the utility framework as in the example above, the utility of {d} is 38, which is bigger 

than 35 (the utility of {de}) and smaller than 50 (the utility of {acd}). Both {acd} and {de} are the 

super-patterns of {d}, but the utilities could be either bigger or smaller. It obviously does not hold 

the downward closure property anymore. 

Limitation: The problem 1.8.1 suffers from the large candidate generation process with more 

memory consumption and execution time and it fails to follow the downward closure property. 

Later a more efficient High utility itemset mining (HUIM) algorithm (Liu & Qu, 2012), EFIM 
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(Efficient high-utility Itemset Mining) (Zida, Fournier-Viger, Lin, Wu & Tseng, 2015) introduced 

a one-phased algorithm which decreases the time and memory required for EFIM. 

Later sequential pattern mining was introduced in the High Utility Mining. A sequence is of high 

utility only if its utility is no less than a user specified minimum utility (Ahmed, Tanbeer, Jeong 

& Lee 2010). Following the high utility pattern mining approach, highly profitable sequential 

patterns are retrieved, which are more informative for retailers in determining their marketing 

strategy. Utility Span (US) and Utility level (UL) algorithms were also proposed to mine high 

utility sequential patterns (Ahmed, Tanbeer, Jeong & Lee, 2010) before understanding these 

algorithms, it is better to understand relevant definitions in the Utility Framework. 

1.8.2 Preliminary Definitions for High Utility Sequential Pattern Mining 

       Let a sequence S, denoted by {s1, s2, …, sr}, be an ordered list of patterns, that is, each sq (1 

≤ q ≤ r) is a pattern P, and each pattern appearing in a sequence is called an element of the 

sequence. A Sequence Database (SDB) contains several transaction sequences (TS), where TSs: 

{TS1, TS2, …, TSm}. TSk (1≤ k ≤ m) contains a tuple <SIDk, Sk>, where SIDk is the sequence ID, 

and Sk is the sequence of the TSk. TSk is said to contain a sequence, X, if X is a subsequence of Sk. 

 Item Profit per 

unit ($) 

a 5 

b 7 

c 3 

d 10 

e 6 

f 8 

g 9 

       

                        Table 1.13 Sequence database with internal utility and external utility 

 

Definition 1. Table 1.13 shows an example SDB with internal and external utility values. Here, 

the internal utility values represent the quantities of items in sequences, and the external utility 

value of each item represents profit ($) per unit of that item. For example, in Table 1.13, iu(b, 

S1)=6, and eu(b)=7. However, an item may appear multiple times in a TS. In that case, iu(ij, Sk) is 

the addition of all the quantities of ij in sequence Sk. For example, in Table 1.13, iu (a, S1)=10.  

 

Sequence 

ID 

Sequence with internal utility Sequence  

utility ($) 

S1 a(3) {a(2) b(6) d(2)} f(1) a(5) d(1) 130 

S2 e(3) {a(2) b(5)} d(1) c(4) 85 

S3 {c(1) f(2)} b(3) {d(1) e(4)} 74 

S4 a(2) {b(7) d(4) } {a(6) b(3)} e(5)  180 

S5 {d(1) f(3)} c(5) g(2) 67 

S6 d(2) e(1) {a(7) b(8)} d(3) b(6) e(3) 207 
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Definition 2. Sequence utility, su(ij, Sk), is the quantitative measure of utility for item ij in TSk, 

defined by  

su(ij, Sk)=iu(ij, Sk)× eu(ij). 

Equation 1. 5 Sequence Utility formula for an item 

For example, su(b, S1)= 6×7=42 in Table 1.13. 

Definition 3. A sequence, for example, X= {x1, x2, …, xm}, is called an m-sequence, where X⊆Sk, 

xp⊆I, and 1≤p≤m. To calculate the internal utility of an item, ij, in a sequence X (X⊆Sk), we must 

take only the internal utility of ij in X. For example, iu(d, de(ab), S6)=2 (where X=de(ab)). Hence, 

as with an item, a sequence X may have multiple distinct occurrences in TSk. Accordingly, for 

sequence utility of X in Sk, su(X, Sk) is defined by 

 

su (X, Sk) = ∑  ∑ su (ij, X, Sk) for all X ∈ 𝑆𝑘 ∀ 𝑋ij Ɛ X 

Equation 1. 6 Sequence Utility formula for sequence 

However, in the above equation, we refer to only all distinct occurrences of X. For example, 

sequence de has two distinct occurrences in S6. Hence, su(de, S6) = (2×10+1×6) + (3×10+3×6) = 

26+48 =74 in Table 1.13.   

 

Definition 4. The sequence utility of a transaction is the sum of products of internal (iu) and 

external (eu) utilities of each item in a transaction. The sequence utility of TSk is sum of utility of 

all the items in the transaction defined by:     

Su (TSk) = ∑ su(ij, Sk) for ij Ɛ Sk. 

Equation 1. 7 Sequence Utility formula for a transaction (k)                

For example, su(TS1)=su(a, S1)+su(b, S1)+su(d, S1)+su(f, S1) =50+42+30+8=130.  

   

Definition 5. The sequence utility of a sequence say X in SDB is the sum of sequence utility of 

X in all the transactions of SDB. The sequence utility of a sequence X in an SDB is defined by 

 

su (X, SDB) = ∑ ∑ su(X, Sk) for TSk Ɛ SDB and X is subset of Sk . 

Equation 1. 8 Sequence utility formula for sequence in SDB 
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For example, su(a(bd)a, SDB) =su(a(bd)a, TS1) +su(a(bd)a, TS4) =102+129=231 in Table 1.13. 
 

 

Definition 6. The sequence utility of the whole Sequential Database is the summation of all the 

transaction utilities in the database. The sequence utility value of an SDB is defined as 

 

su(SDB) = ∑ Su(TSk) for TSk Ɛ SDB. 

Equation 1. 9 Sequence utility value of SDB 

 

For example, su(SDB)=743 in Table 1.13. 

 

Definition 7. The minimum sequence utility threshold, δ, is given by the percentage of sequence 

utility value of the database. In Table 1.13, if δ is 30% or can be expressed as 0.3, then the 

minimum sequence utility value can be defined as 

minSeqUtil = δ × su (SDB). 

Equation 1. 10 Formula to compute Minimum Sequence Utility threshold 

 

Hence, in this example, minSeqUti l=0.3×743=223 in Table 1.13. 

 

Definition 8. A sequence X is a high-utility sequential pattern if su(X) ≥  minSeqUtil. Mining high-

utility sequential pattern means discovering all the sequences X having criteria su(X) ≥ minSeqUtil. 

For minSeqUtil=223, a(bd)a is a high-utility sequential patten as su(a(bd)a) = 231. The sequential 

pattern mining does not satisfy the downward closure property. To maintain the downward closure 

property in high-utility sequential pattern mining, we use a new measure called sequence-weighted 

utility (swu). The swu value of a sequence X is defined by  

swu (X) = ∑ su(TSk) for X is subset of Sk and TSk Ɛ SDB 

 
Equation 1. 11 Formula to compute Sequence weighted utility 

 

Definition 9. X is a high-swu sequence if swu(X) ≥ minSeqUtil. 
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1.9 Problem definition   

       The main aim of the thesis is to improve the HSPRec19 system (Bhatta, Ezeife & Butt, 2019) 

and its performance. The HSPRec19 system first mined frequent sequential patterns of user 

purchases from historical and click purchase data with the GSP miner algorithm (Agrawal & 

Srikant, 1995), then used these discovered sequential pattern rules to enrich the user-item rating 

matrix before running the collaborative filtering algorithm for product recommendations. The 

HSPRec19 system discovers sequential rules based on simple item minimum support counts. 

While these patterns are helpful for the consumers but they do not ensure that the seller company 

is also gaining from this approach.  

Thus, in this thesis, proposed HUSRec uses item and sequence utility values such as (quantity and 

price) of the item to predict the sequential rules which will bear high profits. Mining high utility 

patterns means finding the patterns (frequent patterns or sequential patterns) with high utility 

values which will help seller to increase revenue generation as well as improve the accuracy of 

recommendations made to the customers. The high profits can be measured in the terms of 

importance or profitability of the items from user to user. The aim of this thesis is to make the 

user-item matrix more informative as using mined high utility sequential patterns from the 

purchase and click history sequential database based on high profit yielding sequential patterns.  

 

1.10 Problem Statement  

For an online E-commerce system having session id’s related to the clickstream (C) and 

purchase behavior (P) dataset for users if given a threshold minimum utility, the problem of 

discovering the frequent high utility sequential patterns over a dataset is to get all frequent 

sequences whose utility is no less than threshold utility, can enhance the user-item matrix which 

is the input to the collaborative filtering which could predict about the possible purchases that will 

be profitable for the retailer and also increase accuracy of the recommendations. 

 

1.11 Thesis Contributions 

The thesis aims to improve the work done in recommending the items in E-commerce 

system using the clickstream and purchase datasets. (Kim & Yum, 2011) integrated association 

mining rules with clickstream data to recommend the items but no behavioral sequences were 

considered. Then, HPCRec18 (Xiao & Ezeife, 2018) introduced the consequential bond i.e. matrix 

between clickstream and purchase data for the users. Further, HSPRec19 system (Bhatta, Ezeife 
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& Butt, 2019) discovers the frequent historical sequential pattern from click and purchase, so that 

discovered frequent sequential patterns are used to improve the user-item frequency matrix to 

improve recommendation. In this thesis, we have introduced the HUSRec system which aims to 

enhance the user-item frequency matrix by discovering the high utility frequent sequential patterns 

from the purchased data we can yield high revenue generations for the sellers. 

1.11.1 Thesis Feature Contribution  

1. Converting the periodic purchase data to a High Utility Sequential Purchase database 

using internal and external utilities from the historic purchase dataset. 

Developing a High Utility Sequential Purchase Database (HUSPDB) for E-commerce 

recommendation dataset from the purchase data using the internal utility (e.g., quantity of 

item bought) and external utility (e.g., cost price or profit earned per each item), further using 

this information we can calculate the sequence utilities of each sequence transaction in the 

database. 

 

2. Using high utility sequential patterns to improve the user item matrix and decrease the 

sparsity of user-item matrix. 

The HSPRec19 (Bhatta, Ezeife & Butt, 2019) system used the sequential pattern mining 

algorithms for both purchase and clickstream data to improve the user-item frequency matrix, 

whereas in the proposed HUSRec system, the high utility sequential pattern mining algorithm 

(USpan algorithm) is used for the purchase database and sequential pattern mining algorithm 

(PrefixSpan) for click stream database  which can improve the user-item rating matrix. 

 

3. Using the high utility sequential patterns to improve the consequential bond of the 

clickstream and purchase data.  

In E-commerce click and purchase are two different types of events and the consequential bond 

is formed between them to understand the relationship between click stream and purchase data. 

This means that the click and purchase sequences, even if they contain the same items, their 

itemset sequences may be different.  
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4. Improving the recommendation accuracy and sales profits with high utility sequential 

patterns. 

We are aiming to improve user-item matrix by enhancing it with high utility sequential patterns 

having high utility values from purchase database and frequent sequential patterns from click 

stream database. This enhanced matrix is passed to CF algorithm and sales profits were 

calculated of each transaction for which recommendation were made. Some experimental tests 

were done among the existing e-commerce systems to compare the performances of each 

system. 

1.11.2 Thesis Procedural Contribution 

     To make the specified feature contributions, this thesis proposes High Utility Sequential Pattern 

Recommender (HUSRec) system (section 3.3 ).  

1. In the HSPRec19 (Bhatta, Ezeife & Butt, 2019) system, the author proposed the SHOD 

(Sequential Historical Periodic Database) to convert the historic data purchase data into 

sequential purchase database whereas in the proposed thesis system, the HUSRec system, we 

have proposed High Utility Sequential Database Generator (HUSDBG) which converts 

Historical Purchase data into High Utility Sequential Purchase Database (section 3.4). The 

proposed HUSDBG enhances the SHOD sequential database generator by including the high 

utility factors of internal (e.g., quantity of item bought) and external utilities (e.g., cost or price 

of item) which are used to compute the sequence utility of the generated sequences. 

2. In the HSPRec19 (Bhatta, Ezeife & Butt, 2019) system, the author has used GSP sequential 

pattern mining algorithm for mining both the purchase and click stream data but in the 

proposed HUSRec system, we are using High Utility Sequential Pattern Miner (HUSPM) such 

as USpan algorithm to mine the purchase data with high utility sequential patterns above the 

threshold minimum sequence utility and enhance the user-item matrix with the high utility 

patterns and the PrefixSpan sequential pattern mining technique for the click stream data mines 

the frequent sequential patterns and enhances matrix with them is explained in section 3.5 

3. Using the sequential purchase sequences with internal utilities (quantity of item bought in each 

transaction) and the transaction sequence utilities to improve the consequential bond between 

sequential clickstream data and sequential purchase data. For example, in the HSPRec19 

system (Bhatta, Ezeife & Butt, 2019), the consequential bond can be stated as the join between 
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the sequential click stream and purchase databases having only sequences of items applied on 

their common session ids column, whereas in the proposed HUSRec system when the 

sequential clickstream and high utility sequential purchase data are joined, the consequential 

bond in HUSRec system gives clickstream <item ids>, purchase sequence <item id (quantity)> 

and the sequential utilities of each transaction. For example, <3, 5, 2, 3> is a click stream 

sequence on session id (S1) and < (3(1)), (5(3)), (2(1), 3(3))>  is a purchase sequence of S1 

with the internal utilities of each item and the sequence utility (45 in dollars) is the profit earned 

through this purchase. 

4. The High Utility Sequential Rules (HUSR) mined using the USpan algorithm have utility 

values greater than the threshold minimum sequence utility from sequence purchase data and 

the frequent sequence patterns from the click stream data will improve the user-item matrix 

and the accuracy of the recommendations also, after the recommendations we have compared 

the sales profit generated. 

 

1.12 Outline of Thesis 

 

CHAPTER 2: Discuss related E-commerce recommendation systems, different sequential pattern 

mining algorithms.  

CHAPTER 3: Discusses the proposed E-commerce high utility sequence database and proposed 

high utility sequential pattern recommendation system (HUSRec). This also includes an example 

application of the proposed technique in comparison with HSPRec19 system.   

CHAPTER 4: Discusses the experimental implementation for proposed high utility sequential 

pattern recommendation system (HUSRec), required tools and technologies. Most importantly, a 

comparative analysis with the HSPRec19 system.  

CHAPTER 5: Discusses about the future work and conclusion. 
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CHAPTER 2: RELATED WORK 
 

        Over the years, based on the relevant techniques and research ((Agrawal & Srikant, 1994), 

(Agrawal & Srikant, 1995), (Schafer, Frankowski, Herlocker & Sen, 2007)) proposed during the 

1990s, many companies and researchers have been improving recommender methods and systems. 

In addition to the user-item rating matrix, some other data sources such as clickstream data, 

metadata and transactions have been discovered and utilized to improve recommendations. 

Clickstream data has been used to predict a user's next request discover patterns to build profiles 

for customers, find the possibilities of purchasing items etc, such as HPCRec18 (Xiao & Ezeife, 

2018), HSPRec19 (Bhatta, Ezeife & Butt, 2019). For improving recommendation accuracy and 

make better recommendations, clickstream data has been integrated into some recommendation 

systems such as LiuRec09 (Liu, Lai &Lee, 2009), Chen13Rec (Chen & Su, 2013), Kim11Rec 

(Kim & Yum, 2011), HPCRec18 (Xiao & Ezeife, 2018), HSPRec19 (Bhatta, Ezeife & Butt, 2019). 

