325 research outputs found

    Convolutions on digital surfaces: on the way iterated convolutions behave and preliminary results about curvature estimation

    Get PDF
    In [FoureyMalgouyres09] the authors present a generalized convolution operator for functions defined on digital surfaces. We provide here some extra material related to this notion. Some about the relative isotropy of the way a convolution kernel (or mask) grows when the convolution operator is iterated. We also provide preliminary results about a way to estimate curvatures on a digital surface, using the same convolution operator

    Normals estimation for digital surfaces based on convolutions

    Get PDF
    International audienceIn this paper, we present a method that we call on-surface convolution which extends the classical notion of a 2D digital filter to the case of digital surfaces (following the cuberille model). We also define an averaging mask with local support which, when applied with the iterated convolution operator, behaves like an averaging with large support. The interesting property of the latter averaging is the way the resulting weights are distributed: given a digital surface obtained by discretization of a differentiable surface of R^3 , the masks isocurves are close to the Riemannian isodistance curves from the center of the mask. We eventually use the iterated averaging followed by convolutions with differentiation masks to estimate partial derivatives and then normal vectors over a surface. The number of iterations required to achieve a good estimate is determined experimentally on digitized spheres and tori. The precision of the normal estimation is also investigated according to the digitization step

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    Piecewise smooth reconstruction of normal vector field on digital data

    Get PDF
    International audienceWe propose a novel method to regularize a normal vector field defined on a digital surface (boundary of a set of voxels). When the digital surface is a digitization of a piecewise smooth manifold, our method localizes sharp features (edges) while regularizing the input normal vector field at the same time. It relies on the optimisation of a variant of the Ambrosio-Tortorelli functional, originally defined for denoising and contour extraction in image processing [AT90]. We reformulate this functional to digital surface processing thanks to discrete calculus operators. Experiments show that the output normal field is very robust to digitization artifacts or noise, and also fairly independent of the sampling resolution. The method allows the user to choose independently the amount of smoothing and the length of the set of discontinuities. Sharp and vanishing features are correctly delineated even on extremely damaged data. Finally, our method can be used to enhance considerably the output of state-of- the-art normal field estimators like Voronoi Covariance Measure [MOG11] or Randomized Hough Transform [BM12]

    Integral based Curvature Estimators in Digital Geometry

    Get PDF
    International audienceIn many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field is an essential step. When designing such estimators, we have to pay attention to both its theoretical properties and practical effectiveness. In this paper, we investigate a new class of estimators on digital shape boundaries based on Integral Invariants. More precisely, we provide proofs of multigrid convergence of curvature estimators which are easy to implement on digital data. Furthermore, we discuss about some algorithmic optimisations and detail a complete experimental evaluation

    Integral based Curvature Estimators in Digital Geometry

    No full text
    International audienceIn many geometry processing applications, the estimation of differential geometric quantities such as curvature or normal vector field is an essential step. When designing such estimators, we have to pay attention to both its theoretical properties and practical effectiveness. In this paper, we investigate a new class of estimators on digital shape boundaries based on Integral Invariants. More precisely, we provide proofs of multigrid convergence of curvature estimators which are easy to implement on digital data. Furthermore, we discuss about some algorithmic optimisations and detail a complete experimental evaluation

    Machine learning methods for 3D object classification and segmentation

    Get PDF
    Field of study: Computer science.Dr. Ye Duan, Thesis Supervisor.Includes vita."July 2018."Object understanding is a fundamental problem in computer vision and it has been extensively researched in recent years thanks to the availability of powerful GPUs and labelled data, especially in the context of images. However, 3D object understanding is still not on par with its 2D domain and deep learning for 3D has not been fully explored yet. In this dissertation, I work on two approaches, both of which advances the state-of-the-art results in 3D classification and segmentation. The first approach, called MVRNN, is based multi-view paradigm. In contrast to MVCNN which does not generate consistent result across different views, by treating the multi-view images as a temporal sequence, our MVRNN correlates the features and generates coherent segmentation across different views. MVRNN demonstrated state-of-the-art performance on the Princeton Segmentation Benchmark dataset. The second approach, called PointGrid, is a hybrid method which combines points and regular grid structure. 3D points can retain fine details but irregular, which is challenge for deep learning methods. Volumetric grid is simple and has regular structure, but does not scale well with data resolution. Our PointGrid, which is simple, allows the fine details to be consumed by normal convolutions under a coarser resolution grid. PointGrid achieved state-of-the-art performance on ModelNet40 and ShapeNet datasets in 3D classification and object part segmentation.Includes bibliographical references (pages 116-140)

    Diffusion is All You Need for Learning on Surfaces

    Full text link
    We introduce a new approach to deep learning on 3D surfaces such as meshes or point clouds. Our key insight is that a simple learned diffusion layer can spatially share data in a principled manner, replacing operations like convolution and pooling which are complicated and expensive on surfaces. The only other ingredients in our network are a spatial gradient operation, which uses dot-products of derivatives to encode tangent-invariant filters, and a multi-layer perceptron applied independently at each point. The resulting architecture, which we call DiffusionNet, is remarkably simple, efficient, and scalable. Continuously optimizing for spatial support avoids the need to pick neighborhood sizes or filter widths a priori, or worry about their impact on network size/training time. Furthermore, the principled, geometric nature of these networks makes them agnostic to the underlying representation and insensitive to discretization. In practice, this means significant robustness to mesh sampling, and even the ability to train on a mesh and evaluate on a point cloud. Our experiments demonstrate that these networks achieve state-of-the-art results for a variety of tasks on both meshes and point clouds, including surface classification, segmentation, and non-rigid correspondence

    PRS: Sharp Feature Priors for Resolution-Free Surface Remeshing

    Full text link
    Surface reconstruction with preservation of geometric features is a challenging computer vision task. Despite significant progress in implicit shape reconstruction, state-of-the-art mesh extraction methods often produce aliased, perceptually distorted surfaces and lack scalability to high-resolution 3D shapes. We present a data-driven approach for automatic feature detection and remeshing that requires only a coarse, aliased mesh as input and scales to arbitrary resolution reconstructions. We define and learn a collection of surface-based fields to (1) capture sharp geometric features in the shape with an implicit vertexwise model and (2) approximate improvements in normals alignment obtained by applying edge-flips with an edgewise model. To support scaling to arbitrary complexity shapes, we learn our fields using local triangulated patches, fusing estimates on complete surface meshes. Our feature remeshing algorithm integrates the learned fields as sharp feature priors and optimizes vertex placement and mesh connectivity for maximum expected surface improvement. On a challenging collection of high-resolution shape reconstructions in the ABC dataset, our algorithm improves over state-of-the-art by 26% normals F-score and 42% perceptual RMSEv\text{RMSE}_{\text{v}}
    • …
    corecore