This chapter is divided into four sections which comprehend the earlier research done in the field 

of Sequential Pattern Mining (SPM), E-commerce Recommendation Systems based on 

Clickstream analysis, High Utility Pattern Mining Algorithms and their comparisons. 

2.1 Sequential Pattern mining Algorithms 
 

     Sequential pattern mining (SPM) discovers frequent subsequences as patterns (sequential 

patterns) in a sequence database. SPM is an important problem with broad applications, including 

the analysis of customer purchase behavior, web access patterns, scientific experiments, disease 

treatment, natural disasters, and protein formations. An SPM algorithm mines frequent sequential 

patterns from a sequential database as sequences with support greater than or equal to a given 

minimum support that can be used later by end users or management to find associations between 

the different items or events in their data for purposes such as marketing campaigns, business 

reorganization, prediction and planning. In this section, we will be discussing about General 

Sequential Pattern Mining (GSP) and Prefix Span Algorithm. 
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2.1.1 GSP (Generalized sequential pattern mining) algorithm by (Srikant & Agrawal, 

1996). 

GSP is an Apriori-based sequential pattern mining algorithm introduced by (Srikant & 

Agrawal, 1996). The main process in the GSP is candidate generation (Ck) and pruning (Lk) 

(Srikant & Agrawal, 1996). According to the algorithm, first sequence W1 and second sequence 

W2 can be merged, if subsequences obtained by removal of the first element of sequence W1 and 

last element of sequence W2 are same. In the second step, we need to prune candidate that contains 

a subsequence which is infrequent in K-1 pass. We need to iterate the process of candidate 

generation (Ck) and pruning (Lk) until a candidate set is empty. Finally, frequent sequences are the 

union of the entire list obtained so far.  

Problem 2.1: Find the frequent sequential patterns from a database with sequence of items in each 

transaction with minimum support 2 using GSP algorithm. 

Solution for problem 2.1:   Input: sequence database (Table 2.1), minimum support=2 and 

candidate set (C1) = {A, B, C, D, E, F, G}. Output: Frequent sequential patterns. 

SID Sequences 

1 <(A), (B), (F,G), (C), (D)> 

2 <(B), (G), (D)> 

3 <(B), (F), (G), (A,B)> 

4 <(F), (A,B), (C), (D)> 

5 <(A), (B,C), (G), (F), (D,E)> 

Table 2.1 Sequence Database 

 

Step 1: Find 1- frequent sequence (L1) satisfying minimum support. For example, (L1) = {< 

(A):4>, <(B):4>, <(C):3>, <(D):4>, <(F):4>, <(G):4>}.  

Step 2: Generate candidate sequence (Ck=2) using L1 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L1. To generate larger candidate 

set 2, use 1-frequent sequence (L1) found in step 1 to join itself using GSP join way, which can be 

written as L (k-1) 𝐺𝑆𝑃𝑗𝑜𝑖𝑛 L (k-1) and it requires every sequence (W1) found in first L (k-1) joins 

with other sequence (W2) in the second if subsequences obtained by removal of the first element 

of W1 and last element of W2 are same. In our case, we are generating sequences with candidate 
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2, (Ck=2), which can generate 51 types of 2-length candidate set using Apriori algorithm as present 

in Table 2.2. 

<(A),(A)> <(A),(B)> <(A),(C)> <(A),(D)> <(A),(F)> <(A),(G)> 

<(B),(A)> <(B),(B)> <(B),(C)> <(B),(D)> <(B),(F)> <(B),(G)> 

<(C),(A)> <(C),(B)> < (C),( C)> <(C ),(D)> <( C),(F)> <( C),(G)> 

<(D),(A)> <(D),(B)> <(D),(C)> <(D),(D)> <(D),(F)> <(D),(G)> 

<(F),(A)> <(F),(B)> <(F),(C)> <(F), (D)> <(F),(F)> <(F),(G)> 

<(G),(A)> <(G),(B)> <(G),(C)> <(G),(D)> <(G),(F)> <(G),(G)> 

<(A,B)> <(A,C)> <(A,D)> <(A,F)> <(A,G)> <(B,C)> 

<(B,D)> <(B,F)> <(B,G)> <(C,D)> <(C,F)> <(C,G)> 

<(D,F)> <(D,G)> <(F,G)>    

Table 2.2 Candidate Generation Table 

 

Step 3: Find 2- frequent sequences (L2) by counting the occurrence of 2-sequences in candidate 

sequence (C2) to keep the only sequence with occurrence or support count in the database greater 

than or equal to the minimum support. For example, L2= {<(A), (B)>, <(A, B)>, <(A), (C)>, <(A), 

(D)>, <(A), (F)>, <(A), (G)>, <(B), (C)>, <(B), (D)>, <(B), (F)>, <(B), (G)>, <(C), (D)>, <(F), 

(A)>, <(F), (B)>, <(F), (C)>, <(F), (C)>, <(F), (D)>, <(G), (D)>}.  

Step 4: Repeat process of candidate generation and pruning until the result of candidate generate 

(Ck) and prune (Lk) for finding frequent sequence is an empty set.  

Output: Finally, the output frequent sequences as union of L1 U L2 U L3 U L4 U … Lk. 

1-Frequent 

Sequences 

2-Frequent Sequences 3-Frequent Sequences 4-Frequent 

Sequences 

<(A)>, <(B)>, <(C)>, 

<(D)>, <(F)>, <(G)> 

<(A), (B)>, <(A, B)>, 

<(A), (C)>, <(A), (D)>, 

<(A), (F)>, <(A), (G)>, 

<(B), (C)>, <(B), (D)>, 

<(B), (F)>, <(B), (G)>, 

<(C), (D)>, <(F), (A)>, 

<(F), (B)>, <(F), (C)>, 

<(F), (D)>,  <(G), (D)> 

<(F), (C), (D)> , <(F), (B, 

A)>, <(F), (A, B)>  ,   <(B), 

(G), (D)>  ,   <(B), (F), 

(D)> ,   <(B), (C), (D)>   ,   

<(A), (G), (D)>   ,   <(A), 

(F), (D)> ,   <(A), (C), (D)>  

,   <(A), (B), (G)>   ,   <(A), 

(B), (F)> , <(A), (B), (D)> 

<(A), (B), (G), (D)> 

<(A), (B), (F), (D)> 

Table 2.3 Frequent Sequences Table 
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     2.1.2 PrefixSpan (Prefix-projected sequential pattern mining) algorithm  by (Pei. et al, 

2001). 

PrefixSpan algorithm (Pei. et al, 2001) proposed a approach based on finding the sequential 

pattern by avoiding generation of candidates based on creation of a projected database; the 

projected database is a just set of sub-patterns of the original database that has suffixes of a 

pattern containing the prefix. The PrefixSpan starts finding the patterns of size 1 that has the 

frequency threshold in the database and creates its projected database to mine the patterns that 

has the support threshold in the projected database. The pattern of length 1 grows by 

concatenating it with each element of the pattern found in the projected database generating 

patterns of length 2; this process is recursive until the projected database is empty.  

Problem 2.1.2: Find the frequent sequential patterns from a database with sequence of items in 

each transaction with minimum support 2 using PrefixSpan algorithm. 

Solution for problem 2.1.2: 

Input: sequence database (Table 2.4), Min. support=2, Candidate sets= {A, B, C, D, E, F}, 

Output: Frequent sequential patterns. 

SID Sequences 

100 <(A), (A, B, C), (A, C), (D), (C, F)> 

200 <(A,D), (C), (B, C), (A,E)> 

300 <(E, F), (A, B), (D, F),  (C), (B)> 

400 <(E), (G), (A,F), (C), (B), (C)> 

Table 2.4 Sequence Database 

 

Step 1: Count the support of single unique item and keep only sequences with support count 

greater than or equal to the minimum support count of 2 as in Table 2.5. 

<(A)> <(B)> <(C)> <(D)> <(E)> <(F)> <(G)> 

4 4         4 3 3 3 1 

 

Table 2.5 Support of Singleton Sequence 
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Step 2: Prune singleton sequences which has specified minimum threshold. In our case, minimum 

support is 2 and we can see that <(G)> doesn’t satisfy minimum support, so we need to prune G 

from singleton sequence.  

Step 3: Create a projected database by considering 1-frequent sequence from a sequential 

database. For example, for each sequence of the sequence database (Table 2.4), the projected 

database of frequent 1 sequence <(A)> would consist of all the items that appear after the sequence 

<(A)> (that is) the projected database for <(A)> will consist of all the sequences with its prefix as 

<(A)>. Table 2.6 gives the projected database for all the items with support 1. 

                                                                     Prefix 

 

 

<(A)> 

<(A,B,C),(A,C),(D), 

(C,F)> 

<(_D),(C), (B,C),(A,E)> 

<(_B),(D,F), (C), (B) > 

<(_F), (C), (B), (C) > 
 

<(B)> 
<(_C),(A,C),(D),(C,

F)> 

<(_C),(A,E)> 

<(D,F), (C), (B) > 

<(C)> 
 

<(C)> 
<(A,C), 

(D),(C,F)> 

<(B,C),(A,E)> 

<(B)> 

<(B,C)> 

 

<(D)> 
<(C,F)> 

<(C),(B,C),(A,E)> 

<(_F), (C), (B) > 

 

<(E)> 
<(_F),(A,E),(D,F),

(C), (B) > 

<(A,F),(C), (B), 

(C) > 
 

<(F)> 
<(A,B),(D,F), 

(C), (B) > 

<(C), (B), (C) 

> 

Table 2.6 Project Database 

 

Step 4: Find frequent sequences from the projected databases and check with minimum threshold 

repeatedly until no projected database can be created. 

1. Find the sequence present in projected database. Let us consider projected database of < (D)> 

is present in Table 2.7.  

<(D)> 

<(C,F)> 

<(C), (B,C),(A,E)> 

<(_F), (C), (B)> 

 

Table 2.7 Project Database for (D) 

 

2. The projected database is scanned to find the frequent items in it. In our example, only <(B)> 

and <(C)> are frequent.  

<(A)> <(B)> <(C)> <(D)> <(E)> <(F)> <(_F)> 

1 2         3 0 1 1 1 

 

Table 2.8 Frequent Items in Project Database 
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1. Now, the projected database for sequence < (D), (B)> and < (D), (C)> are constructed 

using step 4. Furthermore, their respective projected databases are scanned to get the 

frequent items in their projected databases.  

<(D)> 

<(C,F)> 

<(C),(B,C),(A,E)> 

<(_F), (C), (B) > 

 

 

<(D),(B)> 

<(_C), 

(A,E)> 
 

<(D),(C)> 

<(B,C),(A,E)> 

<(B)> 

Table 2.9 Project Database of Sequence <(D), (B)> and <(D), (C)>  

 

Step 5: Since item present in the projected database <(D), (B)> is infrequent. So, compute 

frequency of item present in the projected database <(D), (C)>. 

 

Table 2.10 Frequency of Item in project database of Sequence <(D), (C)> 

 

Step 6: Create the projected database of < (D), (C), (B)>. Since the projected database of < (D), 

(C), (B)> is empty. So, terminate the process.  

 
Table 2.11 Project Database of Sequence <(D), (C), (B)> 

PrefixSpan (Pei. et al, 2001) is an efficient pattern growth method because it outperforms apriori 

based and pattern growth algorithms and explores prefix-projection which reduces the size of 

projected database and leads to efficient processing in sequential pattern mining and more efficient 

with respect to running time, space utilization and scalability then Apriori based algorithms and 

FreeSpan (Han et al., 2000) algorithm, and PrefixSpan consumes a much smaller memory space 

in comparison with GSP and SPADE (Zaki, 2001).  

 

2.2 E-commerce Recommendation Systems on click stream data 

      Many recommendation systems only use the purchase data of users for e-commerce 

recommendation, while some are based on navigational and behavioral pattern data (Moe, 2003). 
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Recommendation systems on clickstream data can be categorized to two groups, one uses different 

variables such as visiting path, visiting frequency to predict the purchase interests and preferences 

and the other one is based on stages which calculate the consequential or conditional relationship 

between different stages to calculate the purchase possibility. Specifically, we will discuss about 

Kim11Rec (Kim & Yum, 2011), which uses a stage-based approach, HPCRec18 (Xiao & Ezeife, 

2018), which introduced the consequential bond between the clicks and purchase database and 

HSPRec19 (Bhatta, Ezeife & Butt, 2019), which integrated the sequential patterns to the 

HPCRec18 and improved the user-item frequency matrix for collaborative filtering. 

2.2.1 Recommender system based on click stream data using association rule mining 

(Kim11Rec) by (Kim, & Yum, 2011). 

Kim05Rec (Kim, Yum, Song, & Kim, 2005) system used collaborative filtering technique 

based on navigational and behavioral patterns of customers. Kim11Rec (Kim & Yum, 2011) 

system was proposed to integrate association rules in Kim05Rec and calculated the confidence 

levels between clicked products, between the products placed in the basket, and between purchased 

products, respectively, and then the preference level was estimated through the linear combination 

of the above three confidence levels. The major steps involved in this work are:  

Step 1: Data collection and preparation. In this phase, all the navigational and behavioral patterns 

in e-commerce sites are collected. The navigational patterns include browsing, searching, product 

click, basket placement, and actual purchase, while behavioral patterns consist of the click ratio 

for a certain type of product, length of reading time spent on a specific product, number of visits 

to a specific product, and bookmarking as given in Table 2.12. 

Case Customer CD Clicktype Timespent No of visit Basket placement Purchase 

1 1 CDA 1 49 2 1 1 

2 1 CDB 1 15 1 1 0 

3 2 CDA 0 4 1 0 0 

4 2 CDC 0 6 1 0 0 

5 2 CDD 0 8 1 0 0 

6 2 CDE 1 12 1 1 1 

7 2 CDF 0 6 1 0 0 

Table 2.12 E-commerce click stream data 

 

Step 2: Association rule mining. Firstly, identify all pairwise combinations of products that 

simultaneously appear in a transaction. Let us consider the minimum support is 2%, if the ratio 
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of the number of clicks in which both CDA and CDB occur to the total number of transaction is 

more than 2% then CDA and CDB becomes the candidate of association rule. For each pair 

(𝐶𝐷𝑖 and 𝐶𝐷𝑗, 𝑖 ≠ 𝑗) the corresponding support is calculated using  

Support= P (U∩V) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑏𝑜𝑡ℎ 𝑈 𝑎𝑛𝑑 𝑉 𝑜𝑐𝑐𝑢𝑟

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠
 

Equation 2. 1 Equation to count support 

 

For example, support (CDA, CDB) =10/50 where product CDA in case 1 and product CDB in 

case 2 as given in Table 2.1. Each pair whose support is greater or equal to a specified threshold 

(for example, 2%), calculate the lift values using following association rule lift. The lift of the 

rule ‘‘U→V’’ can be defined as: 

Lift = 
 𝑃(𝑉|𝑈)

𝑃(𝑉)
=

𝑃(𝑈∩𝑉)

𝑃(𝑈)∗𝑃(𝑉)
 

or 

Lift=
Number of transactions in which both U and V occur∗Total number of transactions

(Number of transactions in which U occurs)∗(Number of transactions in which V occurs
 

Equation 2. 2 Equation to compute lift value 

 

For example, lift between CDA and CDB = (10*50)/ (13*15) =2.56.   

For each pair, whose lift is greater than a specified threshold (1 in our case) is selected for 

generating more elaborate association rules.  

Step 3: Confidence calculation. In this step, find the confidence level for both basket placement 

and purchase and use the higher confidence level for preference level.  

Step 4: Making recommendation of Top-N list. For each phase (Click, Basket placement, 

Purchase), find the Top-N products ranked list by confidence level. 
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2.2.2 E-Commerce Product Recommendation Using Historical Purchases and Clickstream 

Data (HPCRec18) by (Xiao & Ezeife, 2018) 

In E-commerce, user-item rating matrices for collaborative filtering recommendation systems 

are usually binary and sparse which shows whether a user has purchased an item previously or not 

(Herlocker, Konstan, Terveen & Riedl, 2004). But fail to integrate some valuable information from 

the historical purchases and the consequential bond information between session-based clicks and 

purchases. Thus, (Xiao & Ezeife, 2018) proposes Historical Purchase with Clickstream 

recommendation system (HPCRec18), which normalizes the historical purchase frequency matrix 

to improve rating quality and mines the session-based consequential between clicks and purchases 

to generate potential ratings to improve the rating quantity. 

Problem 2.2.2: Consider frequency and the consequential table containing clicks and purchases 

as shown in Table 2.13 as input, where frequency table contains the number of time product 

purchased by a user, and the consequential table contains clicks and purchases on each session, 

enhance the user-item frequency matrix. 

Solution for problem 2.2.2:  Input: Consequential bond and purchase frequency matrix.  

Output: enhanced user-item matrix. 

SessionId UserId Clicks Purchases 

1 1 1,2 2 

2 1 3,5,2,3 2,3 

3 2 2,1,4 1,2,4 

4 2 4,4,1,2 2,4,4 

5 3 1,2,1 1 

6 3 3,5,2 
 

 

User\Item 1 2 3 4 

1 ? 2 1 ? 

2 1 2 ? 3 

3 1 ? ? ? 

  

 

Table 2.13 Consequential table on left and purchase frequency table on right 

 

Step 1: Normalize the purchase frequency for each user on each item using the unit formula in a 

user-item purchase frequency table into numbers between 0 and 1 using the unit vector formula as 

given in Equation 2.3. 
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𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑢𝑠𝑒𝑟 𝑢 𝑜𝑛 𝑖𝑡𝑒𝑚 𝑖 =
𝑖𝑡𝑒𝑚 𝑖

√𝑖𝑡𝑒𝑚1
2 + 𝑖𝑡𝑒𝑚2

2 + 𝑖𝑡𝑒𝑚3
2 + ⋯+ 𝑖𝑡𝑒𝑚𝑛

2
 

Equation 2. 3 Unit vector formula to normalize purchase frequency 

 

For example, for user 2, the purchase vector is <1, 2, 0, 3>, so the normalized purchase frequency 

for user 2 on item 2 is 2√12+22+02+32⁄=0.53. In the same way, we can get normalize frequency 

matrix as shown in Table 2.14. 

Customer\Item 1 2 3 4 

1 ? 2 1 ? 

2 1 2 ? 3 

3 1 ? ? ? 
 

 

 

Normalized 

➔  

Customer\Item 1 2 3 4 

1 ? 0.89 0.45 ? 

2 0.27 0.53 ? 0.8 

3 1 ? ? ? 
 

Table 2.14 Non-normalized user-item matrix on left and normalized matrix on right 

 

Step 2: For each session without purchase in the consequential table, compute click set similarity 

using Clickstream Sequence Similarity measurement (CSSM) function using the longest common 

subsequence rate.  

Longest common subsequence rate LCSR (x, y) = (LCS (x, y)) ⁄ (max (|x|, |y|)) 

LCS(Xi, Yj) = {

∅ if i = 0 or j = 0
LCS(Xi−1, Yj−1) ∩ xi if xi = yj

longest(LCS(Xi, Yj−1), LCS(Xi−1, Yj)) if xi ≠ yj

 

Equation 2. 4 Longest common subsequence rate 

 

For example, there is no purchase information of session 6 for user 3 in the consequential table. 

So, let’s compute the clickstream sequence similarity between session 6 and other session as given 

below:  

CSSM between session 6 and session 1(<3, 5, 2>, <1, 2>) =0.37,  CSSM between session 6 and 

session 2 (<3, 5, 2>, <3, 5, 2, 3>) =0.845, CSSM between session 6 and session 3 (<3, 5, 2>, <2, 

1, 4>) =0.33, CSSM between session 6 and session 4 (<3, 5, 2>, <4, 4, 1, 2>) = 0.245,  

CSSM between session 6 and session 5 (<3, 5, 2>, <1, 2, 1>) =0.295  
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Step 3: Form a weighted transaction table using the similarity as weight and purchases as 

transaction records as calculated in Table 2.15. 

Purchase <2> <2,3> <1,2,4> <2,4,4> <1> 

1 0.37 0.845 0.33 0.245 0.295 

Table 2.15 Weighted transactional table of purchase set created from consequential bond 

 

Step 4: Using TWFI (Transaction-based Weighted Frequent Item), which takes a weighted 

transaction table, where weights are assigned to each transaction as input and returns items with 

weighted support in each transaction (Yun & Leggett, (2005)). For example, let’s consider 

minimum weighted support=0.1, then, we will have frequent weighted transaction table as shown 

in Table 2.16. 

Purchase (Transaction records) 2 2,3 1,2,4 2,4,4 1 

Weight 0.37 0.845 0.33 0.245 0.295 

Table 2. 16 Weighted frequent transaction table 

 

Step 5: Calculate support to form a distinct item from set of all the transactions. 

Item 1 2 3 4 

Support 2 4 1 3 

Table 2. 17 Support for item present in weighted frequent transaction table 

 

Step 6: Compute the average weighted support for each item using (AWS=AW*support), where 

𝐴𝑊=𝑠𝑢𝑚 (𝑤𝑒𝑖𝑔ℎ𝑡)/𝑠𝑢𝑝𝑝𝑜𝑟𝑡). For example, AWS (1) =0.33+ 0.295=0.625, AWS (4) =0.33+ 

0.245+0.245=0.82. 

Item 1 2 3 4 

AWS 0.625 1.97 0.845 0.82 

Table 2. 18 Weight for item present in purchase pattern 
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2.2.3 Mining the sequential pattern based on daily purchase history for the collaborative 

filtering, (HSPRec19) by (Bhatta, Ezeife &Butt, 2019). 

The major goal of the proposed Historical Sequential Recommendation (HSPRec19) is to mine 

frequent sequential pattern from E-commerce historical data to enhance a user-item rating matrix 

from discovered patterns. The authors (Bhatta, Ezeife & Butt, 2019) has proposed two algorithms 

such as HSPRec19 (Historical sequential recommendation) and SHOD (Sequential historical 

periodic database) System and created a daily purchase sequence database of customer database 

based on consequential bond between the click and the purchase database. 

Problem 2.2.3: For user-item purchase frequency matrix (Table 2.19) which has historic purchase 

information, find the sequential patterns from the consequential bond of click and purchase dataset 

to enrich the user-item matrix using HSPRec19 and SHOD algorithms. 

Solution for problem 2.2.3:     

Input: minimum support, historical click and purchase database containing consequential bond.   

Output: rich user-item matrix 

Step 1: Create a user-item frequency matrix from historical purchase. In our case, the user-item 

frequency matrix created from historical purchase is present in Table 2.19. 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 1 ? 2 1 ? 1 

User 2 2 ? ? 1 1 2 

User 3 ? ? 1 ? 2 1 

User 4 ? ? ? ? ? ? 

Table 2. 19 User-item frequency matrix created from historical purchase 

 

Step 2: Convert historical purchase to the sequential database using SHOD on daily purchases. 

Here in our case, let’s construct purchase sequential database from historical purchase information 

as present in Table 2.20. 
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SID Purchase sequence 

1 < (Cream, Butter, Milk),( Honey, Butter)> 

2 <(Milk, Cream, Honey),( Milk, Honey, Cheese )> 

3 <(Butter, Cheese), (Cheese, Honey)> 

4 ? 

Table 2. 20 Daily purchase sequential database created from historical transaction data 

 

Step 3: Create frequent sequential purchase pattern from daily sequential database using GSP 

algorithm. In our case possible purchase sequential rule from frequent purchase sequences are: 

Rule 

No 

Sequential rule 

1 Milk, Butter→ Cheese 

2 Cream, Cheese → Milk 

3 Cheese, Honey → Cream 

4 Honey → Cream 

5 Honey → Milk 

Table 2.21 Sequential rule created from n-frequent sequences 

From rule 3, we can conclude that, user will purchase Honey if user purchased Cheese. 

Step 4: Fill purchase information in user-item frequency matrix using sequential purchase rule. 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 1 ? 2 1 1 1 

User 2 2 ? 1 1 1 2 

User 3 1 ? 1 1 2 1 

User 4 ? ? ? ? ? ? 

 

Table 2. 22 Rich user-item frequency matrix created with help of sequential rule 

 

Step 5: As we can see in that there is no purchase information of user 4. So, we must find the 

suggested items for user 4 using the following steps:  



 

36 
 

1. Form click sequential database from the consequential bond. Here, we are creating a daily 

sequential database for given click and purchase data. 

SID Click Sequence 

1 <(Cheese, Butter , Milk, Butter, Cream, Cheese), (Honey, Cream, Butter)>  

2 <(Cheese, Honey, Bread, Milk, Cream), (Milk , Cheese, Cheese, Milk)> 

3 <(Cheese, Cream, Honey, Butter)> 

4 <(Cheese, Milk )> 

Table 2. 23 Sequential database created from consequential table 

 

2. Create n-frequent click sequential pattern from click sequential database using the GSP 

algorithm as follows: 1- Sequences = {< (Milk)>, < (Cheese)>, < (Cream)>, < (Butter)>, < (Honey)>} 

                2- Sequences = {< (Milk, Cheese)>, < (Butter, Cheese)>, < (Honey, Butter)>} 

                3- Sequences = {< (Cheese, Cream, Milk)>, < (Cream, Cheese, Milk)>} 

3. Create sequential rules from frequent click sequential pattern. Here in our case possible 

sequential rule from n-frequent sequences from click sequences are  

Rule No Sequential rule 

1 Cheese, Milk→ Cream 

2 Cream, → Cheese 

3 Butter → Honey 

Table 2. 24 Sequential rule created from n-frequent sequences 

4. Recommend item from the click sequential rule, where the user clicks but does not purchase 

anything. For example, for click sequence < (Cheese, Milk)> thus item < (Cream)> is 

recommended from the sequential rules. 

Userid Click Purchase Recommend 

item 

1 <(Cheese, Butter , Milk, Butter, Cream, 

Cheese), (Honey, Cream, Butter)>  

<(Cream, Butter, Milk), (Honey, 

Butter)> 

 

2 <(Cheese, Honey, Bread, Milk, Cream), 

(Milk , Cheese, Cheese, Milk)> 

<(Milk, Cream, Honey), (Milk, 

Honey, Cheese)> 

 

3 <(Cheese, Cream, Honey, Butter)> <(Butter, Cheese), <(Cheese, Honey)>  

4 <(Butter, Bread, Cream, Cheese, 

Honey, Butter )> 

? < (Cream)> 

Table 2. 25 Recommend item for click when purchase is not happened 
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Step 6: Compute Click Purchase Pattern (CPS) similarity using frequency and sequence of click 

and purchase pattern. If there is no purchase along with click item, then use the recommended 

item. For example, let’s take click (X) = {< (Cheese, Butter, Milk, Butter, Cream, Cheese)>, < 

(Honey, Cream, Butter)>} by user 1 and purchase (Y) = {< (Cream, Butter, Milk), (Honey, 

Butter)>}. 

1.  Calculate LCSR (X, Y) = |common(X,Y)|   max(|X|,|Y|) = 59 = 0.55  

2. Calculate FS(X, Y) = 𝑐𝑜𝑠𝑖𝑛𝑒({2,1,1,1},{1,0,2,2,1,3}) = 10/10.21=0.97; where X= {Milk:1, 

Bread:0, Cream:2, Cheese:2, Honey:1, Butter:3} and Y={Milk:1, Bread:0, Cream:1, 

Cheese:0, Honey:1, Butter:2 } are frequency of product present in X and Y  

3. Use α and β as parameters to balance the sub sequence similarity and frequency similarity, 

where 0<α, β<1, α+β=1. α and β will be determined from training dataset. So if set α=0.8, 

β=0.2, CPS-Sim (X, Y) =0.8*0.55+ 0.2*0.97=0.634.  

Userid Click Purchase Recommend 

item 

CPS 

Similarity 

1 <(Cheese, Butter , Milk, Butter, Cream, 

Cheese), (Honey, Cream, Butter)>  

<(Cream, Butter, Milk), (Honey, 

Butter)> 

 0.634 

2 <(Cheese, Honey, Bread, Milk, Cream), 

(Milk , Cheese, Cheese, Milk)> 

<(Milk, Cream, Honey), (Milk, 

Honey, Cheese)> 

 0.516 

3 <(Cheese, Cream, Honey, Butter)> <(Butter, Cheese), <(Cheese, 

Honey) 

 0.562 

4 <(Butter, Bread, Cream, Cheese, Honey, 

Butter )> 

? < (Cream)> 0.198 

Table 2. 26 CPS similarity using click and purchase 

 

Step 7: Assign Click Purchase (CPS) similarity value to the purchase patterns present in the 

consequential bond. The weighted purchase pattern in our case is present in Table 2.27. 

Purchase CPS Similarity 

<(Cream, Butter, Milk), (Honey, Butter)> 0.634 

<(Milk, Cream, Honey), (Milk, Honey, Cheese)> 0.516 

<(Butter, Cheese), <(Cheese, Honey) 0.562 

< (Cream)> 0.198 

Table 2. 27 Weighted purchase patterns 
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Step 8: Assign weighted purchase patterns (Nakkuma & Abe, 1998) to Weighted Frequent 

Purchase Pattern Miner (WFPPM) module and compute a weight for item present in weighted 

purchase pattern using formula: 𝑅𝑖𝑡𝑒𝑚𝑖=
ΣCPS containing 

itemini=1Support (itemi)
  

i. Count support of item: Milk(3) ,Cream (3), Cheese(3), Honey(4), Butter(3). 

 

ii. Calculate rating for individual item:  

𝑅𝑚𝑖𝑙𝑘 = 
0.634+0.516+0.516

3
= 0.55, 𝑅𝑐𝑟𝑒𝑎𝑚 = 

0.634+0.516+0.198

3
= 0.44,  

𝑅𝑐ℎ𝑒𝑒𝑠𝑒 = 
0.516 +0.562+0.562

3
= 0.54 , 𝑅𝐻𝑜𝑛𝑒𝑦 = 

0.634+0.516+0.516+0.198

4
= 0.46  

𝑅𝐵𝑢𝑡𝑡𝑒𝑟 = 
0.634+0.634 +0.562

3
= 0.61  

 

Step 9: Use the weight of item to make user-item matrix rich. In our case, rich user-item 

purchase frequency matrix is shown in Table 2.28. 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 1 ? 2 1 1 1 

User 2 2 ? 1 1 1 2 

User 3 1 ? 1 1 2 1 

User 4 0.55 ? 0.61 0.44 0.54 0.46 

Table 2. 28 Rich user-item purchase frequency matrix 

 

Step 10: Normalize rich user-item purchase frequency matrix. 

User/item Milk Bread Butter Cream Cheese Honey 

User 1 0.35 ? 0.70 0.35 0.35 0.35 

User 2 0.60 ? 0.30 0.30 0.30 0.60 

User 3 0.35 ? 0.35 0.35 0.70 0.35 

User 4 0.48 ? 0.53 0.38 0.47 0.40 

Table 2. 29 Quantitatively rich purchase user-item purchase frequency matrix 
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2.3. High Utility Sequential Pattern mining algorithms 

 

      Although sequential pattern mining treat all items as having the same importance/utility and 

assumes that an item appears at most once at a time point, which do not reflect the characteristics 

in the scenario of several real-life applications and thus the useful information of sequences with 

high utilities (high profits) are lost. High utility sequential pattern considers the external utility 

(e.g., unit profits) and internal utility (e.g., quantity) of items such that it can provide users with 

patterns having a high utility (e.g., profit). 

2.3.1 Utility Span Algorithm (US) by (Ahmed, Tanbeer, Jeong & Lee 2010). 

Utility Span extends the traditional sequential pattern mining approach. Utility Span is a 

high-utility sequential pattern mining with a pattern growth approach. To avoid the several 

database scans in the Utility Level (Ahmed, Tanbeer, Jeong & Lee 2010), the US algorithm is 

proposed in a manner that it needs maximum of three database scans. Therefore, it significantly 

reduces the overall runtime for mining high-utility sequential patterns. 

 Item Profit per unit 

($) 

a 5 

b 7 

c 3 

d 10 

e 6 

f 8 

g 9 

Table 2. 30 Sequence database with internal utility 

 

Problem 2.3.1: Find the high utility sequential patterns based on their minimum sequence utility 

from a sequence database which has internal utility, sequence utility and has profits gained per 

item in Table 2.30. 

Solution for problem 2.3.1:      Input: minimum sequence threshold utility and a sequence dataset 

with internal and external utilities.   Output: high utility sequential patterns 

1. Calculate the minSeqUtil using formula in definition 7 in Chapter 1. 

Sequence 

ID 

Sequence with internal utility Sequence  

utility ($) 

S1 a(3) {a(2) b(6) d(2)} f(1) a(5) d(1) 130 

S2 e(3) {a(2) b(5)} d(1) c(4) 85 

S3 {c(1) f(2)} b(3) {d(1) e(4)} 74 

S4 a(2) {b(7) d(4) } {a(6) b(3)} e(5)  180 

S5 {d(1) f(3)} c(5) g(2) 67 

S6 d(2) e(1) {a(7) b(8)} d(3) b(6) e(3) 207 
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2. Scan the SDB once to detect length-1 swu sequences. Subsequently, it generates projected 

databases by considering length-1 swu sequences as prefixes with a second database scan. 

Then, using a pattern growth approach, it divides the search spaces (projected databases) 

recursively and applies the same technique into them. The US algorithm only generates the 

high-swu sequences without generating many intermediate candidates. 

Prefix Projected SDB Candidate high swu sequences with swu values 

a (abd)fad:130, (_b)dc:85, 

(bd)(ab)e:180,(_b)dbe:207 

17 high-swu sequences 

a:602, aa:310, ab:517, (ab):602, ad:602, ae: 387, a(ab):310, aba:310, 

a(bd):310, abe:387, (ab)d:422, (ab)e:387, a(bd)a:310, ada:410, abd:387, 

ade:387, abde:387 

b (_d)fad:130, dc:85, 

(de):74, (_d)(ab)e:180, 

dbe:207 

8 high-swu sequences 

b:676, ba:310, bb:387, bd:496, (bd):310, be:461,bbe:387, (bd)a:310 

c (_f)b(de):74 1 high-swu sequence            c:226 

d fad:130, c:85, (_e):74, 

(ab)e:180, (_f)c:67, 

e(ab)dbe:207 

10 high-swu sequences 

d:743, da:517, db:387, dd:337, dad:337, d(ab):387, 

 dae:387, d(ab)e:387, dbe:387 

e (ab)dc:85, (ab)dbe:207 8 high-swu sequence 

e:546, ea:292, eb: 292, e(ab):292,ead:292,e(ab)d:292, ebd:292 

f ad:130, b(de):74, c:67 1 high-swu sequence               f:271     

Table 2. 31 Candidate generation for US algorithm 

 

3. For prefix a, (_b) means that the last item in the prefix, which is a, forms one element (ab). 

However, in the a-projected database, we get <a: 310, b: 517, _b: 602, d: 602, e: 387, f: 130, 

and c: 85>. Items c and f cannot form a candidate sequence with item a as they have low-swu 

values (130 and 85, respectively) in the a-projected database with respect to the minSeqUtil. 

Now, according to the divide-and-conquer rule, we apply the same technique on the 

projected databases of aa, ab, (ab), ad, and ae. The aa-projected database contains {(_bd) 

fad: 130, (_b)e: 180}, and we get <a: 130, _b: 310, d: 130, f: 130, e: 180>. So, only one 
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candidate sequence, a(ab): 310, is generated. The ab-projected database contains {(_d)fad: 

130, (_d)(ab)e: 180, e: 207}, and we get <a: 310, b: 180, d: 130, _d: 310, e: 387, f: 130>. 

Candidate sequences aba: 310, a(bd): 310, and abe: 387 are generated here.  

4. Similarly, the other candidate sequences are generated. Table 2.31 shows that a total of 17 

candidate sequences are generated by prefix-a. A third database scan is needed to discover 

the high-utility sequential patterns from the high-swu sequences. The US algorithm discovers 

the high-utility sequential patterns <b: 266, (ab): 239, (ab)d: 238, adbe: 226, a(bd)a: 231, 

d(ab)e: 250>.  

2.3.2 USpan Algorithm (Yin, Zheng & Cao, 2012) 

(Yin, Zheng & Cao, 2012) proposed a new definition for high utility sequential pattern 

mining, which aims at finding sequences having a maximum utility.  USpan algorithm satisfied 

Downward Closure Property, USpan is composed of a lexicographic q-sequence tree, two 

concatenation mechanisms, and two pruning strategies. 

item a b c d e f 

Weight/quality 2 5 4 3 1 1 

Table 2. 32 Quality table for each item 

 
 

SID q-sequence 

1 <(e, 5) [(c, 2) (f, 1)] (b,2)> 

2 <[(a, 2) (e, 6)] [(a, 1) (b, 1) (c, 2)] [(a, 2) (d, 3) (e, 3)]> 

3 <(c, 1) [(a, 6) (d, 3) (e, 2)]> 

4 <[(b, 2) (e, 2)] [(a, 7) (d, 3)] [(a, 4) (b, 1) (e, 2)]> 

5 <[(b, 2) (e, 3)] [(a, 6) (e, 3)] [(a, 2) (b, 1)]> 

Table 2. 33 Sequence table with quantity 

 

USpan is composed of a lexicographic quantitative-sequence tree (LQS-tree) which is the search 

space, two concatenation mechanisms I-Concatenation and S-Concatenation to generate newly 

concatenated utility-based sequences, and two pruning strategies. Based on the LQS-tree structure, 

USpan (Yin, Zheng, & Cao, 2012) adopts the sequence-weighted utilization (SWU) measure and 

the Sequence Weighted Downward Closure (SWDC) property to prune unpromising sequences 

and to improve the mining performance. 

Input: sequence, sequence utility, Sequence Database and minimum utility threshold 
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Output: high utility patterns 

Step 1: Lexicographic Q-sequence Tree 

For utility-based sequences, the authors adapted the concept of the Lexicographic Sequence Tree 

in (Ayres, Gehrke, Yiu & Flannick, 2002) to the characteristics of q-sequences, and come up with 

the Lexicographic Q sequence Tree (LQS-Tree) to construct and organize utility based q-

sequences. Suppose a sequence of length-k (k-sequence) t appends every new item at the end of t 

to form (k+1) sequences concatenation. The type of concatenation depends on the two conditions 

that if the size of t does not change it is called as I-concatenation, or if the size of t increases by 

one then it is called S-concatenation. A lexicographic q-sequence tree (LQS-Tree) T is a tree 

structure satisfying the following rules:  

1. Each node in T is a sequence along with the utility of the sequence, while the root is empty. 

2. Any node’s child is either an I-Concatenated or S-Concatenated sequence node of the node 

itself. 

3. All the children of any node in T are listed in an incremental and alphabetical order. 

 
Figure 2. 1 The Complete-LQS-Tree for the Example of Q-Sequence database 

 

The LQS-Tree has an empty q-sequence as root, while the nodes in the black boxes such as (abe) 

are leaves in the LQS-Tree. The bold lines and the light lines represent I-Concatenation and S-

Concatenation, respectively. Nodes within the same parent are arranged in increasing order. The 

utilities of the sequences are in the bottom of the respective boxes. For example, for a given 

sequence t and database S, if we want to calculate v (ea), we simply find all the q-subsequences in 
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each q-sequence that match (ea) and calculate and aggregate the utilities of those q-subsequences. 

We obtain v((ea)) = {{8, 10}, {16, 10}, {15, 7}} and umax((ea)) = 41. 

USpan (Yin, Zheng & Cao, 2012) consequently uses a depth-first search strategy to traverse the 

LQS-Tree to search for high utility patterns. As shown in Figure 2.1, USpan (Yin, Zheng & Cao, 

2012) first generates the children of the root, then takes (a) as the current node, checks whether (a) 

is a high utility pattern, and scans for possible children. If (a)’s first children, i.e. ((ab)), are not 

taken as the current node, the same operations will apply to ((ab)). This will be happening 

recursively until there is no other node in the LQS-Tree to visit. 

Step 2: Scanning subroutine: Scan the projected database S(𝜗(𝑡)) to concatenate the items into 

lists i.e. put I-Concatenation items into ilist or/and S-Concatenation items into slist.  

Concatenations with q-sequence is illustrated below with an example:  

Input: sequence t: [(b, 2) (e, 2)] [(a, 7) (d, 3)] [(a, 4) (b, 1) (e, 2)]  

Each element in the matrix in Table 2.34 is a tuple; the first value shows the utility of the q-item, 

and the second is the utility of the remaining items in the q-sequence; we call it remaining utility. 

 

items q-itemset 1 q-itemset 2 q-itemset 3 

a (0, 50) (14, 24) (8, 7) 

b (10, 40) (0, 24) (5, 2) 

d (0, 40) (9, 15) (0, 2) 

e (2, 38) (0, 15) (2, 0) 

Table 2. 34 utility matrix of Q-sequence for s4 in Table 2.22 

 

I-Concatenation: In the above Table 2.34, only items larger than b can be I-Concatenated, i.e. 

entries in the rectangle from d1 to e3 are possible items, so items corresponding to e1 = (2, 38) to 

e3 = (2, 0) can be used to form the q-sub sequences that match the sequence <(be)>. The utilities 

of <(be)> are the utilities of 𝜗 (<b>,t) plus the newly added q-items utilities e1 = (2, 38), e3 = (2, 

0), i.e. 𝜗(<(be)>,t) = {10 + 2, 5 + 2} = {12, 7}. Similarly, we have 𝜗(<a>,t) = {14, 8}, and utilities 

for its I-Concatenated sequences 𝜗(<(ab)>,t) = {13}, 𝜗(<(ad)>,t) = {23}, 𝜗(<(ae)>,t) = {10}, etc. 

S-Concatenation: Let’s continue with <(be)>. As we can see from the utility matrix, there is no 

other literal that can be I-Concatenated to <(be)>. Q-items that can be S-Concatenated to the q-sub 
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sequences are in the rectangle region from a1 to e3. Thus, sequences such as <(be)a>, <(be)b>, 

<(be)d> and <(be)e> are the candidates. <[(b, 2)(e, 2)](a, 7)> and [(b, 2)(e, 2)](a, 4)> match 

sequence <(be)a>, whose utilities are 𝜗(<(be)a>,t) = {12 + 14, 12 + 8} = {26, 20}. We also have 

𝜗((be)b>, t) = {17}, 𝜗(<(be)d>, s4) = {21}, 𝜗(<(be)e>, t) = {14}. 

Step 3: The tree is constructed in this way and then the high utility sequences are outputted if 

qualified, and recursively is carried out to go deeper in the LQS-Tree as shown in Figure 2.2.  

 
Figure 2. 2 LQS tree 

2.4 Comparison of the existing models 

2.4.1 Comparison of existing Sequential Pattern Mining algorithms. 

Name Description Limitations 

GSP 

(Srikant 

&Agrawal, 

1996) 

GSP is an apriori algorithm 

based on candidate generation 

and pruning strategy. 

To decide whether one sequence is frequent or 

not, it is necessary to scan the entire database, 

to verify whether pattern is present in each 

sequence in the database. 

PrefixSpan 

(Pei. et al, 

2001) 

PrefixSpan is a pattern-growth 

mining method which find the 

sequential pattern by avoiding 

generation of candidates based 

on creation of a prefix 

projected database. 

PrefixSpan algoritm creates huge prefix 

projected databases for scanning which could 

occupy lots of memory space but less than 

candidate generation. 

Table 2. 35 Comparison of existing Sequential Pattern Mining algorithms 
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2.4.2 Comparison of existing systems based on clickstream. 

Name Description Limitations 

Kim11Rec  

(Kim & Yum, 

2011)  

Recommended product for the customers based 

on clickstream data using collaborative filtering 

and Association rule mining. 

The model is producing 

recommendation based on the 

clickstream data only based on 

support and confidence. 

HPCRec18 

(Xiao, & Ezeife, 

2018) 

Improved the quality of user-item matrix by 

normalizing the frequency of item purchase. 

Furthermore, they provided the purchase 

possibility of clicked but not purchased items by 

analysis of consequential bond.  

Unable to integrate sequential 

pattern during qualitative and 

quantitative analysis of user-item 

matrix.  

HSPRec19 

(Bhatta, Ezeife 

& Butt, 2019) 

 

HSPRec19 first generates an E-Commerce 

sequential database from historical purchase 

data using SHOD and mines frequent sequential 

purchase patterns to (i) improve the user-item 

matrix quantitatively, (ii) used historical 

purchase frequencies to further enrich ratings 

qualitatively. Thirdly, the improved matrix is 

used as input to the collaborative filtering 

algorithm for better recommendations. 

Unable to utilize the information 

such as price and quantity of 

items to yield high profit sales. 

Table 2. 36 Comparison of existing recommendation systems based on Clickstream data 

2.4.2 Comparison of existing high utility sequential pattern mining algorithms. 

Name Description Limitations 

US (Ahmed, 

Tanbeer & 

Jeong, 2010) 

US algorithm is the first algorithm to mine 

sequential patterns with high utility values using 

minimum scans of the database. 

The algorithm was specific and 

focused on simple situations.  

USpan (Yin, 

Zheng & Cao, 

2012) 

Uspan targets to satisfy the downward  

closure property using the lexicographic tree 

structures of the sequence databases. Two pruning 

techniques are added to reduce the number of 

candidates generated. 

A shortcoming of USpan is that the 

data representation with respect to 

the utility matrix is quite complex 

and memory costly. 

Table 2. 37 Comparison of existing high sequential pattern mining algorithms. 
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CHAPTER 3: The Proposed High Utility Sequential Pattern 

Recommendation (HUSRec) System  

 

The High Utility Sequential Pattern Recommendation (HUSRec) System recommends the 

products based on the clickstream and purchase data. But sometimes such approaches may not be 

sufficiently practical for industrial needs. This is since many patterns returned by sequential 

pattern mining are not particularly related to a business need so that businesspeople do not know 

which patterns are truly profitable for their business to generate more revenue. The existing 

sequential pattern algorithms consider only binary frequency values of items and equal 

importance/ significance values of distinct items. Moreover, they use support measures to detect 

whether the sequence is frequent or not. However, this assumption cannot truly represent many 

real-life scenarios. For example, in a retail market, each item has a different price/profit value, 

and a user may buy multiple copies of the same item. 

The proposed HUSRec system will use the extra information given in the dataset such as the 

quantity of the item bought which directly tell us about demand of the item and price of item to 

calculate utility value of each item in the transaction which can help us to mine high utility value 

items that can contribute in making profitable business decisions. Motivated by the above real-life 

scenarios, in this thesis, we propose a novel framework HUSRec for mining high-utility sequential 

patterns using the High Utility Sequential Database Generator (HUSDBG). Our framework 

considers both internal (e.g., the quantity of item bought in the sequence) and external (e.g., cost 

price of each item) utilities of a sequence and uses a measure, sequence utility, to calculate the 

utility value of the sequence. It mines the high-utility sequential patterns using the USpan 

algorithm (Yin, Zheng & Cao, 2012) which enhances the user-item matrix with high utility items 

and sequential rules are mined using the PrefixSpan algorithm, in HSPRec19 (Bhatta, Ezeife & 

Butt, 2019) system, GSP sequential pattern mining algorithm is used to find the sequential patterns 

based on the support count and candidate generation strategy, the main disadvantage of using GSP 

algorithm is when applied to large e-commerce datasets, the execution time of GSP algorithm is 

more for these large datasets and the memory storage for each candidate generation is needed 

which can slow down the recommendation system. Therefore, PrefixSpan algorithm is more 

preferred than the GSP to find sequential patterns. In Figure 3.1, we can understand how proposed 
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HUSRec system is different from HSPRec19 and Figure 3.2 shows the flowchart of the proposed 

High utility Sequential Pattern Recommendation (HUSRec) system. 

3.1 Figure to show how the HSPRec19 system is different from the proposed High Utility 

Sequential Pattern Recommendation (proposed HUSRec) System. 

 

            HSPRec19 (on the left)                          proposed HUSRec (on the right) 

 

Figure 3. 1 The major differences between the HSPRec19 and proposed HUSRec systems. 
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3.2 Flowchart of the proposed High Utility Sequential Pattern Recommendation 

(proposed HUSRec) System. 

  

 

 

Figure 3. 2 Flowchart of proposed HUSRec System 
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3.3 (High Utility Sequential Pattern Recommending System) HUSRec Algorithm 
 

Algorithm 1: High Utility Sequential Pattern Recommendation System (HUSRec) 

 

Input:         historical click database, historical purchase database, user-item purchase 

frequency matrix (M). 

 

Intermediate 

Inputs: 

Consequential Bond (CB), High Utility Purchase Sequential Database 

(HUPSDB), sequential click database (SCDB), High Utility Sequential Rules 

(HUSR), Sequential Pattern Rule (SPR), user-item matrix after being updated 

with HUSR (M1), user-item matrix after being updated with SPR (M2), 

Weighted High Utility Occupancy Matrix (WHUOM), each user u’s rating 

of item i in the matrices is referred to as rui. 

 

Output: user-item enriched frequency matrix after normalization (normalized M2) 

 

Procedure: 

BEGIN: 

1.                 Generate High Utility Purchase Sequential database (HUPSDB) using the 

High Utility  

                Sequential Database Generator (HUSDBG) Algorithm 2 in section 3.4. from the historic  

                purchase dataset. 

2.                 Generate Sequential Click stream Database (SCDB) from the historic clicks 

dataset,  

                explained in Part 2. of section3.4. 

3.                 Create a user- item purchase frequency matrix (M) from section3.3. 

4.                 for each session id sid do:  

i. Mine High Utility Sequential Rules (HUSR) using the High Utility Sequential  

Pattern Miner (HUSPM) which is based on USpan algorithm from the High Utility 

Purchase Sequential Database (HUPSDB) as explained in section 3.5. 

ii. Update the initial user-item frequency matrix (M) based on HUSR to get updated 

matrix (M1). 

                    end for. 
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5.                  Set the initial value of Weighted High Utility Occupancy Matrix (WHUOM) 

as ‘null’    

                 explained in section 3.7. 

6.                  for each session id sid do: 

7.                         if sid has both click and purchase sequences: 

i. Calculate Click-Purchase Similarity (CPS) between historic click  

Sequential database and historic purchase Sequential database explained in  

section 3.6. 

                 if CPS is not null: 

                                                             Update Weighted High Utility Occupancy Matrix (WHUOM) with CPSs 

values 

           else: 

i. Mine the sequential rules (SPR) from the Sequential Clickstream database 

(SCDB) using the PrefixSpan algorithm based the minimum support. 

ii.  Update user-item matrix (M1) with SPR from CSDB if CB has empty 

session. 

iii. Weighted High Utility Occupancy Matrix (WHUOMs) updated with CPSs 

calculated between purchase and historic clicks. 

                                 end if. 

  end for: 

8. Rating of item i by user for session sid has value of item as in Weighted High Utility 

Occupancy Matrix (WHUOMs). 

9. Modified matrix is M2. 

10. Normalize M2 to get the normalized M explained in section 3.8. 

11. Passed to User based collaborative Filtering based on user similarity. 

END. 

Problem 3.1: Given a transaction database D, clicks database C (Table 3.1) from an online E-

commerce system having session id’s related to the clickstream and P for purchase dataset for the 

user (Table 3.2) with prices of the items (Table 3.3). The problem of enhancing the user-item 

matrix which is the input to the collaborative filtering qualitatively by mining the high utility 

purchase sequential patterns (which are both frequent and have high utility occupancy) so as to 
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discover patterns with high transaction utility and aggregate the frequent clickstream patterns 

which could possibly lead to a purchase. 

Solution for Problem 3.1:    Input:  The purchase sequence dataset with sequence utility and 

threshold Sequence Utility and clickstream sequences.    Output: High utility sequential rules which 

have utility value more than threshold utility. 

 

Session Id Click Sequence     Timestamp 

S1 a 2014-04-07T10:51:09.277Z 

S1 b 2014-04-07T10:54:09.868Z 

S1 a 2014-04-07T10:54:46.998Z 

S1 d 2014-04-07T10:57:06.808Z 

S1 c 2014-04-07T10:58:00.306Z 

S1 e 2014-04-07T10:59:56.112Z 

S2 b 2014-04-07T13:56:37.614Z 

S2 f 2014-04-07T13:57:19.373Z 

S2 a 2014-04-07T13:58:37.446Z 

S2 c 2014-04-07T13:59:50.710Z 

S2 d 2014-04-07T13:00:38.247Z 

S3 a 2014-04-07T14:02:36.889Z 

S3 b 2014-04-02T13:17:46.940Z 

S3 a 2014-04-02T13:26:02.515Z 

S3 e 2014-04-02T13:30:12.318Z 

S3 c 2014-04-02T13:31:43.567Z 

S3 d 2014-04-02T13:33:12.871Z 

S4 e 2014-04-03T10:44:35.672Z 

S4 a 2014-04-03T10:45:01.674Z 

S4 b 2014-04-03T10:45:29.873Z 

S4 e 2014-04-03T10:46:12.162Z 

S4 d 2014-04-03T10:46:57.355Z 

S4 a 2014-04-03T10:53:22.572Z 

S5 f 2014-04-06T14:50:13.638Z 

S5 d 2014-04-06T14:52:54.363Z 

S5 a 2014-04-06T14:53:18.268Z 
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S6 a 2014-04-07T09:01:28.552Z 

S6 b 2014-04-07T09:03:39.903Z 

S6 d 2014-04-07T09:04:00.598Z 

S6 e 2014-04-07T09:06:09.115Z 

S6 a 2014-04-07T09:07:42.212Z 

S6 b 2014-04-07T09:21:10.012Z 

Table3. 1 Clickstream Historic Dataset 

 

SID Transaction Quantity Timestamp 

S1 a 3 2014-04-07T10:51:09.277Z 

S1 b 6 2014-04-07T10:54:39.868Z 

S1 d 2 2014-04-07T10:55:34.998Z 

S2 e 3 2014-04-07T13:07:06.808Z 

S2 a 2 2014-04-07T13:18:00.306Z 

S2 b 5 2014-04-07T13:29:56.112Z 

S2 c 4 2014-04-07T13:36:37.614Z 

S2 d 1 2014-04-07T13:57:19.373Z 

S3 a 1 2014-04-07T14:08:37.446Z 

S3 b 3 2014-04-07T14:29:50.710Z 

S3 d 1 2014-04-07T14:30:38.247Z 

S3 e 4 2014-04-07T14:42:36.889Z 

S3 a 2 2014-04-02T15:17:46.940Z 

S4 a 2 2014-04-02T13:26:02.515Z 

S4 b 7 2014-04-02T13:30:12.318Z 

S4 a 6 2014-04-02T13:31:43.567Z 

S4 e 5 2014-04-02T13:33:12.871Z 

S4 a 3 2014-04-03T10:44:35.672Z 

S5 d 1 2014-04-03T10:45:01.674Z 

S5 f 2 2014-04-03T10:45:29.873Z 

S5 a 5 2014-04-03T10:46:12.162Z 

Table3. 2 Historic Purchase Database 

 

Item Price per unit 

a 5 

b 7 

c 3 

d 10 

e 6 

f 8 

Table3. 3 Table of items with their prices 
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Step 1: Historical data generation. 

 Convert the original click and purchase data (Table 3.1 and 3.2) into the sequential click database 

(SCDB) shown in Table 3.4 and High Utility purchase sequential database (HUPSDB) in Table 

3.6 which has transaction sequence data with internal utility and sequence utility on daily basis 

timestamp.     

User id Click Sequence 

S1 {a b a d c e } 

S2 {b f a c d} 

S3 {a b a e c d} 

S4 {e a b e d a} 

S5 {f d a}  

S6 { a b d e a b} 

Table3. 4  Sequential Click database created from the historic clicks dataset. 

 

SID Transaction sequence data with internal utility 

S1 { a(3) b(6) d(2) } 

S2 {e(2) a(2) b(5) c(4) d(1)} 

S3 { a(1) (b(3) d(1) e(4) a(2)} 

S4 { a (2)b(7) (a(6)e (5)) a(3)} 

S5 {d(1)f(2)a(5) } 

Table3. 5 Transaction sequence table of purchase data with the internal utility 

 

SID Transaction sequence Sequence Utility ($) 

S1 { a(3) b(6) d(2) } 77 

S2 {e(2) a(2) b(5) c(4) d(1)} 79 

S3 { a(1) (b(3) d(1) e(4) a(2)} 70 

S4 { a (2)b(7) (a(6)e (5)) a(3)} 134 

S5 {d(1)f(2)a(5) } 36 

Table3. 6  High utility Sequential Purchase data with sequence utility. 

 

Step 2: Create consequential between the sequential clicks database (SCDB) and the High Utility 

Purchase sequential database (HUPSDB) based on session ids as mentioned in Table 3.7. 
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User id Click Sequence Purchase Sequence 

S1 {a b a d c e} {a(3) b(6) d(2) } 

S2 {b f a c d} {e(2) a(2) b(5) c(4) d(1)} 

S3 {a b a e c d} {a(1) (b(3) d(1) e(4) a(2)} 

S4 {e a b e d a} {a (2)b(7) (a(6)e (5)) a(3)} 

S5 {f d a}  {d(1)f(2)a(5) } 

S6 {a b d e a b} ? 

Table3. 7 Consequential Bond b/w sequential clicks and high utility purchase sequential data 
 

Step 3: Convert historical purchase information (present in Table 3.2) to user-item purchase 

frequency (present in Table 3.8) by counting the number of each purchased by a user. For example, 

User 2 purchased item1 twice and purchased item3 4 times. 

Item/ User ID a b c d e f 

S1 3 6 ? 2 ? ? 
S2 2 5 4 1 2 ? 
S3 3 3 ? 1 4 ? 
S4 11 7 ? ? 5 ? 
S5 5 ? ? 1 ? 2 
S6 ? ? ? ? ? ? 

Table3. 8 user-item frequency matrix based on quantities bought in a transaction 

 

Step 4: Input HUPSDB purchase sequential database (Table 3.6) to High Utility Sequential 

Pattern Miner (HUSPM) module present in section 3.5 to generate high utility sequential rules 

from sequential purchases. 

I. Create the Lexicographic Q-Sequence tree for the utility - based sequences, where root is 

empty < >. Any node’s child is either an I-Concatenated or S- Concatenated sequence node 

of the node itself. 
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Figure 3. 3 The Complete-LQS-Tree for the Example of Q-Sequence database 

 

II. Create a utility matrix for every q-sequence, here let’s say s4, each element in the matrix 

is a tuple; the first value shows the utility of the q-item, and the second is the utility of the 

remaining items in the q-sequence; we call it remaining utility. The items that do not appear 

in the q-sequence are given zero utility value.  

Items q- itemset 1 q- itemset 2 q- itemset 3 

a (10, 124) (30, 45) (15, 0) 

b (49, 75) (0, 45) (0, 0) 

e (0, 75) (30, 15) (0, 0) 

Table3. 9 utility matrix of Q-sequence for s4 in Table 3.6. 

            The I – concatenations for a sequence <a> in s4, u(<(ab)>, s4) = {10+49} = {59} and S-  

            Concatenations for sequence <(ab)> in s4, u(<ab>e), s4) = {59+30} = US{89}.        

III. Width Pruning - The item will be considered promising if after concatenating an item (i) 

to sequence (q) forms a new sequence (q`) explained in section 3.5.                                             

                                            SWU (q’) ≥ threshold minimum utility              

                    SWU (< (ab)e>) = {134+70} = {204} 
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IV. Depth Pruning - The Depth Pruning stops the USpan algorithm from going deeper in the 

LQS- Tree. When the gap is so large that even if all the utilities of the remaining q-items 

are counted into the utility of the sequence, the cumulative utility still cannot satisfy 

minimum threshold utility required. The high utility sequential patterns found are as 

follows: 

ID Sequential rule Sequence Utility 

R1 {b} → {d} 226 

R2 {a} → {b} 360 

R3 {a, b} → {d} 226 

R4 {a, b} → {e} 204 

R5 {d} → {a} 106 

R6 {e} → {a} 283 

R7 {e} → {b} 79 

Table3. 10 High Utility sequential rules based on Confidence and Sequence Utility 

 

Step 5: Reconstruct user-item purchase frequency matrix by using High Utility purchase 

sequential pattern rules. Thus, enhanced user-item purchase frequency matrix is present in Table 

3.8. As we can see from enhanced user-item purchase frequency matrix (Table 3.11), there is no 

purchase information for User6. Thus, to find the purchase information of User5, we are going to 

analyze the consequential bond of click and purchase by considering sequential patterns. Let us 

consider, historical click and purchase as present in Table 3.7. 

 

Item/ User ID a b c d e f 

S1 3 6 ? 2 1 ? 

S2 2 5 4 1 2 ? 

S3 3 3 ? 1 4 ? 

S4 11 7 ? 1 5 ? 

S5 5 1 ? 1 ? 2 

S6 ? ? ? ? ? ? 

Table3. 11 enriching the user-item frequency matrix. 

 

Step 6: As we know that there is no information about the user 7. To determine more purchase 

information of user 7, the click and purchase information needs to be studied. 

I. Form a click sequential database from the click and purchase consequential bond for the 

daily purchase and click transactions. 
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Session id Click Sequence 

S1 {a b a d c e} 

S2 {b f a c d} 

S3 {a b a e c d} 

S4 {e a b e d a} 

S5 {f d a}  

S6 {a b d e a b} 

Table3. 12 Table containing the sequential click Sequence and Session Id 

 

II. Using the Prefix Span algorithm, mine the sequential patterns in the click sequence 

database.  

Rule no Sequential Rule 

1 a → b 

2 a, b → d 

3 a, b → c 

4 b, a → e 

5 d → a 

6 b → d 

Table3. 13 Sequential rules found after the mining of click sequence dataset using PrefixSpan 

algorithm. 

  

III. Recommend item from the click sequential rule, where the user clicks but does not 

purchase anything. For example, there is no purchase for click sequence of User 7 using 

part 2 in section 3.5. 

 

User Id Click Sequence Purchase Sequence Recommend item 

S1 {a b a d c e} {a b d}  

S2 {b f a c d} {e a b c d}  

S3 {a b a e c d} {a (b d e) a}  

S4 {e a b e d a} {ab (ae) a}  

S5 {f d a}  {d f a}  

S6 {a b d e a b} ? a b d 

Table3. 14 Recommending item from the click sequences when purchase did not happen 

 

Step 7: Once the purchased item is recommended for a user (where, the click has happened 

without purchase), compute click and purchase similarity using Click and Purchase Similarity 

(CPS) module present in section 3.6.  

User Id Click Sequence Purchase Sequence Recommend item CPS Similarity 

S1 {a b a d c e} {a b d}  0.562 

S2 {b f a c d} {e a b c d}  0.64 
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S3 {a b a e c d} {a (b d e) a}  0.58 

S4 {e a b e d a} {ab (ae) a}  0.57 

S5 {f d a} {d f a}  1 

S6 {a b d e a b} ? a b d  ? 

Table3. 15 CPS calculated between each click and purchase sequence for which purchase 

happened 

 

Item/ User ID a b c d e f 

S1 3 6 ? 2 1 ? 

S2 2 5 4 1 2 ? 

S3 3 3 ? 1 4 ? 

S4 11 7 ? 1 5 ? 

S5 5 1 ? 1 ? 2 

S6 1 1 ? 1 ? ? 

Table 3.14 enriching the user-item frequency matrix 

 

Step 8: Supply Click Purchase Similarity (CPS) value to purchase pattern including a 

recommended item from Sequential Pattern Rule (SPR) (Table 3.16). 

User ID Purchase Sequence CPS Similarity 

1 {a b d} 0.562 

2 {e a b c d} 0.64 

3 {a (b d e) a} 0.58 

4 {ab (ae) a} 0.57 

5 {d f a} 1 

6 ? ? 

Table3. 16 Assigning CPS values to the purchase sequences 

 

Step 9: Assigning weights on basis of utility occupancy. 
 

The utility occupancy can be defined as the ratio of the utility of item or itemset, say X, in that 

transaction divided by the total utility of that transaction (Gan, Lin, Fournier-Viger, Chao, & Yu, 

2020). The utility occupancies of (a) in Table 3.16 are calculated using Equation 3.3 as: uo(a) = 

(uo(a; T1) + uo(a; T2)+ uo(a; T3) + uo(a; T4) + uo(a; T5))/5 = (0.562 + 0.64 + 0.58 + 0.57 + 1)/5 

= 0.67. Similarly, calculate for b, c, d, e and f. 

Repeat steps 4, 5, 6 7 and 8, if there are more users without purchase, otherwise assign computed 

item weight to enhance user-item purchase frequency matrix (Table 3.17). 

Item/User ID a b c d e f 

S1 3 6 ? 2 1 ? 

S2 2 5 4 1 2 ? 

S3 3 3 ? 1 4 ? 
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S4 11 7 ? 1 5 ? 

S5 5 1 ? 1 ? 2 

S6 0.67 0.588 0.64 0.69 0.596 1 

Table3. 17 user-item matrix with utility occupancy weights for each item 

 

Step 11: Normalize quantitatively rich user-item purchase frequency matrix (Table 3.17) using 

unit normalization formula present in section 3.7 to provide the level of user’s interest on item 

between 0 and 1 as shown in Table 3.18. We can see, that normalized quantitatively rich user-

item matrix (Table 3.18) is less sparse compared to initial user-item purchase frequency matrix 

(Table 3.8). 

Item/ User ID a b c d e f 

U1 0.25 0.5 ? 0.166 0.083 ? 

U2 0.14 0.35 0.285 0.071 0.142 ? 

U3 0.50 0.50 ? 0.16 0.67 ? 

U4 0.78 0.5 ? 0.07 0.35 ? 

U5 0.89 0.17 ? 0.17 ? 0.35 

U6 0.204 0.179 0.194 0.210 0.181 0.030 

Table3. 18 Normalization of the user-item matrix 

 

3.4 High Utility Sequential Database Generator (HUSDBG) 
 

    Algorithm 2: High Utility Sequential Database Generator (HUSDBG) 

Input: Purchase data (SessionId, timestamp, item id, price, quantity), click data (SessionId, 

timestamp, item id, category) 

 

Output: High Utility Purchase Sequential database (HUPSDB), sequential clickstream database 

(SCDB) 

 

Part 1: for the historic purchase dataset 

BEGIN: 

1. Read first line of the purchase data file and store SessionId and timestamp in temp variable                 

temp_sessionid. 

2. for each line in the purchase data file: 

                       if (SessionId == temp_sessionid): 

                             Calculate Timeduration between timestamp and      

                             temp_timestamp. 
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                          if (Timeduration > 24): 

        Add item to a daily high utility transaction  

                                  with their quantity bought 

                             else: 

                                  Add –I after the item to indicate end of the  

                                  itemset 

                             end if: 

                       else: 

                             Add –S after the item to indicate the end of the  

                             sequence and calculate sequence utility for the  

                             high utility transactions. 

                       end if: 

                end for: 

3. Save the high utility purchase sequential database. 

   END 

 

Part 2: for historic clickstream dataset (SCDB) 

The conversion of historic clickstream dataset to sequential click database is same as SHOD 

algorithm in HSPRec19 (Bhatta, Ezeife & Butt, 2019) system. 

BEGIN: 

1.          Read first line of the clickstream data file and store session id and timestamp in temp variable. 

2.          for each line in the clicks data file: 

                  if (SessionId == temp_sessionid): 

                         Calculate Timeduration between timestamp and temp_timestamp. 

                  if (Timeduration > 24): 

                          Add item to daily sequence purchase database 

                  else 

                         Add –I after the item to indicate end of the itemset 

           else  

                         Add –S after the item to indicate the end of the sequence 

           end if 

      end for 
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END 

Working of HUSDBG with an example 

The first step in the algorithm is to get the historic purchase data and click data from e-

commerce dataset. As we aim to mine data in order to find the pattern which can get high sales 

on the daily basis, the high utility purchase sequential database (HUPSDB) should compromise 

of items, their respective quantity and the sequence utility of each unique transaction. 

To explain the HUSDBG algorithm step by step, let us consider historical purchase data (Table 3.19) 

as input, the table has same information as Table 3.2 where Sid represents Session identity, Productid 

represents product identity, quantity represents quantity bought of the product and Purchastime 

represents timestamp when purchase occurred. 

SID Transaction  Quantity Timestamp 

S1 a 3 2014-04-07T10:51:09.277Z 

S1 b 6 2014-04-07T10:54:39.868Z 

S1 d 2 2014-04-07T10:55:34.998Z 

S2 e 3 2014-04-07T13:07:06.808Z 

S2 a 2 2014-04-07T13:18:00.306Z 

S2 b 5 2014-04-07T13:29:56.112Z 

S2 c 4 2014-04-07T13:36:37.614Z 

S2 d 1 2014-04-07T13:57:19.373Z 

S3 a 1 2014-04-07T14:08:37.446Z 

S3 b 3 2014-04-07T14:29:50.710Z 

S3 d 1 2014-04-07T14:30:38.247Z 

S3 e 4 2014-04-07T14:42:36.889Z 

S3 a 2 2014-04-02T15:17:46.940Z 

S4 a 2 2014-04-02T13:26:02.515Z 

S4 b 7 2014-04-02T13:30:12.318Z 

S4 a 6 2014-04-02T13:31:43.567Z 

S4 e 5 2014-04-02T13:33:12.871Z 

S4 a 3 2014-04-03T10:44:35.672Z 

S5 d 1 2014-04-03T10:45:01.674Z 

S5 f 2 2014-04-03T10:45:29.873Z 

S5 a 5 2014-04-03T10:46:12.162Z 

Table3. 19 user-item purchase frequency matrix created from historical data 
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Item Price per unit 

a 5 

b 7 

c 3 

d 10 

e 6 

f 8 

Table3. 20 Table containing prices per unit for each item 

 

Step 1: Read the first line of record from historical purchase data (buys.txt in our case) and store 

sessionid, timestamp into a temporary variable. For example, let’s store first line from Table 3.19 

into variable as:  

TSessionId= S1, Ttimestamp= 2014-04-07T10:51:09.277Z. 

Step 2: Read another line from the historical database and check recently read sessionid with 

sessionid stored in a temporary variable (TSessionId). If SessionId is same, compute the 

difference between the last time the same user made a purchase and the current purchase time 

user is making a purchase and goto step 3 else goto step 4. 

Step 3:  

1.  If the time difference between the two products is less than 24 hours add itemID and the 

Quantity to itemset in daily.txt file. In our case, the purchased time difference between two 

products {a, b} purchased by user for {TSessionId= S1} is less than 24 hrs. So, add two 

items to itemset in daily.txt  

                                                                            a – 3, b -6 

2. If the time difference between purchased items is more than 24 hours add –I to indicate the 

end of itemset and add itemID after -I. For example,  

                                     a -3, b -6 -I 

Step 4: If user identity is not similar, then add –I and -S after item to indicate the end of itemset 

and sequence and goto step 2 by updating temporary variable.  

     a -3, b -6 –I -S 

Step 5: Repeat step2, Step 3 and Step 4 until the historical database is empty. In our case, the 

daily sequential database using step2, Step 3 and Step 4 is shown in Table 3.21. 

SID  Purchase Sequence with internal utilities 

1 a-3, b-6, d-2 -I-S 

2 e-3, a-2, b-5, c-4, d-1 -I-S 
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3 a-1-I, b-3, d-1, e-4 -I, a-2, -I-S 

4 a-2, b-7 -I, a-6, e-5 -I, a 3–I-S 

5 d- 1, f-2, a-5 -I-S 

Table3. 21 Sequential database created from historical transactional database 

 

Which is alternatively represented as shown in Table 3.22, where angular bracket < > indicates 

sequence, [ ] contains item set purchased together within the same session and () gives the 

quantity of the item bought. 

 SID Purchase sequence with internal utilities. 

S1 < a(3) , b(6), d(2)  > 

S2 < e(3), a(2), b(5), c(4), d(1) > 

S3 < a(1), [ b(3),d(10) ,e(4) ], a(2) > 

S4 < a(2),b(7), [ a(6), e(5) ], a (3) > 

S5 < d(1), f(2), a(5) > 

Table3. 22 Transaction sequence table of purchase data with the internal utility. 

 

Step 6: Calculate the utility of a sequence of Transactions to determine the minSeqUtil. 

The transaction utility of an item is directly obtained from the information stored in the 

transaction dataset. For example, the quantity of an item in Table 3.19 is internal utility of a 

transaction. The external utility of an item is given by the user, discounts or profits, in our case 

its item cost as given in Table 3.20. By combining a transaction dataset and a utility table (or 

utility function) together, the discovered patterns will better match a user's expectations than by 

only considering the transaction dataset itself on the everyday sales data. This part can be divided 

into further two parts: 

i. Calculate the sequence utility of a transaction using the definition 4. For example, su 

(TS1) = su (a, S1) +su (b, S1) +su (d, S1) +su (f, S1) =15+42+20= 77. Similarly, calculate 

transaction utilities of every sequence, su(TS2) = 79, Su (TS3) = 70, Su (TS4) = 134, Su 

(TS5) = 36.  

ii. According to definition 6, calculate the sequence utility of SDB. For example, su(SDB)= 

77+ 79+ 70+ 134+ 36 = 396 in Table 3.23. For the minSeqUtil, we need to consider some 

threshold such as 30% of sequence utility of SDB, 0.3 * 396 = 119 approx. 

SID Transaction sequence Sequence Utility 

S1 { a(3) b(6) d(2) } 77 

S2 {e(2) a(2) b(5) c(4) d(1)} 79 

S3 { a(1) [b(3) d(1) e(4)] a(2)} 70 
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S4 { a (2)b(7) (a(6)e (5)) a(3)} 134 

S5 {d(1)f(2)a(5) } 36 

Table3. 23 Sequence Utility of each transaction 

Using the step 1 and 2, we can create the sequential clickstream database but as the database 

contains only the clicks, for sequential clickstream database the step 3 get modified and does not 

append the quantities, else work as Step 3 and 4. 

 

3.5 High Utility Sequential Pattern Miner (HUSPM) and Sequential Pattern Miner 

    This module can be divided into two components as sequential rules have to mined for 

purchase and click sequence databases. 

1. High Utility Sequential Rule mining for the Purchase database. 

     The output of HUPSDB module for the purchase database was the sequence database 

according on daily purchases with the quantities of the items called internal utility and a dataset 

of items with their unit prices called external utility. 

Input:  The purchase sequence dataset with sequence utility and threshold sequence   utility. 

Output: High utility sequential rules which have utility value more than threshold utility. 

 

 Step 1: Forming the Lexicographic Q-Sequence (LQS) Tree. 

For the utility-based sequences, the concept of Lexicographic q - Sequence Tree   

is used to construct and organize utility based q-sequences. Each node in the   

tree is the sequence with the utility of the sequence. These nodes are either I –  

concatenated or S-Concatenated sequence node to itself. 

Step 2: Concatenations  

  Using concatenations, we generate the node’s children’s utilities by concatenating 

  the corresponding items. Suppose we have a k-sequence q, we call the operation of 

  appending a new item to the end of q to form (k+1)-sequence concatenation. If the 

  size of q does not change; we call the operation I-Concatenation. Otherwise, if the 

  size increases by one, we call it S-Concatenation. For example, <ea>’s I- 

  Concatenated and S-Concatenated with b result in <e(ab)> and <eab>, 

  respectively. 

 Step 3: Width Pruning  
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              The width pruning strategy helps to avoid constructing unpromising items/ children  

              into the LQS- tree using the Sequence Weighted Utility (SWU) of the sequence. 

             The item will be considered promising if after concatenating an item (say i) to  

              sequence (say q) forms a new sequence (say q`) has:                                                          

SWU(q’) ≥ threshold minimum utility             

Step 4:  Depth Pruning 

   The Depth Pruning stops the USpan algorithm from going deeper in the LQS- Tree.  

              When the gap is so large that even if all the utilities of the remaining q-items are  

              counted into the utility of the sequence, the cumulative utility still cannot satisfy  

              minimum threshold utility required. Here, by using the depth pruning strategy we can  

              backtrack USpan instead of waiting to go deeper and returning with nothing. 

 

3. Sequential Pattern mining (SPM) for the Clickstream database.  

       The output of SCDB for the clickstream database contains the historical sequence dataset 

of clicks. We can mine the clickstream dataset using the PrefixSpan algorithm explained in 

section 2.1.2 as the number database scans in this algorithm are less compared to Apriori based 

algorithms. 

Input: historic sequence database of clicks and minimum support. 

Output: frequent sequential pattern rules. 

 

3.6 Click Purchase Similarity (CPS) Module  

          

       Inspired by the idea of Chen13Rec (Chen & Su, 2013), we introduce CPS (Click purchase 

similarity) which takes the frequency and position of items in click and purchase sequences of the 

user into consideration to calculate the similarity.  To compute the CP similarity between click and 

purchase sequences of each session, we have used sequence similarity and frequency similarity of 

the two sequences.   

Sequence similarity (LCSR): It is based on using longest common subsequence rate (LCSR) 

(Paterson, & Vlado, 1994) (Bergroth, Hakonen & Raita, 2000). 

(LCSR) (X, Y) = 𝑳𝑪𝑺 (𝑿, 𝒀) 𝒎𝒂𝒙(|𝑿| ,|𝒀|). 

 In our case, X represents click sequence and Y represents purchase sequence and LCS is defined 

in Equation 3.1.  



 

66 
 

LCS (Xi, Yj) = {

∅                                                                                 𝒊𝒇 𝒊 = 𝟎 𝒐𝒓 𝒋 = 𝟎

𝑳𝑪𝑺(𝑿𝒊−𝟏, 𝒀𝒋−𝟏) ∩ 𝑿𝒊                                      𝒊𝒇 𝒙𝒊 = 𝒚𝒊

𝒍𝒐𝒏𝒈𝒆𝒔𝒕 (𝑳𝑪𝑺(𝑿𝒊, 𝒀𝒋−𝟏), 𝑳𝑪𝑺(𝑿𝒊−𝟏, 𝒀𝒋))      𝒊𝒇 𝒙𝒊 ≠ 𝒚𝒊    

 

Equation 3. 1  Sequence similarity function 

In our case, X represents click sequence and Y represents purchase sequence. 

 

Frequency similarity (FS): First, form the distinct set of items from both click and purchase 

sequential patterns and count number of items occurring in each sequence to form vector 

specifying the number of times a user clicks or purchased a particular item then apply Equation 

3.2 to click and purchase vectors (Sidorov, Gelbukh, Gómez & Pinto, 2014).  

𝑪𝒐𝒔𝒊𝒏𝒆(𝑿, 𝒀) = 
𝑿𝟏∗𝒀𝟏 + 𝑿𝟐∗𝒀𝟐+ … +𝑿𝒏∗𝒀𝒏

√𝑿𝟏
𝟐+𝑿𝟐

𝟐+⋯+𝑿𝒏
𝟐  ∗ √𝒀𝟏

𝟐+𝒀𝟐
𝟐+⋯+𝒀𝒏

𝟐
 

Equation 3. 2 Cosine similarity function 

 

Thus, CPS (X, Y) =α*LCSR (X, Y) +β*Cosine (X, Y), where α+β=1, 0<α, β<1, where α and β 

are weight to balance the two sequences similarity and frequency similarity. We can explain 

these two steps using the both clickstream sequence s X = <a, b, a, d, c, e> and Y = < a, b, d> 

using following steps: 

i. Compute the longest common subsequences, LCS (X, Y) between click sequences. For 

example, LCS (<a, b, a, d, c, e>, <a, b, d>) is 3 because of common subsequence (a, b, d). 

ii. Find the maximum number of items occurring in click sequences as Max (X, Y). In our case, 

Max (X, Y) is 6.  

iii.  Compute sequences similarity of click (X) and purchase (Y) sequence as LCS (X, Y)/Max 

(X, Y) =3/6=0.5.  

iv. Compute the frequencies of items in click and purchase sequences. In our case, we have 

format [(item): number of occurrences]. So, frequency count of click sequence (X) is: [(a):2, 

(b):1, (c): 1, (d):1, (e): 1]. Similarly, frequency count of click sequence (Y) is: [(a):1, (b):1, 

(d):1].  

v. Then, use the Cosine similarity function in Equation 3.2 to get the frequency similarity 

between click sequence (X) and (Y) as Cosine (X, Y). In our case, Cosine (<2,1,1,1,1,0>, 

<1,1,0,1,0,0>) =0.81. 
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vi.  The Clickstream Similarity of user click sequence CSSM (X, Y) = 0.8*0.5 + 0.2*0.81 = 

0.562, where α =0.8 and β=0.2. 

vii. This CPS (X, Y) can be used as weight or probability that user u will purchase the entire 

sequence as shown in Table 3.24. 

 

3.7 Weighted High Utility Occupancy Matrix (WHUOM) 

       Weighted High Utility Occupancy Matrix (WHUOM) module takes weightage assigned by 

the CPS module as input and generate frequent items with weight (u’s rating of item i in the 

matrices referred to as rui) present in purchased patterns based on the utility occupancy. So major 

steps of WHUPPM are: 

User ID Purchase Sequence CPS Similarity 

1 { a b d } 0.562 

2 {e a b c d} 0.64 

3 { a (b d e) a} 0.58 

4 { ab (ae) a} 0.57 

5 {d f a } 1 

6 ? ? 

       Table3. 24 Weighted purchase pattern 

 

The utility occupancy (Gan, Lin, Fournier-Viger, Chao, & Yu, 2020) of an itemset say, X in a 

supporting transaction say, Tq is denoted as uo(X, Tq), and defined as the ratio of the utility of X 

in that transaction divided by the total utility of that transaction:  

Uo (X, Tq) = 
𝑢 (𝑋,𝑇𝑞)

𝑡𝑢 (𝑇𝑞)
 

Equation 3. 3 Utility Occupancy 

The utility occupancies (Equation 3.3) of (a) in Table 3.24 are calculated as: uo(a) = (uo(a; T1) 

+ uo(a; T2)+ uo(a; T3) + uo(a; T4) + uo(a; T5))/5 = (0.562 + 0.64 + 0.58 + 0.57 + 1)/5 = 0.67. 

Similarly, calculate for b, c, d, e and f. 

Repeat steps 4, 5, 6 7 and 8, if there are more users without purchase, otherwise assign computed 

item weight to enhance user-item purchase frequency matrix. 

i. Count support of item: Count the occurrence of items presented in weighted purchase pattern. 

For example, {support (a): 5, support (b): 4, support (c): 1, support (d): 4, support (e): 3, 

support (f): 1}  
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ii. Calculate the weight of individual item: Compute weight of individual item from weighted 

purchase pattern (Table 3.1.4) using Equation 3.4.  

    Ritem = 
∑ 𝐶𝑃𝑆  ∈  𝑖𝑡𝑒𝑚𝑛

𝑖=1 𝑖

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ 𝑖𝑡𝑒𝑚𝑖
 

Equation 3. 4: Formula to compute weight in WHUOM 

              For example, 𝑅𝑖𝑡𝑒𝑚 1 = 0.562 + 0.64 + 0.58 + 0.57 + 1/ 5 = 0.68. 
 

iii. Test weight with minimum support threshold: Define the minimum threshold rating, here in 

our case, minimum threshold=0.2. So, all items are frequent.  

 

3.8 User-item Matrix Normalization  

      Normalization in the recommendation system helps to predict the level of interest of user on 

an item. Thus, the normalization function takes the user-item frequency matrix as input and 

provide the level of user interest between 0 and 1 using the unit vector formula (Equation 3.5). 

Normalization (rui) =  
𝑟𝑢𝑖

√𝑟𝑢𝑖1
2 +𝑟𝑢𝑖2

2 +⋯+𝑟𝑢𝑖𝑛
2  

 

Equation 3. 5 Unit normalization function 

 

3.9 Comparison between HSPRec19 and proposed HUSRec Systems 

     Let’s compare the HSPRec19 and proposed HUSRec systems using the same input click 

stream dataset and purchase dataset. 

Input historical clickstream dataset: Let’s consider Table 3.25 as input for both the systems, 

some samples have been taken from the clicks dataset which has attributes such as: 

Session Id – The id of the session is represented as an integer number, which may have one or 

many clicks. 

Timestamp- The time when the click occurred. Format: “YYYY-MM-DDThh:mm:ss.SSSZ”.Item 

Id/ Product - The unique identifier for the item that has been clicked, represented as an integer 

number. 

Session Id Click Sequence     Timestamp 

S1 apples 2014-04-07T10:51:09.277Z 

S1 bread 2014-04-07T10:54:09.868Z 

S1 apples 2014-04-07T10:54:46.998Z 

S1 Milk 2014-04-07T10:57:06.808Z 

S1 Cheese 2014-04-07T10:58:00.306Z 
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S1 Eggs 2014-04-07T10:59:56.112Z 

S2 bread 2014-04-07T13:56:37.614Z 

S2 Honey 2014-04-07T13:57:19.373Z 

S2 apples 2014-04-07T13:58:37.446Z 

S2 Cheese 2014-04-07T13:59:50.710Z 

S2 Milk 2014-04-07T13:00:38.247Z 

S3 apples 2014-04-07T14:02:36.889Z 

S3 bread 2014-04-02T13:17:46.940Z 

S3 apples 2014-04-02T13:26:02.515Z 

S3 Eggs 2014-04-02T13:30:12.318Z 

S3 Cheese 2014-04-02T13:31:43.567Z 

S3 Milk 2014-04-02T13:33:12.871Z 

S4 Eggs 2014-04-03T10:44:35.672Z 

S4 apples 2014-04-03T10:45:01.674Z 

S4 bread 2014-04-03T10:45:29.873Z 

S4 Eggs 2014-04-03T10:46:12.162Z 

S4 Milk 2014-04-03T10:46:57.355Z 

S4 apples 2014-04-03T10:53:22.572Z 

S5 Honey 2014-04-06T14:50:13.638Z 

S5 Milk 2014-04-06T14:52:54.363Z 

S5 apples 2014-04-06T14:53:18.268Z 

S6 apples 2014-04-07T09:01:28.552Z 

S6 bread 2014-04-07T09:03:39.903Z 

S6 Milk 2014-04-07T09:04:00.598Z 

S6 Eggs 2014-04-07T09:06:09.115Z 

S6 apples 2014-04-07T09:07:42.212Z 

S6 bread 2014-04-07T09:21:10.012Z 

Table3. 25 Historical Clicks dataset 

 

Input historical purchase dataset: Let’s consider Table 3.26 as input for both the systems, 

some samples have been taken from the purchase dataset which has attributes such as  

Session Id- The id of the session is represented as an integer number, which may have one or 

many clicks. 

Timestamp - the time when the buy occurred. Format: “YYYY-MM-DDThh:mm:ss.SSSZ”. 

Item ID – The unique identifier of item that has been bought represented as an integer number. 

Price – The price of the item could be represented as an integer number as shown in Table 3.27. 

Quantity – The quantity of item in this buying represented as an integer number. 
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SID Product/ Item ID  Quantity Timestamp Price 

S1 apples 3 2014-04-07T10:51:09.277Z 5 

S1 bread 6 2014-04-07T10:54:39.868Z 7 

S1 Milk 2 2014-04-07T10:55:34.998Z 10 

S2 Eggs 3 2014-04-07T13:07:06.808Z 6 

S2 apples 2 2014-04-07T13:18:00.306Z 5 

S2 bread 5 2014-04-07T13:29:56.112Z 7 

S2 Cheese 4 2014-04-07T13:36:37.614Z 3 

S2 Milk 1 2014-04-07T13:57:19.373Z 10 

S3 apples 1 2014-04-07T14:08:37.446Z 5 

S3 bread 3  2014-04-07T14:29:50.710Z 7 

S3 Milk 1 2014-04-07T14:30:38.247Z 10 

S3  Eggs 4 2014-04-07T14:42:36.889Z 6 

S3 apples 2 2014-04-02T15:17:46.940Z 5 

S4 apples 2 2014-04-02T13:26:02.515Z 5 

S4 bread 7 2014-04-02T13:30:12.318Z 7 

S4 apples 6 2014-04-02T13:31:43.567Z 5 

S4 Eggs 5 2014-04-02T13:33:12.871Z 6 

S4 apples 3 2014-04-03T10:44:35.672Z 5 

S5 Milk 1 2014-04-03T10:45:01.674Z 10 

S5 Honey 2 2014-04-03T10:45:29.873Z 8 

S5 apples 5 2014-04-03T10:46:12.162Z 5 

Table3. 26 Historical Purchase Dataset 

 

Item Price per unit 

Apple 5 

Bread 7 

Cheese 3 

Milk 10 

Eggs 6 

Honey 8 

Table3. 27 Table containing prices per unit for each item. 
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Steps of HSPRec19 System: 

 

Steps of proposed HUSRec System: 

 

  

Step 1: Convert the historical purchase into the 

sequential database using the SHOD algorithm. 

 
Table3. 28 Daily Purchase Sequential Database 

created from the historical transaction data 

 

Step 1: Convert the historical purchase into the sequential 

database using the HUSDBG algorithm. 

 
Table3. 29 High utility Sequential purchase database with 

sequence utility 

 

  

Step 2: Create the consequential bond 

between sequential clicks and purchases data. 

 
Table3. 30 Consequential Bond for HSPRec19 

system. 

 

 

Step 2: Create the consequential bond between the high 

utility sequential purchase data and sequential click data. 

 
Table3. 31 Consequential Bond for proposed HUSRec 

system. 
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Step 3: Create user-item frequency matrix 

from the purchase information. 

 
Table3. 32 user-item frequency matrix 

Step 3: Create user-item frequency matrix from the 

purchase information. 

 
Table3. 34 User-item frequency matrix 

 

Step 4: Pass the sequential purchase data to 

sequential pattern mining (SPM). 

 
Table3. 35 Sequential rules from SPM. 

 

Step 4: Pass the HUPSDB to High utility sequential 

pattern mining (HUSPM). 

 
Table3. 36 High Utility Sequential rules mined using USpan 

algorithm. 

 

 

Step 5: update user-item matrix with 

sequential rules. 

 
Table3. 37 Updated user-item matrix with SPM 

rules 

 

Step 5: update user-item matrix with High utility 

sequential rules. 

 
Table3. 38 Updated user-item matrix with HUSR. 
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Step 6: Recommend items for the sessions 

where no purchase has happened with 

sequential rules mined from sequence 

clickstream data. 

 
Table3. 39 matrix updated with recommended 

items in Session 6. 

 

Step 6: Recommend items for the sessions where no 

purchase has happened with sequential rules mined from 

sequence clickstream data. 

 

 
Table3. 40 matrix updated with recommended items in 

Session 6. 

 

Step7: Calculate CPS for the updated user-

item matrices from HSPRec19 systems. 

 
Table3. 41 CPS values assigned to purchase 

sequences in HSPRec19. 

Step7: Calculate CPS for the updated user-item matrices 

from HUSRec systems. 

 
Table3. 42 CPS values assigned to purchase sequences in 

HUSRec system. 

 

Step 8: Assign weights for each item using 

Weighted Frequent pattern module. 

 
Table3. 43 weights assigned to each item in the 

database using the CPS values from Table 3.41. 

 

Step 8: Assign weights for each item using Weighted 

High Utility Occupancy Matrix (WHUOM) module. 

 
Table3. 44 weights assigned to each item in the database 

using the CPS values from Table 3.42. 
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Step 9: Normalize the user-item matrix. 

 
Table3. 45 Normalized matrix from HSPRec19 

system. 

 

 

Step 9: Normalize the user-item matrix. 

 
Table3. 46 Normalized matrix from HUSRec system. 

Step 10: For collaborative filtering, similar 

users to S6 are found using cosine similarity. 

The top two similar users are S2 and S5 with 

similarity 0.88 and 0.79. 

 

 

Step 10: For collaborative filtering, similar users to S6 

are found using cosine similarity. The top two similar 

users are S2 and S3 with similarity 0.78 and 0.75. 

Step 11: Calculate the prediction rating of 

each item in Session 6, the item Apples and 

Bread has greater prediction rating. Therefore, 

they will be suggested to the customer. 

 

 

 

Step 11: Calculate the prediction rating of each item in 

Session 6, the item Apples, Bread and Eggs has greater 

prediction rating. Therefore, they will be suggested to the 

customer. 

 

Step 12: Considering the total items bought in 

the Session 6 are Apples and Bread, we 

calculate the profit earned by selling them per 

unit. 

For example, cost price of Apples is $5 and of 

Bread is $7, the money earned will be $12. 

 

 

Step 13: Compare the accuracy of the 

recommended products for Session 6, the 

HSPRec19 system recommended Apples and 

Bread but the actual purchase has Apples, 

Bread and Eggs. For this single session, 

HSPRec19 scored 75% accuracy. 

 

Step 12: Considering the total items bought in the Session 

6 are Apples, Bread and Eggs, we calculate the profit 

earned by selling them per unit. 

For example, cost price of Apples ($5), Bread ($7) and 

Eggs ($6), the money earned will be $18. 

 

 

 

Step 13: Compare the accuracy of the recommended 

products for Session 6, the HUSRec system 

recommended Apples, Bread and Eggs and the actual 

purchase has Apples, Bread and Eggs. For this single 

session, proposed HUSRec system scored 100% 

accuracy. 
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CHAPTER 4    EXPERIMENT AND EVALUATION METRICS 
 

The normalized and enhanced user-item frequency matrix is passed to the collaborative filtering 

as input. We have used user-based collaborative filtering to generate the recommendations, firstly, 

the historical data is converted into the user-item frequency matrix using the three systems 

(HPCRec18, HSPRec19 and HUSRec) and then apply the user cosine similarity technique to find 

the top – 10 similar users and recommend the items from the most similar user. After applying the 

cosine similarity for user-based collaborative filtering, furthermore, 80% of data is used in training 

and 20% of data is used in testing the performance. To evaluate the performance of the 

recommendation system, we are using three different evaluation parameters (a) mean absolute 

error (MAE) (b) precision and (c) performance analysis of the proposed HUSRec system. 

 

4.1 Dataset Selection 

We use the dataset provided by YOOCHOOSE GmbH for ACM RecSys 2015 (Ben-Shimon, et 

al., 2015), which is from an online retailer in Europe. There are two files recording 33,040,175 

clicks and 1,177,769 purchase events respectively; all the events happened in 9,512,786 unique 

sessions, the total amount of product is 52,739 belonging to 339 categories.  

 

Data Format of Purchase data: {SessionId, Timestamp, ItemID, Price, Quantity} 

{“SessionID”: “140806”, “TimeStamp”: “2014-04-07T09:22:28.280Z”, “ItemID”: “214578823”, “Price”: 

“1046”, “Quantity”: “1”} 

{“SessionID”: “11”, “TimeStamp”: “2014-04-03T11:04:11.417Z”, “ItemID”: “214821371”, “Price”: “1046”, 

“Quantity”: “1”} 

Where, SessionId is the  unique id of the session is represented as an integer number, which may 

have one or many clicks; Timestamp is the time when the buy occurred of format: “YYYY-MM-

DDThh:mm:ss.SSSZ”.;  ItemID is the unique identifier of item that has been bought represented 

as an integer number; Price is the price of the item, represented as an integer number as shown in 

Table 3.27 and Quantity is the quantity of item in this buying represented as an integer number. 

 

Data Format of Clicks data: {SessionId, Timestamp, ItemID, Price, Quantity} 

{“SessionID”: “1”, “TimeStamp”: “2014-04-07T10:57:00.306Z”, “ItemID”: “214577561”, “Category”: ”0”} 

{“SessionID”: “2”, “TimeStamp”: “2014-04-07T13:56:37.614Z”, “ItemID”: “214662742”, “Category”: ”0”} 
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Where, Category represents the context of the click. The value "S" indicates a special offer, "0" 

indicates a missing value, a number between 1 to 12 indicates a real category identifier,any other 

number indicates a brand. E.g. if an item has been clicked in the context of a promotion or 

special offer then the value will be "S", if the context was a brand i.e BOSCH, then the value will 

be an 8-10 digits number. If the item has been clicked under regular category, i.e. sport, then the 

value will be a number between 1 to 12. To implement the proposed HUSRec system, we have 

used the following tools and infrastructure: 

i. System Configuration: Windows 10, with 16 GB RAM and 64-bit Operating System, x64 

based processor. 

ii. Integrated Development Environment, such as Eclipse Java EE IDE for Web Developers and 

PyCharm. 

iii. Programming Languages: Java SE Development Kit (1.8 version) and Python (3.7.0) 

iv. Project manage tool: Apache Maven (3.5.3 version) 

4.2 Dataset Evaluation Metrics 

We used our historical dataset in user-based collaborative filtering to evaluate its performance with 

respect to MAE, precision, and graphs of comparisons of number of recommendations by each 

system and execution time taken by each system. The data is modified into the intermediate form, 

which means when the value is larger than the minimum threshold; this value would be set to one 

(highest rating). When the value is less than the threshold, this value would be set to zero (lowest 

rating) and finally, user-item rating matrix is provided to collaborative filtering. Let’s understand 

the evaluation metrics in terms of recommendation systems. 

 

Table 4. 1 Confusion matrix in terms of recommendation system. 

 

In the Table 4.1, the relevant items purchased are considered recommended, the items are 

denoted by: 

TP (True positive) if item was both recommended by system and purchased by customer. 
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FP (False Positive) if item was recommended to the customer but he didn’t purchase it. 

TN (True Negative) if item was purchased by the customer but not recommended to him in the 

suggestions. 

FN (False Negative) if item was neither recommended or purchased by the customer. 

 

Mean absolute error (MAE):  

Mean absolute error is a metric used to compute the average of all the absolute value differences 

between the true and the predicted rating (Herlocker, Konstan, Terveen & Riedl, 2004). 

𝑀𝐴𝐸=
Σ|actual_rating−predicted_rating|

𝑛
 

Equation 4. 1 Mean absolute error formula 

Thus, higher mean absolute errors mean, less efficient for accurate rating predication and lower 

mean absolute errors means highly efficient for accurate rating prediction.  

Precision:  

Precision is a description of a level of measurement that yields consistent results when repeated 

(Menditto, Patriarca & Magnusson, 2006). Determines the fraction of relevant items retrieved out 

of all items in the recommendation system. Let us consider, TP represents the fraction of items 

that user is interested with and FP represents the fraction of items that user is not interested in but 

recommended to him, then precision is defined as: 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  = 

𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑒𝑑 𝑖𝑡𝑒𝑚

𝑎𝑙𝑙 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚
 

Equation 4. 2 Precision formula 

Suppose that, our precision at the nearest neighbor (10) in a Top-10 recommendation problem is 

40%. This means that 40% of the recommendations we make are relevant to the user. 

 

4.2.2 Result evaluation and Analysis 

Since, we are working on the implicit information gathered from the historical e-commerce system. 

Firstly, we implemented the HPCRec18 system (Xiao & Ezeife, 2018), which forms the 

consequential bond between the click and purchase historic data and the forms the user-item matrix 
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from the purchased frequency of items is passed for collaborative filtering, then we have 

implemented HSPRec19 system (Bhatta, Ezeife & Butt, 2019), which found the sequential patterns 

from purchase which could lead to purchase of the item and improves the user-item frequency 

matrix before passing to the collaborative filtering. Then, we implemented HUSRec which 

recommends items based on the utility value of the item (product of quantity and price of the item) 

and sequential rules from the click history which diversifies the recommendations. The proposed 

HUSRec system provides with more recommendations as compared to the HPCRec18 (Xiao & 

Ezeife, 2018) and HSPRec19  (Bhatta, Ezeife & Butt, 2019). 

       

Figure 4. 1 Mean absolute error and Precision in user-based Collaborative filtering. 

The Figure 4.1 contains graph of Mean absolute error and Precision for the HPCRec18, HSPRec19 

and proposed HUSRec system, from these graphs we can study how the behavior of each system 

changes with increase in number of users. We can clearly see that Mean absolute error (MAE) 

decreases with increase in number of Users and in Precision graph we can see, however there is a 

slight difference in all the three systems but proposed HUSRec has performed well among all the 

systems in terms of MAE and precision. The least mean absolute error and consistent precision 

indicates that the accuracy of proposed HUSRec is more than the HSPRec19 and HPCRec18 

systems. 
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Figure 4. 2 Comparison of no. of recommendation and behavior of processing time for each 

system. 

                                                                      

In Figure 4.2, we can see that there is a linear relationship of number of recommendations with 

number of users and execution time with number of sequences. The execution time is taken most 

by the HSPRec19 because of GSP mining algorithm which is based on candidate generation and 

HPCRec18 takes the least as there is no association rule mining performed among the click and 

purchase data. But when we talk about the memory usage, it’s the HUSRec which occupies the 

most memory storage because of USpan high utility sequential pattern mining module stores the 

LQS-tree for the whole dataset. 

4.2.3 Accuracy evaluation using precision 

Recommendation 

system 

Top-N Neighbors Number 

of users 

Recommendation 

No 

Precision Relevant 

item 

HPCRec18 

(Xiao & Ezeife, 

2018) 

10 10 2000 

4000 

6000 

8000 

2050 

4032 

5857 

8655 

0.62 

0.39 

0.35 

0.38 

127145789 

157267813 

204998726 

328886422 

HSPRec19 

(Bhatta, Ezeife & 

Butt, 2019) 

10 10 2000 

4000 

6000 

8000 

2130 

4156 

6039 

8938 

0.65 

0.49 

0.38 

0.45 

139487262 

20366267 

22946728 

40223456 
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Proposed HUSRec 10 10 2000 

4000 

6000 

8000 

2560 

4589 

6477 

9231 

0.742 

0.584 

0.470 

0.462 

 

214821290 

214716975 

214826803 

214546102 

Table 4. 2 Precision evaluation with respect to different number of users 

 

4.3 Complexity Analysis 

4.3.1 Time complexity analysis of proposed HUSRec algorithm 

The proposed HUSRec is composed of several modules HUSDBG (High Utility Sequential 

Database Genenrator), SPR (Sequential Pattern Rule), CPS (Click Purchase Similarity), WHUOM 

(Weighted High Utility Occupancy Miner), and Matrix normalization; thus, we are going to 

compare the time complexity of HSPRec19 and proposed HUSRec with respect to specified 

modules. Assume we have a dataset (say D) with the number of items in it (N) and has S number 

of sequences generated from database where the length of the longest sequence is n. 

HSPRec19 system Proposed HUSrec system 

1. Time complexity analysis of SHOD 

algorithm. 

The time complexity of SHOD algorithm 

is O (N log N), where N is the number of 

total items in the database. 

Time complexity analysis of HUSDBG 

algorithm  

The time complexity of HUSDBG module is 

O (N log N). 

 

2.Time Complexity for Pattern Rule Mining. 

HSPRec19 system uses GSP algorithm for 

sequential pattern mining for both 

sequential purchase and click stream 

database. The I/O complexity of the GSP 

algorithm is O (n. N), where n is the length 

of the longest sequence in the database and 

N is the total number of items/ records in 

the sequential database. 

Time Complexity for Pattern Rule Mining. 

HUSRec system has a high utility sequential 

pattern mining module (USpan algorithm) for 

sequential purchase database and the 

PrefixSpan algorithm for sequential click 

stream data. According to our system 

PrefixSpan has O (S.n2) time and space 

complexity, where S is the number of 

sequences in database, and n is the length of 

longest sequence. The time complexity of 
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USpan is O(S Log N), as it traverses each 

sequence and create LQS-tree for them, where 

S is the number of sequences and N is the total 

number of unique items in the database. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5    CONCLUSION AND FUTURE WORK 
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In this thesis, we proposed a High Utility Sequential Recommendation Systems (HUSRec) which 

converts the historic purchase dataset to the High Utility Purchase Sequential Database (HUPSDB) 

in order to mine the high utility sequential pattern rules that will recommend items which are not 

only relevant for the customers but will also bring sales profits to the sellers and increase in revenue 

generations. To conclude, the proposed HUSRec system has increased the number of 

recommendations offered to the customers as compared to the HSPRec19 system even there is 

improvement in the accuracy of these recommendations. The recommended products generated by 

the proposed HUSRec system have utility values more than the minimum threshold sequential 

utility which ensures that the proposed HUSRec system suggests products that could help product 

sellers to increase their revenue generation by making profit sales. We have compared the 

HPCRec18 and HSPRec19 systems on the same dataset with proposed HUSRec system. 

Furthermore, we have evaluated all three systems on Precision and Mean Absolute Error (MAE) 

with user-based collaborative filtering. The Precision and MAE shows that proposed HUSRec is 

more improved system than the HPCRec18 and HSPRec19 systems. Even the number of 

recommendations suggested are more in the proposed HUSRec system. Therefore, the proposed 

HUSRec gives better results with a high utility sequential pattern mining based e-commerce 

recommendations.  

Below are some interesting extensions of this study and some avenues to explore for future works: 

1. High Utility mining is still an active area of research, we have used USpan algorithm for 

mining high utility sequential pattern mining module which works efficiently for large- scale 

datasets with even low minimum utility value also but the pruning strategies used to find the 

patterns can be improved. 

2. Multiple large data sources can be incorporated based on the high utility sequential pattern 

mining algorithms which have different data schemas and also make recommendations based 

on the overall dataset. 

3. The e-commerce datasets are not limited to the purchase and clickstream information, there 

are other attributes available in the dataset such as discount can be used to analyze how they 

can impact the user-item frequency matrix which can impact the business decision making. 

For example, during the festive season sales, there are big discounts on the expensive gadgets 

but normally throughout the year they can’t be considered as the frequently bought items, so 
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discounts can increase the probability of item being purchased in future and can help to make 

business decisions such as how to control the inventory on festive seasons. 
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